
Mémoire de M2

Estimation uniforme sur une méthode
itérative pour le problème de

homogénéisation
Chenlin GU Ecole Polytechnique X2014

Formation : Proba/Stat, Université Paris-Sud
Responsable de formation : Nicolas CURIEN
Directeur de mémoire : Jean-Christophe MOURRAT
Date du mémoire : 01/04/2018 - 28/07/2018
Nom de l’organisme : DMA/ENS



Contents

1 Preliminary 3
1.1 Main story : homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Weak topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Banach space Lp(U) and Ck,α(U) . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Sobolev space W k,p(U),W k,p

0 (U) . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.4 Embedding theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.5 Fractional Sobolev space Wα,p(U) . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Basic theory of elliptic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Harmonic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Notation Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Abstract qualitative theory 16
2.1 H-convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Div-Curl theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Periodic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Stochastic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Two-scale expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Two-scale convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Quantitative theory by variational analysis 22
3.1 Quantitative version of H-convergence . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Observable of average energy . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Renormalization group argument . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Estimate of a functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Liouville regularity in large scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Two-scale expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Study of an iterative method 28
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Heuristic analysis of algorithm . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3 Connection with previous work . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.4 Organization of paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



CONTENTS 2

4.2 Two technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 An inequality of localization . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Maximum of finite number of random variables of type Os(1) . . . . . . . 34

4.3 A modified two-scale expansion estimate . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Main structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Construction of a flux corrector . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 Quantitative description of φ(λ)

ek and S(λ)
ek . . . . . . . . . . . . . . . . . . 40

4.3.4 Detailed H−1 and boundary layer estimate . . . . . . . . . . . . . . . . . 43
4.4 Iteration estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Proof of a H1, H2 estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 Proof of main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



Chapter 1

Preliminary

1.1 Main story : homogenization
Dirichlet problem is a very classical partial differential equation, which describes, for example,
the potential in a domain U ⊂ Rd with boundary condition g and with the source f . It has a
form like {

−∆u = f in U,
u = g on ∂U. (1.1.1)

We call it also Poisson equation and in the case where f = 0, we call it Laplace equation.
This is a very classical problem in maths and has been well studied for long time. However, when
we deduce this equation, sometimes we simplify a little the condition in reality. For example, the
conductance here is constant, which corresponds to the case that the media is very steady in all
the point in U . This is the case in some model but not the case in other situations. For example,
if there are two types of media, sometimes we use another equation like divergence form{

−∇ · a∇u = f in U,
u = g on ∂U (1.1.2)

to describe the model and we allow that the conductance matrix a : U → Rd×d to take different
values depending on the point. The story of homogenization starts from these two equations :
eq. (1.1.1) is easier to study in maths and has very good regularity, but it is too simplified and
loses some details information. eq. (1.1.2) is little more complicated, while it contains all the
information of the media. However, to record all the information of the conductance matrix, it
will take many memory and the modeling is also very expensive. Some question is very natural
: in which situation we should use eq. (1.1.1) for modeling and which situation we should use
eq. (1.1.2) ?

This question should be formulated more precisely since how to model a concrete problem
should be sometimes studied case by case. But if we set a conductance aε that has some spatial
structure like aε is ε-periodic or aε is sampled i.i.d in small area of length ε, very intuitively, we
believe that when ε� diam(U), we may replace the conductance by an effective conductance ā.

This is the main idea of the theory of homogenization, we state it more formally. Suppose
that a is 1-periodic or stationary with after translation of integer, and aε = a( ·ε ). We study the
solution of the equation {

−∇ · aε∇uε = f in U,
u = g on ∂U. (1.1.3)

3



CHAPTER 1. PRELIMINARY 4

Figure 1.1: The pictures from left to right describe a homogeneous media, an environment of
two types of media and a media of periodic structure. In the first case, the equation is simple,
while in the third case, we hope to profit of the periodic structure to reduce the complexity of
calculus or storage of memory.

This equation is called cell problem or heterogeneous equation in homogenization theory. It
appears especially in the modeling of molecular problem, equation in disordered media/ on
random conductance/ on porous area, problem about the design of periodic structure etc. Here
we focus on divergence form and many questions can be asked.

Figure 1.2: When we take ε goes to 0, we believe that the conductance of disordered media will
be averaged to an effective conductance ā.

1. When ε� diam(U), can we find an effective conductance matrix ā constant for all x ∈ U
such that the solution ū of {

−∇ · ā∇ū = f in U,
u = g on ∂U (1.1.4)

is a limit when ε goes to 0 ? And in which sense with which speed ? This question is
of special interest of computational mathematics since to solve an equation of constant
conductance matrix is easier than that of a general conductance matrix.

2. Can we find a reverse engineering ? That is to say approximate the solution uε by that of
ū. Of course, when ε is small, ū itself is an approximate, but can we pay some more cost
(but still less than to solve direct eq. (1.1.3)) to make the approximation more precise than
just ū ?
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3. What is the regularity of the solution uε when f = 0. We know the regularity of Laplace
equation is very good, but does the periodicity or stationarity also helps improve the
regularity ?

4. Due to the connection between Dirichlet problem and diffusion process, what is the inter-
pretation of homogenization in the associated diffusion process ?

In this report, we try to review the answer of these questions. In Chapter 1 we collect some
basic knowledge about analysis and elliptic equation. In Chapter 2, we review the theory of
abstract qualitative theory of homogenization. It says sometimes the existence of the limit using
the weak compactness argument or ergodic theory argument, so they are a little abstract and
the speed is not explicit enough for numerical analysis. In Chapter 3, we introduce some recent
progress in this area, so that we know some explicit speed of homogenization. Chapter 4 is one
final project about the bound of one iterative algorithm studied during the internship.

1.2 Functional analysis
1.2.1 Weak topology
In this subsection, we recall some basic definition and proportion of weak topology, which is a
very important definition in analysis. One very useful technique in analysis is the argument of
compactness : by compactness, we know the existence of a limit for a series, and then we can
use other information to identify the uniqueness and characterize the limit in concrete example.
However, we know that for a infinite Hilbert space H, the unit ball in not compact. Thus, we
try other weaker topology instead. That is one useful application of weak topology.

In the following, let H be a Hilbert space and H ′ its dual (linear bounded functional of H)
and 〈·, ·〉H,H′ its duality bracket. Sometimes we also abuse a little the notation to write f(x) as
〈x, f〉H,H′ of x ∈ H and f ∈ H ′.

Definition 1.2.1 (Weak convergence and weak topology). We say a family of element {xn}n∈N
converges weakly to a limit x and we denote it by xn ⇀ x if and only if

∀f ∈ H ′, lim
n→∞

〈xn, f〉H,H′ = 〈x, f〉H,H′ .

The weak topology is the the topology generated by the open set induced by all the functional
f ∈ H ′.

A first very elementary property is that the weak topology is weaker than the topology
induced by the norm ‖ · ‖H . Here we list some more elementary properties of the weak topology.

Proposition 1.2.1. 1. If xn ⇀ x in H, then ‖x‖H 6 lim infn→∞ ‖xn‖H .

2. If xn ⇀ x in H and fn → f in H ′, then we have

lim
n→∞

〈xn, fn〉H,H′ = 〈x, f〉H,H′ .

The first one has the similar form as the Fubini lemma.
Compared to the topology of the norm, one advantage is the compactness of the weak topol-

ogy.

Theorem 1.2.1 (Banach Alouglu). Every unit ball in H is compact in weak topology.
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In the Hilbert space context, thanks to the inner product structure 〈·, ·〉H , we have one more
proposition

Proposition 1.2.2. Let H be a Hilbert space and xn ⇀ x, then

xn
‖·‖H−−−→ x ⇐⇒ lim

n→∞
‖xn‖H = ‖x‖H .

Remark. This proposition is interesting, since normally we cannot deduce the strong convergence
from the weak convergence. But with one more condition, here we can do it in Hilbert space.
Similar spirit also exists in other topic, like the Shaffé lemma in probability theory. Moreover, the
quantitative analysis of homogenization also shares this idea : some convergence only depends
on the convergence of one observable.

Finally, we recall the famous Riesz lemma.

Lemma 1.2.1 (Riesz). Let H be a Hilbert space and f a bounded linear functional in H ′, then
there exists an element xf ∈ H such that

∀x ∈ H, 〈x, f〉H,H′ = 〈x, xf 〉H .

1.3 Function spaces
We introduce some function space where we will work on for the solution of equation. The
theory of function space is a basis of the study of PDE and there are many good references.
However, in the study of homogenization, sometimes we do the scaling of the domain, so some a
priori estimates have to be done with more carefulness. Especially, we hope to know whether the
constant in some useful inequalities (Hölder, Sobolev embedding, Poincaré etc) depends on the
size of the area, so we revise these inequalities and their application in weighted norm defined
below. The part about Sobolev space is after [ES98, Chapter 5] and the part about fractional
Sobolev space is after [DNPV12].

In the following, we use {e1, e2, · · · ed} as the canonical basis of Rd and |U | for the Lebesgue
measure of Borel set U ⊂ Rd. We use ∂xju to define the weak derivative in the sense of Schwartz,
that is for every φ ∈ C∞c (U), we have∫

U

∂xjuφ = −
∫
U

u∂xjφ.

For β ∈ Nd, we define also a multi-index weak derivative ∂βf such that

|β| :=
d∑
i=1

βi and ∂βf = ∂β1
x1
· · · ∂βdxd f.

1.3.1 Banach space Lp(U) and Ck,α(U)
We introduce at first the classical Lp(U) space and Hölder space Ck,α(U).

Definition 1.3.1 (Lp(U) space). For every p ∈ [1,+∞), we define a norm

‖f‖Lp(U) =
(∫

U

|f(x)|p dx
) 1
p

,
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and we denote by Lp(U) all the Lebesgue measurable function f such that ‖f‖Lp(U) < ∞. For
the case p =∞, we define its norm as

‖f‖L∞(U) = inf {x|m({|f | > x}) > 0} .

Under both case, the space Lp(U) is a Banach space.

Since we often scale the domain in the theory of homogenization, we define also the weighted
Lp space.

Definition 1.3.2 (Lp(U) space). For every p ∈ [1,+∞], the weighted norm Lp(U) is defined for
a bounded domain U ⊂ Rd as

‖f‖Lp(U) =
(

1
|U |

∫
U

|f(x)|p dx
) 1
p

= |U |−
1
p ‖f‖Lp(U).

The Lebesgue measurable functions bounded under this norm also form a Banach space.

The weighted norm has many nice property, for example, for 1 6 p 6 q 6 ∞ one direct
application of Hölder inequality tells us

‖f‖Lp(U) 6 ‖f‖Lq(U) |U |
1
p−

1
q ,

and we use the definition of weighted norm to get

‖f‖Lp(U) 6 ‖f‖Lq(U) .

This helps us to avoid the term of constant coming from the size of area U .

Definition 1.3.3 (Hölder space Ck,α(U)). For every 0 6 α 6 1, we define the semi-norm

[f ]C0,α(U) = sup
x,y∈U,x 6=y

{
|f(x)− f(y)|
|x− y|α

}
,

and the Hölder norm as
‖f‖C0,α(U) = ‖f‖C(U) + [f ]C0,α(U) .

In more general case, for every k ∈ N, 0 6 α 6 1, we define

‖f‖Ck,α(U) =
∑
|β|<k

∥∥∂βf∥∥
C(U) +

∑
β=k

[
∂βf

]
C0,α(U) .

The continuous function with bounded Hölder norm also forms a Banach space and we denote
it by Ck,α(U).

1.3.2 Convolution
For f ∈ Lp(Rd), g ∈ Lq(Rd) where 1

p + 1
q = 1, we denote the convolution of f and g by

f ? g(x) =
∫
Rd
f(y)g(x− y) dy.
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The convolution of function inherits good property from the two. For example, the convolution
between a L1

loc(Rd) and a C∞c (Rd) function is of class C∞(Rd). In this article, two mollifiers
used are the heat kernel Φr(x), defined for r > 0 and x ∈ Rd by

Φr(x) := 1
(4πr2)d/2

exp
(
− x2

4r2

)
.

and the bump function ζ ∈ C∞c (Rd)

ζ(x) := cd exp(−(1− |x|2)−1)1{|x|<1},

where cd is the constant of normalization such that
∫
Rd ζ(x)dx = 1. Finally, we use the notation

ζε(x) = 1
εd
ζ
(x
ε

)
,

as a mollifier in scale ε > 0.

1.3.3 Sobolev space W k,p(U),W k,p
0 (U)

In this subsection, we give the definition of Sobolev space. The theory of Sobolev space is very
classical since we often try to find the solution of PDE in this space for the reason both in
maths: it is a Banach space and separable for good index, we can use weak compactness to get a
sub-sequence limit etc, and also for the reason in physics: sometimes the finite norm has a direct
natural interpretation as finite energy in physical context.

Definition 1.3.4 (Sobolev space W k,p(U),W k,p
0 (U)). 1. For each k ∈ N, 1 6 p 6 ∞, we

denote by W k,p(U) the classical Sobolev space on U equipped with the norm

‖f‖Wk,p(U) =
∑

06|β|6k

∥∥∂βf∥∥
Lp(U) ,

andW k,p(U) is the function space containing all the Lebesgue measurable function bounded
under this norm.

2. We use W k,p
0 (U) to define the closure of C∞c (U) in W k,p(U).

3. For each −k ∈ N, we define also W−k,p(U) to be the dual of W k,p′

0 (U) where 1
p + 1

p′ = 1

‖f‖W−k,p(U) := sup
{∫

U

fg, g ∈W k,p′

0 (U), ‖g‖
Wk,p′

0 (U) 6 1
}
.

Here, we abuse the use of notation
∫
U
f(x)g(x) dx, since the function space H−1(U) also

contains linear functional, which is not necessarily a function.

4. In the case where p = 2, we also use Hk(U) and Hk
0 (U) to refer respectively W k,2(U) and

W k,p
0 (U).

From the definition, we see that C∞c (U) is dense in the space W k,p
0 (U), but this is not the

case of W k,p(U). The problem comes from the boundary effect, intuitively, near the boundary,
the function will always go down to 0 for functions in W k,p

0 (U), so it can be approximated by the
regular function with compact support. However, the function in W k,p(U) can have very sharp
fluctuation near the boundary, so we have to give up the condition of compact support. In fact,
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we can use C∞(U) to approximate the function space W k,p(U) rather than C∞c (U). See [ES98,
Chapter 5.3].

