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1 Introduction

In this report, we introduce the study of random recursive triangulation on a
unit disk. We start from the main model of recursive lamination: In a unit
disk D, we take a series of i.i.d random variable {Un}, {Vn} which take values
uniformly on its boundary S1 and we denote [UnVn] the chord in the disk by
connecting two endpoints. Then we construct the lamination by recurrence, that
is L0 = ∅ and Ln+1 = Ln ∪ [Un+1Vn+1] if Ln ∩ [Un+1Vn+1] ∩ D = ∅, otherwise
Ln+1 = Ln if they intersect. We repeat this process and de�ne the limit object
as

L∞ =

∞⋃
n=1

Ln

, which is a random compact subset of D.
It is obvious that in this process, it becomes harder and harder to add a new

chord to the disk and it arises naturally a question:

Question 1. How many chord is there in Ln? Does it has asymptotic limit
with respect to n?

In numerical simulation, we will see that by normalisation of
√
n, the number

converges. We use N(Ln) to represent the number of chord in Ln, then the
following theorem is true:

Theorem 1.1.

n−1/2N(Ln)
a.s−−−−→
n→∞

√
π

The number of chord is just one aspect of this process, it measures how
many chords there are in the disk, but it tells little about how hard to add one
chord or how dense Ln is. A possible way to measure it is to count the number
of chord encountered if we draw a chord connecting 1 and another point x on
the circle. This arises a second question:

Question 2. How many chord will it cut in Ln if we connect 1 and another
point x? Does it have a distribution when n goes to in�nity?

We wonder more in the geometric aspect, although it is a little hard to
describe:

Question 3. How can we describe the geometry when n goes to in�nity? Ob-
viously, it is a random object, but what is its law?

These three questions give a good example in the research of random geom-
etry, which always try do study the properties of scaling limit and address the
connection between the discrete models and continuous model. However, the
third question is more di�cult to answer since we haven't make it clear and in
fact, to describe the geometry, we have to treat it in various views.

Here, we state at �rst the main theorem by using as less notation as possible.
We denote the number of chords that intersect [xy], x, y ∈ S1 by Hn(x, y). We
note also an important constant in this report

β∗ =

√
17− 3

2

The following theorem answers 2.
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Theorem 1.2. There exists a random process M∞(x), x ∈ S1 such that

n−β
∗
Hn(1, x)

P−−−−→
n→∞

M∞(x)

We are interested by the process M∞ de�ned above, because we observe
that in Ln, Hn(1, x) = Hn(1, y) for an arc without any endpoint of the chord
in the middle. This inspires us to conjecture that maybe M∞ codes the L∞.
This is the fact and one aspect to study the 3. We use the notation Arc(x, y)
to represent the arc which doesn't contain 1 and Arc∗(x, y) the one contains 1.
Then, we have the following theorem:

Theorem 1.3. The following property holds almost surely. Take one sample of
lamination L∞(ω), the associated random process M∞(ω) codes the lamination
in the following way: L∞(ω) is the union of the chord [xy] for all x, y ∈ S1 such
that

M∞(ω)(x) = M∞(ω)(y) = min
z∈Arc(x,y)

M∞(ω)(z)

Moreover, L∞ is almost surely maximal in the sense of inclusion, that is to
say we cannot add any more a new chord to it without intersecting any existed
chord.

The report is organized as following. 2 gives more de�nitions about the
lamination, containing di�erent notations like its height function, the set of
mass and a dynamic of a recursive lamination to describe its con�guration. 3
will introduce the fragmentation theory and this is the main tool used to treat
the study of recursive lamination. In this section, we will see also the proof of 1.1.
In 4, we study how to code L∞ by M∞ by combing the result of fragmentation
theory and studying an interesting branching process. Some further proprieties
about this branching process will be stated in appendix.

Some other results are stated in ??. Some various versions of lamination
theory are included in appendix.

This report is mainly based on the work [1] and [3].
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2 Random geodesic lamination

This section will talk about the de�nition of lamination, its maximality, a simple
example �gela and how to construct a lamination by a continuous function. In
the end, we will give lamination a dynamic to add the chord in continuous time
as a Markov process, to which we can embed the discrete recursive lamination
de�ned at the �rst of 1. The importance of its dynamic is that it relates the
fragmentation process stated later in 3.

2.1 Model

We �rst give the de�nition of lamination and some other standard notations.

De�nition 2.1 (Lamination). We denote D = {z ∈ C||z| < 1} and its closure
D. For two distinct points x, y ∈ S1, we call chord of feet x, y the segment
of line in D and denote it by [xy], while ]xy[ means [xy] ∩ D. The degenerated
situation [xx] is written as {x}. We say that [xy] and [x′y′] don't cross(intersect)
when ]xy[∩]x′y′[= ∅.

A lamination L of D is a closed subset L of D which can be written of the
union of a collection of noncrossing chords.

The most simple example of lamination is �gela, short for �nite geodesic

lamination.

De�nition 2.2 (�gela). We call a lamination L �gela when it is a union of
�nite noncrossing chord. Let S be the pairs of feet(unordered)

S = {{x1, y1}, {x2, y2}}

Then the lamination is just the union of the chords formed by the pairs in S.
If ]S = n, then D \ ∩ni=1[xiyi] has n + 1 connected components and we call

them fragments of the �gela. Each fragment R has its mass

m(R) = λ(R ∩ S1)

where λ represents the uniform probability on S1.
Remark. We use S to denote the pairs of feet and LS to denote the lamination.
Since there is a natural bijection between the two, sometimes we abuse the use
of the two and when we talk about the distribution of LS , it always refers the
distribution of S, which but also characterises the law of LS .

The height function is a good method to describe the geometry of �gela and
it has triangle inequality so in fact after equivalence relationship, it de�nes a
metric on S1 and generate a tree like structure on the disk.

De�nition 2.3 (Height function). Let u, v ∈ S1 \Feet(S). The height between
u and v in S is the number of chords of S crossed by the chord [uv]

HS(u, v) = ]{x, y ∈ S|[xy] ∩ [uv] 6= ∅}

Proposition 2.1 (Inequality of triangle of heigh function). Let S be a �gela.
For every u, v, w ∈ S \ Feet(S), we have

HS(u, v) ≤ HS(u,w) + HS(v, w)
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Proof. We will give a closed form of height function and use it to prove the
inequality. For and pair x, y, u, v ∈ S1, ]xy[∩]uv[ 6= ∅ if and only if

fxy(u) = 〈u− x, (y − x)⊥〉
fxy(u)fxy(v) < 0

where (y − x)⊥ is the a unit normal vector of y − x and 〈·, ·〉 is the usual scalar
product in R2. The choice of direction of the normal vector is not important,
since the second formula just means that [xy] separates two points and will not
change sign by reversing the direction of the normal vector. Then

HS(u, v) =
∑
{x,y}∈S

1fxy(u)fxy(v)<0

By considering the sign of function we obtain

HS(u, v) =
∑
{x,y}∈S

1fxy(u)fxy(v)<0

=
∑
{x,y}∈S

1fxy(u)fxy(v)<0(1fxy(u)fxy(w)<0 + 1fxy(w)fxy(v)<0)

=
∑
{x,y}∈S

1fxy(u)fxy(v)<01fxy(u)fxy(w)<0 +
∑
{x,y}∈S

1fxy(u)fxy(v)<01fxy(w)fxy(v)<0

≤ HS(u,w) +HS(w, v)

Thanks to this triangle inequality, we can de�ne a tree associate to �gela.

Proposition 2.2 (Tree associated to �gela). We de�ne an equivalence relation
for every u, v ∈ S1 \ Feet(S)

u ' v if and only if HS(u, v) = 0

Then HS de�ne a metric on

TS = (S1 \ Feet(S))/ '

In fact this coincides a metric on a tree.

Proof. By the argument of recurrence, we claim that in the case ]S = n, the
number of fragments is n+ 1. We construct the tree explicitly. We construct a
non-oriented graph G = (V,E) where

V = {Ri, |fragments of S}
E = {{Ri, Rj}|Ri, Rjare adjacent}

Then an observation is that

]E = number of chords = n

since the adjacency of fragments means a chord between and a chord can be
only the frontier of one couple. Then the the graph G is a tree and we denote
it as TS .
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Afterwords, we have to show that two de�nitions construct the same object.
It is clear that the equivalence relation coincides the de�nition of fragment, so
there is a bijection between the vertex of tree and the element in equivalence
relation. Moreover, the de�nition ofHS coincides also with the distance between
two fragments, that is the times to cross the chords, so the tree and (S1 \
Feet(S))/ ' have a bijection and the de�nition above gives a structure of tree.

Remark. We see clearly that in the tree like structure TS , each vertex is the
fragment of �gela and the distance is the one between di�erent fragments. This
is a interesting structure and the reader may wonder if it will describe the
structure when n goes to in�nite? Then answer is partially correct. The height
function is the key but it will be replaced by other function considered as the
height function after some type of normalisation or scaling. The tree struc-
ture, although interesting and codes other models like stable lamination and
Brownian triangulation, is not the center of recursive lamination and how
to use it to describe the recursive lamination remain to study. In order to avoid
confusing some similar notations, we keep the story of Brownian triangulation
and stable lamination in appendix.

2.2 Maximal lamination

De�nition 2.4 (Maximal lamination). A lamination L is maximal if it is
maximal for the inclusion relation among lamination of D.

Lemma 2.1 (Maximal lamination equals triangulation of D). A lamination L
is maximal if and only if every connected component of D\L is an open triangle
whose vertices belong to S1.

Proof. Let L be a maximal lamination and we prove that all its fragments
are open triangles. We suppose that it isn't the case, then it has at least one
fragment who contains a qua-dragon and we can add one chord to build a bigger
lamination and this contradicts the maximality.

