Examen du 13 mai 2019. Durée 2h Sans documents ni calculatrice ni portable

Notations : dans tout l'énoncé on écrit v.a. pour variable aléatoire et p.s. pour presque sûrement. La notation log désigne le logarithme népérien. On rappelle que $e^{a \log x} = x^a$ pour $a \in \mathbb{R}$ et x > 0.

Questions de Cours.

- 1) Enoncer le Théorème Central Limite.
- 2) Donner la définition de la convergence en probabilité.

Exercice 1. $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ désignent deux suites indépendantes constituées de v.a. indépendantes et de même loi uniforme sur [0,1].

- 1) Déterminer la loi du couple (X_1, Y_1) .
- 2) Montrer que la suite $\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{\{X_i+Y_i\leq 1\}}$ converge quand n tend vers $+\infty$. Préciser le mode de convergence et justifier. On admet que les v.a. (X_i,Y_i) , $i\geq 1$ sont indépendantes (on ne demande pas de le démontrer).

Exercice 2. Pour tout réel x on note [x] pour désigner la partie entière de x. On rappelle que pour tout entier relatif ℓ , l'égalité $[x] = \ell$ est équivalente à $\ell \le x < \ell + 1$. Soit U une v.a. de loi uniforme sur [0,1] et λ un réel strictement positif.

- 1) Soit $n \in \mathbb{N}^*$ strictement supérieur à λ .
- a) Quel est le signe du réel $\log(1-\frac{\lambda}{n})$?
- b) On pose $p_n = \frac{\lambda}{n}$. Montrer que la v.a. $Z_n = 1 + [\frac{\log U}{\log(1-p_n)}]$ vérifie $\mathbb{P}(Z_n = k) = p_n(1-p_n)^{k-1}$ pour tout $k \in \mathbb{N}^*$.
- 2) a) Soit $\omega \in \Omega$. En effectuant un développement limité montrer que

$$\frac{\log U(\omega)}{\log(1 - p_n)} = -\frac{1}{\lambda} (n - \lambda + o(1)) \log U(\omega)$$

quand $n \to +\infty$.

b) En déduire que pour n grand, on a l'encadrement

$$-\frac{1}{n} - \frac{1}{\lambda} \left(1 - \frac{\lambda}{n} + \mathrm{o}(\frac{1}{n}) \right) \log U(\omega) < \frac{1}{n} \left[\frac{\log U}{\log(1 - p_n)} \right] \le -\frac{1}{\lambda} \left(1 - \frac{\lambda}{n} + \mathrm{o}(\frac{1}{n}) \right) \log U(\omega).$$

- 3) Montrer que la suite $(\frac{Z_n}{n})_{n\in\mathbb{N}^*}$ converge p.s. quand n tend vers $+\infty$. Préciser la v.a. limite.
- 4) Déterminer la loi de la v.a. $-\frac{1}{\lambda} \log U$.
- 5) Déduire des questions précéddentes que la suite $(\frac{Z_n}{n})_{n\in\mathbb{N}^*}$ converge en loi vers une v.a. de loi exponentielle de paramètre λ quand n tend vers $+\infty$.

Exercice 3. 1) Soit Z une v.a. à valeurs dans \mathbb{N} telle que $\mathbb{E}(Z) < +\infty$. Montrer que

$$\mathbb{E}(Z) = \sum_{k=1}^{+\infty} \mathbb{P}(Z \ge k).$$

Indication : on pourra utiliser que $\mathbb{P}(Z \ge k) = \sum_{\ell \ge k} \mathbb{P}(Z = \ell)$.

Dans la suite de l'exercice X désigne une v.a. à valeurs dans \mathbb{N} telle que $\mathbb{E}(X) < +\infty$ et $(X_n)_{n \in \mathbb{N}^*}$ une suite de v.a. de même loi que X.

2) a) Montrer que

$$\sum_{k=1}^{+\infty} \mathbb{P}(\frac{X_k}{k} \ge \frac{1}{p}) < +\infty \quad \forall p \in \mathbb{N}^*.$$

- b) Montrer que la suite $(\frac{X_n}{n})_{n \in \mathbb{N}^*}$ converge p.s. vers 0 quand n tend vers $+\infty$.
- 3) Soit Z une v.a. à valeurs dans $\mathbb N$ telle que $\mathbb E(Z^2)<+\infty$. Montrer que

$$\sum_{k>1} k \, \mathbb{P}(Z \ge k) \le \mathbb{E}(Z^2).$$

- 4) On suppose maintenant que $\mathbb{E}(X^2) < +\infty$.
- a) Montrer que $\mathbb{P}(\max(X_1, X_2, ..., X_k) \ge k) \le \sum_{i=1}^k \mathbb{P}(X_i \ge k) \le k \, \mathbb{P}(X \ge k)$.
- b) Montrer que la suite $(\frac{1}{n} \max(X_1, X_2, ..., X_n))_{n \in \mathbb{N}^*}$ converge vers 0 p.s. quand n tend vers $+\infty$.

Exercice 4. 1) X et Y sont des v.a. indépendantes. On suppose que la densité de X est $f(x) = \frac{2}{\pi\sqrt{1-x^2}}\mathbf{1}_{]0,1[}(x)$, celle de Y est $g(y) = ye^{-\frac{y^2}{2}}\mathbf{1}_{]0,+\infty[}(y)$.

- 1) Calculer la densité du couple (XY, Y). On note h cette densité.
- 2) a) Exprimer la densité de la v.a. XY en fonction de h.
- b) Calculer la densité de XY.