There are some other similar questions whose answers are different forW k,p(U) andW k,p
0 (U)

:

1. Can we see W k,p(U) as a subspace of W k,p(Rd) ? The answer is positive for W k,p
0 (U) but

it depends on the regularity of ∂U for W k,p(U). The problem is still near the boundary,
because in W k,p(U), the function does not have to have a sense for derivative at the
boundary. If ∂U ∈ C1, then we can do some reflection and define a function called the
extension of function and we denote it by Ext(·). It satisfies that for every f ∈ W 1,p,
Ext(f) = f a.e in U and

‖Ext(f)‖W 1,p(Rd) 6 C(U, d) ‖f‖W 1,p(U) .

See [ES98, Chapter 5.4] for more details.

2. Can we talk about the function restricted at the boundary ∂U ? If it makes sense, it is
called the trace of function and we denote it by T (·). If we want a bounded embedding
T : W 1,p(U)→ Lp(U) i.e

‖T (f)‖Lp(∂U) 6 C(p, U) ‖f‖W 1,p(U) ,

we have to add some regularity to the boundary and in fact the condition ∂U ∈ C1 also
suffices. See [ES98, Chapter 5.5] for the trace theorem.

We observe that when k = 0, the Sobolev space W 0,p(U) = Lp(U). Moreover, we can also
define a weighted Sobolev norm in the following sense.

Definition 1.3.5 (Weighted Sobolev norm). When |U | <∞, we also define the weighted norm
for k ∈ N, 1 6 p 6∞ that

‖f‖Wk,p(U) :=
∑

06|β|6k

|U |
|β|−k
d ‖∂βf‖Lp(U).

Finally, we remark that one advantage of the definition of W k,p is that it is consistent with
the scaling of the Poincaré inequality (see [ES98]) i.e if U has C1,1 boundary

∀f ∈W 1,p
0 (U), ‖f‖H1,p(U) 6 C(d)‖∇f‖Lp(U).

1.3.4 Embedding theory
One important property is the relationship between different function spaces of different param-
eters. A first important theorem is the interpolation of Lp(U) space.

Theorem 1.3.1 (Lp interpolation). For 1 6 p 6 r 6 q 6∞ such that

1
r

= θ

p
+ 1− θ

q
,

we have Lp(U) ∩ Lq(U) ⊂ Lr(U) i.e

∀f ∈ Lp(U) ∩ Lq(U), ‖f‖Lr(U) 6 C(p, q, r) ‖f‖θLp(U) ‖f‖
1−θ
Lr(U) .
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We can use both Marcinkiewicz interpolation theorem or Riesz–Thorin theorem to obtain the
result, see [Gra08, Chapter 1] for the its proof.

For the embedding theory, the main tool is Nirenberg-Sobolev inequality and Morrey’s in-
equality, which says the comparison between different norms.

Proposition 1.3.1 (Gagliardo-Nirenberg-Sobolev inequality). Assume that 1 6 p < d, then we
define its Sobolev conjugate p∗

p∗ = dp

d− p
⇐⇒ 1

p∗
− 1
d
,

then there exists a constant C(d, p) such that for every f ∈ C∞c (Rd)

‖f‖Lp∗ 6 C(d, p) ‖∇f‖Lp(Rd) .

Since this inequality is done in the whole space, it does not involves the constant of the size
of the support. Using the density of C∞c (Rd) in W 1,p

0 (U) and the extension theorem, we obtain
the following corollaries.

Corollary 1.3.1. 1. For every f ∈W 1,p
0 (U) and every q ∈ [1, p∗], we haveW 1,p

0 (U) ↪→ Lp
∗(U)

and
‖f‖Lq(U) 6 |U |

1
q−

1
p∗ ‖f‖Lp∗ 6 C(d, p)|U |

1
q−

1
p∗ ‖∇f‖Lp(U) .

2. For every U ⊂ Rd with ∂U ∈ C1, then for every f ∈ W 1,p(U) and every q ∈ [1, p∗], we
have W 1,p(U) ↪→ Lp

∗(U) and

‖f‖Lq(U) 6 |U |
1
q−

1
p∗ ‖f‖Lp∗ 6 C(d, p, U)|U |

1
q−

1
p∗ ‖f‖W 1,p(U) .

In the case p > d, as the Kolmogorov inequality, it implies the Hölder continuity.

Proposition 1.3.2 (Morrey’s inequality). For every f ∈ C1(Rd), we have an inequality that

1
|Br(x)|

∫
Br(x)

|f(y)− f(x)| dy 6 C(d, p)
∫
Br(x)

|∇f(y)|
|y − x|d−1 dy.

So in the case 1 < p <∞, we have

sup
Rd
|f | 6 C(d, p) ‖f‖W 1,p(Rd)

[f ]C0,1−d/p(Rd) 6 C(d, p) ‖∇f‖Lp(Rd) .

These imply that W 1,p(U) ↪→ C0,1−d/p(U).

We apply the arguments above by induction and can get the generalized embedding theorem.

Theorem 1.3.2 (Embedding theorem). 1. For every 1 6 p < d
k , we denote by

p∗ = dp

d− pk
⇐⇒ 1

p∗
= 1
p
− 1
d
.

Then we have embedding W k,p(U) ↪→ Lp
∗(U) that

‖f‖Lp∗ (U) 6 C(d, k, p, U) ‖f‖Wk,p(U) .
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2. If k > d
p , then f ∈ C

k−[ dp ]−1,γ(Ū) where

γ =
{ [

d
p

]
+ 1− d

p ,
d
p is not an integer

any positive number < 1, dp is an integer.

And we have an estimate

‖f‖
C
k−[ dp ]−1,γ(Ū)

6 C(d, k, p, γ, U) ‖f‖Wk,p(U)

In the case q < p∗, the embedding theory can be better.

Theorem 1.3.3 (Rellich). For any U ⊂ Rd open bounded with ∂U ∈ C1 and 1 6 q < p∗, we
have W 1,p(U) ↪→ Lq(U) and this embedding is compact.

1.3.5 Fractional Sobolev space Wα,p(U)
Besides the classical integer order Sobolev space, we can also define fractional order Sobolev
space Wα,p(U) and the Sobolev embedding can be also generalized in fractional case.

Definition 1.3.6 (Fractional Sobolev space). For every 0 < α < 1, we define a seminorm

[f ]pWα,p := (1− α)
∫
U

∫
U

|f(x)− f(y)|p

|x− y|d+αp dxdy,

and we define the norm W k+α,p(U)

‖f‖Wk+α,p(U) :=
∑
|β|6k

∥∥∂βf∥∥
Lp(U) +

∑
|β|=k

[
∂βf

]
Wα,p(U) .

Then, with a little abuse of notation, W k+α,p(U) also refers to the function space containing the
Lebesgue measurable function bounded under this norm.

We have a similar result of embedding theorem.

Theorem 1.3.4 (Generalized embedding theorem). For every 0 < β < α <∞ and 1 6 p, q 6∞
satisfying β − d

q 6 α−
d
p , then we have Wα,p(U) ↪→W β,q(U).

If we take β = 0, this theorem says q 6 p∗ = dp
d−αp , we have the embedding, which is as the

classical embedding theorem except replacing the entire order derivative with that of fractional
order. The proof of this theorem is technique and we have to treat the case "Fractional ↪→
Fractional", "Entire ↪→ Fractional" "Fractional ↪→ Entire". See [DNPV12] for complete proofs.

1.4 Basic theory of elliptic equation
In this part, we give a short resume about the general theory of second order elliptic equation,
especially the equation of divergence form and harmonic equation - the two most typical equa-
tions. We will focus on the most basic properties of the equation : existence, uniqueness, the
regularity with respect to the data, the coefficients and the domain. The fine results can be
found in many wonderful references like [GT15], [HL11] and Section 1.4 mainly bases on the
lecture note [Bab] and [All05].
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1.4.1 Existence and uniqueness
In the following, we study the equation of divergence form defined in eq. (1.1.2){

−∇ · a∇u = f in U,
u = g on ∂U. (1.4.1)

By the principle of superposition, we can assume without loss of generality that g = 0. We try
to find the solution u in the space H1(U) and also assume that f ∈ H−1(U) and the coefficient
a ∈ L∞(U) and satisfies the uniform ellipticity condition that

∀x, ξ ∈ Rd,∃Λ > 0, such that Λ−1|ξ|2 6 ξ · a(x)ξ 6 Λ|ξ|2. (1.4.2)

and we try to find its weak solution i.e

∀φ ∈ H1
0 (U),

∫
U

∇u · a∇φ =
∫
U

fφ. (1.4.3)

Remark. The frame of weak solution is one important topic in modern PDE theory. The motiva-
tion is that some explicit formula like in classical heat equation or wave equation is not accessible
in general, so the first goal is sometimes to make sure the existence so that we can talk about
a solution of the equation. We hope, of course, the solution behaves like classical sense and
we can apply the classical derivatives. However, on the one hand, sometimes some solution has
discontinuity (like that of transport equation, where the discontinuity can propagate), on the
other hand, if we add too many constrains to the solution, it is hard to talk about the existence
of the solution. Therefore, one idea is to relax sometimes the condition to find a (weak) solution
in a larger space and then study its regularity.

There are two main frames that can be used to attack the existence and uniqueness of the
equation - by the theorem of Lax-Milgram and by the variational analysis.

Lax-Milgram frame

The Lax-Milgram theorem is used to treat the existence of the solution in Hilbert space (H, 〈·, ·〉).
Let a be a bilinear mapping and L ∈ H ′ that

a : H ×H → R, L : H → R.

Then we try to find a solution u ∈ H such that

∀v ∈ H, a(u, v) = L(v). (1.4.4)

To obtain the existence and uniqueness, we should add some conditions on the bilinear mapping.
The Lax-Milgram theorem says the condition "continuity + coercivity" suffices.

Theorem 1.4.1 (Lax-Milgram). In the setting above, if a(·, ·) satisfies the following two condi-
tion:

1. Continue : there exists M > 0, such that for every u, v ∈ H, |a(u, v)| 6M ‖u‖H ‖v‖H .

2. Coercive : there exists m > 0, such that for every v ∈ H, a(v, v) > m ‖v‖2H .

Then eq. (1.4.4) admits a unique solution u ∈ H and we have

‖u‖H 6
1
m
‖L‖H′ . (1.4.5)
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See [Bab, Theorem 3.3.1] for its proof. We can check easily that in the weak solution frame of
eq. (1.4.1) and the function space H1

0 (U), the left hand side of eq. (1.4.3) is a continue, coercive
bilinear mapping thanks to the uniform ellipticity condition eq. (1.4.2), and the right hand side
is a linear form since f ∈ H−1(U). Thus, we obtain the existence and uniqueness.
Remark. In the case that a(·, ·) is symmetric, the proof of Lax-Milgram theorem is simpler since
a(·, ·) defines a new inner product on H. In fact, we can use directly Riesz representation to
obtain the same result.

Variational analysis frame

A second frame is variantional analysis. We state its main idea : the weak solution of eq. (1.4.3)
is equivalent to minimize the functional

J(v) = 1
2

∫
U

∇v · a∇v −
∫
U

fv. (1.4.6)

Some analysis tells us that to obtain infv∈H1
0 (U) J(v) = limn→∞ J(vn), we should have that

{vn}n∈N in a bounded ball in H1(U). Then the weak compactness of Hilbert space applies and
we have a weak limit u∗ that

vn ⇀ u∗.

Moreover, from Proposition 1.2.1 and Theorem 1.3.3 we know that J(u∗) 6 lim infn→∞ J(vn).
So u = u∗ is the minimizer and it is the unique weak solution of eq. (1.4.3).

1.4.2 Harmonic function
Harmonic function satisfies {

−∆u = 0 in U,
u = g on ∂U. (1.4.7)

If we suppose that g ∈ C2(Ū), we apply the theory in divergence form and get the existence of
u. In fact, the property of u is nicer than the divergence form for two reasons : it does not have
a source and it does not have perturbations of the coefficient a. In one word, its regularity is
very good. We illustrate it in the following aspect.

Harmonic function is C∞

One of the most important property of harmonic function is the mean-value formula.

Proposition 1.4.1. For every u harmonic in U and for every Br(x) ⊂ U , we have

u(x) = 1
|Br(x)|

∫
Br(x)

u(y) dy = 1
|∂Br(x)|

∫
∂Br(x)

u(y) dy. (1.4.8)

By the argument of induction, we get one corollary.

Corollary 1.4.1. For every u satisfying eq. (1.4.8), then u is harmonic in U and u ∈ C∞(U).
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Weak solution is strong solution

A second respect to show the good regularity of harmonic function is that the weak solution and
strong solution coincide.

Proposition 1.4.2 (Weyl). Given u ∈ L1
loc(U) such that

∀φ ∈ C∞c (U),
∫
U

u∆φ = 0,

then after a modification of value at a zero measure set, u ∈ C∞(U) and is harmonic on U .

However, the weak solution does not have such good regularity for the solution of an equation
of divergence form. We will see it later.

Maximum principle

Proposition 1.4.3 (Maximum principle). Given u harmonic in U , then in Ū , the maximum of
|u| is always attained at the boundary that

max
x∈Ū
|u|(x) = max

x∈∂U
|u|(x).

This proposition also proves the uniqueness of Dirichlet problem.

Liouville theorem

Finally, we discuss the harmonic function in whole space Rd. One simple result of the mean
value principle is that

Theorem 1.4.2 (Liouville). If u is a bounded harmonic function in Rd, then it is constant.

In fact, this Liouville theorem can be done better : we can classify the harmonic function in
whole space with its speed of increment of polynomial, and with polynomial speed increment,
the dimension is finite. We state the result.

Theorem 1.4.3 (Liouville). We define that

Pk =
{
u ∈ H1

loc(Rd),∆u = 0, lim
r→∞

r−(k+1) ‖u‖L2(Br(0)) = 0
}
, (1.4.9)

then Pk is a vector space of polynomial and

dim(Pk) =
(
d+ k − 1

k

)
+
(
d+ k − 2
k − 1

)
. (1.4.10)

This theorem is remarkable since the space of harmonic function is of infinite dimension, but
if we specify its speed, it becomes a finite subspace. A very simple example is that the harmonic
function with linear increment has a basis {x1, x2, · · · , xd} which increases towards d different
directions.

