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Introduction

La géométrie aléatoire est un domaine très vivant et très riche, mais
qu’est-ce que c’est la géométrie aléatoire ? Dans la dictionnaire de
mathématiques, je crois qu’il y pas une définition rigoureuse sur ce mot,
mais il indique un objet aléatoire qui contient un peu plus structure que
juste un processus. Par exemple, le modèle de Galton-Watson est un
processus aléatoire si l’on regarde le développement d’une famille, mais
aussi un arbre aléatoire si l’on compare la généalogie entre plusieurs
instances. Alors, tout dépend du point de vue.

En conséquence, la géométrie aléatoire n’est pas un domaine tout
nouveau et cela existe depuis longtemps. Des modèles classiques comme
le processus branchant, le graphe aléatoire, le modèle d’Ising et la per-
colation dans différents réseaux ont beaucoup développé dans la com-
munauté de maths et aussi d’autres disciplines comme la physique, la
biologie et l’informatique et sont beaucoup utilisés dans les modèles
de populations, l’analyse de télécommunication et la finance etc. En
particulier, l’invention de l’évolution de Schramm-Loewner, comme un
événement marquant, donne une recette de décrire la limite de beau-
coup d’objets aléatoires, puis elle sollicite énorme de recherche.

Cependant, si l’on révise l’histoire de la théorie de mesure, elle a
été construit en fait déjà dans une carte assez large car l’objet aléatoire
peut être dans l’espace métrique et la théorie dans l’espace polonais
est assez puissante et beaucoup développée. Donc, peut-être on se
demande s’il y des objets aléatoire plus "structurés" ?

La réponse est oui ! Parce que les physiciens ont quelques fois es-
sayé d’utiliser des maths dans leurs manières afin de comprendre le
monde. Par exemple, [Pol81] propose une idée de faire l’intégration
par tous les distances possible sur sphère. Cette analogue d’intégration
stochastique apparaît naturelle pour les physiciens, mais pas évidant
pour les mathématiciens. C’est vingtaine ans après, les mathématiciens

1



1. INTRODUCTION 2

réalisent la construction dans dimension 2 par la limite de triangulation
, quadragulation [LG+13] ,[M+13] ou par donner un densité aléatoire
[DS11], et finalement, on espère de montrer que les deux manières
réalisent le même objet, qui est un grand projet en cours [MS+16e],
[MS15], [MS16c], [MS16c]. D’ailleurs, cet objet possède beaucoup de
propriétés intéressants et d’autre modèle (marché aléatoire, modèle
d’Ising, la percolation) sur cette surface aléatoire ouvert aussi la porte
de mieux comprendre les modèles classiques.

Concernant mon stage de recherche, le but n’est pas aller tellement
loin de comprendre toute l’histoire car la volume dépasse trop. Le
premier but de stage est lecture des articles pour comprendre quelques
objets fondamentales comme SLE et GFF, qui me permet d’approfondir
dans le futur. La seconde but personnelle est réaliser des jolies images
qui me a attiré il y longtemps.

Le rapport est organisé comme le suivant. Le première chapitre
donne une rapide introduction de SLE et les propriétés plus élémen-
taires. Le deuxième chapitre est la partie principale qui collectionne
beaucoup de résultat sur GFF, un brique utilisé de construire la sur-
face aléatoire. Le troisième chapitre discute une manière de coupler les
deux en regardant la trace de SLE comme un flot dans GFF, dont le
comportment est exotique comparant le flot classique. Ce couplage est
outil essentiel de beaucoup de recherche récente et nous permet de voir
des jolies images.

Figure 1.1: Une simulation de quadragulation planaire
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Schramm-Loewner evolution

Figure 2.1: A simulation of SLE8/3

Schramm-Loewner evolution may be one of the most interesting
inventions in probability theory in last decades. It defines a conformal
invariant random set generated by a trace, driven by a Brownian motion
and the associated flow of conformal mapping. The behavior of the
random set depends also on one parameter κ so we call always SLEκ.
This random object attracts people since it has been considered as the
scaling limit of other discrete models when κ varies and some of them
have been proved, i.e κ = 2 for loop erased random walk, κ = 8 for
uniform spanning trees, κ = 6 for the interface of Ising model and
κ = 8/3 for self-avoiding random walk etc.

Since this topic is so large and there is already a lot of excellent
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2. SCHRAMM-LOEWNER EVOLUTION 4

references existing like [Wer04], [Law07], [Bef12], [RS11], this chapter
aims at just a quick introduction of some basic notations and most
necessary properties for the later chapter. This chapter is organized
as following : the first section about complex Loewner introduces the
some basic background knowledge in complex analysis, including some
important estimations. Then we introduce the chordal SLE using the
Loewner equation and we will prove that SLE is the only candidate
of random local increment set satisfying conformal invariant property.
The following part will introduce several properties such as its phase
transition. Finally we remark that although the content of SLE is very
rich, the beginner can treat it as a random process without regarding
its connection with other models, which may lose some interests but
get the idea and technique part of maths.

Reader can consult above references for further reading, especially
the first one [Wer04] gives an overview and [Law07] as a comprehensive
self-contained book. The master course notes accessible online of Jason
Miller is also a good choice for master student. The three references
above are also the base of this chapter. The method of simulation
comes from the [Ken07].

2.1 Complex Loewner equation

In this chapter, we will recall some basic ideas from complex analysis
and pave the way for define Loewner equation. In order to give an
overview, we say something about SLE informally. SLE is a collection
of conformal mapping gt : H\Kt → H where Kt is a family of compact
subset in H̄ and H\Kt is simply connected. gt can be described as

∂tgt(z) = 2
gt(z)− Ut

g0(z) = z

, where Ut =
√
κBt and Bt is a standard Brownian motion. The set

∪t≥0Kt is generated by a curve from 0 to ∞ called the trace of SLE. A
general SLE defined in a domain D connecting a and b is the image of
conformal mapping φ : H→ D,φ(0) = a, φ(∞) = b.

Some questions arise naturally : As Riemann mapping theory tells
us, to fix the conformal mapping, we need at least one pair of corre-
sponding points and the direction of derivative. Thus, how we could
choose gt? Moreover, why we define the random set as above and does
it has some special property ?

In this part, we will answer the first question about the choice of
the conformal mapping gt and its property is left to the next section.
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2.1.1 Hydrodynamic mapping

We first introduce the concept of Hull, the object that we will study.

Definition 2.1.1 (Hull). K ⊂ H̄ is said a Hull if it is compact in H̄
and H\K is simply connected in H.

Then we need choose a good biconformal mapping H\K → H,
because if φ is a biconformal mapping, then aφ+ b, a, b ∈ R is also one.
In fact, the one we need is called hydrodynamic mapping.

Definition 2.1.2 (Hydrodynamic mapping). Given a Hull K, there
exists a unique biconformal mapping gK : H\K → H such that

lim
z→∞
|gK(z)− z| = 0.

If we develop the Laurent series of the mapping gK at ∞ is has the
form

gK(z) = z + hcap(K)
z

+ · · ·

where hcap(K) is called the capacity of the K.

Figure 2.2: A hydrodynamic mapping from H\K → H

Proof. We prove at first the existence. The Riemann mapping theorem
tells us the existence of a biconformal mapping g̃K : H\K → H. We
recall the Schwartz reflection lemma, which extends the mapping as
g̃K(z̄) = g̃K(z) so that we get a biconformal mapping

g̃K : C\(K ∪ K̃)→ C.

Since limz→∞ g̃K(z) = ∞ and g̃′K(0) 6= 0, we construct a function
hK(z) = 1/g̃(1/z) which is holomorphic and analytic at 0. Therefore,

hK(z) = b1z + b2z
2 + b3z

3 · · ·
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where all the coefficients are real after the Schwartz reflection lemma.
Comparing this formula with g̃K(1/z) we obtain

g̃K(1/z) = 1
b1z + b2z2 + · · ·

⇒ b1g̃K(1/z) = 1
z

1
1 + b2

b1
z+ · · ·

= 1
z

(1− b2

b1
z + cz2 + · · · )

Now we fix the scaling and translation of the biconformal mapping by
setting gK(z) = b1g̃K(z) + b2

b1
, then we develop the analytic series at ∞

gK(z) = z + hcap(K)
z

+ · · ·

Therefore we construct a biconformal mapping satisfying the condition.
We come to the proof of the uniqueness. Suppose that we have two

biconformal mappings gK , ĝK : H\K → H. Then gK ◦ ĝK : H → H
biconformal, so it has necessarily the structure

gK ◦ ĝ−1
K (z) = az + b

cz + d
, a, b, c, d ∈ R and ad− bc = 1

thanks to the theorem of Riemann mapping theorem. Moreover, the
condition limz→∞ |gK(z)− z| = 0 implies that

lim
z→∞

az + b

cz + d
= lim

z→∞
gK ◦ ĝ−1

K (z) = 1.

The only possible solution is that a = d = 1 and b = c = 0 which
means gK = ĝK and this proves the uniqueness of the hydrodynamic
mapping.

The concept of hcap(K) is very important since it measures the
size of the Hull K. In the latter chapter, we will see that it is the
parameter for the flow of hydrodynamic mapping, informally the ca-
pacity represents the time. To realize it, the capacity should be positive
which is unknown for the instant. So, we will prove it and some useful
propositions of the capacity.

Proposition 2.1.1. Given K a Hull in H, then its capacity satisfies
the following properties
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1. Positivity : Given a Brownian motion and denote the hitting
time τ = inf{t|Bt /∈ H\K}, then

hcap(K) = lim
y→+∞

yEiy[=(Bτ )].

2. Scaling : ∀r > 0

hcap(rK) = r2 hcap(K).

3. Invariance under translation :

hcap(K + x) = hcap(K)

4. Monotony : Given K ⊂ K̃ two Hulls, then

hcap(K̃) = hcap(K) + hcap(gK(K̃\K)).

Proof. 1. Because the function =(·) is a harmonic function, the so-
lution of Dirichlet problem can be represented as

=(z − gK(z)) = Ez[=(Bτ − gK(Bτ ))] = Ez[=(Bτ )]

We plug z = iy into the formula

lim
y→∞

yEiy[=(Bτ )] = lim
y→∞

y=(iy − gK(iy))

= lim
y→∞

y=
(
−hcap(K)

iy
+ o(1

y
)
)

= hcap(K).

As the capacity is the limit of probability, so it is necessarily
positive.

2. rgK(x/r) : H\rK → H is a biconformal mapping satisfying

lim
z→∞
|rgK(z/r)− z| = lim

z→∞
|r(z/r + r hcap(K)

z
+ o(1

z
))− z|

= lim
z→∞

r2 hcap(K)
z

+ o(1)
= 0.

For the reason of uniqueness,

grK(·) = rgK(·/r)

is the unique hydrodynamic mapping. From the calculus, we get
that hcap(rK) = r2 hcap(K).
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3. The proof is similar with the last one. We can check that

gK+x = gK(z − x) + x

and they have the same capacity.

4. We apply the uniqueness of hydrodynamic mapping and it’s easy
to check the following identity

gK̃ = gg(K̃\K) ◦ gK .

In fact, this equation says that we can eat the compact K̃ in two
steps : we use gK to eat at first its subset K, and then apply
another conformal application to eat the rest in the image. Then
we calculate the capacity on the two sides

hcap(K̃) = lim
z→∞

z(gg(K̃\K) ◦ gK(z)− z)

= lim
z→∞

z

(
gK(z) + hcap(g(K̃\K))

gK(z) + o( 1
gK(z))− z

)

= lim
z→∞

z

(
z + hcap(K)

z
+ hcap(g(K̃\K))

z
+ o(1

z
)− z

)
= hcap(K) + hcap(g(K̃\K)).

It’s the identity wanted.

2.1.2 Loewner flow

The next step is to make the hydrodynamic mapping as a dynamic. Of
course, this Hull should have some good property so that it could be
described by equations.

