

Heat Kernel on the Infinite Percolation Cluster

Chenlin GU

DMA/ENS, PSL Research University

based on a joint work with Paul Dario

GTT-LPSM, November 4, 2019

Outline

1) Introduction of percolation model

- Definition
- Phase transition
- Random walk on the infinite cluster (with random conductance)

2 Convergence of the heat kernel

- Historical review
- Main result: estimate between the errors

Idea of the proof

- Homogenization theory
- Calderón-Zygmund decomposition

4 Exercise: concentration of density

出

Outline

Introduction of percolation model Definition

- Phase transition
- Random walk on the infinite cluster (with random conductance)

Convergence of the heat kernel

- Historical review
- Main result: estimate between the errors

3 Idea of the proof

- Homogenization theory
- Calderón-Zygmund decomposition

4 Exercise: concentration of density

Definition (Bernoulli percolation on \mathbb{Z}^d)

We denote by (\mathbb{Z}^d, E_d) the *d*-dimension lattice graph. A Bernoulli percolation configuration $\{\omega(e)\}_{e \in E_d}$ is an element of $\{0, 1\}^{E_d}$, and its law is given by

$$\{\omega(e)\}_{e\in E_d}$$
 i.i.d. $\mathbb{P}[\omega(e)=1]=1-\mathbb{P}[\omega(e)=0]=\mathfrak{p}.$

We say that the edge e is open if $\omega(e) = 1$ and the edge e is closed if $\omega(e) = 0$. A connected component given by ω will be called cluster.

Example of percolation

Question: Can you feel the difference when we simulate ω with different value of $\mathfrak p$?

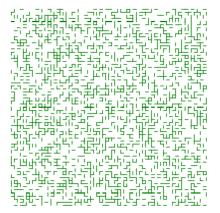


Figure: percolation in a cube of size 32×32 with $\mathfrak{p}=0.3$.

Example of percolation

Question: Can you feel the difference when we simulate ω with different value of $\mathfrak p$?

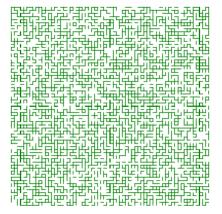


Figure: percolation in a cube of size 32×32 with $\mathfrak{p}=0.5$.

Example of percolation

Question: Can you feel the difference when we simulate ω with different value of $\mathfrak p$?

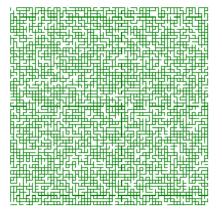


Figure: percolation in a cube of size 32×32 with $\mathfrak{p}=0.7$.

Example of percolation

Question: Can you feel the difference when we simulate ω with different value of $\mathfrak p$?

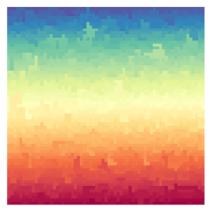


Figure: percolation colored by cluster in a cube of size 32×32 with $\mathfrak{p} = 0.3$.

Example of percolation

Question: Can you feel the difference when we simulate ω with different value of $\mathfrak p$?

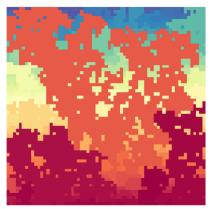


Figure: percolation colored by cluster in a cube of size 32×32 with $\mathfrak{p}=0.5$.

Example of percolation

Question: Can you feel the difference when we simulate ω with different value of $\mathfrak p$?

Figure: percolation colored by cluster in a cube of size 32×32 with $\mathfrak{p}=0.7$.

Outline

Introduction of percolation model

- Definition
- Phase transition
- Random walk on the infinite cluster (with random conductance)

Convergence of the heat kernel

- Historical review
- Main result: estimate between the errors

3 Idea of the proof

- Homogenization theory
- Calderón-Zygmund decomposition

4 Exercise: concentration of density

Phase transition

- $\theta(\mathfrak{p}) := \mathbb{P}[0 \text{ belongs to an infinite cluster } \mathscr{C}].$
- It is easy to show that $\theta(\mathfrak{p})$ is monotone.
- $\mathfrak{p}_c := \inf \{ \mathfrak{p} \in [0,1] : \theta(\mathfrak{p}) > 0 \}.$

Theorem

For $d \ge 2$, we have $0 < \mathfrak{p}_c < 1$.

