NetId:

Honors Ordinary Differential Equations

Final Exam, Fall 2021

DO NOT OPEN YET

...and wait until the proctor announces that it is time to start.

In the mean time, please write your name and NetID legibly, and **read the instructions below carefully**.

* Please do not fold or damage the exam papers. After you finish your exam, please put the pages in correct order back into the sleeve.

* There are 5 questions in this exam, the sleeve should contain 8 pieces of paper.

* The scratch paper is included: three last papers are blank. If your solution continues on scratch paper, please clearly indicate it.

* For questions asking to prove a result, the clarity of the mathematical argument will be taken into account in the score.

* Questions formulated in terms of real functions should be answered with real functions.

* Question marked with (†) is challenge.

- 1. Determine the order of the following differential equations, and whether they are: partial or ordinary, and linear or non-linear. If they are ordinary and first order, determine whether they are autonomous or not, and separable or not. If they are linear, determine whether they are homogeneous.
 - (a) $y'' + (y')^2 = 0.$
 - (b) $\frac{\partial}{\partial t}y = \frac{\partial^2}{\partial x^2}y + \frac{\partial^2}{\partial t^2}y.$
 - (c) $y' = y^2 + y^3$.
 - (d) $(t^4 + 1)y' + 100y = \sin(t)$.

2. In this question, we study an example of numerical approximation of solution to ODE. Consider the initial value problem

$$y' = 1 - t + y, \quad y(t_0) = y_0.$$

- (a) Give the solution y(t) with exact expression.
- (b) Using the discrete approximation: setting step size h > 0 and $t_k := t_0 + kh$

$$y_k = (1+h)y_{k-1} + h - ht_{k-1}, \quad k = 1, 2, \cdots$$

Show by induction that

$$y_n = (1+h)^n (y_0 - t_0) + t_n, \tag{1}$$

for each positive integer n.

(c) Consider a fixed $t > t_0$ and, for a given n choose $h = (t - t_0)/n$. Show that for y_n in (1) and y(t) in Question (a), we have $y_n \to y(t)$ as $n \to \infty$.

3. Consider the differential equation

$$x^3y'' + \alpha xy' + \beta y = 0, \tag{2}$$

where α and β are real constants and $\alpha \neq 0$. In this question, we attempt to find its solution of form $\sum_{n=0}^{\infty} a_n x^{r+n}$.

- (a) Show that x = 0 is an irregular singular point.
- (b) Using the formal series solution to write down (2) as

$$F(r)a_0x^r + \sum_{n=1}^{\infty} c_n x^{r+n} = 0.$$

Express F(r) in function of r, and c_n in function of $(a_n)_{n \in \mathbb{N}}, r, \alpha, \beta$.

- (c) Show that F(r) = 0 only has one root, and consequently there is only one possible formal solution of the assumed form. Write down the recurrence of a_n under this condition.
- (d) Show that if $\beta/\alpha \in \{-1, 0, 1, 2, ...\}$, then only finite terms in $(a_n)_{n \in \mathbb{N}}$ are non-zero, and therefore it is an actual solution.
- (e) Show that if $\beta/\alpha \notin \{-1, 0, 1, 2, ...\}$, show that the formal series solution has a zero radius of convergence and so does not represent an actual solution in any interval.

4. The convolution operator \star on \mathbb{R}_+ is defined for two functions f, g as

$$\forall t \ge 0, \qquad (f \star g)(t) = \int_0^t f(t-u)g(u) \, du,$$

when this integral is well-defined.

- (a) Prove that $f \star g = g \star f$.
- (b) Let \mathcal{L} be Laplace transform. Prove that $\mathcal{L}[f \star g] = \mathcal{L}[f]\mathcal{L}[g]$.
- (c) We use Laplace transform and the convolution to study the following differential equation

$$y'' + ay' + by = f,$$
 $y(0) = 0, y'(0) = 0,$

where a and b are constants, while f is a bounded continuous function.

- i. Give the expression of $\mathcal{L}[y](s)$ in function of $\mathcal{L}[f](s), a, b, s$.
- ii. Show that y has the solution $y = w \star f$, where w(t) is the solution of

$$w'' + aw' + bw = 0,$$
 $w(0) = 0, w'(0) = 1.$

[Hint: use (b) and the uniqueness theorem of Laplace transform.]

5. Consider a differential equation

$$y^{(n)} = a_0 y + a_1 y^{(1)} + a_2 y^{(2)} + \dots + a_{n-1} y^{(n-1)},$$
(3)

where $a_1, a_2, \dots a_{n-1}$ are continuous functions on interval $I \subset \mathbb{R}$.

- (a) Show that the vector $\begin{pmatrix} y \\ y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(n-1)} \end{pmatrix}$ is solution of an ODE of order 1.
- (b) Deduce carefully there exists a unique solution to (3) with initial condition $y(t_0) = y_0$, $y^{(1)}(t_0) = y_0^{(1)}, \cdots, y^{(n-1)}(t_0) = y_0^{(n-1)}$.
- (c) Under which assumption can we ensure that the solutions y_1, \dots, y_n of (3) are a FSS? Carefully justify and prove your answer. (You are allowed to use the theorems from the courses.)
- (d) Given y_1, \dots, y_n FSS of (3) and y solution to (3), write y in terms of y_1, \dots, y_n and $y^{(j)}(t_0), y_i^{(j)}(t_0)$, for $1 \le i \le n, 0 \le j \le n-1$. (The operations of vector/matrix like product, inverse and determinant are allowed in the expression.)