Definition 2.1.3 ("Good" Hull). A family of Hull {Kt}t≥0 is said
"Good" if it satisfies the following properties :

1. Non-decreasing ∀0 ≤ s < t <∞, Ks ⊂ Kt.

2. Locally increasing ∀ε > 0,∃δ > 0 such that ∀s ≤ t ≤ s+ δ

diam(gs(Kt\Ks)) < ε.

3. Good parameterization hcap(Kt) = 2t.

The following theorem states the existence of a Loewner flow which
characterizes the growth of a family of good hull.
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Theorem 2.1.1 (Existence of Loewner flow). For a family of good Hull
described as above, we denote gt = gKt, then there exists a real-valued
continuous function Ut called driven function such that

∂tgt(z) = 2
gt(z)− Ut

g0(z) = z.

Moreover, the point ηt satisfying gt(ηt) = Ut is the local increment point
of Kt.

We neglects the proof of this part since it will use some fine complex
analysis for estimating the continuity. We send the reader interested to
the reference [Law08]. Finally, we remark that the reverse procedure is
also possible : given a continuous function Ut, we can generate a family
of good Hull and the technique used in this construction is called the
reverse flow.
Remark. The Loewner flow in fact has a very long history in complex
analysis, but the application in probability is very recent. In fact, its
context could be very general for example the driven function could
be a measure. Except the SLE theory, some variant version like QLE
[MS15] is also developed later for studying the connection between the
Brownian map and Liouville Quantum gravity.

2.2 Chordal SLE

Once we put the the driven function in complex Loewner equation as a
standard Brownian Ut =

√
κBt, the Hull becomes a random set Kt and

this is chordal SLEκ. However, it’s not clear why we have to design
Ut a Brownian motion. In this section, we explain it by focusing on
its conformal Markov property, which makes the Brownian motion the
only candidate. Moreover, we will study the phase of chordal SLE when
κ varies.

2.2.1 Conformal Markov property

The conformal Markov property can be seen as a 2D version of inde-
pendent stationary increment property.

Definition 2.2.1 (Conformal Markov property). A random family of
good Hull has the conformal Markov property if the following two con-
ditions are satisfied
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1. Markov property {gt(Kt+s) − Ut}s≥0 is independent with Ft
the filtration of the driven function, and it has the same law as
{Kt}t≥0.

2. Scaling property { 1√
r
Krt}t≥0 has the same law as {Kt}t≥0.

One important reason to design a Brownian motion as a driven
function is the following property.

Proposition 2.2.1 (Conformal Markov property). Suppose that {Kt}
is the family of Hull defined by the flow of Loewner, it has conformal
Markov property if and only if Ut =

√
κBt.

Figure 2.3: An image to show the conromal Markov property - after being
eaten one segment, the rest has the same distribution as the original one.

Proof. We prove at first that the two property determine the driven
function. The Loewner equation at time t+ s tells us

∂

∂s
(gs+t(z)− Ut) = 2

(gt+s(z)− Ut)− (Ut+s − Ut)
.

Using the composition of Loewner flow we have

gt+s(z)− Ut = gs,t ◦ gt(z)− Ut = g̃s(gt(z)− Ut),

where g̃s can be seen as a hydrodynamic mapping after gt. This idea
appears in last subsection. We substitute it in the equation

∂

∂s
g̃s(gt(z)− Ut) = 2

g̃s(gt(z)− Ut)− (Ut+s − Ut)

It generates a random set gt(Kt+s)−Ut. We compare this equation with
the equation of Loewner. It satisfies the Markov property if and only if
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Ut+s−Ut
d= Us and independent with Ft. That means Ut is a continuous

process with stationary independent increment, so Ut = aBt + b.
Moreover, the Loewner flow 1√

λ
gλt(
√
λ·) satisfies the equation

∂

∂t

1√
λ
gλt(
√
λz) = 2

1√
λ
gλt(
√
λz)− 1√

λ
Uλt

.

and this flow generate the random set 1
λ
Kλt. It satisfies the scaling

property if and only if 1√
λ
Uλt

d= Ut. Combining the Markov property,
the only candidate is that the driven function is a Brownian motion
Ut =

√
κBt.

On the other hand, we put Brownian motion into the equation and
check two identities above. It’s not hard to find that the two two
properties are met.

Remark. When we do scaling limit of some 2D discrete random objects,
the limits usually have the conformal Markov property, i.e the loop
erased random walk, so the only candidate should be SLEκ. That’s
why SLEκ plays a special role and the reason why the driven function
is a Brownian motion.

One may wonder what happens if we put other driven function. Of
course, we can put the other driven function in the equation and it has
its own application in some case as a variant of SLE. We will see it in
the later chapter.

2.2.2 Phases of SLE

Sometimes people abuse the usage of the word SLE to refer the curves
or the Hulls or the Loewner flow. Sometimes they are indeed the same
object but they may be different in other cases. To understand it, we
need understand the phase of SLE.

Theorem 2.2.1 (Phase of SLE). When κ ≤ 4, almost surely (∪t≥0Kt)∩
R = {0} and Kt is a curve non self-intersecting.

When κ > 4, almost surely R ⊂ (∪t≥0Kt) and Kt intersects itself.

Proof. The phase of SLE relates the behavior of Bessel process. We
recall the d-dimensional Bessel is recurrent if and only if 0 < d < 2.
Concerning, SLEκ, where we can find a Bessel process. ∀z ∈ R and we
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Figure 2.4: Phase diagram : From left to right is respectively 0 ≤ κ ≤ 4, 4 <
κ < 8 and κ ≤ 8.

denote Yt = gt(z)− Ut, then Yt satisfies

dYt = 2
gt(z)− Ut

dt− dUt

= 2
Yt
dt+

√
κdBt

⇒ dYt/
√
κ = 2/κ

Yt/
√
κ

+ dBt.

Therefore, Yt/
√
κ is a (1 + 4

κ
) Bessel process.

We interpret this result for SLEκ. When κ > 4 ⇒ d = 1 + 4
k
< 2

then the Yt/
√
κ is recurrent, so almost surely ∀z ∈ R, ∃t such that

gt(z) = Ut which means R ⊂ ∪t≥Kt. Conversely, when κ ≤ 4⇒ d ≥ 2,
the Yt will not touch 0 and z will not be eaten by the Hull Kt. Thus,
∪t≥Kt ∩ R = {0}.

Some further analysis reveals the surprising behavior of the curve
Kt. As the Markov property tells us, gt(Kt+s)−Ut has the same law as
Ks so almost surely it will not touch the real axis when κ ≤ 4, which
means the curve after time t will not touch the curve before time t since
the image of the curve before time t is lying in the real axis. Thus, in
this case the curve isn’t self-intersecting. The same argument applies
to the case κ > 4.

Remark. When κ ≤ 4 the SLEκ is a simple curve and when κ > 4
it is generated by a simple curve. Moreover, when κ ≥ 8 the curve
generating SLEκ is a space-filling. The precise description about the
phase can be found in [RS11].



3

Gaussian free field and
Liouville quantum gravity

Figure 3.1: A sample of GFF on the area [0, 1]2. We take discretization of
200× 200 and sum for 1 ≤ j, k ≤ 120

We know a Brownian motion can simulate a white noise in the
nature, but how to describe a family of random noise on the surface
? In this chapter we will study this question and study a new random
object called Gaussian free field and its applications.

We will give at first the definition of Gaussian free field(GFF) in-
troduced in [She07], a random distribution, which is a generalization of
Brownian motion in R2. The second part of this chapter is using GFF
to construct Liouville quantum gravity(LQG), a concept coming from
theoretical physics, defined as a random density as the exponential of
Gaussian free field. The main task of the construction is how to make
sense the definition in mathematics rigorously. Here, we remark that

13
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the construction of LQG can be treated as a special case of a more
general Gaussian multiplicative chaos theory developed in 80th by J.P
Kahane, so we add one section to introduce this nice theory. Finally, we
finish this chapter by various numerical experiences and visualizations.

The content about Gaussian free field in this chapter bases mainly
on the [She07] and that about Liouville quantum gravity is based on
[DS11] and [Gar12]. The part about Gaussian muliplicative chaos can
be referred [Kah85] and recent review [RV+14]. Some part about dis-
crete Gaussian free field comes from personal note in during the mini-
school in Lyon. [Ber15] is also an excellent text book.

3.1 Discrete Gaussian free field

We start by defining a discrete Gaussian free field (DGFF) on subset
of Zd as a Gaussian vector.

Definition 3.1.1 (Discrete Gaussian free field (DGFF)). Given V ⊂
Zd finite. We define the discrete Gaussian free field a random vector
(h(x))x∈V with the law

P(hV ∈ A) = 1
N

∫
A

exp(− 1
4d

∑
x∼y,
|hV (x)− hV (y)|2)Πx∈V dh

V (x)

where N is the constant of normalization.

We refer the language of analysis on graph and the P(hV ) ∝ exp−|∇hV |2,
which is related to the Boltzmann distribution of the Dirichlet energy
if we see it as a statistical physics model. We can reduce the density
to see the matrix of covariance, but we prefer to use the discrete Green
function to study the correlation between different point.

Definition 3.1.2 (Discrete Green function). We define the discrete
Green function by the simple random walk Xn on Zd.

GV (x, y) = Ex
[
τ−1∑
n=0

1Xn=y

]

where τ = inf{n ≥ 0, Xn /∈ V }.

Proposition 3.1.1. 1. Monotony : V → GV (x, y) is positive and
non-decreasing.

2. Symmetry : ∀x, y ∈ Zd, G(x, y) = G(y, x).
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3. Positive definite : ∀fZd : R, supp(f) <∞ we have∑
x,y

f(x)f(y)GV (x, y) ≥ 0

4. Fundamental solution : ∀x ∈ V,GV (x, y) solves

−4GV (x, ·) = δx(·) in V
GV (x, ·) = 0 in V C

where −4 is a version of discrete Laplacian operator defined as

−4f(x) = f(x)− 1
2d

∑
y∼x

f(y)

Proof. 1. For two domain V ⊂ Ṽ , one can do coupling of two random
walks so that they coincide before hitting the boundary, this gives
automatically the monotony thanks to the definition of GV (x, y).

2. One important observation is that GV = (−4)−1 where (−4) =
Id − P and P is the transition matrix of the random walk. It
suffices to check (Id− P )GV = Id

If y 6= x, (Id− P )GV (x, y) =
∑
x∼z

(Idx6=z − P (x, z))GV (z, y)

= GV (x, y)−
∑
z∼x

P (x, z)GV (z, y)

= GV (x, y)−GV (x, y) = 0

If y = x, (Id− P )GV (x, y) = GV (x, x)−
∑
z∼x

P (x, z)GV (z, x)

= 1.

Notice that P the simple random walk is reversible, so P is sym-
metry and so is (Id− P )−1 and GV .

3. Using the fact GV = (−4)−1 and (−4)−1 is definite positive, so∑
x∼y

f(x)f(y)GV (x, y) =
∑
x∼y

f(x)(Id− P )−1f(y) ≥ 0.

4. This property is contained in the proof of the first term.

Once we have the definition of Green function, we obtain
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Proposition 3.1.2. Given V ⊂ Zd, hV = N (0, GV ). That is to say
the covariance between x and y is GV (x, y) i.e

Cov(h(x), h(y)) = GV (x, y).

Proof. It suffices to prove that

exp
(
− 1

4d
∑
x∼y

(h(x)− h(y))2
)

= exp
(
−1

2〈h, (G
V )−1h〉

)
We do just calculus

〈h, (GV )−1h〉 = 〈h, (Id− P )h〉

=
∑
x∼y

h(x)(Idx=y −
1
2d1x∼y)h(y)

=
∑
x

(h(x))2 − 1
2d

∑
x∼y

h(x)h(y)

=
∑
x

∑
y∼x

1
2d

[1
2(h(x) + h(y))2 − h(x)h(y)

]

=
∑
x

∑
y∼x

1
4d (h(x)− h(y))2

=
∑
x∼y

1
2d (h(x)− h(y))2

Therefore h is a Gaussian vector with covariance GV and of course
we have Cov(h(x), h(y)) = GV (x, y).

3.2 Definition and basic properties of GFF

As the construction of Brownian motion, we have also many methods
to define a GFF. But it lives as a random object in which space? In
this section, we treat it from the view point of white noise, Gaussian
process and a random distribution.