For a lamination whose every fragment is an open triangle, when we choose
two points on S1, in any case, the chord generated by them will cross or overlap
another chord, so it is maximal.

2.3 Coding a lamination by a continuous function

In this subsection, we introduce another method to generate a lamination by a
continuous function. Di�erent from the �gela, the lamination generated by this
method always have in�nite chords. We can consider it as an alternative way to
build height function after normalisation when n goes to in�nite, because when
n goes to in�nite, almost surely the value of height function goes to in�nite and
loss its meaning.

Obviously, the function associated to the lamination should follow some
properties, so we de�ne at �rst this continuous function. We call it contour
function since it has closed connection between R−tree in appendix.

De�nition 2.5 (Contour function). A function g is called contour function
if g : [0, 1]→ R+ is continuous and g(0) = g(1) = 0, g(x) > 0 for ∀x ∈]0, 1[.
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We recall the de�nition of pseudo-distance, who satis�es all the de�nition
of distance except for two distinct point, the distance between them can be 0.
A contour function de�nes a pseudo-distance on [0, 1] and this property is the
base of the lamination coded by contour function.

Proposition 2.3 (Pseudo-distance de�ned by contour function). A contour
function de�nes a pseudo-distance on [0, 1] by

dg(s, t) = g(s) + g(t)− 2 min
r∈[s∧t,s∨t]

g(r)

An equivalence relation is also de�ned as
g∼ if and only if dg(s, t) = 0, or

g(s) = g(t) = minr∈[s∧t,s∨t] g(r).

Proof. The symmetry and positivity are direct from the formula. We check the
triangle inequality. We write

dg(s, t) = g(s) + g(t)− 2 min
r1∈[s∧t,s∨t]

g(r1)

dg(s, p) = g(s) + g(p)− 2 min
r2∈[s∧p,s∨p]

g(r2)

dg(p, t) = g(p) + g(t)− 2 min
r3∈[p∧t,p∨t]

g(r3)

We would like to prove dg(s, t) ≤ dg(s, p) + dg(p, t) and treat two cases (1)s ≤
p ≤ t and (2)s ≤ t ≤ p separately and the other situations are similar.

We recall a useful identity

a ∧ b+ a ∨ b = a+ b

In the �rst case s ≤ p ≤ t,

dg(s, t) = g(s) + g(t)− 2 min
r1∈[s∧t,s∨t]

g(r1)

= g(s) + g(t)− 2 min
r2∈[s∧p,s∨p]

g(r2) ∧ min
r3∈[p∧t,p∨t]

g(r3)

≤ g(s) + g(t)− 2 min
r2∈[s∧p,s∨p]

g(r2) ∧ min
r3∈[p∧t,p∨t]

g(r3)

+2dg(p)− 2 min
r2∈[s∧p,s∨p]

g(r2) ∨ min
r3∈[p∧t,p∨t]

g(r3)

= dg(s, p) + dg(p, t)

In the second case s ≤ t ≤ p,

dg(s, t) = g(s) + g(t)− 2 min
r1∈[s∧t,s∨t]

g(r1)

≤ g(s) + g(t)− 2 min
r1∈[s∧t,s∨t]

g(r1) ∧ min
r3∈[p∧t,p∨t]

g(r3)

+2dg(p)− 2 min
r3∈[p∧t,p∨t]

g(r3)

= dg(s, p) + dg(p, t)

Thus we �nish the proof.

The triangle inequality implies directly the equivalence: suppose r
g∼ s, s g∼ t,

thus
0 ≤ dg(r, t) ≤ dg(r, s) + dg(s, t) ≤ 0 =⇒ dg(r, t) = 0
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Then, we give the construction of a lamination coded by a contour function.

Proposition 2.4 (Lamination coded by contour function). We denote clg(s)

the equivalence class of s with respect of to the equivalence relation
g∼. We set

s
g
≈ t when at least one of the two following condition is satis�ed:

• s
g∼ t, g(r) > g(s),∀r ∈ [s ∧ t, s ∨ t]

• s
g∼ t, s ∧ t = min clg(s), s ∨ t = max clg(s)

Then we set
Lg =

⋃
s
g
≈t

[e2πse2πt]

is a lamination called the lamination coded by the function g. It has the
following two properties:
(1)Lg is a closed.
(2)Lg is maximal if and only the local minima are distinct.

Remark. Generally,
g
≈ isn't a equivalence relation except in the maximal case.

Proof. We prove by contradiction that the construction is a lamination. We
suppose that there exists two chords ]ab[∩]cd[6= ∅. Then if they all meet the

�rst condition of
g
≈ , then it implies that all the values of g on the arc between the

chord is strictly bigger than the value of the endpoint. That is g(a) = g(b) < g(c)
and g(c) = g(d) < g(b) which is a contradiction.

In the second case, one of the pair, for example (a, b) satis�es the second

condition of
g
≈. However, the crossing reveals another equivalence class outside

the pair (a, b). Therefore, it is also a contradiction.

(1)We prove that the graph is closed. That is, if sn
g
≈ tn, s = limn→∞ sn, t =

limn→∞ tn, then we would like to prove s
g
≈ t. Since pseudo-distance function

dg is continuous,
dg(sn, tn) = 0 =⇒ dg(s, t) = 0

which implies that s
g
≈ t. Without loss of generality, we suppose that s < t.

Therefore, ∀x ∈]s, t[, g(x) ≥ g(s) = g(t).
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We still prove by contradiction. We suppose that neither of the condition of
g
≈ above are valid, then there exist r such that

s < r < t, g(r) = g(s) = g(t) = min
x∈[s,t]

g(x)

and there exists, another equivalence class outside ]s, t[, for example

w < s < t, dg(w, s) = 0

Then, we analyse sn, tn. Since s, t are respective two limit of the series, ∃sn, tn
such that

w < sn < r < tn, sn
g
≈ tn

Then

dg(sn, tn) = 0, r ∈]sn, tn[ =⇒ g(sn) ≤ g(r)

dg(w, r) = 0, s ∈]w, r[ =⇒ g(sn) ≥ g(r)

Therefore, sn, tn ∈ clg(s), but in ]sn, tn[ there is r which achieve the minimum
and outside them there is w which is also the equivalence. That is a contradic-

tion. So our supposition is not correct and we have s
g
≈ t.

(2)Then we prove the equivalent condition of maximality. The full proof can
be found in [4] and here we just give a quick review. First, let g be a contour
function having distinct local minima, then for every value, it has at most three
points which attain it so they form a triangle following the construction of
lamination. Thus, each fragment has at most 3 angles and the lamination is
maximal by the 2.1.
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On the other hand, if there is a local minima attained at least twice i.e
∃0 < P1 < P2 · · · < Pm < 1 and g(P1) = g(P2) · · · = g(Pm) are all local
minima. Then, considering that g are strictly positive except 0, 1, there exist
two other points

P0 = sup
t∈(0,P1)

{t|g(t) = g(P1)} (1)

Pm+1 = inf
t∈(Pm,1)

{t|g(t) = g(Pm)} (2)

The condition of local minima implies that there are chords [P0P1], [P1P2] . . . [PmPm+1]
but no chord [P0P2] nor [P1Pm+1] which contradicts the maximality.

2.4 Recursive lamination: discrete time and continuous

time

In this subsection, we introduce how to give the lamination a dynamic in contin-
uous time and draw connection between this model with the original one. This
new model in continuous time can be considered as an example of fragmentation
process, which we will talk about in the next section.

Before stating the construction of our new model, we do some calculus about
the model Ln.

Proposition 2.5. Let Ln be a lamination of n chords and n + 1 fragments
Rn1 , R

n
2 . . . R

n
n+1, then the waiting time to add one new chord follows the geomet-

ric law of parameter
∑n+1
i=1 m(Rni )2. Given a new chord is added, the probability

that it is added on Rnk has a probability
m(Rnk )

2∑n+1
i=1 m(Rni )

2
.

Proof. The proof is simple. We just do calculus of probability:

P(]UV [∩Ln = ∅) = P(∃i, s.t U, V ∈ Rni ) =

n+1∑
i=1

m(Rni )2

P(U, V ∈ Rnk |]UV [∩Ln = ∅) =
P(U, V ∈ Rnk )

P(∃k, s.t U, V ∈ Rnk )
=

m(Rnk )2∑n+1
i=1 m(Rni )2
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This proposition inspires us to design a continuous model: since a continuous
process with the property of loss of memory like geometric law is a Poisson
process and if it also has information of con�guration, we should make it a
Markov jump process, we propose the de�nition as following.

De�nition 2.6 (α self-similar �gela process). We de�ne random element value
in �gela space

Sα(t) : Ω→ �gela

and Sα(t) a Markov jump process, which takes jump at the point 0 = τ0 < τ1 <
τ2 . . . and takes constant values in interval [τn, τn + 1[.

Filtration:We de�ne the �ltration as

Fn = σ(τ0, τ1 . . . , τn, Sα(τ0), Sα(τ1) . . . Sα(τn))

Law of jump time:We denote Rnj , 1 ≤ j ≤ n+ 1 fragments of Sα(τn) and
(ej)1≤j≤n+1n+1 independent random variables of exponential law of parameter
1 and

Ej = m(Rnj )−αej

Ej0 = min{Ej , 1 ≤ j ≤ n+ 1}
τn+1 = τn + Ej0

then Ej0 follows the exponential law of parameter
∑n+1
j=1 m(Rnj )α.

Law of transition:Let j0 be the index which Ej obtains the minimum, then
Let Xn+1, Yn+1 be uniformly distributed on Rnj0 ∩ S1 and

Sα(τ0) = ∅, Sα(τn+1) = Sα(τn) ∪ {Xn+1, Yn+1}

then Xn+1, Yn+1 are all on Rnk with probability
m(Rnk )

α∑n+1
j=1 m(Rnj )

α
.