- We call the regime $0 \leq p < p_c$ subcritical, $p = p_c$ critical and $p_c supercritical.$
- Furthermore, by ergodicity argument, in subcritical case a.s. there is no infinite cluster. In supercritical case a.s. there exists a unique infinite cluster 𝒞_∞.
- Critical case: we conjecture $\theta(\mathfrak{p}_c) = 0$, but it is open for $3 \leq d \leq 11$.

Outline

Introduction of percolation model

- Definition
- Phase transition
- Random walk on the infinite cluster (with random conductance)
- Convergence of the heat kernel
 - Historical review
 - Main result: estimate between the errors
- 3 Idea of the proof
 - Homogenization theory
 - Calderón-Zygmund decomposition

4 Exercise: concentration of density

Random walk on the infinite cluster

• $\{\mathbf{a}(e)\}_{e \in E_d}$ is i.i.d random conductance taking value in $\{0\} \cup [\lambda, 1], 0 < \lambda < 1$ satisfying

$$\mathbb{P}[\mathbf{a}(e) > 0] = \mathfrak{p} > \mathfrak{p}_c.$$

- The subset $\{e \in E_d : \mathbf{a}(e) > 0\}$ defines a percolation (open for $\mathbf{a}(e) > 0$ and closed for $\mathbf{a}(e) = 0$) and a unique infinite cluster \mathscr{C}_{∞} .
- (X_t) is a continuous-time Markov jump process starting from $y \in \mathscr{C}_{\infty}$, with an associated generator

$$\nabla \cdot \mathbf{a} \nabla u(x) := \sum_{z \sim x} \mathbf{a}(\{x, z\}) (u(z) - u(x)).$$

• The quenched semigroup (also called heat kernel or parabolic Green function) is defined as

$$p(t,x,y) = p^{\mathbf{a}}(t,x,y) := \mathbb{P}_{y}^{\mathbf{a}}(X_{t} = x).$$

Random walk on the infinite cluster

• Question: for t big, does $(X_t)_{t \ge 0}$ looks like Brownian motion or is p(t, x, y) close to a Gaussian distribution ?

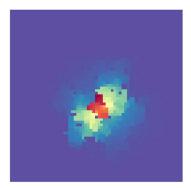


Figure: T=100

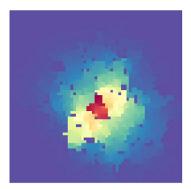


Figure: T=200

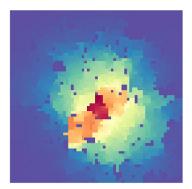


Figure: T=300

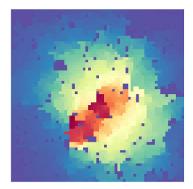


Figure: T=400

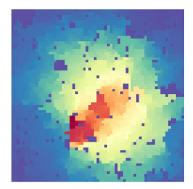


Figure: T=500

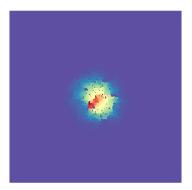


Figure: T=500

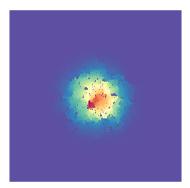


Figure: T=1000

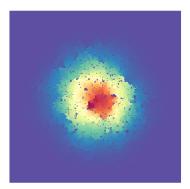


Figure: T=2000

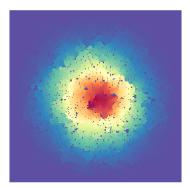


Figure: T=3000

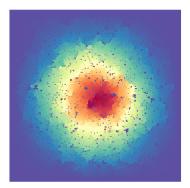


Figure: T=4000

Outline

Introduction of percolation model

- Definition
- Phase transition
- Random walk on the infinite cluster (with random conductance)

Convergence of the heat kernel Historical review

Main result: estimate between the errors

3 Idea of the proof

- Homogenization theory
- Calderón-Zygmund decomposition

4 Exercise: concentration of density

Historical review: convergence in law

The convergence of the heat kernel is a very classical topic.

- In simple random walk setting, we have CLT, local CLT, Donsker theorem.
- To treat the convergence of random process, we have Dubins-Schwartz theorem for continuous martingale, and Stroock and Varadhan theorem for general Markov process.
- Berger, Biskup, Mathieu and Piatnitski prove that ω almost surely, the random walk on the infinite percolation cluster converges to the Brownian motion.

Historical review: heat kernel bound

The exact Gaussian type bound on graphs and Markov chains are also well studied for long time.