We suppose that the definition of distribution is well-known, other-
wise the textbook of Ecole Polytechnique [Gol] is a good choice. Here,
we just recall some properties of Soblev space.
Definition 3.2.1 (Dirichlet energy). ∀D ⊂ Rd,∀f ∈ C∞c (D), its
Dirichlet energy is defined as

‖f‖2
∇ = 1

2π

∫
D
∇f(x) · ∇f(x)dx

this induces a scalar product 〈·, ·〉∇ and the completion of C∞c (D) under
this norm is noted H1

0 (D) as Soblev space of Dirichlet boundary.
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We restrict us in the case R2 except further explanation. Under this
context, the product is invariant under scaling fλ(·) = f(λ·).

3.2.1 GFF as white noise/ Gaussian process

The most natural way to treat GFF is from the view point of Gaussian
process and white noise. We reader can find the basic definition in
appendix.
Definition 3.2.2 (GFF as white noise). Given D ⊂ R2 and a Hilbert
space H1

0 (D), GFF h is defined as a white noise on H1
0 (D) i.e an isom-

etry between H1
0 (D) and a Gaussian space.

That is to say, ∀f, g ∈ H1
0 (D), h(f) ∼ N (0, ‖f}2

λ) and

E[h(f)h(g)] =
∫
D
∇f(x) · ∇g(x)dx

Since a white noise can be also treated as Gaussian process indexed
by function, we give the definition of GFF as a Gaussian process.
Definition 3.2.3 (GFF as Gaussian process). A GFF h defined on
D is a Gaussian process {h(f)}f∈H1

0 (D) indexed by function in H1
0 (D),

whose covariance matrix is

K(f, g) = E[h(f)h(g)] = 〈f, g〉∇

3.2.2 GFF as a random distribution

As mentioned in the appendix, we have canonical construction of a
white noise by the orthogonal normal basis. Here, we give the defini-
tion and we will prove that, by this canonical construction, h lives in
H−1

0 (D) as a random distribution(In the sense of Schwartz distribu-
tion).
Definition 3.2.4 (Gaussian free field as a random distribution). Given
{ei}i≥1 a family of orthonormal basis of H1

0 (D), then the Gaussian free
field h is defined as a random distribution

h =
∞∑
i=1

Xiei

where {Xi}i≥1 is a family of independent random variable of lawN (0, 1).
A first question is whether this object is well defined and does this

definition depend on the choice of the basis? Although the range of
distribution is large enough, an infinite sum risks making the functional
too "large". The following proposition shows that this definition makes
sense in distribution.
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Proposition 3.2.1. 1. ∀f ∈ H1
0 (D), 〈h, f〉∇ ∼ N (0, ‖f‖2

∇).

2. Further more, ∀f, g ∈ H1
0 (D)we can also calculate the covariance

between 〈h, f〉∇, 〈h, g〉∇,

Cov(〈h, f〉∇, 〈h, g〉∇) = 〈f, g〉∇

3. Finally, almost surely, the GFF is a random object valued in
H−1

0 (D).

Proof. 1. Suppose that f = ∑∞
i=1 αiei then the Dirichlet product is

〈h, f〉∇ =
∞∑
i=1

αiXi

who is a sum of infinite independent Gaussian. Due to the prop-
erty of Gaussian vector, it’s itself a Gaussian with mean 0 and
variance

V ar(〈h, f〉∇) = E
[
〈h, f〉2∇

]
=
∞∑
i=1

α2
i

and this coincides with the Dirichlet energy of f . This implies
that almost surely, 〈h, f〉∇ is finite. Moreover, this also shows
that the definition of GFF doesn’t depend on the choice of the
basis.

2. The calculus of covariance is no harder. Given g = ∑∞
j=1 βjXj,

Cov(〈h, f〉∇, 〈h, g〉∇) = E

 ∞∑
i=1

αiXi

∞∑
j=1

βjXj

 =
∞∑
i=1

αiβi

and it’s the answer of 〈h, g〉∇.

3. We can prove even stronger version of this theorem that h lives in
the space H−ε0 (D), ε > 0. The Soblev space with negative index
−s is defined as the dual space of the index s. Here, we will
use an equivalent definition defined by a very specific orthogonal
normal basis. Reader can check A.3 for the relevant definition
and theorem.
We pick the L2 orthogonal normal basis {ln}n≥1of (−4)−1, then
it is easy to check that { 1√

λn
ln}n≥1 forms an orthogonal normal

basis of H1
0 (D). Then a canonical construction of GFF by this

basis is
h =

∞∑
n=1

Xn√
λn
ln
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where {Xn}n≥1 are i.i.d Gaussian. Then we calculate is expecta-
tion of H−ε0 (D) norm

‖h‖2
H−ε0

=
∞∑
n=1

(
Xn√
λn

)2

(λn)−ε =
∞∑
n=1

(Xn)2

λ1+ε
n

E[‖h‖2
H−ε0

] =
∞∑
n=1

1
λ1+ε
n

�
∞∑
n=1

1
n1+ε <∞

In the last line, we use the theorem of Weyl. This implies that
almost surely ‖h‖2

H−ε0 (D) <∞, so it is a random distribution.

3.2.3 Interpretation of GFF by path integral

This part is taken from the lecture notes by Vincent Vargas at IHES.
Treating GFF as a random Schwartz distribution, one can interpret the
GFF as the path integral in physics.

Physicists study the path integral∫
L(S2)

F (φ)e−
1

4π

∫
C |∇φ|

2g(x)dxD(φ)

where D(φ) means a measure on all the L(S2) function and F (φ) is a
function of φ, λ is defined on sphere and g(x) is the density function
on sphere. It looks like an expectation of a random variable, except
the definition of D(φ) is not so clear.

One method to treat this expectation is to treat it as the integration
of Lebesgue on every projection of orthogonal basis. More precisely,
we choose the eigenvectors {lj}j≥0 of Laplace as the orthogonal normal
basis so

φ = c+
∑
j≥1

cjlj

and do Lebesgue integration on c, {cj}j≥1then the integral becomes
∫
R

∫
RN∗

F (c+
∑
j≥1

cjlj)dcΠj≥1(e−
c2
j
λj

4π dcj)

.Finally, we apply the change of variable uj = cj
√
λj/
√

2π, we get

C
∫
R

∫
RN∗

F (c+
√

2π
∑
j≥1

uj
lj√
λj

)dcΠj≥1(e−
u2
j

2 duj)
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. Since
√

2π∑j≥1 uj
lj√
λj

H−ε−−→ h where the uj is i.i.d Gaussian, formally,
we write the path integral as∫

L(S2)
F (φ)e−

1
4π

∫
C |∇φ|

2g(x)dxD(φ) =
∫
R
E[F (h+ c)]dc

. We remark that in the right hand side, the expectation and integra-
tion is in value of Schwartz distribution. Although h lives in the space
of Schwartz distribution, F (h + c) may not necessarily be the case es-
pecially in nonlinear case. Thus, in concrete situation, we should also
make sense of it at first.

3.3 Conformal invariance

A first important important property is that GFF is invariant under
comformal mapping.

Proposition 3.3.1 (Conformal invariance). Given φ : D → D̃ a con-
formal mapping and h a GFF on D, then h ◦ φ−1 defines a GFF on
D̃.

Proof. Suppose that {ei} is an orthonormal basis in D, one important
observation is that {ei ◦φ−1} is an orthonormal basis in D̃. In fact, the
conformal mapping φ induces an isometry between H1

0 (D) and H1
0 (D̃).

We will prove this fact at first.
Denoting (u, v) = φ(x, y) and using the Cauchy-Riemann equation{

∂u
∂x

= ∂v
∂y

∂u
∂y

= − ∂v
∂x

, suppose that f ∈ H1
0 (D̃) and we calculate its norm by the change of

variable and the equation above

‖f ◦ φ‖2
∇(D̃) =

∫
D
|∇(f ◦ φ)(x, y)|2dxdy

=
∫
D

(
∂(u, v)
∂(x, y) · ∇f(u, v)

)> (
∂(u, v)
∂(x, y) · ∇f(u, v)

)
dxdy

=
∫
D
|∇f(u, v)|2det

(
∂(u, v)
∂(x, y)

)
dxdy

=
∫
D̃
|∇f(u, v)|2dudv = ‖f‖2

∇(D)

So h ◦ φ−1 = ∑∞
i=1Xiei ◦ φ−1 is the sum of orthonormal basis of D̃

with random i.i.d reduced centered Gaussian and so is GFF on D̃.
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3.4 Domain Markov property

Unlike the DGFF, GFF is a distribution which makes it sometimes
a little difficult to describe. In this section and the next section, we
try to catch some other properties of GFF. This section we talk about
its Markov domain property, a analogue property of the stationary
increment property of Brownian motion.

Since the property of distribution always come back to the test func-
tion, we recall the proposition of orthogonal decomposition of H1

0 (D)
at first.
Proposition 3.4.1 (Orthogonal decomposition of H1

0 (D)). ∀U ⊂ D,
H1

0 (D) we have the following direct sum

H1
0 (D) = H1

0 (U)⊕HHarm(U)

where HHarm(U) ⊂ H1
0 (D) represents the subspace of harmonic func-

tion on U .

Proof. We know that H1
0 (U) is the subspace of H1

0 (D) and the orthog-
onal decomposition of Hilbert space tells us

H1
0 (D) = H1

0 (U)⊕ (H1
0 (U))⊥

so what we need to do is to show that (H1
0 (U))⊥ = HHarm(U). The

key formula to prove it is the integration by part : ∀f, g ∈ C∞c (D)

〈f, g〉∇ = 〈f,−4g〉.

We suppose that g ∈ HHarm(U), then ∀f ∈ H1
0 (U), the inner prod-

uct of Dirichlet is 0 and this implies that HHarm(U) ⊂ (H1
0 (U))⊥.

On the other hand, if g ∈ (H1
0 (U))⊥, then ∀f ∈ H1

0 (U), 〈f, g〉∇ = 0
and the integration by part shows that 4g = 0 in the weak sense.
Due to the regularity of elliptical operator, g is a harmonic function in
strong sense.

The orthogonal decomposition of test function introduces the same
structure on the distribution, namely a GFF can be written as the sum
of a GFF support on sub-domain U ∈ D and a harmonic function on
it.
Theorem 3.4.1 (Orthogonal decomposition of GFF). ∀U ⊂ D, a GFF
on D can be decomposed as

h = hU + hHarm

where hU is a GFF on U and hHarm is its conformal extension, so
hHarm is harmonic on U .
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Proof. As what we do for the proof of the orthogonal decomposition of
H1

0 (D), we do projection of h on the orthonormal basis of H1
0 (U) and

we obtain a GFF hU . It suffices to prove that h − hU is a harmonic
function on U . We do the inner product of Dirichlet with a function
f ∈ C∞c (U)

〈h− hU , f〉∇ = 0
We use the integration by part formula and this means h− hU is har-
monic in weak sense. Once again we recall the regularity of elliptical
operator, so h− hU is a random harmonic function on U .

Remark. One may draw the analogue between the Markov property of
Brownian motion and the Markov domain of GFF. This is possible, for
Brownian motion and 0 < t < s,

E[Bs|Ft] = Bt

, however, here informally we write

E[hD|σ(UC)] = hU + hHarm

. Here, we use σ(UC) to represents all the information outside of the
U , namely the σ-algebra generated by the random variable h(f) where
the support of function is outside of U . We refer [Aru15] for detailed
discussion about the σ-algebra generated by domain.

This theorem tells that the information of GFF is hidden in the
domain and sometimes we write its σ−algebra as σ(U). A simple
corollary is the following.

Corollary 3.4.1. Let h be a GFF on domain D and U1, U2 ∈ D,U1 ∩
U2 = ∅. Then the restrictions on these domains hU1 , hU2 are indepen-
dent.

One can prove this simple corollary by checking all the definition.

3.5 Circle average

Approximating a distribution by convolution is a classical strategy of
distribution theory. For GFF we have a similar technique called circle
average and we will study it in this section. Generally speaking, it’s
’integration’ of a GFF on a circle.