A final remark is that the harmonic function is not only C∞ but also analytic, moreover we
can use the harmonic polynomial Pk to realize a harmonic approximation.

Proposition 1.4.4 (Harmonic approximation). Given w a harmonic function in U , then ∀k ∈ N,∀x ∈ U
and r > 0 such that B(x) ⊂ U , there exists a polynomial p ∈ Pk such that for every t ∈ (0, r2 ],
we have

‖w − p‖L∞(Bt(x)) 6 Ck(d)
(
t

r

)k+1
‖w − p‖L2(Br(x)) . (1.4.11)
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1.5 Notation Os
The definition of O is much used in the lecture note of [AKM18]. Its goal is to allow us to
manipulate some small random errors as that of usual O notation. The definition of Os is

X 6 Os(θ) ⇐⇒ E
[
exp((θ−1X)s+)

]
6 2, (1.5.1)

where (θ−1X)+ means max{θ−1X, 0}. It could be used to calibrate a random error and has
many good properties. One could use the Markov inequality to obtain that

X 6 Os(θ) =⇒ ∀x > 0,P[X > θx] 6 2 exp(−xs),

so it gives an estimate of tail. Moreover, we could obtain the same estimate of the sum of a
series of random variables although we do not know its joint distribution : for a measure space
(E,S,m) and {X(z)}z∈E a family of random variables, we have

∀z ∈ Os(E), X(z) 6 Os(θ(z)) =⇒
∫
E

X(z)m(dz) 6 Os
(
Cs

∫
E

θ(z)m(dz)
)
, (1.5.2)

where 0 < Cs <∞ is a constant and Cs = 1 for s > 1. See Appendix of [AKM18] for proofs and
other operations on Os.



Chapter 2

Abstract qualitative theory

In this part, we recall some theory of abstract qualitative homogenization theory. The goal is to
study the question asked in Section 1.1, especially in the equation{

−∇ · aε∇uε = f in U,
u = 0 on ∂U, (2.0.1)

, where U ⊂ Rd and is open with C1 boundary and f ∈ H−1(U). We want to study its behavior
when ε → 0. This chapter is called a "abstract qualitative theory" since we sometimes prove
the existence of a limit by some argument of weak compactness or Birkhoff ergodic theory and
some quantity of the typical size of error is missing. That is why we develop next chapter about
quantitative theory. The study of homogenization theory in maths goes back to [PBL78] and
there are many good references and lectures on this topic. See [JKO12], [ALL10] etc. This
chapter mainly base on [Pra16a], [Pra16b] and [PS08].

2.1 H-convergence
In the following, we always suppose that a satisfies the uniform ellipticity condition that ∀x, ξ ∈ Rd,∃Λ > 0
such that

Λ−1|ξ|2 6 ξ · a(x)ξ 6 Λ|ξ|2.

, but a can be of periodic case or stochastic case. In periodic case, we suppose that the period
is 1, while in stochastic case, we suppose that

1. Stationarity ∀A ∈ F
P[TyA] = P[A].

2. Unit range correlation

∀U, V ∈ B(Rd), dH(W,V ) > 1 ⇐⇒ FW ,FV are independent.

Here dH is the Hausdorff distance in Rd and FW ,FV is the σ-algebra generated by∫
Rd
χai,j , where i, j ∈ {1, 2, 3 · · · d}, χ ∈ C∞c (V ).

We state the theorem.

16
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Theorem 2.1.1 (H-convergence). In the setting of eq. (2.0.1) and both periodic or stochastic, we
have a H-convergence : there exists a constant conductance matrix ā and a homogenized solution
ū satisfying {

−∇ · ā∇ū = f in U,
u = 0 on ∂U, (2.1.1)

such that we can extract a sub-sequence of uε and have

1. uε L2(U)−−−−→
ε→0

ū.

2. ∇uε L2(U)−−−−⇀
ε→0

∇ū.

3. aε∇uε L2(U)−−−−⇀
ε→0

ā∇ū.

4.
∫
U
∇uε · aε∇uε ε→0−−−→

∫
U
∇ū · ā∇ū.

(In the stochastic case, the theorem is stated in the sense almost surely.)

Existence of limit. There is some easy part of the theorem. By Lax-Milgram theorem, we have
for every ε > 0,

‖uε‖H1(U) 6 Λ ‖f‖H−1(U) .

Thus, by weak compactness in Hilbert space, up to an extraction, there exists ū ∈ H1
0 (U) such

that
uε

H1(U)−−−−⇀
ε→0

ū.

Moreover, by the Rellich theorem, this implies strong convergence in L2(U)

uε
L2(U)−−−−→
ε→0

ū.

Same argument also assures that aε∇uε L2(U)−−−−⇀
ε→0

ξ. The main difficulty may be how to iden-
tify the limit ū. Even though we had proved ξ = ā∇ū for some ā, the forth convergence∫
U
∇uε · aε∇uε ε→0−−−→

∫
U
∇ū · ā∇ū is not free. In fact, we have weak convergence of ∇uε and

aε∇uε, but how we get the convergence of its product ?

The answer is reduced to the following lemma.

2.1.1 Div-Curl theorem
The following theorem is the key of the proof of the qualitative homogenization theory. It appears
at first in at [Mur78] and also found in [Eva90]. See [Pra16a] for a detailed discussion and we
also adopt the version from it. Here, for a vector v ∈ Rd, the notation of divergence and curl
∇ · v and ∇× v are defined as the common sense.

∇ · v =
d∑
i=1

∂xivi,

(∇× v)i,j = ∂xjvi − ∂xivj .
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Theorem 2.1.2 (Div-Curl theorem.). For every 1 < p <∞ and 1
p + 1

p′ = 1, given two sequences
of vectors {vn}n>0, {wn}n>0 satisfying

‖vn‖Lp(U) + ‖∇ · vn‖Lp(U) uniformly bounded, vn
Lp(U)−−−−⇀
n→∞

v,

‖wn‖Lp′ (U) + ‖∇ × wn‖Lp′ (U) uniformly bounded, wn
Lp
′
(U)−−−−⇀

n→∞
w,

then we have
vn · wn

D′(U)−−−−→
n→∞

v · w,

where D′(U) refers the space of distribution, namely the dual of D(U) = C∞c (U).

In our example, we will apply this theorem with one term of divergence free and one term
with curl free.

2.1.2 Periodic case
We solve at first an equation in L2(Td) that

−∇ · aT (e+∇φe) = 0, (2.1.2)

up to a constant and we call φe the first order corrector associated to e. It plays an important
role in the theory of homogenization. Since φe is periodic, we have naturally∫

Td
∇φe = 0.

Then, thanks to the periodic, we have that

aT
( ·
ε

)(
e+∇φe

( ·
ε

))
L2(U)−−−−⇀
ε→0

∫
Td

aT (e+∇φe), ∇φe
( ·
ε

)
L2(U)−−−−⇀
ε→0

0. (2.1.3)

A nice identity is that

∇uε · aT
( ·
ε

)(
e+∇φe

( ·
ε

))
= aε∇uε ·

(
e+∇φe

( ·
ε

))
.

We observe that, the product on both left hand side and right hand side is of the form "one term
of divergence free times one term of curl free". Therefore, when we pass the weak limit of an
extraction, we get the identity

∇ū ·
∫
Td

aT (e+∇φe) = ξ · e.

We use the canonical basis to form an identity matrix that Id = (e1, e2, · · · ed) and we let
Γ = (∇φe1 ,∇φe2 ,∇φe3 · · · ∇φed)T . Then we deduce from the above identity(∫

Td
(Id + Γ)a

)
∇ū = ξ.

We define that
ā :=

(∫
Td

(Id + Γ)a
)
, (2.1.4)



CHAPTER 2. ABSTRACT QUALITATIVE THEORY 19

in the periodic case. Then we have that ξ = ā∇ū. Moreover, We test the identity above with
ϕ ∈ C∞c (U), and we get that∫

U

∇ϕ · ā∇ū =
∫
U

∇ϕ · ξ

= lim
ε→0

∫
U

∇ϕ · aε∇uε

= lim
ε→0

∫
U

ϕf.

We deduce from it that −∇ · ā∇ū = f .
Finally, we observe easily that the convergence of energy∫

U

∇uε · aε∇uε ε→0−−−→
∫
U

∇ū · ā∇ū,

is also the result of the div-curl theorem and approximation of 1U by functions in C∞c (U).

2.1.3 Stochastic case
In fact, all the proof in the stochastic case follows from that in periodic case. Except the
existence of first order corrector needs careful treatment. See [JKO12, Theorem 7.2]. We admit
its existence and force that E[∇φe] = 0, then in the step eq. (2.1.3), we have a similar result
after Birkhoff ergodic convergence that

aT
( ·
ε

)(
e+∇φe

( ·
ε

))
L2(U)−−−−⇀
ε→0

E
[
aT (e+∇φe)

]
, ∇φe

( ·
ε

)
L2(U)−−−−⇀
ε→0

0. (2.1.5)

This modification implies the definition
ā := E [(Id + Γ)a] , (2.1.6)

and all the other steps of proof are exactly the same.

2.2 Two-scale expansion
Another classical idea to study the problem of homogenization is to use the perturbation of
operator, that one can assume that the operator aε has an expansion

aε = 1
ε2 a0 + 1

ε
a1 + a2 · · ·

and the solution uε has also an expansion

uε = u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
· · ·

and then try to establish some relations between these equations. The main spirit of this idea is
that the function uε has a good asymptotic form in global sense but is very zigzag locally. So, we
imagine that there exists a function u : U × T → R, where the first variable controls the global
information while the second controls the local information. Then, the solution uε can be seen
as a projection of this function u that

uε(x) = u
(
x,
x

ε

)
.

This idea is later translated in a rigorous mathematical theory of homogenization in periodic
coefficients called two-scale expansion (or test with oscillating function) by [All92]. We follow
[PS08, Chapter 19] for a nice introduction.
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2.2.1 Two-scale convergence
We introduce at first the function space with two scales.

Definition 2.2.1 (L2(U,Td), L2(U,H1(Td)), L2(U,C(Td))). For every U ⊂ Rd open set with
Liptchitz boundary, we define a function space L2(U,Td) with the norm

‖f‖2L2(U,Td) :=
∫
U

∫
Td
|f(x, y)|2 dxdy.

A similar definition is that of L2(U,H1(Td))

‖f‖2L2(U,H1(Td)) :=
∫
U

∫
Td
|∇yf(x, y)|2 dxdy.

The function norm L2(U,C(Td)) is defined for the norm

‖f‖2L2(U,C(Td)) :=
∫
U

(
sup
y∈Td

|u(x, y)|
)2

dx.

The two-scale convergence can be seen as a weak convergence of L2(U,C(Td)).

Definition 2.2.2 (Two-scale convergence). {vε}ε>0 is a series of functions of space L2(U), then
we denote by vε 2−−−⇀

ε→0
v0 the two-scale convergence if there is a function v0 ∈ L2(U,Td) and for

every ϕ ∈ L2(U,C(Td)), we have

lim
ε→0

∫
U

vε(x)ϕ
(
x,
x

ε

)
dx =

∫
U

∫
Td
v0(x, y)ϕ(x, y) dxdy. (2.2.1)

Remark. One observation is that if vε(x) = v
(
x, xε

)
for some v ∈ L2(U,C(Td)), we have directly

vε
2−−−⇀

ε→0

∫
Td
v(·, y) dy.

Therefore, this definition captures the idea of two different scales.
As the weak compactness in Hilbert space, the following weak convergence theorem for two-

scale convergence is very useful.

Lemma 2.2.1 (Weak compactness of two-scale convergence). Given vε bounded in H1(U), then
there exists v0 ∈ H1(U), v1 ∈ L2(U,H1(Td)) such that the following is established :

1. vε H1(U)−−−−⇀
ε→0

v0,

2. vε 2−−−⇀
ε→0

v0,

3. ∇vε 2−−−⇀
ε→0

∇v +∇yv1.
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2.2.2 Main result
The main result of two-scale expansion is the following :

Theorem 2.2.1 (Two-scale expansion). In the setting of eq. (2.0.1) with periodic coefficients,
there exists a solution ū of homogenized equation such that we have a two-scale expansion

wε(·) := ū(·) + ε
∑

∂xi ū(·)φei
( ·
ε

)
,

and it satisfies
‖uε − wε‖H1(U)

ε→0−−−→ 0.

Proof. By the weak compactness lemma Lemma 2.2.1 we can easily find an candidate (ū, u1) ∈ H1
0 (U)×L2(U,H1(Td))

of the limit such that

uε
H1(U)−−−−⇀
ε→0

ū, uε
2−−−⇀

ε→0
ū,

∇uε 2−−−⇀
ε→0

∇ū+∇yu1.

The difficulty is to identify the limit (ū, u1). The main tool is still the Lax-Milgram theorem :
we define the Hilbert space X = H1

0 (U)×L2(U,H1(Td)) and we have U = (ū, u1) ∈ X with the
norm

U2
X = ‖∇ū‖2L2(U) + ‖∇yu1‖2L2(U,Td) .

Then, we define a bilinear mapping a : X ×X →, for every Φ = (ϕ0, ϕ1) ∈ X, we define

a(Φ,U) =
∫
U

∫
Td

(∇ϕ+∇yϕ1) · a(∇ū+∇yu1),

then U solves a(Φ,U) = 〈ϕ0, f〉L2(U) by verifying steps of passing to limit. The bilinear map-
ping is under the frame of Lax-Milgram, so we know its existence and uniqueness of solution.
Moreover, by verifying

u1(x, y) = (φe1 , φe2 , φe3 · · ·φed)(y)∇ū(x)
we identify the limit is exact the solution of homogenized equation.