Remark. In fact, we have to check some proprieties in the de�nition. The
Markov property follows that the law of jump time and the law of transition
only depend on the state (Sα(τn), τn). Then, we check the two claims about the
law of Ej0 and Xn+1, Yn+1:

P(Ej0 > t) = P(∀j, Ej > t) = Πn+1
j=1P(Ej > t) = exp(

n+1∑
j=1

m(Rnj )α)

P(Xn+1, Yn+1 ∈ Rnk ) =

∫ ∞
0

[Πj 6=kP(Ej > t)]m(Rnk )αe−m(Rnk )
αtdt

=

∫ ∞
0

m(Rnk )αe−
∑n+1
j=1 m(Rnj )

αtdt

=
m(Rnk )α∑n+1
j=1 m(Rnj )α

Remark (Another de�nition of α self-similar �gela process). Another interpre-
tation about this process can be stated as following: We start from a Sα(0) = ∅.
After each time of adding a new chord, every fragment R evolves independently
and has lifetime as a random variable which follows the exponential law of pa-
rameter m(R)α. When the it "dies", if will be divided into two fragments by
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adding a new chord in it whose two endpoints are chosen independently and
uniformly on R. This description is just the de�nition except for the way to
de�ne τn. However, the property of loss of memory implies that

P(Ej > t+ s|Ej > s) = P(Ej > t)

so in fact the waiting time is also same.

Then we state the connection between the α self-similar �gela process and
the process Ln and especially in the case LS2(t). Here we use LS2(t) to denote
the lamination coded by the pair of feet set S2(t). By the calculus above, we
observe that the waiting time for Ln and LS2(t) are all 1∑n+1

j=1 m(Rnj )
2
and the

probability to add to each fragment is also same, given that they have the same
law of fragment. However, here for Ln, the number of chords may be less than
n+1 but for LSτn it is necessarily equal. Therefore, the key idea is an embedding
from Ln to LS2(n) thanks to another �gela process we will de�ne as following.

De�nition 2.7 (Poisson �gela process). We de�ne a Poisson point measure on
space R+ × S1 × S1 equipped with a measure dt ⊗ λ ⊗ λ where dt represents
Lebesgue measure and λ just the uniform probability on circle.

Then we note {(tm, xm, ym)}m≥1 the value and generate a �gela from it. We
let S be the set of pairs of feet:

S (t) : Ω→ �gela,S (0) = ∅, constant on[tm, tm+1[

Moreover, we follow the recurrence: if LS (tm)∩]xm+1ym+1[= ∅, then S (tm+1) =
S (tm) ∪ {xm+1, ym+1}, otherwise S (tm+1) = S (tm).

Proposition 2.6 (Embedding from Lm to LS2(t)). (1)We adapt the notation
of Poisson �gela and α self-similar �gela process and Ln, then

Lm
(d)
= LS (tm), lim

n→∞

tm
m

a.s
= 1

(2)Moreover, if we de�ne that

t̃0 = 0, t̃n = inf{tm|S (tm) 6= S (t̃n−1)}

then we have

t̃n
(d)
= τn, LS2(τn)

(d)
= LS (t̃n)

(3)If we suppose that
N(LS2(τn))√

τn
converge in a limit, we have

lim
m→∞

N(Lm)√
m

(d)
= lim

n→∞

N(LS2(τn))√
τn

Proof. (1)We let R be a fragment on S1, then by using the de�nition of Poisson
point measure

]{(tm, xm, ym) ∈ [0, t[×R×R} (d)∼ Poisson(m(R)2t)

and the same argument gives the law that

]{(tm, xm, ym) ∈ [0, t[×S1 × S1}
(d)∼ Poisson(t)

12



These properties gives an equivalent description given by Poisson process: We
take the jump point t1, t2 . . . by Poisson process with density 1 and each time
choose a couple of points (x1, y1), (x2, y2) . . . independently and uniformly on
the circle.

By this construction, we get immediately that the conditional law of Lm
and LS (tm) are same since they take the same random dynamic. Given they

have the same initial law, we get Lm
(d)
= LS (tm). The convergence of jump

time follows the law of large number. In fact, the description of Poisson process

shows that tm =
∑m
i=1 ξi, ξi

(d)∼ exp(1)i.i.d, then

lim
m→∞

tm
m

(a.s)
= E(ξ1) = 1

(2) The second part takes the same argument. This time t̃n means exactly
the �rst time that two points are chosen in the same fragment and follows the
same description of 2 self-similar �gela process. An intuitive interpretation is
that, the 2 self-similar �gela is a process of Poisson �gela after erasing all the
attempt to add chord but fail. Therefore, we establish the identity of law.

(3) Finally we prove the convergence under hypothesis:

∀tm ∈ [t̃n−1, t̃n[,
N(LS2(τn))− 1

√
τn

≤
N(LS (tm))√

tm

(d)
=

N(LS2(τn−1))√
tm

≤
N(LS2(τn−1))√

τn−1

=⇒ lim
m→∞

N(LS (tm))√
tm

(d)
= lim

n→∞

N(LS2(τn))√
τn

Moreover, we have

lim
m→∞

N(LS (tm))√
tm

(d)
= lim

m→∞

N(Lm)√
m

√
m√
tm

(d)
= lim

m→∞

N(Lm)√
m

We conclude that

lim
m→∞

N(Lm)√
m

(d)
= lim

n→∞

N(LS2(τn))√
τn

This embedding proposition helps us carry the study of discrete recursive
lamination to 2 self-similar �gela process, which makes it possible to use the
theory of fragmentation theory.

13



3 Random Fragmentation

In this section, we will talk about the random fragmentation theory. An intuitive
introduction of the fragmentation theory can be put in the situation of the
division of the particles. Suppose that there is a type of particle, its lifetime
follows the exponential law in parameter of the power α of its mass and when it
dies, it will divide into two halves and the proportion of each o�spring follows
a law ν. All the particles evolve identically and independently.

The reader may �nd that the notation of fragmentation theory is so closed to
that of random recursive lamination, that explains why we draw the connection
between the two. However, the di�culty is sometimes to �nd a good law ν and
power α so that it describes the model we need. Then, the theoretic result like
convergence of martingale can be applied to the random recursive lamination
model.

3.1 Model

In this subsection, we give the de�nition of the fragmentation process and a
tree-like structure to describe this process.

De�nition 3.1 (Binary fragmentation process). We continue the description
of the evolution of a particle system in a special situation: each particle has
its mass and the state of system can be described by a decreasing real-valued
sequence

S↓ = (s1, s2, . . . ), 1 ≥ s1 ≥ s2 ≥ . . .
where si represents the mass of particles. Therefore a binary fragmentation
process is a Markov random process X(α)(t) who takes value on S↓:

X(α)(t) : Ω −→ S↓, X(α)(t) = (s1(t), s2(t), . . . )

The particle of mass si has its lifetime, a random variable of exponential law
of parameter of (si(t))

α. When it dies, it divide into two particles and we call
their distribution of mass disloaction measure:

ν value on set {(ξ0, ξ1)|1 > ξ0 ≥ ξ1 ≥ 0}
ν(ξ1 > 0) > 0

ν(ξ0 = 0) = 0

That is, the two o�spring of si(t) have respectively mass of ξ0si(t), ξ1si(t)
and the distribution of ξ0, ξ1 is sampled independently by ν of the past. The
two additional properties make this process non-trivial. When ξ0 + ξ1 = 1, we
call the process conservative, otherwise dissipative.

Finally, we recall that all the particle evolve independently. We can also
de�ne the term total mass of power p by

∑∞
i=1(si(t))

p.

Given a fragmentation chain, it's nature to equip it with a genealogical struc-
ture. This notation describes well the evolution of system by the relationship
of ancestor and o�spring.

De�nition 3.2 (Generation tree). We de�ne

T =
⋃
k≥0

{0, 1}k

14



{0, 1}0 = ∅. Then, if the X(α)(0) contains only one particle, each particle can
be marked by an elements in T.(If it starts with several particles, it should be a
forest or several copies of T). The �rst particle is marked by ∅. By recurrence,
the two o�spring of particle u ∈ T is u0, u1. Every element should have its
ancestor, so at instant t if ui, i ∈ {0, 1} exists, u should also be present. We also
use

Tn =
⋃

0≤k≤n

{0, 1}k

to represent the evolution until the generation n.
We can mark the particle by triple (su, au, ζu), which represents its mass,

time of birth, and lifetime. Obviously, the �rst particle is born at time 0 with
a given mass. Then, we note {eu}u∈T a family of i.i.d random variable of
exponential law of parameter 1 and (ξu0, ξu1) de�ned by the dislocation measure
ν. The de�nition of binary fragmentation process is:

∀i ∈ {0, 1}, u ∈ T, sui = suξui, aui = au + ζu, ζu = (su)−αeu

At the end of this subsection, we state the property of scaling of this process.

Proposition 3.1 (Scaling property). Let X(α)(t) be the standard binary frag-
mentation process of dislocation measure ν starting with a particle of unit mass

and X
(α)
M (t) be the one of the same dislocation measure starting with mass M ,

then

X
(α)
M (t)

(d)
= MX(α)(Mαt)

The proof is simple, we just check that they have the same initial condition,
law of lifetime and dislocation law. This law is very important since it has some
further generalized versions.

3.2 Malthusian exponent and key martingales

In this subsection, we will introduce Malthusian exponent and several important
martingales of fragmentation process. These martingales provide the powerful
tools to treat the evolution of the process.

We review the de�nition of dislocation measure. In the dissipative condition,
ξ0 + ξ1 < 1 so the usual total mass(total mass of power 1) is drained. We would
like to �nd a power to modify it conservative, that inspire the de�nition of
Malthusian exponent.

