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1 Introduction

This notes is based on the lecture given by Ilaria Mondello for the 2017-2018
master day of Paris-Saclay. This 3× 1.5 course covers a quick but detailed
introduction of metric space and Gromov-Hausdorff distance and finishes
by the precompact theorem of Gromov-Hausdorff space. This note tries to
recap this excellent introduction course.

At the beginning of the notes, I have to add some words about the
Gromov-Hausdorff space since this may be one of the most tremendous dis-
tance in maths - generally it measures the distance between compact object
- it appears in many branches like differential geometry, geometric group
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theory and also nowadays probability theory, to treat positive curvature
problem, the isometric embedding problem and random object. Although
sometimes we need only one of the several equivalent definitions, maybe a
comprehensive understanding helps better apply this good idea in our work
and find other surprising properties.

The lecture note is organized as following : In the first part, we recall
the basic definitions of metric space and the definition of compactness by
ε-net. The second part compares the advantages and disadvantages of some
classical distance, which leads the motivation of the Hausdorff distance and
Gromov-Hausdorff distance. The third and forth part treat the definition
of these two distances and their various equivalent definitions which work
better in some specific situations. Generally speaking, the Hausdorff dis-
tance compares the distance of two compact sets in the same metric space,
while Gromov-Hausdorff distance permits us to compare the distance of two
compact metric spaces. (So Gromov-Hausdorff space is a space of compact
space !) Finally, we finish by an important precompact theorem of Gromov-
Hausdorff space, whose proof is a little technical but shares the same idea
of Ascoli-Arzela theorem and the completion of metric space.

In the remaining part of the first section, we recall the definition of
metric space, the compactness and the completion of metric space, which
the reader may be already familiar with and can be found in may text books
for an introduction in detail.

1.1 Metric space

The metric space is the main role of this course, here we recall its definition.

Definition 1.1 (Metric space). Given set X, d : X ×X → R is a distance
on X if and only if it satisfies the following three properties

1. Positivity d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y.

2. Symmetry d(x, y) = d(y, x).

3. Triangle inequality d(x, y) ≤ d(x, z) + d(z, y).

, and we call (X, d) a metric space.

There are a lot of examples of metric space, for example the Euclid
space (Rn, d). Moreover, for a same set, we can define different distances.
For example, the circle Sn−1 ⊂ Rn can be equipped by a distance induced
by the distance of (Rn, d) or another distance as the arc length defined
by d(x, y) = arccos〈x, y〉. This is also an example of the metric space of
Riemann manifold with geodesic distance.

To verify the definition of metric space, maybe the triangle inequality is
the most non-trivial property and sometimes requires technique. However,
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we cannot forget the positivity, otherwise it will be another concept a little
weaker than distance.

Definition 1.2 (Semi-metric space). A space (X, d) is called semi-metric
space if it satisfies all the three properties except d(x, y) = 0⇔ x = y.

Remark. A semi-metric space isn’t very far from the metric space and in fact,

we define an equivalence class by
d∼ if d(x, y) = 0. Then the equivalence class

forms a metric space (X/
d∼, d).

One example of semi-metric space is (Lp(Rn),m) and we take the equiv-
alence class (Lp(Rd),m).

The topology on metric space isn’t so abstract since the open ball is
clear.

Definition 1.3 (Topology on metric space). The topology T on metric
space (X, d) is generated by the open ball

Br(x) = {y ∈ X|d(x, y) < r}

and we denote the convergence by xn → x which means d(xn, x)→ 0.

When we take two metric spaces, one most special relation is isometry -
it means two spaces ”look same”.

Definition 1.4 (Isometry). Given two metric space (X, dX), (Y, dY ), a func-
tion f : X → Y preserves the distance if ∀x, x′ ∈ X, dY (f(x), f(x′)) =
dX(x, x′). Moreover, if f is a bijection, then we call it an isometry between
(X, dX) and (Y, dY ).

Finally, we generalize a little the Lipschitz function as a function between
two metric space.

Definition 1.5 (Lipschitz). Given two metric spaces (X, dX), (Y, dY ), a
function f : X → Y is said Lipschitz if and only if ∃C > 0, ∀x, x′ ∈
X, dY (f(x), f(x′)) ≤ dX(x, x′).

1.2 Completion and compactness

When we study the limit behavior, we need some good property : at least
we need completion and we hope to have compactness if possible. The
completion of metric space is described as following :

Theorem 1.1 (Completion of metric space). Every metric space (X, d)
admits a completion : there is a complete metric space (X̂, d̂) such that
(X, d) is its dense subspace and d̂|X×X = d. The completion is unique up to
an isometry.