Finally, we calculate that

Λ−1 ‖∇uε −∇wε‖2L2(U) 6
〈

aε
(
∇uε − ū(·)−∇yu1

(
·, ·
ε

))
,∇uε − ū(·)−∇yu1

(
·, ·
ε

)〉
L2(U)

6 〈aε∇uε,∇uε〉L2(U) −
〈

(aε + aεT )∇uε, ū(·) +∇yu1

(
·, ·
ε

)〉
L2(U)

+
〈

aε
(
ū(·) +∇yu1

(
·, ·
ε

))
, ū(·) +∇yu1

(
·, ·
ε

)〉
L2(U)

= 〈f, uε〉L2(U) −
〈

(aε + aεT )∇uε, ū(·) +∇yu1

(
·, ·
ε

)〉
L2(U)

+
〈

aε
(
ū(·) +∇yu1

(
·, ·
ε

))
, ū(·) +∇yu1

(
·, ·
ε

)〉
L2(U)

The three terms converge respectively to a(U,U),−2a(U,U), a(U,U) by weak convergence or
two-scale convergence, so we get the H1 convergence.

The two-scale expansion has many applications, for example, it provides an idea to ap-
proximate the heterogeneous equation from the homogenized equation, which can reduce the
complexity of calculus. However, a direct adaption in stochastic coefficients case requires more
work.



Chapter 3

Quantitative theory by variational
analysis

In this chapter, we develop the theory of convergence in a quantitative version, since in Chap-
ter 2 especially the case with stationary stochastic coefficients, we use the ergodic convergence
theorem, which tells us nothing about the typical size of error. Thus, we lack the theoretical
support when implementing numerical algorithm. It is until recently the quantitative analysis
of homogenization obtains much progress. This chapter could be seen as a resume of [AKM18]
but we do not want to take all the theorems and all the proofs in the lecture since it is self-
contained book. We aim to make this chapter as a guide of book, aiming to get the main idea
and understand some important and useful theorems in it.

In stead of focusing on the cell problem, in [AKM18] we take sometimes the viewpoint of the
problem in large scale. For example, we define the area �m =

(
− 3m

2 ,
3m
2
)d and try to solve the

equation with boundary condition lp(x) = p · x{
−∇ · a∇u = 0 in �m,
u = lp on ∂�m.

(3.0.1)

We write the solution of this problem u(·,�m, p), then it relates closely to the solution of{
−∇ · a3−m∇u3−m = 0 in �,
u3−m = lp on ∂�,

(3.0.2)

by a scaling transform
u3−m(·) = 3−mu(3m·,�m, p). (3.0.3)

The difference is that the equation eq. (3.0.1) provides a new viewpoint. In cell problem,
we take ε → 0 and here we take m → ∞ with fixed affine boundary condition. Although the
divergence form operator −∇ · a∇ is not as good as that of harmonic −∆, we still hope that
in large scale, it has some similar effect of harmonic equation and the solution u(·,�m, p) looks
like the affine function lp in some sense. The quantitative theory starts from this point and
we will discuss it in Section 3.1. In fact, we can do better to get a complete Liouville theory
like Theorem 1.4.3, which will be discussed in Section 3.3. Finally, we can also prove some
quantitative version analysis of corrector and use them to get quantitative analysis of two-scale
expansion (Section 3.4).

22
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Figure 3.1: An image shows the behavior of the solution u(·,�m, p) of eq. (3.0.1). When we
fix the affine boundary condition and enlarge the domain, the solution u(·,�m, p) looks like an
affine function in large scale.

Section 3.1, Section 3.2, Section 3.3 and Section 3.4 resume the results respectively in
[AKM18, Chapter 1, Chapter 2, Chapter 3 and Chapter 6]. We remark that for easily explain-
ing the proof, the authors suppose that a is symmetric in these chapters, but we can also drop
this condition by similar argument and more careful treatment in several steps. See [AKM18,
Chapter 10] for this remark.

3.1 Quantitative version of H-convergence
In this part, we study a quantitative version of Theorem 2.1.1. As we have proved in Theo-
rem 2.1.1, we know that the limit of eq. (3.0.2) is exactly lp and we apply eq. (3.0.3) to get

1
|�m|

∫
�m

1
2∇u(·,�m, p) · a(·)∇u(·,�m, p)

m→∞−−−−→ 1
2p · āp, a.s.

If we interpret left hand side as an average energy, what we will prove in this section is that we
can use the convergence of this quantity to measure the speed of convergence in the topology L2

and weak H1 etc.

3.1.1 Observable of average energy
We give at first some more precise description about the argument at the beginning and a
heuristic analogue why it should work.

As we know, that solution of elliptic equation can be transformed to a problem of minimiza-
tion. If we define the unit area energy that

ν(U, p) := inf
v∈lp+H1

0 (U)

1
|U |

∫
U

1
2∇v · a∇, (3.1.1)

then its minimum is attained by the solution of elliptic equation eq. (3.0.1) for the same boundary
condition but in domain U ⊂ Rd with Liptchitz boundary, and we denote it by u(·, U, p). This
quantity has many interesting properties, the following two are easy to verify but very important.
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Proposition 3.1.1. 1. Quadratic response. For every w ∈ lp +H1
0 (U), we have

1
2Λ|U |

∫
U

|∇w −∇v|2 6 1
|U |

∫
U

1
2∇w · a∇w − ν(U, p) 6 Λ

2|U |

∫
U

|∇w −∇v|2. (3.1.2)

2. Sub-additive The quantity ν is sub-additive i.e for a disjoint union U = tni=1Ui, we have

ν(U, p) 6
n∑
i=1

|Ui|
|U |

ν(Ui, p). (3.1.3)

Proof. The proof of eq. (3.1.2) is a direct calculus, while the proof of eq. (3.1.3) depends on a
construction of sub-minimiser

ũ(·, U, p) =
n∑
i=1

u(·, Ui, p)1Ui , (3.1.4)

since the boundary condition coincide. We test it in the eq. (3.1.1) and get the desired result.

If we apply the result eq. (3.1.3) in the partition of �m

ν(�m, p) 6
∑

z∈3m−1Zd∩�m

|�m−1|
|�m|

ν(z +�m−1, p).

We take expectation and use the stationarity to obtain that

E[ν(�m, p)] 6 E[ν(�m−1, p)].

We adapt the notation here and the theorem Theorem 2.1.1 that

ν(�m, p)
m→∞−−−−→ 1

2p · āp.

and by the sub-additive ergodic theory we also know that
1
2p · āp = lim

m→∞
E[ν(�m, p)].

One interpretation is that ν(�m, p) serves as the unit area energy decreases to a limit. Our main
theory of quantitative theory is that we can measure the H-convergence by the convergence of
the unit area energy ν(�m, p). Readers can draw an analogue with the well known Schaffé’s
lemma in probability : A series of integrable random variables {Xn}n>0 converge almost surely
to a integrable random variable X, then if E[Xn] n→∞−−−−→ E[X], we have Xn

L1

−−−−→
n→∞

X. Therefore,
the convergence of an observable does imply a stronger L1 convergence.

Proposition 3.1.2 (Quantitative L2). We define a quantity ω(n)

ω(n) := sup
p∈B1

(
E [ν(�n, p)]−

1
2p · āp

)
. (3.1.5)

then there exists 0 < C(d,Λ) <∞ satisfying that for every m ∈ N,

E
[∣∣∣∣ν(�m, p)−

1
2p · āp

∣∣∣∣] 6 C(d,Λ)
(

3− d4m + ω
(⌈m

2

⌉))
, (3.1.6)

E
[
3−2m ‖u(·,�m, p)− lp‖2L2(�m)

]
6 C(d,Λ)

(
3− d4 + ω

(⌈m
2

⌉))
. (3.1.7)
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The weak convergence can also be described by some quantity. However, we should give a
good metric to describe the weak H1 convergence. We define that

‖f‖
Ĥ
−1

(U)
= sup

{∣∣∣∣ 1
|U |

∫
U

fg

∣∣∣∣ : g ∈ H1(U), ‖g‖H1(U) 6 1
}

and we can prove that the topology under this norm is equivalent with the weak L2 topology
(See [AKM18, Exercise 1.4]) i.e

fn
L2(U)−−−−⇀
n→∞

f ⇐⇒ lim
n→∞

‖fn − f‖
Ĥ
−1

(U)
= 0.

So, the quantitative version of weak H1 convergence is the following :

Proposition 3.1.3 (Quantitative weak H1). We define another quantity

E(m) :=

 m∑
n=0

3n−m
 1
|3nZd ∩�m|

∑
z∈3nZd∩�m

sup
p∈B1

∣∣∣∣ν(z +�n, p)−
1
2p · āp

∣∣∣∣
 1

2
 , (3.1.8)

then there exists 0 < C(d,Λ) <∞ satisfying that for every m ∈ N

3−2m ‖∇u(·,�m, p)− p‖2
Ĥ
−1

(�m)
+ 3−2m ‖a∇u(·,�m, p)− āp‖2

Ĥ
−1

(�m)
6 C(d,Λ)

(
3−2m + E(m)

)
.

We see that E(m) is a weighted combination of some ω(n), and their quantities are random
variables, which converge to 0 with a unknown speed. They will be discussed in a more details
way in Section 3.2.

3.1.2 Renormalization group argument
The renormalization group argument says just we can divide the problem in some small scale
and solve it. We start from the proof of Proposition 3.1.2.

Proof of first part Proposition 3.1.2. We apply at first the bias-variance decomposition

E
[∣∣∣∣ν(�m, p)−

1
2p · āp

∣∣∣∣] 6 E [|ν(�m, p)− E[ν(�m, p)]|] + E
[
E[ν(�m, p)]−

1
2p · āp

]
6 2E

[
(ν(�m, p)− E[ν(�m, p)])+

]
+ ω(m)

We use a quantity E[ν(�n, p)], n ∈ N, 0 < n < m as an intermediate random variable and further
develop the above inequality that

E
[∣∣∣∣ν(�m, p)−

1
2p · āp

∣∣∣∣] 6 2E
[
(ν(�m, p)− E[ν(�n, p)])+

]
+ 2(E[ν(�n, p)]− E[ν(�m, p)]) + ω(m)

6 2E
[
(ν(�m, p)− E[ν(�n, p)])+

]
+ 2ω(n) + ω(m)

(Cauchy-Schwartz) 6 2E
[
(ν(�m, p)− E[ν(�n, p)])2

+

] 1
2 + 2ω(n) + ω(m)

The following lemma is the key of the renormalization group argument and shows the spirit to
manipulate different scales.
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Lemma 3.1.1 (Renormalization inequality). There exists 0 < C(d,Λ) < ∞ such that for all
integer 0 6 n < m <∞

E
[
(ν(�m, p)− E[ν(�n, p)])2

+

]
6 C(d,Λ)3−d(m−n). (3.1.9)

Proof. By the sub-additive eq. (3.1.3), we have

ν(�m, p) 6
∑

z∈3nZd∩�m

|�n|
|�m|

ν(z +�n, p) =
∑

z∈3nZd∩�m

3−d(m−n)ν(z +�n, p).

Since (·)2
+ is monotone, we put the right hand side quantity into the inequality that we want to

control have the estimate

E
[
(ν(�m, p)− E[ν(�n, p)])2

+

]
6 E


3−d(m−n)

∑
z∈3nZd∩�m

ν(z +�n, p)− E[ν(�n, p)]

2

+


6 3−2d(m−n) × 3d

∑
z∈3nZd∩�m

E
[
(ν(z +�n, p)− E[ν(�n, p)])2

]
= 3−d(m−n) × 3d Var [ν(�n, p)]
6 C(d,Λ)3−d(m−n)

The second inequality comes from the fact that if z+�n are not neighbors, they are independent.
And the third inequality use the control of the variance of ν(�n, p), which is of course bounded
by the eq. (3.1.2).

Using Lemma 3.1.1, we obtain that

E
[∣∣∣∣ν(�m, p)−

1
2p · āp

∣∣∣∣] 6 C(d,Λ)3− d2 (m−n) + 2ω(n) + ω(m),

and we take n = bm2 c to finish the first part of the proposition.

The second part of Proposition 3.1.2 and Proposition 3.1.3 follow the same spirit, but some-
times some more techniques are used in the proof. We send reader to [AKM18, Proposition 1.4,
Proposition 1.5] for their proof.

3.2 Estimate of a functional
The next goal may be to find a good estimate for the quantity ω(n). Instead of studying it
directly, in [AKM18, Chapter 2], the authors define its dual quantity

ν∗(U, q) = sup
v∈H1(U)

(
1
|U |

∫
U

−1
2∇v · a∇v + q · ∇v

)
. (3.2.1)

and propose to study another quantity that

J(U, p, q) := ν(U, p) + ν∗(U, q)− p · q. (3.2.2)

The motivation to do this transform is that by subtracting a dual quantity, the value J(U, p, q)
behaves like linear in large scale, which is the following theorem :
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Theorem 3.2.1. ∀s ∈ (0, d),∃α(d,Λ) ∈ (0, 1
2 ) and 0 < C(s, d,Λ) <∞ such that∣∣∣∣J(�n, p, q)−

(
1
2p · āp+ 1

2q · ā
−1q − p · q

)∣∣∣∣ 6 C3−nα(d−s) +O1(C3−ns).

With this analysis in hand, one can go back to the quantitative analysis of H-convergence
and get their complete description.

3.3 Liouville regularity in large scale
The harmonic equation on the whole space has a nice regularity as described in Theorem 1.4.3,
but it is not the case of a general for a general operator of divergence form. For example, in
random walk context, we can construct a biased random walk that has probability p ∈ (0, 1) to
return to the origin, and then the hitting probability defines a non-trivial harmonic function on
whole space.

However, [AKM18, Chapter 3] states a remarkable result :

Theorem 3.3.1 (Liouville theorem for a-harmonic). We define

Ak =
{
u ∈ H1

loc(Rd),−∇ · a∇u = 0 in Rd, lim
r→∞

r−(k+1) ‖u‖L2(Br(0)) = 0
}
, (3.3.1)

and Ak as the similar definition by replacing a with ā. Then, we have

dim(Ak) = dim(Ak) =
(
d+ k − 1

k

)
+
(
d+ k − 2
k − 1

)
.

Moreover, ∀s ∈ (0, d),∃δ(s, d,Λ) ∈
(
0, 1

2
]
and a random variable Xs 6 Os(C(s, d,Λ)) allowing

us to do a correspondence between Ak and Ak for every k ∈ N : ∃C(k, d,Λ),∀u ∈ Ak,∃p ∈ Ak
and ∀R > Xs we have

‖u− p‖L2(BR) 6 C(k, d,Λ)R−δ ‖p‖L2(BR) .

