
Préparée au DMA, École Normale Supérieure

Homogénéisation quantitative sur l’amas de percolation et
le système de particules

Soutenue par

Chenlin Gu
Le 1 Avril 2021
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Cette thèse consiste en les travaux de recherche [133, 134, 85, 135, 115] pendant mon
doctorat et étudie l’interaction entre l’homogénéisation quantitative et deux modèles stochas-
tiques : le modèle de percolation surcritique et le système de particules en interaction. Un ob-
jet fondamental de la théorie de l’homogénéisation stochastique est de comprendre l’équation

−∇ ⋅ (a∇u) = f dans Br, (1)

avec a ∶ Rd → Rd×dsym un coefficient symétrique, Zd-stationnaire, ergodique satisfaisant l’ellipticité
uniforme ∣ξ∣2 ⩽ ξ ⋅ aξ ⩽ Λ∣ξ∣2, et où Br est la boule euclidienne de rayon r centrée à l’origine.
Pour r très grand, sa solution peut être approximée par la solution effective ū satisfaisant

−∇ ⋅ (ā∇ū) = f dans Br, (2)

avec la même condition au bord. Ici, ā est appelé le coefficient effectif, qui est une matrice
constante. La quantité ā caractérise non seulement le comportement asymptotique à grande
échelle du problème elliptique, mais saisit également le comportement à grande échelle et à
long terme du problème parabolique. C’est le lien entre l’homogénéisation et divers modèles
de diffusion en probabilité, où la théorie quantitative de l’homogénéisation fournit des outils
pour les estimations. Réciproquement, les deux modèles étudiés dans cette thèse ramènent
des nouvelles techniques à la théorie de l’homogénéisation : le modèle de percolation va au-
delà du cadre de l’ellipticité uniforme, tandis que le système de particules explore une analyse
des EDP en dimension infinie avec l’environnement dynamique.

Malgré ces applications, nous devons garder à l’esprit une motivation importante de
l’homogénéisation dès le début : une approximation numérique efficace. En fait, la solution
numérique dans l’eq. (1) est très coûteuse à calculer numériquement pour un grand r si l’on la
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8 CHAPITRE 0. RÉSUMÉ DE LA THÈSE

résout naïvement avec l’algorithme des différences finies, alors que ū dans l’eq. (2) peut être
calculée rapidement car le coefficient constant fournit une très grande régularité. Cependant,
pour un r fixe, il y a toujours un écart entre la solution réelle u et la solution effective ū.
Récemment, Armstrong, Hannukainen, Kuusi et Mourrat ont proposé un nouvel algorithme
itératif (AHKM) qui peut approximer u avec une précision arbitraire dans H1, et le coût
est proche de celui du calcul de ū. Dans le chapitre 2, nous présenterons cet algorithme et
prouverons sa cohérence numérique.

Dans le chapitre 3, l’algorithme itératif AHKM est appliqué aux amas de percolation de
Zd-Bernoulli (d ⩾ 2), qui est un modèle fondamental de milieu perforé. Plus précisément,
nous échantillonnons des variables aléatoires i.i.d. de Bernoulli avec le paramètre p ∈ (pc,1]
où pc est le point critique et p > pc assure un unique amas infini C∞. Nous étudions ensuite le
problème de Dirichlet l’eq. (1) sur l’amas maximal de type C∞ dans une grande boîte. Comme
la condition d’ellipticité uniforme n’est plus satisfaite et la géométrie de l’amas est fractale,
l’analyse devient plus difficile. La théorie de l’homogénéisation quantitative sur la percolation
est initiée par Armstrong et Dario et une technique importante est une décomposition de type
Calderón-Zygmund. Sur la base de ces résultats et techniques, nous prouvons une méthode
numérique rigoureuse pour obtenir une approximation efficace à la fois du potentiel u et du
gradient ∇u.

Le chapitre 4 se concentre sur la fonction de Green parabolique sur l’amas infini de
percolation C∞, c’est-à-dire p(⋅, ⋅, y) ∶ R+ ×C∞ → [0,1] en résolvant

{ ∂tp(⋅, ⋅, y) −∇ ⋅ a∇p(⋅, ⋅, y) = 0 dans (0,∞) ×C∞,
p(0, ⋅, y) = δy dans C∞,

(3)

qui est la probabilité de transition du processus de saut à partir de y ∈ C∞ associé au
générateur ∇⋅a∇. Ce sujet est très étudié par de nombreux pionniers et les résultats tels que
la limite gaussienne, le principe d’invariance, et le théorème central limite local asymptotique
ont été prouvés. Tous ces résultats nous indiquent que p(t, ⋅, y) est proche d’une densité
gaussienne pour t grand. Avec la collaboration de Dario, nous allons un pas plus loin pour
prouver un taux de convergence quasi optimal, qui peut être interprété comme un théorème
limite central quantitatif. La preuve fait appel à plusieurs résultats des travaux précédents
d’Armstrong et de Dario, ainsi qu’à l’estimation du flux prouvée dans le chapitre 3.

Bien que la marche aléatoire sur l’amas infini de percolation soit compliquée, elle peut
toujours être considérée comme la diffusion d’une particule dans un environnement aléatoire
statique. Dans les chapitres 5 et 6, nous nous tournons vers les systèmes de particules en
interaction, où l’environnement est dynamique et où il y a une infinité de particules au lieu
d’une seule. Notre modèle peut être considéré comme le processus d’exclusion symétrique
généralisé dans un espace continu. Il ne satisfait pas la condition de gradient, et il faut lever
l’espace des fonctions défini sur la configuration des particules ∑∞

i=1 δxi . Dans le chapitre 5,
nous prouvons une limite pour la relaxation vers l’équilibre de type t− d2 .

Afin de décrire le comportement asymptotique à long terme de ce nuage de particules,
il faut identifier le coefficient de diffusion ā, qui est une analogie du coefficient effectif pour
les systèmes de particules. Le chapitre 6 présentera un travail conjoint avec Giunti et Mour-
rat sur l’approximation en volume fini du coefficient volumique ā. Nous remarquons que
pour les équations elliptiques, comprendre la convergence de l’approximation en volume fini
de ā est la base de l’homogénéisation quantitative si l’on adopte l’approche de renormal-
isation d’Armstrong, Kuusi, Mourrat et Smart. Notre contribution consiste à généraliser
cette méthode à l’analyse en dimension infinie, avec plusieurs inégalités fonctionnelles sans
dimension (l’inégalité de Poincar’e multi-échelle, l’inégalité de Caccioppoli etc.) Les espaces
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de fonctions permettant d’étudier le système de particules sont très différents des espaces de
fonctions classiques sur Rd.

Le reste du chapitre 1 est organisé comme suit. Dans la section 0.1, nous donnerons
un aperçu de la théorie de l’homogénéisation, en particulier de la méthode quantitative clé
utilisée tout au long de la thèse. Ensuite, dans la section 0.2, nous exposerons les détails de
l’homogénéisation dans les algorithmes numériques, et le résultat principal des chapitres 2
et 3 concernant l’algorithme AHKM. Nous passons en revue le modèle de percolation dans
la section 0.3, puis nous présentons notre contribution dans le chapitre 4. La section 0.4 a
pour but d’introduire les résultats des chapitres 5 et 6, et nous rappellerons aussi quelques
résultats classiques dans le système de particules.
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0.1 Un panorama de l’homogénéisation

La théorie de l’homogénéisation a une longue histoire et est très étudiée dans diverses direc-
tions. Le sujet le plus classique consiste à étudier le comportement de l’opérateur de forme
de divergence −∇ ⋅ (a( ⋅ε)∇) lorsque ε → 0. Les deux situations les plus typiques sont de
supposer que a est soit périodique, soit stationnaire et ergodique. Du point de vue mathé-
matique, il existe des résultats qualitatifs et quantitatifs. Comme on peut s’y attendre, les
résultats qualitatifs ont été obtenus en premier, et ont permis d’identifier l’opérateur effectif
−∇ ⋅ (ā∇), où ā est constant, mais ā n’est pas la moyenne ou l’espérance de a. Les résultats
quantitatifs ont été obtenus bien plus tard, et visaient à déterminer les taux de convergence.
En fait, l’homogénéisation est également une méthode numérique utile, et les estimations
d’erreurs sont des questions naturelles du point de vue de l’analyse numérique. De plus,
l’homogénéisation fournit des outils pratiques pour d’autres sujets en EDP et en probabilité.
Ceux-ci seront discutés en détail dans les autres sections de ce chapitre. Enfin, quel que soit
le cadre (périodique, stochastique) et les objectifs (qualitatifs, quantitatifs), la plupart des
résultats de la théorie de l’homogénéisation sont construits autour les trois objets clés : la
matrice de coefficient effectif, les correcteurs et l’expansion à deux échelles.

Dans cette section, nous passons en revue certains des résultats généraux de la théorie de
l’homogénéisation. Nous parlerons d’abord des résultats dans le cadre périodique, puis nous
nous concentrerons sur le cas stochastique. Des monographies excellentes [47, 219, 145, 199,
210, 25] et des exposés [7, 185] sur la théorie de l’homogénéisation sont de bonnes références.

0.1.1 Homogénéisation périodique

Dans ce paragraphe, nous supposons que a ∶ Rd → Rd×dsym est Zd-matrice périodique, symétrique
avec une condition d’ellipticité uniforme ∣ξ∣2 ⩽ ξ ⋅ aξ ⩽ Λ∣ξ∣2. Nous étudions le problème de
Dirichlet pour uε ∈ g +H1

0(U)

{ −∇ ⋅ (a ( ⋅
ε
)∇uε) = f dans U,

uε = g sur ∂U, (4)

avec f ∈ H−1(U), g ∈ H1(U), et U ⊆ Rd avec une frontière de Lipschitz. Pour ε → 0, le
comportement de la solution uε peut être approximé par la solution homogénéisée

{ −∇ ⋅ (ā∇ū) = f dans U,
ū = g sur ∂U. (5)

Nous donnons son énoncé précis :

Théorème 0.1.1 ([47, 212, 187]). Étant donné (a(x))x∈Rd un champ matriciel symétrique
périodique de Zd avec la condition d’ellipticité uniforme, il existe une matrice effective con-
stante ā, telle que la solution (uε)ε>0 du problème de Dirichlet l’eq. (4) admet une solution
homogénéisée ū résolvant l’eq. (5) et, lorsque ε tend vers zéro,

uε
L2(U)
ÐÐÐ→ ū, ∇uε

L2(U)
ÐÐÐ⇀ ∇ū, a ( ⋅

ε
)∇uε

L2(U)
ÐÐÐ⇀ ā∇ū,

où ∇uε
L2(U)
ÐÐÐ⇀ ∇ū et a ( ⋅

ε
)∇uε

L2(U)
ÐÐÐ⇀ ā∇ū sont compris comme la convergence faible.
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Nous donnons ici une esquisse de sa preuve. Par la borne de l’estimation de l’énergie, la
faible compacité de H1(U), et le théorème de Rellich, à une sous-suite près, nous avons

ε→ 0, uε
L2(U)
ÐÐÐ→ ū, ∇uε

L2(U)
ÐÐÐ⇀ ∇ū, a ( ⋅

ε
)∇uε

L2(U)
ÐÐÐ⇀ q, (6)

où la quantité a ( ⋅
ε
)∇uε et sa limite faible q sont quelques fois appelées le flux. La question

principale est de caractériser ū, ā et q. Une méthode heuristique classique pour ce problème
est l’ansatz d’expansion asymptotique à deux échelles. (voir [47]) : nous écrivons de manière
informelle uε comme suit

uε(x) = u0 (x,
x

ε
) + εu1 (x,

x

ε
) + ε2u1 (x,

x

ε
) +⋯, (7)

où dans chaque terme ui ∶ U × Td → R, et ui(x, ⋅) est Zd-périodique. L’intuition ici est de
développer la fonction dans différents ordres de ε comme une série de Taylor, et d’utiliser la
première coordonnée x pour décrire le comportement macroscopique, et la seconde coordon-
née x

ε pour le comportement oscillant microscopique. En comparant chaque ordre de ε, on
verra pour l’ordre zéro u0 = ū ; pour l’ordre ε, il est décrit par les correcteurs du premier
ordre {φei}1⩽i⩽d satisfaisant l’équation du problème cellulaire

{ −∇ ⋅ a(ei +∇φei) = 0 dans Td,
∫Td φei = 0 ,

(8)

et u1 (x, xε ) = ∑
d
i=1(∂xi ū(x))φei (xε ). Ensuite, nous calculons le flux

a ( ⋅
ε
)∇uε =

d

∑
i=1

a ( ⋅
ε
)(ei +∇φei (

⋅
ε
))∂xi ū +O(ε), (9)

ce qui implique la définition du coefficient homogénéisé

āei ∶= ∫
Td

a(ei +∇φei), (10)

car elle nous permet de voir la limite faible dans l’eq. (9) en passant ε → 0. Enfin, par le
même argument, la limite faible de ∇ ⋅ (a ( ⋅

ε
)∇uε) est ∇ ⋅ (ā∇ū) et cela donne l’eq. (5).

Cet ansatz contient de nombreux ingrédients et inspire de nombreux développements
dans la théorie de l’homogénéisation. Il nous aide à dériver la définition des correcteurs dans
l’eq. (8), de la matrice de coefficient effectif dans l’eq. (10) et de l’expansion à deux échelles.

wε ∶= ū + ε∑
i=1

(∂xi ū)φei (
⋅
ε
) . (11)

Cependant, cet ansatz n’est pas rigoureux, car l’ordre d’erreur est ∥wε − uε∥H1(U) ≃
√
ε en

raison de l’effet de couche limite. Voir la discussion dans [48, 8, 26].
La première preuve rigoureuse du théorème 0.1.1 est due à De Giorgi et Spanolo [212,

213, 88], où l’argument est une méthode de style compacité pour l’opérateur différentiel
−∇ ⋅ (aε∇). De plus, cette méthode suppose seulement la condition de matrices à coefficients
symétriques (aε)ε⩾0 avec une estimation uniforme ∣ξ∣2 ⩽ ξ ⋅ aεξ ⩽ Λ∣ξ∣2, elle s’applique donc à
des paramètres plus généraux que le coefficient périodique ou stationnaire. Plus tard, cette
méthode est étendue aux matrices asymétriques par Murat et Tartar dans [187].
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Il existe également des méthodes permettant de rendre rigoureux l’ansatz d’expansion
asymptotique. Une approche élégante et robuste est la méthode de la fonction test oscillante
(également appelée la méthode de l’énergie) proposée par Tartar. L’idée principale est de
tester l’eq. (4) avec la fonction oscillante comme vε = v + ε∑di=1(∂xiv)φei ( ⋅ε) avec v ∈ C∞

c (U)
et ensuite passer ε à 0. Dans cette procédure, on a besoin de la convergence faible du
produit de ∇uε et de a ( ⋅

ε
)∇vε, et ceci est le théorème de compacité compensée développé par

Tartar dans [218] et par Murat dans [186]. Un autre cadre pratique pour l’homogénéisation
périodique est la convergence en deux échelles de Nguetseng dans [194] et par Allaire dans [6],
où ils définissent une topologie avec plus d’informations que la convergence faible classique.

Divers autres résultats sont développés dans l’homogénéisation périodique. Dans l’ouvrage
célèbre [33, 35, 34] d’Avellaneda et Lin, ils prouvent les résultats de régularité, les théorèmes
de Liouville et l’estimation de Calderón-Zygmund. Dans l’ouvrage [146, 147, 148], Kenig, Lin
et Shen développent l’homogénéisation quantitative pour les systèmes elliptiques à coefficient
périodique, y compris le taux de convergence pour les problèmes de Dirichlet et de Neumann
et le taux de convergence pour la fonction de Green. Voir également [210] pour une revue
complète.

0.1.2 Homogénéisation stochastique

La théorie de l’homogénéisation stochastique qualitative est développée dans les années 80,
avec les travaux de Kozlov [160], Papanicolaou et Varadhan [198] et Yurinskĭi [225]. Le
réglage du coefficient a ∶ Rd → Rd×dsym satisfait aux conditions suivantes

1. a est une matrice symétrique avec une condition d’ellipticité uniforme ∣ξ∣2 ⩽ ξ ⋅aξ ⩽ Λ∣ξ∣2;

2. a est un champ aléatoire ergodique à valuer dans Zd.

Théorème 0.1.2 ([160], [198], [225]). Étant donné un champ de coefficient (a(x))x∈Rd sat-
isfaisant les conditions ci-dessus, alors il existe une matrice effective constante ā, telle que
la solution (uε)ε>0 du problème de Dirichlet l’eq. (4) admet une solution homogénéisée ū
résolvant l’eq. (5) et, lorsque ε tend vers zéro,

uε
L2(U)
ÐÐÐ→ ū, ∇uε

L2(U)
ÐÐÐ⇀ ∇ū, a ( ⋅

ε
)∇uε

L2(U)
ÐÐÐ⇀ ā∇ū.

On peut répéter la preuve des fonctions tests oscillantes, mais une différence majeure est
la construction du correcteur, car le correcteur n’est plus défini par le problème cellulaire
l’eq. (8). En fait, comme la solution du problème cellulaire peut être vue comme une solution
périodique dans Rd, il est naturel de définir le correcteur φei en résolvant

−∇ ⋅ a(ei +∇φei) = 0 dans Rd. (12)

Cependant, cette équation n’est pas bien définie si on ne donne pas l’espace des fonctions.
Une approche consiste à ajouter une régularisation λ > 0

λφλei −∇ ⋅ a(ei +∇φλei) = 0 dans Rd. (13)

Nous pouvons prendre λ↘ 0 et extraire une sous-séquence de ∇φλei qui admet une limite de
∇φei en tant que champ de gradient Zd-stationnaire en résolvant l’eq. (12). Il suffit alors de
définir

āei ∶= E [∫[0,1]d
a(ei +∇φei)] , (14)
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et justifier l’argument de la convergence faible par le théorème ergodique de Birkhoff

a ( ⋅
ε
)(ei +∇φei (

⋅
ε
)) L2
Ð⇀ āei.

L’homogénéisation stochastique qualitative a ensuite diverses applications, mais certains
aspects ne sont pas pratiques à utiliser.:

• Nous rappelons que la solution de l’eq. (12) est résolue pour ∇φei au lieu de φei , donc
φei est défini à une constante près et a priori il n’est pas stationnaire. Ceci est très
différent de l’homogénéisation périodique, où φei lui-même est périodique.

• Pour obtenir ∇φei , nous devons résoudre le problème dans l’espace entier Rd, ce qui est
impossible en pratique. En revanche, le problème cellulaire l’eq. (8) nécessite seulement
de résoudre le problème dans un tore unitaire.

• Obtenir ā en pratique hérite également de la difficulté de celle de ∇φei .

Une méthode pratique pour calculer ā est d’utiliser le théorème 0.1.2 dans un cube unitaire
◻ ∶= (−1

2 ,
1
2)
d avec une condition limite affine

{ −∇ ⋅ (a ( ⋅
ε
)∇uε) = 0 dans ◻,

uε(x) = ei ⋅ x sur ∂◻. (15)

Puisque sa solution homogénéisée est ū(x) = ei⋅x, la convergence faible du flux est a ( ⋅
ε
)∇uε L2

Ð⇀ āei,
donc nous pouvons utiliser la moyenne spatiale pour approximer ā.

∫◻
a ( ⋅

ε
)∇uε ε→0ÐÐ→ āei.

Après un changement d’échelle, cela équivaut à approximer l’eq. (12) dans un grand cube
◻m ∶= (−3m

2 ,
3m
2 )d avec φei,m ∈H1

0(◻m) en résolvant

−∇ ⋅ a(ei +∇φei,m) = 0 dans ◻m, (16)

et la moyenne spatiale à grande échelle devient

a(◻m)ei ∶=
1

∣◻m∣ ∫◻m
a(ei +∇φei,m), a(◻m) m→∞ÐÐÐ→ ā. (17)

Cette méthode est appelée le volume élémentaire représentatif, et est largement utilisée
comme méthode numérique. Dans l’ouvrage [63] de Bourgeat et Piatnitski, ils prouvent
la cohérence de cette méthode pour l’eq. (16) avec une condition aux limites de Dirichlet,
Neumann, ou périodique. Ils obtiennent également un taux de convergence non explicite
pour E[a(◻m)] sous certaines conditions de mélange.

La théorie quantitative de l’homogénéisation stochastique est développée ces dernières
années. L’une des approches consiste à utiliser l’inégalité Efron-Stein en s’appuyant sur les
idées de Naddaf et Spencer dans [188]. Dans les travaux de Gloria et Otto [123, 124], ils
étudient le problème défini sur un graphe en treillis (Zd,Ed) et supposent que

{a(e)}e∈Ed i.i.d. et 0 < α < a(e) < β <∞.
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Ensuite, pour le problème résolvant l’eq. (13), ils obtiennent une estimation uniforme pour
d ⩾ 3 [123, la proposition 2.1]

E [∣φλei ∣
p] ⩽ Cp.

Ceci ([123, la corollaire 2.1]) répond à la question longtemps ouverte : pour d ⩾ 3, il existe
un unique φei stationnaire résolvant l’eq. (12) tel que E[φei] = 0. Par la suite, cette méthode
est également généralisée au cadre Rd en supposant la condition du trou spectral pour a en
Gloria et Otto [125] et Gloria, Neukamm, Otto [121].

Une autre approche de l’homogénéisation quantitative est l’approche de renormalisation
initiée par Armstrong et Smart en [31], qui ont étendu les techniques d’Avellaneda et Lin [33,
35] et celles de Dal Maso et Modica [80, 81]. Ces résultats ont ensuite été améliorés dans
une série de travaux [30, 23, 24] par Armstrong, Kuusi et Mourrat, et maintenant reformulés
dans la monographie [25] des mêmes auteurs. Ils travaillent sur le cadre Rd et supposent

(a(x))x∈Rd a une corrélation de portée finie.

Une corrélation en distance unitaire signifie que, pour deux ensembles quelconques U,V ⊆ Rd
tels que dist(U,V ) ⩾ 1, les coefficients (a(x))x∈U et (a(x))x∈V sont indépendants. En fait,
cette méthode est robuste et s’applique également aux champs de coefficients généraux avec
une condition de mélange polynomiale. Comme cette thèse utilise aussi beaucoup l’approche
de renormalisation, nous faisons un bref rappel dans les paragraphes suivants.

L’idée principale est similaire à l’eq. (17) et nous avons besoin du taux de convergence.
Soit ◻m = (−3m

2 ,
3m
2 )d et `p(x) ∶= p ⋅ x, nous définissons la densité d’énergie de Dirichlet dans

le volume fini
ν(◻m, p) ∶= inf

v∈`p+H1
0(◻m)

1
∣◻m∣ ∫◻m

1
2
∇v ⋅ a∇v. (18)

Nous désignons par v(◻m, p, ⋅) son minimiseur, et ν(◻m, p) = 1
2p ⋅ a(◻m)p de la définition

dans l’eq. (16) et l’eq. (17). On observe que ν(◻m, p) est une quantité sous-additive, car pour
une échelle n <m

ṽ(x) = ∑
z∈3nZd∩◻m

v(z +◻n, p, x)1{x∈z+◻n},

fournit un sous-minimiseur pour le problème d’optimisation de ν(◻m, p). Nous avons alors

ν(◻m, p) ⩽
1

∣◻m∣ ∫◻m
1
2
∇ṽ ⋅ a∇ṽ = 3−d(m−n) ∑

z∈3nZd∩◻m
ν(z +◻n, p).

Par stationnarité, on prend l’espérance et on obtient que E[a(◻m)] ⩽ E[a(◻n)], donc la suite
décroissante {E[a(◻m)]}m⩾1 admet une limite. Nous définissons

ā ∶= lim
m→∞

E[a(◻m)], (19)

et à partir de l’eq. (17), nous savons que les définitions dans l’eq. (19) et l’eq. (14) coïncident.
Afin d’obtenir le taux de convergence de ā(◻m) vers ā, nous considérons le problème dual

ν∗(◻m, q) ∶= sup
u∈H1(◻m)

1
∣◻m∣ ∫◻m

(−1
2
∇u ⋅ a∇u + q ⋅ ∇u) . (20)

Nous désignons par u(◻m, q, ⋅) le maximiseur, et ν∗(◻m, q) = 1
2q ⋅ a

−1
∗ (◻m)q puisqu’on peut

vérifier que q ↦ ν∗(◻m, q) est aussi une forme quadratique. Par un argument similaire et
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en remarquant que u(◻m, q, ⋅) est un sous-maximiseur pour tout problème ν∗(z + ◻n, q),
z ∈ 3nZd ∩◻m, nous avons

ν∗(◻m, q) = 3−d(m−n) ∑
z∈3nZd∩◻m

1
∣◻n∣ ∫z+◻n

(−1
2
∇u(◻m, q, ⋅) ⋅ a∇u(◻m, q, ⋅) + q ⋅ ∇u(◻m, q, ⋅))

⩽ 3−d(m−n) ∑
z∈3nZd∩◻m

ν∗(z +◻n, q).

Par conséquent, ν∗(◻m, q) est également une quantité sous-additive, et {E[a∗(◻m)]}m⩾1 est
une suite croissante. La quantité duale aide à contrôler le taux de convergence car nous
pouvons tester ν∗(◻m, q) avec le minimiseur v(◻m, p, ⋅) de ν(◻m, p) et obtenir

−1
2
p ⋅ a(◻m)p + p ⋅ q ⩽ 1

2
q ⋅ a−1

∗ (◻m)q.

En fixant q = a∗(◻m)p, on obtient

a∗(◻m) ⩽ a(◻m). (21)

Le taux de convergence peut être majoré par

∣E[a(◻m)] − ā∣ ⩽ ∣E[a(◻m)] −E[a∗(◻m)]∣. (22)

En pratique, l’eq. (22) peut être très utile, car les quantités a(◻m),a∗(◻m) peuvent toujours
être calculées localement dans ◻m, et la fluctuation peut être estimée par le TCL ou inégalité
de concentration. Ainsi, si nous observons que ∣a(◻m) − a∗(◻m)∣ est très petit, alors nous
pouvons affirmer que l’approximation ∣a(◻m) − ā∣ est également très précise.

La preuve théorique que limm→∞ ∣E[a(◻m)] − E[a∗(◻m)]∣ = 0 demande plus de travail.
On peut trouver sa preuve originale dans [31], ou une preuve simplifiée dans [25, le chapitre 2]
où l’inégalité de Poincaré à multi-échelle est utilisée. Nous pouvons non seulement prouver
la convergence de l’espérance, mais aussi contrôler la fluctuation : il existe un exposant
α(d,Λ) ∈ (0, 1

2] et, pour tout s ∈ (0, d), une constante C(s, d,Λ) <∞ telle que

∣a(◻m) − ā∣ + ∣a∗(◻m) − ā∣ ⩽ C3−α(d−s)m +O1(3−sm), (23)

où la notation Os est définie comme suit

X ⩽ Os(θ) ⇐⇒ E [exp((θ−1X)s+)] ⩽ 2. (24)

En général, la notation Os(θ) décrit une variable aléatoire de taille typique θ avec une
queue sous- ou sur-exponentielle. Lorsque l’on prend s proche de d pour réduire la part de
fluctuation, l’eq. (23) permet de contrôler très étroitement la probabilité de grands écarts de
a(◻m). Au prix de la réduction de l’exposant s, on peut par la suite améliorer l’exposant α
jusqu’à sa valeur optimale, voir [25, le chapitre 4]. Le taux de convergence pour ∣a(◻m) − ā∣
mesure également la convergence des correcteurs, du flux et de la solution homogénéisée, voir
[25, le chapitre 1].

Enfin, l’approche de renormalisation est très robuste et s’applique à l’homogénéisation
des équations paraboliques [18], aux équations à différences finies sur les amas de percolation
[19, 83, 85], les formes différentielles [84], le modèle d’interface « ∇φ » [82, 29], le modèle de
Villain [86], les gaz de Coulomb [28], et les systèmes de particules en interaction [115].
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0.2 Homogénéisation et algorithmes numériques

Dans cette partie, nous parlerons tout d’abord de l’intérêt de l’homogénéisation pour la
résolution numérique des EDP, puis dans la section 0.2.1 nous présenterons la contribution
de cette thèse (les chapitres 2 et 3) dans cette direction.

La question principale que nous espérons aborder est la méthode numérique pour le
problème de Dirichlet à grande échelle : soit U ⊆ Rd avec une frontière de Lipschitz et
Ur ∶= rU .

{ −∇ ⋅ (a∇u) = f dans Ur,
u = g sur ∂Ur,

(25)

avec le coefficient (a(x))x∈Rd matrice symétrique satisfaisant à la condition d’ellipticité uni-
forme, Zd-périodique ou Zd-stationnaire et ergodique. Ce problème peut également être
reformulé dans U un domaine fixé avec l’échelle ε comme l’eq. (4). Le défi ici est la nécessité
de raffiner le maillage lorsque r → ∞ ou ε → 0, donc le coût numérique augmente et nous
espérons trouver des algorithmes efficaces. La réponse à cette question dépend également de
la situation concrète et nous en donnons ici un bref aperçu.

Solution en un point

Si l’on veut seulement obtenir la solution de l’eq. (25) en un point, par exemple u(x0), x0 ∈ Ur,
alors la méthode la plus pratique est utiliser la chaîne de Markov de Monte-Carlo (MCMC).
Prenons un exemple simple : f = 0 et g ∈ C1(Ur). Il suffit d’exécuter une diffusion (Xt)t⩾0
associée à l’opérateur −∇⋅(a∇) à partir de x0, et que τ soit le temps d’atteinte sur la frontière
∂Ur, alors nous avons

u(x0) = E[g(Xτ)]. (26)

Cette représentation probabiliste génère un algorithme MCMC qui est également dimension
libre. Il n’utilise même pas la condition périodique ou la stationnarité de a, et fonctionne
également pour un grand domaine général Ur avec une certaine régularité de la frontière. (Une
condition suffisante générale est la condition du cône, voir les discussions dans [78].) Bien sûr,
nous devons aussi faire une approximation discrète pour la diffusion, voir [76, 37, 38, 158, 176]
pour l’estimation de l’erreur d’approximation.

Solution en tout point

Le défi principal consiste à résoudre l’eq. (25) pour chaque point du domaine Ur. Dans ce
cas, l’algorithme MCMC nécessite également de nombreuses simulations de diffusion émises à
partir de différents points de départ, ce qui augmente la complexité. Si l’on résout l’eq. (25)
par la méthode des différences finies classique, cela revient à résoudre un grand système
linéaire. Un algorithme naïf est la méthode itérative de Jacobi : après la discrétisation de
l’eq. (25) dans (Zd,Ed), on définit

P (x, y) ∶= a({x, y})
∑z∼x a({x, z})

, f̃(x) = f(x)/(∑
z∼x

a({x, z})), (27)

puis nous faisons l’itération

u0 = g, un+1 = J(un, f̃), J(un, f̃) ∶= Pun + f̃ . (28)
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Du point de vue probabiliste, cela suit le même esprit que la méthode MCMC, mais nous
faisons des itérations pour le semigroupe du problème de Dirichlet au lieu des simulations
de trajectoires. Le taux de contraction dans l’eq. (28) dépend du trou spectral, et pour le
domaine Ur, il peut être d’environ (1 − 1

r2 ). Par conséquent, pour une précision de ε0, il
faut O(r2∣ log ε0∣) tours d’itérations. Cet algorithme peut être légèrement accéléré par la
méthode du gradient conjugué (CGM), qui atteint un taux de contraction (1 − 1

r
) ; il suffit

donc de O(r∣ log ε0∣) tours de CGM (voir [207, le théorème 6.29, l’eq.(6.128)]). Comme le
coût numérique d’une itération de CGM est proche de celui de la méthode de Jacobi, toutes
ces méthodes auront une grande complexité lorsque r augmente.

Solution de l’équation à coefficient constant en tout point

L’algorithme multigrille est une méthode puissante pour le problème de Dirichlet dans un
grand domaine avec coefficient constant. On peut trouver l’étude complète de cette méthode
dans [137, 223, 99, 64] et ici nous donnons une version dans notre contexte. Supposons que
nous voulions résoudre −∆u = f avec u ∈ g +H1

0(Ur), l’algorithme peut être énoncé comme
suit : définir la grille la plus fine d’échelle r

M , et désigner par JM la méthode de Jacobi dans
l’eq. (28) pour cette grille.

1. Commencez par une estimation initiale u0 = g.

2. Implémentez une étape d’itération multigrille avec la méthode de Jacobi

(a) u1 = JM(u0, f) ;
(b) f1 = f − (−∆u1), grossir la grille de 2, et u2 = JM/2(0, f1) ;
(c) f2 = f1 − (−∆u2), rend la grille plus grossière de 2, et u3 = JM/4(0, f2).

3. Définissez û ∶= u1 + u2 + u3 et mettez û à la place de u0. Revenir à l’étape 2 et répéter
cette procédure d’itérations.

En pratique, il faut ajouter plusieurs échelles intermédiaires dans l’étape d’itération multi-
grille. Remarquons que la grille grossière n’est pas précise, mais elle peut récupérer le com-
portement macroscopique de la solution avec un coût numérique moindre ; la grille fine
peut calculer la solution à l’échelle microscopique, mais la valeur se propage lentement dans
la méthode de Jacobi et nécessite de nombreuses étapes de calcul. Par conséquent, nous
combinons différentes grilles et pouvons résoudre cette solution plus efficacement. Pour la
précision ε0, le coût numérique est d’environ O(∣ log ε0∣) tours de CGM ([64, le chapitre 4]) -
nous pouvons toujours remplacer la méthode de Jacobi dans l’algorithme par la méthode du
gradient conjugué, mais la première est plus facile à énoncer. Enfin, nous remarquons que cer-
taines opérations sont nécessaires pour le passage des fonctions entre la grille fine et la grille
grossière. Elles sont appelées l’opérateur de grossissement et l’opérateur de projection, qui
sont des idées très importantes dans l’algorithme multigrille. Dans notre cadre, l’opérateur
de grossissement et l’opérateur de projection ne sont que des échantillons de grilles et des
interpolations linéaires, car ∆ donne plus de régularité à la solution par rapport à −∇ ⋅ (a∇).
Cela explique également pourquoi l’algorithme multigrille classique requiert la condition de
coefficient constant.

Solution homogénéisée

L’algorithme multigrille ci-dessus explique l’intérêt de l’homogénéisation pour la résolution
numérique du problème de Dirichlet. Au lieu de résoudre directement le l’eq. (25), nous
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pouvons résoudre sa solution homogénéisée ū avec l’algorithme multigrille. Nous n’avons
alors à payer qu’une petite erreur ∥u − ū∥L2(Ur), et par la théorie de l’homogénéisation, cette
erreur est assez faible comparée à ∥u∥L2(Ur) pour les grands r. Nous renvoyons aux références
[42, 36, 101, 128, 197, 178, 159, 196], ainsi qu’à [129, 154, 103, 104] pour cette idée.

Par conséquent, lorsque nous combinons la solution homogénéisée et l’algorithme multi-
grille, il suffit d’obtenir le coefficient effectif ā. Comme nous en avons beaucoup discuté dans
la section 0.1, cette tâche est plus compliquée dans l’homogénéisation stochastique que dans
l’homogénéisation périodique.

• Pour a un coefficient Zd-périodique, nous pouvons obtenir ā en résolvant le problème
cellulaire l’eq. (8) mentionné dans la section 0.1.

• Pour le paramètre de coefficient stochastique, nous utilisons le volume élémentaire
représentatif (REV) mentionné dans l’eq. (17). Plus précisément, nous divisons les
données (a(x))x∈Ur en sous-ensembles d’échelle l, appliquons l’eq. (17) dans chaque
sous-ensemble, puis faisons la moyenne sur les ( r

l
)d copies pour réduire la fluctuation.

Pour le cas du coefficient stochastique, il existe de nombreuses références [119, 102, 184, 107,
138] discutant des erreurs et des coûts numériques. Parmi eux, [102] a étudié le modèle sur
(Zd,Ed) avec une conductance i.i.d. {a(e)}e∈Ed . Son résultat principal dit qu’avec un choix
l = r

1
2 dans le REV, on a une précision r− d2 avec une complexité O(r

1
2 ) rounds de CGM. Plus

tard, [184] a proposé un autre algorithme efficace qui nous permet d’obtenir la complexité
optimale dans le cadre général de l’homogénéisation stochastique : une précision r− d2 avec la
complexité O(log r) tours de CGM. Quelle que soit la méthode utilisée, obtenir ā avec une
bonne précision n’est pas très coûteux.

Au-delà de la solution homogénéisée

Bien que la solution homogénéisée ū soit une bonne approximation de l’eq. (25), elle est trop
lisse pour récupérer les détails microscopiques. Pour aller plus loin, une stratégie consiste
à utiliser la méthode d’expansion à deux échelles. Comme mentionné dans l’eq. (11), ū ne
converge vers u que dans L2, mais w = ū +∑di=1(∂xi ū)φei donne une approximation de la
solution de l’eq. (25) au sens H1. Ainsi, dans le cadre des coefficients périodiques, nous
pouvons attaquer en premier le problème cellulaire l’eq. (8) pour obtenir à la fois ā et tous
les correcteurs du premier ordre {φei}1 ⩽ i ⩽ d, puis nous résolvons la solution homogénéisée
ū. En combinant les correcteurs et la solution homogénéisée, w nous donne une meilleure
approximation. Cette méthode peut aussi être un peu améliorée en utilisant un correcteur
modifié, à savoir

w̃ = ū +
d

∑
i=1

(∂xi ū)φeiη, (29)

avec η ∈ C∞
c (Ur) une fonction de coupure lisse afin d’éliminer les principales sources d’erreur -

l’effet de couche limite. Voir la discussion de ce sujet dans [48, 8, 26]. Malheureusement, cette
idée peut difficilement être utilisée dans l’homogénéisation stochastique car la complexité pour
calculer les correcteurs est la même que pour calculer la solution originale u.

Remarquons que pour un r fixe, il y a toujours une limite de précision entre les solutions
approchées ū,w, w̃ et la solution réelle u, il est donc naturel de chercher un algorithme efficace
avec une résolution au-delà de cette limite. D’après la discussion ci-dessus, il semble qu’il
y ait un compromis entre la précision et le coût numérique. En fait, il existe une troisième
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dimension : la probabilité. Nous allons voir que nous pouvons payer une certaine probabilité
de cohérence pour gagner à la fois en précision et en efficacité numérique. Un exemple est
l’algorithme itératif AHKM [22], qui sera discuté en détail dans la section 0.2.1.

0.2.1 Résumé des chapitres 2 et 3

L’algorithme itératif AHKM est le sujet principal étudié dans les chapitres 2 et 3. Il est
inventé par Armstrong, Hannukainen, Kuusi et Mourrat dans [22], qui vise à obtenir une
approximation de u au-delà de la précision de la solution homogénéisée ū avec des coûts
numériques raisonnables. Il suit l’esprit de l’algorithme multigrille et fait également appel à
la théorie de l’homogénéisation.

Présentons d’abord la structure de l’algorithme AHKM pour l’eq. (25).

1. Nous commençons par une estimation initiale u0 = g, et choisissons un paramètre de
régularisation λ ∈ (1

r ,
1
2).

2. Nous résolvons les systèmes suivants
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(λ2 −∇ ⋅ a∇)u1 = f +∇ ⋅ a∇u0 dans Ur,
−∇ ⋅ ā∇ū = λ2u1 dans Ur,
(λ2 −∇ ⋅ a∇)u2 = (λ2 −∇ ⋅ ā∇)ū dans Ur.

(30)

3. Nous fixons û ∶= u0 +u1 +u2 et le remettons à la place de u0 pour répéter les itérations
de l’étape 2.

Cela ressemble beaucoup à l’algorithme multigrille : dans la première équation de l’eq. (30),
nous résolvons le problème de Dirichlet en grille fine. Mais nous ajoutons une certaine régu-
larisation pour réduire les tours de CGM. Puisque (u0 + u1) ne peut pas récupérer toute la
solution, nous mettons le résidu

λ2u1 = f − (−∇ ⋅ a∇ (u0 + u1)) ,

comme source dans le côté droit de la deuxième équation de l’eq. (30). Dans la deuxième
équation de l’eq. (30), nous résolvons simplement le problème sur une grille grossière avec
la solution homogénéisée. Cependant, la solution homogénéisée est trop lisse pour la grille
fine. Ainsi, dans la troisième équation de l’eq. (30), nous effectuons un post-traitement et
on peut considérer u2 comme la projection de ū dans la grille de recherche pour l’opérateur
λ2 −∇ ⋅ a∇.

Pour prouver la cohérence de l’algorithme AHKM, l’ingrédient principal est l’expansion
à deux échelles w ∶= ū +∑dk=1(∂xk ū)φek . En combinant la première équation, la deuxième
équation de l’eq. (30) et l’eq. (25), nous pouvons obtenir que

−∇ ⋅ ā∇ū = −∇ ⋅ a∇(u − u0 − u1) dans Ur,

qui est une équation d’homogénéisation, on a donc (u − u0 − u1) ≃ w. De plus, la troisième
équation dans l’eq. (30) suit également la forme d’homogénéisation. Ainsi, nous avons

(u − u0 − u1) ≃ w ≃ u2,

à une petite erreur près dans le sens H1(Ur), donc nous pouvons estimer ∥û − u∥H1(Ur) en
étudiant

∥û − u∥H1(Ur) = ∥u − (u0 + u1 + u2)∥H1(Ur) ⩽ ∥(u − u0 − u1) −w∥H1(Ur) + ∥w − u2∥H1(Ur) .
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La plupart de l’idée ci-dessus a déjà été incluse dans l’article [22], mais comme l’environnement
est aléatoire, le taux de contraction est également une variable aléatoire. Dans [22], les au-
teurs obtiennent une borne pour ce taux de contraction d’un pas, mais cette estimation ne
peut pas être itérée. La contribution dans le chapitre 2 est une borne uniforme pour le taux
de contraction. Cette borne uniforme peut ensuite être itérée pour justifier la validité de
l’algorithme. Dans l’énoncé suivant, la notation Os est définie dans l’eq. (24) et `(λ) est
défini comme suit

`(λ) ∶= { (log(1 + λ−1))
1
2 d = 2,

1 d > 2.

Théorème 0.2.1 (Le théorème principal dans le chapitre 2). Pour tout domaine borné
U ⊆ Rd avec un bord de C1,1 et tout s ∈ (0,2), il existe une constante finie positive C(U,Λ, s, d)
et, pour tout r ⩾ 2 et λ ∈ (1

r ,
1
2), une variable aléatoire Z satisfaisant à

Z ⩽ Os (C`(λ)
1
2λ

1
2 (log r)

1
s ) , (31)

tel que ce qui suit est établi. Soit Ur ∶= rU , f ∈ H−1(Ur), g ∈ H1(Ur), u0 ∈ g + H1
0(Ur),

u ∈ g +H1
0(Ur) la solution de l’eq. (25), et laissons u1, ū, u2 ∈H1

0(Ur) résoudre l’eq. (30) avec
une condition au bord de Dirichlet nulle. Alors pour û ∶= u0+u1+u2, nous avons l’estimation
de contraction

∥∇(û − u)∥L2(Ur) ⩽ Z∥∇(u0 − u)∥L2(Ur). (32)

Par conséquent, le taux de contraction de l’algorithme AHKM peut être limité par une
variable aléatoire Z de l’ordre de λ 1

2 , et plus précisément,

P[Z ⩾ x] ⩽ 2 exp
⎛
⎝
−
⎛
⎝

x

C`(λ)
1
2λ

1
2 (log r) 1

s

⎞
⎠

s
⎞
⎠
.

Par un choix raisonnable λ ≃ (log r)−1, pour une précision ε0 la complexité de l’algorithme
AHKM est O(log r∣ log ε0∣2). En conclusion, l’algorithme AHKM permet d’obtenir à la fois
une grande précision et un coût faible en numérique, au prix de l’exclusion d’un événement
de probabilité très faible.

L’algorithme AHKM est une méthode assez robuste et il s’applique également à d’autres
problèmes de Dirichlet dans un environnement aléatoire dégénéré. La principale contribution
dans le chapitre 3 est un exemple pour son application sur l’amas de percolation, qui peut être
utilisé pour simuler le modèle en milieu poreux de deux types de composites à fort contraste.
Voir [220] pour une introduction complète et [95, 163, 175] pour quelques exemples de ses
applications dans les nanomatériaux.

Nous donnons ici une brève introduction du modèle de percolation. Vous trouverez plus
de détails dans la section 0.3. Sur le graphe en réseau (Zd,Ed), soit a ∶ Ed → {0} ∪ [Λ−1,1]
telle que les variables aléatoires {a(e)}e∈Ed sont indépendantes et identiquement distribuées.
La percolation de Bernoulli est définie par la conductance aléatoire {a(e)}e∈Ed : pour toute
liaison e ∈ Ed, on dit que e est une liaison ouverte si a(e) > 0, et que e est une liaison
fermée sinon. Les composantes connectées sur (Zd,Ed) générées par les liaisons ouvertes sont
appelées amas. Pour d ⩾ 2, il existe un paramètre pc(d) tel que pour p ∶= P[a(e) > 0] > pc,
il existe un unique amas de percolation infini C∞ [149]. Ce cas est appelé la percolation
surcritique, et sous ce paramètre dans un cube fini ◻m ∶= (−3m

2 ,
3m
2 )d ∩Zd, typiquement nous

verrons un amas géant C∗(◻m). Il s’agit d’un analogie de C∞ (voir le figure 1 pour une
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illustration) et nous appelons ce cas « ◻m est un bon cube ». Les définitions rigoureuses de
« ◻m est un bon cube » et de « l’amas maximal C∗(◻m) » seront données dans la section
3.2, et elles sont typiques puisqu’il existe une constante positive C(d,p) telle que

P[◻m is a good cube] ⩾ 1 −C(d,p) exp(−C(d,p)−13m).

De manière informelle, on peut simplement traiter C∗(◻m) comme C∞ ∩◻m. Notre objectif
est de trouver un algorithme pour résoudre le problème de Dirichlet sur C∗(◻m)

{ −∇ ⋅ a∇u = f dans C∗(◻m),
u = g sur C∗(◻m) ∩ ∂◻m, (33)

où l’opérateur de forme de divergence est défini comme suit

−∇ ⋅ a∇u(x) ∶= ∑
y∼x

a({x, y}) (u(x) − u(y)) . (34)

Figure 1: Une simulation de percolation de Bernoulli 2D avec p = 0.51 dans un cube ◻ de
taille 100 × 100. Le composant en bleu est l’amas maximal C∗(◻) tandis que les composants
en rouge sont les autres petits amas.

L’algorithme AHKM sur l’amas de percolation est le suivant : nous désignons par C0(◻m)
les fonctions à condition limite nulle sur ◻m et λC ,m ∶= λ1{C∗(◻m)}.

Théorème 0.2.2 (Le théorème principal dans le chapitre 3). Il existe deux constantes pos-
itives finies s ∶= s(d,p,Λ),C ∶= C(d,p,Λ, s), et pour tout entier m > 1 et λ ∈ ( 1

3m ,
1
2), une

variable aléatoire Z mesurable par F satisfaisant à

Z ⩽ Os (C`(λ)
1
2λ

1
2m

1
s
+d) ,
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de telle sorte que la règle suivante s’applique. Soit f, g ∶ ◻m → R, u0 ∈ g + C0(◻m) et
u ∈ g +C0(◻m) la solution de l’eq. (33). Au cas où ◻m est un bon cube, pour u1, ū, u2 ∈ C0(◻m)
qui résolvent (avec une condition au bord de Dirichlet nulle)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(λ2 −∇ ⋅ a∇)u1 = f +∇ ⋅ a∇u0 dans C∗(◻m)/∂◻m,
−∇ ⋅ ā∇ū = λ2

C ,mu1 dans int(◻m),
(λ2 −∇ ⋅ a∇)u2 = (λ2 −∇ ⋅ ā∇)ū dans C∗(◻m)/∂◻m,

(35)

et pour û ∶= u0 + u1 + u2, nous avons l’estimation de contraction

∥∇(û − u)1{a≠0}∥L2(C∗(◻m)) ⩽ Z ∥∇(u0 − u)1{a≠0}∥L2(C∗(◻m)) . (36)

La nouveauté de cette application sur l’amas de percolation est de définir un algorithme
multigrille sur l’environnement aléatoire singulier car a n’a pas une ellipticité uniforme. Par
conséquent, dans la première et la troisième équation de l’eq. (35), la grille fine est définie
sur l’amas de percolation, tandis que la grille grossière de la deuxième équation de l’eq. (35)
est définie sur ◻m. Cela implique que non seulement le coefficient aléatoire, mais aussi
la géométrie aléatoire est homogénéisée. Pour voir plus précisément que l’eq. (35) définit
l’opérateur d’approximation et de projection approprié, nous observons que u1, u2 résout
également les itérations équivalentes suivantes avec n’importe quelle extension arbitraire de
valeur sur ◻m/C∗(◻m)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(λ2
C ,m −∇ ⋅ aC ,m∇)u1 = fC ,m +∇ ⋅ aC ,m∇u0 dans int(◻m),

−∇ ⋅ ā∇ū = λ2
C ,mu1 dans int(◻m),

(λ2
C ,m −∇ ⋅ aC ,m∇)u2 = (λ2

C ,m −∇ ⋅ ā∇)ū dans int(◻m),
(37)

où aC ,m({x, y}) = a({x, y})1{x,y∈C∗(◻m)} et fC ,m = f1{C∗(◻m)}. Voir plus de détails dans la
proposition 3.1.1. Un deuxième défi dans cette application est l’analyse de cohérence, car
la théorie d’homogénéisation quantitative sur les grappes de percolation est absente depuis
longtemps jusqu’aux travaux récents de [19, 83].