However, we have to explain what does ’integration’ mean. If we
take the integration by part technique, for two function f, g ∈ C∞c (D),
we have

〈f, g〉 = 〈f, (−4)(−4)−1g〉 = 2π〈f, (−4)−1g〉∇
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where the (−4)−1g(x) is realized as the integration by a Green func-
tion. We recall the definition of the Green function. It satisfies

1
2π (−4)G(x, ·) = δx(·)

G(x, ·)|∂D = 0

and its value is given by

G(x, y) = − log |y − x| − G̃(x, y)

where G̃(x, y) is the harmonic function with boundary value

G̃(x, y)|∂D = − log |y − x|.

The Dirichlet problem can be solved with the help of the Green
function. The most important property is that

2π(−4)−1f(x) =
∫
D
G(x, y)f(y)dy

So we define the inner product of L2 with GFF similarly.

Definition 3.5.1 (L2 inner product of GFF). Given D ⊂ R2 and h a
GFF on D, we define the product with a function f whose (−4)−1g ∈
H1

0 (D) as
〈h, f〉 = 〈h, 2π(−4)−1f〉∇

where the inverse of Laplacian is defined as an integration with the
Green function

(−4)−1f(x) = 1
2π

∫
D
G(x, y)f(y)dy.

The L2 inner product gives also a Gaussian random variable whose
law is described by the following proposition.

Proposition 3.5.1. ∀f such that (−4)−1f ∈ H1
0 (D), 〈h, f〉 is a Gaus-

sian whose mean is zero and variance is 〈2π(−4)−1f, 2π(−4)−1g〉∇

V ar(〈h, f〉) =
∫
D×D

f(x)G(x, y)f(y)dxdy

Moreover, ∀f, g such that (−4)−1f, (−4)−1g ∈ H1
0 (D) we can also

calculate the covariance between 〈h, f〉, 〈h, g〉,

Cov(〈h, f〉, 〈h, g〉) =
∫
D×D

f(x)G(x, y)g(y)dxdy
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Proof. From the definition, we see that the L2 inner product is finally
induced by the inner product of Dirichlet so it is a Gaussian with zero
mean. We just calculate the covariance formula

Cov(〈h, f〉, 〈h, g〉) = Cov(〈h, 2π(−4)−1f〉∇, 〈h, 2π(−4)g〉∇)
= 〈2π(−4)−1f, 2π(−4)−1g〉∇

= 1
2π

∫
D

(
∇2π(−4−1f)(x)

)
·
(
∇2π(−4−1g)(x)

)
dx

= 2π
∫
D
f(x)(−4−1g)(x)dx

=
∫
D×D

f(x)G(x, y)g(y)dxdy

We can check the L2 product with a uniform measure of circle
∂Br(z) is well defined.

Definition 3.5.2 (Circle average). Given ρzε the uniform measure on
∂Bε(z), we define the circle average of a GFF h on it as

hε(z) = 〈h, ρzε〉

.

Remark. One may be puzzled why we can put in the L2 structure a
measure. In fact, from the definition what we need check is

〈2π(−4)−1ρzε , 2π(−4)−1ρzε〉∇ =
∫
D
ρzε(x)G(x, y)ρzε(y)dxdy <∞

. We will see that its value is − log(ε) − G̃(z, z) in the following part,
since the proof of proposition of circle is just a similar type of calculus.

The circle average of GFF gives a function, so it’s easier to treat.
One first proposition shows the connection between the GFF and DGFF,
which says that when the two disks of circle are disjoint, then the circle
average has a convariance of Green function.

Proposition 3.5.2. If Bε1(z1) and Bε2(z2) are two disjoint disks i.e
|z1 − z2| > ε1 + ε2, then

Cov(hε1(z1), hε2(z2)) = G(z1, z2)

.
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Figure 3.2: The covariance between two circle average whose disks are dis-
joint.

Proof.

Cov(hε1(z1), hε2(z2)) =
∫
D×D

ρz1
ε1 (x)G(x, y)ρz2

ε2 (y)dxdy

= 1
2π

∫
|z−z1|=ε1

1
2π

∫
|z−z2|=ε2

G(x, y)dxdy

The case that two disks are disjoint assures that Bε1(z1)∩Bε2(z2) = ∅,
so that in the integration x /∈ Bε1(z1), y /∈ Bε2(z2) and G(x, y) is always
harmonic. Using the principle of mean value, we get that

1
2π

∫
|z−z1|=ε1

1
2π

∫
|z−z2|=ε2

G(x, y)dxdy = G(z1, z2).

The following theorem is the heart of the GFF and the base of the
construction of Liouville measure. It studies the behavior of the circle
average when varying the radius ε but fixing the center z.
Theorem 3.5.1 (Circle average is a Brownian motion). he−t(z) is a
Brownian motion.
Proof. It suffices to calculate the covariance between he−t(z), he−s(z), s <
t. We use the double integration of the proposition above

Cov(he−t(z), he−s(z)) = 1
2π

∫
|x−z|=e−s

1
2π

∫
|y−z|=e−t

G(x, y)dxdy
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However, there is some delicate technique in the order of integration.
In order to apply the mean value principle, G(x, y) have to be harmonic
in the domain which means x 6= y. So, we prefer to do integration over
the little circle. We remark that integration at first over the big circle
is also possible but it requires more effort. In the second step, we have
no choice but plug the expression of G(x, y) into the formula.

Hence,

Cov(he−t(z), he−s(z)) = 1
2π

∫
|x−z|=e−s

1
2π

∫
|y−z|=e−t

G(x, y)dxdy

= 1
2π

∫
|x−z|=e−s

G(x, z)dx

= 1
2π

∫
|x−z|=e−s

− log |x− z| − G̃(x, z)dx

= s− G̃(z, z)

Therefore, we obtain the result wanted.

Figure 3.3: Two methods to do double integration. The left one means we
do integration over the big circle and the right one means we do integration
over the small circle.However, if we start from the big circle, G(x, y) is not
harmonic in the disk and we cannot apply the mean value principle. So we
prefer to do integration from the small one.

Remark. The value of −G̃(z, z) is of order dist(z, ∂D) and is denoted
R(z,D). So we have

Cov(he−t(z), he−s(z)) = s ∧ t+R(z,D)

R(z,D) is called conformal radius and it makes sense in the further
application of local set.
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3.6 Construction of Liouville measure

The role of GFF for 2D random object is the counterpart or Brownian
motion for random process. However, since GFF is itself a random
distribution, the definition of these 2D random objects is sometimes not
so direct. In this section, we would like make sense of the exponential
of random measure

eγhdz

which is defined as 2D Liouville quantum gravity.

Theorem 3.6.1 (Liouville measure). ∀γ ∈ [0, 2), we define a family
of random measure

µε(dz) = eγhε(z)εγ
2/2dz

Then there exists a convergent sub-sequence which converges almost
surely to a limit in a weak sense and we denote its limit as the Liouvlle
measure µ(dz), i.e ∀f ∈ C∞c (D)

a.s µε(f) ε→0−−→ µ(f)

.

Remark. Here we say the random measure converges in weak sense
means we see µε random object valued of measure on D as a member
of Schwartz distribution. Then the weak convergence refers to the
convergence of Schwartz distribution. However, in fact we can prove
the proof of measure is almost surely U.I, so the limit is a true measure.
Remark. The Gaussian multiplicative chaos theory provides a more
general frame to treat the convergence of random measure.

Before proving this theorem, we give some general description about
this theorem and the frame of the proof.

At first, we have to understand what is a random measure. In-
formally, a random measure means that we sample a GFF instance h
and then define a measure as above by circle average. Fore each point,
the density is in fact a random variable so the measure for a Borel set
A ⊂ D, denoted by µγε (A) is also a random variable. Moreover, µγε (dz)
is a martingale with respect of the filtration σ(Br(z)) since

µγε (dz) = eγhε(z)εγ
2/2dz = eγhε(z)−

1
2V ar(hε(z))+γ

2/2 logR(z,D)dz

is the standard martingale of geometric Brownian motion. We know
a positive martingale converge a.s to a limit martingale. However, it
isn’t sufficient since it may be degenerated. So we have to give some
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estimation of convergence more precise to show that the limit is a
measure.

We will treat only the easy part of the case γ ≤
√

2 and the difficult
part

√
2 < γ < 2 is left for the reference [B+17].

Proof. We will prove that there is a sub-sequence of random measure µγε
that converges in L2 to its limit. Firstly, for any compact setA ⊂ D and
Bε(A) ⊂ D, µγε (A) is a random variable whose expectation is constant.

E[µγε (A)| = E[
∫
A
eγhε(z)εγ

2/2]

=
∫
A
E[eγhε(z)εγ2/2]dz

=
∫
A

(R(z,D))γ2/2dz

Then, we prove that µγε
2k

(A) is a Cauchy sequence in L2. Observing
that hε(z) is a Brownian motion, then the independent increment tells
us

h2ε − hε⊥hε.
We use this property in the estimation of E[|µγ2ε(A)− µγε (A)|2]

E[|µγ2ε(A)− µγε (A)|2]

=
∫
A×A

E
[
(eγh2ε(x)(2ε)γ2/2 − eγhε(x)(ε)γ2/2)(eγh2ε(y)(2ε)γ2/2 − eγhε(y)(ε)γ2/2)

]
dxdy

=
∫
A×A

E
[
(eγ(hε(x)+hε(y))εγ

2)(2γ2/2eγ(h2ε(x)−hε(x)) − 1)(2γ2/2eγ(h2ε(y)−hε(y)) − 1)
]
dxdy

When |x − y| > 4ε, we know that tree terms in the expectation are
independent since they use the information respectively in Bε(x) ∪
Bε(y), B2ε(x)\Bε(x), B2ε(y)\Bε(y) and the three parts are disjoint. There-
fore we can do factorize the expectation. Moreover the fact that the
density is martingale implies that

E
[
(eγ(hε(x)+hε(y))εγ

2)(2γ2/2eγ(h2ε(x)−hε(x)) − 1)(2γ2/2eγ(h2ε(y)−hε(y)) − 1)
]

= E
[
eγ(hε(x)+hε(y))εγ

2]E [2γ2/2eγ(h2ε(x)−hε(x)) − 1
]
E
[
2γ2/2eγ(h2ε(y)−hε(y)) − 1

]
= 0,∀|x− y| > 4ε

Therefore, it suffices to consider the part that |x− y| ≤ 4ε,

E
[
|µγ2ε(A)− µγε (A)|2

]
≤ int|x−y|≤4εE

[
(eγh2ε(x)(2ε)γ2/2 − eγhε(x)(ε)γ2/2)(eγh2ε(y)(2ε)γ2/2 − eγhε(y)(ε)γ2/2)

]
dxdy

≤ Cε22
[
E[e2γh2ε(x)(2ε)γ2 ] + E[e2γhε(x)(ε)γ2 ]

]
= 2Cε2−γ2
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When γ <
√

2, this error converges to 0 so the sequence is a Cauchy
sequence in L2. Using the Borel-Cantalli lemma, this implies that for
any compact A, the sub-sequence converges almost surely to a limit
µγ(A). The L2 estimation gives also the uniform speed of convergence
so µγ gives a limit measure.

3.7 γ-thick point

Theorem 3.7.1 (γ-thick point). On the domain D, if we sample a
point after the Liouville measure µγ(dz), then almost surely

lim
ε→0

hε(z)
log 1/ε = γ.

Recall the property of Brownian motion
Bt

t
a.s−→ 0

and the fact that he−t(z) is a Brownian motion, for a point z fixed, we
have

lim
ε→0

hε(z)
log 1/ε = 0.

It seems a little paradox, however this is a sample for fix point. If we do
sample by the Liouville measure, since the measure it self is random,
the point with larger mass has more chance to be chosen, so it changes
the typical point. In the proof, we will see how to find this change of
probability.

Proof. The Liouville measure gives, in fact, double sample where a
hidden sample is for GFF. The joint distribution is

Q(dµ, dh) = 1
Zγ
eγhdzdh

where eγh represents the Liouville measure defined in the last section
and dh means density of GFF and

Zγ = E[
∫
D
eγh(z)dz].