• Davies proves the Carne-Varopoulos bound for random walk on any infinite subgraph of \mathbb{Z}^d

$$p(t, x, y) \leqslant \begin{cases} C \exp\left(-\frac{|x - y|^2}{Ct}\right) & \text{if } |x - y| \leqslant t, \\ C \exp\left(-\frac{|x - y|}{C}\left(1 + \ln\frac{|x - y|}{t}\right)\right) & \text{if } |x - y| \ge t. \end{cases}$$

• Delmotte proves the Gaussian bound for Markov chain on graph satisfying double volume condition and Poincaré inequality.

Historical review: heat kernel bound

• Barlow prove the Gaussian bound for the heat kernel p with big t. That is for $t > T_{NA}(y)$

$$p(t, x, y) \leqslant \begin{cases} Ct^{-d/2} \exp\left(-\frac{|x-y|^2}{Ct}\right) & |x-y| \leqslant t, \\ Ct^{-d/2} \exp\left(-\frac{|x-y|}{C} \left(1 + \ln\frac{|x-y|}{t}\right)\right) & |x-y| \geqslant t, \end{cases}$$

and with Hambly they also prove the local CLT.

Outline

Introduction of percolation model

- Definition
- Phase transition
- Random walk on the infinite cluster (with random conductance)

2 Convergence of the heat kernel

- Historical review
- Main result: estimate between the errors

Idea of the proof

- Homogenization theory
- Calderón-Zygmund decomposition

4 Exercise: concentration of density

Main result: Quantitative local CLT

Theorem (Dario, Gu 19+)

For each exponent $\delta > 0$, there exist a positive constant $C < \infty$ and an exponent s > 0, depending only on the parameters d, λ, \mathfrak{p} and δ , such that for every $y \in \mathbb{Z}^d$, there exists a non-negative random time $\mathcal{T}_{\mathrm{par},\delta}(y)$ satisfying the stochastic integrability estimate

$$orall T \geqslant 0, \ \mathbb{P}\left(\mathcal{T}_{\mathrm{par},\delta}(y) \geqslant T
ight) \leqslant C \exp\left(-rac{T^s}{C}
ight),$$

such that, on the event $\{y \in \mathscr{C}_{\infty}\}$, for every $x \in \mathscr{C}_{\infty}$ and every $t \ge \max(\mathcal{T}_{\mathrm{par},\delta}(y), |x - y|)$,

$$\left| p(t,x,y) - \theta(\mathfrak{p})^{-1} \bar{p}(t,x-y) \right| \leqslant C t^{-\frac{d}{2} - \left(\frac{1}{2} - \delta\right)} \exp\left(-\frac{|x-y|^2}{Ct}\right)$$

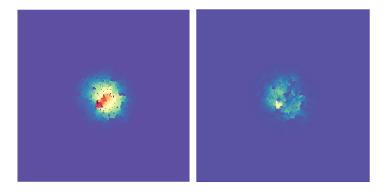


Figure: T=500

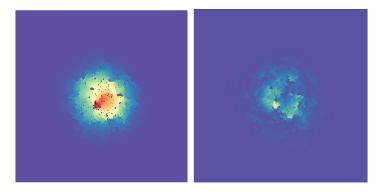


Figure: T=1000

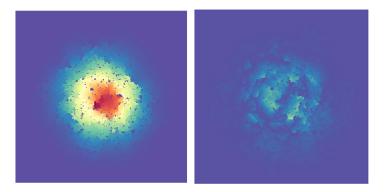


Figure: T=2000

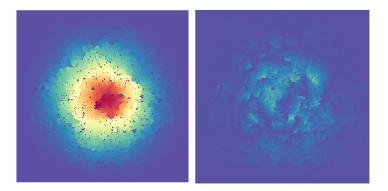


Figure: T=3000

Errors between the heat kernels

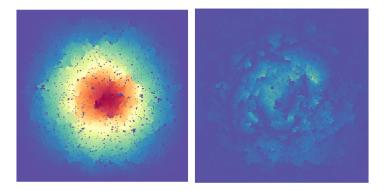
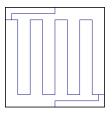


Figure: T=4000

Chenlin GU (DMA/ENS, PSL Research UniveHeat Kernel on the Infinite Percolation Cluste

Challenge

Some elementary inequality is perturbed by the random geometry of the cluster.