0.3 Homogénéisation sur l’amas de percolation

Dans cette partie, nous présenterons tout d’abord le modèle de percolation de Zd-Bernoulli,
puis nous passerons en revue les résultats de la marche aléatoire sur celui-ci. Nous soulignerons
également ses liens avec la théorie de l’homogénéisation, et présenterons notre contribution
du chapitre 4 dans la section 0.3.

Le modèle de percolation Zd-Bernoulli est d’abord introduit par Broadbent et Hammer-
sley afin d’étudier les milieux poreux. Nous donnons ici sa définition dans notre contexte :
soit (Zd,Ed) un graphe en réseau, la conductance aléatoire a ∶ Ed → {0}∪ [λ,1] et {a(e)}e∈Ed
variables aléatoires qui sont identiquement et indépendamment distribuées. On dit qu’une
arête e est ouverte si a(e) > 0 et e est fermée si a(e) = 0. Les composantes connectées définies
par les arêtes ouvertes sont appelées les amas, et nous désignons par x ←→ y si x et y sont
dans le même amas. Un cas particulier x ←→ ∞ implique un amas infini C∞ contenant
x. Le comportement des amas dépend du paramètre p ∶= P [a(e) > 0] et nous désignons par
θ(p) ∶= P[0←→∞] le paramètre de connectivité. Pour d = 1 le comportement des amas est
trivial, et pour d ⩾ 2 il existe une transition de phase dans ce modèle : il existe un point
critique pc ∈ (0,1) tel que

1. Phase souscritique : p ∈ [0,pc), il n’y a pas d’amas infini et θ(p) = 0.
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2. Phase surcritique : p ∈ (pc,1], il existe un unique amas infini C∞ et θ(p) > 0.

3. Phase critique : p = pc, on sait que θ(pc) = 0 pour d = 2 et d ⩾ 11, mais pour 3 ⩽ d ⩽ 10
c’est encore une conjecture que θ(pc) = 0.

Voir la monographie [131] et l’enquête récente [97] pour plus d’informations sur la perco-
lation. Nous nous intéressons à la marche aléatoire sur le modèle de percolation surcritique.
Ce modèle peut être utilisé pour décrire la diffusion dans des milieux poreux, ou dans des
matériaux bicomposés à fort contraste. Plus précisément, laissez p > pc(d) et nous consid-
érons la marche aléatoire à vitesse variable. (VSRW), qui est un processus de saut de Markov
à temps continu (Xt)t⩾0 commençant par un certain y ∈ C∞, et associé au générateur

Lu(x) = ∇ ⋅ a∇u(x) ∶= ∑
z∼x

a({x, z}) (u(z) − u(x)) . (38)

Nous désignons le semigroupe (ou la probabilité de transition) de la marche aléatoire par

p (t, x, y) = pa (t, x, y) ∶= Pa
y (Xt = x) ,

qui est définie comme la solution de l’équation parabolique

{ ∂tp(⋅, ⋅, y) −∇ ⋅ a∇p(⋅, ⋅, y) = 0 dans (0,∞) ×C∞,
p(0, ⋅, y) = δy dans C∞.

(39)

En raison de cette caractérisation, nous faisons souvent référence au semigroupe p(t, ⋅, y)
comme étant le noyau de chaleur ou la fonction de Green parabolique.

Nous remarquons que la VSRW définie ci-dessus n’est qu’une façon possible de construire
la marche aléatoire sur C∞ et qu’il existe d’autres modèles similaires. Deux des modèles les
plus connus sont :

1. La marche aléatoire à vitesse constante (CSRW) : il s’agit d’un processus de saut de
Markov à temps continu commençant par y ∈ C∞, avec un taux de saut de 1 et la
probabilité de transition

P (x, z) = a ({x, z})
∑w∼x a ({x,w})

. (40)

En d’autres termes, son générateur associé est

Lu(x) = 1
∑w∼x a ({x,w}) ∑z∼x

a({x, z}) (u(z) − u(x)) .

2. La marche aléatoire en temps discret (DTRW) : la marche aléatoire (Xn)n∈N est indexée
sur les entiers. Elle part d’un point y ∈ C∞, et lorsque Xn = x, la valeur de Xn+1 est
choisie aléatoirement parmi tous les voisins de x suivant la probabilité de transition (40).

Ces processus ont des propriétés similaires, mais pas identiques, et ont fait l’objet d’un intérêt
dans la littérature.

La marche aléatoire sur l’amas de percolation est un sujet parmi les modèles de con-
ductance aléatoire plus généraux, où de nombreux modèles appartiennent à l’universalité
brownienne. Par exemple, pour la VSRW sur (Zd,Ed) avec {a(e)}e∈Ed i.i.d. satisfaisant
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la condition d’ellipticité uniforme 0 < λ ⩽ a ⩽ 1, alors son semigroupe p(t, ⋅, y) a une borne
gaussienne

∀∣x − y∣ ⩽ t, C1

(2πt) d2
exp(− ∣x − y∣2

2C1t
) ⩽ p(t, x, y) ⩽ C2

(2πt) d2
exp(− ∣x − y∣2

2C2t
) . (41)

De plus, le processus a presque sûrement une limite d’échelle du mouvement brownien dans
la topologie de Skorokhod.

( 1√
n
Xnt)

t⩾0

n→∞Ô⇒ (σ̄Bt)t⩾0 .

C’est le principe d’invariance presque sûr pour (Xt)t⩾0, où l’environnement {a(e)}e∈Ed est
fixé dans l’énoncé. Il est généralement plus facile d’établir le principe d’invariance moyenné
en faisant une moyenne sur l’environnement.

Faisons quelques remarques supplémentaires sur ces deux résultats. La borne gaussienne
pour l’opérateur de type divergence est initiée par les travaux de De Giorgi, Moser et Nash sur
Rd, puis elle est généralisée aux collecteurs par Grigor’yan dans [130] et par Saloff-Coste dans
[208]. Pour le CSRW sur Zd, sa preuve peut être trouvée dans le travail de Delmotte [92], où
le théorème est connu sous le nom de « la condition de doublement du volume et l’inégalité de
Poincaré impliquent la borne gaussienne ». La condition ∣x−y∣ ⩽ t dans l’eq. (41) est nécessaire
pour la borne gaussienne sur (Zd,Ed), car le générateur est un opérateur de différence finie
au lieu d’un opérateur différentiel. Pour le régime ∣x−y∣ ⩾ t, la queue est exponentielle plutôt
que gaussienne ; voir les travaux de Davies [87]. Le principe d’invariance éteint a un lien
très étroit avec la théorie de l’homogénéisation. Un outil puissant pour le prouver est la
méthode des correcteurs initiée par Kozlov dans [160] : laissez {φei}1⩽i⩽d être les correcteurs
du premier ordre associés à la base canonique {ei}1⩽i⩽d et au générateur ∇ ⋅ a∇, alors

Mt = (Xt ⋅ e1 + φe1(Xt),⋯,Xt ⋅ ed + φed(Xt)) ,

est une martingale. Maintenant le théorème de convergence des martingales [139] s’applique

( 1√
n
Mnt)

t⩾0

n→∞Ô⇒ (σ̄Bt)t⩾0 .

Il suffit de prouver que la partie du correcteur disparaît presque sûrement φe1(Xnt)√
n

n→∞Ð→ 0 et
ceci se réduit finalement à la sous-linéarité des correcteurs.

La marche aléatoire sur C∞ appartient également à l’universalité brownienne. Une ex-
plication intuitive est que la géométrie de C∞ est très proche de celle de Zd à grande
échelle. Dans le cas de la percolation, où a ne peut prendre que les valeurs 0 ou 1, un
principe d’invariance moyenné a été prouvé dans [89] par De Masi, Ferrari, Goldstein et
Wick. Dans [211], Sidoravicius et Sznitman ont prouvé un principe d’invariance presque sûr
pour la marche aléatoire en dimension d ⩾ 4. Ce résultat a été étendu à toute dimension d ⩾ 2
par Berger et Biskup dans [49] (pour le DTRW) et par Mathieu et Piatnitski dans [180] (pour
le CSRW), où leur stratégie consiste à construire les correcteurs sur C∞. Les propriétés du
noyau de chaleur p(t, ⋅, y) sur l’amas infini ont été étudiées dans la littérature. Dans [181],
Mathieu et Remy ont prouvé que, presque sûrement, le noyau de chaleur décroît aussi vite
que t−d/2. Ces limites ont été étendues dans [39] par Barlow qui a établi des bornes inférieures
et supérieures gaussiennes.
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Pour le VSRW, un principe d’invariance presque sûr similaire s’applique. Du point de vue
de l’homogénéisation, la diffusivité σ̄ du mouvement brownien limite est liée au coefficient
effectif ā des problèmes elliptiques par l’identité ā = 1

2θ(p)σ̄
2.

Dans l’article [41], Barlow et Hambly ont prouvé une inégalité de Harnack parabolique, un
théorème central limite local pour le CSRW, et des bornes sur la fonction de Green elliptique
sur l’amas infini. Leur résultat principal peut être adapté au cas du VSRW, et se lit comme
suit : si nous définissons, pour chaque t ⩾ 0 et x ∈ Rd,

p̄(t, x) ∶= 1
(2πσ̄2t)d/2

exp(− ∣x∣2

2 σ̄2t
) , (42)

le noyau de chaleur avec une diffusivité σ̄, alors, pour chaque temps T > 0, la convergence
suivante est établie, presque sûrement sur l’événement {0 ∈ C∞},

lim
n→∞

∣nd/2p(nt, ga
n(x),0) − θ(p)−1p̄(t, x)∣ = 0, (43)

uniformément dans la variable spatiale x ∈ Rd et dans la variable temporelle t ⩾ T , où la
notation ga

n(x) signifie le point le plus proche de
√
nx sur l’amas infini sous l’environnement

a.

Comme outil important, la théorie des correcteurs sur C∞ est également développée. Dans
[45], le problème de régularité de Liouville dans une classe générale de graphes aléatoires est
étudié par Benjamini, Duminil-Copin, Kozma et Yadin à l’aide de la méthode de l’entropie,
qui confirme la dimension des correcteurs du premier ordre et donne la borne pour l’ordre
supérieur. La description complète de la régularité de Liouville sur C∞ est ensuite donnée par
Armstrong et Dario dans [19] par la méthode d’homogénéisation quantitative. Dario donne
également l’estimation optimale des correcteurs du même modèle dans [83]. Ces résultats
nous fournissent des outils pour l’algorithme AHKM sur les grappes de percolation mentionné
dans la section 0.2, et nous aident également à améliorer le TCL local asymptotique dans
[41] en un résultat du TCL local quantitatif. Ce sont les principales contributions dans le
chapitre 4 et seront résumées dans la section 0.3.1.

Enfin, avant d’énoncer notre contribution, nous remarquons qu’il existe d’autres développe-
ments du modèle de conductance aléatoire dans les directions suivantes : la relaxation de la
condition i.i.d., le modèle sans condition d’ellipticité uniforme et permettant des queues à la
fois près de ∞ et près de 0, la percolation avec conductance corrélée à longue portée, etc.
Pour certains de ces modèles, il existe d’autres universalités (la diffusion anormale) que le
cas gaussien. Nous renvoyons au chapitre 4.1.3 et aux références qui s’y trouvent pour une
revue complète.

0.3.1 Résumé du chapitre 4

La principale contribution du chapitre 4 est le taux de convergence du TCL local pour le
VSRW défini dans l’eq. (39). Dans les paragraphes suivants, nous présentons d’abord ce ré-
sultat, puis nous discutons des techniques développées pour sa preuve. Enfin, nous parlerons
également de l’homogénéisation de la fonction de Green elliptique comme son corollaire.

Théorème 0.3.1 (le théorème 4.1.1). Pour chaque exposant δ > 0, il existe une constante
positive C < ∞ et un exposant s > 0, dépendant uniquement des paramètres d, λ,p et δ, tels
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que pour chaque y ∈ Zd, il existe un temps aléatoire positif Tpar,δ(y) satisfaisant l’estimation
d’intégrabilité stochastique

∀T ⩾ 0, P (Tpar,δ(y) ⩾ T ) ⩽ C exp(−T
s

C
) , (44)

de sorte que, sur l’événement {y ∈∞}, pour chaque x ∈ C∞ et chaque t ⩾ max (Tpar,δ(y), ∣x − y∣),

∣p(t, x, y) − θ(p)−1p̄(t, x − y)∣ ⩽ Ct−
d
2−(

1
2−δ) exp(− ∣x − y∣2

Ct
) . (45)

Nous avons plusieurs remarques à faire sur ce résultat.

• En général, le terme d’erreur a un autre facteur t−( 1
2−δ) devant la borne gaussienne, il

est donc très petit en temps long comparé à la fois à p(t, x, y) et à p̄(t, x−y). L’exposant
est presque optimal car δ peut être arbitrairement petit et t− 1

2 est le taux optimal pour
la marche aléatoire simple sur Zd.

• Dans l’eq. (45), il existe un facteur de normalisation θ(p)−1. Ceci est nécessaire car le
semigroupe p(t, ⋅, y) ne charge que C∞, et θ(p) est presque la masse totale de p̄(t, ⋅ − y)
sur C∞ par l’argument de densité

∫
C∞

p̄(t, ⋅ − y) ≃ θ(p)∫
Zd
p̄(t, ⋅ − y) ≃ θ(p)∫

Rd
p̄(t, ⋅ − y) ≃ θ(p).

• Le résultat dans l’eq. (45) est établi pour t ⩾ max (Tpar,δ(y), ∣x − y∣). Cette condition
peut être décomposée comme suit

{t ⩾ max (Tpar,δ(y), ∣x − y∣)} = {t ⩾ ∣x − y∣} ∩ {t ⩾ Tpar,δ(y)} .

Rappelons que p(t, x, y) a une queue exponentielle pour ∣x − y∣ ⩾ t au lieu d’une
queue gaussienne, la comparaison n’est donc pas vraie dans ce régime. La condition
t ⩾ Tpar,δ(y) peut être interprétée comme un temps d’attente aléatoire pour laisser le
marcheur aléatoire explorer la percolation. Comme nous le savons, à petite échelle, la
configuration de la percolation peut être assez zigzagante et fractale, de sorte que le
semigroupe n’a pas convergé assez près de la gaussienne. De plus, le temps d’attente
Tpar,δ(y) n’est pas très grand puisque d’après l’eq. (44) sa taille typique est une con-
stante et a une queue sous-exponentielle.

La preuve de ce résultat repose sur la théorie de l’homogénéisation quantitative sur les
amas de percolation, et nous développons également quelques nouvelles techniques. Voici
une liste des ingrédients principaux.

1. Une partition de bons cubes : [19] a développé une partition des cubes de type Calderón-
Zygmund, telle que

(a) Il existe une collection P de cubes triadiques, Zd = ⊔◻∈P ◻.
(b) Dans chaque partition cube ◻ ∈ P, il existe un amas maximal C∗(◻). L’amas

infini C∞ a la structure C∞ = ⊔◻∈P C∗(◻).
(c) La taille (diamètre) du cube de partition a une estimation size(◻) ⩽ O1(C).
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Figure 2: La figure de gauche représente la distribution de densité de la fonction t d2 p(t, ⋅,0)
où la carte p est le noyau de chaleur bidimensionnel sur l’amas de percolation infini avec la
probabilité p = 0,7 au temps t = 1000 ; elle est similaire à une distribution gaussienne. La
figure de droite représente l’erreur entre la carte t d2 p(t, ⋅,0) et le noyau de chaleur gaussien
normalisé θ(p)−1t

d
2 p̄(t, ⋅) défini dans l’eq. (42) ; il est petit comparé à la distribution de

densité à gauche.

Par conséquent, nous pouvons utiliser cette technique pour effectuer la localisation de
C∞ à chaque petit amas C∗(◻), et sa géométrie n’est pas très éloignée du cube ◻ qui le
contient. Ceci nous permet de développer les inégalités fonctionnelles dont l’inégalité
de Poincaré et l’inégalité de Meyers sur les amas de percolation. La construction de
cette partition de bons cubes est inspirée par le travail de Pisztora [201], et une idée
similaire est également utilisée par Barlow dans la preuve de la borne gaussienne dans
[39].

2. L’estimation des correcteurs et l’expansion à deux échelles : l’estimation optimale des
correcteurs sur C∞ est prouvée dans [83] et son application à l’expansion à deux échelles
sur l’amas de percolation est implémentée dans [134]. (voir le chapitre 3) pour

−∇ ⋅ aC∇u = −∇ ⋅ ā∇ū dans Zd, (46)

où aC ({x, y}) = a({x, y})1{x,y∈C∞}. Le développement à deux échelles pour l’eq. (46)
est plutôt inhabituel, car son côté gauche est supporté sur C∞, alors que le côté droit
est supporté sur Zd. Nous avons donc besoin de l’argument de la partition des bons
cubes. Dans la preuve du 0.3.1, nous traitons un cas similaire mais plus général

(∂t −∇ ⋅ a∇)u = 0 (0,∞) ×C∞,

(∂t −
1
2
σ̄2∆) ū = 0 (0,∞) ×Rd,

(47)

avec une condition limite cohérente appropriée ; voir le théorème 4.3.2 pour plus de
détails. Ici, la première équation de l’eq. (47) est définie sur C∞ et −∇ ⋅ a∇ est un
opérateur de différence finie ; la deuxième équation de l’eq. (47) est définie sur Rd et
∆ est l’opérateur de Laplace standard. Contrairement à l’eq. (46), nous n’avons pas de
moyen canonique de combiner les deux équations en une seule. Pour cette raison, outre
la technique de la partition de bon cube, nous appliquons également la décomposition
de Whitney de l’analyse harmonique pour surmonter l’obstacle.
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3. L’estimation du flux : le flux centré gek défini par

gek ∶ Z
d → Rd, gek ∶= aC (Dφek + ek) − āek, (48)

est également une quantité importante dans la théorie de l’homogénéisation quantita-
tive. Son rôle et son estimation sont très similaires à ceux de ∇φek . Dans le chapitre
3, nous développons l’estimation de la norme faible pour gek , mais dans la preuve du
chapitre 4, nous utilisons une autre quantité similaire g̃ek .

g̃ek ∶ C∞ → Rd, g̃ek ∶= a(Dφek + ek) −
1
2
σ̄2ek, (49)

et nous donnons son estimation de H−1 dans la proposition 4.B.1. Rappelons l’identité
ā = 1

2θ(p)σ̄
2, la principale différence entre l’eq. (48) et l’eq. (49) est en fait une différence

de densité de l’amas. Comme nous avons besoin d’une estimation quantitative de g̃ek ,
nous prouvons une concentration de la densité d’amas dans la proposition 4.A.1

∣ ∣C∞ ∩◻m∣
∣◻m∣

− θ(p)∣ ⩽ O 2(d−1)
3d2+2d−1

(C3−
dm
2 ) . (50)

Cette estimation est plus explicite que les résultats de grandes déviations qui étaient
disponibles dans l’estimation.

Le TCL local 0.3.1 implique également l’homogénéisation quantitative pour la fonction
de Green elliptique sur l’amas infini. En dimension d ⩾ 3, étant donné un environnement
{a(e)}e∈Ed et un point y ∈ C∞, nous définissons la fonction de Green g(⋅, y) comme la solution
de l’équation

−∇ ⋅ a∇g(⋅, y) = δy dans C∞ tel que g(x, y) x→∞Ð→ 0.

Cette fonction existe, est unique presque sûrement et est liée au semigroupe p par l’identité

g(x, y) = ∫
∞

0
p(t, x, y)dt. (51)

En dimension 2, la situation est différente puisque la fonction de Green n’est pas bornée à
l’infini, et nous définissons g (⋅, y) comme l’unique fonction qui satisfasse

−∇ ⋅ a∇g(⋅, y) = δy dans C∞,
1
∣x∣
g(x, y) x→∞Ð→ 0 et g(y, y) = 0.

Cette fonction est liée à la probabilité de transition p par l’identité

g(x, y) = ∫
∞

0
(p(t, x, y) − p(t, y, y)) dt.

Dans l’énoncé ci-dessous, nous désignons par ḡ la fonction de Green homogénéisée définie par
la formule, pour chaque point x ∈ Rd/ {0},

ḡ(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

− 1
πσ̄2θ(p) ln ∣x∣ if d = 2,
Γ(d/2−1)

(2πd/2σ̄2θ(p))
1

∣x∣d−2 if d ⩾ 3, (52)

où le symbole Γ désigne la fonction Gamma.
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Théorème 0.3.2 (le théorème 4.1.2). Pour chaque exposant δ > 0, il existe une constante
positive C < ∞ et un exposant s > 0, ne dépendant que des paramètres d, λ,p et δ, tels que
pour chaque y ∈ Zd, il existe une variable aléatoire non négativeMell,δ(y) satisfaisant à

∀R ⩾ 0, P (Mell,δ(y) ⩾ R) ⩽ C exp(−R
s

C
) ,

tel que, sur l’événement {y ∈ C∞} :

1. En dimension d ⩾ 3, pour tout point x ∈ C∞ satisfaisant ∣x − y∣ ⩾Mell,δ(y),

∣g(x, y) − ḡ(x − y)∣ ⩽ 1
∣x − y∣1−δ

C

∣x − y∣d−2 . (53)

2. En dimension 2, la limite

K(y) ∶= lim
x→∞

(g(x, y) − ḡ(x − y)) ,

existe, est finie presque sûrement et satisfait l’estimation d’intégrabilité stochastique

∀R ⩾ 0, P (∣K(y)∣ ⩾ R) ⩽ C exp(−R
s

C
) .

De plus, pour tout point x ∈∞ satisfaisant ∣x − y∣ ⩾Mell,δ(y),

∣g(x, y) − ḡ(x − y) −K(y)∣ ⩽ C

∣x − y∣1−δ
. (54)

0.4 Homogénéisation pour le système de particules en inter-
action

Un autre sujet étudié dans cette thèse est la théorie de l’homogénéisation pour les systèmes
de particules en interaction, qui correspond aux chapitres 5 et 6 et est résumée dans la section
0.4.1. Comme le contexte est un peu différent de celui de l’homogénéisation classique, nous
donnons d’abord un bref aperçu de quelques modèles de particules classiques pour rendre
nos motivations plus claires.

Dans les modèles précédents, la marche aléatoire dans un environnement aléatoire, qui
peut également être considérée comme l’évolution d’une particule, sera proche du mouvement
brownien à grande échelle et à long terme. Les systèmes de particules en interaction partagent
le même esprit, mais dans ces modèles nous avons une infinité de particules au lieu d’une, et
l’environnement aléatoire provient de leur configuration qui est dynamique.

Le modèle le plus étudié est le gaz sur réseau et un modèle de base est le processus
d’exclusion symétrique simple (SSEP) : soit η ∶ Zd → {0,1} représente la configuration des
particules, où chaque site permet au plus une particule. Dans l’évolution, chaque particule a
un taux 1

2 pour sauter vers un voisin vacant. Ainsi, l’évolution (ηt)t⩾0 suit le générateur

Lf(η) = 1
2 ∑
x∈Zd

∑
y∼x

η(x)(1 − η(y)) (f(ηx,y) − f(η)) , (55)
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avec la notation

ηx,y(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

η(z) z ≠ x, y;
η(y) z = x;
η(x) z = y.

(56)

Ici, la fonction de test dans l’eq. (55) est la fonction locale f ∈ C0 qui ne dépend que du site
fini de η. Dans ce modèle, la mesure de Bernoulli produit Ber(α)⊗Zd avec α ∈ (0,1) est une
mesure stationnaire et nous la désignons par Pα.

Le comportement à long terme et à grande échelle de la SSEP peut être caractérisé par
la limite hydrodynamique et la fluctuation d’équilibre. Nous désignons par πNt la densité
empirique de la configuration

πNt ∶= N−d ∑
x∈Zd

ηN2t(x)δx/N , (57)

La limite hydrodynamique nous dit (πNt )t⩾0
N→∞ÐÐÐ⇀ (ρt)t⩾0, c’est-à-dire que la densité em-

pirique converge vers la solution de l’équation de la chaleur

∂tρt =
1
2

∆ρt, (58)

dans la topologie de Skorokhod de la distribution de Schwartz, à condition que la configu-
ration initiale πN0

N→∞ÐÐÐ⇀ ρ0 ait un profil limite ρ0. Si η0 part de la mesure stationnaire Pα,
alors le théorème de fluctuation de l’équilibre dit

Y N
t ∶= N− d2 ∑

x∈Zd
(ηN2t(x) − α) δx/N , (59)

converge vers le processus fonctionnel d’Ornstein-Uhlenbeck (Yt)t⩾0 résolvant

dYt =
1
2

∆Yt dt +
√
α(1 − α)∇dBt, (60)

où Bt est le bruit blanc spatio-temporel.
Dans ces résultats, la matrice de coefficient effectif est l’identité, parce que le flux Wx,x+ei

de x à x + ei dans le SSEP est

Wx,x+ei =
1
2
(η(x) − η(x + ei)) , (61)

et elle peut être écrite comme la différence Wx,x+ei = τxh(η) − τx+eih(η) avec h(η) = η(0), où
τx est l’opérateur de translation. Cette propriété est la condition de gradient. Elle rend le
coefficient effectif trivial dans le modèle et elle n’est valable que dans certains systèmes de
particules. Une autre explication plus heuristique est que le SSEP peut être traité comme si
le saut était toujours autorisé, car dans l’eq. (55)

∑
x∈Zd

∑
y∼x

η(x)(1 − η(y)) (f(ηx,y) − f(η)) = ∑
x∈Zd

∑
y∼x

(f(ηx,y) − f(η)).

Pour rendre ce modèle moins spécifique, le processus d’exclusion symétrique généralisé (GSEP)
est proposé, où chaque site dans Zd peut placer au plus κ particules (κ ⩾ 2), c’est-à-dire
η̃ ∶ Zd → {0,1,⋯, κ} et le générateur est

Lf(η̃) = 1
2 ∑
x∈Zd

∑
y∼x

1{η̃(x)>0,η̃(y)<κ} (f(η̃x,y) − f(η̃)) , (62)
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avec la notation

η̃x,y(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

η̃(z) z ≠ x, y;
η̃(x) − 1 z = x;
η̃(y) + 1 z = y.

(63)

Dans ce modèle, la mesure stationnaire est Pα = ν⊗Z
d

α avec

∀n ∈ {0,1,⋯, κ}, να(n) =
αn

∑κj=0 α
j
.

Ce modèle ne satisfait pas la condition de gradient, car

Wx,x+ei =
1
2
(1{η̃(x)>0,η̃(x+ei)<κ} − 1{η̃(x+ei)>0,η̃(x)<κ}) , (64)

ne peut pas être écrite comme la différence Wx,x+ei = τxh(η̃) − τx+eih(η̃) pour une certaine
fonction locale h ∈ C0. Dans son résultat de limite hydrodynamique et théorème de fluctua-
tion,

∂tρt = ∇ ⋅D(ρt)∇ρt, dYt = ∇ ⋅D(α)∇Yt dt +
√

ā(α)∇dWt, (65)

nous verrons une quantité appelée le coefficient de diffusion globale (ou le coefficient d’auto-
diffusion) D(α) définie par

D(α) ∶= ā(α)
2χ(α)

, (66)

où χ est la quantité appelée la compressibilité

χ(α) ∶= Varα[η̃(0)], (67)

et la quantité ā a une description variationnelle. Nous désignons par Γf(η̃) ∶= ∑x∈Zd τxf(η̃),
qui peut être infinie, mais pour toute fonction locale f ∈ C0, on peut dire que

∇0,eiΓf(η̃) ∶= Γf(η̃0,ei) − Γf(η̃), (68)

est bien défini car le saut ne change que la valeur des termes finis dans ∑x∈Zd τxf(η̃). Alors
ā est défini par

p ⋅ ā(α)p = inf
f∈C0

d

∑
i=1

Eα [1{η̃(0)>0,η̃(ei)<κ}(pi +∇0,eiΓf(η̃))2] . (69)

Dans la définition de la matrice de diffusion, la quantité ā ressemble beaucoup au coef-
ficient effectif dans l’homogénéisation stochastique, où la formule l’eq. (68) est utilisée pour
construire un champ de gradient stationnaire. Il est donc très naturel de penser que nous
pouvons utiliser une approximation de volume fini dans l’eq. (19) et obtenir son taux de
convergence pour D(α). Cela peut nous fournir des résultats quantitatifs dans les systèmes
de particules. Cependant, nous devons remarquer que l’eq. (68) est défini pour l’espace de
configuration, donc la fonction ∇0,eiΓf(η̃) peut avoir un nombre arbitraire de coordonnées.
C’est l’un des principaux défis et nous en discuterons en détail dans la section 0.4.1.

Nous donnons également un bref aperçu des références des résultats mentionnés ci-dessus.
Il existe deux approches classiques pour l’identification de la limite hydrodynamique. La
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première, appelée la méthode d’entropie, a été introduite dans [136], et étendue à certains
modèles non-gradients dans [221, 204]. La deuxième, appelée la méthode d’entropie relative,
a été introduite dans [224], et a été étendue à un modèle non-gradient dans [111].

La description asymptotique des fluctuations des systèmes de particules en interaction
à l’équilibre a été obtenue dans [66, 214, 91, 69, 71], où l’outil principal est le théorème
de Holley-Strook [140]. L’extension de ce résultat aux modèles non-gradients a été obtenue
dans [174, 70, 110]. Nous n’avons pas connaissance de résultats concernant les fluctuations
de non-équilibre d’un modèle non-gradient. Pour les modèles à gradient (ou leurs petites
perturbations), nous nous référons en particulier à [202, 90, 106, 71, 144].

Le travail [166] donne une preuve que les approximations en volume fini de la matrice
d’auto-diffusion convergent vers la limite correcte. Cependant, aucun taux de convergence
n’a pu y être obtenu. Le résultat qualitatif de [166] a été étendu au processus d’exclusion
simple à moyenne nulle, et au processus d’exclusion simple asymétrique en dimension d ⩾ 3,
dans [143]. Enfin, nous nous référons également aux livres [215, 152, 157] pour des expositions
beaucoup plus approfondies sur ces sujets, et des revues de la littérature.

0.4.1 Résumé des chapitres 5 et 6

Dans les chapitres 5 et 6, nous visons à développer une théorie d’homogénéisation quanti-
tative pour les systèmes de particules en interaction de type non-gradient. Nos principales
contributions sont une décroissance de type gaussien de t− d2 pour le semigroupe, voir le
théorème 0.4.1, et un taux de convergence pour l’approximation en volume fini du coefficient
de masse, voir le théorème 0.4.2. Notre modèle est construit dans l’espace de configuration
du continuum, mais les résultats et les preuves peuvent être adaptés dans le modèle classique
de gaz sur réseau de type non-gradient, par exemple le GSEP.

Nous présentons d’abord notre système de particules. SoitMδ(Rd) l’ensemble des mesures
σ-finies qui sont des sommes de masses de Dirac sur Rd, que nous considérons comme l’espace
des configurations de particules. Nous désignons par Pρ la loi sur Mδ(Rd) du processus
ponctuel de Poisson de densité ρ ∈ (0,∞), avec Eρ,Varρ l’espérance et la variance associées.
On désigne par FU le tribu générée par les applications V ↦ µ(V ), pour tous les ensembles
boréliens V ⊆ U , complétés par tous les ensembles négligeables, et on fixe F ∶= FRd . Nous nous
donnons une fonction a○ ∶Mδ(Rd)→ Rd×dsym, où Rd×dsym est l’ensemble des matrices symétriques
d × d. Nous supposons que cette correspondance satisfait aux propriétés suivantes :

• l’ellipticité uniforme : il existe Λ <∞ tel que pour chaque µ ∈Mδ(Rd),

∀ξ ∈ Rd, ∣ξ∣2 ⩽ ξ ⋅ a○(µ)ξ ⩽ Λ∣ξ∣2 ; (70)

• une dépendance de portée finie : en désignant par B1 la boule euclidienne de rayon 1
centrée à l’origine, on suppose que a○ est FB1- mesurable.

Nous désignons par τ−xµ la translation de la mesure µ par le vecteur −x ∈ Rd ; explicitement,
pour tout ensemble borélien U , nous avons (τ−xµ)(U) = µ(x + U). Nous étendons a○ par
stationnarité en posant, pour tout µ ∈Mδ(Rd) et x ∈ Rd,

a(µ,x) ∶= a○(τ−xµ).

En désignant par µt ∶= ∑∞
i=1 δxi,t la configuration au temps t ⩾ 0, notre modèle peut être

décrit de manière informelle comme un système infiniment dimensionnel avec interaction
locale tel que chaque particule xi,t évolue comme une diffusion associée à l’opérateur de forme
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divergente −∇ ⋅ a(µt, xi,t)∇. Plus précisément, c’est un processus de Markov (Ω, (Ft)t⩾0,Pρ)
défini par la forme de Dirichlet

Ea(f, f) ∶= Eρ [∫
Rd
∇f(µ,x) ⋅ a(µ,x)∇f(µ,x)dµ(x)] , (71)

où la dérivée directionnelle

ek ⋅ ∇f(µ,x) = lim
h→0

f(µ − δx + δx+hek) − f(µ)
h

, (72)

est défini pour une famille de fonctions appropriées et x ∈ supp(µ). La construction de
processus de diffusion similaires peut être trouvée dans les travaux précédents d’Albeverio,
Kondratiev et Röckner dans [2, 3, 4, 5] ; voir aussi l’étude [206].

Nous avons besoin de quelques explications supplémentaires pour la fonction de test de
la forme de Dirichlet dans l’eq. (71). Pour tout ensemble ouvert U ⊆ Rd, nous désignons par
l’espace C∞

c (U) les fonctions qui sont FK-mesurables pour un ensemble compact K ⊆ U , et
lisses par rapport à toute particule. Par conséquent, l’espace de fonctions C∞

c (U) joue le
même rôle que la fonction locale dans le modèle de gaz sur réseau. Ensuite, nous définissons
la norme H 1(U), une analogie de l’espace de Sobolev classique H1 en dimension infinie

∥f∥H 1(U) = (Eρ[f2(µ)] +Eρ [∫
U
∣∇f(µ,x)∣2 dµ(x)])

1
2
. (73)

Nous définissons également l’espace H 1
0 (U) comme la fermeture dans H 1(U) des fonctions

f ∈ C∞
c (U) telles que ∥f∥H 1(U) est fini et c’est l’espace de fonctions pour l’eq. (71).

Le théorème principal du chapitre 5 est une estimation de la décroissance de la variance
pour notre système de particules (µt)t⩾0. Nous désignons par L p l’espace Lp dans (Ω,F ,Pρ)
pour p ⩾ 1. Soit u ∶Mδ(Rd) → R une fonction FQlu mesurable avec Qlu ∶= (− lu2 ,

lu
2 )d, et soit

ut(µ0) ∶= Eρ[u(µt)∣µ0].

Théorème 0.4.1 (Le théorème principal dans le chapitre 5). Il existe deux constantes posi-
tives finies γ ∶= γ(ρ, d,Λ), C ∶= C(ρ, d,Λ) telles que pour tout u ∈ C∞

c (Rd)∩L∞ qui est FQlu -
mesurable, alors nous avons

Varρ[ut] ⩽ C(1 + ∣ log t∣)γ (1 + lu√
t

)
d

∥u∥2
L∞ . (74)

Remark. Dans les travaux [2, 3, 4, 5] d’Albeverio, Kondratiev et Röckner, la forme de Dirichlet
Ea est définie sur l’espace de fonctions

FC∞
c (Rd) = {G(µ(g1),⋯µ(gn)) ∶ n ∈ N,G ∈ C∞

b (Rnd), gi ∈ C∞
c (Rd)} . (75)

C’est un sous-espace concret de C∞
c (Rd) et on peut prouver que C∞

c (Rd) et FC∞
c (Rd)

génèrent le même H 1
0 (Rd).

La preuve du théorème 0.4.1 s’inspire d’un travail important [142] de Janvresse, Landim,
Quastel et Yau, où la décroissance de la variance est prouvée dans le modèle de zéro-range.
Nous étendons cette preuve au modèle non-gradient dans l’espace de configuration du contin-
uum, et une difficulté technique dans cette généralisation est une estimation de localisation
clé : nous désignons par QK = [−K2 ,

K
2 ]d le cube fermé et rappelons que FQK représente
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l’information de µ dans celui-ci. Nous définissons AKut ∶= Eρ[ut∣FQK ], alors pour chaque
t ⩾ max {(lu)2,16Λ2} et K ⩾

√
t nous avons

Eρ [(ut −AKut)2] ⩽ C(Λ) exp(− K√
t
)Eρ [u2] . (76)

Il s’agit d’une estimation clé apparaissant dans [142, la proposition 3.1], et elle est également
naturelle puisque

√
t est l’échelle typique de la diffusion, donc lorsque K ≫

√
t on obtient

une très bonne approximation dans la l’eq. (76). L’idée principale de sa preuve est de définir
une fonctionnelle multi-échelle

Sk,K,β(f) ∶= αkEρ [(Akf)2] + ∫
K

k
αs dEρ [(Asf)2] + αKEρ [(f −AKf)2]

= αKEρ [f2] − ∫
K

k
α′sEρ [(Asf)2] ds,

avec αs = exp ( sβ) , α
′
s = d

dsαs, β > 0, puis étudie l’évolution de d
dtSk,K,β(ut). Dans cette

procédure, on peut affirmer que
d
dt

Eρ [(Asf)2] = 2Ea(ut,Asut),

mais Asut n’est pas dans la fonction de test H 1
0 (Rd) à cause de la perturbation à ∂Qs. Plus

précisément, cela signifie la discontinuité de Asut lorsqu’une particule entre ou sort de Qs.
Dans le modèle discret, il existe également une telle perturbation à la frontière, mais Asut
peut toujours être utilisé comme fonction locale grâce à la différence discrète. Pour résoudre
ce problème, nous utilisons une version de régularisation de As.

As,εf ∶=
1
ε
∫

ε

0
As+rf dr, (77)

pour rendre l’espérance conditionnelle plus lisse. De plus, la dérivée de As,εut près de la
frontière est étroitement liée à l’isométrie L 2 de la martingale (Asut)s⩾0.

Enfin, remarquons que [142] obtient également la limite à long terme Varρ[ut] = Ct−
d
2 + o(t−

d
2 ).

Cependant, le modèle de zéro-range a la condition de gradient, donc la constante C est plus
facile à calculer. Dans notre modèle, nous devons d’abord identifier le coefficient effectif, ce
qui nous motive également pour le travail dans le chapitre 6.

Dans le chapitre 6, nous étudions l’approximation par volumes finis du coefficient de
diffusion. Pour tout ensemble ouvert borné U ⊆ Rd, nous définissons la matrice ā(U) ∈ Rd×dsym
comme étant telle que, pour tout p ∈ Rd,

1
2
p ⋅ ā(U)p ∶= inf

φ∈H 1
0 (U)

Eρ [
1
ρ∣U ∣ ∫U

1
2
(p +∇φ(µ,x)) ⋅ a(µ,x)(p +∇φ(µ,x))dµ(x)] . (78)

Pour chaque m ∈ N, nous désignons par ◻m = Q3m le cube de longueur de côté 3m. Nous
définissons la matrice de coefficient effectif comme ā ∶= limm→∞ ā(◻m), et le théorème prin-
cipal consiste à prouver son taux de convergence.

Théorème 0.4.2 (Le théorème principal dans le chapitre 6). La limite ā est bien définie.
De plus, il existe un exposant α(d,Λ, ρ) > 0 et une constante C(d,Λ, ρ) < ∞ tels que pour
tout m ∈ N,

∣ā(◻m) − ā∣ ⩽ C3−αm. (79)
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La preuve du théorème 0.4.2 suit l’approche de renormalisation initiée par Armstrong
et Smart dans [31], qui est également revue dans la section 0.1. Cependant, remarquons
que l’espace des fonctions H 1

0 (U) dans l’eq. (78) est très différent du cas euclidien : la
fonction est définie dans la configuration µ = ∑∞

i=1 δxi au lieu de Rd, donc son nombre de
coordonnées peut être arbitrairement grand. Dans les paragraphes suivants, nous soulignons
quelques nouvelles idées lorsque nous mettons en œuvre l’approche de renormalisation dans
les systèmes de particules.

1. L’espace de fonctions pour les quantités sous-additives : nous désignons par ν(U, p) = 1
2p ⋅ ā(U)p

et nous pouvons vérifier qu’elle est sous-additive. Nous espérons également constru-
ire une quantité duale sous-additive ν∗(U, q), et nous proposons la formule (voir la
discussion dans l’eq. (20))

ν∗(U, q) ∶= sup
u∈H 1(U)

Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇u ⋅ a∇u + q ⋅ ∇u) dµ] . (80)

Cependant, remarquons que nous n’avons pas défini l’espace de fonctions H 1(U), bien
que la norme soit définie dans l’eq. (73). Une bonne définition devrait être la plus grande
classe de fonctions mesurables F avec une norme finie H 1(U). De manière informelle,
ces fonctions sont différentiables par rapport aux particules dans U , mais la dépendance
des particules en dehors de U est juste mesurable. En particulier, contrairement à
l’espace de fonctions H 1

0 (U), nous n’avons pas besoin de la condition FU -measurable
pour H 1(U). Pour voir que cette définition est bonne, on peut vérifier :

(a) Pour tout V ⊆ U , on a H 1
0 (V ) ⊆ H 1

0 (U) et H 1(U) ⊆ H 1(V ). C’est la propriété
permettant de prouver la sous-additivité de ν et ν∗.

(b) Soit B1(U) le voisinage contenant U avec une distance de 1. Alors Eρ[u∣FB1(U)]
est un candidat meilleur que u dans la fonctionnelle de ν∗(U, q). Ceci nous permet
de retrouver la condition de mélange du maximiseur de ν∗(U, q).

2. L’inégalité de Caccioppoli modifiée : un autre ingrédient important est l’inégalité de
Caccioppoli, car les optimiseurs de ν et ν∗ sont des fonctions a-harmoniques. Nous
rappelons l’inégalité classique de Caccioppoli : pour chaque ũ tel que ∆ũ = 0 dans Q3r,

∫
Qr

∣∇ũ∣2 ⩽ C

r2 ∫Q3r
∣ũ∣2. (81)

Sa preuve consiste à utiliser une fonction de coupure ψ ∈ C∞
c (Q3r) telle que ψ2ũ ∈H1

0(Q3r)
et à tester ensuite ψ2ũ contre ∆ũ. Dans notre système de particules, la fonction a-
harmonique est

A(U) ∶= {u ∈ H 1(U) ∶ ∀ϕ ∈ H 1
0 (U), Eρ [∫

U
∇u ⋅ a∇ϕdµ] = 0} ,

et nous espérons prouver un résultat similaire à l’eq. (81). Il n’existe pas d’ analogie
de la fonction de troncature ψ, mais en s’inspirant de l’eq. (77), pour tout u ∈ A(Q3r),
nous pouvons utiliser Ar,εu ∈ H 1

0 (Qr) comme fonction de test. Cependant, malgré
de nombreux efforts, le meilleur que nous puissions prouver est une inégalité de Cac-
cioppoli modifiée dans la proposition 6.3.6 : il existe θ(d,Λ) ∈ (0,1), C(d,Λ) <∞, et
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R0(d,Λ) <∞ tels que pour chaque r ⩾ R0 et u ∈ A(Q3r), nous avons

Eρ [
1

ρ∣Qr ∣ ∫Qr
∇(Ar+2u) ⋅ a∇(Ar+2u)dµ]

⩽ C

r2ρ∣Q3r ∣
Eρ[u2] + θEρ [

1
ρ∣Q3r ∣ ∫Q3r

∇u ⋅ a∇udµ] . (82)

L’inégalité dans l’eq. (82) contrôle la norme du gradient d’une fonction a-harmonique
dans le petit cube Qr par une somme de termes impliquant la norme du gradient dans le
grand cube Q3r. À première vue, cela ne semble pas utile. Cependant, le point essentiel
est que le facteur multiplicatif θ est inférieur à un. Cela implique donc également une
meilleure régularité à l’intérieur, et l’eq. (82) peut enfin être intégré dans le cadre de
l’approche de renormalisation.

3. L’inégalité de Poincaré dimension-libre : l’inégalité de Poincaré est un outil nécessaire
pour l’analyse, et nous l’établissons également dans H 1(U) et H 1

0 (U). Pour l’espace
de fonctions H 1(U), sa preuve repose sur l’inégalité d’Efron-Stein, et nous l’améliorons
également en l’inégalité de Poincar’e multi-échelle. Pour l’espace de fonctions H 1

0 (U),
notre preuve fait implicitement appel au calcul de Malliavin sur l’espace de Poisson.
Voir la section 6.3.1 pour plus de détails.
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This thesis consists of the research work [133, 134, 85, 135, 115] during my Ph.D. and
studies the interplay between quantitative homogenization theory and two stochastic models:
the supercritical percolation model and the infinite interacting particle systems. A basic object
of the stochastic homogenization theory is to understand the equation

−∇ ⋅ (a∇u) = f in Br, (1.1)

with a ∶ Rd → Rd×dsym a symmetric, random Zd-stationary ergodic coefficient satisfying the
uniform ellipticity ∣ξ∣2 ⩽ ξ ⋅aξ ⩽ Λ∣ξ∣2, and where Br is the Euclidean ball of radius r centered
at the origin. For r very large, its solution can be approximated by the effective solution ū
satisfying

−∇ ⋅ (ā∇ū) = f in Br, (1.2)

with the same boundary condition. Here ā is called the effective coefficient, which is a
constant matrix. The quantity ā not only characterizes the large-scale asymptotic behavior
of the elliptic problem, but also captures the long-time, large-scale behavior of the parabolic
problem. This is the link between homogenization and various diffusion models in probability,
where the quantitative homogenization theory provides tools for estimates. Reciprocally, the
two models studied in this thesis bring new techniques back to homogenization theory: the
percolation model goes beyond the uniform ellipticity setting, while particle systems require
infinite-dimensional PDE analysis and the environment is dynamic.

Despite these applications, we should keep in mind one important motivation of the
homogenization at the very beginning: an efficient numerical approximation. In fact, the
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solution in eq. (1.1) is very costly to compute numerically for a large r if one solves it naively
with the finite difference algorithm, while ū in eq. (1.2) can be computed quickly as the
constant coefficient provides very high regularity. However, for a fixed r, there is always a
discrepancy between the real solution u and the effective solution ū. Recently, Armstrong,
Hannukainen, Kuusi and Mourrat proposed a new iterative algorithm (AHKM) which can
approximate u with arbitrary precision in H1, and the cost is close to that of computing ū.
In Chapter 2, we will introduce this algorithm and prove its numerical consistency.

In Chapter 3, the AHKM iterative algorithm is applied to the Zd-Bernoulli percolation
clusters (d ⩾ 2), which is a fundamental model of a perforated medium. More precisely, we
sample i.i.d. Bernoulli random variables with parameter p ∈ (pc,1] where pc is the critical
point and p > pc ensures a unique infinite cluster C∞. Then we study the Dirichlet problem
eq. (1.1) on the C∞-like maximal cluster in a big box. As the uniform ellipticity condition
is no longer satisfied and the geometry of the cluster is fractal, the analysis becomes more
challenging. Quantitative homogenization theory on percolation is initiated by Armstrong
and Dario and one major technique is a Calderón-Zygmund-like decomposition of the space.
Based on these results and techniques, we prove a rigorous numerical method to obtain an
efficient approximation of both the potential u and the gradient ∇u.

Chapter 4 focuses on the parabolic Green function on the infinite percolation cluster C∞,
i.e. p(⋅, ⋅, y) ∶ R+ ×C∞ → [0,1] solving

{ ∂tp(⋅, ⋅, y) −∇ ⋅ a∇p(⋅, ⋅, y) = 0 in (0,∞) ×C∞,
p(0, ⋅, y) = δy in C∞,

(1.3)

which is the transition probability of the jump process starting from y ∈ C∞ associated to
the generator ∇ ⋅ a∇. This topic is much studied by many pioneers and the results like the
Gaussian bound, the invariance principle, and the asymptotic local central limit theorem
have been proved. All these results tell us that p(t, ⋅, y) is close to a Gaussian density for t
large. With the collaboration of Dario, we go one step further to prove a near optimal rate
of convergence, which can be interpreted as a quantitative central limit theorem. The proof
makes use of several results in the previous work of Armstrong and Dario, and also the
estimate of flux proved in Chapter 3.

Although the random walk on the infinite percolation cluster is complicated, it can still be
seen as the diffusion of a particle in a static random environment. In Chapters 5 and 6, we turn
to interacting particle systems, where the environment is dynamic and there are infinitely
many particles instead of one. Our model can be thought as the generalized symmetric
exclusion process in continuum space. It does not satisfy the gradient condition, and one has
to lift the function space defined on the configuration of particles ∑∞

i=1 δxi . In Chapter 5, we
prove a bound for the relaxation to equilibrium of type t− d2 .

