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This exercise sheet aims to help high school students learn the famous Bertrand’s postulate:

Theorem 1. For any positive integer n > 2, there exits a prime p such that n < p < 2n.

Despites its short statement, the proof is not obvious. However, Paul Erdös gave an elementary
but very elegant argument in his first paper when he was 19. In this sheet, we follow his steps to
learn this magic proof. In this sheet, we denote by P the set of prime number.

1 Warm up
Exercise 1. Recall that there are infinitely many prime numbers.

Exercise 2. Prove that for any positive integer n, we can find n consecutive composite numbers.

Exercise 3. Do you think there is contradiction between Theorem 1 and Exercise 2? Remark on it.

2 A first study of
(
2n
n

)
Erdös’ proof relies on a nice object with nice property: the combinatorial number

(
2n
n

)
which is

defined as (
2n

n

)
:=

(2n)!

(n!)(n!)
=

2n× (2n− 1) · · · (n+ 1)

n× (n− 1) · · · 1
.

Erdös’ argument is that:
(
2n
n

)
contains the factor

∏
p∈P,n<p<2n

p. If there is no prime number

between n and 2n, then the size of
(
2n
n

)
will be too small.

In the following we explicate this paragraph and we study at first the typical size of some
quantity related to

(
2n
n

)
.

Exercise 4. Prove that 4n√
2n

6
(
2n
n

)
6 4n.

Exercise 5. Prove that
∏

p∈P,n<p<2n

p|
(
2n

n

)
.

Exercise 6. Prove that
∏

p∈P,1<p<n

p 6 4n. (Hint: One can prove it by induction and make use of

Exercise 4 and Exercise 5.)

1



3 Counting the prime factor in
(
2n
n

)
The estimates in last section are helpful but not sufficient to finish the proof. We have to do some
finer estimate for

(
2n
n

)
. By the canonical decomposition of

(
2n
n

)
, we have(

2n

n

)
=
∏
p∈P

pαp ,

where αp is integer and is the power of the factor p. In this section, we study the size of αp.

Exercise 7. Prove that for any prime number p > 2n, αp = 0.

Exercise 8. Prove the following identity:

αp =
∞∑
k=1

(⌊
2n

pk

⌋
− 2

⌊
2n

pk

⌋)
. (1)

Exercise 9. By analyzing eq. (1), prove the following three bounds for αp:

1. A general bound αp 6 b log 2nlog p
c.

2. For the prime number n < p < 2n, αp = 1.

3. For the prime number
⌊
2n
3

⌋
< p 6 n, αp = 0.

4 Conclusion
Now we are ready to prove Theorem 1: The main argument is to explore the equation eq. (1). On
the one hand, we have obtain the lower bound in Exercise 4 for the left hand side of eq. (1); on the
other hand, one can use the Exercise 9 to give an upper bound for the right hand side of eq. (1).
We will see that for a big n, the premier numbers in [n, 2n] must exist, otherwise eq. (1) cannot be
true.

Exercise 10. Combining all the results above and prove Theorem 1.

Exercise 11. Sometimes people think the observation for the estimate of αp of
⌊
2n
3

⌋
< p 6 n is

essential for this problem. Explain it heuristically.

Pour aller plus loin
One can find the whole proof in [1]. Bertrand’s postulate is a beginning of the study of the dis-
tribution of the premier numbers and many interesting problems still hold open in this area. The
curious students can read [2] for a panorama in this direction.
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