De�nition 3.3 (Malthusian exponent). For every p > 0 we de�ne

κν(p) =

∫
[0,1]2

(1− yp0 − y
p
1)ν(dy0, dy1)

Since κν(0) = −1, κν(+∞) = 1, it exists unique exponent p∗ such that

κν(p∗) = 0

We call it the Malthusian exponent of ν.
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Theorem 3.1 (Martingale). Given a binary fragmentation process of index α

X(α) = (s
(α)
1 , s

(α)
2 . . . ), for every t ≥ 0 and α > 0 then

(1)We de�ne a process

M (α)(t) =

∞∑
i=1

(s
(α)
i (t))p∗, t ≥ 0

is a uniformly integrable martingale and converges almost surely to a limiting
random variable M∞ called intrinsic martingale, which does not depend on
α. For all q ≥ 1,M q

∞ <∞. It also has an identity : for (Σ1,Σ2) following the
law given by dislocation measure ν, we have

M∞
(d)
= Σp∗1 M ′

∞ + Σp∗2 M ′′
∞

where M ′
∞,M

′′
∞ are two identical independent copies of M∞.

(2)For every real p ≥ 0, the process

etκν(p)
∞∑
i=1

(s
(0)
i (t))p, t ≥ 0

is a martingale and converges a.s to a positive limiting random variable.
(3)Let α > 0. Assume that

∫
s−α2 ν(ds1, ds2) for some α. Then for every

p ≥ 0,

t(p−p∗)/α
∞∑
i=1

(s
(α)
i (t))p

L2

−→ Kν(α, p)M∞

where Kν(α, p) is a constant only depending on α, p, ν and M∞ is the limit of
intrinsic martingale.

Proof. We give an intuitive justi�cation for the theorem. For (1), since M (α)(t)
only changes after one jump time, we have only to check for jump time t1, t2, t3 . . .
that

E[M (α)(tn+1)|M (α)(tn)] = M (α)(tn)

In fact, suppose that at time tn+1, si(α)(tn+1) is chosen and divided into

s
(α)
i0 (tn+1), s

(α)
i1 (tn+1), then

E[M (α)(tn+1)|M (α)(tn)] = E[M (α)(tn) + (s
(α)
i0 (tn+1))p∗ + (s

(α)
i1 (tn+1))p∗ − (s

(α)
i (tn+1))p∗|M (α)(tn)]

= M (α)(tn) + (s
(α)
i (tn+1))p∗

∫
(yp∗0 + yp∗1 − 1)ν(dy0, dy1)

= M (α)(tn)

For(2), we use 3.1 and notice that the lifetime doesn't depend on the mass

X
(0)
M (t)

(d)
= MX(0)(t)

so after division, the particle follows the same law of evolution. If we de�ne that

E[

∞∑
i=1

(s
(0)
i (t))p] = E[

∞∑
i=1

(s
(0)
i (l))p]A(l, t),∀l ≤ t
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then the scaling property and Markov property imply that A(s, t) is stationary
so that

A(l, t) = A(0, t− l), A(0, l + t) = A(0, l)A(0, t)

Moreover, A(0, t) can be calculated informally as

dA(0, t)

dt
= lim
t→0

(1− et)κν(p)

t
= −κν(p)

We get A(0, t) = e−κν(p)t. Then

E[etκν(p)
∞∑
i=1

(s
(0)
i (t))p|Fl] = E[etκν(p)A(l, t)

∞∑
i=1

(s
(0)
i (l))p|Fl]

=

∞∑
i=1

(s
(0)
i (l))pe−(t−l)κν(p)etκν(p)

= eκν(p)l
∞∑
i=1

(s
(0)
i (l))p

this �nishes the proof.

3.3 Application 1: counting the number of chords

As we have stated in the last section, �gela process can be considered as a type
of fragmentation process. In fact, the description of the �gela process is almost
parallel with that of fragmentation process. So, in this subsection, we draw the
connection between the two and answer the 1.1 by using 3.1.

Proposition 3.2 (�gela process to fragmentation process). We recall the α
self-similar �gela process Sα(t) and note Rα1 (t), Rα2 (t) . . . its fragment ordered
by decreasing mass, then

Xα(t) = (m(Rα1 (t)),m(Rα2 (t)) . . . )

is a fragmentation process with parameter (α, νC) where νC is de�ned as∫
[0,1]2

F (y0, y1)ν(dy0, dy1) = 2

∫ 1

1
2

F (u, 1− u)du

Proof. It is easy to check this de�nition. The jump time of fragmentation pro-
cess is exactly same as that one of �gela process. The dislocation measure
ν(y0, y1) describes the fact that each time of division, the fragment into two
parts with mass uniformly distributed.

Then, we apply the 3.1 and obtain directly

Proposition 3.3. (1)If α = 0,

e−t]S0(t)
a.s−−−−→
n→∞

E

where E is a random variable of exponential law of parameter 1.
(2)If α > 0, we have

t−1/α]Sα(t)
a.s−−−−→
n→∞

Γ(1/α)

Γ(2/α)
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Proof. For (1), we use (2) of 3.1 in the case p = 0.
For (2), we use (3) of 3.1 in the case p = 0.

Law? Constant?

Recall the 2.6, we get the answer about the asymptotic number of chord in
Ln.

Corollary 3.1 (Number of Ln). The number of chords in Ln has an asymptotic
limit

n−1/2N(Ln)
a.s−−−−→
n→∞

√
π

Proof. Using 3.3 in the case α = 2, we have

t−1/2]S2(t)
a.s−−−−→
n→∞

Γ(1/2)

Γ(1)
=
√
π

Moreover, we recall 2.6 that the discrete model and the continuous one have the
same asymptotic law:

lim
t→∞

N(Ln)√
n

= lim
t→∞

]S2(t)√
t

a.s
=
√
π

3.4 Application 2: studying the limit height function

In this subsection, we use fragmentation theorem to study the asymptotic be-
haviours of height function. This is less evident than the number of chords
since it's hard observe the direct connection at �rst glance. However, inspired
by the last application, we would like to look for a good measure to count only
the mass of fragments intersected with the given chord, then we will follow the
same strategy as counting the number of chord.

Firstly, we de�ne a special type of fragment.

De�nition 3.4 (Separating fragment). Let S be the pair set of feet of �gela
and x, y ∈ S1\Feet(S). We de�ne the fragments of S which intersects the chord
[xy] separating fragment x from y. We range these fragments in decreasing mass
so that they form an element in S↓. We denote them by

Rx,y(S), Rx,y(S), Rx,y(S) . . .

Notice that the height function is just the number of fragments minus 1

HS(x, y) = ]{ fragments intersect [xy]} − 1 =

∞∑
i=1

m(R
(x,y)
i (S))0 − 1

and it has a form similar in the 3.1. What we need to do is to construct a
fragmentation process associated the separating fragment x from y. Here we
give a construction and proof for a easy version, where x = 1 and y = V a
random variable uniformly distributed on S1. The proof for y a �xed point need
more arguments and reader can check [1].
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Proposition 3.4 (Separating fragmentation process). Given a fragmentation
process (Sα(t), t ≥ 0, α ≥ 0) de�ned in 3.2 and V a random variable valued
uniformly on S1 independent to Sα(t), then the sequence of fragments separating
1 from V in Sα(t) namely

Xα(t) = (m(R1,V
1 (Sα(t))),m(R1,V

2 (Sα(t))) . . . )

is a fragmentation process with parameter (α, νD) where νD satis�es∫
[0,1]2

F (y1, y0)νD(dy1, dy0) = 2

∫ 1

0

u2F (u, 0)du+ 4

∫ 1

1
2

u(1− u)F (u, 1− u)du

The proof of this proposition consists of two parts:
(1)The dislocation measure describes the law of counting only the fragments
intersecting the chord [1V ].
(2)After each division, the each part evolves independently and also follows the
way of counting the speci�ed fragments, especially the lifetime, the dislocation
measure.

Before proving the �rst part, we give an important bijection after the ap-
pearance of the �rst chord.

Proposition 3.5 (Bijection of two disks after the �rst chord). Given a �gela
precess Sα(t) and τ the time of the appearance of the �rst chord, (a, b) the pair of
feet so that a = e2πiU1 , b = e2πiU2 , where (U1, U2) has density 2 · 10<U1≤U2<1 of
Lebesgue measure. We denote also M = 1− (U1−U2) the mass of the fragment
containing 1. Then we have two mapping ψU1,U2 : [0, U1] ∪ [U2, 1] → [0, 1],
φU1,U2 : [U1, U2]→ [0, 1]

ψU1,U2
(r) =

{ r
M if 0 ≤ r ≤ U1
r−(U2−U1)

M if U2 ≤ r ≤ 1

φU1,U2
(r) =

r − U1

1−M
if U1 ≤ r ≤ U2

These two mappings induce also the mapping from two fragments to two disks.

Ψa,b(exp(2πir)) = exp(2πiψU1,U2
(r))

Φa,b(exp(2πir)) = exp(2πiφU1,U2
(r))
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After the appearance of the �rst chord, we denote the two fragments R′, R′′

where R′ contains 1 and the partition of Sα(t) on two halves S
(R′)
α (t), S

(R′′)
α (t).

Then conditionally on (τ, U1, U2) we have

((Ψa,b(S
(R′)
α (t+τ)))t≥0, (Φa,b(S

(R′)
α (t+τ)))t≥0)

(d)
= ((S′α(Mαt))t≥0, (S

′′
α(1−M)αt)t≥0)

where the S′α, S
′′
α are two independent copies of �gela process.

Proof. After one division, the two fragments can be considered as two disks by
checking the mapping well de�ned. They are independent by the de�nition of
�gela process. The scaling of time comes from the fact the lifetime depends on
its mass.

The �rst part of 3.4 can be proved directly by calculus.