In order to describe the long-time asymptotic behavior of this cloud of particles, one
needs to identify the bulk coefficient ā, which is the counterpart of the effective coefficient
for particle systems. Chapter 6 will present a joint work with Giunti and Mourrat about the
finite volume approximation of the bulk coefficient ā. We remark that for elliptic equations,
understanding the convergence of the finite volume approximation of ā is the cornerstone
of the quantitative homogenization theory if one adopts the renormalization approach by
Armstrong, Kuusi, Mourrat and Smart. Our contribution is to generalize this method to
infinite-dimensional analysis, with several dimension-free functional inequalities (the mul-
tiscale Poincaré inequality, the Caccioppoli inequality etc.). The function spaces to study
particle systems are quite different from the classical function spaces on Rd.

The rest of Chapter 1 is organized as follows. In Section 1.1, we will give an overview of
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homogenization theory, especially the key quantitative method used throughout the thesis.
Then in Section 1.2 we will state the details of the homogenization in numerical algorithms,
and the main result in Chapters 2 and 3 concerning the AHKM algorithm. We review the
percolation model in Section 1.3 and then present our contribution in Chapter 4. Section 1.4
aims to introduce the results of Chapters 5 and 6, where we will recall some classical results
in particle systems. Finally, we end this chapter by discussions about the possible future
directions in Section 1.5.
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Table of notations

Homogenization on Rd

a ∶ Rd×dsym-valued coefficient, which is Zd-periodic or stationary,
with the uniform ellipticity ∣ξ∣2 ⩽ ξ ⋅ aξ ⩽ Λ∣ξ∣2;

ā ∶ the effective coefficient, which is a constant matrix;

◻m ∶ triadic cube (−3m
2
,
3m
2

)
d

;

Qr ∶ general cube with side length r;
Os ∶ θ, s ∈ (0,∞), random variable X ⩽ Os(θ) ⇐⇒ E [exp((θ−1X)s+)] ⩽ 2;

Lp(U) ∶ weighted norm ∥f∥Lp(U) = ( 1
∣U ∣ ∫U

∣f(x)∣p dx)
1
p

;

Hk(U) ∶ weighted norm ∥f∥Hk(U) ∶= ∑
0⩽∣β∣⩽k

∣U ∣
∣β∣−k
d ∥∂βf∥L2(U).

The infinite percolation cluster

a ∶ random conductance valued in {0} ∪ {λ,1}, (a(e))e∈Ed i.i.d.;
C∞ ∶ the infinite cluster of supercritical percolation;

◻P(z) ∶ the minimal partition cube that contains z;
C∗(◻) ∶ the maximal cluster in the good cube ◻;

◻m ∶ triadic cube in Zd, i.e. ◻m = Zd⋂(−3m
2
,
3m
2

)
d

;

φp ∶ the first-order corrector on C∞, i.e. −∇ ⋅ a(p +∇φp) = 0;
gp ∶ the centered flux on Zd i.e. gp = aC (Dφp + p) − āp,

where aC ({x, y}) = a({x, y})1{x,y∈C∞};

g̃p ∶ the centered flux on C∞ i.e. gp = a(Dφp + p) −
1
2
σ̄2p;

D ∶ finite difference Dhu(x) ∶= u(x + h) − u(x),
discrete gradient Du(x) ∶= (De1u(x),De2u(x),⋯,Dedu(x)) ;

∇ ∶ x, y ∈ Zd, y ∼ x,∇u(x, y) = u(y) − u(x);
∇ ⋅ a∇ ∶ divergence-form on Zd,∇ ⋅ a∇u(x) ∶= ∑

z∼x
a({x, z}) (u(z) − u(x)) .
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Interacting particle systems

Mδ(Rd) ∶ the set of locally finite measures µ =
∞
∑
i=1
δxi ;

∶ restriction operator, for µ ∈Mδ(Rd) and a Borel set U, (µ U)(⋅) = µ(U ∩ ⋅);
FU ∶ σ-algebra generated by the mappings V ↦ µ(V ) for all Borel sets V ⊆ U,

F short for FRd ;
BU ∶ σ-algebra generated by the Borel sets V ⊆ U ;
Pρ ∶ Poisson point process on Rd with density ρ ∈ (0,∞);
a ∶ random conductance a ∶Mδ(Rd) ×Rd → Rd×dsym,

with the uniform ellipticity ∣ξ∣2 ⩽ ξ ⋅ aξ ⩽ Λ∣ξ∣2,
a(µ,x) only depends on the configuration in B1(x);

L 2 ∶ f ∈ L 2(Mδ(Rd),F ,Pρ) i.e. Eρ[f2] <∞;

∇ ∶ for a function f ∶Mδ(Rd)→ R, ek ⋅ ∇f(µ,x) = lim
h→0

f(µ − δx + δx+hek) − f(µ)
h

;

H 1(U) ∶ ∇f ∶Mδ(Rd) ×U → R is F ⊗ BU -measurable, completion for the norm

∥f∥H 1(U) = (Eρ[f2] +Eρ [∫
U
∣∇f ∣2 dµ])

2
;

H 1
0 (U) ∶ completion for f ∈ H 1(U) and is FK-measurable for some compact set K ⊆ U ;

C∞(U) ∶ conditioned on µ(U) = n,µ U c,

(x1,⋯, xn)↦ f(
n

∑
i=1
δxi + µ U c) ∈ C∞(Un);

C∞
c (U) ∶ f ∈ C∞(U) and is FK-measurable for some compact set K ⊆ U ;

FC∞
c (U) ∶ f = G(µ(g1),⋯, µ(gn)), n ∈ N,G ∈ C∞

b (Rnd), gi ∈ C∞
c (U).
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1.1 An overview of homogenization theory

Homogenization theory has a long history and is much studied in various directions. The
most classic topic is to study the behavior of the divergence form operator −∇⋅(a( ⋅ε)∇) when
ε→ 0. The two most typical settings are to be assume that a is either periodic, or stationary
and ergodic. From the mathematical viewpoint, there are qualitative and quantitative results.
As is to be expected, the qualitative results were obtained first, and allowed to identify the
effective operator −∇ ⋅ (ā∇), where ā is constant, but ā is not the average or expectation
of a. Quantitative results were obtained significantly later, and aimed to determine rates of
convergence. In fact, homogenization is also a useful numerical method, and error estimates
are natural questions from the point of view of numerical analysis. Moreover, homogenization
provides convenient tools for other topics in PDE and probability. These will be discussed
in detail in the other sections of this chapter. Finally, no matter in which setting (periodic,
stochastic) and which goals (qualitative, quantitative), most results in homogenization theory
are constructed around three key objects: the effective coefficient matrix, the correctors and
the two-scale expansion.

In this section, we review some of the general results in homogenization theory. We will
talk about the results in the periodic setting at first, then we focus on the stochastic case.
Some excellent monographs [47, 219, 145, 199, 210, 25] and expository papers [7, 185] on
homogenization theory are good references.

1.1.1 Periodic homogenization

In this paragraph, we suppose that a ∶ Rd → Rd×dsym is Zd-periodic, symmetric matrix with
uniform ellipticity condition ∣ξ∣2 ⩽ ξ ⋅ aξ ⩽ Λ∣ξ∣2. We study the Dirichlet problem for
uε ∈ g +H1

0(U)

{ −∇ ⋅ (a ( ⋅
ε
)∇uε) = f in U,

uε = g on ∂U, (1.4)

with f ∈ H−1(U), g ∈ H1(U), and U ⊆ Rd with Lipschitz boundary. For ε → 0, the behavior
of the solution uε can be approximated by the homogenized solution

{ −∇ ⋅ (ā∇ū) = f in U,
ū = g on ∂U. (1.5)

We give its precise statement:

Theorem 1.1.1 ([47, 212, 187]). Given (a(x))x∈Rd a Zd-periodic, symmetric matrix field
with the uniform ellipticity condition, then there exists a constant effective matrix ā, such
that the solution (uε)ε>0 of the Dirichlet problem eq. (1.4) admits a homogenized solution ū
solving eq. (1.5) and, as ε tends to zero,

uε
L2(U)
ÐÐÐ→ ū, ∇uε

L2(U)
ÐÐÐ⇀ ∇ū, a ( ⋅

ε
)∇uε

L2(U)
ÐÐÐ⇀ ā∇ū,

where ∇uε
L2(U)
ÐÐÐ⇀ ∇ū and a ( ⋅

ε
)∇uε

L2(U)
ÐÐÐ⇀ ā∇ū are understood as weak convergence.

Here we give a sketch of its proof. By the energy estimate bound, the weak compactness
of H1(U), and the Rellich theorem, up to a subseqence we have

ε→ 0, uε
L2(U)
ÐÐÐ→ ū, ∇uε

L2(U)
ÐÐÐ⇀ ∇ū, a ( ⋅

ε
)∇uε

L2(U)
ÐÐÐ⇀ q, (1.6)
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where the quantity a ( ⋅
ε
)∇uε and its weak limit q are sometimes called the flux. The main

question is to characterize ū, ā and q. A classical heuristic method for this problem is the
two-scale asymptotic expansion ansatz (see [47]): we write informally uε as

uε(x) = u0 (x,
x

ε
) + εu1 (x,

x

ε
) + ε2u1 (x,

x

ε
) +⋯, (1.7)

where in each term ui ∶ U × Td → R, and ui(x, ⋅) is Zd-periodic. The intuition here is to
expand the function in different orders of ε like Taylor series, and use the first coordinate
x to describe the macroscopic behavior, and the second coordinate x

ε for the microscopic
oscillating behavior. By a comparison of each order of ε, we will see for order zero u0 = ū;
for order ε, it is described by the first-order correctors {φei}1⩽i⩽d satisfying the equation of
the cell problem

{ −∇ ⋅ a(ei +∇φei) = 0 in Td,
∫Td φei = 0 ,

(1.8)

and u1 (x, xε ) = ∑
d
i=1(∂xi ū(x))φei (xε ). Then we calculate the flux

a ( ⋅
ε
)∇uε =

d

∑
i=1

a ( ⋅
ε
)(ei +∇φei (

⋅
ε
))∂xi ū +O(ε), (1.9)

which implies the definition of the homogenized coefficient

āei ∶= ∫
Td

a(ei +∇φei), (1.10)

because it allows us to see the weak limit in eq. (1.9) by passing ε→ 0. Finally, by the same
argument, the weak limit of ∇ ⋅ (a ( ⋅

ε
)∇uε) is ∇ ⋅ (ā∇ū) and this gives eq. (1.5).

This ansatz contains many ingredients and inspires many developments in homogenization
theory. It helps us derive the definition of the correctors eq. (1.8), the effective coefficient
matrix eq. (1.10) and the two-scale expansion

wε ∶= ū + ε∑
i=1

(∂xi ū)φei (
⋅
ε
) . (1.11)

However, this ansatz is not rigorous, as the error order is ∥wε − uε∥H1(U) ≃
√
ε for the reason

of the boundary layer effect. See the discussion in [48, 8, 26].
The first rigorous proof for Theorem 1.1.1 is due to De Giorgi and Spanolo [212, 213, 88],

where the argument is a compactness style method for differential operator −∇⋅(aε∇). More-
over, this method only supposes the condition of symmetric coefficient matrices (aε)ε⩾0 with
a uniform estimate ∣ξ∣2 ⩽ ξ ⋅ aεξ ⩽ Λ∣ξ∣2, so it applies to more general settings than periodic or
stationary coefficient. Later this method is extended to asymmetric matrices by Murat and
Tartar in [187].

There are also some methods to make the asymptotic expansion ansatz rigorous. One
elegant and robust approach is the oscillating test function method (also called energy method)
proposed by Tartar. The main idea is to test eq. (1.4) with the oscillating function like
vε = v + ε∑di=1(∂xiv)φei ( ⋅ε) with v ∈ C∞

c (U) and then pass ε to 0. In this procedure, one
needs the weak convergence of the product of ∇uε and a ( ⋅

ε
)∇vε, and this is the compensated

compactness theorem developed by Tartar in [218] and by Murat in [186]. Another convenient
framework for periodic homogenization is the two-scale convergence by Nguetseng in [194]
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and by Allaire in [6], where they define a topology with more information than the classical
weak convergence.

Various further results are developed in periodic homogenization. In the celebrated work
[33, 35, 34] of Avellaneda and Lin, they prove the regularity results, Liouville theorems and
Calderón-Zygmund estimate. In the work [146, 147, 148], Kenig, Lin and Shen develop quan-
titative homogenization for elliptic systems of periodic coefficient, including rate of conver-
gence for the Dirichlet and Neumann problems and rate of convergence for Green’s function.
See also [210] for a complete review.

1.1.2 Stochastic homogenization

The theory of qualitative stochastic homogenization is developed in the 80’s, with the work
of Kozlov [160], Papanicolaou and Varadhan [198] and Yurinskĭi [225]. The setting for the
coefficient a ∶ Rd → Rd×dsym satisfies the following conditions

1. a is symmetric matrix with uniform ellipticity condition ∣ξ∣2 ⩽ ξ ⋅ aξ ⩽ Λ∣ξ∣2;

2. a is Zd-stationary ergodic random field.

Theorem 1.1.2 ([160], [198], [225]). Given a coefficient field (a(x))x∈Rd satisfying the con-
ditions above, then there exists a constant effective matrix ā, such that the solution (uε)ε>0
of the Dirichlet problem eq. (1.4) admits a homogenized solution ū solving eq. (1.5) and, as ε
tends to zero,

uε
L2(U)
ÐÐÐ→ ū, ∇uε

L2(U)
ÐÐÐ⇀ ∇ū, a ( ⋅

ε
)∇uε

L2(U)
ÐÐÐ⇀ ā∇ū.

One can repeat the proof of the oscillating test functions, but a major difference is the
construction of the corrector, as the corrector is no longer defined by the cell problem eq. (1.8).
In fact, as the solution of the cell problem can be seen as a periodic solution in Rd, it is natural
to define the corrector φei solving

−∇ ⋅ a(ei +∇φei) = 0 in Rd. (1.12)

However, this equation is not well-defined if we do not give the function space. One approach
is to add a regularization λ > 0

λφλei −∇ ⋅ a(ei +∇φλei) = 0 in Rd. (1.13)

We can take λ ↘ 0 and extract a subsequence of ∇φλei which admits a limit of ∇φei as a
Zd-stationary random gradient field solving eq. (1.12). Then it suffices to define

āei ∶= E [∫[0,1]d
a(ei +∇φei)] , (1.14)

and justify the weak convergence argument by the Birkhoff ergodic theorem

a ( ⋅
ε
)(ei +∇φei (

⋅
ε
)) L2
Ð⇀ āei.

Qualitative stochastic homogenization then has various applications, while there are some
aspects quite non-convenient to use:
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• We recall that the solution of eq. (1.12) is solved for ∇φei instead of φei , so φei is defined
up to a constant and a priori it is not stationary. This is quite different from periodic
homogenization, where φei itself is periodic.

• To obtain ∇φei , we have to solve the problem in the whole space Rd, which is impossible
in practice. Meanwhile, the cell problem eq. (1.8) only requires to solve the problem in
a unit torus.

• To get ā in practice also inherits the difficulty from that of ∇φei .

A practical method to calculate ā is to use Theorem 1.1.2 in a unit cube ◻ ∶= (−1
2 ,

1
2)
d

with affine boundary condition

{ −∇ ⋅ (a ( ⋅
ε
)∇uε) = 0 in ◻,

uε(x) = ei ⋅ x on ∂◻. (1.15)

Since its homogenized solution is ū(x) = ei⋅x, the weak convergence of flux is a ( ⋅
ε
)∇uε L2

Ð⇀ āei,
thus we can use the spatial average to approximate ā

∫◻
a ( ⋅

ε
)∇uε ε→0ÐÐ→ āei.

After a change of scale, this is equivalent to approximate eq. (1.12) in a big cube◻m ∶= (−3m
2 ,

3m
2 )d

with φei,m ∈H1
0(◻m) solving

−∇ ⋅ a(ei +∇φei,m) = 0 in ◻m, (1.16)

and the spatial average in large scale becomes

a(◻m)ei ∶=
1

∣◻m∣ ∫◻m
a(ei +∇φei,m), a(◻m) m→∞ÐÐÐ→ ā. (1.17)

This method is called the representative elementary volume (or the volume averaging method),
and is largely used as a numerical method. In the work [63] of Bourgeat and Piatnitski, they
prove the consistency of this method for eq. (1.16) with Dirichlet, Neumann, or periodic
boundary condition. They also obtain a non-explicit rate of convergence for E[a(◻m)] under
certain mixing conditions.

The quantitative theory of stochastic homogenization is developed in the recent years.
One approach is using the Efron-Stein inequality building upon the ideas of Naddaf and
Spencer in [188]. In the work of Gloria and Otto [123, 124], they study the problem defined
on lattice graph (Zd,Ed) and suppose

{a(e)}e∈Ed i.i.d. and 0 < α < a(e) < β <∞.

Then for the resolvent problem eq. (1.13), they obtain an uniform estimation for d ⩾ 3 [123,
Proposition 2.1]

E [∣φλei ∣
p] ⩽ Cp.

This ([123, Corollary 2.1]) answers the long time open question: for d ⩾ 3, there exists
a unique stationary random field φei solving eq. (1.12) such that E[φei] = 0. Later, this
method is also generalized to Rd setting by supposing the spectral gap condition for a in
Gloria and Otto [125] and Gloria, Neukamm, Otto [121].
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Another approach for quantitative homogenization is the renormalization approach ini-
tiated by Armstrong and Smart in [31], who extended the techniques of Avellaneda and
Lin [33, 35] and the ones of Dal Maso and Modica [80, 81]. These results were then improved
in a series of work [30, 23, 24] by Armstrong, Kuusi and Mourrat, and now reformulated in
the monograph [25] by the same authors. They work on Rd setting and suppose

(a(x))x∈Rd is of finite range correlation.

A unit range of correlation means that, for any two sets U,V ⊆ Rd such that dist(U,V ) ⩾ 1,
the coefficients (a(x))x∈U and (a(x))x∈V are independent. In fact, this method is robust
and also applies to general coefficient fields with polynomial mixing condition. As this thesis
also employs much the renormalization approach, we do a short review in the following
paragraphs.

The main idea is similar to eq. (1.17) and we need rate of convergence. Let◻m = (−3m
2 ,

3m
2 )d

and `p(x) ∶= p ⋅ x, we define the Dirichlet energy density in the finite volume

ν(◻m, p) ∶= inf
v∈`p+H1

0(◻m)

1
∣◻m∣ ∫◻m

1
2
∇v ⋅ a∇v. (1.18)

We denote by v(◻m, p, ⋅) its minimiser, and ν(◻m, p) = 1
2p ⋅ a(◻m)p from the definition in

eq. (1.16) and eq. (1.17). We observe that ν(◻m, p) is a subadditive quantity, because for a
scale n <m

ṽ(x) = ∑
z∈3nZd∩◻m

v(z +◻n, p, x)1{x∈z+◻n},

provides a sub-minimiser for the optimization problem of ν(◻m, p). Then we have

ν(◻m, p) ⩽
1

∣◻m∣ ∫◻m
1
2
∇ṽ ⋅ a∇ṽ = 3−d(m−n) ∑

z∈3nZd∩◻m
ν(z +◻n, p).

By the stationarity, we take the expectation and obtain that E[a(◻m)] ⩽ E[a(◻n)], so the
decreasing sequence {E[a(◻m)]}m⩾1 admits a limit. We define

ā ∶= lim
m→∞

E[a(◻m)], (1.19)

and from eq. (1.17), we know that the definitions in eq. (1.19) and eq. (1.14) coincide.
In order to obtain the convergence rate of ā(◻m) to ā, we consider the dual problem

ν∗(◻m, q) ∶= sup
u∈H1(◻m)

1
∣◻m∣ ∫◻m

(−1
2
∇u ⋅ a∇u + q ⋅ ∇u) . (1.20)

We denote by u(◻m, q, ⋅) the maximiser, and ν∗(◻m, q) = 1
2q ⋅ a

−1
∗ (◻m)q since one can check

that q ↦ ν∗(◻m, q) is also a quadratic form. By a similar argument and notice that u(◻m, q, ⋅)
is a sub-maximiser for every problem ν∗(z +◻n, q), z ∈ 3nZd ∩◻m, we have

ν∗(◻m, q) = 3−d(m−n) ∑
z∈3nZd∩◻m

1
∣◻n∣ ∫z+◻n

(−1
2
∇u(◻m, q, ⋅) ⋅ a∇u(◻m, q, ⋅) + q ⋅ ∇u(◻m, q, ⋅))

⩽ 3−d(m−n) ∑
z∈3nZd∩◻m

ν∗(z +◻n, q).
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Therefore, ν∗(◻m, q) is also a subadditive quantity, and {E[a∗(◻m)]}m⩾1 is an increasing
sequence. The dual quantity helps control rate of convergence because we can test ν∗(◻m, q)
with the minimiser v(◻m, p, ⋅) of ν(◻m, p) and obtain

−1
2
p ⋅ a(◻m)p + p ⋅ q ⩽ 1

2
q ⋅ a−1

∗ (◻m)q.

By setting q = a∗(◻m)p, we obtain

a∗(◻m) ⩽ a(◻m). (1.21)

The rate of convergence can be bounded by

∣E[a(◻m)] − ā∣ ⩽ ∣E[a(◻m)] −E[a∗(◻m)]∣. (1.22)

In practice, eq. (1.22) can be very useful, because the quantities a(◻m),a∗(◻m) can always
be calculated locally in ◻m, and the fluctuation can be estimated by CLT or concentration
inequality. Thus, if we observe that ∣a(◻m) − a∗(◻m)∣ is very small, then we can claim the
approximation ∣a(◻m) − ā∣ is also very precise.

The theoretical proof that limm→∞ ∣E[a(◻m)]−E[a∗(◻m)]∣ = 0 requires more work. One
can find its original proof in [31], or a simplified proof in [25, Chapter 2] where the multiscale
Poincaré inequality is used. We can not only prove the convergence of the expectation, but
also control the fluctuation: there exist an exponent α(d,Λ) ∈ (0, 1

2] and, for any s ∈ (0, d), a
constant C(s, d,Λ) <∞ such that

∣a(◻m) − ā∣ + ∣a∗(◻m) − ā∣ ⩽ C3−α(d−s)m +O1(3−sm), (1.23)

where the Os notation is defined as

X ⩽ Os(θ) ⇐⇒ E [exp((θ−1X)s+)] ⩽ 2. (1.24)

Generally, the Os(θ) notation describes a random variable of typical size θ with sub- or
super-exponential tail. When we take s close to d to reduce the part of fluctuation, eq. (1.23)
allows to control the probability of large deviations of a(◻m) very tightly. At the price of
reducing the exponent s, one can later improve the exponent α to its optimal value, see [25,
Chapter 4]. The rate of convergence for ∣a(◻m) − ā∣ also measures the convergence of the
correctors, the flux and the homogenized solution, see [25, Chapter 1].

Finally, the renormalization approach is very robust and now applies to the homoge-
nization of parabolic equations [18], the finite-difference equations on percolation clusters
[19, 83, 85], the differential forms [84], the “∇φ” interface model [82, 29], the Villain model
[86], the Coulomb gases [28], and the interacting particle systems [115].

1.2 Homogenization and numerical algorithms

This part will at first talk about the interest of homogenization theory in the numerical solu-
tion of PDE, and then in Section 1.2.1 we introduce the contribution of this thesis (Chapters
2 and 3) in this direction.

The main question that we hope to address is the numerical method for the Dirichlet
problem in large scale: let U ⊆ Rd with Lipschitz boundary and Ur ∶= rU

{ −∇ ⋅ (a∇u) = f in Ur,
u = g on ∂Ur,

(1.25)
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with the coefficient (a(x))x∈Rd symmetric matrix satisfying uniform ellipticity condition, Zd-
periodic or Zd-stationary and ergodic. This problem can be also reformulated in a fixed
domain U with the scaling ε like eq. (1.4). The challenge here is the need to refine the mesh
when r → ∞ or ε → 0, thus the numerical cost increases and we hope to find some efficient
algorithms. The answer to this question also depends on the concrete setting and here we
give a brief review.

Solution at one point

If one only wants to get the solution of eq. (1.25) at one point, for example u(x0), x0 ∈ Ur,
then the most practical way is the probabilistic method using the Monte-Carlo Markov Chain
(MCMC) algorithm. Let us see an easy example f = 0 and g ∈ C1(Ur). It suffices to run
a diffusion (Xt)t⩾0 associated to the operator −∇ ⋅ (a∇) starting from x0, and let τ be the
hitting time on the boundary ∂Ur, then we have

u(x0) = E[g(Xτ)]. (1.26)

This probabilistic representation generates a MCMC algorithm which is also dimension free.
It even does not use the periodic condition or stationarity of a, and also works for a general
large domain Ur with certain regularity of the boundary. (A general sufficient condition is
the cone condition, see the discussions in [78].) Of course, we also have to do some discrete
approximation for the diffusion, see [76, 37, 38, 158, 176] for the approximation error estimate.

Solution at every point

The main challenge is to solve eq. (1.25) for every point in the domain Ur. In this case, the
MCMC algorithm also requires many simulations of diffusion issued from different starting
points, which increases the complexity. If one solves eq. (1.25) by the classical finite difference
method, it is equivalent to solve a large linear system. A naive algorithm is the Jacobi iterative
method: after the discretisation of eq. (1.25) in (Zd,Ed), we set

P (x, y) ∶= a({x, y})
∑z∼x a({x, z})

, f̃(x) = f(x)/(∑
z∼x

a({x, z})), (1.27)

then we do the iteration

u0 = g, un+1 = J(un, f̃), J(un, f̃) ∶= Pun + f̃ . (1.28)

From the probabilistic viewpoint, this follows the same spirit of the MCMC method, but
we do iterations for the semigroup of the Dirichlet problem instead of the simulations of
trajectories. The contraction rate in eq. (1.28) depends on the spectral gap, and for domain
Ur, it can be about (1 − 1

r2 ). Therefore, for a precision of ε0, it requires O(r2∣ log ε0∣) rounds
of iterations. This algorithm can be a little accelerated by the conjugate gradient method
(CGM), which achieves a contraction rate (1 − 1

r
) thus it suffices O(r∣ log ε0∣) rounds of CGM

(see [207, Theorem 6.29, eq.(6.128)]). As the numerical cost for one iteration of CGM is close
to that of Jacobi method, all these methods will have a large complexity when r increases.

Solution for constant coefficient equation at every point

The multigrid algorithm is a standard and powerful method for the Dirichlet problem in a
large domain with constant coefficient. One can find the comprehensive study of this method
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in [137, 223, 99, 64] and here we give a version in our context. Suppose we want to solve
−∆u = f with u ∈ g +H1

0(Ur), the algorithm can be stated as follows: set the finest grid of
scale r

M , and denote by JM the Jacobi method in eq. (1.28) for this grid.

1. Start by an initial guess u0 = g.

2. Implement a multigrid iteration step with Jacobi method

(a) u1 = JM(u0, f);
(b) f1 = f − (−∆u1), coarsen the grid by 2, and u2 = JM/2(0, f1);
(c) f2 = f1 − (−∆u2), coarsen the grid by 2, and u3 = JM/4(0, f2).

3. Set û ∶= u1 +u2 +u3 and put û in the place of u0. Go back to the step 2 and repeat this
procedure of iterations.

In practice, one needs to add several intermediate scales in the multigrid iteration step. No-
tice that the coarsened grid is not precise, but it can recover the macroscopic behavior of the
solution with less numerical cost; the fine grid can calculate the solution in microscopic scale,
but the value propagates slowly in the Jacobi method and requires many steps of computa-
tions. Therefore, we combine different grids and can solve this solution more efficiently. For
the precision ε0, the numerical cost is about O(∣ log ε0∣) rounds of CGM ([64, Chapter 4]) - we
can always replace the Jacobi method in the algorithm by the conjugate gradient method,
but the former is easier to state. Finally, we remark that some operations are necessary
for the passage of functions between the fine grid and the coarsened grid. These are called
coarsening operator and projection operator, which are very important ideas in the multigrid
algorithm. In our setting, the coarsening operator and projection operator are just samples
of grids and linear interpolations, as ∆ gives more regularity to the solution compared to
−∇ ⋅ (a∇). This also explains why the classical multigrid algorithm requires the constant
coefficient condition.

Homogenized solution

The multigrid algorithm above explains the interest of homogenization theory in the numer-
ical solution of Dirichlet problem. Instead of solving the eq. (1.25) directly, we can solve its
homogenized solution ū with the multigrid algorithm. Then we only have to pay a small error
∥u − ū∥L2(Ur), and by homogenization theory, this error is quite small compared to ∥u∥L2(Ur)
for large r. We refer to the references [42, 36, 101, 128, 197, 178, 159, 196], as well as to
[129, 154, 103, 104] for this idea.

Therefore, when we combine the homogenized solution and the multigrid algorithm, it
suffices to obtain the effective coefficient ā. As we have discussed a lot in Section 1.1, this
task is more complicated in stochastic homogenization than periodic homogenization.

• For a a Zd-periodic coefficient, we can get ā by solving the cell problem eq. (1.8)
mentioned in Section 1.1.

• For the stochastic coefficient setting, we use the representative elementary volume
(REV) mentioned in eq. (1.17). More precisely, we divide the data (a(x))x∈Ur into
subsets of scale l, apply eq. (1.17) in each subset, and then average over the ( r

l
)d copies

to reduce the fluctuation.
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For the stochastic coefficient case, there are many references [119, 102, 184, 107, 138] dis-
cussing about the errors and numerical costs. Among them, [102] studied the model on
(Zd,Ed) with i.i.d. conductance {a(e)}e∈Ed . Its main result says with a choice l = r 1

2 in the
REV, we have a precision r− d2 with complexity O(r

1
2 ) rounds of CGM. Later [184] proposed

another efficient algorithm which allows us to get the optimal complexity in general stochas-
tic homogenization setting: a precision r−

d
2 with the O(log r) rounds of CGM. No matter

which method we take, to get ā with good precision is not very costly.

Beyond the homogenized solution

Although the homogenized solution ū is a good approximation to eq. (1.25), it is too smooth to
recover the microscopic details. To go one step further, one strategy is the two-scale expansion
method. As mentioned in eq. (1.11), ū only converges to u in L2, but w = ū +∑di=1(∂xi ū)φei
gives an approximation of the solution of eq. (1.25) in the sense H1. So in the periodic
coefficient setting, we can attack at first the cell problem eq. (1.8) to get both ā and all the
first-order correctors {φei}1⩽i⩽d, then we solve the homogenized solution ū. Combining the
correctors and homogenized solution, w gives us a better approximation. This method can
also be improved a little by using a modified correctors that

w̃ = ū +
d

∑
i=1

(∂xi ū)φeiη, (1.29)

with η ∈ C∞
c (Ur) a smooth cut-off function in order to remove the main error sources - the

boundary layer effect. See the discussion of this topic in [48, 8, 26]. Unfortunately, this idea
can hardly be used in stochastic homogenization because the complexity to compute the
correctors is the same as to calculate the original solution u.

Notice that for a fixed r, there is always a limit of precision between the approximated
solutions ū,w, w̃ and the real solution u, so it is natural to look for an efficient algorithm with
a resolution beyond this limit. From the discussion above, it seems that there is a trade-off
between precision and numerical cost. In fact, there is a third dimension: probability. We
will see that we can pay some probability of consistency to gain both precision and numerical
efficiency. One example is the AHKM iterative algorithm [22], which will be discussed in
details in Section 1.2.1.

1.2.1 Summary of Chapters 2 and 3

The AHKM iterative algorithm is the main topic studied in Chapters 2 and 3. It is invented
by Armstrong, Hannukainen, Kuusi and Mourrat in [22], which aims to get an approximation
of u beyond the precision of the homogenized solution ū with reasonable numerical costs. It
follows the spirit of the multigrid algorithm and also makes use of homogenization theory.

Let us present at first the structure of the AHKM algorithm for eq. (1.25).

1. We start by an initial guess u0 = g, and choose a parameter of regularization λ ∈ (1
r ,

1
2).

2. We solve the following systems

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(λ2 −∇ ⋅ a∇)u1 = f +∇ ⋅ a∇u0 in Ur,
−∇ ⋅ ā∇ū = λ2u1 in Ur,
(λ2 −∇ ⋅ a∇)u2 = (λ2 −∇ ⋅ ā∇)ū in Ur.

(1.30)
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3. We set û ∶= u0 + u1 + u2 and put it back to the place of u0 to repeat the iterations in
step 2.

This looks very similar to the multigrid algorithm: in the first equation of eq. (1.30), we
solve the Dirichlet problem in fine grid. But we add some regularization to reduce the rounds
of CGM. Since (u0 + u1) cannot recover all the solution, we put the residual

λ2u1 = f − (−∇ ⋅ a∇ (u0 + u1)) ,

as the source in the right-hand side of the second equation of eq. (1.30). In the second
equation of eq. (1.30), we just solve the problem in coarsened grid with the homogenized
solution. However, the homogenized solution is too smooth for the fine grid. Thus in the
third equation of eq. (1.30), we do some post-treatment and one can think u2 as the projection
of ū in the find grid for operator λ2 −∇ ⋅ a∇.

To prove the consistency of the AHKM algorithm, the main ingredient is the two-scale
expansion w ∶= ū +∑dk=1(∂xk ū)φek . Combining the first equation, the second equation of
eq. (1.30) and eq. (1.25), we can obtain that

−∇ ⋅ ā∇ū = −∇ ⋅ a∇(u − u0 − u1) in Ur,

which is an equation of homogenization, so we have (u − u0 − u1) ≃ w. Moreover, the third
equation in eq. (1.30) also follows the form of homogenization. Thus, we have

(u − u0 − u1) ≃ w ≃ u2,

up to a small error in the sense H1(Ur), so we can estimate ∥û − u∥H1(Ur) by studying

∥û − u∥H1(Ur) = ∥u − (u0 + u1 + u2)∥H1(Ur) ⩽ ∥(u − u0 − u1) −w∥H1(Ur) + ∥w − u2∥H1(Ur) .

Most of the idea above has already been included in the paper [22], but as the environment
is random, the contraction rate is also a random variable. In [22], the authors obtain a bound
for this contraction rate of one step, but this estimate cannot be iterated. The contribution
in Chapter 2 is a uniform bound for the contraction rate. This uniform bound can then be
iterated to justify the validity of the algorithm. In the following statement, the Os notation
is defined in eq. (1.24) and `(λ) is defined as

`(λ) ∶= { (log(1 + λ−1))
1
2 d = 2,

1 d > 2.

Theorem 1.2.1 (Main theorem in Chapter 2, Theorem 2.1.1). For every bounded domain
U ⊆ Rd with C1,1 boundary and every s ∈ (0,2), there exists a positive finite constant
C(U,Λ, s, d) and, for every r ⩾ 2 and λ ∈ (1

r ,
1
2), a random variable Z satisfying

Z ⩽ Os (C`(λ)
1
2λ

1
2 (log r)

1
s ) , (1.31)

such that the following holds. Denote Ur ∶= rU , let f ∈H−1(Ur), g ∈H1(Ur), u0 ∈ g+H1
0(Ur),

let u ∈ g +H1
0(Ur) be the solution of eq. (1.25), and let u1, ū, u2 ∈ H1

0(Ur) solve eq. (1.30)
with null Dirichlet boundary condition. Then for û ∶= u0 + u1 + u2, we have the contraction
estimate

∥∇(û − u)∥L2(Ur) ⩽ Z∥∇(u0 − u)∥L2(Ur). (1.32)
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Therefore, the contraction rate of the AHKM algorithm can be bounded by a random
variable Z of the order of λ 1

2 , and more precisely,

P[Z ⩾ x] ⩽ 2 exp
⎛
⎝
−
⎛
⎝

x

C`(λ)
1
2λ

1
2 (log r) 1

s

⎞
⎠

s
⎞
⎠
.

By a reasonable choice λ ≃ (log r)−1, for a precision ε0 the complexity of AHKM algorithm is
O(log r∣ log ε0∣2). In conclusion, the AHKM algorithm achieves both high precision and low
numerical cost, with the price of the exclusion of an event of very small probability.

The AHKM algorithm is a quite robust method and it also applies to other Dirichlet
problems in degenerate random environment. The main contribution in Chapter 3 is an
example for its application on percolation clusters, which can be used to simulate the model in
porous medium of two types of composites with high contrast. See [220] for a comprehensive
introduction and [95, 163, 175] for some examples of its applications in nanomaterials.

We give a brief introduction of the percolation model here and more details can be found
in Section 1.3. On the lattice graph (Zd,Ed), let a ∶ Ed → {0}∪[Λ−1,1] such that the random
variables {a(e)}e∈Ed are independent and identically distributed. The Bernoulli percolation
is defined by the random conductance {a(e)}e∈Ed : for every bond e ∈ Ed, we say that e is an
open bond if a(e) > 0, and that e is a closed bond otherwise. The connected components on
(Zd,Ed) generated by the open bonds are called clusters. For d ⩾ 2, there exists a parameter
pc(d) such that for p ∶= P[a(e) > 0] > pc, there exists a unique infinite percolation cluster
C∞ [149]. This case is called supercritical percolation, and under this setting in a finite cube
◻m ∶= (−3m

2 ,
3m
2 )d ∩ Zd, typically we will see a giant cluster C∗(◻m). This is a counterpart

of C∞ (see Figure 1.1 for an illustration) and we call this case “◻m is a good cube”. The
rigorous definitions of “◻m is a good cube” and of “the maximal cluster C∗(◻m)” will be
given in Section 3.2, and they are typical since there exists a positive constant C(d,p) such
that

P[◻m is a good cube] ⩾ 1 −C(d,p) exp(−C(d,p)−13m).

Informally, one can just treat C∗(◻m) as C∞ ∩ ◻m. Our goal is to find an algorithm for
solving the Dirichlet problems on C∗(◻m)

{ −∇ ⋅ a∇u = f in C∗(◻m),
u = g on C∗(◻m) ∩ ∂◻m, (1.33)

where the divergence-form operator is defined as

−∇ ⋅ a∇u(x) ∶= ∑
y∼x

a({x, y}) (u(x) − u(y)) . (1.34)

The AHKM algorithm on percolation clusters is as follows: we denote by C0(◻m) the
functions with null boundary condition on ◻m and λC ,m ∶= λ1{C∗(◻m)}.

Theorem 1.2.2 (Main theorem in Chapter 3, Theorem 3.1.1). There exist two finite positive
constants s ∶= s(d,p,Λ),C ∶= C(d,p,Λ, s), and for every integer m > 1 and λ ∈ ( 1

3m ,
1
2), an

F-measurable random variable Z satisfying

Z ⩽ Os (C`(λ)
1
2λ

1
2m

1
s
+d) ,
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Figure 1.1: A simulation of 2D Bernoulli bond percolation with p = 0.51 in a cube ◻ of size
100 × 100. The cluster in blue is the maximal cluster C∗(◻) while the clusters in red are the
other small ones.

such that the following holds. Let f, g ∶ ◻m → R, u0 ∈ g +C0(◻m) and u ∈ g +C0(◻m) be the
solution of eq. (1.33). On the event that ◻m is a good cube, for u1, ū, u2 ∈ C0(◻m) solving
(with null Dirichlet boundary condition)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(λ2 −∇ ⋅ a∇)u1 = f +∇ ⋅ a∇u0 in C∗(◻m)/∂◻m,
−∇ ⋅ ā∇ū = λ2

C ,mu1 in int(◻m),
(λ2 −∇ ⋅ a∇)u2 = (λ2 −∇ ⋅ ā∇)ū in C∗(◻m)/∂◻m,

(1.35)

and for û ∶= u0 + u1 + u2, we have the contraction estimate

∥∇(û − u)1{a≠0}∥L2(C∗(◻m)) ⩽ Z ∥∇(u0 − u)1{a≠0}∥L2(C∗(◻m)) . (1.36)

The novelty of this application on the percolation cluster is to define a multigrid algorithm
on the singular random environment because a does not have uniform ellipticity. Therefore,
in the first and third equation of eq. (1.35), the fine grid is defined on the percolation cluster,
while the coarsened grid of the second equation of eq. (1.35) is defined on ◻m. This implies
that not only the random coefficient, but also the random geometry is homogenized. To see
more precisely eq. (1.35) defines the proper coarseing and projection operator, we observe
that u1, u2 also solves the following equivalent iterations with any arbitrary extension of value
on ◻m/C∗(◻m)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(λ2
C ,m −∇ ⋅ aC ,m∇)u1 = fC ,m +∇ ⋅ aC ,m∇u0 in int(◻m),

−∇ ⋅ ā∇ū = λ2
C ,mu1 in int(◻m),

(λ2
C ,m −∇ ⋅ aC ,m∇)u2 = (λ2

C ,m −∇ ⋅ ā∇)ū in int(◻m),
(1.37)
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where aC ,m({x, y}) = a({x, y})1{x,y∈C∗(◻m)} and fC ,m = f1{C∗(◻m)}. See more details in
Proposition 3.1.1. A second challenge in this application is the consistency analysis, because
quantitative homogenization theory on the percolation clusters is missing for long time until
the recent work of [19, 83].

1.3 Homogenization on percolation clusters

In this part we will introduce at first the Zd-Bernoulli percolation model, and then review
the results of the random walk on it. We will also point out its links with homogenization
theory, and present our contribution of Chapter 4 in Section 1.3.

The Zd-Bernoulli percolation model is introduced at first by Broadbent and Hammersley
in order to study the porous media. Here we give its definition in our context: let (Zd,Ed)
be lattice graph, the random conductance a ∶ Ed → {0} ∪ [λ,1] and {a(e)}e∈Ed i.i.d. random
variables. We say an edge e is open if a(e) > 0 and e is closed if a(e) = 0. The connected
components defined by the open edges are called the clusters, and we denote by x ←→ y
if x and y are in the same cluster. A specific case x ←→ ∞ implies an infinite cluster C∞
containing x. The behavior of the clusters depends on the parameter p ∶= P [a(e) > 0] and we
denote by θ(p) ∶= P[0←→∞] the parameter of connectivity. For d = 1 the behavior of clusters
is trivial, and for d ⩾ 2 there is a phase transition in this model: there exists a critical point
pc ∈ (0,1) such that

1. Subcritical phase: p ∈ [0,pc), there is no infinite cluster and θ(p) = 0.

2. Supercritical phase: p ∈ (pc,1], there is a unique infinite cluster C∞ and θ(p) > 0.

3. Critical phase: p = pc, it is known that θ(pc) = 0 for d = 2 and d ⩾ 11, but for 3 ⩽ d ⩽ 10
it is still a conjecture that θ(pc) = 0.

See the monograph [131] and the recent survey [97] for more background about perco-
lation. We are interested in the random walk on the supercritical percolation model. This
model can be used to describe the diffusion in porous media, or in two-composite material
with high contrast. More precisely, let p > pc(d) and we consider the variable speed random
walk (VSRW), which is a continuous-time Markov jump process (Xt)t⩾0 starting from some
y ∈ C∞, and associated to the generator

Lu(x) = ∇ ⋅ a∇u(x) ∶= ∑
z∼x

a({x, z}) (u(z) − u(x)) . (1.38)

We denote the semigroup (or the transition probability) of the random walk by

p (t, x, y) = pa (t, x, y) ∶= Pa
y (Xt = x) ,

which is defined as the solution of the parabolic equation

{ ∂tp(⋅, ⋅, y) −∇ ⋅ a∇p(⋅, ⋅, y) = 0 in (0,∞) ×C∞,
p(0, ⋅, y) = δy in C∞.

(1.39)

Due to this characterization, we often refer to the semigroup p(t, ⋅, y) as the heat kernel or
the parabolic Green’s function.

We remark that the VSRW defined above is just one possible way to construct the random
walk on C∞ and there exist other related models. Two of the most common ones are:
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1. The constant speed random walk (CSRW): it is a continuous-time Markov jump process
starting y ∈ C∞, with jump rate 1 and the transition probability

P (x, z) = a ({x, z})
∑w∼x a ({x,w})

. (1.40)

In other words, its associated generator is

Lu(x) = 1
∑w∼x a ({x,w}) ∑z∼x

a({x, z}) (u(z) − u(x)) .

2. The discrete time random walk (DTRW): the random walk (Xn)n∈N is indexed on the
integers. It starts from a point y ∈ C∞, and when Xn = x, the value of Xn+1 is chosen
randomly among all the neighbors of x following the transition probability (1.40).

These processes have similar, although not identical, properties and have been the subject of
interest in the literature.

The random walk on the percolation cluster is one topic among the more general random
conductance models, where many models belongs to the Brownian universality. For example,
for the VSRW on (Zd,Ed) with {a(e)}e∈Ed i.i.d. satisfying the uniform ellipticity condition
0 < λ ⩽ a ⩽ 1, then its semigroup p(t, ⋅, y) has a Gaussian bound

∀∣x − y∣ ⩽ t, C1

(2πt) d2
exp(− ∣x − y∣2

2C1t
) ⩽ p(t, x, y) ⩽ C2

(2πt) d2
exp(− ∣x − y∣2

2C2t
) . (1.41)

Moreover, the process almost surely has a scaling limit of Brownian motion in the Skorokhod
topology

( 1√
n
Xnt)

t⩾0

n→∞Ô⇒ (σ̄Bt)t⩾0 .

This is the the quenched invariance principle for (Xt)t⩾0, where the environment {a(e)}e∈Ed
is fixed in the statement. It is generally easier to establish the annealed invariance principle
by averaging on the environment.

Let us give some more remarks on these two results. The Gaussian bound for the diver-
gence type operator is initiated by the work of De Giorgi, Moser and Nash on Rd, then it is
generalized to manifold by Grigor’yan in [130] and by Saloff-Coste in [208]. For the CSRW
on Zd, its proof can be found in the work of Delmotte [92], where the theorem is known as
“the volume doubling condition and the Poincaré inequality imply the Gaussian bound”. The
condition ∣x−y∣ ⩽ t in eq. (1.41) is necessary for the Gaussian bound on (Zd,Ed), because the
generator is a finite difference operator rather than a differential operator. For the regime
∣x − y∣ ⩾ t, the tail is exponential rather than Gaussian; see the work of Davies [87]. The
quenched invariance principle has a very close link with homogenization theory. One pow-
erful tool to prove it is the corrector method initiated by Kozlov in [160]: let {φei}1⩽i⩽d be
the first-order correctors associated to the canonical basis {ei}1⩽i⩽d and the generator ∇⋅a∇,
then

Mt = (Xt ⋅ e1 + φe1(Xt),⋯,Xt ⋅ ed + φed(Xt)) ,
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is a martingale. Now the martingale convergence theorem [139] applies

( 1√
n
Mnt)

t⩾0

n→∞Ô⇒ (σ̄Bt)t⩾0 .

It suffices to prove that the part of corrector vanish almost surely φe1(Xnt)√
n

n→∞Ð→ 0 and this is
finally reduced to the sublinearity of correctors.

The random walk on C∞ also belongs to the Brownian universality. One intuitive expla-
nation is that the geometry of C∞ is very close to that of Zd in large scale. In the case of
percolation, in which a is only allowed to take the values 0 or 1, an annealed invariance prin-
ciple was proved in [89] by De Masi, Ferrari, Goldstein and Wick. In [211], Sidoravicius and
Sznitman proved a quenched invariance principle for the simple random walk in dimension
d ⩾ 4. This result was extended to every dimension d ⩾ 2 by Berger and Biskup in [49] (for
the DTRW) and by Mathieu and Piatnitski in [180] (for the CSRW), where their strategy are
to construct the correctors on C∞. The properties of the heat kernel p(t, ⋅, y) on the infinite
cluster have been investigated in the literature. In [181], Mathieu and Remy proved that,
almost surely, the heat kernel decays as fast as t−d/2. These bounds were extended in [39] by
Barlow who established Gaussian lower and upper bounds.

For the VSRW, a similar quenched invariance principle holds. From a homogenization
perspective, the diffusivity σ̄ of the limit Brownian motion is related to the effective coefficient
ā of the elliptic problems by the identity ā = 1

2θ(p)σ̄
2.

In the article [41], Barlow and Hambly proved a parabolic Harnack inequality, a local
central limit theorem for the CSRW, and bounds on the elliptic Green’s function on the
infinite cluster. Their main result can be adapted to the case of the VSRW, and reads as
follows: if we define, for each t ⩾ 0 and x ∈ Rd,

p̄(t, x) ∶= 1
(2πσ̄2t)d/2

exp(− ∣x∣2

2 σ̄2t
) , (1.42)

the heat kernel with diffusivity σ̄, then, for each time T > 0, the following convergence holds,
P-almost surely on the event {0 ∈ C∞},

lim
n→∞

∣nd/2p(nt, ga
n(x),0) − θ(p)−1p̄(t, x)∣ = 0, (1.43)

uniformly in the spatial variable x ∈ Rd and in the time variable t ⩾ T , where the notation
ga
n(x) means the closest point to

√
nx in the infinite cluster under the environment a.

As an important tool, the theory of the correctors on C∞ is also further developed. In [45],
the Liouville regularity problem in a general class of random graphs is studied by Benjamini,
Duminil-Copin, Kozma, and Yadin using the entropy method, which confirms the dimension
of the first-order correctors and gives the bound for higher order. The complete description of
the Liouville regularity on C∞ is then given by Armstrong and Dario in [19] by quantitative
homogenization method. Dario also gives the optimal estimate of the correctors of the same
model in [83]. These results provide us with tools for the AHKM algorithm on percolation
clusters mentioned in Section 1.2, and also help us improve the asymptotic local CLT in [41]
to a quantitative local CLT result. This is the main contributions in Chapter 4 and will be
summarized in Section 1.3.1.
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Finally, before stating our contribution, we remark that there are other developments
in the random conductance model in the following directions: the relaxation of the i.i.d.
condition, the model without uniform ellipticity condition and allowing tails both near∞ and
near 0, the percolation with long-range correlated conductance, etc. For some models among
them, there are other universalities (the anomalous diffusion) rather than the Gaussian case.
We refer Section 4.1.3 and the references there for a complete review.

