TD 3 : Variables aléatoires à densité, fonctions de variable aléatoire

Une étoile désigne un exercice important.

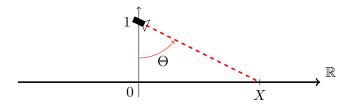
Exercice 1. Soit $F: \mathbb{R} \to \mathbb{R}$ définie par

$$F(x) = \begin{cases} 0 & \text{si } \le 0\\ 1 - e^{-x/2} \left(1 + \frac{x}{2} \right) & \text{si } x > 0. \end{cases}$$

Montrer que F est la fonction de répartition d'une loi de probabilité dont on déterminera la densité si elle existe.

- * Exercice 2. Rappeler la densité de la loi $\mathcal{N}(\mu, \sigma^2)$. Soit $X \sim \mathcal{N}(\mu, \sigma^2)$, quelle est la loi de $Y = \frac{X \mu}{\sigma}$? Calculer $\mathbb{E}[e^{\lambda Y}]$ pour tout $\lambda \in \mathbb{R}$, et en déduire $\mathbb{E}[e^{\lambda X}]$ pour tout $\lambda \in \mathbb{R}$.
- \star **Exercice 3.** Soit U une variable aléatoire de loi uniforme sur [0,1]. Quelle est la loi de $-\log U$?

Exercice 4. On suspend un laser à 1 m au dessus du sol. L'angle qu'il forme avec la verticale est aléatoire, notée Θ , et suit la loi uniforme sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. On note X le point marqué au sol par le laser (voir la Figure ci-dessous). Donner la densité de la loi de X.



Exercice 5. Soit X une v.a. réelle de fonction de répartition F. Trouver en fonction de F les fonctions de répartition de X^2 , X^3 , [X], (où [X] est la partie entière de X) et $\exp(X)$.

Exercice 6. Soient X_1 et X_2 deux v.a. indépendantes de même loi uniforme sur [0,1]. Déterminer les loi des v.a. $U = \min(X_1, X_2)$ et $V = \max(X_1, X_2)$. En déduire les densités de probabilité correspondantes. Que vaut $\mathbb{E}(|X_1 - X_2|)$?

Exercice 7. Soit X une v.a. de loi uniforme sur [0,1] (de densité de probabilité $f(t) = \mathbf{1}_{[0,1]}(t)$). Déterminer la fonction de répartition de la v.a. $Y = \min(X, a)$, $(a \in [0, 1])$. Montrer que la loi de Y est une combinaison linéaire d'une loi à densité et d'une mesure de Dirac.

Exercice 8. Soit X une variable aléatoire positive de densité f(x). Montrer que $E[X] = \int_0^{+\infty} \mathbb{P}(X > t) dt$.

 $\widetilde{Remarque}$: cette formule est valable même si X n'est pas à densité (pourvu que $X \geq 0$).

- * Exercice 9. Soient X_1, X_2, \dots, X_n des v.a. indépendantes de même loi exponentielle de paramètre $\lambda, \lambda > 0$. On pose $S_0 = 0$ et pour tout $k = 1, 2, \dots, n, S_k = X_1 + X_2 + \dots + X_k$.
 - 1. Calculer la loi de (S_1, \dots, S_n) .
 - 2. Montrer que $S_n = X_1 + X_2 + \cdots + X_n$ admet la densité de probabilité

$$f_n(t) = \lambda^n e^{-\lambda t} \frac{t^{n-1}}{(n-1)!} \mathbf{1}_{]0,+\infty[}(t).$$

- 3. Que vaut la fonction caractéristique de S_n ?
- 4. Calculer de deux manières $\mathbb{E}(S_n)$ et $\text{Var}(S_n)$.