Reciprocally, ∀p ∈ Ak,∃u ∈ Ak we can have the same estimate above.

That says in the large scale, the random operator −∇ · a∇ improves the regularity. We
remark that this result is later generalized in the context of the infinite cluster of percolation in
[AD].

3.4 Two-scale expansion
The analysis above and the methods used in their proof allows us to give a complete quantitative
description of the two-scale expansion in a stochastic coefficient context. Since we will prove a
variant version in the following chapter, we do not repeat the result here. We send the readers
to [AKM18, Chapter 6] and Section 4.3.



Chapter 4

Study of an iterative method

This chapter is adapted from one final project during my internship on an iterative algorithm
solving the heterogeneous equation.

4.1 Introduction
4.1.1 Main theorem
The problem of homogenization is a subject widely studied in mathematics and other disciplines
for its applications and interesting properties. We study the following elliptic equation where a
stands for the coefficient of conductance and it is random, stationary defined with correlation
distance 1 and uniformly elliptic in our context. Moreover, r > 0, Ur = rU stands the area of the
equation and usually the r is very big in concrete example. The source function is f ∈ H−1(Ur)
and we try to find the solution in standard Sobolev space u ∈ g +H1

0 (Ur) ⊂ H1(Ur).{
−∇ · a∇u = f in Ur,
u = g on ∂Ur.

(4.1.1)

However, the numerical algorithm for this problem is generally very expensive for the reason
of the high oscillation on the coefficients. [AHKM18] proposes an iterative algorithm, which gives
one approach to solve it quickly. The object of this article is to obtain a good uniform bound for
this algorithm. We remark that both the algorithm and this article benefit a lot from a series
of work [AS16], [AKM16], [AKM17] where we get a further progress in the context of stochastic
homogenization and especially a quantitative estimate of the large scale regularity and first order
corrector. Especially, [Mou16] designs an efficient method to calculate the effective matrix ā,
which provides us possibility to find new algorithms.

We give a quick introduction of the necessary notations and the main theorem. we have a
probability space (Ω,F ,P) and we denote FV the σ-algebra generated by∫

Rd
χai,j , where i, j ∈ {1, 2, 3 · · · d}, χ ∈ C∞c (V ).

F is short for FRd . Ty denotes an operator of translation i.e

Ty(a)(x) = a(x+ y).

In our context, we treat the stochastic homogenization problem where a represents a station-
ary random conductance of correlation distance 1 which satisfies the uniform elliptic condition.

28
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1. Stationarity ∀A ∈ F
P[TyA] = P[A].

2. Unit range correlation

∀U, V ∈ B(Rd), dH(W,V ) > 1 ⇐⇒ FW ,FV are independent.

Here dH is the Hausdorff distance in Rd.

3. Uniform ellipticity condition ∀x, ξ ∈ Rd,∃Λ > 0 such that

Λ−1|ξ|2 6 ξ · a(x)ξ 6 Λ|ξ|2.

In the theory of homogenization, we use ā to represent the homogenized operator or effective
conductance in large scale, which is a constant matrix. See [AKM18] for further details.

To calibrate the size of a random variable X, we use two parameters s, θ > 0 and the notation
O which is defined by

X 6 Os(1)⇐⇒ E [exp((X ∨ 0)s)] 6 2.

Informal by speaking, the statement X 6 Os(1) tells us that X has a tail lighter than exp(−xs).
We note also that X 6 Os(θ) iff X

θ 6 Os(1). Our main theorem is that :

Theorem 4.1.1 (H1 contraction). Given a domain U a bounded Borel set of Rd with C1,1

boundary, for every r > 2, there exists an F-measurable random variable Z satisfying, for every
s ∈ (0, 2), there is a constant 0 < C(U,Λ, s, d) <∞, such that

Z 6 Os
(
C(U,Λ, s, d)(log r) 1

s

)
,

where l(λ) is defined as

l(λ) =
{

(log(1 + λ−1)) 1
2 d = 2,

1 d > 2. (4.1.2)

and Z serves as a random factor of an iteration, such that the following holds:
Setting Ur = rU and λ ∈ ( 1

r , 1), for every f ∈ H−1(Ur), g ∈ H1(Ur), v ∈ g + H1
0 (Ur) and

u ∈ g +H1
0 (Ur) the solution of eq. (4.1.1), let u0, ū, ũ ∈ H1

0 (U) solve (λ2 −∇ · a∇)u0 = f +∇ · a∇v in Ur,
−∇ · ā∇ū = λ2u0 in Ur,
(λ2 −∇ · a∇)ũ = (λ2 −∇ · ā∇)ū in Ur.

(4.1.3)

For v̂ := v + u0 + ũ, we have the concentration estimate

‖v̂ − u‖H1(Ur) 6 l(λ) 1
2λ

1
2Z‖v − u‖H1(Ur). (4.1.4)

Thus, in this algorithm, the random factor Z is determined by the dimension, the random
conductance a and the size of the area Ur. We can apply this algorithm for any suitable data
and with a choice λ by ourselves. We start from an initial guess of solution v, for example, we
take g as a trial and then iterate it. It suffices to take a small λ to reduce the effect of the typical
constant of Z, then we have large probability to have a contraction factor small than 1 and this
will give us an exponential convergence since the contraction factor has a uniform bound for all
data.
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4.1.2 Heuristic analysis of algorithm
We give some very intuitive idea why this iteration can approximate the solution of eq. (4.1.1).
Its philosophy is similar to the multi-scale algorithm. Each time we start with an initial guess
of the solution v, then we write u = v + (u− v) and we want to recover the part (u− v). Since
the divergence form is linear, we have

−∇ · a∇(u− v) = −∇ · a∇u+∇ · a∇v = f +∇ · a∇v,

so by the sense of weak solution, we have

(u− v) = arg min
ϕ∈H1

0 (Ur)

∫
Ur

1
2∇ϕ · aϕ+∇v · aϕ− fϕ.

Instead of resolving this problem of minimization, we add some regularization to the problem
and try to solve

u0 = arg min
ϕ∈H1

0 (Ur)

∫
Ur

1
2∇ϕ · aϕ+ λ2

2 ϕ2 +∇v · aϕ− fϕ.

This is exactly the first equation in the iteration and by the classical optimization theory, when
λ goes to 0, u0 converges to (u− v) and in the regularized optimization problem, u0 recovers the
high oscillating part or the more detailed part of (u− v). Informally, we write

(u− v) ≈ (u− v)high + (u− v)low,

such that

λ2
∫
Ur

(u− v)2
high = o(1)

∫
Ur

∇(u− v)high · a∇(u− v)high,

λ2
∫
Ur

(u− v)2
low = O(1)

∫
Ur

∇(u− v)low · a∇(u− v)low.

Therefore, after the first iteration, we do not get all the information of (u−v) but u0 ≈ (u−v)high
and the second and third equation serve to recover (u − v)low of (u − v). In fact, if we believe
that ũ ≈ (u− v − u0) ≈ (u− v)low the direct idea is still to solve

−∇ · a∇ũ ≈ −∇ · a∇(u− v − u0) = λ2u0. (4.1.5)

We want to solve a regularized problem instead of an original problem. That is, on the left hand
side, we hope to appear (λ2 −∇ · a∇)ũ. But this operation will have more or less effect on the
right hand because eq. (4.1.5) tries to solve

ũ ≈ arg min
ϕ∈H1

0 (Ur)

∫
Ur

1
2∇ϕ · a∇ϕ− λ

2u0ϕ,

and it attains minimum by ũ ≈ (u− v)low. So, adding one term of regularization means adding
one term of energy

∫
Ur

λ2

2 ϕ
2. When ϕ = ũ ≈ (u−v)low, this term cannot be neglected compared

to
∫
Ur

1
2∇ϕ · a∇ϕ. For this reason, the corresponding optimization problem should be like

ũ ≈ arg min
ϕ∈H1

0 (Ur)

∫
Ur

1
2∇ϕ · a∇ϕ+ λ2

2 ϕ2 − λ2u0ϕ− λ2ũϕ. (4.1.6)
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However, ũ cannot appear in the objective function to be minimized. That is why we introduce
the second equation in the iteration. As a homogenized equation,

−∇ · ā∇ū = −∇ · a∇(u− v − u0) = λ2u0, (4.1.7)

implies that in 1
|Ur|‖ū − (u − v − u0)‖L2(Ur)

r→0−−−→ 0 in classical homogenization theory, see for
example [JKO12]. So in L2 weak sense, we have ū ≈ (u − v − u0) ≈ ũ, then we replace ũ by ū
in eq. (4.1.6) to get

ũ = arg min
ϕ∈H1

0 (Ur)

∫
Ur

1
2∇ϕ · a∇ϕ+ λ2

2 ϕ2 − λ2u0ϕ− λ2ūϕ.

Then it turns out to be the third equation in eq. (4.1.1)
(λ2 −∇ · a∇)ũ = λ2(u0 + ū) = (λ2 −∇ · ā∇)ū. (4.1.8)

Figure 4.1: A flowchart shows the mechanic of the algorithm

Finally, we add some remarks on the choice of λ. We insist solving regularized equation
in stead of the original one for the efficiency in numeric and, generally speaking, a big λ gives
better stability in numeric schema. On the other hand, we know the algorithm converges when
the factor is less than 1, which implies a choice of small λ so that it happens in high probability.
So we have to do good equilibrium between a smaller contraction factor and a better numerical
stability. Here, one typical recommendation of choice is 1 > λ� 1

r .

4.1.3 Connection with previous work
The strategy and main structure used in this article come from [AHKM18] and [AKM18, Chapter
6], some improvement is also inspired by the classical work of two-scale expansion in periodic
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context. The following part talks about the main idea of the proof and the improvement compared
to the previous work.

At the very beginning, we recall the two-scale expansion, a very useful concept in the theory
of homogenization. It first appears in a similar problem as eq. (4.1.1) but in periodic context:
Let a stands the conductance matrix with coefficient of period ε and ā its homogenized matrix
and they determine a set of functions {φe}e∈Rd called (first order) corrector for every e ∈ Rd
and for every g ∈ H1(U) and uε, ū ∈ g +H1

0 (U) such that

−∇ · a
( ·
ε

)
∇uε = −∇ · ā∇ū, (4.1.9)

we can use two-scale expansion (of first order), namely a linear combination of ū and corrector
associated to d canonical unit vectors ek

wε := ū+ ε

d∑
k=1

∂xk ū φek

( ·
ε

)
, (4.1.10)

to approximate the solution uε in the sense H1

‖wε − uε‖H1(U) 6 O(
√
ε). (4.1.11)

See [All92] for detailed introduction. This is a very nice idea since in periodic context, the
corrector can be computed directly by a without other knowledge. Then, eq. (4.1.10) gives us a
quick numerical solution, that is to use the two-scale expansion as an approximated solution of
the equation. See for example [HW97] and [AB05].

In random conductance context, there are similar ideas as two-scale expansion, but to trans-
form them to a numerical algorithm is difficult for two reasons : Firstly, different from deter-
ministic situation, the corrector cannot be computed explicitly. Thus, some other pre-treatment
like oversampling should be applied if we hope to obtain eq. (4.1.10) Secondly, a quantitative
description of corrector like eq. (4.1.11) in random conductance context is absent for long time.

Thanks to the recent progress in quantitative description of the corrector in stochastic ho-
mogenization, we now solve the second difficulty mentioned above. See [AKM18, Chapter 6]
for its proof. This also gives us possibility to calibrate some numerical algorithms in stochastic
context. In [AHKM18], the algorithm in Theorem 4.1.1 is proposed for the first time under the
same condition, but it states its result as

‖v̂ − u‖H1(Ur) 6 Os
(
C(U,Λ, s, d)l 1

2 (λ)λ 1
2 ‖v − u‖H1(Ur)

)
. (4.1.12)

and it uses the two-scale expansion as a tool rather than to approximate directly the solution
of eq. (4.1.1). Since the proof in this artilce follows generally the similar main steps to that in
[AHKM18]. We give the plot to readers.

1. Step 1 : Prove a modified two-scale expansion theorem. We hope to work in one equation
similar to eq. (4.1.9) but with one term of regularization like(

µ2 −∇ · a
( ·
ε

))
∇uε =

(
µ2 −∇ · ā∇

)
ū. (4.1.13)

Its proof contains two parts and the first part is like in periodic situation which is deter-
ministic, and it corresponds to the first two subsections of Section 4.3.

2. Step 2 : Do some quantitative analysis of corrector. This part aims to conclude the result
from the first step and randomness comes to the analysis. It corresponds to the last two
subsections of Section 4.3.
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3. Step 3 : Apply the two-scale expansion lemma in algorithm. From Section 4.1.2, we get
two equations eq. (4.1.7), eq. (4.1.8) which are two combinations from eq. (4.1.3). They
satisfy exactly the condition of eq. (4.1.13). So we do

‖(v + u0 + ũ)− u‖H1(Ur) 6 ‖w − (u− v − u0)‖H1(Ur) + ‖ũ− w‖H1(Ur), (4.1.14)

and apply the two-scale expansion theorem twice on the right hand side. This part will be
done in Section 4.4.

Finally, we state the contribution and improvement in this article. If we check the result in
eq. (4.1.4) and eq. (4.1.12), we see that the result in former improves in the sense :

• Bound in eq. (4.1.4) is a uniform while the bound in eq. (4.1.12) depends on data. The
price is that we add a small factor of (log r) 1

s .

This improvement is necessary for this algorithm : if the bound varies with respect with the
function, since the function also changes, we do not know if the algorithm really converges. The
worst situation can be that the algorithm has bad chance and always goes to function with even
larger bound. In order to separate the random factor Z aside, we have to do precise estimate in
Step 2. More precisely, one technical task is to estimate a term like ‖(∇φek ? Φλ−1)∂xk ū‖L2(Ur)
where (∇φek ? Φλ−1) is random and ū is deterministic. We want to show

‖(∇φek ? Φλ−1)∂xk ū‖L2(Ur) 6 ‖∇φek ? Φλ−1‖L∞(Ur)‖∂xk ū‖L2(Ur).