Proof. First part of 3.4 We �rst check the initial case νD describes the fact
that we count only the fragments intersecting the chord [1V ]. A su�cient and
necessary condition that a fragment intersects [1V ] is that it contains at least
one foot between 1 and V . Since R′ contains necessarily the foot 1, it has two
situations V ∈ R′ and V ∈ R′′.∫

[0,1]2
F (y0, y1)νD(dy0, dy1)

= 2

∫
[0,1]3

1V ∈R′′1U2−U1>1−(U2−U1)F (U2 − U1, 1− (U2 − U1))dU1dU2dV

+ 2

∫
[0,1]3

1V ∈R′′1U2−U1<1−(U2−U1)F (1− (U2 − U1), U2 − U1)dU1dU2dV

+ 2

∫
[0,1]3

1V ∈R′F (1− (U2 − U1), 0)dU1dU2dV

By the change of variable x = U2−U1, We simplify the equations, the �rst term
is

2

∫
[0,1]3

1V ∈R′′1U2−U1>1−(U2−U1)F (U2 − U1, 1− (U2 − U1))dU1dU2dV

= 2

∫
[0,1]2

1x> 1
2
10<U1<1−xxF (x, 1− x)dU1dx

= 2

∫ 1

1
2

x(1− x)F (x, 1− x)dx

Then the second term is

2

∫
[0,1]3

1V ∈R′′1U2−U1<1−(U2−U1)F (1− (U2 − U1), U2 − U1)dU1dU2dV

= 2

∫
[0,1]2

1x< 1
2
xF (1− x, x)dU1dx

= 2

∫ 1
2

0

x(1− x)F (1− x, x)dx

= 2

∫ 1

1
2

x(1− x)F (x, 1− x)dx
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Finally, the third term is

2

∫
[0,1]3

1V ∈R′F (1− (U2 − U1), 0)dU1dU2dV

= 2

∫
[0,1]2

10<U1<1−x(1− x)F (1− x, 0)dU1dx

= 2

∫ 1

0

(1− x)2F (1− x, 0)dx

= 2

∫ 1

0

x2F (x, 0)dx

However, this proves only that the dislocation measure describes the �rst divi-
sion. We will prove that in the following process, each part also obeys this law
of division.

Then, we use the result from 3.5 to prove the second part of 3.4.

Proof. Second part of 3.4 We continue to study the dislocation measure in
the further process. It su�ces to check that after the �rst chord, the division
in two halves R′, R′′ follows the same law ant then we apply the recurrence to
the further process. In the �rst case where V is on R′. Then, since we count

only the fragment separating V from 1, the other half R′′ can be neglected after
τ . This is also implied in νD. Afterwords, in the evolution of R′, by using the
3.5 and the fact V is uniform conditionally on R′, R′ follows the same law of
division and lifetime.

In the second case where V is on R′′, then two parts have to be taken into
considered. On the half R′, conditionally V on R′′, it is uniform and by the 3.5,
∀c, d ∈ R′′

[cd] ∩ [1V ]⇐⇒ [Φa,b(c)Φa,b(d)] ∩ [Φa,b(a)Φa,b(V )]

where Φa,b(a) = 1 on Φa,b(R
′′) and Φa,b(V ) conditionally uniform on Φa,b(R

′).
Therefore, when it divides, it follows also the same law of νD. By the similar
argument, ∀c, d ∈ R′

[cd] ∩ [1V ]⇐⇒ [Ψa,b(c)Ψa,b(d)] ∩ [Ψa,b(1)Ψa,b(a)]
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where Ψa,b(1) = 1 and Ψa,b(a) is conditionally uniform on Ψa,b(R
′), so it follows

νD in following division.
Finally, we conclude that νD is the right dislocation measure which describes

the process counting only the fragment separating 1 from V . Considering the
fact the lifetime inherits from the process of �gela, the fragmentation process
with parameter (α, νD) describes the �gela process counting only the speci�ed
fragments

We can calculate the Malthusian exponent directly

κνD (p) = 1−
∫ 1

0

up+2du− 4

∫ 1

1
2

u(1− u)(up + (1− u)p)du =
p2 + 3p− 2

p2 + 5p+ 6

Then κνD (β∗) = 0 implies that

β∗ =

√
17− 3

2

We apply the 3.1 to the fragmentation process Xα(t)

Proposition 3.6. Let V be a random variable uniformly distributed on S1 and
independent of the �gela process (Sα(t), t ≥ 0, α ≥ 0) and we denote

M α
t (x) =

∞∑
i=1

m(R
(1,x)
i (Sα(t)))β

∗

then we have :
(1)The process M α

t is a uniformly integrable martingale and converges almost
surely toward a random variable M V

∞ which does not depend on α ≥ 0. More-
over, M V

∞ > 0a.s, and E[(M V
∞)q] <∞ for every q ≥ 1.

(2)There exist a positive random variable H V
0 such that

e−t/3HS0(t)(1, V )
a.s.−−−→
t→∞

H V
0

(3)For every α > 0, there exists a constant KνD (α) such that

t−β
∗/αHSα(t)(1, V )

L2

−−−→
t→∞

KνD (α)M V
∞
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Proof. They are the direct result from 3.1.In (2), the power − 1
3 comes from

κνD (0).

We take the value α = 2 and apply the embedding lemma 2.6

Corollary 3.2.

n−β
∗/2Hn(1, V )

P−−−→
t→∞

KνD (α)M V
∞

This is also correct when we replace V by a �x number x, but it requires
more arguments. The reader can refer [1]. Here, we only states the theorem

Theorem 3.2 (Convergence of height function). Let x ∈ S1 \ {1}
(1)The process M α

t converges almost surely toward a random variable M∞(x)
which does not depend on α.
(2)We have M∞(x) > 0 a.s and E[M∞(x)q] < ∞ for every q ≥ 1. (3)There
exist a positive random variable H0 such that

e−t/3HS0(t)(1, x)
a.s.−−−→
t→∞

H0(x)

(4)For every α > 0, there exists a constant KνD (α) such that

t−β
∗/αHSα(t)(1, x)

P−−−→
t→∞

KνD (α)M∞(x)

More generally, for every p ≥ 0, there exists a positive random variable Hp(x)
such that

etκνD (p)
∞∑
i=0

m(R1,x
i (S0(t)))p

a.s−−−→
t→∞

Hp(x)

3.5 Numerical simulation

3.5.1 Simulation of S2(t)

We write a Python program to simulate the evolution of a �gela process S2(t).

We do 10000 times of division and observe that S2(t)√
t
has really trend to converge.

Moreover, we do 100 samples for the case until 100 divisions and obtain the
average time 3289 ≈ ( 100√

π
)2 = 3183.

3.5.2 Simulation of Ln and Visualisation

We release another simulation of the evolution of Ln. The following is a evolu-
tion and we take the time 100, 500, 1000, 5000, 10000, 50000, 100000, 500000. We
show another image which reveals the evolution of N(Ln) and

√
n.
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3.5.3 Comments

To add n chords on a disk, the process of Ln needs about O(n3) complexity,
while the fragment process needs only n2 complexity. So, if the normalized
height function can really be used in the numerical simulation, it will accelerate
the program. However, the contour function has only de�nition for continuous
function, so how to generalize it to the discrete case, or how do interpolation
for building a contour function should be an interesting question.
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4 Identifying the limit lamination

Once we get the normalized limit of height function, it is nature to question if
we can reconstruct the lamination by the limit function M∞? More precisely,
we sample ω in the experiment space Ω, then this ω gives a limit of lamination
L∞(ω) and also the limit of martingale in 3.2. Using M∞(ω) We can code a
new lamination Lg∞(ω) by the method introduced in 2, a natural question is
the relation between L∞ and Lg∞ .

The answer is, as we have conjectured, positive. The strategy of proof is to
show at �rst that L∞ ⊂ Lg∞ , then we demonstrate that in fact L∞ is maximal,
so naturally the two is almost surely equal. The proof of these two parties are
contained in the following two subsections, while the third section is conserved
for one key lemma of branching random walk in the proof.

4.1 Coding L∞ by M∞

In this subsection, we prove the inclusion relation. At �rst, we give some detailed
analysis about the �gela process. In the previous subsection, we have stated
several theorems where the limit martingale does not depend on the choice of
α, here we give an interpretation.

Proposition 4.1 (limit of Sα(t)). (1)We take the increasing limit of Sα(t), it
does not depend on the parameter α, that is

S(∞) = lim ↑ Sα(t)

(2)L∞ has two equivalent de�nitions

L∞ =
⋃

{x,y}∈S(∞)

[xy]

We can also take the closure at before do bijection. That is we de�ne the closure
on S1 × S1 and obtain S∗(∞). Then

L∞ =
⋃

{x,y}∈S∗(∞)

[xy]

Moreover, if (x, y) and (x′, y′) belong to S∗(∞), the chord [xy] and [x′y′] either
coincide or do not cross.

Proof. (1)We use the genealogy structure in fragmentation process to couple
the �gela process. We take the notation from 3.2, each fragment in the process
is represented by an element u in the binary tree

T =
⋃
n≥0

{0, 1}n

The initial fragment is noted as ∅ and when it divide, the two are noted respec-
tively R0, R1. They have also lifetime: we de�ne a (eu)u∈Tfamily of independent
exponential random variable of parameter 1, then R0, R1 are alive respectively
until e∅ + m(R0)−αe0, e∅ + m(R1)−αe1. Then, when it divide, the two feet is
chosen uniformly on the fragment. By this induction, we can de�ne the �gela
process Sα(t).
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The advantage of this construction is that, if we couple the choice of the feet
and (eu)u∈T, for α

′ > α > 0 i.e they have the same sample for (eu)u∈T and the
sample for the feet in division, the only di�erence between process is the time
of division. We have necessarily

Sα′(t) ⊂ Sα(t) ⊂ Sα′(Tt,α,α′)

where Tt,α,α′ is a random variable almost surely �nite. Then we take the in-
creasing limit and we obtain S(∞) = S(∞) = lim ↑ Sα(t).