3



We skip the proof but just give a main idea. In fact, just analogue to
pass the rational number to the real number, we can identify the Cauchy
sequence as the element in X̂ and the take the limit of distance as the limit
on it.

This completion is good since it preserves Lipschitz function. More gen-
erally, the Lipschitz function defined on a dense subset has a natural exten-
sion.

Theorem 1.2 (Extension of Lipschitz function). If f : X ′ → Y is Lipschitz
where X ′, Y are metric spaces and X ′ ⊂ X is dense while Y is complete.
Then there exists unique extension f̂ : X → Y which is also Lipschitz.

Finally, we would like use a new idea of ε-net (Sometimes it is also called
finite Lebesgue number theorem) to describe the compactness since this
description is more convenient in metric space and paves way for the latter
part of this note.

We need at first the distance between a point and a set.

Definition 1.6 (Distance between point and set). Given a metric space
(X, d) and S ⊂ X,x ∈ X, then we define d(x, S) = infy∈S d(x, y).

A ε-set is very intuitive : it says that we can cover the space by small
balls of radius ε centering at a subset S. The definition totally bounded says
that ” the volume of space is finite ”.

Definition 1.7 (ε-net and totally bounded). Given ε > 0, we say that S is
a ε-net of metric space (X, d) if S ⊂ X and ∀x ∈ X, d(x, S) ≤ ε.

(X, d) is said totally bounded if and only if ∀ε > 0,∃ finite ε−net.

We give the main theorem of compactness defined by ε-net

Theorem 1.3 (Compactness defined by ε-net). A metric space (X, d) is
compact if and only if (X, d) is complete and totally bounded.

Proof. If (X, d) is compact, then every open covering contains a finite sub
open covering. We know that obviously

⋃
x∈X Bε(x) covers X, then we

extracts the centers of its sub open covering and this is a finite ε-net, so X
is totally bounded. The completeness is directly the result of compactness.

Conversely, if (X, d) is totally bounded and complete, we would like
prove the original definition of compactness. Given

⋃
i∈I Oi covers X and

Sk is a finite εk-net where εk = 1
k , we define moreover that S̃n =

⋃n
k=1 S

k.
Since Sk is finite, we can find finite open set Oi to cover them and therefore
we know that to cover S̃n we need also only finite open subset Oi, so we
denote it by Un and without of generality we suppose that it’s increasing.

Now we prove by absurd and suppose that the open covering doesn’t have
open sub covering so that Un 6= X,∀n. Then we know finite intersection of
X\Un isn’t empty and this happens in at least one εk neighborhood of some
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point on SK . We can continue this argument with n thanks to the totally
bounded property. Finally, we extract a subset of decreasing neighborhood
and use the fact that X\Un is closed to get the limit which doesn’t belong
to infinite intersection of X\Un and this is a contradiction.

2 Idea of convergence

In this part, we discuss a classical definition of convergence called uniform
convergence. It gives a lot of information of the metric space but it may
be sometimes too strict and this gives us the motivation to find some other
distance.

At first, we introduce the definition of distortion.

Definition 2.1 (Distortion). Given two metric space (X, dX), (Y, dY ) and a
function between the two spaces f : X → Y . The distortion of f is defined
as

dis(f) = sup
x,x′∈X

|dX(x, x′)− dY (f(x), f(x′))|

.

As an example, we see if f is an isometry, the distortion is 0 so that
X and Y are perfectly matched. The uniform convergence shares also the
same spirit.

Definition 2.2 (Uniform convergence). A family of metric space {(Xn, dn)}
converges uniformly to a metric space (X, d) if ∃ homogeneous fn : Xn → X
such that dis(fn)

n→∞−−−→ 0.

Therefore, if Xn converges in this sense, we can apply homogeneous
deformation to change it little by little and finally to X. However, we notice
that all the space should be at least homogeneous, so some strange examples
cannot apply this idea.

Example 2.1. First example is the following pictures : a series of torus
whose diameter of handle becomes smaller and smaller and finally disap-
pears. However, in the sense of uniform convergence, it doesn’t converge
since there will never be a homogeneous function between a torus and a
sphere.

Figure 1: A series of torus ”converge” to a sphere
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Example 2.2. Another example is the distortion of two torus. Luckily,
they are homogeneous at least, but the handled is attached to the small
sphere in the left one and is attached to the large sphere in the right one.
This makes the distortion so large than expecting no matter how small the
handle is.