Then, the measure conditional of GFF when a point is fixed (called
rooted measure in some reference) is

Q(dh|dµ) = Q(dh, dµ)
Q(dµ) =

1
Zγ
eγhdzdh

Eh[ 1
Zγ
eγhdzdh]
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Eh[
1
Zγ
eγhdzdh] = lim

ε→0

1
Zγ

E[eγhε(z)εγ2/2]dz

= 1
Zγ

(R(z,D))γ2/2dz

⇒ Q(dh|dz) = eγh(R(z,D))−γ2/2dh

= lim
ε→0

eγhεεγ
2/2(R(z,D))−γ2/2dh

Applying the theorem of Gisarnov, this implies that under the Liouville
measure and restricted on the circle average, the GFF h̃ε has a change
of probability h̃ε = hε + γ log ε. Therefore

lim
ε→0

h̃ε(z)
log 1/ε = γ.



4

Gaussian multiplicative
chaos theory

In the construction of LQG, the usage of circle average aims at
approximation of the random distribution and to make sense the eγh.
However, as we have seen the canonical construction of GFF as

h =
∞∑
i=1

Xiei

, one may ask a natural question : Can we do approximation naturally

31
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by just truncation of terms ? Thus we define hn = ∑n
i=1Xiei and then

define a density and finally pass n to infinity.
This intuition is natural since these two approximations are always

used in the domain of analysis and PDE, with the terminology called
modification by convolution for type like circle average and trun-
cation of frequency for type of approximation above. The two tech-
niques could be used to treat Schwartz distribution like functions and
get some fine estimation of operator and embedding of function space
of LP and Soblev etc.

We return to the original question. The answer is positive and
in fact, J.P Kahane has developed a complete theory called Gaus-
sian multiplicative chaos("Le chaos multiplicatif" in french) in 80th
[Kah85], [Kah87] to study the model of the cascade of Mandelbrot. In-
formally speaking, given a family of Gaussian process {Yn(x)}n≥0 where
{Yn}n≥0 are independent but Yn(x) indexed by the position x ∈ D as-
sociate covariance Kn such that

E[Yn(x)Yn(y)] = Kn(x, y)

If we denote Xn(x) = ∑n
k=0 Yk(x), we know that eγXn(x)− γ2 E[X2

n(x)] de-
fines a martingale. We treat it as the density at the position x. This is
why it is called Gaussian multiplicative chaos : the density is random
and is designed level by level

eγXn(x)− γ2 E[X2
n(x)] = Πn

i=0e
γYi(x)− γ

2
2 E[Y 2

i (x)]

. If ∀x, y ∈ D,
∑∞
n=0Kn < ∞, the Xn converge in L2 to a Gaussian

process and we could define the limit density directly. However, when∑∞
n=0Kn doesn’t converge simply, the limit of this density could be well

defined ?
This is the motivation of the theory of Gaussian multiplicative chaos

theory and it’s the same question when we define the LQG. The fol-
lowing part includes some basic definitions and propositions about this
theory. It has a very nice frame and may be more general than GFF
and LQG theory in some sense. Some parts look parallel as what has
been developed in the precedent chapter, but with a different view-
point. The content is based on the video by Rémi Rhodes during the
workshop of random geometry at Issac Newton Institute and [RV+14]
and the original article [Kah85].

4.1 Basic frame

In this section, we give the general frame of the Gaussian multiplicative
chaos. We will introduce an important comparison inequality, then σ-
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positive kernel which allows us to prove the uniqueness.

4.1.1 Comparison inequality

The first part is conserved for the comparison inequality and it is always
listed at first in the review of Rémi Rhodes since it is much used in the
proof.

Lemma 4.1.1 (Comparison inequality). Given {Ai}1≤i≤n, {Bi}1≤i≤n
two centered Gaussian vectors which satisfy

∀1 ≤ i, j ≤ n,E[AiAj] ≤ E[BiBj]

then ∀F : R+ → R convex and pi ≥ 0

E[F (
n∑
i=1

pie
Ai− 1

2E[A2
i ])] ≤ E[F (

n∑
i=1

pie
Bi− 1

2E[B2
i ])]

.

Remark. In this section, we will use it to prove the uniqueness of limit
measure in context of σ-positive kernel. However, this inequality is
much more powerful since it still works in other situation out of the
frame of σ-positive kernel

4.1.2 σ-positive kernel

A nice frame to study the limit measure is the condition σ-positive
kernel.

Definition 4.1.1 (σ-positive kernel). Take a locally compact metric
space (D, d) and a function K : D ×D → R+ is said to be σ-positive
type if

K(x, y) =
∑
n≥0

Kn(x, y)

where Kn is nice : it is continuous, positive, and positive definite.
So it is associated with a sequence of independent Gaussian process
{Yn(·)}n≥0 such that Kn(x, y) = E[Yn(x)Yn(y)]

We define the approximated measure by the the partial sum.

Definition 4.1.2 (Approximated measure). Given a Radon measure
µ associated to the metric space (D, d), we define Xn(x) = ∑n

i=0Xi(x)
and the approximated measure Mn(dx) = eXn(x)− 1

2E[X2
n(x)]µ(dx).

More generally, we define Mγ
n (dx) = eγXn(x)− γ

2
2 E[X2

n(x)]µ(dx).
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We give some simple simple observation. ∀A ⊂ D compact subset,
{Mn(A)}n≥0 is a martingale positive with respect to the filtration

Fn = σ({Yi(x), x ∈ D, 0 ≤ i ≤ n})

thanks to the independent increment. Therefore,Mn(A) n→∞−−−→M(A) a.s ,
which implies

Mn(dx) n→∞−−−→M(dx) a.s
convergence to a Radon measure in weak sense of Schwartz distribution
i.e

a.s ω,∀f ∈ Cb(A),Mn(f) n→∞−−−→M(f)
.

However, the limit measure may be trivial : we only have

E[M(A)] ≤ E[Mn(A)] = µ(A)

, but not necessarily the convergence L1 or we don’t know if this mar-
tingale is U.I. We remark that thanks to the lemma of Schéffa, it suffices
to prove that E[M(A)] = µ(A).

Another question is whether the limit depends on how we decom-
pose the K as the sum. So we draw a little summary of question.

Question 1. Is M(dx) trivial ?

Question 2. Is M(dx) unique or it depends on the decomposition of
kernel ?

4.1.3 Uniqueness

A first result is that in the context of σ-positive kernel, the limit is
unique. Its proof shows how to apply the comparison lemma.

Theorem 4.1.1 (Uniqueness). The law of M doesn’t depend on the
σ-decomposition of K.

Proof. We take two different decomposition K = ∑
i≥0Ki = ∑

i≥0K
′
i

and the Gaussian process associated {Yi}i≥0, {Y ′i }i≥0. Because that the
sum ∑p

i=0Kiis always increasing, taking A compact and ε > 0 and for
p′ large enough

∀x, y ∈ A,
p∑
i=0

Ki(x, y) ≤ ε+
p′∑
i=0

K ′i(x, y)
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To utilize the comparison lemma, we denote Xp = ∑p
i=0 Yi, X

′
p′ =∑p′

i=0 Y
′
i and one random variable Z ∼ N (0, 1) independent with all

the other random variables. Then for any convex function F

E[F (
∫
A
eXp−

1
2E[X2

p ]µ(dx))] = E[F (
∫
A
e
√
εZ− ε2 +X′

p′−
1
2E[X′2p′ ]µ(dx))]

Suppose the martingale is U.I and we pass to the limit of p, p′ then we
pass ε→ 0 using dominated convergence theorem and obtain

E[F (M(A))] ≤ E[F (M ′(A))]

We apply the same argument and obtain E[F (M(A))] = E[F (M ′(A))]
and finally we plug in F = e−λx and prove that M(A) and M ′(A) has
the same law.

4.2 Non-degenerate limit measure

In this part, we states the situation when the approximated measure
converges U.I to the limit. We will first state the theorem in a most
general case and later in Rd. We still add some necessary remark and
some historical background and motivation.

One important theorem will not be discussed, but the base of the
following theorem is from [KP76] when studying discrete random cas-
cade. It classifies the limit measure in two case : non-degenerate
when the martingale Mn(A) is U.I and degenerate when the martin-
gale isn’t U.I and is 0 almost surely. That is to say

E[M(A)] > 0⇔ E[M(A)] = µ(A)

. That’s the reason why we call degenerate and non-degenerate.

4.2.1 General situation

This part introduce a very general situation in [Kah85]. We will focus
on a log-type kernel with a good calls of measure.

Definition 4.2.1 (Log-type kernel). A kernel K is defined as log-type
if and only if ∀x, y ∈ D

K(x, y) = log+
1

d(x, y) + g(x, y)

where g is bounded in D ×D and log+(·) = log(·) ∨ 0.
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Remark. Log-type kernel is also the case met when defining 2D GFF,
since the Green function as the kernel is log-type.
Definition 4.2.2 (Class R+

α (α > 0)). A Borel measure µ is of class R+
α

if and only if ∀ε > 0,∃ compact setAε depending on ε, ∃δ > 0, C > 0
such that
• µ(D\Aε) ≤ ε

• ∀O open, µ(O ∩ Aε) ≤ Cdiam(O)α+δ.
Definition 4.2.3 (β-energy). A Borel measure µ defined on D is said
of β-energy if

Iβ(µ) =
∫ ∫

D×D

1
d(x, y)βµ(dx)µ(dy) <∞

Remark. Iβ(µ) <∞⇒ µ ∈ R+
α ,∀0 < α < β.

This definition seems very technical since J.P Kahane extend his
theory on perfect set in [Kah85]. Using this definition, he obtains a
nice and very general theorem.
Theorem 4.2.1. Assume K a σ-positive kernel of log-type and a mea-
sure µ ∈ R+

α . If γ2 < 2α, then the martingale Mn,γ(A) is U.I. and its
limit measure Mγ ∈ R+

α− γ
2

2

Remark. This theorem also implies that Mγ has no atoms.
Remark. J.P Kahane has also studied a necessary condition, which is
subtle and interacts with the doubling volume condition in harmonic
analysis.

4.2.2 Case in Rd

In this subsection, we apply the general theorem in Rd. Before starting,
as what we have done in LQG, we can also obtain the L2 theorem easily
if K is of log-type since

E[Mn,γ(A)2] = E[
∫
A×A

eγXn(x)+γXn(y)− γ2 E[X2
n(x)]− γ2 E[X2

n(y)]µ(dx)µ(dy)]

=
∫
A×A

eγ
2
∑n

i=0 Ki(x,y)µ(dx)µ(dy)

≤
∫
A×A

eγ
2
∑∞

i=0 Ki(x,y)µ(dx)µ(dy)

≤ C
∫
A×A

eγ
2 log+

1
d(x,y)µ(dx)µ(dy)

= C
∫
A×A

1
d(x, y)γ2 µ(dx)µ(dy) = CIγ2(µ)
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. In Rd with Lebesgue measure, we know it’s finite if γ2 < d, this
coincides the L2 theory in LQG.

However, if we apply the most general theory, we can extend to the
situation γ2 < 2d and it’s also the range of LQG theory. In conclusion,
we states the theorem

Theorem 4.2.2 (Criteria of non-degeneration). Assume K a σ-positive
kernel of log-type and a measure µ is Lebesgue or absolutely continu-
ous with respect to Lebesgue measure. If γ2 < 2d, then the martingale
Mn,γ(A) is U.I. and its limit measureMγ is non-degenerate. If γ2 ≥ 2d,
then it’s almost surely 0.

4.3 Further properties

For further property like the moment estimation, the interested reader
can consult the reference [RV+14] as review.

4.4 Numerical experience : GFF and Liouville mea-
sure on [0, 1]2

In this section, we introduce several interesting numerical methods to
simulate GFF. We will use these simulation not only to give an intuitive
impression how a GFF looks like, but also to verify the properties like
circle average theorem.