But we only have the point-wise estimate and their linear combination of (∇φek ?Φλ−1) on hand
rather than the type of L∞ norm. So, we use a technique of localization from [AKM18, Chapter
6] to change the right hand side in a discrete version and then we handle it. Section 4.2 is
devoted to this technical estimate and we prove a new Lemma 4.2.2, which did not appear in the
previous references. We remark that for the reason to apply these new technique, the definition
of two-scale expansion theorem 4.3.1 is a little different from that in [AHKM18].

4.1.4 Organization of paper
In the rest of the article, we give the proof of theorem 4.1.1. In section 4.2, we give two lemmas
that improve or generalize the technique of [AKM18] in our context. The rest is to reformulate
our technique in the structure of [AHKM18]. In section 4.3, we prove a theorem of two-scale
expansion which will be heavily used in the later part. Finally, in section 4.4, we combine all the
results and obtain the main theorem.

4.2 Two technical lemmas
In this section, we prove two useful lemmas that will be used in later work. A formula similar
to lemma 4.2.1 can be found in [AKM18, Lemme 6.7]. Here we introduce a variant version and
it works well together with lemma 4.2.2.

4.2.1 An inequality of localization
Lemma 4.2.1 (Mixed norm). There exists a constant 0 < C(d) < ∞ such that for every
g, f ∈ L2(Rd) and every ε > 0, r > 2, we have the following inequality

‖f(g ? ζε)‖L2(Ur) 6 C(d)
(

max
z∈εZd∩Ur

‖f‖L2(z+ε�0)

)
‖g‖L2(Ur+2ε�0). (4.2.1)
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Proof.

‖f(g ? ζε)‖2L2(Ur) = 1
|Ur|

∑
z∈εZd∩Ur

‖f(g ? ζε)‖2L2(z+ε�0)

(Hölder’s inequality) 6
1
|Ur|

∑
z∈εZd∩Ur

(
‖f‖2L2(z+ε�0)‖g ? ζε‖

2
L∞(z+ε�0)

)

6
1
|Ur|

(
max

z∈εZd∩Ur
‖f‖2L2(z+ε�0)

) ∑
z∈εZd∩Ur

‖g ? ζε‖2L∞(z+ε�0)

 .

Noticing that ∀x ∈ z + ε�0,

|g ? ζε(x)| =
∣∣∣∣∫
ε�0

g(x− y) 1
εd
ζ(y
ε

) dy
∣∣∣∣

6
C(d)
εd

∫
z+2ε�0

|g(y)| dy

6
C(d)
εd

(∫
z+2ε�0

|g(y)|2 dy
) 1

2

|2ε�0|
1
2

6
C(d)
ε
d
2
‖g‖L2(z+2ε�0).

So we get
‖g ? ζε‖L∞(z+ε�0) 6

C(d)
ε
d
2
‖g‖L2(z+2ε�0),

and we add this analysis in the former inequality and obtain that

‖f(g ? ζε)‖2L2(Ur) 6 C(d)
(

1
εd

max
z∈εZd∩Ur

‖f‖2L2(z+ε�0)

) 1
|Ur|

∑
z∈εZd∩Ur

‖g‖2L2(z+2ε�0)


= C(d)

(
max

z∈εZd∩Ur
‖f‖2L2(z+ε�0)

)
‖g‖2L2(Ur+2ε�0).

This is the desired inequality.

4.2.2 Maximum of finite number of random variables of type Os(1)
Since

(
maxz∈εZd∩Ur ‖f‖L2(z+ε�0)

)
often appears in the next paragraph as the maximum of a

family of random variables, we prepare a lemma to analyze the maximum of a finite number of
random variables of type Os(1). Note that we do not make any assumptions on the joint law of
the random variables.

Lemma 4.2.2. For all N > 1 and a family of random variables {Xi}16i6N satisfying that
Xi 6 Os(1), we have (

max
16i6N

Xi

)
6 Os

((
log(2N)
log(3/2)

) 1
s

)
. (4.2.2)

Proof. By the Markov inequality,

Xi 6 Os(1) =⇒ P[Xi > x] 6 2e−x
s

.
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By a union bound, we get

P
[

max
16i6N

Xi > x

]
= P

[
N⋃
i=1
{Xi > x}

]

6

(
1 ∧

N∑
i=1

P[Xi > x]
)

6 1 ∧ 2Ne−x
s

.

We denote by x0 the critical point such that exs0 = 2N and we set M = max16i6N Xi and a > 0
such that as > 2 which will be chosen carefully later. Then we use the Fubini formula

E

[
exp

((
M

a

)s
+

)]
=

∫ ∞
0

s

a

(x
a

)s−1
e( xa )sP[M > x] dx

=
∫ x0

0

s

a

(x
a

)s−1
e( xa )s P[M > x]︸ ︷︷ ︸

61

dx+
∫ ∞
x0

s

a

(x
a

)s−1
e( xa )s P[M > x]︸ ︷︷ ︸

62Ne−xs

dx

6
∫ x0

0

s

a

(x
a

)s−1
e( xa )s dx+ 2N

∫ ∞
x0

s

a

(x
a

)s−1
e( xa )s−xs dx

=
∫ x0

0
e( xa )s d

(x
a

)s
+ 2N

∫ ∞
x0

e( xa )s−xs d
(x
a

)s
=

∫ ( x0
a )s

0
ey dy + 2N

∫ ∞
( x0
a )s

e−y(as−1) dy

=
(
e(

x0
a )s − 1

)
+ 2N
as − 1e

−( x0
a )s(as−1)

= (2N) 1
as − 1 + 1

as − 1(2N) 1
as

6 2(2N) 1
as − 1

= 2e
log(2N)
as − 1.

Now we fix a =
(

log(2N)
log(3/2)

) 1
s , for the case N > 2, we have

as =
(

log(2N)
log(3/2)

)
>

(
log(4)

log(3/2)

)
>

(
log(4)
log(2)

)
= 2,

so by the definition of Os

E

[
exp

((
M

a

)s
+

)]
6 2elog(3/2) − 1 = 2.

For the case N = 1, we could check that eq. (4.2.2) is also established since

M = X1 6 Os(1) =⇒M 6 Os
(

log(4)
log(3/2)

)
.

This finishes the proof.
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4.3 A modified two-scale expansion estimate
4.3.1 Main structure
One important inspiration of this algorithm may be the two-scale expansion, which says that we
can approximate the solution of eq. (4.1.1) by the solution of the homogenized equation and the
first order corrector φe. At first, we give its definition.

Definition 4.3.1 (First order corrector). For each e ∈ Rd, the corrector φe is the sublinear
function satisfying that e · x+ φe is a-harmonic in whole space Rd i.e

−∇ · a(e+∇φe) = 0, in Rd. (4.3.1)

φe is defined up to a constant.

The properties of the correctors are recently developed in [AKM18]. We just remark that
the set correctors forms a vector space that we can associate every d canonical unit vector ek a
first order corrector φek . The reader can also find the quantitative description of the two-scale
expansion in [AKM18, Chapter 6]. The idea here is to use a (λ2 −∇ · a∇) version of two-scale
expansion to evaluate the difference between the solution of the iteration and the real one.

Theorem 4.3.1 (Two-scale estimate). There exists a constant 0 < C(U,Λ, d) <∞, F-measurable
random variables X1,X2,Y1, and for each s ∈ (0, 2), there exists a constant C ′(U, s, d) such that
for every λ ∈ ( 1

r ,
1
2 ], r > 2 and v̄ ∈ H1

0 (Ur) ∩H2(Ur), we define

φ(λ)
e := φe − φe ? Φλ−1

w := v̄ +
d∑
k=1

∂xk(v̄ ? ζ)φ(λ)
ek
,

which is a two-scale expansion. For every µ ∈ [0, λ] and v ∈ H1
0 (U) such that{

(µ2 −∇ · a∇)v = (µ2 −∇ · ā∇)v̄ in U,
v = v̄ on ∂U, (4.3.2)

we have the H1 estimate

‖v − w‖H1(Ur) 6 C(U,Λ, d)
[
‖v̄‖H2(Ur) +

(
‖v̄‖H2(Ur) + µ‖v̄‖H1(Ur)

)
X1

+
(
l(λ) 1

2 ‖v̄‖
1
2
H2(Ur)‖v̄‖

1
2
H1(Ur) + ‖v̄‖H1(Ur)

)
X2

+
(
l(λ) 1

2

(
µ+ 1

r
+ 1
l(λ)

)
‖v̄‖

1
2
H2(Ur)‖v̄‖

1
2
H1(Ur) + ‖v̄‖H2(Ur)

)
Y1

]
,

and X1,X2,Y1 satisfy that

X1 6 Os
(
C ′(U, s, d)l(λ)(log r) 1

s

)
, X2 6 Os

(
C ′(U, s, d)λ d2 (log r) 1

s

)
, (4.3.4)

Y1 6 Os
(
C ′(U, s, d)l(λ)(log r) 1

s

)
. (4.3.5)

Remark. The explicit expression of X1,X2,Y1 will be given later in the proof. They could be
seen as the maximum of local spatial average of gradient and flux of first order corrector.
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Proof. We give at first the proof of deterministic part. We will see that the errors can finally
be reduced to the estimates of two norms : the interior error term and a boundary layer term.
The latter boundary layer term comes to the fact that v and w do not have the same boundary
condition. So we propose b the solution of the equation{

(µ2 −∇ · a∇)b = 0 in Ur,
b(x) =

∑d
k=1 ∂xk(v̄ ? ζ)φ(λ)

ek on ∂Ur.
(4.3.6)

Then w − b shares the same boundary condition as v. So, we have

‖v − w‖H1(Ur) 6 ‖v + b− w‖H1(Ur) + ‖b‖H1(Ur), (4.3.7)

and we do estimates of the two parts respectively.

• Estimate for z. We denote z := v + b − w ∈ H1
0 (Ur), that is why we regard it as the

source of error in interior part. Since z ∈ H1
0 (Ur), we test it in eq. (4.3.2) and eq. (4.3.6)

µ2
∫
Ur

zv +
∫
Ur

∇z · a∇v = µ2
∫
Ur

zv̄ +
∫
Ur

∇z · ā∇v̄

µ2
∫
Ur

zb+
∫
Ur

∇z · a∇b = 0.

We do the sum to obtain that

µ2
∫
Ur

z(v + b) +
∫
Ur

∇z · a∇(v + b) = µ2
∫
Ur

zv̄ +
∫
Ur

∇z · ā∇v̄.

Using the fact v + b = z + w, we obtain

µ2
∫
Ur

|z|2 +
∫
Ur

∇z · a∇z = µ2
∫
Ur

z(v̄ − w) +
∫
Ur

∇z · (ā∇v̄ − a∇w).

and we apply the uniform ellipticity condition to obtain

µ2‖z‖2L2(Ur) + Λ−1‖∇z‖2L2(Ur) 6 µ2‖z‖L2(Ur)‖w − v̄‖L2(Ur)

+‖z‖H1(Ur)‖∇ · a∇w −∇ · ā∇v̄‖H−1(Ur)

(Young’s inequality) 6 µ2‖z‖2L2(Ur) + µ2

4 ‖w − v̄‖
2
L2(Ur)

+Λ−1

2 ‖z‖
2
H1(Ur) + Λ

2 ‖∇ · a∇w −∇ · ā∇v̄‖
2
H−1(Ur)

=⇒ ‖∇z‖2L2(Ur) 6 Λ‖∇ · a∇w −∇ · ā∇v̄‖H−1(Ur) +
√

Λµ‖w − v̄‖L2(Ur).

We use Poincaré’s inequality to conclude that

‖z‖2H1(Ur) 6 C(U)
(

Λ‖∇ · a∇w −∇ · ā∇v̄‖H−1(Ur) +
√

Λµ‖w − v̄‖L2(Ur)

)
(4.3.8)

• Estimate for b. To estimate b we use the property that it is the optimizer of the problem

J = inf
χ∈b+H1

0 (Ur)
µ2
∫
Ur

χ2 dx+
∫
Ur

∇χ · a∇χdx.
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So we give an upper bound of this functional by a sub-optimizer

Tλ :=
(

1Rd\Ur,2l(λ) ? ζl(λ)

) d∑
k=1

∂xk(v̄ ? ζ)φ(λ)
ek
,

where Ur,2l(λ) is defined as

Ur,2l(λ) = {x ∈ Ur|d(x, ∂Ur) > 2l(λ)}.

The motivation to propose this sub-optimizer is the following : If we think the solution
of elliptic equation is an average in some sense of the boundary value, then when the
coefficient is oscillating, the boundary value is hard to propagate. So one naive candidate
is just smoothing the boundary value in a small band of length 2l(λ).
By comparison,

µ2
∫
Ur

|b|2 +
∫
Ur

∇b · a∇b 6 µ2
∫
Ur

|Tλ|2 +
∫
Ur

∇Tλ · a∇Tλ

=⇒ ‖∇b‖L2(Ur) 6 µ
√

Λ‖Tλ‖L2(Ur) + Λ‖∇Tλ‖L2(Ur).

Moreover, to estimate the L2 norm, we use once again the Poincaré’s inequality

‖b‖L2(Ur) = ‖b− Tλ + Tλ‖L2(Ur)

6 ‖b− Tλ‖L2(Ur) + ‖Tλ‖L2(Ur)

(Poincaré’s inequality) 6 r‖∇(b− Tλ)‖L2(Ur) + ‖Tλ‖L2(Ur)

6 r‖∇b‖L2(Ur) + r‖∇Tλ‖L2(Ur) + ‖Tλ‖L2(Ur).

We combine the two and get an estimate of b

‖b‖H1(Ur) = 1
|Ur|

1
d

‖b‖L2(Ur) + ‖∇b‖L2(Ur)

6 C(U)
(

1
r
‖Tλ‖L2(Ur) + µ

√
Λ‖Tλ‖L2(Ur) + (1 + Λ)‖∇Tλ‖L2(Ur)

)
.

Finally, we put all the estimates above into eq. (4.3.7)

‖v − w‖H1(Ur) 6 C(U,Λ)
(
‖a∇w − ā∇v̄‖H−1(Ur) + µ‖w − v̄‖L2(Ur)

+‖∇Tλ‖L2(Ur) + (1
r

+ µ)‖Tλ‖L2(Ur)

)
.