Figure 2: Two homogeneous torus

In conclusion, the uniform convergence just measures the distance be-
tween a family of homogeneous equivalent metric space. In some other sit-
uation, since we would study just the metric property and don’t care other
topological properties, we could neglect the restriction of f . We will discuss
and develop it in the further part of the notes.

3 Hausdorff distance

In this section, we try to give the idea of Hausdorff distance, which allows us
to measure the distance of two subsets from purely the viewpoint of metric.
We will finally prove that it is well defined as a distance for all the compact
set of a metric space.

3.1 Definition

Maybe someone would generalize the definition of distance between a point
and a set, however it’s easy to check that a naive generalization like d(A,B) =
infx∈A,y∈B d(x, y) isn’t a distance in cause of the triangular inequality. For
example, we set A = [0, 1], B = [1, 2], C = [2, 3], then d(A,C) = 1 >
d(A,B) + d(B,C) = 0 + 0 = 0.

That is the reason to define the r-neighborhood and the Hausdorff dis-
tance. Generally speaking, a Hausdorff distance is the least radius that we
shrink one figure and can touch the other.
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Definition 3.1 (r-neighborhood). Given (X, d) a metric space and A ⊂
X, r > 0. The r-neighborhood of A is defined as

Ur(A) = {x ∈ X|d(x,A) < r}

Definition 3.2 (Hausdorff distance). Given (X, d) a metric space and its
two subsets A,B ⊂ X, then we define the Hausdorff distance as

dH(A,B) = inf {r > 0|B ⊂ Ur(A), A ⊂ Ur(B)}

.

We do calculate some easy examples to be familiar with the definition.

Example 3.1. Given a < b < c < d and A = [a, b], B = [c, d], we have
dH(A,B) = (d− b) ∨ (c− a).

Example 3.2. Given Iε = [ε, 1− ε], ε > 0. Then we have

dH(Iε, [0, 1])
ε→0−−→ 0

. If we admits that it’s a distance, informally, we can write Iε
dH−−→ [0, 1].

The following proposition is nearly direct from the definition, since the
smallest radius to cover B from A means the largest distance from one point
of A to the set B.

Proposition 3.1 (Another equivalent definition of dH). In the same setting
of the definition of Hausdorff distance, we have

dH(A,B) = max

{
sup
b∈B

d(b, A), sup
a∈A

d(a,B)

}

3.2 A metric space for compact subset

We will prove that the Hausdorff distance is a distance for the compact
subset by starting the proof of the following theorem which prepares for the
main theorem.

Theorem 3.1 (dH as semi-metric). Given a metric space (X, d) then

1. dH is a semi-metric on δ(X) = all the subsets of X.

2. ∀A ⊂ X, dH(A, Ā) = 0.

3. ∀A,B closed subset, dH(A = B)⇔ A = B.

Proof. Proof for (1)It’s obvious to verify that dH(A,B) ≥ 0 and dH(A,B) =
dH(B,A). To check the triangular inequality, we state a lemma as following.
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Lemma 3.1 (Composition of r-neighborhood). Given S subset of a metric
space (X, d), we have Ur1(Ur2(S)) ⊂ Ur1+r2(S).

The proof is direct. ∀x ∈ Ur1(Ur2(S)), we have d(x, Ur2(S)) < r1, which
implies ∃y ∈ Ur2(S), d(x, y) < r1. By the same argument, ∃z ∈ S such that
d(y, z) < r2, therefore d(x, z) < d(x, y)+d(y, z) = r1 +r2 and x ∈ Ur1+r2(S)
and we prove the lemma.

We remark that the converse Ur1+r2(S) ⊂ Ur1(Ur2(S) isn’t correct. A
counter example could be X = N, S = {0}, r1 = r2 = 0.6, then Ur1+r2(S) =
{−1, 0, 1} while Ur1(Ur2(S)) = {0}.

Thanks to this lemma, we prove the triangular inequality. Suppose that
dH(A,C) = r1 and dH(C,B) = r2, then

∀ε > 0, B ⊂ Ur2+ ε
2
(C), C ⊂ Ur1+ ε

2
(A)

. We apply the lemma then

B ⊂ Ur2+ ε
2
(Ur1+ ε

2
(A)) ⊂ Ur1+r2+ε(A)

. Another direction of inclusion follows the same proof. Because ε > 0
is arbitrary, this means dH(A,B) ≤ r1 + r2 and we prove the triangular
inequality.