1.3.1 Summary of Chapter 4

The main contribution of Chapter 4 is convergence rate of the local CLT for the VSRW defined
in eq. (1.39). In the following paragraphs, we present this result at first, and then discuss
the techniques developed in its proof. Finally, we will also talk about the homogenization of
the elliptic Green’s function as its corollary.

Theorem 1.3.1 (Main theorem in Chapter 4, Theorem 4.1.1). For each exponent δ > 0, there
exist a positive constant C < ∞ and an exponent s > 0, depending only on the parameters
d, λ,p and δ, such that for every y ∈ Zd, there exists a non-negative random time Tpar,δ(y)
satisfying the stochastic integrability estimate

∀T ⩾ 0, P (Tpar,δ(y) ⩾ T) ⩽ C exp(−T
s

C
) , (1.44)

such that, on the event {y ∈ C∞}, for every x ∈ C∞ and every t ⩾ max (Tpar,δ(y), ∣x − y∣),

∣p(t, x, y) − θ(p)−1p̄(t, x − y)∣ ⩽ Ct−
d
2−(

1
2−δ) exp(− ∣x − y∣2

Ct
) . (1.45)

We have several remarks on this result.

• In general, the error term has another factor t−( 1
2−δ) in front of the Gaussian bound, so

it is very small in long time compared to both p(t, x, y) and p̄(t, x−y). The exponent is
nearly optimal as δ can be arbitrarily small and t− 1

2 is the optimal rate for the simple
random walk on Zd.

• In eq. (1.45), there is a normalization θ(p)−1 factor. This is necessary because the
semigroup p(t, ⋅, y) only charges C∞, and θ(p) is nearly the total mass of p̄(t, ⋅ − y) on
C∞ by the density argument

∫
C∞

p̄(t, ⋅ − y) ≃ θ(p)∫
Zd
p̄(t, ⋅ − y) ≃ θ(p)∫

Rd
p̄(t, ⋅ − y) ≃ θ(p).

• The result eq. (1.45) only holds for t ⩾ max (Tpar,δ(y), ∣x − y∣), here we give its reason.
This condition can be decomposed as

{t ⩾ max (Tpar,δ(y), ∣x − y∣)} = {t ⩾ ∣x − y∣} ∩ {t ⩾ Tpar,δ(y)} .

Recall that p(t, x, y) has an exponential tail for ∣x− y∣ ⩾ t instead of a Gaussian tail, so
the comparison is not true in that regime. The condition t ⩾ Tpar,δ(y) can be interpreted
as a random waiting time to let the random walker explore the percolation. As we know,
in a small scale the configuration of the percolation can be quite zigzag and fractal, so
the semigroup has not converged close enough to the Gaussian. Moreover, the waiting
time Tpar,δ(y) is not very large since from eq. (1.44) its typical size is a constant and
has a sub-exponential tail.
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Figure 1.2: The figure on the left represents the density distribution of the function t d2 p(t, ⋅,0)
where the map p is the 2-dimensional heat kernel on the infinite percolation cluster with
probability p = 0.7 at time t = 1000; it is similar to a Gaussian distribution. The figure on
the right is the error between the map t d2 p(t, ⋅,0) and the normalized Gaussian heat kernel
θ(p)−1t

d
2 p̄(t, ⋅) defined in eq. (1.42); it is small compared to density distribution on the left.

The proof of this result relies on quantitative homogenization theory on percolation clus-
ters, and we also develop some new techniques. The following is a list of the main ingredients.

1. A partition of good cubes: [19] developed a Calderón-Zygmund type partition of the
cubes, such that

(a) There exists a collection P of triadic cubes, Zd = ⊔◻∈P ◻.
(b) In every partition cube ◻ ∈ P, there exists a maximal cluster C∗(◻). The infinite

cluster C∞ has the structure C∞ = ⊔◻∈P C∗(◻).
(c) The size (diameter) of the partition cube has an estimate size(◻) ⩽ O1(C).

Therefore, we can use this technique to do the localization from C∞ to every small
cluster C∗(◻), and its geometry is not very far from the cube ◻ containing it. These
allow us to develop the functional inequalities including the Poincaré inequality and the
Meyers inequality on percolation clusters. The construction of this partition of good
cubes is inspired by the work of Pisztora [201], and some similar idea is also used by
Barlow in the proof of the Gaussian bound in [39].

2. The estimate of correctors and two-scale expansion: the optimal estimate of the correc-
tors on C∞ is proved in [83] and its application to the two-scale expansion on percolation
clusters is implemented in [134] (see Chapter 3) for

−∇ ⋅ aC∇u = −∇ ⋅ ā∇ū in Zd, (1.46)

where aC ({x, y}) = a({x, y})1{x,y∈C∞}. The two-scale expansion for eq. (1.46) is rather
unusual, because its left-hand side is supported on C∞, while the right-hand side is
supported on Zd. Thus we need the argument of the partition of good cubes. In the
proof of Theorem 1.3.1, we treat a similar but more general case

(∂t −∇ ⋅ a∇)u = 0 (0,∞) ×C∞,

(∂t −
1
2
σ̄2∆) ū = 0 (0,∞) ×Rd,

(1.47)
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with suitable coherent boundary condition; see Theorem 4.3.2 for details. Here the first
equation in eq. (1.47) is defined on C∞ and −∇ ⋅ a∇ is a finite difference operator; the
second equation in eq. (1.47) is defined on Rd and ∆ is the standard Laplace operator.
Unlike eq. (1.46), we have no canonical way to combine the two equations into one.
For this reason, besides the technique of the partition of good cubes, we also apply the
Whitney decomposition from harmonic analysis to overcome the obstacle.

3. The estimate of flux: the centered flux gek defined by

gek ∶ Z
d → Rd, gek ∶= aC (Dφek + ek) − āek, (1.48)

is also an important quantity in quantitative homogenization theory. Its role and
estimate are very similar to ∇φek . In Chapter 3 we develop the weak norm estimate
for gek , but in the proof of Chapter 4 we use another similar quantity g̃ek

g̃ek ∶ C∞ → Rd, g̃ek ∶= a(Dφek + ek) −
1
2
σ̄2ek, (1.49)

and we give its H−1 estimate in Proposition 4.B.1. Recall the identity ā = 1
2θ(p)σ̄

2,
the main difference between eq. (1.48) and eq. (1.49) is in fact a difference of cluster
density. As we need a quantitative estimate for g̃ek , we prove a concentration of the
cluster density in Proposition 4.A.1

∣ ∣C∞ ∩◻m∣
∣◻m∣

− θ(p)∣ ⩽ O 2(d−1)
3d2+2d−1

(C3−
dm
2 ) . (1.50)

This estimate is more explicit than the large deviation results that were available in
the estimate.

The local CLT Theorem 1.3.1 also implies the quantitative homogenization for the elliptic
Green’s function on the infinite cluster. In dimension d ⩾ 3, given an environment {a(e)}e∈Ed
and a point y ∈ C∞, we define the Green’s function g(⋅, y) as the solution of the equation

−∇ ⋅ a∇g(⋅, y) = δy in C∞ such that g(x, y) x→∞Ð→ 0.

This function exists, is unique almost surely and is related to the semigroup p through the
identity

g(x, y) = ∫
∞

0
p(t, x, y)dt. (1.51)

In dimension 2, the situation is different since the Green’s function is not bounded at infinity,
and we define g (⋅, y) as the unique function which satisfies

−∇ ⋅ a∇g(⋅, y) = δy in C∞,
1
∣x∣
g(x, y) x→∞Ð→ 0 and g(y, y) = 0.

This function is related to the transition probability p through the identity

g(x, y) = ∫
∞

0
(p(t, x, y) − p(t, y, y)) dt.

In the statement below, we denote by ḡ the homogenized Green’s function defined by the
formula, for each point x ∈ Rd/ {0},

ḡ(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

− 1
πσ̄2θ(p) ln ∣x∣ if d = 2,
Γ(d/2−1)

(2πd/2σ̄2θ(p))
1

∣x∣d−2 if d ⩾ 3, (1.52)

where the symbol Γ denotes the standard Gamma function.
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Theorem 1.3.2 (Main theorem in Chapter 4, Theorem 4.1.2). For each exponent δ > 0, there
exist a positive constant C < ∞ and an exponent s > 0, depending only on the parameters
d, λ,p and δ, such that for every y ∈ Zd, there exists a non-negative random variableMell,δ(y)
satisfying

∀R ⩾ 0, P (Mell,δ(y) ⩾ R) ⩽ C exp(−R
s

C
) ,

such that, on the event {y ∈ C∞}:

1. In dimension d ⩾ 3, for every point x ∈ C∞ satisfying ∣x − y∣ ⩾Mell,δ(y),

∣g(x, y) − ḡ(x − y)∣ ⩽ 1
∣x − y∣1−δ

C

∣x − y∣d−2 . (1.53)

2. In dimension 2, the limit

K(y) ∶= lim
x→∞

(g(x, y) − ḡ(x − y)) ,

exists, is finite almost surely and satisfies the stochastic integrability estimate

∀R ⩾ 0, P (∣K(y)∣ ⩾ R) ⩽ C exp(−R
s

C
) .

Moreover, for every point x ∈ C∞ satisfying ∣x − y∣ ⩾Mell,δ(y),

∣g(x, y) − ḡ(x − y) −K(y)∣ ⩽ C

∣x − y∣1−δ
. (1.54)

1.4 Homogenization for interacting particle systems

Another topic studied in this thesis is the homogenization theory for interacting particle
systems, which corresponds to Chapters 5 and 6 and is summarized in Section 1.4.1. Since
the context is a little different from the classical homogenization, we give at first a brief
review of some classical particle models to make our motivations clearer.

In the previous models, the random walker in random environment, which can also be
seen as the evolution of one particle, will be close to the Brownian motion in large scale and
long time. The interacting particle systems share the similar spirit, while in these models we
have infinitely many particles instead of one, and the random environment comes from their
configuration which is dynamic.

The most studied model is the lattice gas and a basic model is the simple symmetric
exclusion process (SSEP): let η ∶ Zd → {0,1} stand the configuration of particles, where every
site allows at most one particle. In the evolution, every particle has rate 1

2 to jump to a
vacant neighbor. Thus the evolution (ηt)t⩾0 follows the generator

Lf(η) = 1
2 ∑
x∈Zd

∑
y∼x

η(x)(1 − η(y)) (f(ηx,y) − f(η)) , (1.55)

with the notation

ηx,y(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

η(z) z ≠ x, y;
η(y) z = x;
η(x) z = y.

(1.56)
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Here the test function in eq. (1.55) is the local function f ∈ C0 which only depends on
finite site of η. In this model, the product Bernoulli measure Ber(α)⊗Zd with α ∈ (0,1) is a
stationary measure and we denote it by Pα.

The long-time and large-scale behavior of the SSEP can be characterized by the hydrody-
namic limit and the equilibrium fluctuation. We denote by πNt the empirical density of the
configuration

πNt ∶= N−d ∑
x∈Zd

ηN2t(x)δx/N , (1.57)

The hydrodynamic limit tells us (πNt )t⩾0
N→∞ÐÐÐ⇀ (ρt)t⩾0, i.e. the empirical density converges

to the solution of the heat equation

∂tρt =
1
2

∆ρt, (1.58)

in the Skorokhod topology of the Schwartz distribution, provided the initial configuration
πN0

N→∞ÐÐÐ⇀ ρ0 has a limit profile ρ0. If η0 starts from the stationary measure Pα, then the
equilibrium fluctuation theorem says

Y N
t ∶= N− d2 ∑

x∈Zd
(ηN2t(x) − α) δx/N , (1.59)

converges to the functional Ornstein–Uhlenbeck process (Yt)t⩾0 solving

dYt =
1
2

∆Yt dt +
√
α(1 − α)∇dBt, (1.60)

where Bt is the space-time white noise.
In these results, the effective coefficient matrix is the identity, because the flux Wx,x+ei

from x to x + ei in SSEP is

Wx,x+ei =
1
2
(η(x) − η(x + ei)) , (1.61)

and it can be written as the difference Wx,x+ei = τxh(η) − τx+eih(η) with h(η) = η(0), where
τx is the translation operator. This property is the gradient condition. It makes the effective
coefficient trivial in the model and it is only valid in some particle systems. Another more
heuristic explanation is that the SSEP can be treated as if the jump is always permitted
because in eq. (1.55)

∑
x∈Zd

∑
y∼x

η(x)(1 − η(y)) (f(ηx,y) − f(η)) = ∑
x∈Zd

∑
y∼x

(f(ηx,y) − f(η)).

To make this model less specific, a generalized symmetric exclusion process (GSEP) is pro-
posed, where every site in Zd can place at most κ particles (κ ⩾ 2), i.e. η̃ ∶ Zd → {0,1,⋯, κ}
and the generator is

Lf(η̃) = 1
2 ∑
x∈Zd

∑
y∼x

1{η̃(x)>0,η̃(y)<κ} (f(η̃x,y) − f(η̃)) , (1.62)

with the notation

η̃x,y(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

η̃(z) z ≠ x, y;
η̃(x) − 1 z = x;
η̃(y) + 1 z = y.

(1.63)
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In this model, the stationary measure is Pα = ν⊗Z
d

α with

∀n ∈ {0,1,⋯, κ}, να(n) =
αn

∑κj=0 α
j
.

This model does not satisfy the gradient condition, since

Wx,x+ei =
1
2
(1{η̃(x)>0,η̃(x+ei)<κ} − 1{η̃(x+ei)>0,η̃(x)<κ}) , (1.64)

cannot be written as the differenceWx,x+ei = τxh(η̃)−τx+eih(η̃) for some local function h ∈ C0.
In its result of hydrodynamic limit and fluctuation theorem,

∂tρt = ∇ ⋅D(ρt)∇ρt, dYt = ∇ ⋅D(α)∇Yt dt +
√

ā(α)∇dWt, (1.65)

we will see a quantity called the bulk diffusion coefficient (or the self-diffusion coefficient)
D(α) defined by

D(α) ∶= ā(α)
2χ(α)

, (1.66)

where χ is the quantity called the compressibility

χ(α) ∶= Varα[η̃(0)], (1.67)

and the quantity ā has a variational description. We denote by Γf(η̃) ∶= ∑x∈Zd τxf(η̃), which
may be infinite but for any local function f ∈ C0

∇0,eiΓf(η̃) ∶= Γf(η̃0,ei) − Γf(η̃), (1.68)

is well-defined as the jump only changes the value of finite terms in ∑x∈Zd τxf(η̃). Then ā is
defined by

p ⋅ ā(α)p = inf
f∈C0

d

∑
i=1

Eα [1{η̃(0)>0,η̃(ei)<κ}(pi +∇0,eiΓf(η̃))2] . (1.69)

In the definition of the bulk diffusion matrix, the quantity ā looks very similar as the
effective coefficient in stochastic homogenization theory, where the formula eq. (1.68) is used
to construct some stationary gradient field. Thus it is very natural to think if we can use
some finite volume approximation in eq. (1.19) and get its rate of convergence for D(α).
This may provide us quantitative results in particle systems. However, we should notice
that eq. (1.68) is defined for the configuration space, thus the function ∇0,eiΓf(η̃) can have
arbitrarily many coordinates. This is one of the major challenges and we will discuss it in
detail in Section 1.4.1.

We also give a short review of the references for the results mentioned above. There are
two classical approaches to the identification of the hydrodynamic limit. The first, called
the entropy method, was introduced in [136], and extended to certain non-gradient models in
[221, 204]. The second, called the relative entropy method, was introduced in [224], and was
extended to a non-gradient model in [111].

The asymptotic description of the fluctuations of interacting particle systems at equi-
librium has been obtained in [66, 214, 91, 69, 71], where the main tool is the Holley-
Strook theorem [140]. The extension of this result to non-gradient models was obtained
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in [174, 70, 110]. We are not aware of any results concerning the non-equilibrium fluctua-
tions of a non-gradient model. For gradient models (or small perturbations thereof), we refer
in particular to [202, 90, 106, 71, 144].

The work [166] gives a proof that finite-volume approximations of the self-diffusion matrix
converge to the correct limit. However, no rate of convergence could be obtained there. The
qualitative result of [166] was extended to the mean-zero simple exclusion process, and to
the asymmetric simple exclusion process in dimension d ⩾ 3, in [143]. Finally, we also refer to
the books [215, 152, 157] for much more thorough expositions on these topics, and reviews
of the literature.

1.4.1 Summary of Chapters 5 and 6

In Chapters 5 and 6, we aim to develop a quantitative homogenization theory for interacting
particle systems of non-gradient type. Our main contributions are a t−

d
2 Gaussian type

decay for the semigroup, see Theorem 1.4.1, and a convergence rate for the finite volume
approximation of the bulk coefficient, see Theorem 1.4.2. Our model is constructed in the
continuum configuration space, but the results and proofs can be adapted in the classical
non-gradient type lattice gas model, for example the GSEP.

We introduce at first our particle system. LetMδ(Rd) be the set of σ-finite measures that
are sums of Dirac masses on Rd, which we think of as the space of configurations of particles.
We denote by Pρ the law onMδ(Rd) of the Poisson point process of density ρ ∈ (0,∞), with
Eρ,Varρ the associated expectation and variance. We denote by FU the σ-algebra generated
by the mappings V ↦ µ(V ), for all Borel sets V ⊆ U , completed with all the Pρ-null sets, and
we set F ∶= FRd . We give ourselves a function a○ ∶Mδ(Rd)→ Rd×dsym, where Rd×dsym is the set of
d-by-d symmetric matrices. We assume that this mapping satisfies the following properties:

• uniform ellipticity: there exists Λ <∞ such that for every µ ∈Mδ(Rd),

∀ξ ∈ Rd, ∣ξ∣2 ⩽ ξ ⋅ a○(µ)ξ ⩽ Λ∣ξ∣2 ; (1.70)

• finite range of dependence: denoting by B1 the Euclidean ball of radius 1 centered at
the origin, we assume that a○ is FB1-measurable.

We denote by τ−xµ the translation of the measure µ by the vector −x ∈ Rd; explicitly, for
every Borel set U , we have (τ−xµ)(U) = µ(x + U). We extend a○ by stationarity by setting,
for every µ ∈Mδ(Rd) and x ∈ Rd,

a(µ,x) ∶= a○(τ−xµ).

Denoting by µt ∶= ∑∞
i=1 δxi,t the configuration at time t ⩾ 0, our model can be informally

described as an infinite-dimensional system with local interaction such that every particle
xi,t evolves as a diffusion associated to the divergence-form operator −∇ ⋅ a(µt, xi,t)∇. More
precisely, it is a Markov process (Ω, (Ft)t⩾0,Pρ) defined by the Dirichlet form

Ea(f, f) ∶= Eρ [∫
Rd
∇f(µ,x) ⋅ a(µ,x)∇f(µ,x)dµ(x)] , (1.71)

where the directional derivative

ek ⋅ ∇f(µ,x) = lim
h→0

f(µ − δx + δx+hek) − f(µ)
h

, (1.72)
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is defined for a family of suitable functions and x ∈ supp(µ). The construction of similar
diffusion processes can be found in the the previous work by Albeverio, Kondratiev and
Röckner in [2, 3, 4, 5]; see also the survey [206].

We need some more explanations for the test function of the Dirichlet form in eq. (1.71).
For any open set U ⊆ Rd, we denote by the space C∞

c (U) the functions that are FK-
measurable for some compact set K ⊆ U , and smooth with respect to every particle. There-
fore, the function space C∞

c (U) plays the same role as the local function in the lattice gas
model. Then we define the norm H 1(U), an infinite-dimensional analogue of the classical
Sobolev space H1 that

∥f∥H 1(U) = (Eρ[f2(µ)] +Eρ [∫
U
∣∇f(µ,x)∣2 dµ(x)])

1
2
. (1.73)

We also define the space H 1
0 (U) as the closure in H 1(U) of functions f ∈ C∞

c (U) such that
∥f∥H 1(U) is finite and this is the suitable function space for eq. (1.71).

The main theorem in Chapter 5 is an estimate for the variance decay for our particle
system (µt)t⩾0. We denote by L p the Lp space in (Ω,F ,Pρ) for p ⩾ 1. Let u ∶Mδ(Rd) → R
be an FQlu -measurable function with Qlu ∶= (− lu2 ,

lu
2 )d, and let ut(µ0) ∶= Eρ[u(µt)∣µ0].

Theorem 1.4.1 (Main theorem in Chapter 5, Theorem 5.1.1). There exist two finite positive
constants γ ∶= γ(ρ, d,Λ), C ∶= C(ρ, d,Λ) such that for any u ∈ C∞

c (Rd) ∩L∞ which is FQlu -
measurable, then we have

Varρ[ut] ⩽ C(1 + ∣ log t∣)γ (1 + lu√
t

)
d

∥u∥2
L∞ . (1.74)

Remark. In the work [2, 3, 4, 5] of Albeverio, Kondratiev and Röckner, the Dirichlet form
Ea is defined on the function space

FC∞
c (Rd) = {G(µ(g1),⋯µ(gn)) ∶ n ∈ N,G ∈ C∞

b (Rnd), gi ∈ C∞
c (Rd)} . (1.75)

This is a concrete subspace of C∞
c (Rd) and one can prove that C∞

c (Rd) and FC∞
c (Rd)

generate the same H 1
0 (Rd).

The proof of Theorem 1.4.1 takes inspiration from an important work [142] by Jan-
vresse, Landim, Quastel and Yau, where the decay of variance is proved in the Zd zero range
model. We extend this proof to non-gradient model in the continuum configuration space,
and a technical difficulty in this generalization is a key localization estimate: we denote by
QK = [−K2 ,

K
2 ]d the closed cube and recall that FQK represents the information of µ in it.

We define AKut ∶= Eρ[ut∣FQK ], then for every t ⩾ max {(lu)2,16Λ2} and K ⩾
√
t we have

Eρ [(ut −AKut)2] ⩽ C(Λ) exp(− K√
t
)Eρ [u2] . (1.76)

This is a key estimate appearing in [142, Proposition 3.1], and is also natural as
√
t is the

typical scale of diffusion, thus when K ≫
√
t one gets very good approximation in eq. (1.76).

The main idea of its proof is to define a multiscale functional

Sk,K,β(f) ∶= αkEρ [(Akf)2] + ∫
K

k
αs dEρ [(Asf)2] + αKEρ [(f −AKf)2]

= αKEρ [f2] − ∫
K

k
α′sEρ [(Asf)2] ds,
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with αs = exp ( sβ) , α
′
s = d

dsαs, β > 0, and then studies the evolution of d
dtSk,K,β(ut). In this

procedure, one may argue that

d
dt

Eρ [(Asf)2] = 2Ea(ut,Asut),

but Asut is not in the test function H 1
0 (Rd) because of the perturbation at ∂Qs. More

precisely, it means the discontinuity of Asut when a particle enters or exits Qs. In the lattice
model, there is also such perturbation at the boundary, but Asut can still be used as the local
function thanks to the discrete difference. To solve this problem, we use a regularization
version of As

As,εf ∶=
1
ε
∫

ε

0
As+rf dr, (1.77)

to make the conditional expectation more smooth. Moreover, the derivative of As,εut near
the boundary has a close link with the L 2 isometry of the martingale (Asut)s⩾0.

Finally, let us remark that [142] also obtains the long-time limit Varρ[ut] = Ct−
d
2 + o(t−

d
2 ).

However, the zero range model has the gradient condition, so the constant C is easier to
calculate. In our model, we have to at first identify the bulk coefficient and this also motivates
us for the work in Chapter 6.

In Chapter 6, we study the finite volume approximation of the bulk diffusion coefficient.
For every bounded open set U ⊆ Rd, we define the matrix ā(U) ∈ Rd×dsym to be such that, for
every p ∈ Rd,

1
2
p ⋅ ā(U)p ∶= inf

φ∈H 1
0 (U)

Eρ [
1
ρ∣U ∣ ∫U

1
2
(p +∇φ(µ,x)) ⋅ a(µ,x)(p +∇φ(µ,x))dµ(x)] . (1.78)

For every m ∈ N, we let ◻m = Q3m denote the cube of side length 3m. We define the effective
coefficient matrix as ā ∶= limm→∞ ā(◻m), and the main theorem is to prove its convergence
rate.

Theorem 1.4.2 (Main theorem in Chapter 6, Theorem 6.2.1). The limit ā is well-defined.
Moreover, there exist an exponent α(d,Λ, ρ) > 0 and a constant C(d,Λ, ρ) <∞ such that for
every m ∈ N,

∣ā(◻m) − ā∣ ⩽ C3−αm. (1.79)

The proof of Theorem 1.4.2 follows the renormalization approach initiated by Armstrong
and Smart in [31], which is also reviewed in Section 1.1. However, notice the function space
H 1

0 (U) in eq. (1.78) is quite different from the Euclidean case: the function is defined in
the configuration µ = ∑∞

i=1 δxi instead of Rd, so its number of coordinates can be arbitrarily
large. In the following paragraphs, we point out some new ideas when we implement the
renormalization approach in particle systems.

1. Good function spaces for subadditive quantities: we denote by ν(U, p) = 1
2p ⋅ ā(U)p and

can check that it is subadditive. We also hope to construct a subadditive dual quantity
ν∗(U, q), and we propose the formula (see the discussion in eq. (1.20))

ν∗(U, q) ∶= sup
u∈H 1(U)

Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇u ⋅ a∇u + q ⋅ ∇u) dµ] . (1.80)
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However, notice that we have not defined the function space H 1(U), although the
norm is defined in eq. (1.73). A good definition should be the largest class of F-
measurable functions with finite H 1(U) norm. Informally speaking, these functions
are differentiable with respect to the particles in U , but the dependence of the particles
outside U is just measurable. In particular, unlike the function space H 1

0 (U), we do
not require the FU -measurable condition for H 1(U). To see this definition is good,
one can check:

(a) For any V ⊆ U , we have H 1
0 (V ) ⊆ H 1

0 (U) and H 1(U) ⊆ H 1(V ). That is the
property to prove the subadditivity of ν and ν∗.

(b) Let B1(U) be the neighborhood containing U with distance 1. Then Eρ[u∣FB1(U)]
is a better candidate than u in the functional of ν∗(U, q). This helps us recover
the mixing condition of the maximiser of ν∗(U, q).

2. The modified Caccioppoli inequality: another important ingredient is the Caccioppoli
inequality as the optimisers of ν and ν∗ are a-harmonic functions. We recall the classical
Caccioppoli inequality: for every ũ such that ∆ũ = 0 in Q3r,

∫
Qr

∣∇ũ∣2 ⩽ C

r2 ∫Q3r
∣ũ∣2. (1.81)

Its proof is to use a cut-off function ψ ∈ C∞
c (Q3r) such that ψ2ũ ∈ H1

0(Q3r) and then
test ψ2ũ against ∆ũ. In our particle system, the analogue a-harmonic function is

A(U) ∶= {u ∈ H 1(U) ∶ ∀ϕ ∈ H 1
0 (U), Eρ [∫

U
∇u ⋅ a∇ϕdµ] = 0} ,

and we hope to prove a similar result as eq. (1.81). There is no direct counterpart of
the cut-off function ψ, but inspired from eq. (1.77), for any u ∈ A(Q3r), we can use
Ar,εu ∈ H 1

0 (Qr) as a test function. However, in spite of many efforts, the best we can
prove is a modified Caccioppoli inequality Proposition 6.3.6: there exist θ(d,Λ) ∈ (0,1),
C(d,Λ) <∞, and R0(d,Λ) <∞ such that for every r ⩾ R0 and u ∈ A(Q3r), we have

Eρ [
1

ρ∣Qr ∣ ∫Qr
∇(Ar+2u) ⋅ a∇(Ar+2u)dµ]

⩽ C

r2ρ∣Q3r ∣
Eρ[u2] + θEρ [

1
ρ∣Q3r ∣ ∫Q3r

∇u ⋅ a∇udµ] . (1.82)

Inequality eq. (1.82) controls the norm of the gradient of a a-harmonic function in
the small cube Qr by a sum of terms involving the norm of the gradient in the larger
cube Q3r. This does not seem to be useful at first glance. However, the key point
is that the multiplicative factor θ is smaller than one. Thus it also implies a better
regularity in the interior, and eq. (1.82) can finally be integrated into the framework of
the renormalization approach.

3. The dimension-free Poincaré inequality: the Poincaré inequality is a necessary tool
for analysis, and we also establish it in H 1(U) and H 1

0 (U). For the function space
H 1(U), its proof relies on the Efron-Stein inequality, and we also improve it to the
multiscale Poincaré inequality. For the function space H 1

0 (U), our proof implicitly
makes use of the Malliavin calculus on the Poisson space. See Section 6.3.1 for details.
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1.5 Perspectives

Various numerical experiments in other models

There exists a large class of Dirichlet problems in singular random environments: the inho-
mogeneous Bernoulli percolation model, the Boolean model, the Voronoi percolation model,
etc. Their qualitative homogenization result is proved in [226]. Although we do not establish
all the quantitative results for these models, most of them share the same spirits with the
percolation model, and the AHKM algorithm should also work. Thus, various numerical
experiments can be tested and we hope to try them in practice for other applied problems.

KMT coupling for random walk on percolation cluster

A natural question is how the quantitative estimate for the semigroup can be interpreted in
the trajectory of the stochastic processes. For the simple random walk on Zd, this is known
as the Skorokhod embedding problem and the optimal result is proved by Komlós, Major and
Tusnády (KMT) [155]: one can construct a common probability space for the simple random
walk (Sn)n⩾0 and the Brownian motion (Bt)t⩾0 such that the error estimate is

max
k⩽n

∣Sk −Bk∣ ≃ O(logn). (1.83)

The main ingredient for KMT theorem is the semigroup error estimate and a dyadic endpoint
coupling strategy, and the former is not hard in the simple random walk setting by invoking
directly the local central limit theorem. Viewing the estimate eq. (1.45), hopefully we can
also prove a similar result as eq. (1.83) in percolation cluster setting. As a consequence, this
coupling will answer the mixing time estimate on the percolation cluster posed in [46].

Optimal concentration inequality of the cluster density

One byproduct in Chapter 4 is a concentration inequality of the cluster density Proposi-
tion 4.A.1: there exists a finite positive exponent s = 2(d−1)

3d2+2d−1 and a finite positive constant
C(d,p, s) such that in any cube Qr of diameter r, we have

P [∣ ∣C∞ ∩Qr ∣
∣Qr ∣

− θ(p)∣ > ε] ⩽ 2 exp
⎛
⎝
−
⎛
⎝
εr

d
2

C

⎞
⎠

s
⎞
⎠
. (1.84)

To the best of our knowledge, the result in previous work is a large deviation estimate [201,
Theorem 1.2] that

P [∣ ∣C∞ ∩Qr ∣
∣Qr ∣

− θ(p)∣ > ε] ⩽ C1(d,p, ε) exp (−C2(d,p, ε)rd−1) , (1.85)

where the constant C1,C2 depends on ε. Thus it is interesting to ask the optimal concentra-
tion inequality that recovers both eq. (1.84) and eq. (1.85), and a natural guess is to improve
the s in eq. (1.84) to s = 2(d−1)

d . It may require more analysis on the geometry for the infinite
percolation clusters.

Heat kernel estimate for stable type random walk / long-range percolation

Recently a series of work [73, 75, 74] look at homogenization associated to the stable type
operators. Sometimes we are asked if our strategy is robust enough to get the quantitative
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estimate for these models. We believe the answer is yes, otherwise it will be interesting to
see what is missing.

On the other hand, if we also hope to generalize the result for other long-range correlation
percolation models, then the renormalization step for the geometry should be used more
carefully. In fact, for the Bernoulli bond percolation, the good cube exists with exponentially
high probability. But if this event is only valid with polynomially high probability, every
implement of the renormalization step will reduce the stochastic integrability. We mention
the work [209] of Sapozhnikov for some explorations in this direction.

Optimal rate for hydrodynamic limit and fluctuation

We hope to obtain a quantitative version of hydrodynamic limit and fluctuation theorem in
general particle systems without gradient condition, because it will provide us with a more
flexible framework of convergence. See also the recent progress [144] in this direction for the
model with gradient condition. The ultimate object is clearly the optimal rate, but we can
start from some preliminary version.

A related question is the long-time variance estimate for particle systems without gradient
condition mentioned in Chapter 5

Varρ[ut] = Ct−
d
2 + o(t−

d
2 ). (1.86)

We also recall that a similar result is proved in [142] for the zero range model, but the lack
of gradient condition in our model is the main challenge. The constant C in eq. (1.86) is
related to the bulk diffusion coefficient, and we hope to use its finite volume approximation
in Chapter 6 to conclude eq. (1.86). Finally, we remark a minor difference between the
definitions of bulk diffusion coefficient in eq. (1.69) and eq. (1.78), which pushes us to make
the structure of the corrector clearer in particle systems.

Particles with more singular interactions

We can also consider a particle system with more singular interactions: every particle has a
radius 1 and evolves as an independent Brownian motion before collisions; once two particles
touch each other, there will be a reflecting boundary condition for the diffusion. This may
recall the work of Bodineau, Gallagher and Saint-Raymond [57, 56, 58] on hard-spheres, but
our model is a soft version and closer to the model in Chapters 5 and 6. From another
viewpoint, the reflecting boundary condition is also similar to the percolation model, but
now the environment is dynamic. Therefore, we hope to develop homogenization theory on
this particle system to see the generalization on singular dynamic random environment.



Chapter 2

Uniform bound of the AHKM
iterative algorithm

We study the iterative algorithm proposed by S. Armstrong, A. Hannukainen, T. Kuusi,
J.-C. Mourrat in [22] to solve elliptic equations in divergence form with stochastic station-
ary coefficients. Such equations display rapidly oscillating coefficients and thus usually
require very expensive numerical calculations, while this iterative method is compara-
tively easy to compute. In this chapter, we strengthen the estimate for the contraction
factor achieved by one iteration of the algorithm. We obtain an estimate that holds
uniformly over the initial function in the iteration, and which grows only logarithmically
with the size of the domain.
This chapter corresponds to the article [133] and is published in Stochastics and Partial
Differential Equations: Analysis and Computations.
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2.1 Introduction

2.1.1 Main theorem

The problem of homogenization is a subject widely studied in mathematics and other dis-
ciplines for its applications and interesting properties. Let (a(x), x ∈ Rd) be a random
coefficient field, which takes values in the set of Rd×d symmetric matrices, and which we
assume to be Zd-stationary, with a unit range of dependence and uniformly elliptic that
Λ−1∣ξ∣2 ⩽ ξ ⋅a(x)ξ ⩽ Λ∣ξ∣2 for any x, ξ ∈ Rd. We give ourselves a bounded domain U ⊆ Rd with
boundary C1,1, a scale parameter 0 < ε < 1, and for given f ∈ H−1(U) and g ∈ H1(U), we
consider the elliptic Dirichlet problem

{ −∇ ⋅ (a ( ⋅
ε
)∇uε) = f in U,

uε = g on ∂U. (2.1)

For the scale 0 < ε ≪ 1, a naive numerical algorithm for this problem is generally very
expensive, due to the rapid oscillations of the coefficients (comparatively to the size of the
domain) and we have to refine the mesh of the numerical schema. Thus, different methods
have been proposed to approximate the solution and one of them is to replace the conductance
matrix a by a constant effective conductance matrix ā in eq. (2.1) and use its solution ū as an
approximation, which can be solved quickly thanks to the multi-grid algorithm. However, ū
is close to uε in the sense L2(U) or H−1(U), but not in some stronger topology, for example
H1(U). Furthermore, the approximation only becomes accurate in the limit ε→ 0, but for a
small finite scale ε, one can not expect a precision much smaller than ε with ū.

Recently, [22] proposed an iterative algorithm to solve the problem eq. (2.2) efficiently
for a given ε-scale and with a better precision. We recap at first their algorithm here with
the same formulation in large scale: Instead of considering eq. (2.1) with a small scale ε, we
treat the Dirichlet problem with a dilation parameter r ⩾ 1, and set Ur ∶= rU . Then given
f ∈H−1(Ur) and g ∈H1(Ur), we consider the elliptic equation given by

{ −∇ ⋅ a∇u = f in Ur,
u = g on ∂Ur,

(2.2)

and [22] proposes to start by an initial guess of solution v ∈ g+H1
0(Ur), and solve u0, ū, ũ ∈H1

0(U)
satisfying (with null Dirichlet boundary condition)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(λ2 −∇ ⋅ a∇)u0 = f +∇ ⋅ a∇v in Ur,
−∇ ⋅ ā∇ū = λ2u0 in Ur,
(λ2 −∇ ⋅ a∇)ũ = (λ2 −∇ ⋅ ā∇)ū in Ur.

(2.3)

Then, the iteration v̂ ∶= v+u0+ ũ is a contraction. Since this rate of contraction is random, to
estimate its size, [22] introduces the notation Os for random variable X that for any s, θ > 0,

X ⩽ Os(θ)⇐⇒ E [exp(max(θ−1X,0)s)] ⩽ 2. (2.4)

Informally speaking, the statementX ⩽ Os(1) tells us thatX has a tail lighter than exp(−xs).
We also introduce the shorthand notation for every λ ∈ (0,1],

`(λ) ∶= { (log(1 + λ−1))
1
2 d = 2,

1 d > 2. (2.5)
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Then, [22, Thoerem 1.1] states that under a supplementary condition that the coefficient field
(a(x), x ∈ Rd) is α-Hölder, for any s ∈ (0,2), we have a positive finite constant C(s,U,Λ, α, d)
such that for the algorithm eq. (2.3) in a domain Ur with r ⩾ 1, we have

∥∇(v̂ − u)∥L2(Ur) ⩽ Os (C`
1
2 (λ)λ

1
2 ∥∇(v − u)∥L2(Ur)) . (2.6)

However, in eq. (2.6) the contraction factor is proved for a given initialisation, but cannot
be iterated to guarantee the convergence of the whole procedure. More precisely, after one
iteration, the initial data becomes random and then we cannot make use of the noation Os
eq. (2.4) with a random θ directly. In order to go past this obstacle, the authors of [22]
mention the possibility to get a uniform bound in [22, eq.(1.10)], as is necessary to guarantee
the convergence of the iterated method. The goal of this article is to confirm this idea and
provide a proof of this uniform bound.

Here is our main theorem. The assumption about the random field (a(x), x ∈ Rd) is the
one given at the beginning of the introduction, and its precise definition can be found in
Section 2.2.1, where Λ is the constant of the uniform ellipticity condition.

Theorem 2.1.1 (Uniform H1 contraction). For every bounded domain U ⊆ Rd with C1,1

boundary and every s ∈ (0,2), there exists a positive finite constant C(U,Λ, s, d) and, for
every r ⩾ 2 and λ ∈ (1

r ,
1
2), a random variable Z satisfying

Z ⩽ Os (C`(λ)
1
2λ

1
2 (log r)

1
s ) , (2.7)

such that the following holds. Denote Ur ∶= rU , let f ∈H−1(Ur), g ∈H1(Ur), v ∈ g +H1
0(Ur),

let u ∈ g +H1
0(Ur) be the solution of eq. (2.2), and let u0, ū, ũ ∈ H1

0(Ur) solve eq. (2.3) with
null Dirichlet boundary condition. Then for v̂ ∶= v + u0 + ũ, we have the contraction estimate

∥∇(v̂ − u)∥L2(Ur) ⩽ Z∥∇(v − u)∥L2(Ur). (2.8)

Compared with the result of [22], we have two fundamental improvements: The first one
is the explicit random variable Z, which is an upper bound for the contraction factor in the
iteration, does not depend on the function v. Hence, the algorithm can be iterated, replacing
v by v̂, etc. In the event that Z ⩽ 1

2 , say, we thus obtain exponential convergence of the
iterative method to the solution u, a conclusion that cannot be inferred from the results of
[22]. By the estimate eq. (2.7), in order to guarantee that Z ⩽ 1

2 with high probability, it
suffices to take λ sufficiently small that `(λ) 1

2λ
1
2 (log r) 1

s is below a certain positive constant.
The second improvement is that we do not make any assumption on the regularity of the
coefficient field x↦ a(x), while [22] assumed it to be Hölder continuous.

The price is that the bound eq. (2.7) has another factor (log r) 1
s than eq. (2.6) and this

point is also conjectured in [22, eq.(1.10)]. This factor does not weaken our algorithm viewing
the range of λ and more detailed study will be discussed in Section 2.1.3. In [22, Section 4], one
can find some examples for the practical choice of λ and numerical experiences. The author
has also repeated the algorithm in a domain 128× 128 with λ = 0.1, for a of type chessboard
with law Bernoulli(1

2) taking value in { 1√
2 ,

√
2}, and it takes several seconds to obtain a

precision 10−5 on a laptop. In [134], this algorithm is applied to the supercritical percolation
setting and one can find the numerical results in Section 6. Hopefully, this algorithm also
works on other stochastic homogenization models with stationary ergodic random coefficient
field.
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Remark. One can also state the algorithm eq. (2.3) and Theorem 2.1.1 in ε-scale for eq. (2.1):
In fact, by a simple change of variable that ε = 1

r , and uε(⋅) = u(
⋅
ε) for u in eq. (2.2), then

the same estimates eq. (2.8) and eq. (2.7) hold in the domain U for eq. (2.1) with 0 < ε ⩽ 1
2 ,

when applying the following iteration with λ ∈ (ε,1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

((λε )
2 −∇ ⋅ (a ( ⋅

ε
)∇))u0 = f +∇ ⋅ (a ( ⋅

ε
)∇) v in U,

−∇ ⋅ ā∇ū = (λ
ε
)2
u0 in U,

((λε )
2 −∇ ⋅ (a ( ⋅

ε
)∇)) ũ = ((λε )

2 −∇ ⋅ ā∇) ū in U.
(2.9)

There exists a large amount of references about the homogenization theory and how we
apply them in numerical solution. For example, see [47, 161, 219, 145, 6, 225, 188] for the
classical homogenization theory and see [36, 101, 128, 197, 178, 159, 196, 129, 154, 103,
104, 100] for the multi-grid algorithm in homogenization problem. To analyze a numerical
algorithm for stochastic homogenization problem, it requires quantitative description and it
was open for long time. Thanks to the recent progress in a series of works of Armstrong,
Kuusi, Mourrat and Smart [30, 23, 31, 24], and also the works of Gloria, Neukamm and
Otto [123, 124, 121, 125, 122], we get a further understanding in this direction; see also the
[25] a monograph and [185] as a brief introduction. In both this work and [22], the analysis
depends on two-scale expansion theorem, which is introduced in [6] in periodic case and [8,
Theorem 2.2, Theorem 2.3] gives its rate of convergence; the quantitative analysis for this
problem with random coefficient is studied in [120] and [25, Chapter 6]. Finally, we remark
that in all the context, we suppose that the effective conductance ā is known, because this
part is now well understood and there exist many efficient methods to do it quickly, see for
example [119, 102, 184, 107, 138].

The rest of the paper is organised as follows: At the end of the introduction, we focus
on the numerical part to study why this algorithm is more efficient in Section 2.1.2, and
explain heuristically how this algorithm converges to the solution in Section 2.1.3. Section 2.2
introduces some notations and then we turn to the proof of Theorem 2.1.1. The main
improvements compared to [25] are the two technical lemmas in Section 2.3, then we put our
technique in the proof of [22], which is a quantitative two-scale expansion theorem, and we
reformulate it in Section 2.4. Finally, in Section 2.5, we combine all the results and obtain
the main theorem.

2.1.2 Complexity analysis in numeric

In this part we give a numerical consequence of Theorem 2.1.1. We start by recalling why
solving for (λ2−∇⋅a∇) is computationally less difficult than solving for −∇⋅a∇. In our context,
after discretization, the elliptic equations is transformed to a symmetric linear system

Au = f , (2.10)

where A ∈ RN×N is positive definite, u, f ∈ RN and N stands for the number of elements
which is fixed during all this subsection. To capture all the information of coefficients, the
minimal numerical resolution requires that N = O(rd). Then the problem becomes solving a
large sparse linear system.

One basic method for this problem is the conjugate gradient method (CGM), whose rate
of convergence is

τ(A) =
√
ρ(A) − 1

√
ρ(A) + 1

,
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where ρ is the spectral condition number defined as

ρ(A) = κmax(A)
κmin(A)

,

and κmax, κmin stands for the maximum and minimum eigenvalues ( [207, Theorem 6.29,
eq.(6.128)]). In practice, κmax(A) ≈ constant while κmin(A) ≈ r−2. Thus, when r grows
bigger, the ratio of convergence τ(A) ≈ 1− 1

r . It is still a geometric convergence but the rate
is very small and to solve eq. (2.10) with a resolution ε0, it requires O (r∣ log(ε0)∣) rounds of
CGM.

Now we focus on the complexity to solve eq. (2.10) with eq. (2.3). Since in every iter-
ation we solve two regularised equations and a homogenized equation, we investigate their
complexity at first:

• For the homogenized equation, since the matrix is constant, which alows us to apply
the multi-grid algorithm and for a resolution ε1, the complexity is O(∣ log(ε1)∣) rounds
CGM [65, Chapter 4].

• For the regularised equation (λ2Id+A)uλ = f , we use CGM and the spectral condition
number for 1

r ≪ λ≪ 1 is

ρ(λ2Id +A) = λ
2 + κmax(A)
λ2 + κmin(A)

≈ C

λ2 ,

and this operation also changes the typical size of the rate of convergence

τ(λ2Id +A) =
√
ρ(λ2Id +A) − 1

√
ρ(λ2Id +A) + 1

≈ 1 − λ

C
.

Then for a resolution ε1, it requires O(λ−1∣ log(ε1)∣).

When we implement the algorithm eq. (2.3), generally speaking, the eq. (2.7) tells us with
a large probability, after every iteration the precision will be multiplied λ

1
2 . Thus, totally

it demands O (∣ log(λ)∣−1∣ log(ε0)∣) iterations. Moreover, in the k-th iteration, it suffices to
obtain a resolution ε1 = λ

k
2 for the regularised equation and the homogenized equation, so

the complexity is

O(∣ log(λ)∣−1∣ log(ε0)∣)
∑
k=1

λ−1∣ log(λ
k
2 )∣ ≈ ∣ log(λ)∣−1λ−1 log2(ε0).

When we take a typical choice of λ = (log r)−1, the complexity of the iterative algorithm is
O(log r∣ log ε0∣2) rounds of CGM. This quanity is much smaller than the complexity of solving
eq. (2.10) directly for a big r, provided that the precision is reasonable, for example ε0 = r−n
for n fixed.

2.1.3 Heuristic analysis of algorithm

In this part, we explain heuristicly why the iterative algorthm converges to the true solution
and how we figure out this algorithm. We keep in mind the main idea: To solve eq. (2.2), we
divide it into sub-problems of regularized equations and homogenized equations.
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Figure 2.1: A flowchart shows the mechanic of the algorithm.

We start with an initial guess of the solution v, then we write u = v+ (u−v) and we want
to recover the part (u − v). Since the divergence form is linear, we have

−∇ ⋅ a∇(u − v) = −∇ ⋅ a∇u +∇ ⋅ a∇v = f +∇ ⋅ a∇v.

In the first step of our algorithm, we solve the problem with regularization

(λ2 −∇ ⋅ a∇)u0 = f +∇ ⋅ a∇v,

and u0 gives the high frequency part of (u− v) associated to the operator −∇ ⋅ a∇ on Ur. To
see it, we apply the theorem of spectral decomposition [205, Chapter 5]

(u − v) =
∞
∑
i

ψi,

where ψi is the projection on the subspace of the eigenvalue κi associated to −∇ ⋅ a∇ on Ur,
with 0 < κ1 < κ2⋯. Then u0 has an expression

u0 =
∞
∑
i=1

κi
λ2 + κi

ψi.

We see the projections associated to large eigenvalues have a small perturbation after the
regularization. Thus, we consider the solution u0 of the high frequency projection of (u− v).
Informally, we write

(u − v) ≈ (u − v)high + (u − v)low,
u0 = (u − v)high.
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Therefore, after the first step, we do not get all the information of (u − v) but (u − v)high
and the second and the third equation serve to recover (u − v)low of (u − v). Using the
superposition, a direct idea is to solve

−∇ ⋅ a∇ũ ≈ −∇ ⋅ a∇(u − v − u0) = λ2u0. (2.11)

But for the reason of less numerical cost, we choose to solve at first a homogenized problem

−∇ ⋅ ā∇ū = −∇ ⋅ a∇(u − v − u0) = λ2u0, (2.12)

and if we believe that −∇⋅a∇ũ ≈ −∇⋅ ā∇ū, we can also solve the one by adding regularization

(λ2 −∇ ⋅ a∇)ũ = (λ2 −∇ ⋅ ā∇)ū. (2.13)

Then, we hope that this ũ gives us (u − v)low. Perhaps this “≈” is not very precise, so we
do v̂ ∶= v + u0 + ũ and put v̂ in the role of v for several iterations in order to get a further
approach to the solution of eq. (2.2).

2.2 Notation

In this section, we state our assumptions about the coefficient field precisely and introduce
some notations.