(4.3.9a)

(4.3.9b)

To complete the proof of theorem 4.3.1, we have to treat these random norms respectively. It is
the main task of the next section.

4.3.2 Construction of a flux corrector
A very useful technique in the analysis of ‖a∇w − ā∇v̄‖H−1(Ur) is to construct a flux corrector.
Similar formulas appear both in [AHKM18] and [AKM18], here we give the version in our context.
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For every e ∈ Rd, since ge := a(e+∇φe)− āe) defines a divergence free field, i.e. ∇ · ge = 0,
it admits a representation as the "curl" of some potential vector by Helmholtz’s theorem. That
is Se, which is a skew-symmetric matrix Se such that

a(e+∇φe)− āe = ∇ · Se,

where ∇ · Se is a Rd valued vector defined by (∇ · Se)i =
∑d
j=1 ∂xjSe,ij In order to "fix the

gauge", for each i, j ∈ {1, 2, · · · d}, we force

∆Se,ij = ∂xjge,i − ∂xige,j ,

and under this condition, Se is unique up to a constant. We set also

S(λ)
ek

= Sek − Sek ? Φλ−1 .

We have the following identity.

Lemma 4.3.1. For λ > 0, v̄ ∈ H1(Ur) and w ∈ H1(Ur) as in theorem 4.3.1. We construct a
vector field F such that

∇ · (a∇w − ā∇v̄) = ∇ · F,

whose i-th component is given by

Fi =
d∑
j=1

(aij − āij)∂xj (v̄ − v̄ ? ζ) +
d∑

j,k=1

(
aijφ(λ)

ek
− S(λ)

ek,ij

)
∂xj∂xk(v̄ ? ζ)

+
d∑

j,k=1

(
∂xjSek,ij ? Φλ−1 − aij∂xjφek ? Φλ−1

)
∂xk(v̄ ? ζ).

Proof. We develop

[a∇w − ā∇v̄]i =
[

a∇
(
v̄ +

d∑
k=1

∂xk(v̄ ? ζ)φ(λ)
ek

)
− ā∇v̄

]
i

=
[

(a − ā)∇v̄ +∇
d∑
k=1

(
∂xk(v̄ ? ζ)φ(λ)

ek

)]
i

= [(a − ā)∇(v̄ − v̄ ? ζ)]i︸ ︷︷ ︸
I

+
[

(a − ā)∇(v̄ ? ζ) + a∇
d∑
k=1

(
∂xk(v̄ ? ζ)φ(λ)

ek

)]
i︸ ︷︷ ︸

II

.

The first term is indeed

I = [(a − ā)∇(v̄ − v̄ ? ζ)]i =
d∑
j=1

(aij − āij)∂xj (v̄ − v̄ ? ζ),
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as in the right hand side of the identity, so we continue to study the rest of the formula.

II =
d∑
j=1

(aij − āij)∂xj (v̄ ? ζ) +
d∑

j,k=1
aij∂xj

(
∂xk(v̄ ? ζ)φ(λ)

ek

)

=
d∑

j,k=1
(aij − āij)∂xj (v̄ ? ζ)δjk +

d∑
j,k=1

aij∂xj∂xk(v̄ ? ζ)φ(λ)
ek

+
d∑

j,k=1
aij∂xk(v̄ ? ζ)∂xjφ(λ)

ek

=
d∑

j,k=1

(
(aij − āij)δjk + aij∂xjφ(λ)

ek

)
∂xk(v̄ ? ζ)︸ ︷︷ ︸

II.1

+
d∑

j,k=1
aij∂xj∂xk(v̄ ? ζ)φ(λ)

ek︸ ︷︷ ︸
II.2

.

II.2 appears in the right hand side of the formula, so it remains II.1 to treat. We use the the
definition of S(λ)

ek in II.1

II.1 =
d∑
k=1

[
a(ek +∇φ(λ)

ek
)− āek

]
i
∂xk(v̄ ? ζ)

=
d∑
k=1

[a(ek +∇φek)− āek − a∇φek ? Φλ−1 ]i ∂xk(v̄ ? ζ)

=
d∑
k=1

[∇ · Sek − a∇φek ? Φλ−1 ]i ∂xk(v̄ ? ζ)

=
d∑
k=1

[
∇ · S(λ)

ek

]
i
∂xk(v̄ ? ζ)︸ ︷︷ ︸

III

+
d∑
k=1

[∇ · Sek ? Φλ−1 − a∇φek ? Φλ−1 ]i ∂xk(v̄ ? ζ).

All the terms match well except III, where we have to look for an equal form after divergence.
Thanks to the property of skew-symmetry, we have

∇ · III = ∇ ·

(
d∑
k=1

[
∇ · S(λ)

ek

]
i
∂xk(v̄ ? ζ)

)

=
d∑

i,j,k=1
∂xi

(
∂xjS

(λ)
ek,ij

∂xk(v̄ ? ζ)
)

(Integration by parts) =
d∑

i,j,k=1
∂xi∂xj

(
S(λ)
ek,ij

∂xk(v̄ ? ζ)
)
− ∂xi

(
S(λ)
ek,ij

∂xj∂xk(v̄ ? ζ)
)

(Skew-symmetry of S) = −∇ ·

 d∑
j,k=1

S(λ)
ek,ij

∂xj∂xk(v̄ ? ζ)

 .

This finishes the proof.

4.3.3 Quantitative description of φ(λ)
ek

and S(λ)
ek

In this subsection, we will give some quantitative description of φ(λ)
ek and S(λ)

ek , which could be
seen as the spatial average of the corrector in cell and serves as the bricks to form X1,X2,Y1.
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Lemma 4.3.2 (Estimate of corrector). For each s ∈ (0, 2) there exists a constant 0 < C(s,Λ, d) <∞
such that for every λ ∈ (0, 1), i, j, k ∈ {1, · · · d}, z ∈ Zd

‖∇φek ? Φλ−1‖L2(z+�0) 6 Os(Cλ
d
2 ), ‖∇Sek,ij ? Φλ−1‖L2(z+�0) 6 Os(Cλ

d
2 ),

‖φ(λ)
ek
‖L2(z+�0) 6 Os(Cl(λ)), ‖S(λ)

ek,ij
‖L2(z+�0) 6 Os(Cl(λ)).

Proof. We talk only about the part φ(λ)
ek . [AKM18, Theorem 4.1] gives us three useful estimates

• d > 2, r > 1,
|∇φek ? Φr| 6 Os(C(s, d,Λ)r− d2 ) (4.3.10)

• d > 3,
‖φek‖L2(�0) 6 O2(C(d,Λ)) (4.3.11)

• d = 2, 2 6 r < R <∞, x, y ∈ Rd,

‖φek − φek ? Φr(0)‖L2(r�0) 6 Os(C(s,Λ) log
1
2 r)

|(φek ∗ Φr)(x)− (φek ∗ ΦR)(y)| 6 Os
(
C(s,Λ) log

1
2

(
2 + R+ |x− y|

r

))
.

(4.3.12a)

(4.3.12b)

and moreover when d > 3 there exists a Zd stationary φek by choice E
[∫
�0
φek

]
= 0.

1. Proof of ‖∇φek ? Φλ−1‖L2(z+�0) 6 Os(Cλ
d
2 ).

The first inequality implies ‖φ(λ)
ek ‖L2(z+�0) 6 Os(Cl

1
2 (λ)) : by choosing r = λ−1 and using

eq. (1.5.2), we have

|∇φek ? Φλ−1(x)| 6 Os(Cλ
d
2 )

=⇒ |∇φek ? Φλ−1(x)|2 6 Os/2(C2λd)

=⇒
∫
z+�0

|∇φek ? Φλ−1(x)|2 dx 6 Os/2(C2λd)

=⇒ ‖∇φek ? Φλ−1‖L2(z+�0) 6 Os(Cλ
d
2 ).

2. Proof that if d > 3, then ‖φ(λ)
ek ‖L2(z+�0) 6 Os(C). We apply the second inequality and use

the stationarity of φ to get that

‖φ(λ)
ek
‖L2(z+�0) 6 ‖φek‖L2(z+�0) + ‖φek ? Φλ−1‖L2(z+�0),

where the first one has been controlled. In fact, by the stationarity we have ‖φek‖L2(z+�0) 6 O2(C(d,Λ)),
this means for every s ∈ (0, 2),

E

[
exp

((‖φek‖L2(z+�0)

C(d,Λ)

)s
+

)]
6 E

[
exp

((‖φek‖L2(z+�0)

C(d,Λ)

)2

+

)]
6 2

=⇒ ‖φek‖L2(z+�0) 6 Os(C(d,Λ)).
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Thus we focus on the second one that

‖φek ? Φλ−1‖2L2(z+�0) =
∫
z+�0

∣∣∣∣∫
Rd
φek(x− y)Φλ−1(y) dy

∣∣∣∣2 dx
=

∫
z+�0

∣∣∣∣∫
Rd
φek(x− y)Φ

1
2
λ−1(y)Φ

1
2
λ−1(y) dy

∣∣∣∣2 dx
(Hölder’s inequality) 6

∫
z+�0

(∫
Rd
φ2
ek

(x− y)Φλ−1(y) dy
)(∫

Rd
Φλ−1(y) dy

)
︸ ︷︷ ︸

=1

dx

=
∫
z+�0

∫
Rd
φ2
ek

(x− y)Φλ−1(y) dy dx

(eq. (1.5.2)) 6 Os(C).

In the last step, we treat Φλ−1 as a weight for different small cubes so we could apply
eq. (1.5.2) and the stationarity of φek .

3. Proof that if d = 2, then ‖φ(λ)
ek ‖L2(z+�0) 6 Os(Cl(λ)).

This part is a little more difficult than the case d > 3 since the scale of integration is
different with the scale of convolution. So we need a intermediate step.

Lemma 4.3.3. There exist a constant 0 < C(s, d,Λ) <∞ such that

∀R > 1, |φek ? ΦR(x)− φek ? ΦR(y)| 6 Os(C|x− y|R−1). (4.3.13)

Proof.

|φek ? ΦR(x)− φek ? ΦR(y)|

=
∣∣∣∣∫ 1

0
∇φek ? ΦR(x+ t(y − x)) · (y − x) dt

∣∣∣∣
6 |y − x|

∫ 1

0
|∇φek ? ΦR(x+ t(y − x))| dt

6 Os(C|y − x|R−1).

The last step combines the estimate of ∇φek ? ΦR and eq. (1.5.2).

We apply eq. (4.3.13) eq. (4.3.12a) eq. (4.3.12b) to ‖φ(λ)
ek ‖L2(z+�0) for ∀λ ∈ (0, 1

2 ]

‖φ(λ)
ek
‖L2(z+�0) = ‖φek − φek ? Φλ−1‖L2(z+�0)

6 ‖φek − φek ? Φ2(z)‖L2(z+�0) + ‖φek ? Φ2(z)− φek ? Φ2‖L2(z+�0)

+‖φek ? Φ2 − φek ? Φλ−1‖L2(z+�0)

6 4 ‖φek − φek ? Φ2(z)‖L2(B2(z))︸ ︷︷ ︸
Apply eq. (4.3.12a)

+4 ‖φek ? Φ2(z)− φek ? Φ2‖L2(B2(z))︸ ︷︷ ︸
Apply eq. (4.3.13)

+ ‖φek ? Φ2 − φek ? Φλ−1‖L2(z+�0)︸ ︷︷ ︸
Apply eq. (4.3.12b)

6 Os(C) +Os(C) +Os(C log
1
2 (2 + (2λ)−1))

(eq. (1.5.2)) 6 Os(Cl(λ)).
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Here we use Φ2 since eq. (4.3.12a) eq. (4.3.12b) requires that the scale should be bigger
than 2. In last step, we use also the condition λ 6 1

2 to give up the constant term.

Since Sek has the same type of estimate as φek , see [AKM18, Proposition 6.2] , we apply the
same procedure to obtain the other half of the lemma 4.3.2.

4.3.4 Detailed H−1 and boundary layer estimate
In this subection, we complete the proof of theorem 4.3.1, which remains to give an explicit ran-
dom variable in the formula eq. (4.3.9a). This requires to analyze several norms like ‖a∇w−ā∇v̄‖H−1(Ur), ‖w−v̄‖L2(Ur), ‖∇Tλ‖L2(Ur), ‖Tλ‖L2(Ur),
where ‖a∇w− ā∇v̄‖H−1(Ur) has an equivalent expression from last section. We will use a variant
version of the localization technique in chapiter 6 of [AKM18] to separate the random factor and
then use two technical lemmas in section 4.2 to calibrate the size of the random factor.

Estimate of ‖a∇w − ā∇v̄‖H−1(Ur)

With the help of lemma 4.3.1, we have

‖a∇w − ā∇v̄‖H−1(Ur) = ‖∇ · F‖H−1(Ur) 6 ‖F‖L2(Ur),

and we use the identity lemma 4.3.1 to obtain

‖F‖L2(Ur) 6
d∑
j=1
‖(a − ā)∇(v̄ − v̄ ? ζ)‖L2(Ur)︸ ︷︷ ︸

H.1

+
d∑

j,k=1

∥∥∥(aφ(λ)
ek
− S(λ)

ek

)
∂xj∂xk(v̄ ? ζ)

∥∥∥
L2(Ur)︸ ︷︷ ︸

H.2

+
d∑
k=1
‖(∇Sek ? Φλ−1 − a∇φek ? Φλ−1) ∂xk(v̄ ? ζ)‖L2(Ur)︸ ︷︷ ︸

H.3

.

We treat the three terms respectively. For H.1, we have

H.1 6 dΛ‖∇v̄ −∇v̄ ? ζ‖L2(Ur) 6 dΛ‖v̄‖H2(Ur),

where the last step comes from the approximation of identity, see for example [AKM18, Lemma
6.7].