Proof for (2) We use the equivalent definition of the Hausdorff distance

dH(A, Ā) = max

{
sup
a∈A

d(a, Ā), sup
a′∈Ā

d(a′, Ā)

}

and the fact that supa∈A d(a, Ā) = supa′∈Ā d(a′, Ā) = 0, then we get the
result desired.

Proof for (3) We prove by absurd and suppose that A 6= B. Then ∃a ∈
A such that d(a,B) > 0 since B is closed. This means that dH(A,B) > 0
and it’s a contradiction.

Theorem 3.2 (dH is a distance for compact subset). Given a metric space
(X, d), the Hausdorff distance on it makes the collection of compact subset
of (X, d) a metric space.

Proof. In the last theorem, we have prove it a semi-metric. Moreover, the
third statement in last theorem implies that for two compact subset A,B, if
dH(A,B) = 0, then A = B. Therefore, the metric space is well defined.

4 Gromov-Hausdorff distance

Although the Hausdorff distance permit us to compare the distance of com-
pact, one may ask some further question. For example, for two compact
sets different for a transition in the same space, we would like to say that
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they are ”same” up to a transition, but their Hausdorff distance is not zero.
How to solve this problem ? In this section, we will generalize the Hausdorff
distance and define the Gromov-Hausdorff distance which compares the dis-
tance between two compact space, so this helps us treat our question since
two compact sets can be treated as two compact metric space if we restrict
the distance respectively on these two compact subsets. We will also give
some other equivalent definitions to treat this distance in more practical
may.

4.1 Definition by isometry

We give the original definition of Gromov-Hausdorff distance.

Definition 4.1 (Gromov-Hausdorff distance). Given two metric spaces (X, dX), (Y, dY ),
the Gromov-Hausdorff distance between them is defined as the lower bound
when we do embedding of X,Y to a same metric space (Z, dZ) i.e

dGH(X,Y ) = inf
{
dZH(φX(X), φY (Y ))|φX : X → Z, φY : Y → Z isometric

}
.

Figure 3: Embed two metric space to a third metric space and compare the
distance

This is a nice definition, except finding the isometric embedding to a
third metric space is very abstract. In the following parts and following
section, we will develop other equivalent definition easier to implement in
examples. A first equivalent definition allow us to design a semi-metric
instead of searching for a metric space.
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Proposition 4.1 (Equivalent definition of dGH). In the same setting of
Gromov-Hausdorff distance, it can be defined as the lower bound of semi-
metric on dXtYH i.e

dGH(X,Y ) = inf
{
dXtYH (X,Y )|dXtY|X×X = dX , dXtY|Y×Y = dY

}
Remark. Here t means the disjoint union. In another word, if Y = X or
there is some point x in common, in the space XtY there will be two copies
x1, x2.

Proof. Given a metric space and two isometric function (Z, φX , φY ), there
is a natural semi-metric on the X t Y defined by

f : (Z, φX , φY )→ (φX(X) t φY (Y ), dZ)

. In fact, dZ restricted on the image is isometric and we add two copies
make dZ a semi-metric. Therefore, one embedding gives a correspondent
semi-metric

dGH(X,Y ) ≥ inf
{
dXtYH (X,Y )|dXtY|X×X = dX , dXtY|Y×Y = dY

}
. On the other hand, once we defined a semi-metric on X t Y , we can
also fabricate a metric space Z = (X t Y/ ∼ dXtY , dXtY )and isometric
function as projection on each space, so we get another inequality and we
conclude.

4.2 Definition by correspondence

A second equivalent definition comes from a analogue of distortion of func-
tion. We will introduce a more general coupling called correspondence,
which is more flexible than the homogeneous function.

Definition 4.2 (Correspondence). Given two sets X,Y , a correspondence
is a subset R ⊂ X × Y which satisfies

• ∀x ∈ X,∃y ∈ Y, s.t(x, y) ∈ R.

• ∀y ∈ Y, ∃x ∈ X, s.t(x, y) ∈ R.

The following proposition tells us how to construct a correspondence,
although we don’t really need this proposition very often. Since once we
are familiar with this notation, we can design many correspondences in the
specific situations as we wanted.

Proposition 4.2 (How to construct correspondence). Given three sets X,Y, Z
and f, g two surjective function f : Z → X, g : Z → Y , then R = {(f(z), g(z))|z ∈
Z} is a correspondence.

Conversely, for every correspondence between X,Y , we can find a third
set Z and two surjective function like above.
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Proof. Given a set Z and two surjective functions f, g, we construct {(f(z), g(z))|z ∈
Z} as a correspondence, since the surjective function assures to take all the
values of X and Y .