4.4.1 GFF on [0, 1]2

We first construct the GFF on [0, 1]2. Noting that a basis of H1
0 ([0, 1]2)

is {ej,k}j,k≥1

ej,k = 2
π

1√
j2 + k2 sin(jπx) sin(kπy)

.Therefore, a GFF can be generated by

h =
∑
j,k≥1

2
π

Xj,k√
j2 + k2 sin(jπx) sin(kπy)

, where Xj,k is a family of independent Gaussian. Of course, we cannot
do infinite sum and we just do a sum of finite terms. The following
image is an instance of GFF to show its figure.
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4.4.2 Liouville measure on [0, 1]2

The Liouville measure, however, in our context is just an illustration
to show how it looks like. We don’t want to do the limit of a sub-series
of the circle average of the field, but just do an exponential with also
normalization to show how the parameter γ change the form.

Figure 4.1: A sample of Liouville measure with parameter γ = 0.5

Figure 4.2: A sample of Liouville measure with parameter γ = 1

From the simulation, we see that the density of Liouville measure
looks like the mountains and the bigger γ is, the higher the peak is.
Since it is always a density of probability, this means the probability
trends to be singular. In fact, when γ > 2, the Liouville measure
becomes trivial since the limit takes only the absolutely continuous
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Figure 4.3: A sample of Liouville measure with parameter γ =
√

2

Figure 4.4: A sample of Liouville measure with parameter γ → 2

part. This can be seen intuitively from the simulation.

4.4.3 Circle average

Finally, we come to the simulation to verify the circle average theorem.
We just take the discrete time on [0, 1] and do the discrete integration
centered at 0 of radius e−t. Since the basis has an explicit expression,
we can plugin directly position to get the exact value. As the function
sin is very regular, this simulation need a large term of basis in order
to see the fractal property of the Brownian motion.
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Figure 4.5: A simulation of 1000 traces of he−t(0) for t ∈ {0, 0.1, 0.2 · · · 1.0}



5

Imaginary geometry

As Brownian motion, who is the brick to build numerous one di-
mension interesting process and is applied in many domains, the GFF
can also be generate many fascinating two dimensional phenomenons.
In this chapter, we talk about one called imaginary geometry.

We give a brief introduction of imaginary geometry at first. As the
Liouville quantum gravity defines a random measure eγhdz, the imag-
inary geometry would like make sense a random vector field eih/χ. We
meet the same problem how to explain a field defined by a distribu-
tion. This time, the construction will relate the SLE process. The
interest of this subject is that eih/χ will induce some random flow with

41
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the non-standard behaviors, for example, some times two flows will cut
and then be merged under certain situation.

This chapter is organized as following : we explain some story about
the flow defined in domain to give some intuition why SLE should be a
candidate of the flow line. Then we introduce at first the key technique
of coupling of SLE/GFF and its variants, followed by many interesting
properties of eih/χ including the flow line, counterflow line, its duality.
The last part of this chapter is conserved for numerical simulation.
The author would like highlight this part, since it can be seen as an
independent section taking the view point of engineer to study the
imaginary geometry and almost all the theorem will be illustrated in it.
Readers can even jump the part of maths and appreciate the beautiful
directly in this section.

The content of this chapter is after a series of article [MS16a],[MS+16d],[MS16b]
[MS13]. The author is lucky to meet Prof. Miller at Lyon and to learn
some trick about how to realize these beautiful images.

5.1 Coupling of GFF and SLE

This section introduce the construction of the flow and the key tech-
nique of the coupling between GFF and SLE.

5.1.1 Why the flow should be a SLE ?

As mentioned at first, we would like to study the flow line defined
by GFF. Here we give some intuitive explanation why SLE should be
the candidate. We first suppose for the instant that h is a continuous
real valued function and we define a vector field eih/χ on the domain D,
where χ is a positive constant and we will explain its meaning later. For
the instant, we also suppose that the filed satisfies Liptchitz condition,
then the flow η generated by this filed is

d

dt
η(t) = eih(η(t))/χ.

Now, we treat this function h as GFF with maybe some boundary
condition, then the conformal invariance and Markov domain property
plays an important role, informally speaking, the curve η[t,∞) should
also be independent with η[0, t) and invariant under the conformal
mapping, given that h determines the flow. More precisely, the former
comes from the Markov domain property that h|η[0,t) and h|cη[0,t) are
independent, so η[t,∞) determined by h|cη[0,t) should be independent
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with the former. The latter inherits directly from the conformal invari-
ance of GFF. If we denote a conformal mapping ft : H\η[0, t) → H,
ft(η[t,∞)) should also be a flow determined by GFF, so it should be
the type of SLE curve.

The next question is that which SLE can be coupled with the GFF.
Suppose φ : (D̃, h̃) → (D, h) which means a conformal mapping φ :
D̃ → D and the fields generate the same flow after conformal mapping

η = φ ◦ η̃
d

dt
η(t) = eih(η(t))/χ

d

ds
η̃(s) = eih(η̃(s))/χ

Here t, s means different parametrirations. These equations induce the
relation

eih(η(t))/χ = d

dt
(φ ◦ η̃(s)) = φ′(η̃(s)) d

ds
(η̃(s))ds

dt
= φ′(η̃(s))eih(η̃(s))/χds

dt

Then we get the identity

h ◦ φ− χarg(φ′) = h̃ (5.1)

and the property of Markov domain and conformal invariance translates
as

h ◦ ft − χarg(f ′t)
d= h (5.2)

This identity inspires us to look for a proper SLE and the parame-
ters remain to be fixed.

5.1.2 Theorem of coupling

Main task of this part is to treat the theorem of GFF/SLE coupling.
We recall the definition of chordal SLEκ for 0 < κ ≤ 4 is a simple

curve η whose associated conformal mapping gt : H\η[0, t]→ H satisfies

∂tgt(z) = 2
gt(z)− Ut

where Ut =
√
κBt and Bt is a standard Brownian motion. We define

ft = gt − Ut. Then it satisfies

∂tft(z) = 2
ft(z) − Ut.
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Theorem 5.1.1 (GFF/SLE coupling). Given κ ∈ (0, 4] and ft defined
as the flow of mapping of SLEκ above. A constant χ is designed χ =

2√
κ
−
√
κ

2 and we define a harmonic function Θt to add the boundary
condition

Θ0(z) = π√
κ
− 2√

κ
arg(z)

Θt(z) = Θ0(ft(z))− χarg(f ′t(z))

= π√
κ
− 2√

κ
arg(ft(z))− χarg(f ′t(z)).

Then we construct the GFF h = h̃ + Θ0 where h̃ is a GFF on H with
null boundary condition. This GFF satisfies the identity

h ◦ ft − χarg(f ′t)
d= h

Using this theorem, a SLE and a GFF can be coupled, namely they are
mutually determined.

Proof. It suffices to prove that ∀φ ∈ C∞0 (H)

〈h, φ〉 d= 〈h ◦ ft − χarg(f ′t), φ〉

and we know the LHS is just a Gaussian. So we apply the characteristic
function to the RHS. We remark that the expectation has two part :
the expectation with respect to the GFF h̃ and that with respect to
the Brownian motion who generates the SLE.

Eh,B[exp(iθ〈h ◦ ft − χarg(f ′t) + h̃ ◦ ft, φ〉)] = EB[exp(imtθ −
1
2σ

2
t θ

2)]

where

mt =
〈
π√
κ
− 2√

κ
(Im log(ft))− χIm log(f ′t), φ

〉
σ2
t = V ar(〈h̃ ◦ ft, φ〉).

We will prove exp(imtθ − 1
2σ

2
t θ

2) is a martingale, so the expectation
coincide at time 0 and at time t. This can be done by two steps : 1,mt

is a local martingale. 2,d〈mt〉 = −d(σ2
t ).

Step 1 - mt is a local martingale:We know that

mt =
〈
π√
κ
− 2√

κ
(Im log(ft))− χIm log(f ′t), φ

〉
.
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Using the formula of Ito

d(log ft(z)) =
(

4− κ
2f 2

t (z)

)
dt−

( √
κ

ft(z)

)
dBt

d(f ′t(z)) = d

dz
(∂tft(z)) = −2f ′t(z)

f 2
t (z) dt

d(log f ′t(z)) = 1
f ′t(z)d(f ′t(z)) = −2

f 2
t (z)dt

and we combine them together

d

[
π√
κ
− 2√

κ
(Im log(ft(z)))− χIm log(f ′t(z))

]

= − 2√
κ
Im

(
4− κ
2f 2

t (z)dt−
√
κ

ft(z)dBt

)
− χIm

(
−2
f 2
t (z)

)
dt

= −Im
(

2
ft(z)

)
dBt

Therefore, dmt = 〈−Im
(

2
ft(z)

)
, φ〉dBt is a local martingale.

Step 2 - d〈mt〉 = −d(σ2
t ): We apply the result of step 1

d〈mt〉 =
∫
H×H

φ(x)φ(y)Im
(

2
ft(x)

)
Im

(
2

ft(y)

)
dxdy.

Using the change of variable for the distribution and Green function

σ2
t = V ar(〈h̃ ◦ ft, φ〉)

= V ar(〈h̃, φ ◦ f−1
t det(f ′t)−1〉)

=
∫
H×H

φ ◦ f−1
t (u)φ ◦ f−1

t (v)GH(u, v)det(f ′t)−2dudv

=
∫
H×H

φ(x)φ(y)GH(ft(x), ft(y))dxdy.

Therefore, we obtain that

−d(σ2
t ) = −d

[∫
H×H

φ(x)φ(y)∂tGH(ft(x), ft(y))dxdy
]
.

What we need to do is just to calculate the derivative with respect
to time of Green function. The formula of Green function for H is
explicit GH(a, b) = − log

∣∣∣a−b
x−b̄

∣∣∣, so
∂tGH(ft(x), ft(y)) = −Re∂t

[
log(ft(x)− ft(y))− log(ft(x)− f(y))

]
= −Im

(
2

ft(x)

)
Im

(
2

ft(y)

)
.
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Hence we obtain the result that we wanted.
Finally, we justify how two random object can be coupled. We

develop the formula

h
d= π√

κ
− 2√

κ
arg(ft(z))− χarg(f ′t) + h̃ ◦ ft. (5.3)

So, we sample at first a Brownian motion Bt and use it to generate
a SLEκ curve η[0,∞). Then we sample a GFF h̃ on H\η[0,∞). We
apply the formula in the RHS and then we get a GFF on the upper-
half plane. Informally, we utilize the information of a Brownian motion
plus the information of the complement, then they compose a entire
GFF. However, determining a SLE by a GFF requires the coupling of
reversed flow discussed in the following subsection.

Remark. Reader may wonder why we don’t construct the flow line by
the circle average eihε/χ. This is a natural idea but the this question is
still open except for the level line case proved in [SS09], [SS13].

Except the discussion in the preceding subsections, this construction
gives us more information why the SLE process can be regarded as the
flow line. We fix the time T and suppose once again the SLE process is
a "regular" curve, observing fT (η(t)) moves along the real axis toward
right,

cei0 = d

dt
fT (η(t)) = f ′T (η(t)) d

dt
η(t)

⇒ arg( d
dt
η(t)) = −argf ′T (η(t))

So the flow line moves along the direction −argf ′T (η(t)). This value
can be calculated by (5.3) and we take the approach from left and
from right of the curve, we obtain

z → η−,−arg(f ′T (η(t)−)) = h/χ+ π√
κχ

z → η+,−arg(f ′T (η(t)+)) = h/χ− π√
κχ

.

Informally, the vector field isn’t continuous and it has a gap, but the
flow line trend to move along its average of left side and right side just
like "struggling to find a correct in the turbulence of vector field".
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5.2 Flow line, monotony, merging, crossing and
light cone

As mentioned in last section, one can identify the coupling between a
SLE curve and a GFF as a flow line. In this section, we will describe
some interesting phenomenon if we couple several SLE curves in a given
GFF.

We denote a SLE type curve ηθx if it starts from point x and has
an initial "angle" θ, which can be interpreted by adding one constant
on GFF h. The interesting phenomenon can be described best by the
following three images.