2.2.1 Assumptions on the coefficient field

We denote by ((a(x))x∈Rd ,F ,P) the probability space, and by FV the σ-algebra generated
by

a ↦ ∫
Rd
χai,j , where i, j ∈ {1,2,3⋯d}, χ ∈ C∞

c (V ).

F is short for FRd . Ty denotes the operator of translation i.e. for any function f , Ty(f)(x) ∶=
f(x + y) and for any set A, Ty(A) ∶= {x + y∣x ∈ A}.

The precise assumptions for the coefficient field are as follows.

1. Zd-stationarity: For each A ∈ F and each y ∈ Zd, we have P[Ty(A)] = P[A].

2. Unit range correlation:

∀W,V ∈ B(Rd), dH(W,V ) > 1 Ô⇒ FW ,FV are independent.

Here dH is the Hausdorff distance in Rd.

3. Uniform ellipticity: There exists 0 < Λ < ∞ such that with probability one and for
every x, ξ ∈ Rd, we have Λ−1∣ξ∣2 ⩽ ξ ⋅ a(x)ξ ⩽ Λ∣ξ∣2.

2.2.2 Notation Os
We recall the definition of Os

X ⩽ Os(θ) ⇐⇒ E [exp((θ−1X)s+)] ⩽ 2, (2.14)

where (θ−1X)+ means max{θ−1X,0}. This notation gives the tail estimate of random vari-
ables: One can use Markov’s inequality to obtain that

X ⩽ Os(θ)Ô⇒ ∀x > 0,P[X ⩾ θx] ⩽ 2 exp(−xs).
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Moreover, we can also obtain the estimate of the sum of a series of random variables without
its joint distribution: For a measure space (E,S,m) and {X(z)}z∈E a family of random
variables, we have

∀z ∈ Os(E),X(z) ⩽ Os(θ(z))Ô⇒ ∫
E
X(z)m(dz) ⩽ Os (Cs∫

E
θ(z)m(dz)) , (2.15)

where 0 < Cs < ∞ is a constant and Cs = 1 for s ⩾ 1. See Appendix of [25, Appendix A] for
proofs and other operations on Os.

2.2.3 Convolution

For f ∈ Lp(Rd), g ∈ Lq(Rd) where 1
p +

1
q = 1, we denote by f ⋆g the convolution of the function

f, g

f ⋆ g(x) = ∫
Rd
f(y)g(x − y)dy.

In this article, two mollifiers used are the heat kernel Φr(x), defined for r > 0 and x ∈ Rd by

Φr(x) ∶=
1

(4πr2)d/2
exp(− x

2

4r2) ,

and the bump function ζ ∈ C∞
c (Rd)

ζ(x) ∶= cd exp(−(1
4
− ∣x∣2)

−1
)1{{∣x∣< 1

2}}
,

where cd is the constant of normalization such that ∫Rd ζ(x)dx = 1. Finally, we use the
notation

ζε(x) =
1
εd
ζ (x

ε
) ,

as a mollifier in scale ε > 0 and we have supp(ζε) ⊆ Bε/2.

2.2.4 Function spaces

We use {e1, e2,⋯ed} as the canonical basis of Rd. For every Borel set U ⊆ Rd, let ∣U ∣ be its
Lebesgue measure. For each p ∈ [1,+∞], we denote by Lp(U) the classical Lebesgue space
and Lploc(R

d) the function space for the functions with finite Lp(V ) norm for any compact
set V . The weighted norm Lp(U) is defined for a bounded Borel set U as

∥f∥Lp(U) = ( 1
∣U ∣ ∫U

∣f(x)∣p dx)
1
p

= ∣U ∣−
1
p ∥f∥Lp(U).

For each k ∈ N, we denote by Hk(U) the classical Sobolev space on U equipped with the
norm

∥f∥Hk(U) ∶= ∑
0⩽∣β∣⩽k

∥∂βf∥L2(U),

where β ∈ Nd represents a multi-index weak derivative,

∣β∣ ∶=
d

∑
i=1
βi and ∂βf = ∂β1

x1⋯∂
βd
xd
f.
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We also use ∣∇kf ∣ to indicate ∑∣β∣=k ∣∂βf ∣. When ∣U ∣ <∞, we define the weighted norm that

∥f∥Hk(U) ∶= ∑
0⩽∣β∣⩽k

∣U ∣
∣β∣−k
d ∥∂βf∥L2(U).

Hk
0 (U) denotes the closure of C∞

c (U) in Hk(U) and H−1(U) for the dual of H1(U). The
weighted norm H−1(U) is

∥f∥H−1(U) ∶= sup{ 1
∣U ∣ ∫U

f(x)g(x)dx, g ∈H1
0(U), ∥g∥H1(U) ⩽ 1} .

Here, we abuse the use of the integration ∫U f(x)g(x)dx, since the function space H−1(U)
also contains linear functional, which is not necessarily a function.

Finally, we remark that one advantage of the definition of Hk is that it is consistent with
the scale constant of Poincaré’s inequality [114, eq.(7.44)] and Sobolev extension theorem
[114, Theorem 7.25]. That is, under the condition that the Borel set U has C1,1 boundary,
for any function f ∈H1

0(Ur)

∥f∥H1(Ur) ⩽ C(U,d)∥∇f∥L2(Ur), (2.16)

and for any f ∈ H2(Ur), there exists an extension Ext(f) ∈ H2
0(Rd) such that Ext(f) ≡ f in

Ur

∑
0⩽∣β∣⩽2

∣Ur ∣−
d
2−
∣β∣−2
d ∥∂β Ext(f)∥L2(Rd) ⩽ C(U,d)∥f∥H2(Ur). (2.17)

The proof depends on the scaling argument: For eq. (2.16), we prove at first the result
in domain U and then apply to x ↦ f(rx). For eq. (2.17), we apply [114, Theorem 7.25]
to the domain U and obtain an extension ExtU satisfying eq. (2.17) for r = 1. Then, for
the extension ExtUr on the domain Ur, we define ExtUr(f)(x) ∶= ExtU(f(r⋅))(x/r) and this
satisfies eq. (2.17) with a constant depending only on U,d. In the following paragraphs we
neglect the index of domain and still note the extension Ext.

2.2.5 Cubes

We use the notation ◻ to refer the open unit cube ◻ ∶= (−1
2 ,

1
2)
d. For any z ∈ Rd, the

translation of ◻ in the direction z writes z+◻ ∶= z+(−1
2 ,

1
2)
d. The sum of a cube and a Borel

set U is defined as
◻+U ∶= {z ∈ Rd∣z = x + y, x ∈ ◻, y ∈ U} .

We also denote define scaling of the cube by size ε > 0 that ◻ε ∶= (− ε2 ,
ε
2)
d
.

2.3 Two technical lemmas

We prove two useful lemmas that improves the estimate of the iterative algorithm in this
section. A formula similar to Lemma 2.3.1 can be found in [25, Lemme 6.7]. Here we
introduce a variant version and it works well together with Lemma 2.3.2.
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2.3.1 An inequality of localization

Lemma 2.3.1 (Mixed norm). There exists a constant 0 < C(d) < ∞ such that for every
f ∈ L2

loc(R
d), g ∈ L2(Rd) and every ε > 0, r ⩾ 2, we have the following inequality

∥f(g ⋆ ζε)∥L2(Ur) ⩽ C(d)( max
z∈εZd∩(Ur+◻ε)

∥f∥L2(z+◻ε))∥g∥L2(Ur+◻3ε). (2.18)

Figure 2.2: We calculate the L2 norm by the sum of all norm in small cubes of size ε, so we
counts all cubes in the domain (Ur + ◻ε).

Proof. We decompose the L2 norm as the sum of that in small cubes ◻ε

∥f(g ⋆ ζε)∥2
L2(Ur) ⩽ ∑

z∈εZd∩(Ur+◻ε)
∥f(g ⋆ ζε)∥2

L2(z+◻ε)

(Hölder’s inequality) ⩽ ∑
z∈εZd∩(Ur+◻ε)

(∥f∥2
L2(z+◻ε)∥g ⋆ ζε∥

2
L∞(z+◻ε))

⩽ ( max
z∈εZd∩(Ur+◻ε)

∥f∥2
L2(z+◻ε))

⎛
⎝ ∑
z∈εZd∩(Ur+◻ε)

∥g ⋆ ζε∥2
L∞(z+◻ε)

⎞
⎠
.

Noticing that for any x ∈ z +◻ε, y ∈ Bε/2 then (x − y) ∈ z +◻2ε and we have

∣g ⋆ ζε(x)∣ = ∣∫◻ε
g(x − y) 1

εd
ζ(y
ε
)dy∣

⩽ C(d)
εd

∫
z+◻2ε

∣g(y)∣dy

⩽ C(d)
εd

(∫
z+◻2ε

∣g(y)∣2 dy)
1
2
∣◻2ε∣

1
2

⩽ C(d)
ε
d
2

∥g∥L2(z+◻2ε).

So we get

∥g ⋆ ζε∥L∞(z+◻ε) ⩽
C(d)
ε
d
2

∥g∥L2(z+◻2ε),
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and we add this analysis in the former inequality and obtain that

∥f(g ⋆ ζε)∥2
L2(Ur) ⩽ C(d)( 1

εd
max

z∈εZd∩(Ur+◻ε)
∥f∥2

L2(z+◻ε))
⎛
⎝ ∑
z∈εZd∩(Ur+◻ε)

∥g∥2
L2(z+◻2ε)

⎞
⎠

⩽ C(d)( max
z∈εZd∩(Ur+◻ε)

∥f∥2
L2(z+◻ε))∥g∥2

L2(Ur+◻3ε).

This is the desired inequality.

2.3.2 Maximum of finite number of random variables of type Os(1)
Since (maxz∈εZd∩(Ur+◻ε) ∥f∥L2(z+◻ε)) often appears in the context as the maximum of a family
of random variables, we prove the following lemma to analyze the maximum of a finite number
of random variables of type Os(1). Note that we do not make any assumptions on the joint
law of the random variables.

Lemma 2.3.2. For all N ⩾ 1 and a family of random variables {Xi}1⩽i⩽N satisfying that
Xi ⩽ Os(1), we have

(max
1⩽i⩽N

Xi) ⩽ Os
⎛
⎝
( log(2N)

log(4/3)
)

1
s⎞
⎠
. (2.19)

Proof. For the case N = 1, we could check that eq. (2.19) is established since

M =X1 ⩽ Os(1)Ô⇒M ⩽ Os (
log(4)

log(4/3)
) ,

so we focus on the case N ⩾ 2. By Markov’s inequality, Xi ⩽ Os(1) gives us P[Xi > x] ⩽ 2e−xs .
Then we use the union bound to get

P [max
1⩽i⩽N

Xi > x] = P [
N

⋃
i=1

{Xi > x}] ⩽ (1 ∧
N

∑
i=1

P[Xi > x]) ⩽ 1 ∧ 2Ne−xs . (2.20)

We denote by x0 the critical point such that exs0 = 2N and a > 0 such that as > 3 and its
value will be chosen carefully later. We also set M = max1⩽i⩽N Xi and use Fubini’s theorem:
For an increasing positive function g ∈ C1(R) such that g(0) = 0, we have

E [g(M)] = ∫
∞

0
g(t)P[M > t]dt. (2.21)

We apply eq. (2.21) the function x↦ exp ((x
a
)s+) − 1,

E [exp((M
a

)
s

+
)] = ∫

∞

0

s

a
(x
a
)
s−1

e(
x
a
)sP[M > x]dx + 1

= ∫
x0

0

s

a
(x
a
)
s−1

e(
x
a
)sP[M > x]dx

+ ∫
∞

x0

s

a
(x
a
)
s−1

e(
x
a
)sP[M > x]dx + 1.

(2.22)
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For the integration on the interval (0, x0], we use the estimate eq. (2.20) that P[M > x] ⩽ 1
and exs0 = 2N to bound it

∫
x0

0

s

a
(x
a
)
s−1

e(
x
a
)sP[M > x]dx ⩽ ∫

x0

0

s

a
(x
a
)
s−1

e(
x
a
)s dx

= ∫
x0

0
e(

x
a
)s d(x

a
)
s

= (2N)
1
as − 1.

(2.23)

Similarly, for the integration on the interval (x0,∞), we use eq. (2.20) to control the proba-
bility that P[M > x] ⩽ 2Ne−xs and give an estimate

∫
∞

x0

s

a
(x
a
)
s−1

e(
x
a
)sP[M > x]dx ⩽ 2N ∫

∞

x0

s

a
(x
a
)
s−1

e(
x
a
)s−xs dx

= 2N ∫
∞

x0
e(

x
a
)s−xs d(x

a
)
s

= 1
as − 1
´¹¹¹¹¸¹¹¹¹¹¶

Using as⩾3

(2N)
1
as

⩽ 1
2
(2N)

1
as .

(2.24)

Now we fix a = ( log(2N)
log(4/3))

1
s . For the case N ⩾ 2, we can check that

as = ( log(2N)
log(4/3)

) ⩾ ( log(4)
log(4/3)

) > 3,

so as ⩾ 3 is satisfied. Finally, we put back the estimate eq. (2.23) and eq. (2.24) back to
eq. (2.22) and verify the definition of Os

E [exp((M
a

)
s

+
)] ⩽ 3

2
(2N)

1
as = 3

2
elog(4/3) = 2.

This finishes the proof.

2.4 Two-scale expansion estimate

This section reformulates [22, Theorem 3.1] a quantitative two-scale expansion theorem with
the improvements from the lemmas in Section 2.3.

2.4.1 Main structure

The two-scale expansion allows us to approximate the solution of eq. (2.2) by the solution
of the homogenized equation and the first order corrector {φek}1⩽k⩽d. We recall at first the
definition of the first order corrector.
Definition 2.4.1 (First order corrector, Lemma 3.16 and Theorem 4.1 of [25]). For each
p ∈ Rd, the corrector φp is the sublinear function satisfying that p ⋅ x + φp is a-harmonic in
whole space Rd i.e.

−∇ ⋅ a(p +∇φp) = 0, in Rd. (2.25)

∇φp is Zd-stationary and φp is well-defined up to a constant. For d ⩾ 3, we can choose a
constant such that E [∫◻ φp] = 0, and in this case φp is also Zd-stationary.
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We remark that proof of the property φp is Zd-stationary for d ⩾ 3 requires a detailed
quantitative study of the following modified corrector

φ(λ)
p ∶= φp − φp ⋆Φλ−1 , (2.26)

which is Zd-stationary and is always well-defined. Then the quantitative study of φ(λ)
p allows

us to extract a limit in the subsequence when λ → 0 and this gives us a candidate for the
choice of constant. For its complete proof, see [25, Chapter 4.6, Page 175]. In the following
paragraphs, we specify the constant by E [∫◻ φp] = 0. Therefore, we can use the property
that φp is Zd-stationary for d ⩾ 3.

Once we define the first-order corrctor, as well-known from [6], for v the heterogeneous
and v̄ the homogenized solution, the two-scale expansion v̄ +∑dk=1(∂xk v̄)φek approximates v
in the sense H1. We follow the similar idea in [25, Chapter 6] and apply a modified two-scale
expansion to v̄ ∈H1

0(Ur) ∩H2(Ur) with {φ(λ)
ek }1⩽k⩽d defind in eq. (2.26)

w ∶= v̄ +
d

∑
k=1

∂xk(Ext(v̄) ⋆ ζ)φ(λ)
ek
, (2.27)

where Ext(v̄) is the Sobolev extension such that eq. (2.17) is established. In the following we
abuse a little the notation to identify

v̄ ⋆ ζ ∶= Ext(v̄) ⋆ ζ, (2.28)

in order to shorter the equation. We want to prove aH1 convergence theorem for the operator
(µ2 −∇ ⋅ a∇). We also recall the definition of `(λ)

`(λ) = { (log(1 + λ−1))
1
2 d = 2,

1 d > 2.

Theorem 2.4.1 (Two-scale estimate). For every r ⩾ 2, λ ∈ (1
r ,

1
2), there exists three F-

measurable random variables X1,X2,Y1 satisfying for each s ∈ (0,2), there exists a constant
C ′(U, s, d) such that the following holds: X1,X2,Y1 have an estimate

X1 ⩽ Os (C ′(U, s, d)`(λ)(log r)
1
s ) , X2 ⩽ Os (C ′(U, s, d)λ

d
2 (log r)

1
s ) , (2.29)

Y1 ⩽ Os (C ′(U, s, d)`(λ)(log r)
1
s ) , (2.30)

and for every v̄ ∈H1
0(Ur) ∩H2(Ur), µ ∈ [0, λ] and v ∈H1

0(Ur) satisfying

(µ2 −∇ ⋅ a∇)v = (µ2 −∇ ⋅ ā∇)v̄ in Ur, (2.31)

we have an H1 estimate for the two-scale expansion w associated to v̄ defined in eq. (2.27)

∥v −w∥H1(Ur) ⩽ C(U,Λ, d) [∥v̄∥H2(Ur) + (∥v̄∥H2(Ur) + µ∥v̄∥H1(Ur))X1

+(`(λ)
1
2 ∥v̄∥

1
2
H2(Ur)

∥v̄∥
1
2
H1(Ur)

+ ∥v̄∥H1(Ur))X2

+(`(λ)
1
2 (µ + 1

r
+ 1
`(λ)

) ∥v̄∥
1
2
H2(Ur)

∥v̄∥
1
2
H1(Ur)

+ ∥v̄∥H2(Ur))Y1] .

(2.32)
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Remark. The explicit expression of X1,X2,Y1 can be checked in fig. 2.3. They are the maxi-
mum of local spatial average of gradient and the flux of the first order corrector.

Proof. We give at first the proof of the deterministic part. We will see that the errors can
finally be reduced to the estimates of two norms: the interior error term and a boundary
layer term. The latter boundary term comes from the fact that v and w do not have the
same boundary condition. So we introduce b the solution of the equation

{
(µ2 −∇ ⋅ a∇)b = 0 in Ur,
b = ∑dk=1 ∂xk(v̄ ⋆ ζ)φ

(λ)
ek on ∂Ur.

(2.33)

Then (w − b) shares the same boundary condition as v. So, we have

∥v −w∥H1(Ur) ⩽ ∥v + b −w∥H1(Ur) + ∥b∥H1(Ur), (2.34)

and we do estimates of the two parts respectively.

• Estimate for (v+ b−w). We denote by z ∶= v+ b−w ∈H1
0(Ur) and test it in eq. (2.31)

and eq. (2.33)

µ2∫
Ur
zv + ∫

Ur
∇z ⋅ a∇v = µ2∫

Ur
zv̄ + ∫

Ur
∇z ⋅ ā∇v̄,

µ2∫
Ur
zb + ∫

Ur
∇z ⋅ a∇b = 0.

We do the sum to obtain that

µ2∫
Ur
z(v + b) + ∫

Ur
∇z ⋅ a∇(v + b) = µ2∫

Ur
zv̄ + ∫

Ur
∇z ⋅ ā∇v̄.

Using the fact v + b = z +w, we obtain

µ2∫
Ur

∣z∣2 + ∫
Ur
∇z ⋅ a∇z = µ2∫

Ur
z(v̄ −w) + ∫

Ur
∇z ⋅ (ā∇v̄ − a∇w),

and we apply the uniform ellipticity condition to obtain

µ2∥z∥2
L2(Ur) +Λ−1∥∇z∥2

L2(Ur) ⩽ µ2∥z∥L2(Ur)∥w − v̄∥L2(Ur)

+∥z∥H1(Ur)∥∇ ⋅ a∇w −∇ ⋅ ā∇v̄∥H−1(Ur)

(Young’s inequality) ⩽ µ2∥z∥2
L2(Ur) +

µ2

4
∥w − v̄∥2

L2(Ur)

+Λ−1

2
∥z∥2

H1(Ur) +
Λ
2
∥∇ ⋅ a∇w −∇ ⋅ ā∇v̄∥2

H−1(Ur)

Ô⇒ ∥∇z∥L2(Ur) ⩽ Λ∥∇ ⋅ a∇w −∇ ⋅ ā∇v̄∥H−1(Ur) +
√

Λµ∥w − v̄∥L2(Ur).

We use Poincaré’s inequality to conclude that

∥z∥H1(Ur) ⩽ C(U) (Λ∥∇ ⋅ a∇w −∇ ⋅ ā∇v̄∥H−1(Ur) +
√

Λµ∥w − v̄∥L2(Ur)) . (2.35)

• Estimate for b. To estimate b we use the property that it is the optimizer of the
problem

inf
χ∈b+H1

0(Ur)
µ2∫

Ur
χ2 + ∫

Ur
∇χ ⋅ a∇χ.
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So we give an upper bound of this functional by the following trial function

Tλ ∶= (1{Rd/Ur,2`(λ)} ⋆ ζ`(λ))
d

∑
k=1

∂xk(v̄ ⋆ ζ)φ
(λ)
ek
, (2.36)

where Ur,2`(λ) is defined as

Ur,2`(λ) = {x ∈ Ur ∣d(x, ∂Ur) > 2`(λ)}.

The motivation to test Tλ is the following: If we think the solution of elliptic equation is
an average in some sense of the boundary value, then when the coefficient is oscillating,
the boundary value is hard to propagate. So one naive candidate is just smoothing the
boundary value in a small band of length 2`(λ).
By comparison,

µ2∫
Ur

∣b∣2 + ∫
Ur
∇b ⋅ a∇b ⩽ µ2∫

Ur
∣Tλ∣2 + ∫

Ur
∇Tλ ⋅ a∇Tλ

Ô⇒ ∥∇b∥L2(Ur) ⩽ µ
√

Λ∥Tλ∥L2(Ur) +Λ∥∇Tλ∥L2(Ur).

Moreover, to estimate the L2 norm, we use once again Poincaré’s inequality

∥b∥L2(Ur) = ∥b − Tλ + Tλ∥L2(Ur)
⩽ ∥b − Tλ∥L2(Ur) + ∥Tλ∥L2(Ur)

(Poincaré’s inequality) ⩽ r∥∇(b − Tλ)∥L2(Ur) + ∥Tλ∥L2(Ur)
⩽ r∥∇b∥L2(Ur) + r∥∇Tλ∥L2(Ur) + ∥Tλ∥L2(Ur).

We combine the two and get an estimate of b

∥b∥H1(Ur) = 1
∣Ur ∣

1
d

∥b∥L2(Ur) + ∥∇b∥L2(Ur)

⩽ C(U) (1
r
∥Tλ∥L2(Ur) + µ

√
Λ∥Tλ∥L2(Ur) + (1 +Λ)∥∇Tλ∥L2(Ur)) .

Finally, we put all the estimates above into eq. (2.34)

∥v −w∥H1(Ur) ⩽ C(U,Λ) (∥∇ ⋅ (a∇w − ā∇v̄)∥H−1(Ur) + µ∥w − v̄∥L2(Ur)

+∥∇Tλ∥L2(Ur) + (1
r
+ µ) ∥Tλ∥L2(Ur)) .

(2.37)

To complete the proof of Theorem 2.4.1, we have to treat the random norms in eq. (2.37)
respectively. It is the main task of the next section.

2.4.2 Construction of a vector field

In this part, we analyze ∥∇⋅ (a∇w− ā∇v̄)∥H−1(Ur) with the help of the flux corrector. Similar
formulas appear both in [22, Lemma 3.3] and [25, Chapter 6, Lemma 6.7], here we give the
version in our context.

At first, we introduce the flux corrector Sp. For every p ∈ Rd, since gp ∶= a(p +∇φp) − āp
defines a divergence free field, i.e. ∇ ⋅gp = 0, it admits a representation as the “curl” of some
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potential vector by Helmholtz’s theorem. That is there exists a Rd×d skew-symmetric matrix
Sp such that

a(p +∇φp) − āp = ∇ ⋅ Sp,

where ∇ ⋅ Sp is a Rd valued vector defined by (∇ ⋅ Sp)i = ∑dj=1 ∂xjSp,ij . In order to “fix the
gauge”, for each i, j ∈ {1,2,⋯d}, we force

∆Sp,ij = ∂xjgp,i − ∂xigp,j ,

and under this condition, Sp is unique up to a constant and {∇Sp, ij, p ∈ Rd, i, j ∈ {1,2,⋯d}}
also forms a family of Zd-stationary field like ∇φp. This quantity appears in the early work of
periodic homogenization [33, Lemma 3.1] and [145, Lemma 4.4]. See [25, Lemma 6.1] for the
well-definedness of Sp in stochatic homogenization setting and this quantity is also adapted
in [121, Lemma 1] as extended corrector. We also define

S(λ)
p = Sp − Sp ⋆Φλ−1 ,

to truncate the constant part, so S(λ)
p is well-defined and Zd-stationary.

We have the following identity.

Lemma 2.4.1. For λ > 0, v̄ ∈ H1
0(Ur) ∩H2(Ur) and w ∈ H1(Ur) as in Theorem 2.4.1. We

construct a vector field F such that

∇ ⋅ (a∇w − ā∇v̄) = ∇ ⋅F,

whose i-th component is given by

Fi =
d

∑
j=1

(aij − āij)∂xj(v̄ − v̄ ⋆ ζ) +
d

∑
j,k=1

(aijφ(λ)
ek

− S(λ)
ek,ij

)∂xj∂xk(v̄ ⋆ ζ)

+
d

∑
j,k=1

(∂xjSek,ij ⋆Φλ−1 − aij∂xjφek ⋆Φλ−1)∂xk(v̄ ⋆ ζ).
(2.38)

Proof. We develop

[a∇w − ā∇v̄]i = [a∇(v̄ +
d

∑
k=1

∂xk(v̄ ⋆ ζ)φ
(λ)
ek

) − ā∇v̄]
i

= [(a − ā)∇v̄ + a∇
d

∑
k=1

(∂xk(v̄ ⋆ ζ)φ
(λ)
ek

)]
i

= [(a − ā)∇(v̄ − v̄ ⋆ ζ)]i
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I

+ [(a − ā)∇(v̄ ⋆ ζ) + a∇
d

∑
k=1

(∂xk(v̄ ⋆ ζ)φ
(λ)
ek

)]
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II

.

The first term is indeed

I = [(a − ā)∇(v̄ − v̄ ⋆ ζ)]i =
d

∑
j=1

(aij − āij)∂xj(v̄ − v̄ ⋆ ζ),
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as in the right hand side of the identity, so we continue to study the rest of the formula.

II =
d

∑
j=1

(aij − āij)∂xj(v̄ ⋆ ζ) +
d

∑
j,k=1

aij∂xj (∂xk(v̄ ⋆ ζ)φ
(λ)
ek

)

=
d

∑
j,k=1

(aij − āij)∂xj(v̄ ⋆ ζ)δjk +
d

∑
j,k=1

aij∂xj∂xk(v̄ ⋆ ζ)φ
(λ)
ek

+
d

∑
j,k=1

aij∂xk(v̄ ⋆ ζ)∂xjφ
(λ)
ek

=
d

∑
j,k=1

((aij − āij)δjk + aij∂xjφ
(λ)
ek

)∂xk(v̄ ⋆ ζ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II.1

+
d

∑
j,k=1

aij∂xj∂xk(v̄ ⋆ ζ)φ
(λ)
ek

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II.2

.

II.2 appears in the right hand side of the formula, so it remains II.1 to treat. We use the
the definition of S(λ)

ek in II.1

II.1 =
d

∑
k=1

[a(ek +∇φ(λ)
ek

) − āek]
i
∂xk(v̄ ⋆ ζ)

=
d

∑
k=1

[a(ek +∇φek) − āek − a∇φek ⋆Φλ−1]i ∂xk(v̄ ⋆ ζ)

=
d

∑
k=1

[∇ ⋅ Sek − a∇φek ⋆Φλ−1]i ∂xk(v̄ ⋆ ζ)

=
d

∑
k=1

[∇ ⋅ S(λ)
ek

]
i
∂xk(v̄ ⋆ ζ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
III

+
d

∑
k=1

[∇ ⋅ Sek ⋆Φλ−1 − a∇φek ⋆Φλ−1]i ∂xk(v̄ ⋆ ζ).

All the terms match well except III, where we have to look for an equal form after divergence.
Thanks to the property of skew-symmetry, we have

∇ ⋅ III = ∇ ⋅ (
d

∑
k=1

[∇ ⋅ S(λ)
ek

]
i
∂xk(v̄ ⋆ ζ))

=
d

∑
i,j,k=1

∂xi (∂xjS
(λ)
ek,ij

∂xk(v̄ ⋆ ζ))

(Integration by parts) =
d

∑
i,j,k=1

∂xi∂xj (S(λ)
ek,ij

∂xk(v̄ ⋆ ζ)) − ∂xi (S(λ)
ek,ij

∂xj∂xk(v̄ ⋆ ζ))

(Skew-symmetry of S) = −∇ ⋅
⎛
⎝

d

∑
j,k=1

S(λ)
ek,ij

∂xj∂xk(v̄ ⋆ ζ)
⎞
⎠
.

This finishes the proof.

2.4.3 Quantitative description of φ(λ)
ek and S(λ)

ek

In this subsection, we will give some quantitative descriptions of φ(λ)
ek and S(λ)

ek , which serve
as the bricks to form X1,X2,Y1.
Lemma 2.4.2 (Estimate of corrector). For each s ∈ (0,2), there exists a positive constant
C(s,Λ, d) <∞ such that for every λ ∈ (0,1), i, j, k ∈ {1,⋯d}, z ∈ Zd

∥∇φek ⋆Φλ−1∥L2(z+◻) ⩽ Os(Cλ
d
2 ), ∥∇Sek,ij ⋆Φλ−1∥L2(z+◻) ⩽ Os(Cλ

d
2 ),

∥φ(λ)
ek

∥L2(z+◻) ⩽ Os(C`(λ)), ∥S(λ)
ek,ij

∥L2(z+◻) ⩽ Os(C`(λ)).
(2.39)
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Proof. We study at first the part φ(λ)
ek . [25, Theorem 4.1] gives us three useful estimates

• d ⩾ 2, r > 1, for any x ∈ Rd

∣∇φek ⋆Φr(x)∣ ⩽ Os(C(s, d,Λ)r−
d
2 ). (2.40)

• d ⩾ 3,
∥φek∥L2(◻) ⩽ O2(C(d,Λ)). (2.41)

• d = 2, for any 2 ⩽ r < R <∞, and x, y ∈ Rd,

∥φek − φek ⋆Φr(0)∥L2(◻r) ⩽ Os(C(s,Λ) log
1
2 r),

∣(φek ∗Φr)(x) − (φek ∗ΦR)(y)∣ ⩽ Os (C(s,Λ) log
1
2 (2 + R + ∣x − y∣

r
)) .

(2.42a)

(2.42b)

Informally speaking, the behavior of corrector when d ⩾ 3 is of size constant, but has a
logarithm increment when d = 2 and this explicates why we have `(λ) in eq. (2.39).

1. Proof of ∥∇φek ⋆Φλ−1∥L2(z+◻) ⩽ Os(Cλ
d
2 ).

By choosing r = λ−1 in eq. (2.40) and using eq. (2.15), we have

∣∇φek ⋆Φλ−1(x)∣ ⩽ Os(Cλ
d
2 )

Ô⇒ ∣∇φek ⋆Φλ−1(x)∣2 ⩽ Os/2(C2λd)

Ô⇒ ∫
z+◻

∣∇φek ⋆Φλ−1(x)∣2 dx ⩽ Os/2(C2λd)

Ô⇒ ∥∇φek ⋆Φλ−1∥L2(z+◻) ⩽ Os(Cλ
d
2 ).

2. Proof that if d ⩾ 3, then ∥φ(λ)
ek ∥L2(z+◻) ⩽ Os(C). We apply eq. (2.41) to get that

∥φ(λ)
ek

∥L2(z+◻) ⩽ ∥φek∥L2(z+◻) + ∥φek ⋆Φλ−1∥L2(z+◻),

where the first one comes from a modified version of eq. (2.41). In fact, by the Zd-
stationarity of φ Definition 2.4.1, we have ∥φek∥L2(z+◻) ⩽ O2(C(d,Λ)), then for every
s ∈ (0,2), we set C(s, d,Λ) = 3 1

sC(d,Λ), then

E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
(
∥φek∥L2(z+◻)
C(s, d,Λ)

)
s

+

⎞
⎠

⎤⎥⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎢⎣
exp

⎛
⎝

1
3
(
∥φek∥L2(z+◻)
C(d,Λ)

)
s⎞
⎠

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎝

exp
⎛
⎝
(
∥φek∥L2(z+◻)
C(d,Λ)

)
s⎞
⎠
⎞
⎠

1
3
⎤⎥⎥⎥⎥⎥⎦

(Jensen’s inequality) ⩽
⎛
⎝
E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
(
∥φek∥L2(z+◻)
C(d,Λ)

)
s⎞
⎠

⎤⎥⎥⎥⎥⎦

⎞
⎠

1
3

.
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We decompose the last term into two parts

E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
(
∥φek∥L2(z+◻)
C(s, d,Λ)

)
s

+

⎞
⎠

⎤⎥⎥⎥⎥⎦

⩽
⎛
⎝
E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
(
∥φek∥L2(z+◻)
C(d,Λ)

)
s⎞
⎠

1{{∥φek∥L2(z+◻)⩽C(d,Λ)}}

⎤⎥⎥⎥⎥⎦

+ E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
(
∥φek∥L2(z+◻)
C(d,Λ)

)
s⎞
⎠

1{{∥φek∥L2(z+◻)⩾C(d,Λ)}}

⎤⎥⎥⎥⎥⎦

⎞
⎠

1
3

⩽

⎛
⎜⎜⎜⎜⎜⎜
⎝

E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
(
∥φek∥L2(z+◻)
C(d,Λ)

)
s⎞
⎠

1{{∥φek∥L2(z+◻)⩽C(d,Λ)}}

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩽e

+ E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
(
∥φek∥L2(z+◻)
C(d,Λ)

)
2⎞
⎠

1{{∥φek∥L2(z+◻)⩾C(d,Λ)}}

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩽2

⎞
⎟⎟⎟⎟⎟⎟
⎠

1
3

⩽ (e + 2)
1
3 ⩽ 2.

Thus we prove that for any s ∈ (0,2),C(s, d,Λ) = 3 1
sC(d,Λ)

∥φek∥L2(z+◻) ⩽ O2(C(d,Λ))Ô⇒ ∥φek∥L2(z+◻) ⩽ Os(C(s, d,Λ)). (2.43)

We focus on the second one that

∥φek ⋆Φλ−1∥2
L2(z+◻) = ∫

z+◻
∣∫

Rd
φek(x − y)Φλ−1(y)dy∣

2
dx

= ∫
z+◻

∣∫
Rd
φek(x − y)Φ

1
2
λ−1(y)Φ

1
2
λ−1(y)dy∣

2
dx

(Hölder’s inequality) ⩽ ∫
z+◻

(∫
Rd
φ2
ek
(x − y)Φλ−1(y)dy)(∫

Rd
Φλ−1(y)dy)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

dx

= ∫
z+◻∫Rd

φ2
ek
(x − y)Φλ−1(y)dy dx

(eq. (2.15)) ⩽ Os(C).

In the last step, we treat Φλ−1 as a weight for different small cubes so we could apply
eq. (2.15) and eq. (2.43).

3. Proof that if d = 2, then ∥φ(λ)
ek ∥L2(z+◻) ⩽ Os(C`(λ)).

This part is a little more difficult than the case d ⩾ 3 since we have only eq. (2.42a)
and eq. (2.42b) instead of eq. (2.41) when d = 2. This foreces us to do more steps of
difference.
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We apply eq. (2.42a) eq. (2.42b) to ∥φ(λ)
ek ∥L2(z+◻) for any λ ∈ (0, 1

2]

∥φ(λ)
ek

∥L2(z+◻) = ∥φek − φek ⋆Φλ−1∥L2(z+◻)
⩽ ∥φek − φek ⋆Φ2(z)∥L2(z+◻) + ∥φek ⋆Φ2(z) − φek ⋆Φ2∥L2(z+◻)

+∥φek ⋆Φ2 − φek ⋆Φλ−1∥L2(z+◻)
⩽ 4 ∥φek − φek ⋆Φ2(z)∥L2(B2(z))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Apply eq. (2.42a)

+4 ∥φek ⋆Φ2(z) − φek ⋆Φ2∥L2(B2(z))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Apply eq. (2.42b)

+ ∥φek ⋆Φ2 − φek ⋆Φλ−1∥L2(z+◻)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Apply eq. (2.42b)

⩽ Os(C) +Os(C) +Os(C log
1
2 (2 + (2λ)−1))

(eq. (2.15)) ⩽ Os(C`(λ)).

Here we use Φ2 since eq. (2.42a) and eq. (2.42b) require that the scale should be bigger
than 2. In last step, we use also the condition λ ⩽ 1

2 to give up the constant term.

Since Sek has the same type of estimate eq. (2.40),eq. (2.41),eq. (2.42a),eq. (2.42b) as
φek , see [25, Proposition 6.2], we apply the same procedure to obtain the other half of the
eq. (2.39).

2.4.4 Detailed H−1 and boundary layer estimate

In this subection, we complete the proof of Theorem 2.4.1, which remains to give an ex-
plicit random variable in the formula eq. (2.37). This requires to analyze several norms like
∥∇ ⋅ (a∇w − ā∇v̄)∥H−1(Ur), ∥w − v̄∥L2(Ur), ∥∇Tλ∥L2(Ur), ∥Tλ∥L2(Ur). We will make the use of
two technical lemmas in Section 2.3 and Lemma 2.4.2 to estimate them.

Estimate of ∥∇ ⋅ (a∇w − ā∇v̄)∥H−1(Ur)

With the help of Lemma 2.4.1, we have
∥∇ ⋅ (a∇w − ā∇v̄)∥H−1(Ur) = ∥∇ ⋅F∥H−1(Ur) ⩽ ∥F∥L2(Ur),

and we use the identity in eq. (2.38) to obtain

∥F∥L2(Ur) ⩽
d

∑
j=1

∥(a − ā)∇(v̄ − v̄ ⋆ ζ)∥L2(Ur)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H.1

+
d

∑
j,k=1

∥(aφ(λ)
ek

− S(λ)
ek

)∂xj∂xk(v̄ ⋆ ζ)∥L2(Ur)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H.2

+
d

∑
k=1

∥(∇Sek ⋆Φλ−1 − a∇φek ⋆Φλ−1)∂xk(v̄ ⋆ ζ)∥L2(Ur)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H.3

.

We treat the three terms respectively. For H.1, we recall that v̄ ⋆ ζ means Ext(v̄)⋆ ζ and use
the approximation of identity, see for example [25, Lemma 6.8]

H.1 ⩽ dΛ
∣Ur ∣

d
2
∥∇Ext(v̄) −∇Ext(v̄) ⋆ ζ∥L2(Rd) ⩽

dΛ
∣Ur ∣

d
2
∥∇2 Ext(v̄)∥L2(Rd).
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We recall the estimate eq. (2.17) that

dΛ
∣Ur ∣

d
2
∥∇2 Ext(v̄)∥L2(Rd) ⩽ C(U,Λ, d)∥v̄∥H2(Ur),

so we get H.1 ⩽ C(U,Λ, d)∥v̄∥H2(Ur).
For H.2, since ∥φ(λ)

ek ∥L2(z+◻), ∥S
(λ)
ek ∥L2(z+◻) are obtained in Lemma 2.4.2, we could use

the Lemma 2.3.1 where we treat the cell of the scale ε = 1 and take g = ∂xj∂xk Ext(v̄), and
f = (aφ(λ)

ek − S(λ)
ek )

H.2 =
d

∑
j,k=1

∥ (aφ(λ)
ek

− S(λ)
ek

) (∂xj∂xk Ext(v̄) ⋆ ζ)∥L2(Ur)

⩽ C(Λ, d)
∣Ur ∣

d
2

d

∑
k=1

max
z∈Zd∩(Ur+◻)

(∥φ(λ)
ek

∥L2(z+◻) + ∥S(λ)
ek

∥L2(z+◻)) ∥∇2 Ext(v̄)∥L2(Ur+3◻).

Once again we apply the Sobolev extension estimate eq. (2.17) that

∣Ur ∣−
d
2 ∥∇2 Ext(v̄)∥L2(Ur+3◻) ⩽ ∣Ur ∣−

d
2 ∥∇2 Ext(v̄)∥L2(Rd) ⩽ C(U,d)∥v̄∥H2(Ur).

We extract the term of random variable

X1 ∶=
d

∑
k=1

max
z∈Zd∩(Ur+◻)

(∥φ(λ)
ek

∥L2(z+◻) + ∥S(λ)
ek

∥L2(z+◻)) , (2.44)

and obtain that H.2 ⩽ C(U,Λ, d)X1∥v̄∥H2(Ur). Moreover, Lemma 2.3.2 and Lemma 2.4.2 can
be applied here to estimate the size of random variables that

X1 ⩽ Os (C(U, s, d)`(λ)(log r)
1
s ) .

The above estimation gives a good recipe for the remaining part. For H.3, we have

H.3 =
d

∑
k=1

∥ (∇Sek ⋆Φλ−1 − a∇φek ⋆Φλ−1) (∂xk Ext(v̄) ⋆ ζ)∥L2(Ur)

⩽ C(U,Λ, d)X2∥v̄∥H1(Ur),

where we extract that

X2 ∶=
d

∑
k=1

max
z∈Zd∩(Ur+◻)

(∥∇φek ⋆Φλ−1∥L2(z+◻) + ∥∇Sek ⋆Φλ−1∥L2(z+◻)) , (2.45)

and we apply Lemma 2.3.2 and Lemma 2.4.2 to get

X2 ⩽ Os (C(U, s, d)λ
d
2 (log r)

1
s ) .

Combing H.1,H.2,H.3, we get

∥∇ ⋅ (a∇w − ā∇v̄)∥H−1(Ur) ⩽ C(U,Λ, d) (∥v̄∥H2(Ur) + ∥v̄∥H2(Ur)X1,+∥v̄∥H1(Ur)X2) . (2.46)
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Estimate of ∥w − v̄∥L2(Ur)

For ∥w − v̄∥L2(Ur), we use Lemma 2.3.1 and eq. (2.17) to obtain that

∥w − v̄∥L2(Ur) = ∥
d

∑
k=1

φ(λ)
ek
∂xk(Ext(v̄) ⋆ ζ)∥L2(Ur)

⩽ C(U,Λ, d)
d

∑
k=1

max
z∈Zd∩(Ur+◻)

(∥φ(λ)
ek

∥L2(z+◻)) ∥v̄∥H1(Ur)

⩽ C(U,Λ, d)∥v̄∥H1(Ur)X1.

Ô⇒ ∥w − v̄∥L2(Ur) ⩽ C(U,Λ, d)∥v̄∥H1(Ur)X1. (2.47)

Estimate of ∥∇Tλ∥L2(Ur), ∥Tλ∥L2(Ur)

Finally, we come to the estimate of ∥∇Tλ∥L2(Ur), ∥Tλ∥L2(Ur). We study ∥∇Tλ∥L2(Ur) at first.

∥∇Tλ∥L2(Ur) =
XXXXXXXXXXX

⎛
⎝

1{Rd/Ur,2l(λ)} ⋆
1

`
d
2+1(λ)

(∇ζ)( ⋅
`(λ)

)
⎞
⎠

d

∑
k=1

∂xk(v̄ ⋆ ζ)φ
(λ)
ek

XXXXXXXXXXXL2(Ur)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T.1

+∥(1{Rd/Ur,2`(λ)} ⋆ ζ`(λ))
d

∑
k=1

∂xk(∇v̄ ⋆ ζ)φ
(λ)
ek

∥
L2(Ur)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T.2

+∥(1{Rd/Ur,2`(λ)} ⋆ ζ`(λ))
d

∑
k=1

∂xk(v̄ ⋆ ζ)∇φ
(λ)
ek

∥
L2(Ur)

.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T.3

For the term T.1, we use eq. (2.17) and eq. (2.18) that

T.1 ⩽ C
1

`(λ)
∥
d

∑
k=1

1{Ur/Ur,2`(λ)}∂xk(Ext(v̄) ⋆ ζ)φ(λ)
ek

∥
L2(Ur)

⩽ C(U,d)
`(λ)

d

∑
k=1

max
z∈Zd∩(Ur/Ur,2`(λ)+◻)

(∥φ(λ)
ek

∥L2(z+◻)) ∥1{Ur/Ur,2`(λ)}v̄∥H1(Ur).

Here we should pay attention to one small improvement: The domain of integration is in fact
restricted in Ur/Ur,2`(λ), so we would like to give it a bound in terms of H2(Ur) rather than
H1(Ur). We borrow a trace estimate in [22, Proposition A.1] that for f ∈H1(Ur)

∥f1{Ur/Ur,2`(λ)}∥L2(Ur) ⩽ C(U,d)`(λ)
1
2 ∥f∥

1
2
H1(Ur)

∥f∥
1
2
L2(Ur)

, (2.48)

using eq. (2.48) then we obtain an estimate

T.1 ⩽ C(U,d)
`

1
2 (λ)

d

∑
k=1

max
z∈Zd∩(Ur/Ur,2`(λ)+◻)

(∥φ(λ)
ek

∥L2(z+◻)) ∥v̄∥
1
2
H2(Ur)

∥v̄∥
1
2
H1(Ur)

,

so we define the random variable

Y1 ∶=
d

∑
k=1

max
z∈Zd∩(Ur/Ur,2`(λ)+◻)

(∥φ(λ)
ek

∥L2(z+◻)) , (2.49)
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and we have the estimate by Lemma 2.3.2 and Lemma 2.4.2

Y1 ⩽ Os (C(U, s, d)`(λ)(log r)
1
s ) .

We skip the details since they are analogue to the previous part. T.3 follows from the
same type of estimate as T.1 and T.2 is routine where we suffices to apply Lemma 2.3.1 and
eq. (2.48). We find that

T.2 ⩽ C(U,d)∥v̄∥H2(Ur)Y1,

T.3 ⩽ C(U,d)∥v̄∥
1
2
H2(Ur)

∥v̄∥
1
2
H1(Ur)

`
1
2 (λ)X2.

The three estimates of T.1,T.2,T.3 implies that

∥∇Tλ∥L2(Ur) ⩽ C(U,d)∥v̄∥
1
2
H2(Ur)

∥v̄∥
1
2
H1(Ur)

1
`

1
2 (λ)

Y1

+C(U,d) (∥v̄∥H2(Ur)Y1 + ∥v̄∥
1
2
H2(Ur)

∥v̄∥
1
2
H1(Ur)

`
1
2 (λ)X2) .

(2.50)

Finally, we find that ∥Tλ∥L2(Ur) has been contained in the estimate T.1 that

∥Tλ∥L2(Ur) ⩽ C(U,d)∥v̄∥
1
2
H2(Ur)

∥v̄∥
1
2
H1(Ur)

`
1
2 (λ)Y1. (2.51)

eq. (2.37), eq. (2.46), eq. (2.47), eq. (2.50), eq. (2.51) conclude the proof of Theorem 2.4.1.
We have

∥v −w∥H1(Ur) ⩽ C(U,Λ) (∥a∇w − ā∇v̄∥H−1(Ur) + µ∥w − v̄∥L2(Ur)

+∥∇Tλ∥L2(Ur) + (1
r
+ µ)∥Tλ∥L2(Ur))

⩽ C(U,Λ, d) (∥v̄∥H2(Ur) + ∥v̄∥H2(Ur)X1 + ∥v̄∥H1(Ur)X2 + µ∥v̄∥H1(Ur)X1

+`(λ)
1
2 ∥v̄∥

1
2
H2(Ur)

∥v̄∥
1
2
H1(Ur)

((µ + 1
r
+ 1
`(λ)

)Y1 +X2) + ∥v̄∥H2(Ur)Y1)

= C(U,Λ, d) [∥v̄∥H2(Ur) + (∥v̄∥H2(Ur) + µ∥v̄∥H1(Ur))X1

+(`(λ)
1
2 ∥v̄∥

1
2
H2(Ur)

∥v̄∥
1
2
H1(Ur)

+ ∥v̄∥H1(Ur))X2

+(`(λ)
1
2 (µ + 1

r
+ 1
`(λ)

) ∥v̄∥
1
2
H2(Ur)

∥v̄∥
1
2
H1(Ur)

+ ∥v̄∥H2(Ur))Y1] .

We add one table of X1,X2,Y1 to check the its typical size.

2.5 Iteration estimate

In this part, we use Theorem 2.4.1 to analyze the algorithm, and we give at first an H1,H2

a priori estimate.
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R.V Expression Os size
X1 ∑dk=1 max

z∈Zd∩(Ur+◻)
(∥φ(λ)

ek ∥L2(z+◻) + ∥S(λ)
ek ∥L2(z+◻)) Os (C`(λ)(log r) 1

s )

X2 ∑dk=1 max
z∈Zd∩(Ur+◻)

(∥∇φek ⋆Φλ−1∥L2(z+◻) + ∥∇Sek ⋆Φλ−1∥L2(z+◻)) Os (Cλ
d
2 (log r) 1

s )

Y1 ∑dk=1 max
z∈Zd∩(Ur/Ur,2`(λ)+◻)

(∥φ(λ)
ek ∥L2(z+◻)) Os (C`(λ)(log r) 1

s )

Figure 2.3: A table of random variables X1,X2,Y1.

2.5.1 Proof of an H1,H2 estimate

Lemma 2.5.1. In eq. (2.3), we have a control

∥ū∥H1(Ur) + λ
−1∥ū∥H2(Ur) ⩽ C(U,Λ, d)∥v − u∥H1(Ur).