On the other hand, given a correspondence R, we construct a set Z =
{(x, y) ∈ X × Y |(x, y) ∈ R} and two projections f = ΠX , g = ΠY as
surjective functions.

We generalize the distortion of function to the distortion of correspon-
dence.

Definition 4.3 (Distortion of correspondence). Given two metric spaces
(X, dX), (Y, dY ) and R a correspondence between X and Y , then we can
define the distortion of R by

dis(R) = sup
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|

Gromov-Hausdorff distance can also be given by find the lower bound of
possible correspondence and it seems easier than the original definition or
finding semi-metrics.

Proposition 4.3 (dGH defined by correspondence). In the same setting of
Gromov-Hausdorff distance, we have

dGH(X,Y ) =
1

2
inf{dist(R)|R correspondence between X and Y }

. The proof has two parties :

1. If dGH(X,Y ) < r, then ∃R correspondence s.t dis(R) < 2r.

2. dGH(X,Y ) ≤ 1
2dis(R).

Figure 4:
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Proof. Proof of (1) Once we have dGH(X,Y ) < r, we have a metric space
(Z, dZ) and two isometric function φX , φY , we will construct a correspon-
dence whose distortion is less than 2r.

We define the correspondence R like this : ∀x ∈ X,∃y ∈ Y, such that
dZ(φX(x), φY (y)) < r. ∀x′ ∈ X,∃y′ ∈ Y, such that dZ(φX(x′), φY (y′)) < r.
We put these couples (x, y), (x′, y′) in the correspondence R.

By definition,

dis(R) = sup
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|

= sup
(x,y),(x′,y′)∈R

|dZ(φX(x), φX(x′))− dZ(φY (y), φY (y′))|

. The construction of correspondence tells us

dZ(φX(x), φX(x′)) ≤ dZ(φX(x), φY (y)) + dZ(φY (y), φY (y′)) + dZ(φY (y′), φX(x′))

≤ dZ(φY (y), φY (y′)) + 2r

dZ(φY (y), φY (y′)) ≤ dZ(φY (y), φX(x)) + dZ(φX(x), φX(x′)) + dZ(φX(x′), φY (y′))

≤ dZ(φX(x), φX(x′)) + 2r

Therefore, dis(R) < 2r.
Proof of (2) The second part is a little delicate. We use the equivalent

definition and we will construct a semi-metric on X tY from the correspon-
dence.

The main task is to construct dXtY (x, y), x ∈ X, y ∈ Y . Suppose that
dis(R) = r We define

• If (x, y) ∈ R, we define dXtY (x, y) = r.

• If (x, y) /∈ R, we define dXtY (x, y) = r + inf{dX(x, x′)|(x′, y) ∈ R}

We will prove that it works. One useful inequality in the proof is that

∀(x, y), (x′, y) ∈ R, dX(x, x′) = |dX(x, x′)− dY (y, y)| ≤ dis(R) = r

For any three points x1, x2 ∈ X, y ∈ Y , there are three situations.

1. (x1, y) ∈ R, (x2, y) ∈ R. In this case, dXtY (x1, x2) ≤ r = dXtY (x1, y)+
dXtY (x2, y).

2. (x1, y) /∈ R, (x2, y) /∈ R. Then ∀x3 such that (x3, y) ∈ R,

dXtY (x1, x3) ≤ inf
(x4,y)∈R

dX(x1, x4) + dX(x4, x3)

≤ inf
(x4,y)∈R

dX(x1, x4) + r

≤ dXtY (x1, y) +
r

2
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Therefore

dX(x1, x2) ≤ inf
(x3,y)∈R

dX(x1, x3) + dX(x3, x2)

≤ inf
(x3,y)∈R

dX(x3, x2) + dXtY (x1, y) +
r

2

≤ dXtY (x2, y) + dXtY (x1, y)

The other two inequalities are easier to check by the same idea.

3. (x1, y) /∈ R, (x2, y) ∈ R. The inequality dXtY (x2, y) < dXtY (x1, y) +
dXtY (x1, x2) is trivial. The other two inequalities follow by

dXtY (x1, y) = inf
(x3,y)∈R

dX(x1, x3) +
r

2

≤ dXtY (x1, x2) + dXtY (x2, y)

dXtY (x1, x2) ≤ inf
(x3,y)∈R

[dX(x1, x3) + dXtY (x3, x2)]

≤ inf
(x3,y)∈R

dX(x1, x3) + r

= dXtY (x1, y) + dXtY (x2, y)

The other case like (x, y1, y2), y1 ∈ Y, y2 ∈ Y need similar analysis. We
neglect the discussion and conclude the dGH(X,Y ) ≤ 1

2dis(R).