(2)We recall that the original de�nition is

L∞ =
⋃
n≥0

Ln

We take α = 2 and use the embedding theorem 2.6, then the feet of L∞ and
S(∞) are the same, so we get a new de�nition L∞ =

⋃
{x,y}∈S(∞)[xy].

The second de�nition is exact the result that the bijection from feet pair
{x, y} to the chord [xy] are continuous and have continuous inverse, so we can
change the order of closure and application.

Then we use the limit martingale to obtain the inclusion relation.

Proposition 4.2. Let (U1, U2), 0 < U1 < U2 < 1, be the �rst pair of feet, and
a = e2πiU1 , b = e2πiU2 ,M = 1− (U2−U1). Conditionally on the pair U1, U2, we
have

(M∞(e2πi(U1+r(U2−U1)))−M∞(e2πiU1))r∈[0,1]
(d)
= ((1−M)β

∗
M̃∞(e2πir))r∈[0,1]

where M̃∞ is another copy of M∞ and independent of M . Moreover, we have

M̃∞(e2πir) > 0

Proof. We denote c = e2πi(U1+r(U2−U1)) and τ the jump time. Then we claim a
simple identity

HSα(t+τ)(1, c) = 1 +HSα(t+τ)(1, a) +HSα(t+τ)(a, c)
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An interpretation of this identity is that, in one sample, the chord who crosses
[1c] is [ab] and the one crosses either [1, a] or [ac]. This is clear : let [d1d2] be
a chord di�erent from [ab] in the lamination who crosses [1c]. Since it cannot

cross [ab], its two feet fall in couple (1̂a, 1̂b) or (ĉa, ĉb). The former will cross
[1a] and the latter will cross [ac], so we get the identity.

Using the scaling property 3.5 and we get

t−β
∗/αHSα(t+τ)(1, c)

(d)
= t−β

∗/α + t−β
∗/αHSα(t+τ)(1, a)

+ (1−M)β
∗
((1−M)αt)−β

∗/αHS′α((1−M)αt)(1, e
2πir)

Conditionally on (U1, U2) chosen, we pass to the limit and thanks to the 3.2,
we obtain the result. The fact M̃∞(e2πir) > 0 is just one part of the theorem
3.2.

Using this result, we obtain immediately the result

Corollary 4.1. Almost surely, for every r, s ∈ [0, 1] such that {e2πir, e2πis} ∈
S(∞), we have r

g∞≈ s, where g∞(r) = M∞(e2πir) for r ∈ [0, 1].

Proof. We prove it by induction. After adding the �rst chord [ab], in the case
where 1 is not the endpoint with a, b, using 4.2 we get ∀x = e2πi(U1+r(U2−U1))

M∞(x)−M∞(a)
(d)
= (1−M)β

∗
M̃∞(e2πir) > 0 p.s

We continue the induction and use the 3.5, after adding one chord, the process
can be considered as two disks who evolve independently by changing the scale
of time, so if we always suppose that 1 in each disk will not be the endpoint of
chord, we repeat the 4.2 and obtain the result.

Remark. However, in this argument above, we add always the hypoth-

esis that 1 isn't the endpoint. We will prove this in the following lemma.
This supposition means, in fact, each foot will not be chosen a second time to
be the foot of a new chord. Intuitively, it is true since there are only count-
able point in S(∞) and every time, a point is chosen with probability 0, so a
foot will not be chosen as a foot for the second time. In another word, in the
�gela process, the probability to appear a triangle in its associated lamination
is 0.(But it is not the case if we take the closure.)

We complete this lemma and �nish the proof.

Lemma 4.1 (A speci�ed point with 0 probability to be in the set of feet). For
every x ∈ S1,

P[∀y ∈ S1 \ {x} : (x, y) ∈ S∗(∞)] = 0

Proof. We give a proof by using the result scaling limit of 3.2. ∀ε > 0,

P[∃y ∈ S1, |y − x| > ε, (x, y) ∈ S∗(∞)]

=

∫
1{∃y∈S1,|y−x|>ε,(x,y)∈S∗(∞)}m(dx)
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We will give an estimation for this probability. We take n such that 1
n < ε

and zk = exp( 2kπi
n ). Under this condition, it exists at lest one k such that

]zkz−k[∩]xy[ 6= ∅. Moreover, the event that the two chords cross is equivalent
that x is in one fragment that cross ]zkz−k[, and this measure almost surely will
not increase with the time t, so∫

1{∃y∈S1,|y−x|>ε,(x,y)∈S∗(∞)}m(dx)

≤
∫

1{∃k,(x,y)∈S∗(∞),]xy[∩]zkz−k[6=0}m(dx)

≤
n∑
k=1

∑
i=1

m(R
zj ,z−j(S0(t))
i )

≤ ne−tκνD (1)H1(−1)

We calculate

κνD (1) =
12 + 3× 1− 2

12 + 5× 1 + 6
=

1

6

Therefore, the probability is 0 for any ε > 0. We take the union and conclude.

Then, this lemma assures that in the induction of 4.1, each time we can
assume that there is no probability that 1 is the endpoint and apply the the
argument.

We �nish the proof of inclusion relation.

Proposition 4.3 (Inclusion). Almost surely, we have L∞ ⊂ Lg∞ .

Proof. By the 4.1 and 4.1, we know that ∀{s, t} ∈ S(∞), s
g∞≈ t, so they have

also a chord. This proves

L∞ =
⋃

{x,y}∈S(∞)

[xy] ⊂ Lg∞

Then, we know the L∞ is the closure of the term in the left hand, while 2.4
shows that the a lamination coded by a continuous function is closed, so we
obtain L∞ ⊂ Lg∞ .
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4.2 Maximality of L∞

In this subsection, we prove the maximality of L∞. This will help us �nish
the proof of the coding the L∞ by M∞. We �rst introduce another geometry
conception, who plays a signi�cant in the proof.

De�nition 4.1 (End). Let R be a fragment in a lamination, we de�ne end the
number of connected component of R ∩ S1 and represent it by e(R).

We take the notation in 4.1 and we note Tn the �gela process until the
generation n. However, this time, we neglect the information like lifetime, since
we have proved that it does not change the geometric property. We will use the
information of mass in the following proposition and after we will concentrate
only on the evolution of end.

Proposition 4.4 (End as a Markov chain). Let (Ru)u∈T be the fragment of a
�gela process. The evolution of the the end is a Markov chain:

e(R∅) = 0

P[e(Ru0) = q|e(Ru) = p] =
1

1 + p
1{1≤q≤1+p}

Proof. We prove by induction that for every Ru, it has the following property
: It has the transition law as described above. Moreover, the mass of each
connected component of Ru ∩ S1 is uniformly distributed for m(Ru) given.

The initial state is trivial. We do the induction part. Suppose that Ru
has the property above and e(Ru) = p, then for Ru0 what we do is equivalent
to add two points a, b uniformly on a circle of length m(Ru), where p points
(ci)1≤i≤p already uniformly distributed on it. Thus, it has p+2 points uniformly
distributed, which cut the circle into p+2 pieces and Ru0 is the part in counter-
clockwise direction from a to b.

Then the probability that Ru0 has q piece is just the probability that there
are q points from a to b. If we count from a and write the order, the uniform
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distribution assures that each permutation has the same probability. Therefore

P[e(Ru0) = q]

=
]{Permutations of a,b, ci started by a and b on the (q+2) position}

]{Permutations of a,b, ci started by a}

=
p!

(p+ 1)!
=

1

p+ 1

Moreover, the uniform distribution assures that conditional on e(Ru0) and
m(Ru0), the mass of each connected component of Ru0 is also uniformly dis-
tributed.

A ray in the genealogy tree is an in�nite {0, 1} sequence and for generation
n, we take the �rst n digits. A ray describes the evolution of the fragmentation
process by following always one half in two divisions.

The maximality of L∞ is the result of the following lemma.

Lemma 4.2 (No ray has always end larger than 3). Given a �gela process and
its associated genealogy tree, almost surly, there is no ray along which the the
end is always bigger than 3.

Remark. Generally, it does not su�ce to prove the result along a speci�c ray,
since there are 2n rays in Tn so in T there are in fact uncountable rays. This
makes the countable additivity powerless.

Remark. Since the Markov chain of e(Ru) has nothing to do with the mass
and lifetime, it can be treated as a branching process on the genealogy tree. If
we denote pi the probability that a process starts with end i and no ray of it
has always end larger than 3, then by the Markov property, we have a simple
recurrence relation{

p1 = p2 = p3 = 1

pk = 1
k+1

∑k+1
i=1 pipk+2−i, if k ≥ 4

A solution for this series should satisfy that pk ∈ [0, 1],∀k. The numerical
result shows that if p4 6= 1, it will have progressive fall to negative in value
in cause of the non-linearity. The following image shows result that we take
p4 = 0.15, 0.001.

The proof of this lemma is very technical and contains a lot of quantitative
analysis, so we keep this part in the next subsection. Here, we use this lemma
to prove the maximality.
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Proposition 4.5. Almost surely, L∞ is a maximal lamination of D.

Proof. We �rst prove that the feet set of S(∞) is dense on D. Suppose that
x0, y0 are two points on S1 and they are neither feet nor the limit of the feet,
so ∃δ > 0 such that in the δ neighbourhood of them, there are no feet. To
study the probability of this case, we just take a Ln process and each time, the
probability that no points in the δ neighbourhood is less than 1−4δ2. The sum
�nite of geometric series and Borel-Cantelli lemma implies that the probability
is 0.