Proof. We test the first equation (λ2 −∇ ⋅ a∇)u0 = −∇ ⋅ a∇(u − v) in eq. (2.3) by u0 and use
the ellipticity condition to obtain

λ2∥u0∥2
L2(Ur) +Λ−1∥∇u0∥2

L2(Ur) ⩽ λ2∥u0∥2
L2(Ur) + ∫Ur

∇u0 ⋅ a∇u0

= ∫
Ur
∇u0 ⋅ a∇(u − v)

⩽ Λ∥∇(v − u)∥L2(Ur)∥∇u0∥L2(Ur)

Ô⇒ ∥∇u0∥L2(Ur) ⩽ Λ2∥∇(v − u)∥L2(Ur).

We put back this term in the inequality, we also obtain that

λ∥u0∥L2(Ur) ⩽ Λ
3
2 ∥∇(v − u)∥L2(Ur). (2.52)

Using this estimate, we obtain that of ∇ū by testing −∇ ⋅ ā∇ū = −∇ ⋅ a∇(u − v − u0) with ū

∫
Ur
∇ū ⋅ ā∇ū = ∫

Ur
∇ū ⋅ a∇(u − v − u0)

Ô⇒ ∥∇ū∥L2(Ur) ⩽ Λ2∥∇(u − v − u0)∥L2(Ur)

⩽ Λ2∥∇(u − v)∥L2(Ur) +Λ2∥∇u0∥L2(Ur)
⩽ C(U,Λ, d)∥∇(u − v)∥L2(Ur).

Finally, we calculate the H2 norm of ū. Because it is the solution of −∇ ⋅ ā∇ū = λ2u0, we
apply the classical H2 estimate of elliptic equation (see [105, Theorem 6.3.2.4])

Λ−1∥ū∥H2(Ur) ⩽ λ2∥u0∥L2(Ur)

( Using eq. (2.52)) ⩽ λΛ
3
2 ∥∇(v − u)∥L2(Ur)

Ô⇒ ∥ū∥H2(Ur) ⩽ λΛ
5
2 ∥∇(v − u)∥L2(Ur).
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2.5.2 Proof of the main theorem

With all these tools in hand, we can now prove Theorem 2.1.1. We denote by R(λ,µ, r,a, d,U, v̄)
the right hand side of eq. (2.32), that is

∥v −w∥H1(Ur) ⩽ R(λ,µ, r,a, d,U, v̄).

Proof. We take the first and second equations in the eq. (2.3) and use the equation eq. (2.2)

−∇ ⋅ ā∇ū = λ2u0

= f +∇ ⋅ a∇(v + u0)
= −∇ ⋅ a∇(u − v − u0).

This is in the frame of Theorem 2.4.1 thanks to the classical H2 theory that ū ∈H2(Ur). We
apply Theorem 2.4.1 with abuse of notation of the two scale expansion

w ∶= ū +
d

∑
k=1

∂xk(Ext(ū) ⋆ ζ)φ(λ)
ek
,

with Ext(ū) satisfying eq. (2.17). Then we obtain that

∥w − (u − v − u0)∥H1(Ur) ⩽ R(λ,0, r,a, d,U, ū). (2.53)

The third equation of eq. (2.3) (λ2 − ∇ ⋅ a∇)ũ = (λ2 − ∇ ⋅ ā∇)ū is also of the form of the
Theorem 2.4.1, so we obtain

∥ũ −w∥H1(Ur) ⩽ R(λ,λ, r,a, d,U, ū). (2.54)

We combine this two estimates and use the triangle inequality to obtain

∥(v + u0 + ũ) − u∥H1(Ur) ⩽ R(λ,0, r,a, d,U, ū) +R(λ,λ, r,a, d,U, ū). (2.55)

It remains to see how to adapt R(λ,µ, r,a, d,U, ū) in a proper way in the context of eq. (2.2).
We plug in the formula in Lemma 2.5.1 to separate all the norms of H1 and H2 and use
0 < µ < λ.

R(λ,µ, r,a, d,U, ū) ⩽ C(U,Λ, d) [λ + λX1 + (1 + `(λ)
1
2λ

1
2 )X2

+ (`(λ)
1
2λ

1
2 + 1)(λ + 1

r
+ 1
`(λ)

)Y1] ∥v − u∥H1(Ur).

By checking fig. 2.3 and notice that the largest term is `(λ)− 1
2λ

1
2Y1, so we obtain that the

factor is of type Os (C(U,Λ, s, d)(log r) 1
s `(λ)

1
2λ

1
2 )) as desired.
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Chapter 3

AHKM iterative algorithm on
percolation clusters

We present an efficient algorithm to solve elliptic Dirichlet problems defined on the cluster
of Zd supercritical Bernoulli percolation, as a generalization of the iterative method
proposed by S. Armstrong, A. Hannukainen, T. Kuusi and J.-C. Mourrat. We also
explore the two-scale expansion on the infinite cluster of percolation, and use it to give a
rigorous analysis of the algorithm.

This chapter corresponds to the article [134].
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3.1 Introduction

3.1.1 Motivation and main result

The main goal of this paper is to study a fast algorithm for computing the solution of Dirichlet
problems with random coefficients on Bernoulli percolation clusters. For dimension d ⩾ 2, let
(Zd,Ed) be the Eculidean lattice, where Ed denotes the set of (unoriented) nearest-neighbor
bonds (or edges), that is, two-element sets {x, y} with x, y ∈ Zd satisfying ∣x − y∣ = 1. We
also write x ∼ y whenever {x, y} ∈ Ed. Then we give ourselves a constant Λ > 1 and a
random conductance a ∶ Ed → {0} ∪ [Λ−1,1] such that the random variables {a(e)}e∈Ed are
independent and identically distributed. The Bernoulli percolation in this work is defined by
the random conductance {a(e)}e∈Ed : for every bond e ∈ Ed, we say that e is an open bond
if a(e) > 0, and that e is a closed bond otherwise. The connected components on (Zd,Ed)
generated by the open bonds are called clusters, and we are interested in the supercritical
percolation case, that is, we assume that p ∶= P[a(e) > 0] is strictly larger than the critical
percolation parameter, which we denote by pc(d). As a consequence, there exists a unique
infinite percolation cluster C∞ [149].

The configuration of clusters is random in a finite cube ◻m ∶= (−3m
2 ,

3m
2 )d ∩Zd. However,

under the supercritical percolation setting and when the cube ◻m is large, typically we will
see a giant cluster C∗(◻m), which takes most of the volume in ◻m, and the other clusters are
very small. (See Figure 1.1 for an illustration.) We call this situation “◻m is a good cube”
and informally one can think of C∗(◻m) as the largest cluster of C∞ ∩ ◻m. The rigorous
definitions of “◻m is a good cube” and of the maximal cluster C∗(◻m) will be given in
Definitions 3.2.2 and 3.2.5 below, and they are typical since there exists a positive constant
C(d,p) such that

P[◻m is a good cube] ⩾ 1 −C(d,p) exp(−C(d,p)−13m).

Our goal is to find an algorithm for solving Dirichlet problems on C∗(◻m). That is, given
two functions f, g ∶ ◻m → R, we aim to define and study an efficient method for calculating
the solution u of

{ −∇ ⋅ a∇u = f in C∗(◻m),
u = g on C∗(◻m) ∩ ∂◻m, (3.1)

where the divergence-form operator is defined as

−∇ ⋅ a∇u(x) ∶= ∑
y∼x

a(x, y) (u(x) − u(y)) . (3.2)

Equation (3.1) is very natural to describe many models in applied mathematics and
other disciplines. For example, one can think of the electric potential in a porous medium:
a domain is made of two types of composites, represented respectively by the open bonds
and the closed bonds on the lattice graph (Zd,Ed), and only the open bonds are available
for the current to flow, while the closed bonds are insulating. See [220] for a comprehensive
introduction and [95, 163, 175] for some examples of its applications in nanomaterials.

The complex geometry of the percolation cluster causes significant perturbations to the
electric potential, and this makes efficient numerical calculations challenging. Naive finite-
difference schemes will become very costly as the size of the domain is increased, and the
perforated geometry and low regularity of solutions does not allow for simple coarsening
mechanisms. As is well-known, using the effective conductance ā, which is a constant matrix
(in fact a scalar by the symmetries in our assumptions) whose definition will be recalled in
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eqs. (3.134) and (3.135), one can replace the heterogeneous operator −∇⋅a∇ by the constant-
coefficient operator −ā∆ defined by

− ā∆u(x) ∶= ā ∑
y∼x

(u(x) − u(y)) , (3.3)

and thus obtain an approximation ū as the solution of a homogenized equation. This is a nice
idea, but the gap between ū and u always exists: on small scales, the homogenized solution
ū will typically be very smooth, while u has oscillations. Indeed, the homogenized solution
ū can only approximate u in L2, but not in H1. Moreover, the L2 norm of (u − ū) depends
on the size of ◻m and only goes to zero in the limit m →∞. In other words, ū converges to
u in L2 only in the limit of “infinite separation of scales”.

The goal of the present work is to go beyond these limitations: we will devise an algorithm
that produces a sequence of approximations which rapidly converges to u in H1, in a regime
of large but finite separation of scales. The main idea is to look for a way to use the
homogenized operator as a coarse operator in a scheme analogous to a multigrid method. In
fact, the algorithm here is at first proposed in [22] by Armstrong, Hannukainen, Kuusi and
Mourrat for the same equation under uniform ellipticity condition on Rd, where the authors
believe that the their method can be extended to a more degenerate case like percolation
model. This generalization is more challenging, since we have to figure out not only the
coarse operator but also the projection operator, which comes from the perturbation of the
geometry. We use a new idea of mask operator to resolve it, see Section 3.1.3 for more
detailed discussions. Thus the present work also confirms the robustness of their algorithm
by stating clearly how to adapt it on percolation clusters and giving rigorous analysis for the
rate of convergence.

Figure 3.1: The classical multigrid algorithm contains two main steps: coarsening and pro-
jection. The algorithm in [22] gives idea how to use homogenization as the coarse operator
for random conductance, and this work proposes to use the mask operator as a counterpart
of projection in degenerated random conductance case.

Let us introduce some more notations and state the main theorem. For any V ⊆ Zd, the
interior of V is defined as int(V ) ∶= {x ∈ V ∶ y ∼ x ⇒ y ∈ V }, and the boundary is defined
as ∂(V ) ∶= V /int(V ). The function space C0(V ) is the set of functions with zero boundary
condition. The L2 integration of the gradient of v on the percolation cluster is defined as

∥∇v1{a≠0}∥L2(V ) ∶=
⎛
⎝

1
2 ∑
x,y∈V,x∼y

(v(y) − v(x))21{a(x,y)≠0}
⎞
⎠

1
2

.
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For any V ⊆ Zd we define its associated σ-algebra F(V ) ∶= σ ({a(e)}e∩V ≠∅) and F shorthand
for FZd . We denote the probability space by ({a(e)}e∈Ed ,F ,P). For a random variable X,
we use two positive parameters s, θ, and the notation O to measure its size by

X ⩽ Os(θ)⇐⇒ E [exp((θ−1X)s+)] ⩽ 2,

where (θ−1X)+ ∶= max{θ−1X,0}. Roughly speaking, the statement X ⩽ Os(θ) tells us that
X has a tail lighter than exp(−(θ−1x)s). We also define, for each λ > 0, the mappings
λC ,m ∶ Zd → R, and ` ∶ R+ → R+ by

λC ,m(x) ∶= { λ if x ∈ C∗(◻m),
0 otherwise. `(λ) ∶= { log

1
2 (1 + λ−1) if d = 2,

1 if d > 2.
(3.4)

Theorem 3.1.1 (Main theorem). There exist two finite positive constants s(d,p,Λ), C(d,p,Λ, s),
and for every integer m > 1 and λ ∈ ( 1

3m ,
1
2), an F-measurable random variable Z satisfying

Z ⩽ Os (C`(λ)
1
2λ

1
2m

1
s
+d) ,

such that the following holds. Let f, g ∶ ◻m → R, u0 ∈ g +C0(◻m) and u ∈ g +C0(◻m) be the
solution of eq. (3.1). On the event that ◻m is a good cube, for u1, ū, u2 ∈ C0(◻m) solving
(with null Dirichlet boundary condition)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(λ2 −∇ ⋅ a∇)u1 = f +∇ ⋅ a∇u0 in C∗(◻m)/∂◻m,
−∇ ⋅ ā∇ū = λ2

C ,mu1 in int(◻m),
(λ2 −∇ ⋅ a∇)u2 = (λ2 −∇ ⋅ ā∇)ū in C∗(◻m)/∂◻m,

(3.5)

and for û ∶= u0 + u1 + u2, we have the contraction estimate

∥∇(û − u)1{a≠0}∥L2(C∗(◻m)) ⩽ Z ∥∇(u0 − u)1{a≠0}∥L2(C∗(◻m)) . (3.6)

We explain a little more why this theorem ensures the good performance of the algorithm.
We are mainly interested in two aspects: the convergence rate of the algorithm and its
numerical complexity. To better illustrate the typical size, we denote by r = 3m the diameter
of the domain.

• Convergence rate of the algorithm. We start by an arbitrary guess u0 ∈ g +C0(◻m) as
an approximation of u, and repeat the eq. (3.5) several rounds. At the end of every
round, we use the û just obtained in place of u0 in the new round of iteration. The
contraction rate of iteration has a bound Z, which is a random factor only depending
on the conductance a, the choice of our regularization λ, and the size of the cube ◻m,
but independent of the data f, g, u0. We can choose λ such that 1

r ≪ λ≪ (log r)−( 1
s
+d),

then Z ⩽ Os (C`(λ)
1
2λ

1
2 (log r) 1

s
+d) tells us that Z has large probability to be smaller

than 1 and implies a geometric rate of convergence.

• Complexity analysis. The numerical costs come from three parts: the iteration eq. (3.5)
itself, the cost to calculate the homogenized coefficient ā and to determine the maximal
cluster C∗(◻m). Sometimes we also omit that the last two are already known, as they
cost less numerical resources compared to the first one.
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– The cost for the iteration. We notice that if we solve a Dirichlet problem for −∇⋅a∇
naively, for a precision ε it requires total O(r log(ε−1)) iterations of conjugate
gradient method (CGD), while for the problem with regularization like the first
and third equation in eq. (3.5), it can be reduced to O(λ−1 log(ε−1)) rounds of
CGM. The second equation in eq. (3.5) can be solved by a standard multigrid
algorithm with O(log(ε−1)) iterations of CGM (see [65, Chapter 4]). Therefore,
applying eq. (3.5) with more detailed choice of resolution in every iteration, it
allows us to solve the problem for precision ε with O((log r)( 1

s
+d)(log(ε−1))2)

rounds of CGM; see Section 2.1.2 for details.
– The homogenized coefficient ā. There exist many excellent methods to calculate

ā quickly, which can be naturally generalized to the percolation setting; see for
example [119, 102, 184, 107, 138]. The result from [184, Proposition 1.1] tells us
the best precision in a domain of size r is ε = r−

d
2 with O(rd log r) operations,

which corresponds to about O(log r) rounds of CGM.
– The maximal cluster C∗(◻m). This is a supplementary step compared to the

problem on Rd, and one can use the “UnionFind” algorithm [79, Chapter 21]
which requires at most O(rd log r) operations, which corresponds to about O(log r)
rounds of CGM.

In conclusion, from the discussion above we know the limit for the precision is about
ε = r−n for n ⩽ d

2 , thus our algorithm does reduce the numerical complexity.

The rest of this paper focuses more on the theoretical proof of Theorem 3.1.1 and we
add two remarks to conclude the introduction part. Firstly, eq. (3.1) can be defined in a
more general domain Zd ∩ Ur where U is a convex domain with C1,1 boundary, r > 0 is a
length scale which we think of as being large, and Ur ∶= {rx∣x ∈ U}. In this case C∗(Ur) can
be informally thought as the largest cluster in Ur. Our iterative algorithm eq. (3.5) and its
analysis can be adapted to this more general setting by following very similar arguments.

Secondly, in eq. (3.1) one can simply write −∇ ⋅ ā∇ as −ā∆ defined in eq. (3.3) as ā is
in fact a scalar coefficient. However, for some other models like inhomogeneous percolation
(see [131, Chapter 11.9] and [132]), where ā can be an effective matrix rather than a scalar.
One example is in Z2, we choose two different parameters p1, p2 and p1 + p2 > 1, then let
P[a(e) > 0] = p1 for the horizonal bonds and P[a(e) > 0] = p2 for the vertical bonds. We
believe that our algorithm also works in these models by re-establishing all the quantitative
homogenization theory from [19, 83] and repeating all the analysis in this paper. Thus,
to state the algorithm more generally, we choose to use the notation of ā as a matrix in
Theorem 3.1.1 and in the rest of the paragraph, especially Section 3.C.

3.1.2 Previous work

The homogenization theory was first developed for elliptic or parabolic equations with peri-
odic coefficients, and then generalised to the case of random stationary coefficients. There
exist many classical references such as [47, 161, 219, 145, 6]. Quantitative results in stochas-
tic homogenization took a long time to emerge. The first partial results result were ob-
tained by Yurinskii [225]. Recently, thanks to the work of Gloria, Neukamm and Otto
[123, 124, 121, 125, 122], and Armstrong, Kuusi, Mourrat and Smart [30, 23, 31, 24], we
understand better the typical size of the fundamental quantities in the stochastic homoge-
nization of uniformly elliptic equations, which provides us with the possibility to analyze the
performance of numerical algorithms in this context.
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The homogenization of environments that do not satisfy a uniform ellipticity condition
also drew attention. In [226], Zhikov and Piatnitski establish many results qualitatively and
explain how to formulate the effective equation on various types of degenerate stationary
environments. In [164], Lamacz, Neukamm and Otto obtain a bound of correctors on a
simplified percolation model by imposing all the bonds in the first coordinate direction to
be open. In [45], the Liouville regularity problem in a general context of random graphs is
studied by Benjamini, Duminil-Copin, Kozma, and Yadin using the entropy method, and its
complete description on infinite cluster of Bernoulli percolation is given by Armstrong and
Dario in [19]. Dario also gives the moment estimate of the correctors of the same model in
[83].

Homogenization has a natural probabilistic interpertation in terms of random walks in
random environment, as a generalised central limit theorem. One fundamental work in this
context is the paper [153] by Kipnis and Varadhan, where the case of general reversible
Markov chains is studied. The case of random walks on the supercritical percolation cluster
attracted particular interest, and the quenched central limit theorem was obtained at first by
Sidoravicius and Sznitman in [211] for dimension d ⩾ 4, then generalized by Berger, Biskup,
Mathieu and Piatnitski in [49, 180] for any dimension d ⩾ 2. We also refer to [53, 157, 162]
for overviews of this line of research.

Finally, concerning the construction of efficient numerical methods, our algorithm is in-
spired by the one introduced in [22] by Armstrong, Hannukainen, Kuusi and Mourrat, which
is designed to treat the same question in a uniform ellipticity context, and also [133] where
a uniform estimate is obtained. Besides the fact that the problem we consider here is not
uniformly elliptic, we stress that a fundamental issue we need to address relates to the fact
that the geometry of the domain itself must be modified as we move from fine to coarse scales.
Indeed, the fine scales must be resolved on the original, highly perforated domain, while the
coarse scales are resolved in a homogeneous medium in which the wholes have been “filled
up”. As far as I know, this is the first work proposing a practical and rigorous method for the
numerical approximation of elliptic problems posed in rapidly oscillating perforated domains.
For the homogenized coefficient ā, we have many excellent works like [119, 102, 184, 107, 138],
which can be adapted naturally on the percolation setting. Alternative numerical methods
for computing the solution of elliptic problems in non-perforated domains have been studied
extensively; we refer in particular to [42, 36, 101, 128, 197, 178, 159, 196], as well as to
[129, 154, 103, 104] where the concept of homogenization is used explicitly.

3.1.3 Ideas of the proof and main contributions

In this part, we introduce some key concepts underlying the analysis of the algorithm and
the proof of Theorem 3.1.1. We also present our main contributions, including the mask
operator and some other results like estimates on the flux and a quantitative version of the
two-scale expansion on the cluster of percolation, which are of independent interest. Some
notations are explained quickly in the statement and their rigorous definitions will be given
in Section 3.2 or in the later part when they are used.

Main strategy

The main strategy of the algorithm is very similar to an algorithm proposed in the previous
work [22, 133] where we study the classical Dirichlet problem in Rd setting with symmetric
Rd×d-valued coefficient matrix a, which is random, stationary, of finite range correlation and
satisfies the uniform ellipticity condition. We recall the idea in the previous work with a little
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abuse of notation that ◻m stands (−3m
2 ,

3m
2 )d in this paragraph: to solve a divergence-form

equation −∇ ⋅ a∇u = f in ◻m with boundary condition g, we propose to compute (u1, ū, u2)
with null Dirichlet boundary condition solving

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(λ2 −∇ ⋅ a∇)u1 = f +∇ ⋅ a∇u0 in ◻m,
−∇ ⋅ ā∇ū = λ2u1 in ◻m,
(λ2 −∇ ⋅ a∇)u2 = (λ2 −∇ ⋅ ā∇)ū in ◻m.

(3.7)

In [22, 133] we proved that û ∶= u0 + u1 + u2 satisfies

∥û − u∥H1(◻m) ⩽ Z ∥u0 − u∥H1(◻m) ,

with a random factor Z of size Z ⩽ Os (C(Λ, s, d)`(λ) 1
2λ

1
2m

1
s ) for any s ∈ (0,2) and inde-

pendent of u,u0, f, g.
The main ingredient in the proof is the two-scale expansion theorem: for v, v̄ with the

same boundary condition and satisfying

(µ2 −∇ ⋅ a∇)v = (µ2 −∇ ⋅ ā∇)v̄ in ◻m, (3.8)

one can use v̄+∑dk=1(∂xk v̄)φek to approximate v in H1. Here {ek}1⩽k⩽d stands for the canon-
ical basis in Rd, and φek is the first order corrector associated with the direction ek. In
our algorithm eq. (3.7), combining the first equation, the second equation of eq. (3.7) and
−∇ ⋅ a∇u = f , we can obtain that

−∇ ⋅ ā∇ū = −∇ ⋅ a∇(u − u0 − u1) in ◻m,

which is an equation of type eq. (3.8) with µ = 0. Moreover, the third equation in eq. (3.7)
also follows the form of eq. (3.8), this time with µ = λ. Thus, we have

(u − u0 − u1) ≃ w ∶= ū +
d

∑
k=1

(∂xk ū)φek ≃ u2,

up to a small error, so we can estimate ∣û − u∣ by studying

∣û − u∣ = ∣u − (u0 + u1 + u2)∣ ⩽ ∣(u − u0 − u1) −w∣ + ∣w − u2∣.

In [22] the error in the two-scale expansion theorem is made quantitative, and in [133] we
refine this bound so that the contraction bound is uniform over the relevant data (most
importantly: the bound is uniform over u0, which guarantees that the algorithm can indeed
be iterated).

Mask operator trick

In order to figure out the generalization of the algorithm on clusters, we recall the interpreta-
tion from multigrid method for eq. (3.7): the first equation in eq. (3.7) is the scheme in fine
grid, which runs several rounds thanks to the regularization. The second step of eq. (3.7) is
a coarse grid, where we use the homogenized matrix as a coarse operator. The third equa-
tion in eq. (3.7) is a post-treatment to project the error in the coarse grid back to the fine
grid. However, in the Rd setting, the projection step is natural, but we should treat it more
carefully in percolation setting, since the fine grid is defined on C∗(◻m), which is random
and depends on the realization of a, while the coarse grid is defined on ◻m; see Figure 3.1
for an illustration.
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To resolve the problem of projection, we use an idea called mask operator, which is defined
as

λC ,m(x) ∶= { λ if x ∈ C∗(◻m),
0 otherwise. aC ,m(x, y) ∶= { a(x, y) if x, y ∈ C∗(◻m),

0 otherwise.

We remark that some simliar idea also appears in the early work [226], where they call
it singular random measure in the degenerate ergodic enviornment. In our algorithm, the
mask operator is already implicitly used in the third equation of eq. (3.5), but the following
nice observation Proposition 3.1.1 shows all its power: it allows us to treat the problem on
percolation as if it is on Zd.

Proposition 3.1.1 (Arbitary extension). After an arbitrary extension of the function u0, u1, u2
defined in eq. (3.5) on int(◻m)/C∗(◻m), the functions u1, ū, u2 also satisfy

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(λ2
C ,m −∇ ⋅ aC ,m∇)u1 = fC ,m +∇ ⋅ aC ,m∇u0 in int(◻m),

−∇ ⋅ ā∇ū = λ2
C ,mu1 in int(◻m),

(λ2
C ,m −∇ ⋅ aC ,m∇)u2 = (λ2

C ,m −∇ ⋅ ā∇)ū in int(◻m).
(3.9)

Proof. In the first equation of eq. (3.9) the left hand side can be rewritten as

(λ2
C ,m −∇ ⋅ aC ,m∇)u1(x) = λ2

C ,m(x)u1(x) +∑
y∼x

(aC ,m(x, y))(u1(x) − u1(y)),

while the right hand side equals

fC ,m(x) +∇ ⋅ aC ,m∇u0(x) = fC ,m(x) +∑
y∼x

(aC ,m(x, y))(u0(y) − u0(x)).

If x ∈ C∗(◻m)/∂◻m the left hand side and the right hand side both equal to the first equation
in eq. (3.5), so the equation is established. If x ∈ int(◻m)/C∗(◻m), no matter what values
u1, u0 takes on the extension, the factors and function fC ,m(x) = λC ,m(x) = aC ,m(x, y) = 0
make both left hand side and right hand side 0.

In the second equation, on the right hand side λ2
C ,mu1 coincides with that in eq. (3.5) so

the equation is also established.
The third equation is valid, if x ∈ C∗(◻m)/∂◻m for the similar reason as described in the

first equation. If x ∈ int(◻m)/C∗(◻m), the left hand side equals 0 since all the factors and
conductance are 0. The right hand side is also 0 thanks to a simple manipulation using the
second equation of eq. (3.9)

(λ2
C ,m −∇ ⋅ ā∇)ū(x) = λ2

C ,m(x)(ū(x) + u1(x)) = 0,

and this finishes the proof.

The same idea also works for u defined in eq. (3.1), which can also be defined as the
solution

{ −∇ ⋅ aC ,m∇u = f in int(◻m),
u = g on C∗(◻m) ∩ ∂◻m, (3.10)

with an arbitrary extension outside C∗(◻m).
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Two-scale expansion on C∞

Once we obtain the description of the algorithm eq. (3.9), we can repeat the argument for
eq. (3.7) to explore the two-scale convergence theorem, which should define its left hand side
on the cluster C∗(◻m) and its right hand side on the homogenized geometry ◻m,

(λ2
C ,m −∇ ⋅ aC ,m∇)v = (λ2

C ,m −∇ ⋅ ā∇)v̄ in int(◻m), (3.11)

and we hope to use a modified two-scale expansion

w ∶= v̄ +
d

∑
k=1

(ΥDek v̄)φ
(λ)
ek
, (3.12)

to approximate v. Here Dek v̄(x) ∶= v̄(x + ek) − v̄(x) and Υ is a cut-off function supported in
◻m, constant 1 in the interior and decreases to 0 linearly near the boundary defined as

Υ ∶= 1{◻m} ∧ (dist(⋅, ∂◻m) − `(λ)
`(λ)

)
+
, (3.13)

so the function Υ can help reduce the boundary layer effect of the two-scale expansion. The
modified corrector {φ(λ)

ek }1⩽k⩽d is defined as

φ(λ)
ek

∶= φek − [φek]
η
P ⋆Φλ−1 , (3.14)

where Φλ−1 is a heat kernel of scale λ−1, i.e. Φλ−1(x) ∶= 1
(4πλ−2)d/2 exp (− x2

4λ−2 ) and [φek]
η
P is a

coarsened version of φek , whose proper definition will be given in Definition 3.2.2. Although
the corrector is only well-defined up to a constant, notice that eq. (3.14) is well-defined.
Notice also that by (3.11), the function v̄ is discrete-harmonic outside of C∗(◻m).

In Section 3.4, we will prove the following quantitative two-scale expansion theorem as a
main tool to prove the contraction estimate (Theorem 3.1.1). We remark here that we also
add a technical condition ◻m ∈ P∗, which is defined in Definition 3.2.6 and it comes from the
partition of the cluster C∞. It is stronger than “◻m is good”, and means that “the cluster
C∗(◻m) is indeed a subset of C∞".

Theorem 3.1.2 (Two-scale expansion on percolation). There exist two positive constants
s ∶= s(d,p,Λ), C ∶= C(d,p,Λ, s), and for every integer m > 1 such that ◻m ∈ P∗ and every
λ ∈ ( 1

3m ,
1
2), there exists a random variable Z̃ controlled by

Z̃ ⩽ Os (C(d,p,Λ, s)`(λ)m
1
s
+d) ,

such that the following is valid: for any µ ∈ [0, λ] and any v, v̄ ∈ C0(◻m) satisfying

(µ2
C ,m −∇ ⋅ aC ,m∇)v = (µ2

C ,m −∇ ⋅ ā∇)v̄ in int(◻m), (3.15)

defining a two-scale expansion w ∶= v̄ +∑dk=1(ΥDek v̄)φ
(λ)
ek , we have

∥∇(w − v)1{a≠0}∥L2(C∗(◻m)) ⩽ Z̃ ((3−
m
2 `−

1
2 (λ) + µ) ∥∇v̄∥L2(◻m) + ∥∆v̄∥L2(int(◻m))

+ ∥∇v̄∥
1
2
L2(◻m) ∥∆v̄∥

1
2
L2(int(◻m))) .

(3.16)
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Remark. We add some more explanations for the technical condition ◻m ∈ P∗. In fact, when
one implements the algorithm, the condition “◻m is a good cube” is very natural, but this
condition is F◻m+1-measurable thus only uses local information, and it does not necessarily
imply that the maximal cluster C∗(◻m) is part of the cluster C∞. On the other hand, the
corrector theory is established for the infinite cluster C∞, so is two-scale expansion. We have
to pay attention to this minor difference, although it is well-known that “the maximal cluster
in a good cube is part of infinite cluster with high probability”. One can remove the condition
◻m ∈ P∗ in Theorem 3.1.2 with more technical analysis, but we choose to fill this gap in the
part analysis of algorithm in Section 3.5 with a very simple inequality eq. (3.119).

Centered flux gp

Another topic studied in detail in this paper is an object called centered flux defined for each
p ∈ Rd by

gp ∶= aC (Dφp + p) − āp, (3.17)

where aC (x, y) ∶= a(x, y)1{x,y∈C∞}. Together with the corrector φp, they are two quantities
required for the proof of the two-scale convergence Theorem 3.1.2. Its physical interpretation
is clear: we define lp(x) ∶= p ⋅x and recall that the harmonic function can be seen as an electric
potential. Then (lp+φp) is the electric potential defined on C∞ with conductance a associated
to the direction p, while lp is the one for the homogenized conductance ā. We know that φp
as the difference between the electric potentials is small compared to lp, and heuristically,
it should also be the case for the electric current. By Ohm’s law, the two electric currents
are defined by aC∇(φp + lp) and ā∇lp, so we expect indeed that gp will be small. This is
however only true in a weak sense, or equivalently, after a spatial convolution. In fact, we
expect that gp satisfies estimates that are very similar to those satisfied by ∇φp, and we will
indeed prove an analogue of the result of [83, Proposition 3.1]. Here we use the notation [⋅]
to represent the constant extension on every cube of the form z + (−1

2 ,
1
2)
d for some z ∈ Zd.

Proposition 3.1.2 (Spatial average). There exist two positive constants s(d,p,Λ), C(d,p,Λ, s)
such that for every R ⩾ 1 and every kernel KR ∶ Rd → R+ integrable and satisfying

∃CK,R <∞, ∀x ∈ Rd, KR(x) ⩽
CK,R

Rd (∣ xR ∣ ∨ 1)
d+1
2
, (3.18)

the quantity (KR ⋆ [gp]) (x) is well defined for every x ∈ Rd, p ∈ Rd and it satisfies

∣KR ⋆ [gp]∣ (x) ⩽ Os(CK,RC ∣p∣R− d2 ). (3.19)

3.1.4 Organization of the paper

In Section 3.2, we define all the notations precisely and restate some important theorems
in previous work. Section 3.3 is devoted to the study of the centered flux gp and to the
proof of Proposition 3.1.2. Section 3.4 gives the proof of the two-scale expansion on the
cluster of percolation (Theorem 3.1.2). In Section 3.5, we use the two-scale expansion to
analyze our algorithm. Finally, in Section 3.6, we present numerical experiments confirming
the usefulness of the algorithm.
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3.2 Preliminaires

This part defines rigorously all the notations used throughout this article. We also record
some important results developed in previous work.

3.2.1 Notations Os(1) and its operations

We recall the definition of Os

X ⩽ Os(θ) ⇐⇒ E [exp((θ−1X)s+)] ⩽ 2, (3.20)

where (θ−1X)+ means max{θ−1X,0}. One can use the Markov inequality to obtain that

X ⩽ Os(θ)Ô⇒ ∀x > 0,P[X ⩾ θx] ⩽ 2 exp(−xs).

For λ ∈ R+,X ⩽ Os(θ)Ô⇒ λX ⩽ Os(λθ). We list some results on the estimates of the random
variables with respect of Os in [25, Appendix A]. For the product of random variables, we
have

∣X ∣ ⩽ Os1(θ1), ∣Y ∣ ⩽ Os2(θ2)Ô⇒ ∣XY ∣ ⩽ O s1s2
s1+s2

(θ1θ2). (3.21)

By choosing Y = 1, one can always use the estimate above to get an estimate for smaller
exponent, i.e. for 0 < s′ < s, there exists a constant Cs′ <∞ such that

X ⩽ Os(θ)Ô⇒X ⩽ Os′(Cs′θ). (3.22)

We have an estimate on the sum of a series of random variables: for a measure space (E,S,m)
and {X(z)}z∈E a family of random variables, we have

∀z ∈ E,X(z) ⩽ Os(θ(z))Ô⇒ ∫
E
X(z)m(dz) ⩽ Os (Cs∫

E
θ(z)m(dz)) , (3.23)

where 0 < Cs <∞ is a constant defined by

Cs =
⎧⎪⎪⎨⎪⎪⎩

( 1
s log 2)

1
s

s < 1,
1 s ⩾ 1.

(3.24)

Finally, we can also obtain the estimate of the maximum of a finite number of random
variables, which is proved in [133, Lemma 3.2] (see also Lemma 2.3.2): for all N ⩾ 1 and
family of random variables {Xi}1⩽i⩽N satisfying that Xi ⩽ Os(1), we have

(max
1⩽i⩽N

Xi) ⩽ Os
⎛
⎝
( log(2N)

log(3/2)
)

1
s⎞
⎠
. (3.25)

3.2.2 Discrete analysis

This part is devoted to introducing notations and some functional inequalities on graphs or
on lattices. We take two systems of derivative in our setting: ∇ on graph and the finite
difference D on Zd. The notation ∇ is more general, but it loses the sense of derivative with
respect to a given direction, which is very natural in the system of D.
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Spaces and functions

For every V ⊆ Zd, we can construct two types of geometry (V,Ed(V )) and (V,Ea
d (V )). The

set of edges Ed(V ) inherited from (Zd,Ed) and Ea
d (V ) inherited from the open bonds of the

percolation are defined as

Ed(V ) ∶= {{x, y}∣x, y ∈ V,x ∼ y} , Ea
d (V ) ∶= {{x, y}∣x, y ∈ V,a(x, y) ≠ 0} .

The interior of V with respect to (V,Ed(V )) and (V,Ea
d (V )) are defined

int(V ) ∶= {x ∈ V ∣y ∼ xÔ⇒ y ∈ V }, inta(V ) ∶= {x ∈ V ∣y ∼ x,a(x, y) ≠ 0Ô⇒ y ∈ V },

and the boundaries are defined as ∂(V ) ∶= V /int(V ) and ∂a(V ) ∶= V /inta(V ). For any
x, y ∈ Zd, we say x a↔ y if there exists an open path connecting x and y.

We denote byÐ→Ed the oriented bonds of (Zd,Ed), i.e.
Ð→
Ed ∶= {(x, y) ∈ Zd× Zd ∶ ∣x−y∣ = 1}, and

for any E ⊆ Ed, we can associate it to a natural oriented bonds set Ð→E . An (anti-symmetric)
vector field Ð→F on Ð→Ed is a function Ð→F ∶

Ð→
Ed → R such that Ð→F (x, y) = −

Ð→
F (y, x). Sometimes we

also write Ð→F (e) for e = {x, y} ∈ Ed to give its value with an arbitrary orientation for e, in
the case it is well defined (for example ∣

Ð→
F ∣(e)). The discrete divergence of Ð→F is defined as

∇ ⋅
Ð→
F ∶ Zd → R

∀x ∈ Zd, ∇ ⋅
Ð→
F (x) ∶= ∑

y∼x

Ð→
F (x, y).

For any u ∶ Zd → R, we define the discrete derivative ∇u ∶Ð→Ed → R as a vector field

∀(x, y) ∈
Ð→
Ed, ∇u(x, y) ∶= u(y) − u(x),

and a∇u,∇u1{a≠0} are vector fields Ð→Ed → R defined by

a∇u(x, y) ∶= a(x, y)∇u(x, y), ∇u1{a≠0}(x, y) ∶= ∇u(x, y)1{a(x,y)≠0}.

Then, the a-Laplacian operator −∇ ⋅ a∇ is well defined and we have

−∇ ⋅ a∇u(x) ∶= ∑
y∼x

a(x, y)(u(x) − u(y)).

Finite difference derivative

We start by introducing the notation of translation: let B be a Banach space, then for any
h ∈ Zd and u ∶ Zd → B a B-valued function, we define Th as an operator

∀x ∈ Zd, (Thu)(x) = u(x + h).

We also define the operator Dh and its conjugate operator D∗h for any u ∶ Zd → R,

Dhu ∶= Thu − u, D∗hu ∶= T−hu − u.

It is easy to check D∗h = −T−h(Dhu) and for two functions f, g ∶ Zd → R, we have

Dh(fg) = (Dhf)g + (Thf)(Dhg). (3.26)

In this system, we also define vector field F̃ ∶ Zd → Rd, F̃ (x) = (F̃1(x), F̃2(x)⋯F̃d(x)) and
this can be distinguished with the one defined on Ed by the context. We use (e1, e2⋯ed) to
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represent the d canonical directions in Zd, and a discrete gradient Du ∶ Zd → Rd is a vector
field

Du(x) ∶= (De1u(x),De2u(x)⋯Dedu(x)) .

Then the finite difference divergence operator is defined as the conjugate operator of D

D∗ ⋅ F̃ ∶=
d

∑
j=1
D∗ej F̃j .

As convention, we use the notation aDeju and aDu to represent

aDeju(x) ∶= a(x,x + ej)Deju(x), aDu ∶= (aDe1u,⋯aDedu) ,

and 1{a≠0}Deju,1{a≠0}Du, to represent

1{a≠0}Deju(x) ∶= 1{a(x,x+ej)≠0}Deju(x), 1{a≠0}Du ∶= (1{a≠0}De1u,⋯1{a≠0}Dedu) .

Thus the a-Laplacian operator −∇ ⋅a∇ can also be expressed by the finite difference D∗ ⋅aD.
We can prove it by a simple calculation that

−∇ ⋅ a∇u = D∗ ⋅ aDu. (3.27)

Inner product and norm

For V ⊆ Zd and E ⊆ Ed, we define inner product ⟨⋅, ⋅⟩V for any function u, v ∶ V → R and
⟨⋅, ⋅⟩E for any vector field Ð→F ,Ð→G ∶

Ð→
E → R

⟨u, v⟩V ∶= ∑
x∈V

u(x)v(x), ⟨
Ð→
F ,
Ð→
G⟩

E
∶= ∑

{x,y}∈E

Ð→
F (x, y)

Ð→
G(x, y),

and this defines a norm ∥u∥L2(V ) ∶=
√

⟨u,u⟩V and ∥
Ð→
F ∥

L2(E)
∶=

√
⟨
Ð→
F ,
Ð→
F ⟩

E
. We also abuse a

little the notation to define ⟨⋅, ⋅⟩V for vector field

⟨
Ð→
F ,
Ð→
G⟩

V
∶= ⟨
Ð→
F ,
Ð→
G⟩

Ed(V )
= ∑

{x,y}∈Ed(V )

Ð→
F (x, y)

Ð→
G(x, y) = 1

2 ∑
x,y∈V,y∼x

Ð→
F (x, y)

Ð→
G(x, y).

We use the notation ⟨⋅, ⋅⟩Ea
d
(V ) to represent the inner product of the vector field on (V,Ea

d (V )).
For two vector fields F̃ , G̃ ∶ V → Rd, the inner product is defined as

⟨F̃ , G̃⟩
V
∶= ∑
x∈V

d

∑
j=1

F̃j(x)G̃j(x),

and similarly ∥F̃ ∥
L2(V ) =

√
⟨F̃ , F̃ ⟩

E
also defines a norm.

To define a general Lp(V )(p ⩾ 1) norm for vector fields, we have to introduce its modules.
For any Ð→F ∶

Ð→
Ed → R or F̃ ∶ Zd → Rd, we write

∣
Ð→
F ∣(x) ∶=

⎛
⎝

1
2 ∑y∼x

Ð→
F 2(x, y)

⎞
⎠

1
2

, ∣F̃ ∣(x) ∶=
⎛
⎝

d

∑
j=1

F̃ 2
j (x)

⎞
⎠

1
2

.
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Then for f (a function, an Rd-valued vector field or a vector field on Ð→Ed)

∥f∥p
Lp(V ) ∶= (∑

x∈V
∣f ∣p(x))

1
p

, ∥f∥p
Lp(V ) ∶= ( 1

∣V ∣ ∑x∈V
∣f ∣p(x))

1
p

.

We recall C0(V ) the space of functions supported on V with null boundary condition.
Then one can deduce integration by part formula: for any function v ∈ C0(V ), Ð→F ∶

Ð→
Ed(V )→ R

and F̃ ∶ Zd → Rd, one can check

⟨v,−∇ ⋅
Ð→
F ⟩

int(V )
= ⟨∇v,

Ð→
F ⟩

V
, ⟨v,D∗ ⋅ F̃ ⟩int(V ) = ⟨Dv, F̃ ⟩

V
. (3.28)

Some functional inequalities

Here are some discrete functional inequalities used throughout the article.

Lemma 3.2.1 (Discrete functional inequality). 1. (A naive estimate) Given a V ⊆ Zd
and for a function v ∶ V → R, we have

⟨∇v,∇v⟩V ⩽ 2d ⟨v, v⟩V . (3.29)

2. (Poincaré’s inequality) For every v ∈ C0(◻m), we have

∥v∥L2(◻m) ⩽ C(d)3m ∥∇v∥L2(◻m) . (3.30)

3. (H2 interior regularity for discrete harmonic function) Given two functions v, f ∈ C0(◻m)
satisfying the discrete elliptic equation (∆v = ∇ ⋅ ∇v)

−∆v = f, in int(◻m), (3.31)

then we have an interior estimate

∥D∗Dv∥2
L2(int(◻m)) ∶=

d

∑
i,j=1

∥D∗eiDejv∥
2
L2(int(◻m)) ⩽ d ∥f∥

2
L2(int(◻m)) . (3.32)

4. (Trace inequality) For every u ∶ ◻m → R and 0 ⩽ K ⩽ 3m
4 , we have the following

inequality

∥u1{dist(⋅,∂◻m)⩽K}∥
2
L2(◻m) ⩽ C(d)(K + 1) (3−m ∥u∥2

L2(◻m) + ∥u∥L2(◻m) ∥∇u∥L2(◻m)) .
(3.33)

The inequality (3.29) is very elementary, and the proof of eq. (3.30) is similar to the
standard case, so we skip their proofs. The inequality (3.32) is also relatively standard,
but involves a careful calculation. The argument for eq. (3.33) is more combinatorial and
non-trivial. We provide their proofs in Section 3.A.
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3.2.3 Partition of good cubes

One difficulty to treat the function defined on the percolation clusters comes from its random
geometry. To overcome this problem, [19] introduces a Calderón-Zygmund type partition of
good cubes, and we recall it here.

We denote by T the triadic cube and ◻m(z) is defined by

◻m(z) ∶= Zd⋂(z + (−1
2

3m, 1
2

3m)) , z ∈ 3mZd,m ∈ N,

where center and size of the cube above is respectively z and 3m, and we use the notation
size(⋅) to refer to the size, i.e. size(◻m(z)) = 3m. In this paper, without further mention, we
use the word “cube” for short of “triadic cube” and ◻m for short of ◻m(0). The collection of
all the cubes of size 3n is defined by Tn, i.e. Tn ∶= {z+◻n ∶ z ∈ 3nZd}. Then we have naturally
T = ⋃n∈N Tn. Every cube of size 3m can be divided into a partition of 3(m−n) cubes in Tn,
and two cubes in T can be either disjoint or included one by the other. For each ◻ ∈ T ,
the predecessor of ◻ is the unique triadic cube ◻̃ ∈ T satisfying ◻ ⊆ ◻̃, and size(◻̃)

size(◻) = 3, and
reciprocally, we say ◻ is a successor of ◻̃.

The distance between two points x, y ∈ Rd is defined to be dist(x, y) = maxi∈{1,2⋯d} ∣xi−yi∣
and the distance for U,V ⊆ Zd is dist(U,V ) = infx∈U,y∈V dist(x, y). In particular, two ◻,◻′

are neighbors if and only if dist(◻,◻′) = 1 and one is included in the other if and only if
dist(◻,◻′) = 0.

General setting

We state at first the general setting of partition of good cubes.
Proposition 3.2.1 (Proposition 2.1 of [19]). Let G ⊆ T a sub-collection of triadic cubes
satisfying the following: for every ◻ = z +◻n ∈ T , {◻ ∉ G} ∈ F(z +◻n+1), and there exist two
finite positive constants K,s

sup
z∈3nZd

P[z +◻n ∉ G] ⩽K exp(−K−13ns).

Then, P-almost surely there exists S ⊆ T a partition of Zd with the following properties:

1. Cubes containing elements of S are good: for every ◻,◻′ ∈ T , ◻ ⊆ ◻′,◻ ∈ S Ô⇒ ◻′ ∈ G.

2. Neighbors of elements of S are comparable: for every ◻,◻′ ∈ S such that dist(◻,◻′) ⩽ 1,
we have 1

3 ⩽ size(◻)
size(◻′) ⩽ 3.

3. Estimate for the coarseness: we use ◻S(x) to represent the unique element in S con-
taining a point x ∈ Zd, then there exists a finite positive constant C ∶= C(s,K, d) such
that, for every x ∈ Zd, size(◻S(x)) ⩽ Os(C).

Case of well-connected cubes

The construction in Proposition 3.2.1 works for all collection of good cubes G, here we give
the concrete definition of good cubes we use in our context of percolation, as appearing in the
work [200], [201] and [17] of Antal, Pisztora and Penrose. We remark that in Definition 3.2.1
and Definition 3.2.2 we use “cube” exceptionally for a general lattice cube, and we will
highlight explicitly “triadic cube” when using it. The notation 3

4◻ indicates that we take the
convex hull of the lattice cube, and then change its size by multiplying by 3

4 while keeping
the center fixed.
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Definition 3.2.1 (Crossability and crossing cluster). We say that a cube ◻ is crossable with
respect to the open edges defined by a if each of the d pairs of opposite (d − 1)-dimensional
faces of ◻ can be joined by an open path in ◻. We say that a cluster C ⊆ ◻ is a crossing
cluster for ◻ if C intersects each of the (d − 1)-dimensional faces of ◻.

Definition 3.2.2 (Well-connected cube and good cube, Theorem 3.2 of [201]). We say that
◻ ∈ T is well-connected if there exists a crossing cluster C for ◻ such that :

1. each cube ◻′ with 1
10 size(◻) ⩽ size(◻′) ⩽ 1

2 size(◻) and ◻′ ∩ 3
4◻ ≠ ∅ is crossable.

2. every path γ ⊆ ◻′ defined above with diam(γ) ⩾ 1
10 size(◻) is connected to C within

◻′.

We say that ◻ ∈ T is a good cube if size(◻) ⩾ 3, ◻ is connected and all his 3d successors are
well-connected. Otherwise, we say that ◻ ∈ T is a bad cube.

The following estimates makes the construction defined in Proposition 3.2.1 work.

Lemma 3.2.2 ((2.24) of [17]). For each p ∈ (pc,1], there exists a positive constant C(d,p)
such that for every n ∈ N,

P[◻n ∈ G] ⩾ 1 −C exp(−C−13n).

Definition 3.2.3 (Partition of good cubes in percolation context). We let P ⊆ T be the
partition S of Zd obtained by applying Proposition 3.2.1 to the collection of good cubes
defined in Definition 3.2.2

G ∶= {◻ ∈ T ∶ ◻ is good cube } .

A direct application of Lemma 3.2.2 and Proposition 3.2.1 gives us:

Corollary 3.2.1. There exists a positive constant C(d,p), such that for every z ∈ Zd, we
have the two estimates

size(◻P(z)) ⩽ O1(C), 1{size(◻P(z))⩾n} ⩽ O1(C3−n). (3.34)

The maximal cluster is well defined on every good cube by Definition 3.2.2.