The definition of dGH by correspondence allows us to deduce the trian-
gular inequality.

Theorem 4.1 (Triangular inequality of dGH). dGH satisfies triangular in-
equality.

Proof. It is the direct result of the following result.

Lemma 4.1 (Composition of correspondence). Given three metric spaces
(X, dX), (Y, dY ), (Z, dZ) and R1 correspondence between X and Y , R2 cor-
respondence between Y and Z, then we define their composition

R1 ◦R2 = {(x, z) ∈ X × Z|∃y ∈ Y s.t(x, y) ∈ R1, (y, z) ∈ R2}

Moreover, we have the inequality

dis(R1 ◦R2) ≤ dis(R1) + dis(R2)

.
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We prove the lemma at first.

sup
(x,z),(x′,z′)∈R1◦R2

|dX(x, x′)− dZ(z, z′)|

= sup
(x,z),(x′,z′)∈R1◦R2

|dX(x, x′)− dY (y, y′) + dY (y, y′)− dZ(z, z′)|

≤ dis(R1) + dis(R2)

We prove the main theorem. Note R1, R2, R3 the correspondence between
(X,Y ), (Y, Z), (X,Z).

dGH(X,Z) =
1

2
inf
R3

dis(R3)

≤ 1

2
inf

R1◦R2

dis(R1 ◦R2)

≤ inf
R1

dis(R1) + inf
R2

dis(R2) = dGH(X,Y ) + dGH(Y, Z)

4.3 Characterization by ε-isometry

Searching for a correspondence to minimize its distortion may be easier
than searching for a good isometric embedding or a good semi-metric, but
we would like to know what happens if we could not find the optimal cor-
respondence ? Just like solving an ODE by its numerical schema, if the
solution has some continuity by parameter, then we can use interpolation
and finite difference method to approximate it. In this part, we will see
that dGH is also a very robust distance : we don’t have to find the optimal
approximation but just a good enough approximation.

The following concept defines another ”isometry”, which says that we
treat a function as ”isometry” if we are not so serious and allow some shrink-
ing.

Definition 4.4 (ε-isometry). (X, dX) and (Y, dY ) are two metric spaces, we
define a ε-isometry f : X → Y if and only if it satisfies the following two
conditions

1. dis(f) < ε.

2. f(X) is a ε-net of Y .

The following proposition gives a third definition of Gromov-Hausdorff
distance.

Proposition 4.4 (ε-isometry and dGH). ε-isometry describes the Gromov-
Hausdorff distance. In fact, for two metric spaces (X, dX) and (Y, dY )
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1. dGH(X,Y ) < ε⇒ ∃f : X → Y a 2ε-isometry.

2. ∃f : X → Y isometry ⇒ dGH(X,Y ) < 2ε.

Proof. Proof of (1) Using the definition of dGH by the distortion of cor-
respondence and given R a correspondence such that 1

2dis(R) < ε, then we
design a function f : X → Y : ∀x ∈ X, we find a y in its correspondence
such that (x, f(x)) ∈ R. We will prove that this gives a 2ε-isometry.

We check the distortion of function

dis(f) = sup
x,x′∈X

|dX(x, x′)− dY (f(x), f(x′))| ≤ dis(R) < 2ε

. We check the 2ε-net. That is to cover Y by U2ε(f(X)). ∀y ∈ Y , it has an
associated element in X such that (x, y) ∈ R. Deducing from the distortion
of correspondence

|dX(x, x)− dY (y, f(x))| < dis(R) < 2ε

Therefore dY (y, f(x)) < 2ε and we find a point in image that covers y by a
2ε ball.

Proof of (2) Conversely, we have to construct a good correspondence
from a ε-isometry. Denoting f the ε-isometry, we define

R =
{

(x, y) ⊂ X × Y |dY (f(x), y) < ε
}

. This is well defined since every point in Y can be covered by a ε-environment
of the image. Then we check that it is a good correspondence. ∀(x, y), (x′, y′) ∈
R

|dX(x, x′)− dY (y, y′)| = |dX(x, x′)− dY (f(x), f(x′)) + dY (f(x), f(x′))− dY (y, y′)|
≤ |dX(x, x′)− dY (f(x), f(x′))|+ |dY (f(x), f(x′))− dY (y, y′)|

By the definition of R

dY (f(x), f(x′)) ≤ dY (f(x), y) + dY (y, y′) + dY (y′, f(x′))

≤ dY (y, y′) + 2ε

dY (y, y′) ≤ dY (y, f(x)) + dY (f(x), f(x′)) + dY (f(x′), y′)

≤ dY (f(x), f(x′)) + 2ε

The two estimation proves that |dY (f(x), f(x′))− dY (y, y′)| < 2ε so

sup
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y′)| ≤ ε+ 2ε = 3ε

So dGH(X,Y ) < 1
2dis(R) < 3

2dis(R).
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Remark. The proof of the proposition tells us a useful algorithm to transform
between a good correspondence and a good ε-isometry.