For H.2, since ‖φ(λ)
ek ‖L2(z+�0), ‖S

(λ)
ek ‖L2(z+�0) are obtained in lemma 4.3.2, we could use the

lemma 4.2.1 where we treat the cell of the scale ε = 1 and take g = ∂xj∂xk v̄, f = (aφ(λ)
ek − S(λ)

ek )

H.2 =
d∑

j,k=1
‖
(

aφ(λ)
ek
− S(λ)

ek

)
∂xj∂xk(v̄ ? ζ)‖L2(Ur)

(lemma 4.2.1) 6 C(Λ, d)
d∑
k=1

max
z∈Zd∩Ur

(
‖φ(λ)

ek
‖L2(z+�0) + ‖S(λ)

ek
‖L2(z+�0)

)
‖v̄‖H2(Ur).
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Hence, we extract the term of random variable

X1 :=
d∑
k=1

max
z∈Zd∩Ur

(
‖φ(λ)

ek
‖L2(z+�0) + ‖S(λ)

ek
‖L2(z+�0)

)
, (4.3.14)

lemma 4.2.2 and lemma 4.3.2 can be applied here to calibrate the size of random variables that

X1 6 Os
(
C(U, s, d)l(λ)(log r) 1

s

)
.

The above estimation gives a good recipe for the remaining part. For H.3, we have

H.3 =
d∑
k=1
‖ (∇Sek ? Φλ−1 − a∇φek ? Φλ−1) ∂xk(v̄ ? ζ)‖L2(Ur)

6 C(Λ, d)
d∑
k=1

max
z∈Zd∩Ur

(
‖∇φek ? Φλ−1‖L2(z+�0) + ‖∇Sek ? Φλ−1‖L2(z+�0)

)
‖v̄‖H1(Ur),

where we extract that

X2 :=
d∑
k=1

max
z∈Zd∩Ur

(
‖∇φek ? Φλ−1‖L2(z+�0) + ‖∇Sek ? Φλ−1‖L2(z+�0)

)
, (4.3.15)

and we apply lemma 4.2.2 and lemma 4.3.2 to get

X2 6 Os
(
C(U, s, d)λ d2 (log r) 1

s

)
.

Combing H.1,H.2,H.3, we get

‖a∇w − ā∇v̄‖H−1(Ur) 6 C(Λ, d)
(
‖v̄‖H2(Ur) + ‖v̄‖H2(Ur)X1,+‖v̄‖H1(Ur)X2

)
. (4.3.16)

Estimate of ‖w − v̄‖L2(Ur)

For ‖w − v̄‖L2(Ur), it’s just routine and

‖w − v̄‖L2(Ur) = ‖
d∑
k=1

φ(λ)
ek
∂xk v̄ ? ζ‖L2(Ur)

(lemma 4.2.1) 6 C(Λ, d)
d∑
k=1

max
z∈Zd∩Ur

(
‖φ(λ)

ek
‖L2(z+�0)

)
‖v̄‖H1(Ur)

6 C(Λ, d)‖v̄‖H1(Ur)X1.

=⇒ ‖w − v̄‖L2(Ur) 6 C(Λ, d)‖v̄‖H1(Ur)X1 . (4.3.17)
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Estimate of ‖∇Tλ‖L2(Ur), ‖Tλ‖L2(Ur)

Finally, we come to the estimate of ‖∇Tλ‖L2(Ur), ‖Tλ‖L2(Ur). We study ‖∇Tλ‖L2(Ur) at first.

‖∇Tλ‖L2(Ur) =

∥∥∥∥∥
(

1Ur\Ur,2l(λ) ?
1

l
d
2 +1(λ)

(∇ζ)
(
·

l(λ)

)) d∑
k=1

∂xk(v̄ ? ζ)φ(λ)
ek

∥∥∥∥∥
L2(Ur)︸ ︷︷ ︸

T.1

+

∥∥∥∥∥(1Ur\Ur,2l(λ) ? ζl(λ)

) d∑
k=1

∂xk(∇v̄ ? ζ)φ(λ)
ek

∥∥∥∥∥
L2(Ur)︸ ︷︷ ︸

T.2

+

∥∥∥∥∥(1Ur\Ur,2l(λ) ? ζl(λ)

) d∑
k=1

∂xk(v̄ ? ζ)∇φ(λ)
ek

∥∥∥∥∥
L2(Ur)︸ ︷︷ ︸

T.3

.

T.1 6 C
1
l(λ)

∥∥∥∥∥
d∑
k=1

1Ur\Ur,2l(λ)∂xk(v̄ ? ζ)φ(λ)
ek

∥∥∥∥∥
L2(Ur)

6
C(Λ, d)
l(λ)

d∑
k=1

max
z∈Zd∩Ur\Ur,2l(λ)

(
‖φ(λ)

ek
‖L2(z+�0)

)
‖1Ur\Ur,2l(λ) v̄‖H1(Ur).

We see that lemma 4.2.1 and lemma 4.2.2 also work, but we should pay attention to one small
improvement : the domain of integration is in fact restricted in Ur\Ur,2l(λ), so we would like
to give it a bound in terms of H2(Ur) rather than aH1(Ur). We borrow a trace estimate in
[AHKM18] Proposition A.1 that for f ∈ H1(Ur)

‖f1Ur\Ur,2l(λ)‖L2(Ur) 6 C(U, d)l(λ) 1
2 ‖f‖

1
2
H1(Ur)‖f‖

1
2
L2(Ur), (4.3.18)

using eq. (4.3.18) then we obtain an estimate

T.1 6
C(Λ, d)
l

1
2 (λ)

d∑
k=1

max
z∈Zd∩Ur\Ur,2l(λ)

(
‖φ(λ)

ek
‖L2(z+�0)

)
‖v̄‖

1
2
H2(Ur)‖v̄‖

1
2
H1(Ur),

so we define the random variable

Y1 :=
d∑
k=1

max
z∈Zd∩(Ur\Ur,2l(λ))

(
‖φ(λ)

ek
‖L2(z+�0)

)
, (4.3.19)

and we have the estimate by lemma 4.2.2 and lemma 4.3.2

Y1 6 Os
(
C(U, s, d)l(λ)(log r) 1

s

)
.

We skip the details since they are analogue to the previous part. T.3 follows from the same
type of estimate as T.1 and T.2 is routine where we suffices to apply lemma 4.2.1 and eq. (4.3.18).
We find that

T.2 6 C(U, d)‖v̄‖H2(Ur)Y1,

T.3 6 C(U, d)‖v̄‖
1
2
H2(Ur)‖v̄‖

1
2
H1(Ur)l

1
2 (λ)X2.
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The three estimates of T.1,T.2,T.3 implies that

‖∇Tλ‖L2(Ur) 6 C(Λ, d)‖v̄‖
1
2
H2(Ur)‖v̄‖

1
2
H1(Ur)

1
l

1
2 (λ)
Y1

+ C(U, d)
(
‖v̄‖H2(Ur)Y1 + ‖v̄‖

1
2
H2(Ur)‖v̄‖

1
2
H1(Ur)l

1
2 (λ)X2

) (4.3.20a)

(4.3.20b)

Finally, we find that ‖Tλ‖L2(Ur) has been contained in the estimate T.1 that

‖Tλ‖L2(Ur) 6 C(U, d)‖v̄‖
1
2
H2(Ur)‖v̄‖

1
2
H1(Ur)l

1
2 (λ)Y1 . (4.3.21)

eq. (4.3.9a), eq. (4.3.16), eq. (4.3.17), eq. (4.3.20), eq. (4.3.21) conclude the proof of theo-
rem 4.3.1. We have

‖v − w‖H1(Ur) 6 C(U,Λ)
(
‖a∇w − ā∇v̄‖H−1(Ur) + µ‖w − v̄‖L2(Ur)

+‖∇Tλ‖L2(Ur) + (1
r

+ µ)‖Tλ‖L2(Ur)

)
6 C(U,Λ, d)

(
‖v̄‖H2(Ur) + ‖v̄‖H2(Ur)X1 + ‖v̄‖H1(Ur)X2 + µ‖v̄‖H1(Ur)X1

+l(λ) 1
2 ‖v̄‖

1
2
H2(Ur)‖v̄‖

1
2
H1(Ur)

((
µ+ 1

r
+ 1
l(λ)

)
Y1 + X2

)
+ ‖v̄‖H2(Ur)Y1

)
= C(U,Λ, d)

[
‖v̄‖H2(Ur) +

(
‖v̄‖H2(Ur) + µ‖v̄‖H1(Ur)

)
X1

+
(
l(λ) 1

2 ‖v̄‖
1
2
H2(Ur)‖v̄‖

1
2
H1(Ur) + ‖v̄‖H1(Ur)

)
X2

+
(
l(λ) 1

2

(
µ+ 1

r
+ 1
l(λ)

)
‖v̄‖

1
2
H2(Ur)‖v̄‖

1
2
H1(Ur) + ‖v̄‖H2(Ur)

)
Y1

]
We add one table of X1,X2,Y1 to check the its typical size..

R.V Expression Os size

X1
∑d
k=1 max

z∈Zd∩Ur

(
‖φ(λ)

ek ‖L2(z+�0) + ‖S(λ)
ek ‖L2(z+�0)

)
Os
(
Cl(λ)(log r) 1

s

)
X2

∑d
k=1 max

z∈Zd∩Ur

(
‖∇φek ? Φλ−1‖L2(z+�0) + ‖∇Sek ? Φλ−1‖L2(z+�0)

)
Os
(
Cλ

d
2 (log r) 1

s

)
Y1

∑d
k=1 max

z∈Zd∩(Ur\Ur,2l(λ))

(
‖φ(λ)

ek ‖L2(z+�0)

)
Os
(
Cl(λ)(log r) 1

s

)
Figure 4.2: A table of random variables X1,X2,Y1

4.4 Iteration estimate
In this part, we use theorem 4.3.1 to analyze the algorithm, but first we give an H1, H2 à priori
estimate to explain why we do some detailed analysis in the part of trace : the H2 norm allows
us to gain one factor of λ in compared to the H1 norm.
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4.4.1 Proof of a H1, H2 estimate
Lemma 4.4.1. In eq. (4.1.3), we have a control

‖ū‖H1(Ur) + λ−1‖ū‖H2(Ur) 6 C(U,Λ, d)‖v − u‖H1(Ur).

Proof. We test the first equation (λ2 −∇ · a∇)u0 = −∇ · a∇(u− v) in eq. (4.1.3) by u0 and use
the ellipticity condition to obtain

λ2‖u0‖2L2(Ur) + Λ−1‖∇u0‖2L2(Ur) 6 λ2‖u0‖2L2(Ur) +
∫
Ur

∇u0 · a∇u0 dx

=
∫
Ur

∇u0 · a∇(u− v) dx

6 Λ‖∇(v − u)‖L2(Ur)‖∇u0‖L2(Ur)

=⇒ ‖∇u0‖L2(Ur) 6 Λ‖∇(v − u)‖L2(Ur).

We put back this term in the inequality, we also obtain that

λ‖u0‖L2(Ur) 6 Λ‖∇(v − u)‖L2(Ur). (4.4.1)

Using this estimate, we obtain that of ∇ū by testing −∇ · ā∇ū = −∇ · a∇(u− v − u0) with ū∫
Ur

∇ū · ā∇ū dx =
∫
Ur

∇ū · a∇(u− v − u0) dx

=⇒ ‖∇ū‖L2(Ur) 6 Λ2‖∇(u− v − u0)‖L2(Ur)

6 Λ2‖∇(u− v)‖L2(Ur) + Λ2‖∇u0‖L2(Ur)

6 C(U,Λ, d)‖∇(u− v)‖L2(Ur).

Finally, we calculate the H2 norm of ū. Because it is the solution of −∇ · ā∇ū = λ2u0, we
apply the classical H2 estimate of elliptic equation (see [ES98])

Λ−1‖ū‖H2(Ur) 6 λ2‖u0‖L2(Ur)

( Using eq. (4.4.1)) 6 λΛ‖∇(v − u)‖L2(Ur)

=⇒ ‖ū‖H2(Ur) 6 λΛ2‖∇(v − u)‖L2(Ur).

Remark. If we use Poincaré’s inequality to ∆ū to get the L2(Ur) of ∇ū, we will get a factor of
r, which is less optimal, but the regularization reduces this factor to λ−1.

4.4.2 Proof of main theorem
With all these tools in hand, we can now prove theorem 4.1.1. We will denote byR(λ, µ, r, a, d, U)
the right hand side of eq. (4.3.3), so we aim to prove that

‖v − w‖H1(Ur) 6 R(λ, µ, r,a, d, U, v̄).

Proof. We take the first and second equations in the eq. (4.1.3) and use the equation eq. (4.1.1)

−∇ · ā∇ū = λ2u0

= f +∇ · a∇(v + u0)
= −∇ · a∇(u− v − u0).
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This is in the frame of theorem 4.3.1 thanks to the classical H2 theory that ū ∈ H2(Ur). We
apply theorem 4.3.1 with abuse of notation of the two scale expansion

w := ū+
d∑
k=1

∂xk(ū ? ζ)φ(λ)
ek
.

Then we obtain
‖w − (u− v − u0)‖H1(Ur) 6 R(λ, 0, r,a, d, U, ū). (4.4.2)

The third equation of eq. (4.1.3) (λ2 − ∇ · a∇)ũ = (λ2 − ∇ · ā∇)ū is also of the form of the
theorem theorem 4.3.1, so we obtain

‖ũ− w‖H1(Ur) 6 R(λ, µ, r,a, d, U, ū). (4.4.3)

We combine this two estimates and use the triangle inequality to obtain

‖(v + u0 + ũ)− u‖H1(Ur) 6 R(λ, 0, r,a, d, U, ū) +R(λ, λ, r,a, d, U, ū). (4.4.4)

It remains to see how to adapt R(λ, 0, r,a, d, U, ū) in a proper way in the context of eq. (4.1.1).
We plug in the formula in lemma 4.4.1 to separate all the norms of H1 and H2 and use µ < λ.

R(λ, µ, r,a, d, U, ū) 6 C(U,Λ, d)
[
λ+ λX1 +

(
1 + l(λ) 1

2λ
1
2

)
X2

+
(
l(λ) 1

2λ
1
2 + 1

)(
λ+ 1

r
+ 1
l(λ)

)
Y1

]
‖v − u‖H1(Ur).

We check the fig. 4.2 and notice that the largest term is l(λ)− 1
2λ

1
2Y1, so we obtain that the

factor is of type Os
(
C(U,Λ, s, d)(log r) 1

s l(λ) 1
2λ

1
2 )
)
as desired.
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