Definition 3.2.4 (Maximal cluster in good cubes). For every good cube ◻, there exists a
unique maximal crossing cluster in it, and we denote this cluster by C∗(◻).

Although C∗(◻) only uses local information, the next lemma shows that, for a ◻ ∈ P
(stronger than ◻ is good), its maximal cluster C∗(◻) must belong to the infinite cluster C∞.

Lemma 3.2.3 (Lemma 2.8 of [19]). Let n,n′ ∈ N with ∣n − n′∣ ⩽ 1 and z, z′ ∈ 3nZd such that

dist(◻n(z),◻n′(z′)) ⩽ 1.

Suppose also that ◻n(z) and ◻n′(z′) are all good cubes, then there exists a cluster C such
that

C∗(◻n(z)) ∪C∗(◻n′(z′)) ⊆ C ⊆ ◻n(z) ∪◻n′(z′).

This lemma helps us generalize the definition of maximal cluster in a general set U ⊆ Zd,
the idea is to define the union of the partition cubes that cover U , and then find the maximal
cluster in it.
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Definition 3.2.5 (Maximal cluster in general set). For a general set U ⊆ Zd, we define its
closure with respect to P by

clP(U) ∶= ⋃
z∈U

◻P(z), (3.35)

and C∗(U) to be the cluster contained in clP(U) which contains all the clusters of C∗(◻P(z)),
z ∈ U .

One can check easily that Lemma 3.2.3 makes the definition C∗(U) well-defined. However,
we do not have necessarily C∗(U) = ⋃z∈U C∗(◻P(z)). We provide with a detailed discussion
of this point in Section 3.B.

Since the cubes in T can be either included in one another or disjoint, if one cube ◻ ∈ T
contains an element in P, then it can be decomposed as the disjoint union of elements in P
without enlarging the domain. Thus, we define:

Definition 3.2.6 (Minimal scale for partition).

P∗ = {◻ ∈ T ∶ ∃◻′ ⊆ ◻ and ◻′ ∈ P} . (3.36)

The following observations are very useful and can be checked easily: for every ◻ ∈ T , we
have

◻ ∈ P∗ Ô⇒ clP(◻) = ◻, 1{◻∉P∗} ⩽ 1{size(◻P(z))>size(◻)} ⩽ O1(C(size(◻))−1). (3.37)

Mask operator and coarsened function

To overcome the problem of the passage between the two geometries (Zd,Ed) and (C∞,Ea
d ),

one useful technique is the mask operator.

Definition 3.2.7 (Mask operator and local mask operator). For f ∶ Zd → R and a ∶ Ed → R,
we define a mask operator (⋅)C to restrict their support on C∞ and Ea

d (C∞) respectively

fC (x) ∶= { f(x) x ∈ C∞,
0 otherwise. aC (x, y) ∶= { a(x, y) x, y ∈ C∞,

0 otherwise. (3.38)

Moreover, we also define a local mask operator for ◻m ∈ G as

fC ,m(x) ∶= { f(x) x ∈ C∗(◻m),
0 otherwise. aC ,m(x, y) ∶= { a(x, y) x, y ∈ C∗(◻m),

0 otherwise. (3.39)

Then we call fC (fC ,m),aC (aC ,m) (local) masked function and (local) masked conductance.

Reciprocally, for a function only defined on the clusters, sometimes we have to extend
them to the whole space. We can apply the technique of coarsening the function defined on
the percolation cluster.

Definition 3.2.8 (Coarsened function). Given ◻ ∈ P, we let z̄(◻) represent the vertex in
C∗(◻) which is closest to its center. For a function u ∶ C∞ → R, we define the coarsened
function with respect to P to be [u]P ∶ Zd → R that

[u]P (x) ∶= u(z̄(◻P(x))).

We also use the notation [⋅] to mean doing constant extension on every cube, i.e. given
v ∶ Zd → R, we define [v] ∶ Rd → R such that for every z ∈ Zd and every x ∈ z + [−1

2 ,
1
2)
d,

[v](x) ∶= v(z).
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The advantage of the coarsened function is that it allows to extend the support of function
from C∞ to the whole space, and constant in every cube by paying a small cost of errors.

Proposition 3.2.2 (Lemmas 3.2 and 3.3 of [19]). For every 1 ⩽ s <∞, there exists a finite
positive constant C(s, d,p), such that for every ◻ ∈ P∗, u ∶ C∞ → R, we have

∑
x∈C∗(◻)

∣u(x) − [u]P (x)∣s ⩽ Cs ∑
{y,z}∈Ea

d
(C∗(◻))

size(◻P(y))sd∣∇u∣s(y, z), (3.40)

∑
{x,y}∈Ed(◻)

∣∇ [u]P (x, y)∣s ⩽ Cs ∑
{x,y}∈Ea

d
(C∗(◻))

size(◻P(x))sd−1∣∇u∣s(x, y). (3.41)

Remark. The main idea of coarsened function is to give function a constant value in every
cube, but the value does not have to be of the one closest to the center. Following the same
idea of proof of [19, Lemmas 3.2 and 3.3], one can prove that for ◻ ∈ P∗, u ∈ C0(◻)

[u]P,◻ (x) = { [u]P (x) dist(◻P(x), ∂ clP(◻)) ⩾ 1,
0 dist(◻P(x), ∂ clP(◻)) = 0, (3.42)

we have the same inequality as eq. (3.40) and eq. (3.41) by putting [u]P,◻ in the place of
[u]P .

3.2.4 Harmonic functions on the infinite cluster

We define A(U), the set of a-harmonic functions on U ⊆ Zd, by

A(U) ∶= {v ∶ C∞ → R∣ −∇ ⋅ aC∇v = 0,∀x ∈ inta(U)},

and A(C∞) the set a-harmonic functions on C∞. The a-harmonic function Ak(C∞) is the
subspace of a-harmonic functions which grows more slowly than a polynomial of degree k+1:

Ak(C∞) ∶= {u ∈ A(C∞) ∣lim sup
R→∞

R−(k+1) ∥u∥L2(C∞∩BR) = 0} .

Similarly, we can define the spaces Ā, Āk for harmonic functions on Rd. It is well-known
that the space Āk is a finite-dimensional vector space of polynomials. A recent remarkable
result about a-harmonic functions on the infinite cluster of percolation conjectured in [45]
and proved in [19] is that the space Ak(C∞) also has this property, and in fact has the
same dimension as Āk. Here we only recall the structure of A1(C∞): for every a-harmonic
functions u ∈ A1(C∞), there exists c ∈ R, p ∈ R such that

∀x ∈ C∞, u(x) = c + p ⋅ x + φp(x),

where the functions {φp}p∈Rd are called the first order correctors. The first order correctors
have sublinear growth: there exists a positive exponent δ(d,p,Λ) < 1 and a minimal scale
M ⩽ Os(C(d,p,Λ)) such that, for every r ⩾M and p ∈ Rd,

∥φp∥L2(C∞∩Br) ⩽ C ∣p∣r1−δ. (3.43)

Combining eq. (3.43) and Cacciopolli’s inequality [19, Lemma 3.5], for every r ⩾ 2M, we
have

∥∇(φp + lp)∥L2(C∞∩Br/2) ⩽
1
r
∥φp + lp∥L2(C∞∩Br) ⩽

C

r
(r1−δ + r)∣p∣ ⩽ C ∣p∣,
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so it also implies that the estimate for the gradient of corrector that

∥∇φp∥L2(C∞∩Br/2) ⩽ C ∣p∣. (3.44)

The corrector plays an important role in the homogenization theory, and [83] gives a more
precise description of these correctors. We recall that ΦR(x) ∶= 1

(4πR2)d/2 exp (− x2

4R2 ), and
[φp]ηP ∶= [φp]P ⋆ η where η ∈ C∞

0 (B1) is positive, and η ≡ 1 in B 1
2
.

Proposition 3.2.3 (Local estimate and spatial average estimate, Proposition 3.1 of [83]).
There exist two finite positive constants s ∶= s(d,p,Λ), C ∶= C(d,p,Λ) such that for each
R ⩾ 1 and each p ∈ Rd,

∀x ∈ Zd, ∣∇φp1{a≠0}∣(x) ⩽ Os(C ∣p∣), (3.45)

∀x ∈ Rd, ∣∇ (ΦR ⋆ [φp]ηP) (x)∣ ⩽ Os(C ∣p∣R− d2 ). (3.46)

Proposition 3.2.4 (Theorem 1 and 2 of [83], Lq estimates on C∞). There exist three fi-
nite positive constants s ∶= s(d,p,Λ), k ∶= k(d,p,Λ) and C ∶= C(d,p,Λ) such that for each
q ∈ [1,∞), R ⩾ 1 and p ∈ Rd,

(R−d∫
C∞∩BR

∣φp − (φp)C∞∩BR ∣
q)

1
q

⩽ { Os(C ∣p∣qk log
1
2 (R)) d = 2,

Os(C ∣p∣qk) d = 3,
(3.47)

and for every x, y ∈ Zd and p ∈ Rd,

∣φp(x) − φp(y)∣1{x,y∈C∞} ⩽ { Os(C ∣p∣ log
1
2 ∣x − y∣) d = 2,

Os(C ∣p∣) d = 3.
(3.48)

3.3 Centered flux on the cluster

In this part, we will study an object gp ∶ Zd → Rd called centered flux defined by

gp ∶= aC (Dφp + p) − āp,

where aC is the masked conductance defined in eq. (3.38) and it is a restricted on the infinite
cluster C∞. Because gp satisfies D∗ ⋅gp = 0 on Zd, following the spirit of Helmholtz-Hodge de-
composition, in the later part of this section we will also study another object Sp ∶ Zd → Rd×d
called flux corrector such that gp = D∗ ⋅ Sp on Zd, in the sense gp,i = ∑dj=1D∗ejSp,ij .

The quantities gp and Sp are fundamental to the quantitative analysis of the two-scale
expansion, see for instance [123] and [25, Chapter 6]. Roughly speaking, Dφp,gp and DSp
should satisfy similar estimates. The goal of this section is to study various quantities like
spatial averages and Lp and L∞ estimates on Sp, as a counterpart of the work [83] concerning
φp.

We can prove at first a very simple result.

Proposition 3.3.1 (Local average). There exit two finite positive constants s ∶= s(d,p,Λ)
and C ∶= C(d,p,Λ) such that

∀x ∈ Zd, ∣gp∣(x) ⩽ Os(C ∣p∣). (3.49)

Proof. We have, by eq. (3.45)

∣gp∣ = ∣aC (Dφp + p) − āp∣ ⩽ ∣aCDφp∣ + ∣aC p∣ + ∣āp∣ ⩽ ∣∇φp1{a≠0}∣ + 2∣p∣ ⩽ Os(C ∣p∣).



114 CHAPTER 3. AHKM ALGORITHM ON PERCOLATION

3.3.1 Spatial average of centered flux

In this part, we focus on the spatial average quantity KR ⋆ [gp] and prove Proposition 3.1.2.
The spirit of the proof can go back to the spectral gap method (or Efron-Stein type inequality)
in the work of Naddaf and Spencer [188], which is also employed in the work of Gloria and
Otto [123, 124, 120]. Proposition 3.1.2 is more technical in two aspects:

• In the percolation context, the perturbation of the geometry of clusters has to be taken
into consideration when applying the spectral gap method.

• The result stated with Os notation requires a stronger concentration analysis.

Our proof follows generally the main idea of eq. (3.46) appearing in [83, Proposition 3.1],
and the main tool used in this proof is a variant of the Efron-Stein type inequality, combined
with the Green’s function and Meyers’ inequality on C∞.

Proof of Proposition 3.1.2. Without loss of generality we suppose that ∣p∣ = 1, and the proof
is decomposed into 4 steps.

Step 1: Spectral gap inequality and double environment. We introduce the Efron-Stein
type inequality used for the proof, which is proved first in [27, Proposition 2.2] and also
used in [83, Proposition 2.17]. (We remark kindly that there is a typo in the exponent in
[27, Proposition 2.2], which should be 2−β

2 ; see also [27, Appendix A] where the exponent is
correct.)

Proposition 3.3.2 (Exponential Efron-Stein inequality, Proposition 2.2 of [27]). Fix β ∈ (0,2)
and let X be a random variable defined in the random space (Ω,F ,P) generated by {a(e)}e∈Ed,
and we define

F(Ed/{e}) ∶= σ ({a(e′)}e′∈Ed/e) , (3.50)
Xe ∶= E [X ∣F(Ed/{e})] , V[X] ∶= ∑

e∈Ed
(X −Xe)2. (3.51)

Then, there exists a positive constant C ∶= C(d, β) such that

E [exp (∣X −E[X]∣β)] ⩽ CE [exp((CV[X])
β

2−β )]
2−β

2
. (3.52)

In the proof of Proposition 3.3.1, we apply this inequality by posing X ∶= (KR ⋆ [gp]) (x)
and we claim that it suffices to verify two conditions

E[X] ⩽ C1R
− d2 , (3.53)

V[X] ⩽ Os′ (C2R
−d) . (3.54)

It is also very natural, because the two conditions say that the average and fluctuation of
X are of the order of R− d2 . We choose a s such that s

2−s = s′ where s′ is the exponent in
eq. (3.54) and C3 ∶= (C1 ∨C2)C(d, β) where C(d, β) is the constant in eq. (3.52) and C1,C2
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the one in eq. (3.53), eq. (3.54), then

E [exp(( X

C3R
− d2

)
s

)] ⩽ E [exp((X −E[X]
C3R

− d2
+ E[X]
C3R

− d2
)
s

)]

⩽ C E [exp((∣X −E[X]∣
C3R

− d2
)
s

)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Using eq. (3.52)

⩽ CE
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
( V[X]
C2R−d)

s
2−s⎞

⎠

⎤⎥⎥⎥⎥⎦

2−s
2

⩽ 2C.

Finally, we increase C3 with respect to s so that we get X ⩽ Os(CR− d2 ).
We focus on the two conditions eq. (3.53), eq. (3.54). In fact, we can check the condition

eq. (3.53) by proving E[aC (Dφp + p)] = āp, which is a well-known result in classic homoge-
nization. In percolation context, it is also true by a careful check of the several equivalent
definitions of ā. We put its proof in Theorem 3.C.1.

To prove the condition eq. (3.54), we use a useful technique in Efron-Stein type inequality
of “doubling” the probability space: we sample a copy of random conductance {ã(e′)}e′∈Ed
with the same law but independent to {a(e′)}e′∈Ed , and the two probability spaces generated
by the two copies are denoted respectively by (Ωa,Fa,Pa) , (Ωã,Fã,Pã). Then we put the
two copies of random conductance together and make a larger probability space (Ω′,F ′,P′) =
(Ωa ×Ωã,Fa ⊗Fã,Pa ⊗ Pã), and we also use the notation O′s to represent the same definition
eq. (3.20) in the larger probability space (Ω′,F ′,P′). We also introduce the another random
environment {ae(e′)}e′∈Ed , obtained by replacing one conductance a(e) by ã(e), i.e.

ae(e′) = { a(e′) e′ ≠ e,
ã(e′) e′ = e. (3.55)

We use Xe,C e
∞, φ

e
p to represent respectively the random variable, the infinite cluster and the

corrector in the environment {ae(e′)}e′∈Ed. The definition of V[X] says that the variance
comes from the fluctuation caused by the perturbation of every conductance, which suggests
the following lemma:

Lemma 3.3.1. We have the following estimate

∑
e∈Ed

(X −Xe)2 ⩽ O′s(CR−d)Ô⇒ V[X] ⩽ Os(CsR−d). (3.56)

Proof. We use the double environment trick to see that

Xe = E [X ∣F(Ed/{e})] = Eã[Xe],
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and Jensen’s inequality to reformulate at first the inequality

E [exp((V[X]
CR−d)

s

)] = ∫Ω
exp((

∑e∈Ed(X −Xe)2

CR−d )
s

) dPa(ω)

= ∫Ω
exp

⎛
⎜
⎝

⎛
⎜
⎝

∑e∈Ed (∫Ωã
(X −Xe)dPã(ω))

2

CR−d

⎞
⎟
⎠

s
⎞
⎟
⎠
dPa(ω)

⩽ ∫Ω
exp((∫Ωã

∑e∈Ed(X −Xe)2

CR−d dPã(ω))
s

) dPa(ω)

In the next step, we want to add a constant ts to make exp ((⋅ + ts)s) convex, and then
exchange the expectation and exp ((⋅ + ts)s) by Jensen’s inequality. We can choose ts = 0 for
s ⩾ 1, and ts = (1−s

s
)

1
s for 0 < s < 1. (The spirit is the same as eq. (3.23) and see [25, Lemma

A.4] for details of this proof.)

E [exp((V[X]
CR−d)

s

)] ⩽ ∫Ω∫Ωã
exp((

∑e∈Ed(X −Xe)2

CR−d + ts)
s

) dPã(ω)dPa(ω)

⩽ C̃ ∫Ω∫Ωã
exp((

∑e∈Ed(X −Xe)2

CR−d )
s

) dPã(ω)dPa(ω)

⩽ 2C̃.

In the last step we use the condition ∑e∈Ed(X−Xe)2 ⩽ O′s(CR−d) and we reduce the constant
C to get the desired result.

By Lemma 3.3.1, to prove eq. (3.54) it suffices to focus on the quantity ∑e∈Ed(X −Xe)2,
and in our context it is

∑
e∈Ed

∣KR ⋆ ([gp] − [gep])∣
2 (x) ⩽ O′s(CR−d). (3.57)

Since we have

∣KR ⋆ ([gp] − [gep])∣ (x)
⩽ ∣KR ⋆ ([gp] − [gep])∣ (x)1{ae(e)⩽a(e)} + ∣KR ⋆ ([gp] − [gep])∣ (x)1{a(e)⩽ae(e)},

and the two terms have the same law, without loss of generality, we suppose

ae(e) ⩽ a(e), (3.58)

is always valid in the following paragraphs in order to avoid the indicator function everywhere.
We will then distinguish several cases and attack them one by one.

Step 2: Case C∞ ≠ C e
∞, proof of gp = gep. We have to consider the perturbation of the

geometry between C∞ and C e
∞. We prove the following lemma, which has a typical realization

in Figure 3.2.

Lemma 3.3.2 (Pivot edge). Under the condition eq. (3.58) and in the case C∞ ≠ C e
∞, we

have:

1. The part C∞/C e
∞ is connected to C e

∞ by e (called the pivot edge), and ∣C∞/C e
∞∣ <∞.
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2. We denote by e ∶= {e∗, e∗}, e∗ ∈ C e
∞ ∩ C∞ and e∗ ∈ C∞/C e

∞, then the function (φp + lp)
is constant on C∞/C e

∞ and equals to (φp + lp)(e∗).

3. The function φep has a representation that φep = φp1{C e
∞
} up to a constant and satisfies

aC∇(φp + lp) = aeC∇(φep + lp) on Ed.

Proof. 1. It comes from the fact that a and ae are different only by one edge, thus C e
∞ ⊊ C∞

means that a(e) > 0 in C∞ but ae(e) = 0 in C e
∞ and makes one part disconnected from

C∞. It is well-known that in the supercritical percolation, almost surely there exists
one unique infinite cluster, thus we have ∣C∞/C e

∞∣ <∞.

2. We study the harmonic function −∇ ⋅ aC∇(φp + lp) = 0 on the part C∞/C e
∞. This is a

non-degenerate linear system with ∣C∞/C e
∞∣ equations and ∣C∞/C e

∞∣ + 1 variables, thus
the solution is of 1 dimension and we know this constant is (φp + lp)(e∗).

Figure 3.2: In the image the segment in red is the edge e = {e∗, e∗} and the part in blue is
the cluster C∞/C e

∞, where a-harmonic function (φp + lp) is constant of value (φp + lp)(e∗).

3. We prove that at first that aC∇(φp + lp) = aeC∇(φp1{C e
∞
} + lp) for every e ∈ Ed.

• For the edge e′ such that aC (e′) = 0, as aeC (e′) ⩽ aC (e′), the two functions
aC∇(φp + lp)(e′) and aeC∇(φp1{C e

∞
} + lp)(e′) are null.

• For the only pivot edge e that aC (e) > 0,aeC (e) = 0, thanks to the second term of
Lemma 3.3.2, we have ∇(φp + lp)(e) = 0. Thus, the equation also establishes.

• For the edge that aC (e′) > 0,aeC (e′) > 0, we know that this implies that the two
endpoints are on C e

∞ so that we have

∇(φp + lp)(e′) = ∇(φp1{C e
∞
} + lp)(e′),

and aC (e′) = aeC (e′), so the equation is also established.

aC∇(φp + lp) = aeC∇(φp1{C e
∞
} + lp) implies directly that −∇ ⋅ aeC∇(φp1{C e

∞
} + lp) = 0 on

Zd, therefore, by the Liouville regularity, we obtain that φep = φp1{C e
∞
} on C e

∞ up to a
constant.
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A direct corollary of the third part of Lemma 3.3.2 is that gp = gep on Ed when C∞ ≠ C e
∞,

thus KR ⋆ ([gp] − [gep]) = 0. So, it suffices to consider ∑e∈Ed ∣KR ⋆ ([gp] − [gee])∣
2 (x) under

the condition C∞ = C e
∞. Then, we can reformulate the quantity in eq. (3.57) as following:

KR ⋆ ([gp] − [gep])(x)
=KR ⋆ ([aCD(φp + lp)] − [aeCD(φep + lp)]) (x)1{C∞=C e

∞
}

=KR ⋆ [(aC − aeC )D(φep + lp)] (x)1{C∞=C e
∞
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Ae(x)

+KR ⋆ [aCD(φp − φep)] (x)1{C∞=C e
∞
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Be(x)

.

In order to prove eq. (3.57), we study Ae(x) and Be(x) separately.
Step 3: Case C∞ = C e

∞, proof of ∑e∈Ed ∣Ae(x)∣
2 ⩽ O′s(CR−d). Lemma 3.3.2 helps us

simplify the discussion on the case C∞ = C e
∞ and following lemma carries the convolution to

the cluster C∞.

Lemma 3.3.3. For a kernel KR as in Proposition 3.1.2 and every x ∈ Rd, there exists a
function ΓxK,R ∶ Zd → R+ such that for every function ξ supported on C∞, we have

(KR ⋆ [ξ])(x) = ⟨ΓxK,R, ξ⟩C∞ , (3.59)

and we have the estimate
ΓxK,R(z) ⩽

2dCK,R
Rd (∣x−zR ∣ ∨ 1)

d+1
2
. (3.60)

Proof. We can do the calculation directly

(KR ⋆ [ξ])(x) = ∫
Rd

[ξ] (y)KR(x − y)dy

= ∫
Rd

⎛
⎝ ∑z∈C∞

1{y∈z+◻} [ξ] (z)
⎞
⎠
KR(x − y)dy

= ∑
z∈C∞

(∫
Rd

1{y∈z+◻}KR(x − y)dy) ξ(z).

Thus we can define
ΓxK,R(z) ∶= ∫

y∈z+◻
KR(x − y)dy. (3.61)

The estimate eq. (3.60) comes directly from this expression and KR ⩽ CK,R

Rd(∣ x
R
∣∨1)

d+1
2
.

We want to apply directly Lemma 3.3.3 to every random environment ae to Ae(x). We
see that it suffices to study the case e ∈ Ed(C∞), otherwise the condition C∞ = C e

∞ will not
be satisfied or (aC − aeC )D(φep + lp) will be 0. Thus, supp ((aC − aeC )Dei(φep + lp)) ⊆ C∞ and
Lemma 3.3.3 works.

∑
e∈Ed

∣Ae∣2 (x) =
d

∑
i=1

∑
e∈Ed(C∞)

∣KR ⋆ [(aC − aeC )Dei(φ
e
p + lp)]∣

2 (x)1{C∞=C e
∞
}

=
d

∑
i=1

∑
e∈Ed(C∞)

∣⟨ΓxK,R, [(aC − aeC )D(φep + lp)]i⟩C∞ ∣
2

1{C∞=C e
∞
}

⩽
d

∑
ß=1

∑
z∈C∞

∣ΓxK,R(aC − a{z,z+ei}
C )Dei(φ

{z,z+ei}
e + lp)∣(z)21{C∞=C e

∞
}.

(3.62)
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The third line comes from the fact that under the condition C∞ = C e
∞, only one conductance

a(e) and ae(e) is different.
Using eq. (3.60), we know the part ∣ΓxK,R∣2 is integrable. It remains to estimate the vector

field Θ
∀e = {e∗, e∗} ∈ Ed, Θ(e∗, e∗) ∶= (aC − aeC )∇(φep + lp)(e∗, e∗), (3.63)

and prove a stochastic integrability for eq. (3.62). Since the quantity Θ(e) plays an important
role in our analysis and we will use it several times, we prove the following lemma:

Lemma 3.3.4. Under the condition eq. (3.58), there exist two finite positive constants
s(d,p,Λ) and C(d,p,Λ) such that

∀e ∈ Ed, ∣Θ(e)∣1{C∞=C e
∞
} ⩽ O′s(C). (3.64)

Proof. This estimate is very easy when aeC (e) > 0, since it implies aeC (e) > Λ−1 and we obtain
aC (e) ⩽ ΛaeC (e) together with eq. (3.58). We then use Proposition 3.3.1 directly that

∣(aC − aeC )D(φep + lp)∣1{C∞=C e
∞
} ⩽ (1 +Λ)∣aeCD(φep + lp)∣1{C∞=C e

∞
} ⩽ O′s(C).

The less immediate part comes from the case aeC (e) = 0 while aC (e) > 0, where aeCD(φep + lp) = 0
and cannot be used to dominate ∣Θ∣(e). We treat this case differently: we denote by
e = {e∗, e∗}, C∞ = C e

∞ implies the existence of another open path γ in C e
∞ connecting e∗

and e∗ (see Figure 3.3). This path can be chosen in C∗(◻Pe(e∗)) ∪ C∗(◻Pe(e∗)) applying
Lemma 3.2.3 to the partition cube Pe.

∣Θ(e∗, e∗)∣1{C∞=C e
∞
} = ∣(aeC − aC )∇(φep + lp)∣(e∗, e∗)1{C∞=C e

∞
}

⩽ 2 ∑
e′∈γ⊆C∗(◻Pe(e∗))∪C∗(◻Pe(e∗))

∣∇(φep + lp)∣(e′)1{C∞=C e
∞
}

(3.65)

In this sum, we have to notice that not only the corrector φep is random, but also the path γ
and its length. This forbids us to use directly eq. (3.23) or eq. (3.25), so we apply the minimal
scale argument and eq. (3.44) in the environment {ae(ẽ)}ẽ∈Ed : there exists s ∶= s(d,p,Λ) > 0
and C ∶= C(d,p,Λ) <∞ such that for any x ∈ C e

∞, we have a random variableMe(x) ⩽ O′s(C)
and for every r ⩾Me(x),

∥∇φep1{ae≠0}∥L2(C e
∞
∩Br(x)) ⩽ C. (3.66)

Then we take

M̃(e) = max {Me(e∗), size(◻Pe(e∗)), size(◻Pe(e∗))} ,

and it is clear that M̃(e) ⩽ O′s(C) and the ball BM̃(e)(e
∗) contains ◻Pe(e∗) and ◻Pe(e∗).

Thus we can use eq. (3.66) and Cauchy-Schwarz inequality to control the sum over the path
γ

∣Θ(e∗, e∗)∣1{C∞=C e
∞
} ⩽ 2 ∑

e′∈C e
∞
∩B
M̃(e)(e∗)

∣∇(φep + lp)∣(e′)1{C∞=C e
∞
}

⩽ (M̃(e))d ∥∇(φep + lp)1{ae≠0,C∞=C e
∞
}∥L2(C e

∞
∩B
M̃(e)(e∗))

⩽ C(M̃(e))d.

Finally we use (M̃(e))d ⩽ O′s/d(C) to conclude the proof of Lemma 3.3.4.
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Figure 3.3: This image shows the case C∞ = C e
∞ and aeC (e) = 0 while aC (e) > 0, so e = {e∗, e∗}

(the segment in red) is an open bond in C∞ but not in C e
∞. The condition C∞ = C e

∞ ensures
another open path γ (the segment in green) in C e

∞ connecting e∗ and e∗. The path γ is
contained in the union of the partition cube ◻Pe(e∗) and ◻Pe(e∗) (the cubes in yellow). To
estimate the sum of ∇φep over this path γ, we choose a minimal scale M̃(e) and study the
average in this scale (the ball in blue).

We conclude from eq. (3.62), eq. (3.60) and Lemma 3.3.4 that

∑
e∈Ed

∣Ae∣2 (x) ⩽
d

∑
ß=1

∑
z∈C∞

∣ΓxK,R∣2(z)∣Θ∣2(z, z + ei)1{C∞=C e
∞
}

⩽
d

∑
i=1
∑
z∈Zd

4dC2
K,R

R2d(∣x−zR ∣ ∨ 1)d+1
∣Θ∣2(z, z + ei)1{C∞=C e

∞
}

⩽ O′s
⎛
⎝
C2
K,RC(d,p,Λ)

Rd
⎞
⎠
.

Step 4: Case C∞ = C e
∞, proof of ∑e∈Ed ∣Be∣

2(x) ⩽ O′s(CR−d). This step is similar to that
for Ae but more technical. We define a space

Ḣ1(C∞) ∶= {v ∶ C∞ → R, ⟨∇v,∇v⟩Ea
d
(C∞) <∞},

and use the Green’s function on (C∞,Ea
d (C∞)) [83, Proposition 2.11]:

Proposition 3.3.3 (Green’s function on C∞). Let a ∈ Ω be an environment with an infinite
cluster C∞ and x, y ∈ C∞, then there exist a constant C ∶= C(d,Λ) <∞ and a Green’s function
Gx,y ∈ Ḣ1(C∞) such that

−∇ ⋅ aC∇Gx,y = δy − δx on C∞,

in the sense for any v ∈ Ḣ1(C∞), we have

⟨∇Gx,y,aC∇v⟩Ea
d
(C∞) = v(y) − v(x).



3.3. CENTERED FLUX ON THE CLUSTER 121

In the case that e = (x, y) ∈
Ð→
Ea
d (C∞), we note Gx,y ∶= Ge. The Green’s function Gx,y has the

following properties

• Symmetry: For every x, y, x′, y′ ∈ C∞, we have Gx,y(y′)−Gx,y(x′) = Gx′,y′(y)−Gx′,y′(x).

• Representation: For every v ∈ Ḣ1(C∞), every vector field ξ ∶
Ð→
Ea
d (C∞) → R, and

uξ ∈ Ḣ1(C∞) such that

⟨∇uξ,aC∇v⟩Ea
d
(C∞) = ⟨ξ,∇v⟩Ea

d
(C∞) ,

we have the representation

∇uξ = ∑
e∈Ea

d
(C∞)

ξ(e)∇Ge. (3.67)

In this formula, we give an arbitrary orientation for e ∈ Ea
d (C∞), and the equation is

well-defined.

Proof. The proof of the existence and uniqueness up to a constant for the function Gx,y

comes from the Lax-Milgram theorem on the space Ḣ1(C∞) where the conductance satisfies
the quenched uniform ellipticity condition. The symmetry comes from testing the equation
−∇ ⋅ aC∇Gx,y = δy − δx by Gx′,y′ and testing the equation −∇ ⋅ aC∇Gx

′,y′ = δy′ − δx′ by Gx,y
that

Gx,y(y′) −Gx,y(x′) = ⟨∇Gx,y,aC∇Gx
′,y′⟩

Ea
d
(C∞)

= Gx
′,y′(y) −Gx

′,y′(x).

The final representation formula can be checked easily by the linear combination of the
Green’s function.

The proof of ∑e∈Ed ∣Be∣
2(x) ⩽ O′s(CR−d) can be divided in 4 steps.

Step 4.1: Identification of D(φp −φep) using Green’s function. We identify at first D(φp −φep)
by using the Green’s function Ge introduced in Proposition 3.3.3 and then estimate its size
by this representation. We want to carry all the analysis on the geometry (C∞,Ea

d (C∞))
and to claim the following lemma:

Lemma 3.3.5. We denote e ∶= {e∗, e∗} ∈ Ea
d (C∞), under the condition C∞ = C e

∞, then we
have the following representation for (φep − φp), using Proposition 3.3.3 and the definition Θ
in eq. (3.63),

∇(φep − φp)(⋅) = Θ(e∗, e∗)∇Ge∗,e
∗

(⋅) on
Ð→
Ea
d (C∞). (3.68)

Proof. Using the a-harmonic equation and ae-harmonic equation for their correctors, we have
at first

−∇ ⋅ aC∇(φp + lp) = −∇ ⋅ aeC∇(φep + lp) on Zd,

then we obtain that

−∇ ⋅ aC∇(φp − φep) = −∇ ⋅ (aeC − aC )∇(φep + lp) on Zd. (3.69)

Using the definition Θ(e∗, e∗) = (aC −aeC )∇(φep+lp)(e∗, e∗) and under the condition C∞ = C e
∞,

the right hand side of eq. (3.69) equals to Θ(e)(δe∗ − δe∗). Moreover, since e∗, e∗ ∈ C∞,
eq. (3.69) can be seen restricted on the cluster (C∞,Ea

d (C∞)). Thus we solve the in Ḣ1(C∞)
the equation

−∇ ⋅ aC∇w̃e = −∇ ⋅ (aeC − aC )∇(φep + lp) on C∞,
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and by Proposition 3.3.3, it has a unique solution up to a constant that w̃e = Θ(e∗, e∗)Ge∗,e
∗ .

Now we have (φp − φep) and w̃e solving the same equation, but we do not yet know if
(φp − φep) belongs to Ḣ1(C∞). We hope to identify that φp − φep = w̃e and the argument is to
use the Liouville regularity theorem: notice that (φp −φep − w̃e) is an a-harmonic function on
C∞ and ⟨∇w̃e,∇w̃e⟩Ea

d
< ∞ implies that (φp − φep − w̃e) ∈ A1. We claim that it is in fact in

A0 and prove by contradiction: suppose that (φp − φep − w̃e) ∈ A1/A0, then by the Liouville
regularity there exists h ≠ 0 such that

φp − φep − w̃e = lh + φh.

However, this implies that w̃e = φp − φep − φh − lh, so w̃e has an asymptotic linear incre-
ment at infinity, which contradicts the fact that w̃e ∈ Ḣ1(C∞). In conclusion, we have
φp − φep −Θ(e∗, e∗)Ge∗,e

∗ = c and we get eq. (3.68).

Step 4.2: Carry the analysis on (C∞,Ea
d (C∞)). Observing that we do the sum of

aCD(φp − φep), it suffices to do the sum over Ea
d (C∞) and with the help of Lemma 3.3.5

, we have the formula

∑
e∈Ed

∣Be∣2(x) =
d

∑
i=1

∑
e∈Ea

d
(C∞)

∣KR ⋆ [aCDei(φp − φ
e
p)] ∣2(x)1{C∞=C e

∞
}

=
d

∑
i=1

∑
e∈Ea

d
(C∞)

∣KR ⋆ [aCDeiG
e]∣2 (x)Θ2(e)1{C∞=C e

∞
}

=
d

∑
i=1

∑
e∈Ea

d
(C∞)

∣⟨ΓxK,R,aCDeiG
e⟩

C∞
∣
2
(x)Θ2(e)1{C∞=C e

∞
}.

(3.70)

We analyze ⟨ΓxK,R,aCDeiGe⟩C∞ 1{C∞=C e
∞
} by defining the notation that

1{Ei
d
}(e

′) = { 1 if ∃z ∈ Zd such that e′ = {z, z + ei}
0 Otherwise ,

and a vector field Γ̃xK,R,i ∶ Ea
d (C∞)→ R that

Γ̃xK,R,i ∶= ΓxK,R(e′∗,i)aC (e′)1{Ei
d
}(e

′), e′∗,i ∈ C∞ such that e′ = {e′∗, e′∗ + ei} . (3.71)

Then, we can send ⟨ΓxK,R,aCDeiGe⟩C∞ 1{C∞=C e
∞
} to the inner product of vector field on

Ea
d (C∞)

⟨ΓxK,R,aCDeiG
e⟩

C∞
1{C∞=C e

∞
} = ⟨Γ̃xK,R,i,∇Ge⟩Ea

d
(C∞) 1{C∞=C e

∞
}. (3.72)

Step 4.3 : Apply once again the representation with the Green’s function. Since Γ̃xK,R,i is
defined on Ea

d (C∞), we can apply Proposition 3.3.3 to define wΓ̃xK,R,i
∈ Ḣ1(C∞) the solution

of the equation
−∇ ⋅ aC∇wΓ̃xK,R,i

= −∇ ⋅ Γ̃xK,R,i, on C∞, (3.73)

and it has a representation∇wΓ̃xK,R,i
(e) = ∑e′∈Ea

d
(C∞) Γ̃xK,R,i(e′)∇Ge

′(e). We use the symmetry
∇Ge′(e) = ∇Ge(e′)

∇wΓ̃xK,R,i
(e) = ∑

e′∈Ea
d
(C∞)

Γ̃xK,R,i(e′)∇Ge(e′) = ⟨Γ̃xK,R,i,∇Ge⟩Ea
d
(C∞) . (3.74)
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We combine eq. (3.70) eq. (3.72) and eq. (3.74) together and obtain that

∑
e∈Ed

∣Be∣2(x) ⩽
d

∑
i=1

∑
e∈Ea

d
(C∞)

∣∇wΓ̃xK,R,i
∣2(e)Θ2(e)1{C∞=C e

∞
}. (3.75)

Step 4.4: Meyers’ inequality and minimal scale. From the eq. (3.73), we obtain a Ḣ1(C∞)
estimate using eq. (3.60)

⟨∇wΓ̃xK,R,i
,aC∇wΓ̃xK,R,i

⟩
1
2

Ea
d
(C∞)

= ⟨∇wΓ̃xK,R,i
, Γ̃xK,R,i⟩

1
2

Ea
d
(C∞)

Ô⇒∥∇wΓ̃xK,R,i
∥
L2(Ea

d
(C∞))

⩽ Λ ∥Γ̃xK,R,i∥L2(Ea
d
(C∞)) ⩽ Λ ∥ΓxK,R∥L2(Ea

d
(C∞)) ⩽ C

2
K,RR

− d2 .

Combining eq. (3.75) and the estimate on Θ(e), one may want to argue that

∑
e∈Ed

∣Be∣2(x) ⩽
d

∑
i=1

∑
e∈Ea

d
(C∞)
O′s (∣∇wΓ̃xK,R,i

∣2(e)) ⩽ O′s(C2
K,RR

−d).

However, this argument is not correct since eq. (3.23) does not work for our case where wΓ̃xK,R,i
is stochastic. A rigorous proof needs an argument as in [83, Lemma 3.7] using the minimal
scale: We construct a collection of good cubes G′ such that not only Meyers’ inequality [83,
Proposition 3.6] is established, but also there exists ε(d,p,Λ) > 0 and C(d,p,Λ) < ∞ for all
◻ ∈ G′

1
∣◻∣

(∫
Ea
d
(C∞∩◻)

Θ
2(2+ε)
ε (e))

ε
2+ε

< C(d,p,Λ). (3.76)

Then we do the Calderón-Zygmund decomposition Proposition 3.2.1 for G′ to obtain a par-
tition of cubes U , and apply Meyers’ inequality for eq. (3.75)

∑
e∈Ed

∣Be∣2(x) ⩽
d

∑
i=1
∑
◻∈U

∑
e∈Ea

d
(C∞∩◻)

∣∇wΓ̃xK,R,i
∣2(e)Θ2(e)1{C∞=C e

∞
}

⩽
d

∑
i=1
∑
◻∈U

∣◻∣
⎛
⎜
⎝

1
∣◻∣ ∑

e∈Ea
d
(C∞∩◻)

∣∇wΓ̃xK,R,i
∣2+ε(e)

⎞
⎟
⎠

2
2+ε

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Applying Meyers’ inequality

⎛
⎜
⎝

1
∣◻∣ ∑

e∈Ea
d
(C∞∩◻)

Θ
2(2+ε)
ε (e)

⎞
⎟
⎠

ε
2+ε

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽C after eq. (3.76)

1{C∞=C e
∞
}

⩽ C
d

∑
i=1
∑
◻∈U

∣◻∣
⎛
⎜⎜
⎝

1
∣43◻∣

∑
e∈Ea

d
(C∞∩ 4

3◻)
∣∇wΓ̃xK,R,i

∣2(e) +
⎛
⎜
⎝

1
∣43◻∣

∑
e∈Ea

d
(C∞∩ 4

3◻)
∣Γ̃xK,R,i∣2+ε(e)

⎞
⎟
⎠

2
2+ε⎞

⎟⎟
⎠
.

The first term can be controlled by the Ḣ1 estimate for wΓ̃xK,R,i
that

∥∇wΓ̃xK,R,i
∥

2

L2(Ea
d
(C∞))

⩽ Λ2 ∥ΓxK,R∥
2
L2(Ea

d
(C∞)) ⩽ C

2
KR

−d.
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While for the second term, we can now apply eq. (3.23) as Γ̃xK,R,i is deterministic

d

∑
i=1
∑
◻∈U

∣◻∣
⎛
⎜
⎝

1
∣43◻∣

∑
e∈Ea

d
(C∞∩ 4

3◻)
∣Γ̃xK,R,i∣2+ε(e)

⎞
⎟
⎠

2
2+ε

⩽
d

∑
i=1
∑
◻∈U

∣◻∣
ε

2+ε ∑
e∈Ea

d
(C∞∩ 4

3◻)
∣Γ̃xK,R,i∣2(e) ⩽ O′s(C2

K,RR
−d).

This concludes the proof.

3.3.2 Construction of the flux conrrectors

In this part, we prove a Helmholtz-Hodge type decomposition for gp, which is another quan-
tity Sp used in the further quantification of algorithm. We recall that we use gp,i to represent
the i-th component of the vector field gp ∶ Zd → Rd and the standard heat kernel is defined
as ΦR(x) ∶= 1

(4πR2)d/2 exp (− x2

4R2 ).

Proposition 3.3.4. For each p ∈ Rd, almost surely there exists a vector field Sp ∶ Zd → Rd×d
called flux corrector of gp, which takes values in the set of anti-symmetric matrices (that is,
Sp,ij = −Sp,ji) and satisfying the following equations:

{ D
∗ ⋅ Sp = gp,

−∆Sp,ij = Dejgp,i −Deigp,j ,
(3.77)

where the first equation means that for every i ∈ {1,2⋯d}, ∑dj=1D∗ejSp,ij = gp,i.
The quantity satisfies similar estimation as eq. (3.45) and eq. (3.46): there exist two

positive constants s ∶= s(d,p,Λ), C ∶= C(d,p,Λ, s) such that

∀1 ⩽ i, j ⩽ d, ∀x ∈ Zd, ∣DekSp,ij ∣(x) ⩽ Os(C ∣p∣), (3.78)

and for the heat kernel ΦR, we have

∣ΦR ⋆ [DekSp,ij]∣ (x) ⩽ Os(C ∣p∣R− d2 ). (3.79)

Heuristic analysis

The following discussion gives a little heuristic analysis before a rigorous proof. In fact, if we
define a field Hp ∶ Zd → Rd such that

−∆Hp,i = gp,i, (3.80)

where −∆ ∶= −∇ ⋅ ∇ = D∗ ⋅D is the discrete Laplace and then we define Sp such that

Sp,ij = DejHp,i −DeiHp,j . (3.81)

We see that this definition gives us a solution of eq. (3.77) since

−∆Sp,ij = −∆ (DejHp,i −DeiHp,j) = Dej(−∆Hp,i) −Dei(−∆Hp,j) = Dejgp,i −Deigp,j .

(D∗ ⋅ Sp)i =
d

∑
j=1
D∗ej (DejHp,i −DeiHp,j) = −∆Hp,i −Dei

d

∑
j=1
D∗ejHp,j = gp,i.
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Here we use one property that Hp,i = (−∆)−1gp,i so that Hp is also divergence free. This idea
works on periodic homogenization problem [147, Lemma 3.1], but in our context, one key
problem is to well define eq. (3.80). In the present work, we apply an elementary probabilistic
approach: Let (Sk)k⩾0 defines a lazy discrete time simple random walk on Zd with probability
1
2 to stay unmoved and 1

4d to move towards one of the nearest neighbors on Zd, and we use
(Pt)t∈N to define its semigroup, with the notation

Pt(x, y) ∶= Pt(y − x) = P[St = y − x]
(Ptf)(x) ∶= ∑

y∈Zd
Pt(x, y)f(y) = ([Pt] ⋆ [f])(x), ∀f ∈ L1(Zd), (3.82)

where [⋅] denotes a constant extension on every z + (−1
2 ,

1
2)
d. Using the representation of the

solution of harmonic function by a simple random walk

Hp,i(x) =
1
4d

∞
∑
t=0

(Ptgp,i)(x),

and we deduce from the definition of Se in eq. (3.81)

Sp,ij(x) =
1
4d

∞
∑
t=0
Dej(Ptgp,i)(x) −Dei(Ptgp,j)(x).

If we believe that Pt is close to the heat kernel that Pt(x, y) ≃ 1
(πt)d/2 exp (− ∣y−x∣2

t ), and that
the operator D helps to gain another factor of t− 1

2 , then Proposition 3.1.2 would give us that
∣Dej(Ptgp,i)∣(x) ⩽ Os(t−

1
2−

d
4 ). We expect that this upper bound is sharp in general, and the

fact that ∑∞
t=1 t

− 1
2−

d
4 = ∞ prevents us from being able to define Sp,ij directly in dimension

d = 2. Nevertheless we can make sense of

(DekSp,ij)(x) =
1
4d

∞
∑
t=0
DekDej(Ptgp,i)(x) −DekDei(Ptgp,j)(x), (3.83)

because differentiating Pt a second time will allow us to gain an extra factor of t− 1
2 , and thus

give us that that ∣DekDejPtgp,i∣ ⩽ Os(Ct−1− d4 ). Then we can apply eq. (3.23) to say that
DekSp,ij is well-defined and prove other properties.

Rigorous construction of DS

Proof of Proposition 3.3.4. We will give a rigorous proof that eq. (3.83) gives a well-defined
anti-symmetric valued vector field Se. The proof can be divided into three steps.

Step 1: Stochastic integrability of DekDej(Ptgp,i). In the first step, we prove that eq. (3.83)
makes sense, that is the part DekDej(Ptgp,i)(x) − DekDei(Ptgp,j)(x) is summable. In the
heuristic analysis, we compare Pt with the heat kernel, which can be reformulated carefully
by the local central limit theorem.

Lemma 3.3.6 (Page 61, Exercise 2.10 of [170]). We denote by P̄t(x, y) = 1
(πt)d/2 exp (− ∣y−x∣2

t ),
then there exists a positive constant C(d), such that for all t > 0,

sup
x∈Zd

∣DekDejPt −DekDej P̄t∣ (x) ⩽ C(d)t−
d+3
2 . (3.84)
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Proof. The proof follows the idea in [170, Theorem 2.3.5] and also relies on [170, Lemmas
2.3.3 and 2.3.4] where we have

Pt(x) = P̄t(x) + Vt(x, r) +
1

(2π)dt d2
∫∣θ∣⩽r

e
− ix⋅θ√

t e−
∣θ∣2
4 Ft(θ)dθ,

and there exits ζ > 0 such that for every 0 < θ, r ⩽ t 1
8 , Vt(x, r), Ft(θ) satisfy

∣Ft∣ (θ) ⩽
∣θ∣4

t
, ∣Vt(x, r)∣ ⩽ c(d)t−

d
2 e−ζr

2
.

We apply DekDej with respect to x and obtain that

∣DekDejPt −DekDej P̄t∣ (x) =
RRRRRRRRRRR
DekDejVt(x, r) +

1
(2π)dt d2

∫∣θ∣⩽r
DekDeje

− ix⋅θ√
t e−

∣θ∣2
4 Ft(θ)dθ

RRRRRRRRRRR
.

We take r = t 1
8 , then the term Vt(x, r) has an error of exponential type

∣Vt(x, t
1
8 )∣ ⩽ c(d)t−

d
2 e−ζt

1
4 ⩽ c′(d)t−

d+3
2 .

So we focus on another part, by a simple finite difference calculus we haveDekDeje
− ix⋅θ√

t ⩽ 2θ√
t
.

Moreover, we apply ∣Ft∣ (θ) ⩽ ∣θ∣4
t and have

RRRRRRRRRRR

1
(2π)dt d2

∫∣θ∣⩽r
DekDeje

− ix⋅θ√
t e−

∣θ∣2
4 Ft(θ)dθ

RRRRRRRRRRR
⩽
RRRRRRRRRRR

1
(2π)dt d+3

2
∫∣θ∣⩽r

∣θ∣5e−
∣θ∣2
4 dθ

RRRRRRRRRRR
⩽ Ct−

d+3
2 .

This concludes the proof.

We prove that eq. (3.83) is well defined by showing that

P-a.s ∀1 ⩽ i, j, k ⩽ d,∀x ∈ Zd,
∞
∑
t=0

∣DekDej(Ptgp,i)∣ (x) <∞. (3.85)

We break this term into two
∞
∑
t=0

∣DekDej(Ptgp,i)∣ (x) =
∞
∑
t=0

∣DekDej(P̄tgp,i)∣ (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eq. (3.86)-a

+
∞
∑
t=0

∣DekDej(Pt − P̄t)gp,i∣ (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eq. (3.86)-b

. (3.86)

P̄t is better than Pt since it is a standard heat kernel and we can do explicit calculation. We
observe that

∀t ⩾ 1,∀y ∈ Zd, ∣DekDej P̄t∣ (y) ⩽
C(d)
t

P̄2t(y) =
C(d)

t(2πt)d/2
exp(− ∣y∣2

2t
) ⩽ C(d)

t
d+2
2 (∣ y√

t
∣ ∨ 1)

d+1
2
.