Proposition 5.2.1 (Monotony, merging and crossing). We couple two
SLE type curves ηθ1

x1 and ηθ2
x2 with a GFF h. Then under some suitable

condition, we have three phenomenon are called respectivelymonotony,
merging and crossing of the flow lines.

1. Two flow lines of ηθ1
x1 and ηθ2

x2 where x1 ≥ x2, θ1 < θ2. Then ηθ1
x1 is

always on the right hand side of ηθ2
x2. They may meet each other,

but once they meet, they will rebound instead of crossing.

2. Two flow lines of ηθ1
x1 and ηθ2

x2 where x1 ≥ x2, θ1 = θ2. Then once
ηθ1
x1 and ηθ2

x2 meet each other, they will merge and then evolve in a
same trace.

3. Two flow lines of ηθ1
x1 and ηθ2

x2 where x1 ≥ x2, θ1 = θ2. Then once
ηθ1
x1 and ηθ2

x2 meet each other, they will merge and then evolve in a
same trace.

Remark. Here we don’t give what the "suitable condition" is, but reader
can check [MS16a]. As the phase diagram of SLE is in fact hidden in
the Bessel process, the geometrical property of the evolution of more
general SLE type curves (SLEκ(ρ)) is connected also to some stochastic
equation. The related work can be found in [Dub05], [Dub09].

The proof of them depends heavily on one definition called local
set of GFF. Here we give its definition. To define it, we recall that all
the closed subset of domain D

Γ = {K ⊂ D, closed}

form a metric space equipped with the Hausdorff distance

dD(S1, S2) = inf{ε > 0|S1 ⊂ B(S1, ε), S2 ⊂ B(S2, ε)})
.
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Figure 5.1: Two flow lines of ηθ1
x1(yellow) and η

θ2
x2(red) where x1 ≥ x2, θ1 < θ2.

Then ηθ1
x1 is always on the right hand side of ηθ2

x2 . They may meet each other,
but once they meet, they will rebound instead of crossing.

Figure 5.2: Two flow lines of ηθ1
x1(yellow) and η

θ2
x2(red) where x1 ≥ x2, θ1 = θ2.

Then once ηθ1
x1 and ηθ2

x2 meet each other, they will merge and then evolve in
a same trace.

Definition 5.2.1 (Local set). A Γ valued random variable A is said a
local set of GFF h if we can sample h by the following steps.

1. Sample (A, h1) where h1 is harmonic on D\A.

2. Given (A, h1), we sample a GFF h2 on D\A.

We set h = h1 + h2.

Remark. In other word, it is a 2D version strong Markov property and
formally, h− h|A has the same law of a GFF on D\A independent of
FA.



5. IMAGINARY GEOMETRY 49

Figure 5.3: Two flow lines of ηθ1
x1(yellow) and η

θ2
x2(red) where x1 ≥ x2, θ1 > θ2.

Then once ηθ1
x1 and ηθ2

x2 meet each other, one will cross the other. However,
the crossing like that happens at most one time.

We know some examples of local sets like a deterministic compact
set and in this case, it becomes just the domain Markov property. A
non-trivial example of local set is the SLE type curve. This is clear from
the SLE/GFF coupling property. The following lemma gives more local
set.

Lemma 5.2.1. Two local sets A1, A2 are local sets which are indepen-
dent conditionally given h, then A1 ∪ A2 is local set of h.

Finally, we describe some ideas behind these propositions. All the
case can be reduced to study the flow line starting from a common
point with different angles. Because the SLE type curves are local sets,
then when they meet, we condition all the path before meeting, then
we only need to study the trace after meeting, and the three situations
are the cases.

There are also numerous more sophisticated phenomenon by com-
bining the situations above, for example, starting from every point on
the plane by adding two angles −π

2 ,
π
2 and one get so called mating of

trees, or starting from one point with all the possible angles to get so
called SLE fan.

5.2.1 Define a flow line by real method ?

Last but not least, we would like ask a question : Could we get the
imaginary geometry by real method i.e make sense from differential
equation ?

d

dt
η(t) = eih(η(t))/χ.
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Figure 5.4: A simulation of flow lines starting from different point with a
same angle. There will finally be a coalescence. If the angle is π

2 , it’s one
branch of mating of trees.

Figure 5.5: A simulation of flow lines staring from one point with different
angles represented by the colors.

In fact, what we have seen of the numerical simulation in lase sec-
tion is a little cheating : the program never implements a conformal
map of Loewner flow, but just iterates the ODE above. Then this the
propositions are more or less natural : a real flow just performs like
that by Cauchy-Liptchitz theorem. So what has happened ? The flow
line looks like a regular flow disturbed by some noise in the medium
and becomes zigzag.

If we could make sense this equation, we will not only make sense
our simulation, but also another proof all all the proposition above.
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Moreover, we may have another construction of SLE without Loewner
flow...

5.3 Numerical experience : Flow line of GFF on
unit disk

The numerical simulation for imaginary geometry is perhaps mostly
significant since it not only gives us a direct impression, but also help
us find the properties and do experience. Moreover, from the algorithm
of simulation, one get another interpretation of role play by GFF in
imaginary geometry.

The object is to simulate the flow and counterflow of a random
vector field eih/χ. We would like to realize it on the domain D. Using
the preceding formula 5.3, 5.1 and we suppose that φ : D → H

hD = h̃ ◦ φ− 2√
κ
arg(φ)− χarg(φ′) + π√

κ
(5.4)

Here, h̃ ◦ φ is just a GFF on domain D with null boundary condition.
A direct interpretation is that the vector field without this term is a
classical vector field, while this terms gives a random perturbation and
changes the direction of the flow. Given a vector field, the simulation of
the flow line is direct by ODE system. Thus, we focus on how to choose
a good domain so that the conformal mapping φ is easy to realize and
how to generate a GFF on domain.

Figure 5.6: A simulation of flow line from −i to i on unit disk
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5.3.1 Choice of domain D

Although the numerical method to calculate the conformal mapping
is possible, we prefer it to be φ explicit since we need not only the
mapping but also its derivative and these require many calculus.

We propose a conformal mapping φ : D→ H

φ(z) = i
(1− iz

1 + iz

)
φ′(z) = 2i

(1 + iz)2

then φ(−i) = 0, φ(i) = ∞. Therefore, all the flow lines on this
domain are the flows connecting −i and i.

5.3.2 Simulation of GFF on any domain

Once we fix the domain as a unit disk, the rest is to generate a GFF
with null boundary condition on it. People may wonder what is the
orthogonal base on it, but we would like propose another method using
the decomposition of GFF.

The idea is simple : using the property of Markov domain. In detail,
we sample a GFF on the square [−1, 1]2 which is comparatively easy
and we have stated the method in the preceding chapter, then we do
harmonic extension of its boundary value on ∂D and we denote it by
hHarm. This step can be realized numerically by iterate a function with
the boundary condition until it satisfies the discrete Laplace equation.
Finally, as proposed by 3.4.1, hD = h − hHarm is a GFF on the disk
with null boundary condition.
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Figure 5.7: A simulation of the harmonic extension on the unit disk

Figure 5.8: A simulation of a GFF on the unit disk by subtracting a har-
monic extension from a GFF on the square [−1, 1]2
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6

Conclusion

In conclusion, we finish the introduction of the SLE and GFF and the
its coupling.

SLE is a random set described by the random flow, and is the limit
of some discrete random objects when varying the choice of κ which
also decides its behavior. This fact also reveals that study about SLE
can be divided into two parts : its own properties and the connection
with other models. The study of the former uses Ito integration and
complex analysis in for estimating the continuity in some step. The
study of the connection between SLE and other models hasn’t been
included in this stage, but the tools could be more various. There are
still many open questions to solve, for example the connection between
SLE6 and the interface of Ising model is just solved in the hexagonal
situation and we believe that is should be correct in general case. The
numerical part of SLE is now also largely used in physics to identify
the other random curves.

GFF is a random distribution or random generalized function. We
could see it as a noise added to each point of the domain but the noises
on two points have a correlation. We use it to construct Liouville
quantum gravity, which could be seen as the same object as Brownian
map. This is not easy to see since the Brownian map has metric but
without the conformal structure, while Liouville quantum gravity has a
conformal structure but lacks of distance on it. The main tool to relate
the two object depends on the quantum Loewner evolution which is
out of the range of this report.

The imaginary geometry refers in fact the coupling between SLE
and GFF and the beautiful images such at the monotony, the merging,
the light cone, the SLE fan are just the performance of a interactions
of several SLE coupled with the same GFF. A key technical tool in
these work is local set which plays the same role as strong Markov
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property in Brownian motion. The coupling appears at first between
SLE4 and the level line of GFF, latter between SLEκ(ρ) and the GFF
with boundary condition constant in interval. We can imagine that the
coupling between a variant of SLE and a GFF with general boundary
condition is also possible.

Finally, we remark that the numerical simulation observes almost
all the nice pictures but this supposes the convergence from discrete
GFF to continuous GFF. However, there is no theory connecting the
approximation of GFF between the coupling except the SLE4 case.
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Appendix

A.1 Riemann mapping theorem

The Riemann mapping theorem may be one of the most important
theorem in complex analysis. The basic theorem is as following :

Theorem A.1.1 (Riemann mapping theorem). ∀U ⊂ C simply con-
nected open subset, there is a unique biholomorphic f : D → U such
that f(0) = z ∈ U, f ′(0) > 0.

We will not prove this theorem since the proof can be found in
many textbook like [SS03].This theorem tells us more than the the
theorem itself. In fact, the theorem can be generalized to any two
simply connected open subset U, V .

Corollary A.1.1. ∀U, V ⊂ C simply connected open subset, there is a
unique biholomorphic

h : U → V, h(x) = y, x ∈ U, y ∈ V, h′(x) > 0.

Proof. To prove the existence, we suppose that f : D→ U and g : D→
V such that f(0) = x, f ′(0) > 0, g(0) = y, g′(0) > 0, then we compose
the two and get h = g ◦ f−1. Then it is a biholomorphic mapping
wanted.

To prove the uniqueness, we suppose h1, h2 satisfy the requirement
and f as defined above. Then gi = hi ◦ f, i = 1, 2 defines two biholo-
morphic mapping satisfying gi(0) = y, g′i(0) > 0. The uniqueness of
Riemann mapping theorem proves that g1 = g2, so as the equality of
h1, h2.

57
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A.2 Gaussian space and Gaussian process

We recall some basic concepts and nice structures of Gaussian vector,
Gaussian space and Gaussian process.

Definition A.2.1 (Gaussian vector). (X1, X2, · · ·Xn) is said Gaussian
vector if and only if any linear combination of them has a Gaussian
distribution.

It is easy to show that if {Yn}n≥0 has a law of Gaussian and con-
verges in L2 to a random variable Y , then Y is also Gaussian. This
idea incites the definition of Gaussian space.

Definition A.2.2 (Gaussian space). A Hilbert space H is called Gaus-
sian space if it’s formed by Gaussian random variables and by the norm
of L2. In other word, it is a closed sub-space of L2(Ω,F ,P) formed by
Gaussian random variables.

Gaussian space has a very nice structure : its independence can be
characterized by inner product.

Proposition A.2.1 (Independence of Gaussian space). Two Gaussian
spaces H1, H2 ⊂ L2(Ω,F ,P) are independent i.e σ(H1) and σ(H2) are
independent if and only if they are orthogonal H1 ⊥ H2.

Gaussian process is another way to generalize Gaussian vector : it
could have infinite elements indexed by I.

Definition A.2.3 (Gaussian process). We define {Xi}i∈I a Gaussian
process indexed by I if any finite linear combination of element is cen-
tered Gaussian.

We introduce the definition of white noise, which can be seen as
Gaussian process indexed by the function in L2(E, E , µ).

Definition A.2.4 (White noise). Given a measure space (E, E) and µ
a σ-finite measure on it, a white noise B of intensity µ is an isometry
between L2(E, E , µ) and a Gaussian space.