After collecting all the tools, we come finally to prove that dGH is a
distance between compact space.

Theorem 4.2 (dGH as a distance between compact metric spaces). The
Gromov-Hausdorff distance is a finite distance for the compact metric space
up to isometry.

Proof. The symmetry is obvious and we have proved the triangular inequal-
ity by the correspondence. So dGH is at least a semi-metric and the only
problem is to prove that dGH(X,Y ) = 0 implies the isometry.

By the proposition of ε-isometry, we know ∀εn = 1
n > 0,∃fn : X → Y εn

isometric. The compactness of X means that it’s separable, for example, we
can take the countable union of the finite ε-net. We denote S the countable
dense subset of X and using the diagonal argument to find the limit for all
the elements in S f(x) = limn→∞ fn(x).(The diagonal argument works only
for countable set. That’s where we use the compactness in the proof.)

Then we claim that f preserve the distance on S since

|dY (fn(x1), fn(x2))− dX(x1, x2)| ≤ dis(fn) < εn
εn→0−−−→ 0

. We extend it to the whole X and we get a function which preserves the
distance. The same argument works for the construction of a function from
Y to X. So we prove the bijection and X, Y are isometric.

Once we prove that dGH is a metric space, we can define the Gromov-
Hausdorff space (M,dGH) where is M is the set of equivalence class of com-
pact metric space. This is a metric space where the topology is given by

dGH , so we denote Mn
dGH−−−→M by dGH(Mn,M)→ 0.

5 Precompact theorem of Gromov-Hausdorff space

In the last part, we talk about the precompact property in the Gromov-
Hausdorff space. We will give an sufficient condition, by which we can
always extract a sequence of sub sequence that converges to a limit.

We recall the classical Ascoli-Arzela theorem.

Theorem 5.1 (Ascoli-Arzela). Given A ⊂ C(K,F ) where K is a compact
metric space and F is a complete metric space. If A satisfies the following
conditions

1. A is equi-continuous.

2. A is uniformly bounded.
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, then A is pre-compact.

We propose a condition called uniformly totally bounded, which plays
the same role as equi-continuous condition in Ascoli-Arzela.

Definition 5.1 (Uniformly totally bounded). Suppose that A is a family
of compact metric space, it is uniformly totally bounded if and only if

1. There exists D > 0 such that ∀X ∈ A, diam(X) < D.

2. ∀ε > 0,∃N = N(ε) ∈ N, such that every X ∈ A admits a ε-net whose
cardinal is less than N .

Theorem 5.2 (Pre-compact). Every family of uniformly totally bounded
compact metric space is pre-compact in the topology of Gromov-Hausdorff
distance.

Before proving the theorem, we do some preparation. As we have seen
that dGH is a very robust distance, in the compact metric space, it suffices
to analyze the convergence in each ε-net.

Proposition 5.1 (ε-approximation). Given {(Xn, dn)}n∈N a family of com-

pact metric space, then (Xn, dn)
dGH−−−→ (X, d) if and only if ∀ε > 0, ∃Sn a ε-net of Xn and S a ε-net of X

such that Sn
dGH−−−→ S.

Figure 5:
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Proof. If Xn
dGH−−−→ X, we can just put Sn = Xn and S = X, then the

convergence works for each n.
Conversely, if we have convergence for each ε-net. Given Sn a ε1-net for

each Xn and S a ε-net for X, we denote Rε1n a correspondence between Sn
and X, which realize that dis(Rε1n ) ≤ dGH(Sn, S), then we construct a good
correspondence R̄ε1n between Xn and X.

cn(x′) = x ∈ Sn s.t dn(x, x′) < ε1 (We take just one if there are many choices)

c(y′) = y ∈ S s.t d(y, y′) < ε1

Rε1n,0 = Rε1n

Rε1n,1 = {(x′, y) ∈ Xn ×X|(cn(x′), y) ∈ Rε1n }
Rε1n,2 = {(x, y′) ∈ Xn ×X|(x, c(y′)) ∈ Rε1n }
R̄ε1n = Rε1n,0 ∪R