Secondly, we prove the maximality. Suppose that we do a sample ω and
L∞(ω) is not maximal. then we can add one chord [x0y0] without crossing any
other existed chord. However, the density assure that

∃(x+n )n≥0, (x
−
n )n≥0, (y

+
n )n≥0, (y

−
n )n≥0 ∈ S1

x0 = lim
n→∞

x+n = lim
n→∞

x−n

y0 = lim
n→∞

y+n = lim
n→∞

y−n

The two series (x+n )n≥0, (x
−
n )n≥0 approximate x0 from two sides. We design a

function f(x+n ) the other foot which forms a chord with x+n . Then, the compact-
ness of S1 induces that {f(x+n )}n≥0 has a limit value di�erent from y0, otherwise
the pair {x0, y0} is in the closure of S(∞) so in L∞. Additionally, the limit value
should be on the right of [x0y0] in order to avoid crossing. Thus,

∃z+ ∈ S1,∃(x+nk)k≥0 subseries of (x+n )n≥0 s.t. z+ = lim
k→∞

x+nk

In fact, we can get some stronger result since the no crossing argument assures
that f is monotone in one direction on S1. Then,

z+ = lim
n→∞

x+n

The same argument is also correct for (y+n )n≥0 and we denote that w+ =
limn→∞ y+n . On the left of [x0y0] there are also limits z−, w−. Although w+, z+

can coincide, so do w−, z−, the fragment containing these points have always at
least 4 connected component on S1.

Thanks to 4.2, we know the sample ω has 0 probability, so almost surely L∞
is a maximal lamination.
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Proof. proof of 1.3 By 4.3 and 4.5, we deduce that almost surly, L∞ = Lg∞ .

Then, by 2.4 we know the relation
g∞≈ coincides with the relation

g∞∼ , so we draw
a chord simply when

M∞(ω)(x) = M∞(ω)(y) = min
z∈Arc(x,y)

M∞(ω)(z)

4.3 Proof of the key lemma

Reader can �nd the proof in [1] and [3] contains more details about this branch-
ing random walk.

A An analytic proof of a key lemma in random

lamination

[1] studies the limit of a random recursive lamination and one of the key lemma
is the its maximality. The authors propose to study a more analytic proof of
this lemma, which reduces to a recursive series. In this report, we prove it.

A.1 Introduction

In [1], the authors prove that we can code the limit of random recursive lamina-
tion by its associated fragmentation martingale limit and one key lemma is the
maximality of the limiting laminations(proposition 5.4). This lemma depends
strongly on the following proposition.

Proposition A.1. In the genealogical tree of fragments, almost surely, there is
no ray along which all fragments have eventually strictly more than 3 ends.

Reader can check the article for the de�nition and notation. In fact, along
one ray, the number of end evolves as a Markov chain

p2(x, y) =
1

x+ 1
11≤y≤x+1

, while the other child of the fragment has (x+ 2− y) ends. In [1], the authors
take analyse on the branch process and prove the above proposition. In [3], a
more �ne estimation of the probability is given for the case that along a branch
until generation n, all the number of ends are bigger than 4.

In fact, if we starts a fragment process with k ends and denote pk the proba-
bility that there exits no in�nite ray starting from ∅ along which all the number
of end are strictly greater than 3. Then pi satisfy a simple recursive relation{

p1 = p2 = p3 = 1
pn = 1

n+1 (p1pn+1 + p2pn + . . . pnp2 + pn+1p1)

When p4 is given, this recursive system is determined. So, we conjecture that the
only solution that makes pn ∈ [0, 1],∀n should be that p4 = 1. The numerical
test also veri�es our conjecture. This recursive system is also remarked in the

32



Figure 1: Evolution of series for p4 = 1− x

article. If we have proved the uniqueness of this system, it will give another
more analytic proof for the maximality of limiting lamination.

Meanwhile, we say something about the numerical experiences. In fact, it is
easy to give some numerical experiences for an initial condition p4 = 1− x, x ∈
(0, 1). The numerical results show that the series will, �nally, fall down below
0, no matter how small x is. Moreover, the series decrease at �rst slowly, but
drastically later. All these inspire us to study the property of this interesting
non-linear system.

Although this recursive relation is simple, it requires also detailed analysis
due to its non-linearity. In the rest of this report, we will study it. We organize
the report as following : In section 2, we will give an polynomial representation
of this series and its properties, which help us prove the uniqueness of the pos-
itive solution. In section 3, we will give some further analysis for the evolution
of the system and we will see that pn decreases with a speed of high order poly-
nomial rather than linearly when n is big. Moreover, we will use this estimation
to explain the "cut-o�" phenomena. In the last section, readers can �nd the
numerical experiences which illustrate our theorems.

A.2 Uniqueness of the positive solution

The above system can be written as

pn+1 = pn + (pn − pn−1) +
1

2

n−2∑
i=4

(pn − pipn+2−i) (3)

This is an important identity and we will use it many times later. From this
identity, we know that if we let p4 = 1 − x, x ∈ [0, 1], then every pn can be
written as a polynomial of x. Moreover, these polynomials have some good
properties and will help us obtain the uniqueness of the system.
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Theorem A.1. p4 is de�ned as above, then ∀n ≥ 4, pn is a polynomial of x in
the form

pn = 1− n− 2

2
x− x2An(x) (4)

where An(x) is also a polynomial of x. We write it as An for short. {An}n≥4
satisfy that

(Positivity) An ≥ 0,∀n ≥ 4.More precisely, it is strict when n ≥ 7.

(Convexity 1) An+1 −An ≥ An −An−1,∀n ≥ 5.More precisely, it is strict when n ≥ 6.

(Convexity 2) An ≥ Ai +An+2−i,∀i ≥ 4, n ≥ 6.More precisely, it is strict when n ≥ 7.

Here we de�ne A ≥ B if all the coe�cients of A − B is positive. We de�ne
A > B if A ≥ B and A−B 6= 0.

Proof. We can calculate the expression until p8. That is

p1 = p2 = p3 = 1

p4 = 1− x , A4 = 0

p5 = 1− 3

2
x , A5 = 0

p6 = 1− 2x , A6 = 0

p7 = 1− 5

2
x− 1

2
x2 , A7 =

1

2

p8 = 1− 3x− 3x2 , A8 = 3

So it is easy to check that they satisfy the properties and we start the proof by
recurrence from n+ 1 = 9.

Suppose that the polynomial expression and all the properties are correct
for pk, 4 ≤ k ≤ n, then for pn+1 we plunge the polynomial in (3)

pn+1 = pn + (pn − pn−1) +
1

2

n−2∑
i=4

(pn − pipn+2−i)

= (1− n− 2

2
x− x2An) + [(1− n− 2

2
x− x2An)− (1− n− 3

2
x− x2An−1)] +

1

2

n−2∑
i=4

(pn − pipn+2−i)

= 1− n− 1

2
x− x2[An + (An −An−1)] +

1

2

n−2∑
i=4

(pn − pipn+2−i)

We develop the last term, in fact we claim ∀4 ≤ i ≤ n− 2, n ≥ 6,

pn − pipn+2−i = −x2Bn,i (5)

where Bn,i is a polynomial of x and Bn,i > 0.
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This claim can be checked directly by calculus

pn − pipn+2−i

= (1− n− 2

2
x− x2An)− (1− i− 2

2
x− x2Ai)(1−

n− i
2

x− x2An+2−i)

= (1− n− 2

2
x− x2An)− (1− n− 2

2
x+

(i− 2)(n− i)
4

x2 − x2(An+2−i +Ai)

+x3(
n− i

2
Ai +

i− 2

2
An+2−i) + x4AiAn+2−i)

= −x2[(An −An+2−i −Ai) +
(i− 2)(n− i)

4
+ x

n− i
2

Ai + x
i− 2

2
An+2−i + x2AiAn+2−i]

Compared with (5) we get

Bn,i = (An−An+2−i−Ai)+
(i− 2)(n− i)

4
+x

n− i
2

Ai+x
i− 2

2
An+2−i+x

2AiAn+2−i

(6)
The convexity 2 assures that Bn,i > 0.

Then we simplify the expression

pn+1 = 1− n− 1

2
x− x2[An + (An −An−1) +

1

2

n−2∑
i=4

Bn,i] (7)

We compare this equation with the standard expression and get

An+1 = An + (An −An−1) +
1

2

n−2∑
i=4

Bn,i (8)

This equation permit us to do recurrence.
Positivity: Since An − An−1 ≥ A8 − A7 > 0 and An > 0, Bn,i > 0, we

obtain that An+1 is also strictly positive.
Convexity 1: We subtract this item by An.

An+1 −An = (An −An−1) +
1

2

n−2∑
i=4

Bn,i > An −An−1

Convexity 2: We use the Convexity 2 of An, that is ∀4 ≤ i ≤ n− 2

An+1 = An + (An −An−1) +
1

2

n−2∑
i=4

Bn,i

> Ai +An+2−i + (An −An−1) +
1

2

n−2∑
i=4

Bn,i

The Convexity 1 induces that

An −An−1 > An−1 −An−2 ≥ An+3−i −An+2−i
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, therefore

An+1 > Ai +An+2−i + (An+3−i −An+2−i) +
1

2

n−2∑
i=4

Bn,i

= Ai +An+3−i +
1

2

n−2∑
i=4

Bn,i

> Ai +An+3−i

The case i = n − 1 is same as the case i = 4, so the convexity 2 is also correct
for n+ 1 and we �nish the recurrence.

These properties imply directly the uniqueness of the positive solution.

Corollary A.1. The unique solution positive of the system is that pn = 1.

Proof.

0 ≤ pn = 1− n− 2

2
x− x2An ≤ 1− n− 2

2
x

⇒ 0 ≤ x ≤ 2

n− 2
,∀n

⇒ x = 0

This concludes the uniqueness of the system and it gives another proof for
the maximality of random recursive lamination de�ned in [1].