Outline

Introduction of percolation model

- Definition
- Phase transition
- Random walk on the infinite cluster (with random conductance)
- Convergence of the heat kernel
 - Historical review
 - Main result: estimate between the errors

3 Idea of the proof

- Homogenization theory
- Calderón-Zygmund decomposition

4 Exercise: concentration of density

Homogenization theory

• Homogenization theory studies the errors between the equation and its homogenized solution, for example $(\partial_t - \nabla \cdot \mathbf{a} \nabla) p = (\partial_t - \frac{\sigma^2}{2} \Delta) \bar{p}$, intuitively we have

$$p(t,x,y) \simeq \bar{p}(t,x,y) + \sum_{k=1}^{d} \partial_k \bar{p}(t,x,y) \phi_k(x),$$

where $\{\phi_k\}_{1 \leq k \leq d}$ is the collection of corrector.

- Early classical work in homogenization: Bensoussan, Lions, Papanicolaou, Jikov, Kozlov, Oleunik, Yurinskii, Naddaf, Spencer, Allaire, Kenig, Lin, Shen etc.
- Quantitative analysis in stochastic homogenization setting: Armstrong, Kuusi, Mourrat, Smart, Gloria, Neukamm and Otto etc.

Outline

Introduction of percolation model

- Definition
- Phase transition
- Random walk on the infinite cluster (with random conductance)

Convergence of the heat kernel

- Historical review
- Main result: estimate between the errors

Idea of the proof

- Homogenization theory
- Calderón-Zygmund decomposition

4 Exercise: concentration of density

Calderón-Zygmund decomposition



An example: Pisztora's good cube

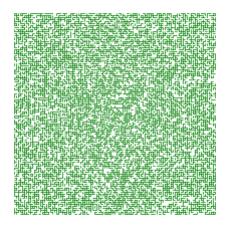


Figure: Can you tell all the connected components in the graph ?

An example: Pisztora's good cube

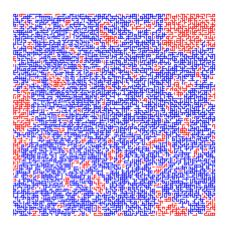


Figure: The cluster in blue is the maximal cluster in the cube.

An example: Pisztora's good cube

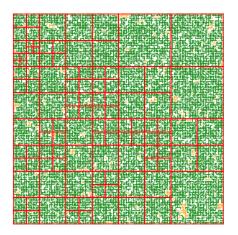


Figure: Decomposition of a big cube into of disjoint small cubes with good properties.

Theorem (Armstrong, Dario 18)

Let $\mathcal{G} \subset \mathcal{T}$ a sub-collection of triadic cubes satisfying the following: for every $\Box = z + \Box_n \in \mathcal{T}$, $\{\Box \notin \mathcal{G}\} \in \mathcal{F}(z + \Box_{n+1})$, and there exist two positive constants K, s we have $\sup_{z \in 3^n \mathbb{Z}^d} \mathbb{P}[z + \Box_n \notin \mathcal{G}] \leq K \exp(-K^{-1}3^{ns})$. Then, \mathbb{P} -almost surely there exists $S \subset \mathcal{T}$ a partition of \mathbb{Z}^d with the following properties:

() Cubes containing elements of S are good: for every $\Box, \Box' \in T$,

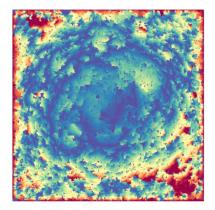
 $\Box \subset \Box', \Box \in \mathcal{S} \Longrightarrow \Box' \in \mathcal{G}.$

Our Section 2018 Section 20

$$\frac{1}{3} \leqslant \frac{\operatorname{size}(\Box)}{\operatorname{size}(\Box')} \leqslant 3.$$

Sestimate for the coarseness: we use $\Box_S(x)$ to represent the unique element in S containing a point $x \in \mathbb{Z}^d$, then its size has exponential tail. Chenlin GU (DMA/ENS, PSL Research Univ/Heat Kernel on the Infinite Percolation Cluste November 4, 2019 46/48

Question: Give a concentration inequality estimate for $\left|\frac{|\mathscr{C}_{\infty}\cap\Box|}{|\Box|} - \theta(p)\right|$?



Thank you for your attention.

Chenlin GU (DMA/ENS, PSL Research UniveHeat Kernel on the Infinite Percolation Cluste