ε1
n,1 ∪R

ε1
n,2

We verify that this is a good correspondence.

sup
(x′1,y1),(x′2,y2)∈Rε1n,1

|dn(x′1, x
′
2)− d(y1, y2)|

≤ sup
(x′1,y1),(x′2,y2)∈Rε1n,1

|dn(x′1, x
′
2)− dn(cn(x′1), cn(x′2))|+ |dn(cn(x′1), cn(x′2))− d(y1, y2)|

≤ 2ε1 + dis(Rε1n )

sup
(x′1,y1)∈Rε1n,1,(x2,y′2)∈Rε1n,2

|dn(x′1, x2)− d(y1, y
′
2)|

≤ sup
(x′1,y1)∈Rε1n,1,(x2,y′2)∈Rε1n,2

|dn(x′1, x2)− dn(cn(x′1), x2)|+ |dn(cn(x′1), x2)− d(y1, c(y
′
2))|

+|d(y1, c(y
′
2))− d(y1, y

′
2)|

≤ 2ε1 + dis(Rε1n )

The other inequalities are similar so we prove that

dG,H(Xn, X) ≤ 2ε1 + 2dGH(Sn, S)

. Since dGH(Sn, S)
n→∞−−−→ 0, we prove that

∀ε1 > 0, lim
n→

dGH(Xn, X) < 2ε1

, which implies the convergence.

Finally, we come to prove this sufficient pre-compact property of Gromov-
Hausdorff space.
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Proof. Since we have a sequence of metric spaces, we have to construct its
limit metric space. So we prove in three steps :

1. Construct a underlying set and a metric on it.

2. Prove that it’s compact

3. Prove that it is the limit in the sense of dGH .

Without of generality, we note (Xn, dn) this family of metric space. Using
the ε-approximation idea, for each εk = 1

k , we have a uniformly bounded
number N(εk) such that in each there is a εk-net with cardinal N(εk). We
also denote N0 = 0 and Nk+1 = Nk +N(εk+1).

We extract the εk-net level by level in (Xn, dn), i.e {xi,n}Nk−1<i≤Nk is the
εk-net in the (Xn, dn) and {xi,n}i∈N is a countable dense subset in (Xn, dn).
By the canonical diagonal extraction, we can get a sub-sequence indexed by
pn such that for i, j fixed, dpn(xi,pn , xj,pn) is a Cauchy sequence. To avoid
too many notation, we still keep noting the index by n for the sub-sequence.

Now we start the step 1 to construct a limit space. Like the proof of
completion, we design the sequence xi = {xi,n}n∈N the element in space
(X, d) and the ”distance”

d(xi, xj) = lim
n→∞

dn(xi,n, xj,n)

between elements. However, we know this space is just a semi-metric space.
To make it a candidate of the limit space, we make it at least a complete

metric space (X̂, d̂) = Completion((X/
d∼, d)) and we treat (X, d) as a dense

subset in it.
The second step is to prove its compactness. As (X, d) is dense, it

suffices to find a εk-net for element in (X, d). We know ∀i ∈ N, ∀k ∈ N, ∀n ∈
N,∃Nkandjn ≤ Nk such that dn(xi,n, xjn,j) < εk. Since Nk is finite, there
exists a j repeating infinite times along a sub-sequence ñ. We obtain

d(xi, xj) = lim
ñ→∞

dñ(xi,ñ, xj,ñ) < εk

. To treat the completion, we take the same strategy. Given limi→∞ d̂(xi, x̂) =
0, for each xi it associates a xj in εk-net and there must be one repeating
infinite times in the sequence. This one could be a good element associated
with x̂ in εk-net. In conclusion, for every εk, the cardinal of εk-net is at most
Nk, so (X̂, d̂) is totally bounded and it is compact.

Finally, we prove that (X̂, d̂) is the limit in sense of Gromov-Hausdorff
distance. This part is comparatively easy since we have a natural correspon-
dence Rn : (xi,n, {xi,n}n∈N. We know that {xi,n}1≤i≤Nk and {xi}1≤i≤Nk are

respectively two εk-net in (Xn, dn) and (X̂, d̂). The pointwise convergence
means

max
i,j≤Nk

|dn(xi,n, xj,n)− d(xi, xj)|
n→∞−−−→ 0
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, so the εk-net has dGH convergence, so we have (Xn, dn)
dGH−−−→
n→∞

(X̂, d̂) by

the ε-approximation.

6 What’s more ?
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