A.3 Speed of the decrement

Using the result in last section that

pn = 1− n− 2

2
x− x2An ≤ 1− n− 2

2
x

we can also prove that the life time of positive solution has upper bound b 2xc+2.
If we just look at the �rst order, this series decrease linearly. However, we see in
the numerical experience that the value falls in fact quickly when n is big and
has the phenomena of "cut-o�". This is due to the fact that we treat An as just
a number positive. In this section, we give a more precise analysis on An and
improve our result.

Theorem A.2. (Convexity 2+)We can give a better second order di�erence
estimation for An

D2(An) = An+1 − 2An +An−1 = Ω(n3) (9)

This also improves the estimation of An ∀x ≥ 0, An = Ω(n5). So there exists
a > 0 and for n big enough

pn ≤ 1− n− 2

2
x− an5x2
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Proof. We use the recursive relation of An in (8)

An+1 = An + (An −An−1) +
1

2

n−2∑
i=4

Bn,i

so that

D2(An) =
1

2

n−2∑
i=4

Bn,i (10)

where Bn,i is de�ned in (5) and has an expression in (6). To obtain a better
lower bound of Bn,i, we keep the constant term

Bn,i = (An −An+2−i −Ai) +
(i− 2)(n− i)

4
+ x

n− i
2

Ai + x
i− 2

2
An+2−i + x2AiAn+2−i

≥ (i− 2)(n− i)
4

Then we plunge it to (10)

D2(An) ≥ 1

2

n−2∑
i=4

(i− 2)(n− i)
4

=
1

2
[

n−2∑
i=4

i− 2

4
n−

n−2∑
i=4

i2

4
+

n−2∑
i=4

2i

4
]

≥ 1− ε
48

n3

∀ε ∈ (0, 1) and n big enough. We iterate the second order di�erence of An and
get for n big enough

An ≥
1− ε
960

n5

This implies a better estimation of pn by plunge the An in equation (4)

pn ≤ 1− n− 2

2
x− 1− ε

960
n5x2 (11)

.
So we give a better estimation of the decrease speed, but it isn't the real

speed. As we know, if we repeat the argument above, we have hope to continue
improving the precision.

Remark. An intuitive (but false!) explanation for "cut-o�" phenomena is that
when x is small, the second term in (11) can be neglected when n is also small.

However, power of 5 increases fast so when n comes to b( 1000
x )

1
5 c, it becomes an

counterpart of the �rst term. After this point, the second term plays the major
role so we see a fast decrease.

This argument has some parts positive : in numerical experiences, the "cut-
o�" starts from a critical point. However, the polynomial decreases cannot catch
up the real speed in numerical experiences, which �nish the fall down just in 2
or 3 steps. A more precise argument is proposed in the next section.
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A.4 Lifetime and critical point

Although we have known a lot about the recursive system, why it appears
a sudden fall in experience still interests us. In this section, we explain it
mathematically. We will see that in fact, the system has a critical point, from
which this series starts a decrease of exponential speed.

We de�ne the lifetime of the system as

N+ = max{n|∀1 ≤ i ≤ n, pi ≥ 0}

The result in last section gives a large upper bound of the lifetime at least.

Corollary A.2. N+ ≤ b( 1000
x2 )

1
5 c ∧ (b 2xc+ 2)

Proof. The two estimation come directly from

0 ≤ pn ≤ 1− n− 2

2
x

0 ≤ pn ≤ 1− 1− ε
960

n5x2

The real reason for "cut-o�" comes from the following theorem.

Theorem A.3. (Cut-o�) We de�ne a critical point of the system as

nc = inf {n|pn ≤ 1− (n− 2)x} (12)

Then from nc, pn decreases exponentially, that is ∀k ≥ 1,

pnc+k ≤ 1−
(
nc + k − 2

2

)
x− C

(nc
2

)k−1
x (13)

Before proving this theorem, we would like to know why this describes "cut-
o�". In fact, combing (11), this theorem means

∀4 ≤ n < nc, 1− (n− 2)x < pn < 1− n− 2

2
x

so they decease almost linearly. But no matter how slow this linear speed is,
after nc, pn falls exponentially. That is the vision e�ect of "cut-o�" seen in the
experience.

We prove the theorem above.

Proof. Firstly, the de�nition of critical point is well de�ned since D2(An) > 0
implies that An

n is monotone increasing, so the critical point is well-de�ned.
Using (4) and the de�nition of nc

1− n− 2

2
x− x2Anc ≤ 1− (n− 2)x

⇔ xAnc ≥
nc − 2

2
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At the same time,

∀n < nc, xAn <
n− 2

2
.

Using equation (8) and equation (6)

An+1 = [An + (An −Anc−1) +
1

2

n−2∑
i=4

Bn,i]

≥ n− 1

2
Anc −

n−1∑
i=4

Ai +

nc−2∑
i=4

(i− 2)(n− i)
4

≥ n− 1

2
An −

n−1∑
i=4

Ai +
1

100
n3

Therefore, we obtain

An+1 ≥
n− 1

2
An −

n−1∑
i=4

Ai +
1

100
n3 (14)

and we will use this inequality to get our result.
We claim a stronger convexity for An :

Proposition A.2. (Convexity 3) ∃C > 0,∀k ≥ 1

x2Anc+k ≥ C
(nc

2

)k−1
This can be deduced by (14) after careful calculus. The �rst several terms

should be done manually. Using the upper bound of An for n < nc and lower
bound of Anc and the fact that A4 = A5 = A6 = 0, we have

x2Anc+1 ≥ x2

[
nc − 1

2
Anc −

nc−1∑
i=7

Ai +
1

100
n3

]

> x

[(
nc − 1

2

)(
nc − 2

2

)
−
(
nc − 7

2

)(
nc − 3

2
+

7− 2

2

)]
=

(
nc + 8

2

)
x

.
We continue the calculus for Anc+2, Anc+3, we will see that the increment

accumulate thanks to the �rst term Anc+1 achieves just a very small progress -
no matter how small it is, it will become enormous later. That is why we should
do the calculus very carefully here.
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x2Anc+2 ≥ x2

[
nc
2
Anc+1 −

nc−1∑
i=7

Ai −Anc +
1

100
n3

]

≥ x2

(
nc − 2

2
Anc+1 −

nc−1∑
i=7

Ai

)
+ x2 (Anc+1 −Anc)

≥ x

[(
nc + 8

2

)(
nc − 2

2

)
−
(
nc − 7

2

)(
nc − 3

2
+

7− 2

2

)]
=

11nc − 2

4
x

≥ 5

2
ncx

x2Anc+3 ≥ x2

[
nc + 1

2
Anc+2 −

nc−1∑
i=7

Ai −Anc −Anc+1 +
1

100
n3

]

≥ x2

(
nc − 3

2
Anc+2 −

nc−1∑
i=7

Ai

)
+ x2 (Anc+2 −Anc+1) + x2 (Anc+2 −Anc)

≥ x

[
5nc(nc − 3)

4
− (nc − 7)(nc + 2)

4

]
=

4n2c − 10nc + 14

4
x

≥ 1

2
n2cx

From Anc+4, the calculus become easier since Anc+3 itself compensate the

sum
∑nc−1
i=7 Ai <

(nc−7)(nc+2)
4 .

x2Anc+4 ≥ x2

(
nc + 2

2
Anc+3 −

nc−1∑
i=7

Ai −Anc −Anc+1 −Anc+2

)

≥ x2
(
nc − 6

2

)
Anc+3

We assume nc ≥ 10 since that is the case non-trivial. Then Anc+4 ≥ 2Anc+3.
We do recurrence, that is

x2Anc+k+1 ≥ x2

nc + k − 1

2
Anc+k −

nc−1∑
i=7

Ai −
k−1∑
j=0

Anc+j


≥ x2

(
nc + k − 7

2

)
Anc+k + x2(Anc+k −

nc−1∑
i=7

Ai) + x2(Anc+k −Anc −Anc+1)

+x2(Anc+k −
k−1∑
j=2

Anc+j)

≥ x2
(
nc + k − 7

2

)
Anc+k
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While k becomes bigger than 7, the estimation becomes �nally Anc+k+1 ≥
nc
2 Anc+k. Therefore, we conclude that An has an exponential increment. We
put this result into the expression of pn in equation(4) and we �nish the proof.

Remark. In our proof, we neglects totally the term 1
100n

3. In fact, it contributes
also the exponentially decrement.

A.5 Numerical experiences

We use python to calculate the �rst 16 polynomials of An, whose coe�cients
are all positive.

A4 = A5 = A6 = 0

A7 = 0.5

A8 = 3.0

A9 = 13.125

A10 = 54.5 + 0.5x

A11 = 237.375 + 6.0x

A12 = 1128.75 + 48.125x

A13 = 5918.0 + 339.625x+ 0.625x2

A14 = 34095.75 + 2337.5x+ 12.0x2

A15 = 214300.125 + 16436.875x+ 146.5625x2

A16 = 1458692.375 + 120600.375x+ 1505.0x2 + 0.875x3

Moreover, if we implement the second order di�erence

D2(An) = An+1 − 2An +An−1

, we �nd that their coe�cients are also positive.

D2(A5) = 0

D2(A6) = 0.5

D2(A7) = 2.0

D2(A8) = 7.625

D2(A9) = 31.25 + 0.5x

D2(A10) = 141.5 + 5.0x

D2(A11) = 708.5 + 36.625x

D2(A12) = 3897.875 + 249.375x+ 0.625x2

D2(A13) = 23388.5 + 1706.375x+ 10.75x2

D2(A14) = 152026.625 + 12101.5x+ 123.1875x2

D2(A15) = 1064187.875 + 90064.125x+ 1223.875x2 + 0.875x3

The following two images shows the speed of decrement. We see that as we
have predicted, once the series touch the curve 1 − (n − 2)x, it accelerates to

decrease and it's faster than 1− (n−2)
2 x− 1

1000x
5.
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Figure 2: Comparison with di�erent approximation for x = 0.1

Figure 3: Comparison with di�erent approximation for x = 0.05
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