Homework 3: Series Solution for ODE

Due: 11/17/2021

Name:

Univ ID:

Throughout the exercises, we always use y(x) to represent the unknown function and x for variable.

Exercise 1. Find all singular points of the given equation and determine whether each one is regular or irregular.

- 1. $x^{2}(1-x)y'' + (x-2)y' 3xy = 0;$
- 2. $y'' + (\ln |x|)y' + 3xy = 0.$

Exercise 2. For the following equations, show that the given differential equation has a regular singular point at x = 0, and determine the indicial equation, and the roots of the indicial equation.

- 1. xy'' + y' y = 0;
- 2. $x^2y'' + xy' + (x-2)y = 0$.

Exercise 3. Let y(x) be the solution of Euler equation

$$x^2y'' + \alpha xy' + \beta y = 0,$$

on $x \in \mathbb{R}^+$ with $\alpha, \beta \in \mathbb{R}$. With a change of variable $t = \ln x$ and $z(t) = y(e^t)$, write down the second order ODE with constant coefficient for function z and variable t.

Exercise 4. In this question, we prove that there is no series which converges / diverges slowest.

- 1. Prove that for any absolute convergent series $\sum_{n=1}^{\infty} a_n$, there exists another absolute convergent series $\sum_{n=1}^{\infty} b_n$ such that $\lim_{n\to\infty} \frac{b_n}{a_n} = \infty$.
- 2. Prove that for any divergent series $\sum_{n=1}^{\infty} a_n$, there exists another divergent series $\sum_{n=1}^{\infty} b_n$ such that $\lim_{n\to\infty} \frac{b_n}{a_n} = 0$.

Exercise 5. In this question, we aim to review the proof of Fuchs' theorem. We consider the equation

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0,$$
(1)

where p, q are analytic that $p(x) = \sum_{n=0}^{\infty} b_n x^n$ with radius of convergence $\rho_1 > 0$, and $q(x) = \sum_{n=0}^{\infty} c_n x^n$ with radius of convergence $\rho_2 > 0$. We start by writing y formally as series $y(x) = \sum_{n=0}^{\infty} a_n x^n$.

- 1. Write down y'(x) and y''(x) as series. What is the radius of convergence of y'' if y has a radius of convergence ρ ?
- 2. Identify y(0) and y'(0) using the series $(a_n)_{n \in \mathbb{N}}$
- 3. Establish the recurrence equation of $(a_n)_{n \in \mathbb{N}}$. Express a_n with $\{a_i\}_{0 \leq i \leq n-1}$ and $\{b_j\}_{j \in \mathbb{N}}$ and $\{c_k\}_{k \in \mathbb{N}}$.
- 4. Using induction to prove that, for all $r < \min\{\rho_1, \rho_2\}$, $\{|a_n|r^n\}_{n \in \mathbb{N}}$ is bounded.