That is to say, ∀f, g ∈ L2(E, E , µ), B(f) ∼ N (0, ‖f‖2
L2
µ
) and

E[B(f)B(g)] =
∫
E
f(x)g(x)µ(dx)

. Finally, we give a canonical construction of white noise.
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Proposition A.2.2 (Canonical construction of white noise). We pick
{Xn}n≥0a family of independent Gaussian centered normalized random
variables in probability space (Ω,F ,P) and an orthogonal normal basis
{en}n≥0 of L2(E, E , µ). Then the mapping B : L2(E, E , µ)→ (Ω,F ,P)

B(
∑
n≥0

αnen) =
∑
n6=0

αnXn

defines a white noise.

A.3 Spectral of Laplace operator

We recall some important properties of spectral theory of Laplace op-
erator.

Theorem A.3.1 (Compact operator). Given D ⊂ Rd relative com-
pact, then (−4)−1 : L2(D) → L2(D) is a linear, bounded, compact,
symmetry operator with discrete eigenvalues

0 ≤ λ1 ≤ λ2 · · ·

where the only possible accumulative point is 0.

Remark. (−4)−1 sends a L2 function to H1
0 (D) and we know the com-

pact injection from H1
0 (D) to L2(D), so it’s a compact operator from

L2(D) to L2(D).
An important property is that we can construct an orthogonal nor-

mal basis by the eigenvector of (−4)−1.

Corollary A.3.1 (Orthogonal normal basis). The eigen-vectors {ln}n≥0
associated to (−4)−1

(−4)−1ln = λnln

form an orthogonal normal basis of L2(D).

A very simple calculus show that if f ∈ H1
0 (D)

‖f‖2
∇ =

〈 ∞∑
n=1
〈f, ln〉ln, (−4)−1

∞∑
n=1
〈f, ln〉ln

〉

=
∞∑
n=1
〈f, ln〉2λn

This inspires us to define a general Soblev space Hs
0(D) using this basis

and this definition is equivalent with other method like transform of
Fourier.
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Definition A.3.1 (General Soblev space). A general distribution f ∈
Hs

0(D) if

‖f‖2
Hs

0(D) =
∞∑
n=1
〈f, ln〉2λsn

.

Last theorem is a famous theorem of Weyl about the estimation on
the eigenvalue of (−4)−1. An easy version can be seen from the one
dimension Laplace equation defined on interval.

Theorem A.3.2 (Weyl). The eigenvalue has an asymptotic increment

lim
n→∞

λd/2n

n
= (2π)d
|D|α(d)

. Especially, when d = 2, we have λn � n.

A.4 Phase of Bessel process

Bessel process is a random process of Xt = |Bt| where Bt is a Brownian
motion in Rd. It has some interesting properties. One of the most
important properties is that its phase depends on the dimension.

Theorem A.4.1 (Recurrence of Bessel process). When 0 < d < 2, the
d-dimensional Bessel process is recurrent, while d ≥ 2, it is transient.

Proof. Applying formula d’Ito, we obtain

dXt = d− 1
2Xt

dt+ dBt.

To kill the drift, we search for a local martingale X2−d when d 6= 2

d(X2−d) = (2− d)X1−ddXt + (2− d)(1− d)X−d
2 dt

= (2− d)(d− 1)X1−d
t

2Xt

dt+ (2− d)X1−d
t dBt + (2− d)(1− d)X−d

2 dt

= (2− d)X1−d
t dBt

Using the theorem of optional stopping time

E[X2−d
t∧τa∧τb ] = E[X2−d

0 ]

⇒ P[τa < τb] = b2−d −X2−d
0

b2−d − a2−d .
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We take b→∞, a→ 0 and obtain two cases

d < 2, lim
b→∞,a→0

P[τa < τb] = 1

d > 2, lim
b→∞,a→0

P[τa < τb] = 0.

The critical case d = 2 should be treated with another local martingale
logXt with the similar routine

d = 2, lim
b→∞,a→0

P[τa < τb] = lim
b→∞,a→0

log b− logX0

log b− log a = 0.

In conclusion, d ≥ 2, the Bessel process is transient, while 0 < d < 2
the process is recurrent.

Remark. This property means that 1D-Brownian motion is recurrent
for while it is transient for greater dimension. Precise description for
2D-Brownian motion is that the trace almost surely will not come back
to the origin but any small neighborhood around it.



Appendix B

Oberwolfach

This is a quick part version of the note recorded during a week of
seminar organized by Jason Miller and Scott Sheffield in Oberwolfach.
The first part is a review of the lectures given by different researchers.
The second part is about the open questions. The third part is some
personal thinking.

B.1 Random geometry review

B.1.1 SLE

The theory of SLE is nowadays very familiar by many researchers in
probability. It uses the Loewner evolution to capture the behavior of
a growing random curves or sets. It is much studied at the beginning
of 21th century and proved sucess but now its study is more related
to LQG theory. The interest is that the random growing objects are
always fractal, but conformal maps require only that the set is simply
connected.

Various versions of SLE is developed such as SLEκ(ρ) [Dub09]
[Dub05], which adds some force point at the boundary and it changes
the behavior of SLE curves. These varied version SLE proves important
in LQG theory.

B.1.2 GFF/γ-LQG

The GFF and LQG may be the key concept of the one week seminar.
Although these two ideas are much used in the series of works by the
team of Sheffield, some definition isn’t so well written in the paper. On
one hand, sometimes to make a mathematical concept as a physical
object, we should not be so rigorous, however mathematicians always
hope it more close to the classical concepts.
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In fact, GFF can be treated as a H1(D) indexed Gaussian process.
But to treat it more precisely, it should be a random variable value
in H−ε(D). [Aru15] may be one perfect reference : it develops all the
theory of GFF as a standard Brownian motion in two dimension and
starts to reformulate an important technique of local set. Local set
is a technique like strong Markov property, but its behavior is more
complicated due to the interface. [ASW17] has studied some typical
local sets and some other reviews will come in the future.

On the other hand, LQG as a random object taking value as a mea-
sure, is sometimes called quantum measure, Liouville measure, quan-
tum length(at boundary) etc. It has also other constructions like by
CLE4 and local set technique [APS17].

B.1.3 Random maps

Random maps is another famous random object studied much. With-
out talking about the physics background, we can just see it as a scaling
limit of discrete models.
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Random maps have general two types of convergence, Gromov-
Hausdorff convergence [M+13] [LG+13] and local limit. In Gromov-
Hausdorff convergence, the technique invented in this area especial by
French school is very powerful and robust, and we have many extension
result like random maps with boundary, with genus etc. In local limit
side, the Markov property and peeling process has perfect counter in
LQG and inspires the study of quantum zipper etc.

We hope to generalize the results of random maps further in future.
But the appearance of mating of tree induces us to think about the
relationship between them ?

B.1.4 SLE/GFF coupling

The technique of SLE/GFF coupling [MS16a] [MS+16d] [MS16b] has
many derived versions and its most important contribution in the LQG
theory is the imaginary geometry(see the beautiful image in the report,
it does have sense more than just a nice simulation) The imaginary
geometry tells us in fact, LQG may be decomposed by the reunion of
flow, that’s the part of motivation of the mating of tees. However,
to generalize a general boundary condition coupling, it requires work.
Besides the work mentioned, [PW15] studies a more general boundary
condition coupling.
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B.1.5 Quantum surface

This may be one of the most difficult part the in work of Jason Miller
and Scott Sheffield. In their talk, they mention the terminology like
quantum wedges, quantum cones, quantum disks everywhere and usu-
ally makes people puzzled.

To understand it, I think the motivation is more important than
the maths part : why we invent these objects ? Let’s draw some
connection of peeling process. In peeling process [Bud16], [Cur15],
we peel from the origin towards a targeted point with two operations,
peeling the outside area and filling the hull if the genus happens. The
domain Markov property makes it very nice when we choose the critical
probability of the percolation : the boundary increment has a law as
Markov transition and we fill in the hull with a triangulation.

On the LQG sides, it is the same idea : the zipper up (a SLE path)
is like the exploration of random maps and we have to define how to
fill in the bubble by defining the GFF in it, which plays the same role
as filling the hull a triangulation.

So, all the work like welding, quantum wedges, quantum cones are
trying to make it explicit. However, the complicated formula sometimes
makes people a little afraid and there is indeed some fine part to treat.
Some notation seems tedious, for example the definition of weight of
quantum makes so little sense. In a word, we just consider it as a
continuous version of filling random triangulation.
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B.1.6 Mating of trees

To make this idea in [DMS14] understood and more popular is the goal
of this seminar. Generally, when we define two different equivalent
relation on two trees and glue them together, this will be graph coded
by two trees. One we pass to the limit, the CRT convergence makes
sense of some distance on the sphere. This is the idea of mating of
trees.

In LQG, the structure of trees comes from the flow line : from one
point, it can generate two flow lines of degree −π

2 ,
π
2 , the coalescence

phenomena generates two trees. Then we can reverse the duality of
counter flow line to recover the order and length of the Brownian mo-
tion of the two trees - we know it is a Brownian motion since the left
boundary length and right boundary length has independent increment
and scaling invariant.

Reversely, we can also prove that the two trees determine a LQG
and decorated SLE. In this side, we have to embedding the gluing real
tree into a disk to see that they decide a LQG and SLE. Some tool like
Efron-Stein is used in this proof of conformal mapping.

We remark at last the Efron-Stein method is very powerful in the
proof of embedding and the proof of Brownian map determining LQG
uses also this idea. So, we study the scaling limit of this structure,
what we need is just a bijection coded by two random walk. Many
research on this direction has been produced like [HS16], [KMSW15],
[LSW17].

B.2 Open questions

Here I record some questions recorded in this week.
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B.2.1 Finding bijections

The technique of mating of trees prove very quick, so can we find other
random maps decorated models such that "random map + decorated
model → LQG + SLE" in the sense of peanosphere ?

B.2.2 Gromov-Hausdorff vs Peanosphere vs Embedding con-
vergence

We have three types of convergence as in title. We didn’t talk about
local limit since it doesn’t apply normalization. Gromov-Hausdorff con-
vergence is used a lot in Brownian trees/lamination/maps/maps with
boundary/disks and requires a very strong bijection. Embedding con-
vergence is also once used in other context, in the topology of Carathe-
dory and the Efron-Stein estimation is also very robust. Peanosphere
topology of mating of trees technique requires also a bijection but a
little weaker. Question is that can we pass one type of convergence to
another ? Or in some specific situations ?

B.2.3 Mismatch

One technique necessary in all the series of work is the coupling of
GFF and SLE κ = γ2. Scott Sheffield asks whether we can treat the
situation without this coupling ? Of course, a SLE is always allowed
on LQG, but we will not have so nice local set technique.

B.2.4 String theory and Yang-Mills

What Scott Sheffield hopes to solve ? To reformulate Yang-Mills and
string theory. Informally speaking, Yang-Mills is some random walk
of matrix multiplication and we hope to study its trace behavior. The
string theory part, physicists think the move of the string is just like
the random surface. Three big difficulty : 1, LQG to dimension 4.
2, Pass the mismatch situation. 3. Treat the LQG with many many
genus. Scott thinks maybe 1 is the easiest one.

Some concrete question can be studied : 1, Two Brownian snakes
with head in the same x axis. 2, The left boundary length and right
boundary length of the flow line in mismatch case (a couple of corre-
lated Levy tree ?).

B.2.5 Branching/Coalescence

What’s the behavior of branching or coalescence of the two trees in
LQG ? Can we use it to code the LQG/Brownian map ?



APPENDIX B. OBERWOLFACH 68

B.2.6 Open question everyone knows

Some famous open question everyone knows like the convergence of
flow line, DLA model on the lattice etc.

B.3 Personal thinking

The big project of Scott Sheffield is sometimes more like construction a
bridge between mathematics and physics, that may be the reason why
the article is very big and sometimes hard to understand. For physi-
cists, the existence of an object with some property can be imagined
and we can give them an mathematical object, but if they need other
property or operation on this object, we have to treat it more carefully.
The series of work in LQG is like it : we find different random object
to describe all the role in a big frame.

Anyway, this program attracts many people to continue improve
the maths part and inspires the work of other researchers. The tools
and objects invented in the frame are also interesting and may have
other surprising applications.
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