ThenK√
t ∶= DekDej P̄t is a kernel described in Proposition 3.1.2 with the constant CK,√t ∶=

C(d)
t ,

so we have
∣DekDej(P̄gp,i)∣ (x) = ∣K√

t ⋆ [gp,i]∣ (x) ⩽ Os(Ct−1− d4 ).
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We put these estimates with Proposition 3.3.1 in the eq. (3.86)-a and get

eq. (3.86)-a ⩽ ∣gp,i∣(x) +
∞
∑
t=1

∣DekDej(Ptgp,i)∣ (x) ⩽ Os(C) +
∞
∑
t=1
Os(Ct−1− d4 ) ⩽ Os(C).

On the other hand, to handle eq. (3.86)-b, we choose ε > 0 and study at first

∣DekDej(Pt − P̄t)gp,i∣ (x) ⩽ ∣∫∣y∣⩽t
1
2+ε

[DekDej(Pt − P̄t)] (y) [gp,i] (x − y)dy∣

+ ∣4∫∣y∣⩾t
1
2+ε

([Pt] + [P̄t]) (y) [gp,i] (x − y)dy∣

Lemma 3.3.6
⩽ ∫∣y∣⩽t

1
2+ε
Os (

C

t
d+3
2

) dy + 4∫∣y∣⩾t
1
2+ε

([Pt] + [P̄t]) (y)Os(C)dy

eq. (3.23)
⩽ Os (Ct−(

3
2−dε)) +Os (∫∣y∣⩾t

1
2+ε

([Pt] + [P̄t]) (y)dy) .

We divide the estimation into two terms since Lemma 3.3.6 is uniform but not optimal for the
tail probability, which is of type sub-Gaussian so that the mass outside ∣t∣

1
2+ε should be very

small. By direct calculation, we have that ∫∣y∣⩾t 1
2+ε

[P̄t] (y)dy ⩽ C(d)e−t2ε and by Hoeffding’s
inequality for the lazy simple random walk (St)t⩾0

∫∣y∣⩾t
1
2+ε

[Pt] (y)dy = P [∣St∣ ⩾ t
1
2+ε] ⩽ 2 exp(− 2t1+2ε

Var[St]
) ⩽ 2e−4t2ε .

Combining these tail event estimates and by choosing ε = 1
4d , we obtain that

∣DekDej(Pt − P̄t)gp,i∣ (x) ⩽ Os(Ct
− 5

4 ),

and this concludes that eq. (3.86)-b ⩽ Os(C), so eq. (3.85) holds, eq. (3.78) holds and that
DekSp,ij is well defined.
Remark. In the proof, we also obtained one quantitative estimate of the following type:
There exist two constants s ∶= s(d,p,Λ), C ∶= C(d,p,Λ, s) such that for every random field
X ∶ Zd → R satisfying for every z ∈ Zd, ∣X(z)∣ ⩽ Os(θ), we have

∀1 ⩽ i, j, k ⩽ d, x ∈ Zd, ∣DekDej(Pt − P̄t)X ∣ (x) ⩽ Os(Cθt−
5
4 ). (3.87)

By a similar approach with the classical local central limit theorem [170, Theorem 2.3.5], we
can also prove that

∀x ∈ Zd, ∣Ptgp,i∣(x) ⩽ Os(Ct−
1
4 ). (3.88)

Step 2: Verification of eq. (3.77). The verification of eq. (3.77) is direct thanks to
eq. (3.85). We will also use the semigroup property that

Pt(x) − Pt−1(x) =
1
4d

∆Pt−1(x). (3.89)

(D∗ ⋅ Sp)i (x) =
1
4d

∞
∑
t=0

d

∑
j=1
D∗ejDejPtgp,i(x) −D

∗
ejDeiPtgp,j(x)

= 1
4d

∞
∑
t=0

( −∆Pt
²
eq. (3.89)

)gp,i(x) −DeiPt (D
∗ ⋅ gp)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

(x)

=
∞
∑
t=0

(Pt − Pt+1)gp,i(x)

= gp,i(x).
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In the last step, we use implicitly that limt→∞ Ptgp,i(x) = 0 almost surely. This is true by
Borel-Cantelli lemma and the estimation ∣Ptgp,i∣(x) ⩽ Os(Ct−

1
4 ) (see eq. (3.88)):

∞
∑
t=1

P[∣Ptgp,i∣(x) ⩾ ε] ⩽
∞
∑
t=1

exp (− (Cεt
1
4 )
s
) <∞.

The second part of eq. (3.77), concerning −∆Sp,ij , is easy to verify by a similar calculation

−∆Sp,ij(x) =
1
4d

∞
∑
t=0
D∗ekDekDej(Ptgp,i)(x) −D

∗
ek
DekDei(Ptgp,j)(x)

= 1
4d

∞
∑
t=0

(−∆PtDejgp,i)(x) − (−∆PtDeigp,j)(x)

= (Dejgp,i)(x) − (Deigp,j)(x).

Finally, by the definition, we can define Sp,ij just by integration of DSp,ij along a path. This
construction does not depend on the choice of path since DSp,ij is a potential field.

Step 3: Estimation of ∣ΦR ⋆ [DekSp,ij]∣ (x). This is a result of the convolution. Thanks
to the eq. (3.85), we can apply Fubini lemma to ∣ΦR ⋆ [DekSp,ij]∣ (x) that

∣ΦR ⋆ [DekSp,ij]∣ (x) = ∣ 1
4d

∞
∑
t=0

ΦR ⋆ [DekDejPt] ⋆ [gp,i] −ΦR ⋆ [DekDeiPt] ⋆ [gp,j]∣ (x)

= ∣ 1
4d

∞
∑
t=0

[DekDejPt] ⋆ (ΦR ⋆ [gp,i]) − [DekDeiPt] ⋆ (ΦR ⋆ [gp,j])∣ (x)

The main idea is that ΦR ⋆ [gp,j] ⩽ Os (CR− d2 ) by Proposition 3.1.2 , then we repeat the
main argument of stochastic integrability of DekSp,ij to get a better estimate. We focus on
just one term:

∣ 1
4d

∞
∑
t=0

[DekDejPt] ⋆ (ΦR ⋆ [gp,i])∣ ⩽ ∣ 1
4d

∞
∑
t=0

[DekDejPt −DekDej P̄t] ⋆ (ΦR ⋆ [gp,i])∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eq. (3.90)-a

+ ∣ 1
4d

∞
∑
t=0

([DekDej P̄t] −DekDejΦ√
t
2
) ⋆ (ΦR ⋆ [gp,i])∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eq. (3.90)-b

+ ∣ 1
4d

∞
∑
t=0
DekDejΦ√

t
2
⋆ (ΦR ⋆ [gp,i])∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eq. (3.90)-c

.

(3.90)

We treat the three terms one by one. For eq. (3.90)-a, we apply eq. (3.87) withX ∶= ΦR⋆[gp,i]
and we use also eq. (3.23)

eq. (3.90)-a ⩽1
d
∣ΦR ⋆ [gp,i]∣ (x) +

1
4d

∞
∑
t=1

∣[DekDej(Pt − P̄t)] ⋆ (ΦR ⋆ [gp,i])∣ (x)

⩽Os(CR− d2 ) +
∞
∑
t=1
Os(Ct−

5
4R− d2 )

⩽Os(CR− d2 ).

(3.91)
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For the term eq. (3.90)-b, we observe that for every y ∈ Rd,

∣[DekDej P̄t] (y) −DekDejΦ√
t
2
(y)∣ = ∣[DekDejΦ√

t
2
] (y) −DekDejΦ√

t
2
(y)∣ ⩽ C(d)

t
3
2

Φ√
t(y).

We apply this estimate and use eq. (3.23) to obtain that

∣ 1
4d

∞
∑
t=0

([DekDej P̄t] −DekDejΦ√
t
2
) ⋆ (ΦR ⋆ [gp,i])∣ (x)

⩽ 1
4d

∞
∑
t=0

∣[DekDej P̄t] −DekDejΦ√
t
2
∣ ⋆ ∣ΦR ⋆ [gp,i]∣ (x)

⩽1
d
∣ΦR ⋆ [gp,i]∣ (x) +

1
4d

∞
∑
t=1

C(d)
t

3
2

Φ√
t ⋆ ∣ΦR ⋆ [gp,i]∣ (x)

⩽Os(CR− d2 ) +
∞
∑
t=1
Os(Ct−

3
2R− d2 )

⩽Os(CR− d2 ).

(3.92)

For the last term ∣ 1
4d ∑

∞
t=0DekDejΦ√

t
2
⋆ (ΦR ⋆ [gp,i])∣ (x), we use the property of semi-

group, the linearity of the finite difference operator and we apply Proposition 3.1.2 to the
kernel DekDejΦ√

t
2

∣ 1
4d

∞
∑
t=0
DekDejΦ√

t
2
⋆ (ΦR ⋆ [gp,i])∣ (x) = ∣ 1

4d
∞
∑
t=0
DekDej (Φ√

t
2+R2 ⋆ [gp,i])∣ (x)

= ∣ 1
4d

∞
∑
t=0

(DekDejΦ√
t
2+R2) ⋆ [gp,i]∣ (x)

⩽
∞
∑
t=0
Os

⎛
⎝
C ( t

2
+R2)

−1− d2 ⎞
⎠

⩽ Os(CR− d2 ).

(3.93)

This concludes the proof as we put the three estimates eq. (3.91),eq. (3.92) and eq. (3.93)
in eq. (3.90) and eq. (3.79).

Lq, L∞ estimate of Sp

Once we establish the spatial average estimate for DSp, we also have its Lq and L∞ estimate.
Proposition 3.3.5. There exist three finite positive constants s ∶= s(d,p,Λ), k ∶= k(d,p,Λ)
and C ∶= C(d,p,Λ, s) such that for each 1 ⩽ i, j ⩽ d, p ∈ Rd and q ∈ [1,∞),

(R−d∫
BR

∣Sp,ij − (Sp,ij)BR ∣
q)

1
q

⩽ { Os(C ∣p∣qk log
1
2 (R)) d = 2,

Os(C ∣p∣qk) d = 3,
(3.94)

and for each x, y ∈ Zd,

∣Sp,ij(x) − Sp,ij(y)∣ ⩽ { Os(C ∣p∣ log
1
2 ∣x − y∣) d = 2,

Os(C ∣p∣) d = 3.
(3.95)

Proof. Similar to [83, Theorems 1 and 2], these estimates are the results of local estimate
and spatial average estimates proved in eq. (3.49), eq. (3.19), eq. (3.78) and eq. (3.79) by
applying a heat kernel type multi-scale Poincaré’s inequality. We refer to [83, Sections 4 and
5].
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3.4 Two-scale expansion on the cluster

In this part, we prove Theorem 3.1.2 which is the heart of all the analysis of our algorithm
as stated in Section 3.1.3. Here we prove a more detailed version of the theorem.

Proposition 3.4.1 (Two-scale expansion on percolation). Under the same context of Theo-
rem 3.1.2, there exist three random variables X ,Y1,Y2 satisfying

X ⩽ O1(C(d,p,Λ)m), Y1 ⩽ Os (C(d,p,Λ, s)`(λ)m
1
s ) , Y2 ⩽ Os (C(d,p,Λ, s)λ

d
2m

1
s ) ,

and we have the estimate

∥∇(w − v)1{a≠0}∥L2(C∗(◻m)) ⩽ C(d,Λ) (∥Dv̄∥L2(◻m) (3−
m
2 `

1
2 (λ)X d + 3−

m
2 `−

1
2 (λ)Y1X d + µY1 +Y2X d)

+ ∥Dv̄∥
1
2
L2(◻m) ∥D

∗Dv̄∥
1
2
L2(int(◻m)) (`

1
2 (λ)X d + `−

1
2 (λ)Y1X d)

+ ∥D∗Dv̄∥L2(int(◻m))Y1X d) .

3.4.1 Main part of the proof

The main idea of the proof is to use the quantities {φek}k=1,...,d and {Sek,ij}i,j,k=1,...,d analyzed
in previous work and in Section 3.3, under the condition ◻m ∈ P∗. We do some simple
manipulations at first. Throughout the proof, we use the notation h ∶= v −w.

Proof. Step 1: Setting up. We define a modified coarsened function h̃

h̃(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

h(x) x ∈ C∗(◻m),
[h]P (x) x ∈ ◻m/C∗(◻m),dist(◻P(x), ∂◻m) ⩾ 1,
0 x ∈ ◻m/C∗(◻m),dist(◻P(x), ∂◻m) = 0.

(3.96)

We put it as a test function in eq. (3.15)

⟨h̃, (µ2
C ,m −∇ ⋅ aC ,m∇)v⟩int(◻m) = ⟨h̃, (µ2

C ,m −∇ ⋅ ā∇)v̄⟩int(◻m) .

Since h̃ ∈ C0(◻m), we can apply the formula eq. (3.28) and get

⟨µC ,mh̃, µC ,mv⟩◻m + ⟨∇h̃,aC ,m∇v⟩◻m = ⟨µC ,mh̃, µC ,mv̄⟩◻m + ⟨∇h̃, ā∇v̄⟩◻m . (3.97)

We subtract a term of w on the two sides to get

⟨µC ,mh̃, µC ,m(v −w)⟩◻m + ⟨∇h̃,aC ,m∇(v −w)⟩◻m
= ⟨µC ,mh̃, µC ,m(v̄ −w)⟩◻m + ⟨∇h̃, ā∇v̄ − aC ,m∇w⟩◻m .

We put v −w = h into the identity and obtain that

⟨µC ,mh̃, µC ,mh⟩◻m + ⟨∇h̃,aC ,m∇h⟩◻m
= ⟨µC ,mh̃, µC ,m(v̄ −w)⟩◻m + ⟨∇h̃, ā∇v̄ − aC ,m∇w⟩◻m . (3.98)

Step 2: Restriction tricks. There are three observations:

• Observation 1. The effect of µC ,m restricts the inner product to C∗(◻m), and on
C∗(◻m) we have h̃ = h by eq. (3.96). Thus we have

⟨µC ,mh̃, µC ,mh⟩◻m = µ2 ⟨h,h⟩C∗(◻m) , ⟨µC ,mh̃, µC ,m(v̄ −w)⟩◻m = µ2 ⟨h, v̄ −w⟩C∗(◻m) .
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• Observation 2. The definition of aC ,m also restricts the inner product on Ea
d (C∗(◻m))

and we have
⟨∇h̃,aC ,m∇h⟩◻m = ⟨∇h,a∇h⟩Ea

d
(C∗(◻m)) ,

as aC ,m = 0 outside Ea
d (C∗(◻m)) by eq. (3.39).

• Observation 3. This step is the key where we gain much in the estimate and where we
use the condition ◻m ∈ P∗. We apply the formula eq. (3.27) to ⟨∇h̃, ā∇v̄ − aC ,m∇w⟩◻m
to obtain that

⟨∇h̃, ā∇v̄ − aC ,m∇w⟩◻m = ⟨h̃,−∇ ⋅ (ā∇v̄ − aC ,m∇w)⟩int(◻m)

= ⟨h̃,D∗ ⋅ (āDv̄ − aC ,mDw)⟩int(◻m)

= ⟨h̃,D∗ ⋅ (āDv̄ − aCDw)⟩int(◻m)

+ ⟨h̃,D∗ ⋅ (aC − aC ,m)Dw⟩int(◻m) .

We use the condition ◻m ∈ P∗, which implies that C∗(◻m) ⊆ C∞ and

supp (D∗ ⋅ (aC − aC ,m)Dw) ⊆ (C∞ ∩◻m)/C∗(◻m).

In Definition 3.B.1 and Lemma 3.B.2, we prove that (C∞ ∩ ◻m)/C∗(◻m) is the union
of small clusters contained in the partition cubes ◻P with distance 1 to ∂◻m, where h̃
equals 0. Therefore, we obtain that

⟨h̃,D∗ ⋅ (āDv̄ − aC ,mDw)⟩int(◻m) = ⟨h̃,D∗ ⋅ (āDv̄ − aCDw)⟩int(◻m) .

Using an identity
D∗ ⋅ (aCDw − āDv̄) = D∗ ⋅F on Zd,

which will be proved later in Lemma 3.4.1 and F is a vector field F ∶ Zd → Rd, we
conclude

⟨∇h̃, ā∇v̄ − aC ,m∇w⟩◻m 1{◻m∈P∗} = ⟨h̃,−D∗ ⋅F⟩int(◻m) 1{◻m∈P∗}

= − ⟨Dh̃,F⟩◻m 1{◻m∈P∗}.

Combining all these observations, we transform eq. (3.98) to

(µ2 ⟨h,h⟩C∗(◻m) + ⟨∇h,a∇h⟩Ea
d
(C∗(◻m)))1{◻m∈P∗}

= (µ2 ⟨h, v̄ −w⟩C∗(◻m) − ⟨Dh̃,F⟩◻m)1{◻m∈P∗}.

(3.99)

Using Hölder’s inequality and Young’s inequality, we obtain that

⟨∇h,a∇h⟩Ea
d
(C∗(◻m)) 1{◻m∈P∗} ⩽ (µ

2

4
∥v̄ −w∥2

L2(C∗(◻m)) + ∥Dh̃∥
L2(◻m) ∥F∥L2(◻m))1{◻m∈P∗}.

(3.100)
Step 3: Study of ∥Dh̃∥

L2(◻m). The next step is to estimate the size of ∥Dh̃∥
L2(◻m). Since

h̃ ∈ C0(◻m), we have that ∥Dh̃∥
L2(◻m) = ∥∇h̃∥

L2(◻m). We use the function [h]P,◻m defined
in eq. (3.42)

[h]P,◻m (x) = { [h]P (x) dist(◻P(x), ∂◻m) ⩾ 1,
0 dist(◻P(x), ∂◻m) = 0. (3.101)
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Figure 3.4: The figure shows the sources contributing to ∥∇h̃∥
L2(◻m). The black segments

represent the cluster C∗(◻m) while the blue segments represent the partition of good cubes.
Using the coarsened function, we see that the quantity can be controlled by the sum of three
terms: the difference between ∇h̃ and [h]P,◻m near the cluster C∗(◻m), marked with red
cross in the image; the gradient [h]P,◻m at the interface of different partition cubes ◻P ,
marked with orange disk.

as a function to do comparison and apply eq. (3.29) (see Figure 3.4 for the errors from the
two terms)

∥∇h̃∥
L2(◻m) = ∥∇(h̃ − [h]P,◻m)∥

L2(◻m) + ∥∇ [h]P,◻m∥
L2(◻m)

⩽ 2d ∥h̃ − [h]P,◻m∥
L2(◻m) + ∥∇ [h]P,◻m∥

L2(◻m)

⩽ 2d ∥h − [h]P,◻m∥
L2(int(◻m)∩C∗(◻m)) + ∥∇ [h]P,◻m∥

L2(◻m)

The last step is correct since h̃ and [h]P,◻m coincide at the boundary and also on the part
int(◻m)/C∗(◻m). We define

X ∶= max
x∈◻m

size(◻P(x)), (3.102)

which can be estimated using eq. (3.25) and eq. (3.76) as

X ⩽ O1(C(d,p,Λ)m), (3.103)
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and apply Proposition 3.2.2

∥∇h̃∥
L2(◻m) ⩽ 2d ∥h − [h]P,◻m∥

L2(int(◻m)∩C∗(◻m)) + ∥∇ [h]P,◻m∥
L2(◻m)

⩽ C
⎛
⎜
⎝

∑
{x,y}∈Ea

d
(C∗(◻m))

size(◻P(x))2d∣∇h∣2(x, y)
⎞
⎟
⎠

1
2

⩽ CX d ∥∇h1{a≠0}∥L2(C∗(◻m)) .

We put it back to eq. (3.100)

⟨∇h,a∇h⟩Ea
d
(C∗(◻m)) 1{◻m∈P∗}

⩽ (µ
2

4
∥v̄ −w∥2

L2(C∗(◻m)) +CX
d ∥∇h1{a≠0}∥L2(C∗(◻m)) ∥F∥L2(◻m))1{◻m∈P∗}.

and use Young’s inequality, finally we get

∥∇h1{a≠0}∥L2(C∗(◻m)) 1{◻m∈P∗} ⩽ C(d)Λ (µ ∥v̄ −w∥L2(C∗(◻m)) +X
d ∥F∥L2(◻m))1{◻m∈P∗},

(3.104)
Step 4: Quantification. It remains to estimate two quantities ∥v̄ −w∥L2(C∗(◻m)) 1{◻m∈P∗}

and ∥F∥L2(◻m) 1{◻m∈P∗}.
The two random variables used in the estimation are defined as

Y1 ∶= max
1⩽i,j,k⩽d,dist(x,◻m)⩽1

∣φ(λ)
ek

(x)∣ + ∣S(λ)
ek,ij

(x)∣ ,

Y2 ∶= max
1⩽i,j,k⩽d,dist(x,◻m)⩽1

∣Φλ−1 ⋆Dei [φek]
η
P (x)∣ + ∣Φλ−1 ⋆ [D∗ejSek,ij](x)∣ ,

(3.105)

where they involved the spatial average of corrector and flux corrector, the modified corrector
defined in eq. (3.14) and modified flux corrector defined in eq. (3.113). They have estimates
following eq. (3.25), eq. (3.46), eq. (3.79) and also Proposition 3.3.5, Proposition 3.2.4 that
there exists 0 < s(d,p,Λ) <∞ and 0 < C(d,p,Λ) <∞ such that

Y1 ⩽ Os (C(d,p,Λ, s)`(λ)m
1
s ) Y2 ⩽ Os (C(d,p,Λ, s)λ

d
2m

1
s ) . (3.106)

For ∥v̄ −w∥L2(C∗(◻m)) 1{◻m∈P∗}, we have

∥w − v̄∥2
L2(◻m) 1{◻m∈P∗} =

XXXXXXXXXXX

d

∑
j=1

(ΥDej v̄)φ(λ)
ej

XXXXXXXXXXX

2

L2(◻m)
1{◻m∈P∗}

⩽ d( max
1⩽j⩽d,x∈◻m

φ(λ)
ej (x))

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽Y2

1

d

∑
j=1

∑
x∈◻m

((ΥDej v̄)(x))
2

⩽ dY2
1 ∥Dv̄∥2

L2(◻m) .

(3.107)

For ∥F∥L2(◻m) 1{◻m∈P∗}, we use the formula eq. (3.114) that

∥F∥2
L2(◻m) ⩽ C(d) (eq. (3.108)-a + eq. (3.108)-b + eq. (3.108)-c + eq. (3.108)-d + eq. (3.108)-e) ,
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where the five terms are respectively

eq. (3.108)-a =
d

∑
i=1

∥(1 −Υ) (aC − ā) (Dei v̄)∥
2
L2(◻m) ,

eq. (3.108)-b =
d

∑
i,k=1

∥φ(λ)
ek

(⋅ + ek)aCDei (ΥDek v̄)∥
2

L2(◻m)
,

eq. (3.108)-c =
d

∑
i,j,k=1

∥S(λ)
ek,ij

(⋅ − ej)D∗ej (ΥDek v̄)∥
2

L2(◻m)
,

eq. (3.108)-d =
d

∑
i,j,k=1

∥D∗ej ([Sek,ij] ⋆Φλ−1) (ΥDek v̄)∥
2

L2(◻m)
,

eq. (3.108)-e =
d

∑
i,k=1

∥aCDei ([φek]
η
P ⋆Φλ−1) (ΥDek v̄)∥

2
L2(◻m) .

(3.108)

We treat them term by term. For eq. (3.108)-a, noticing that (1 −Υ) ⩽ 1{dist(⋅,∂)⩽2`(λ)}, we
apply the trace formula eq. (3.33)

eq. (3.108)-a =
d

∑
i=1

∥(1 −Υ) (aC − ā) (Dei v̄)∥
2
L2(◻m)

⩽ 2
d

∑
i=1

∥(Dei v̄)1{dist(⋅,∂)⩽2`(λ)}∥
2
L2(◻m)

⩽ C(d)`(λ) (3−m ∥Dv̄∥2
L2(◻m) + ∥Dv̄∥L2(◻m) ∥D

∗Dv̄∥L2(int(◻m))) .

(3.109)

For the term eq. (3.108)-b, we notice that

Dei (ΥDek v̄) = (DeiΥ)(Dek v̄) +Υ(⋅ + ei)(DeiDek v̄),

and the support of DeiΥ is contained in the region of distance between `(λ) and 2`(λ) from
∂◻m i.e.

DeiΥ ⩽ 1
`(λ)

1{⋅∈◻m, 12 `(λ)⩽dist(⋅,∂)⩽3`(λ)},

then we apply these in eq. (3.108)-b and also eq. (3.33) and obtain that
d

∑
i,k=1

∥φ(λ)
ek

(⋅ + ek)aCDei (ΥDek v̄)∥
2

L2(◻m)

⩽
d

∑
i,k=1

XXXXXXXXXXXXXXXXX

φ(λ)
ek

(⋅ + ek)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩽Y1

(DeiΥ)(Dek v̄)

XXXXXXXXXXXXXXXXX

2

L2(◻m)

+
d

∑
i,k=1

XXXXXXXXXXXXXXXXX

φ(λ)
ek

(⋅ + ek)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩽Y1

Υ(⋅ + ei)(DeiDek v̄)

XXXXXXXXXXXXXXXXX

2

L2(◻m)

⩽
d

∑
i,k=1
Y2

1 ∥ 1
`(λ)

1{ 1
2 `(λ)⩽dist(⋅,∂)⩽3`(λ)}(Dek v̄)∥

2

L2(◻m)
+Y2

1

d

∑
i,k=1

∥1{dist(⋅,∂◻m)⩾`(λ)}(DeiDek v̄)∥
2
L2(◻m)

⩽ C(d)Y2
1 ( 1

`(λ)
(3−m ∥Dv̄∥2

L2(◻m) + ∥Dv̄∥L2(◻m) ∥D
∗Dv̄∥L2(int(◻m))) + ∥D∗Dv̄∥2

L2(int(◻m))) .

(3.110)

In the last step, we apply eq. (3.33) and use the interior H2 norm of v̄ since the function Υ is
supported just in the interior with distance `(λ) from ∂◻m. eq. (3.108)-c follows the similar
estimate.
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For the term eq. (3.108)-d, we use the quantity Y2 to estimate it

eq. (3.108)-d =
d

∑
i,j,k=1

XXXXXXXXXXXXXXXXXX

D∗ej ([Sek,ij] ⋆Φλ−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩽Y2

(ΥDek v̄)

XXXXXXXXXXXXXXXXXX

2

L2(◻m)

⩽ C(d)Y2
2 ∥Dv̄∥2

L2(◻m) .

(3.111)

The term eq. (3.108)-e follows the similar estimate.
We combine eq. (3.109),eq. (3.110) and eq. (3.111) together and obtain that

∥F∥L2(◻m) ⩽ C(d) (∥Dv̄∥L2(◻m) (3−
m
2 `

1
2 (λ) + 3−

m
2 `−

1
2 (λ)Y1 +Y2)

∥Dv̄∥
1
2
L2(◻m) ∥D

∗Dv̄∥
1
2
L2(int(◻m)) (`

1
2 (λ) + `−

1
2 (λ)Y1) + ∥D∗Dv̄∥L2(int(◻m))Y1) .

(3.112)

We put the two estimates eq. (3.107) and eq. (3.108) into eq. (3.104) and get the desired
result.

3.4.2 Construction of a vector field

In this part we calculate the vector field F used in the last paragraph. We define at first the
modified flux corrector {S(λ)

ek,ij
}1⩽i,j,k⩽d similar to eq. (3.14) that

S(λ)
ek,ij

∶= Sek,ij − [Sek,ij] ⋆Φλ−1 . (3.113)

Lemma 3.4.1. There exists a vector field F ∶ Zd → Rd such that D∗ ⋅(aCDw − āDv̄) = D∗ ⋅F,
with the formula

Fi = (1 −Υ) (aC − ā) (Dei v̄) +
d

∑
k=1

φ(λ)
ek

(⋅ + ek)aCDei (ΥDek v̄)

−
d

∑
j,k=1

S(λ)
ek,ij

(⋅ − ej)D∗ej (ΥDek v̄) +
d

∑
j,k=1
D∗ej ([Sek,ij] ⋆Φλ−1) (ΥDek v̄)

−
d

∑
k=1

aCDei ([φek]
η
P ⋆Φλ−1) (ΥDek v̄) .

(3.114)

Proof. We write

[aCDw − āDv̄]i (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(aC − ā)Dv̄ +
d

∑
k=1

aC D ((ΥDek v̄)φ
(λ)
ek

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Using eq. (3.26)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(x)

= [(1 −Υ)(aC − ā)Dv̄]i (x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

eq. (3.115)-a

+
d

∑
k=1

φ(λ)
ek

(x + ei)aC (x,x + ei)Dei (ΥDek v̄) (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eq. (3.115)-b

+
d

∑
k=1

[(aCDφ(λ)
ek

+ (aC − ā)Dlek) (ΥDek v̄)]i (x)

(3.115)
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The terms eq. (3.115)-a and eq. (3.115)-b appear in the eq. (3.114) as the first and second
term on the right hand side, so it suffices to treat the remaining terms in eq. (3.115), where
we apply the definition of Sek eq. (3.77)

d

∑
k=1

[(aCDφ(λ)
ek

+ (aC − ā)Dlek) (ΥDek v̄)]i (x)

=
d

∑
k=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(aC (Dφek +Dlek) − āDlek)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=D∗⋅Sek

(ΥDek v̄)

⎤⎥⎥⎥⎥⎥⎥⎥⎦i

(x) −
d

∑
k=1

[aC (D [φek]
η
P ⋆Φλ−1) (ΥDek v̄)]i (x)

=
d

∑
k=1

[D∗ ⋅ S(λ)
ek

(ΥDek v̄)]i (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eq. (3.116)-a

+
d

∑
k=1

[D∗ ⋅ ([Sek] ⋆Φλ−1) (ΥDek v̄)]i (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eq. (3.116)-b

−
d

∑
k=1

[aC (D [φek]
η
P ⋆Φλ−1) (ΥDek v̄)]i (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eq. (3.116)-c

.

(3.116)

The terms eq. (3.116)-b and eq. (3.116)-c also appear in the definition of Fi eq. (3.114) as
the forth and fifth term. We study the term eq. (3.116)-a and use the anti-symmetry that
Sek,ij = −Sek,ji

D∗ ⋅ eq. (3.116)-a =
d

∑
i,k=1
D∗ei [D

∗ ⋅ S(λ)
ek

(ΥDek v̄)]i (x)

=
d

∑
i,j,k=1

D∗ei ((D
∗
ejS

(λ)
ek,ij

) (ΥDek v̄)) (x)

=
d

∑
i,j,k=1

D∗eiD
∗
ej (S(λ)

ek,ij
(ΥDek v̄)) (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by anti-symmetry

−
d

∑
i,j,k=1

D∗ei (S(λ)
ek,ij

(⋅ − ej)D∗ej (ΥDek v̄)) (x)

=
d

∑
i=1
D∗ei

⎛
⎝
−

d

∑
j,k=1

(S(λ)
ek,ij

(⋅ − ej)D∗ej (ΥDek v̄))
⎞
⎠
(x).

This gives the formula in eq. (3.114).

3.5 Analysis of the algorithm

We are now ready to complete the proof of Theorem 3.1.1, and we start by analyzing our
algorithm with standard H1 and H2 estimates for ū in eq. (3.5).

Lemma 3.5.1 (H1 and H2 estimates). In the iteration eq. (3.5) we have the following
estimates

∥∇ū∥L2(◻m) ⩽ ∣ā∣−1(1 +Λ) ∥∇(u − u0)1{a≠0}∥L2(C∗(◻m)) , (3.117)

∥D∗Dū∥L2(int(◻m)) ⩽ C(d,Λ)∣ā∣−1λ ∥∇(u − u0)1{a≠0}∥L2(C∗(◻m)) , (3.118)

∥∇(û − u)1{a≠0}∥L2(C∗(◻m)) ⩽ 2∣ā∣−1(1 +Λ)2 ∥∇(u − u0)1{a≠0}∥L2(C∗(◻m)) . (3.119)
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Proof. We start by testing eq. (3.9) and eq. (3.10) with the function u1, and we also use the
trick that λC ,m and aC ,m restrict the problem on (C∗(◻m),Ea

d (C∗(◻m)))

⟨λC ,mu1, λC ,mu1⟩◻m + ⟨∇u1,aC ,m∇u1⟩◻m = ⟨∇u1,aC ,m(u − u0)⟩◻m ,

Ô⇒ λ2 ∥u1∥2
L2(C∗(◻m)) +Λ−1 ∥∇u11{a≠0}∥

2
L2(C∗(◻m))

⩽ ∥∇(u − u0)1{a≠0}∥L2(C∗(◻m)) ∥∇u11{a≠0}∥L2(C∗(◻m)) .

We obtain that

λ ∥u1∥L2(C∗(◻m)) ⩽ Λ ∥∇(u − u0)1{a≠0}∥L2(C∗(◻m)) , (3.120)

∥∇u11{a≠0}∥L2(C∗(◻m)) ⩽ Λ ∥∇(u − u0)1{a≠0}∥L2(C∗(◻m)) . (3.121)

Combining the first equation and the second equation in eq. (3.9) and eq. (3.10), we obtain
that

−∇ ⋅ ā∇ū = −∇ ⋅ aC ,m∇(u − u0 − u1) in int(◻m),

then we test it by the function ū and use Cauchy-Schwarz inequality to obtain that

⟨∇ū, ā∇ū⟩◻m = ⟨∇ū,aC ,m∇(u − u0 − u1)⟩L2(◻m)

⩽ ∥∇ū∥L2(◻m) ∥∇(u − u0 − u1)1{a≠0}∥C∗(◻m)

Ô⇒ ∥∇ū∥L2(◻m) ⩽ ∣ā∣−1 ∥∇(u − u0 − u1)1{a≠0}∥C∗(◻m) .

Using eq. (3.121) we obtain that

∥∇ū∥L2(◻m) ⩽ ∣ā∣−1 (∥∇(u − u0 − u1)1{a≠0}∥C∗(◻m))

⩽ ∣ā∣−1 (∥∇(u − u0)1{a≠0}∥C∗(◻m) + ∥∇u11{a≠0}∥C∗(◻m))

⩽ ∣ā∣−1(1 +Λ) ∥∇(u − u0)1{a≠0}∥C∗(◻m) .

This proves the formula eq. (3.117).
Concerning eq. (3.118), we use the estimation ofH2 regularity eq. (3.32) for −∇ ⋅ ā∇ū = λ2

C ,mu1
since ā is constant and obtain that

d

∑
i,j=1

∥D∗eiDej ū∥
2
L2(int(◻m)) ⩽ C(d)∣ā∣−2 ∥λ2

C ,mu1∥
2
L2(◻m) .

We put the result from eq. (3.120) and eq. (3.117) and obtain that

∥D∗Dū∥L2(int(◻m)) ⩽ C(d,Λ)∣ā∣−1λ ∥∇(u − u0)1{a≠0}∥L2(C∗(◻m)) .

To prove eq. (3.119), we put eq. (3.10), the first equation and the second equation of
eq. (3.9) into the right hand side of the third equation and obtain that

(λ2
C ,m −∇ ⋅ aC ,m∇)u2 = λ2

C ,mū
2 −∇ ⋅ aC ,m∇(u − u0 − u1) in int(◻m).

We subtract (λ2
C ,m −∇ ⋅ aC ,m∇)ū on the two sides to obtain

(λ2
C ,m −∇ ⋅ aC ,m∇)(u2 − ū) = −∇ ⋅ aC ,m∇(u − u0 − u1 − ū) in int(◻m),



138 CHAPTER 3. AHKM ALGORITHM ON PERCOLATION

and then we test it by (u2 − ū) to obtain that

∥∇(u2 − ū)1{a≠0}∥L2(C∗(◻m)) ⩽ Λ ∥∇(u − u0 − u1 − ū)1{a≠0}∥L2(C∗(◻m)) . (3.122)

Therefore, combining eq. (3.122), eq. (3.120) and eq. (3.117) we can obtain a trivial bound
for our algorithm

∥∇(û − u)1{a≠0}∥L2(C∗(◻m)) ⩽ ∥∇(u − u0 − u1 − ū)1{a≠0}∥L2(C∗(◻m)) + ∥∇(u2 − ū)1{a≠0}∥L2(C∗(◻m))

⩽ 2∣ā∣−1(1 +Λ)2 ∥∇(u − u0)1{a≠0}∥L2(C∗(◻m)) .

The trivial bound eq. (3.119) is not optimal. In the typical case ◻m ∈ P∗ in large scale,
we can use Theorem 3.1.2 to help us get a better bound, and this help use conclude the
performance of our algorithm.

Proof of Theorem 3.1.1. We analyze the algorithm in two cases: ◻m ∈ P∗ and ◻m ∉ P∗. In
the case ◻m ∉ P∗, we use eq. (3.119) that

∥∇(û − u)1{a≠0}∥L2(C∗(◻m)) 1{◻m∉P∗} ⩽ 2∣ā∣−1(1 +Λ)2 ∥∇(u − u0)1{a≠0}∥L2(C∗(◻m)) 1{◻m∉P∗}.

In the case ◻m ∈ P∗, we combine the first equation and the second equation of eq. (3.9)
and eq. (3.10), together with the third term they give

−∇ ⋅ aC ,m∇(u − u0 − u1) = −∇ ⋅ ā∇ū in int(◻m),
(λ2

C ,m −∇ ⋅ aC ,m∇)u2 = (λ2
C ,m −∇ ⋅ ā∇)ū in int(◻m).

This gives us two equations of two-scale expansion. As in eq. (3.12), we define w ∶= ū +∑dk=1(ΥDek ū)φ
(λ)
ek

and apply Theorem 3.1.2

∥∇(û − u)1{a≠0}∥L2(C∗(◻m)) 1{◻m∈P∗}

⩽ (∥∇(w − (u − u0 − u1))1{a≠0}∥L2(C∗(◻m)) + ∥∇(u2 −w)1{a≠0}∥L2(C∗(◻m)))1{◻m∈P∗}.

(3.123)

The last equation gives a bound of type proposition 3.4.1. Together with the Lemma 3.5.1
and the estimate for case ◻m ∉ P∗, we obtain that

∥∇(û − u)1{a≠0}∥L2(C∗(◻m)) ⩽ Z ∥∇(u0 − u)1{a≠0}∥L2(C∗(◻m))

where Z is given by

Z = C(d,Λ) (3−
m
2 `−

1
2 (λ)Y1X d +Y2X d + λ

1
2 `−

1
2 (λ)Y1X d + λY1X d + 1{◻m∉P∗}) . (3.124)

This gives the exact expression of the quantity Z. To conclude, we have to quantify Z and we
use eq. (3.103), eq. (3.106), eq. (3.37) and eq. (3.23) that there exist two positive constants
s(d,p,Λ) and C(d,p,Λ, s) such that

Z ⩽ Os (C(d,p,Λ, s) ((3−
m
2 + λ + λ

d
2 + λ

1
2 )m

1
s
+d`

1
2 (λ) + λm

1
s `(λ) + 3−m)) . (3.125)

Observing that 3−m < λ, then the dominating order writes Z ⩽ Os (Cλ
1
2 `

1
2 (λ)m

1
s
+d) and this

concludes the proof of Theorem 3.1.1.
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3.6 Numerical experiments

We report on numerical experiments corresponding to our algorithm. In a cube ◻ of size L,
we try to solve a localized corrector problem, that is, we look for the function φL,p ∈ C0(◻)
such that

−∇ ⋅ a∇(φL,p + lp) = 0 in C∗(◻). (3.126)
The quantity φL,p is very similar to the corrector φp and has sublinear growth. This is a good
example for illustrating the usefulness of our algorithm, since the homogenized approximation
to this function is simply the null function, which is not very informative.

In our example, we take d = 2, p = e1 and L = 243. We implement the algorithm to get a
series of approximated solutions ûn where û0 = 0. Moreover, we use the residual error to see
the convergence

res(ûn) ∶=
1
∣◻∣

∥−∇ ⋅ a∇(ûn + lp)∥2
L2(C∗(◻)) =

1
∣◻∣

∥−∇ ⋅ a∇(ûn − φL,p)∥2
L2(C∗(◻)) .

See the Figure 3.5 for a simulation of the corrector φL,p with high resolution, and Figure 3.6
for its residual errors.

Figure 3.5: A simulation for the corrector on the maximal cluster in a cube 243 × 243.

3.A Proof of some discrete functional inequality

Lemma 3.A.1 (H2 interior estimate for elliptic equation). Given two functions v, f ∈
C0(◻m) satisfying the discrete elliptic equation

−∆v = f, in int(◻m), (3.127)

we have an interior estimate

∥D∗Dv∥2
L2(int(◻m)) ∶=

d

∑
i,j=1

∥D∗eiDejv∥
2
L2(int(◻m)) ⩽ d ∥f∥

2
L2(int(◻m)) . (3.128)
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round errors
1 0.0282597982969
2 0.0126490361046
3 0.00707540548365
4 0.00435201077274
5 0.00282913420116
6 0.00190945842802
7 0.00132483912845
8 0.000939101476657

Figure 3.6: A table of errors res(ûn).

Proof. We extend the elliptic equation to the whole space at first. The function v, f have a
natural null extension on Zd satisfying

D∗ ⋅Dv = f + (D∗ ⋅Dv)1{∂◻m}, in Zd.

To simplify the notation, we denote by f̄ the term on the right hand side. Then, by one step
difference of direction ej , we have

D∗ ⋅D(Dejv(x)) = Dej f̄(x).

We test this equation with a function φ of compact support, then by eq. (3.28) we obtain

⟨Dφ,D(Dejv)⟩Zd = ⟨D∗ejφ, f̄⟩Zd .

Putting φ = (Dejv) in this formula, we obtain that

⟨D(Dejv),D(Dejv)⟩Zd = ⟨D∗ejDejv, f̄⟩Zd
= ⟨D∗ejDejv, f⟩Zd + ⟨D∗ejDejv, (D

∗ ⋅Dv)1{∂◻m}⟩Zd .

We do the sum over the d canonical directions and get

d

∑
i,j=1

⟨DeiDejv,DeiDejv⟩Zd =
d

∑
j=1

⟨D∗ejDejv, f⟩Zd +
d

∑
j=1

⟨D∗ejDejv, (D
∗ ⋅Dv)1{∂◻m}⟩Zd

=
d

∑
j=1

⟨D∗ejDejv, f⟩Zd + ⟨D∗ ⋅Dv, (D∗ ⋅Dv)1{∂◻m}⟩Zd .

Since D∗ejv(x) = −Dejv(x − ej), we have

d

∑
i,j=1

⟨D∗eiDejv,D
∗
eiDejv⟩Zd =

d

∑
j=1

⟨D∗ejDejv, f⟩Zd + ⟨D∗ ⋅Dv, (D∗ ⋅Dv)1{∂◻m}⟩Zd .

There are three observations for this equation.

• supp(D∗eiDejv) ⊆ ◻m.
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• For any x ∈ ∂◻m,

(D∗ ⋅Dv)2 =
⎛
⎝

d

∑
j=1
D∗ejDejv(x)

⎞
⎠

2

=
d

∑
j=1

(D∗ejDejv(x))
2
,

since v = 0 on the boundary and only one term of {D∗ejDejv(x)}j=1⋯d
is not null.

• On the boundary ∂◻m, f = 0 since f ∈ C0(◻m).

Combining the three observations, we get

d

∑
i,j=1

⟨D∗eiDejv,D
∗
eiDejv⟩◻m =

d

∑
j=1

⟨D∗ejDejv, f⟩int(◻m)
+

d

∑
j=1

⟨D∗ejDejv,D
∗
ejDejv⟩∂◻m

.

Thus, all the terms in the last sum on the right hand side can be found on the left hand side.
We use Cauchy-Schwarz inequality and Young’s inequality

d

∑
i,j=1

⟨D∗eiDejv,D
∗
eiDejv⟩int(◻m) ⩽

d

∑
j=1

⟨D∗ejDejv, f⟩int(◻m)

⩽
d

∑
j=1

⟨D∗ejDejv,D
∗
ejDejv⟩

1
2

int(◻m)
⟨f, f⟩

1
2
int(◻m)

⩽
d

∑
j=1

(1
2
⟨D∗ejDejv,D

∗
ejDejv⟩int(◻m)

+ 1
2
⟨f, f⟩int(◻m))

Ô⇒
d

∑
i,j=1

⟨D∗eiDejv,D
∗
eiDejv⟩int(◻m) ⩽ d ⟨f, f⟩int(◻m) ,

which concludes the proof.

The same technique to do an integration along the path helps us to get an estimate of
trace.

Lemma 3.A.2 (Trace inequality). For every u ∶ ◻m → R and 0 ⩽ K ⩽ 3m
4 , we have the

following inequality

∥u1{dist(⋅,∂◻m)⩽K}∥
2
L2(◻m) ⩽ C(d)(K + 1) (3−m ∥u∥2

L2(◻m) + ∥u∥L2(◻m) ∥∇u∥L2(◻m)) . (3.129)

Proof. We use the notation Lm,t to define the level set in ◻m with distance t to the boundary

Lm,t ∶= {x ∈ ◻m ∶ dist(x, ∂◻m) = t} .

Then, we observe that Lm,0 = ∂◻m and we have the partition

◻m =
⌊ 3m

2 ⌋

⊔
t=0

Lm,t.

Using the pigeonhole principle, it is easy to prove that there exists a t∗ ∈ [0, ⌊3m
4 ⌋ − 1]

such that
∥u∥2

L2(Lm,t∗) ⩽
4

3m
∥u∥2

L2(◻m) , (3.130)
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and we define t∗ ∶= arg mint∈[0,⌊ 3m
4 ⌋] ∥u∥

2
L2(Lm,t). We call Lm,t∗ the pivot level and it plays the

same role as the null boundary in the proof of Poincaré’s inequality. In the following, we
will apply the trick of integration along the path to prove the eq. (3.33) for one lever Lm,t.
For every x ∈ Lm,t, we denote by r(x, t∗) a root on the pivot level Lm,t∗ , and choose a path
γx,t∗ = {γx,t

∗

k }0⩽k⩽n such that

γx,t
∗

0 = r(x, t∗), γx,t
∗

k ∼ γx,t
∗

k+1 , γx,t
∗

n = x.

Moreover, we use ∣γx,t∗ ∣ to represent the number of steps of the path, for example here
∣γx,t∗ ∣ = n. We apply a discrete Newton-Leibniz formula to get

u2(x) − u2(r(x, t∗)) =
∣γx,t∗ ∣
∑
k=0

(u2(γx,t
∗

k+1 ) − u
2(γx,t

∗

k )) =
∣γx,t∗ ∣
∑
k=0

∇u(γx,t
∗

k , γx,t
∗

k+1 ) (u(γ
x,t∗

k+1 ) + u(γ
x,t∗

k )) .

We put this formula into the norm of ∥u∥L2(Lm,t) , t ∈ [0, ⌊3m
4 ⌋] and and apply Cauchy-Schwarz

inequality to obtain that

∥u∥2
L2(Lm,t) = ∑

x∈Lm,t

⎛
⎜
⎝
u2(r(x, t∗)) +

∣γx,t∗ ∣
∑
k=0

∇u(γx,t
∗

k , γx,t
∗

k+1 ) (u(γ
x,t∗

k+1 ) + u(γ
x,t∗

k ))
⎞
⎟
⎠

⩽ ∑
x∈Lm,t

u2(r(x, t∗))

+ 2
⎛
⎜
⎝
∑

x∈Lm,t

∣γx,t∗ ∣
∑
k=0

(∇u(γx,t
∗

k , γx,t
∗

k+1 ))
2⎞
⎟
⎠

1
2 ⎛
⎜
⎝
∑

x∈Lm,t

∣γx,t∗ ∣
∑
k=0

(u2(γx,t
∗

k+1 ) + u
2(γx,t

∗

k ))
⎞
⎟
⎠

1
2

⩽ ∑
y∈Lm,t∗

u2(y)
⎛
⎝ ∑
x∈Lm,t

1{y=r(x,t∗)}
⎞
⎠

+ 4
⎛
⎝ ∑
{y1,y2}∈Ed(◻m)

(∇u(y1, y2))2 ⎛
⎝ ∑
x∈Lm,t

1{{y1,y2}∈γx,t∗}
⎞
⎠
⎞
⎠

1
2

×
⎛
⎝ ∑
y∈◻m

u2(y)
⎛
⎝ ∑
x∈Lm,t

1{y∈γx,t∗}
⎞
⎠
⎞
⎠

1
2

.

The next step is to decide how to choose the root r(x, t∗) and the path. The main idea is to
make every edge and every vertex as root is passed by {γx,t∗}x∈Lm,t a finite number of times
bounded by a constant C(d). One possible plan is to choose the root r(x, t∗) and the path
γx,t

∗ a discrete path in (Zd,Ed) which is the closest to the vector Ð→Ox, then it is a simple
exercise to see that it gives us a bound C(d). See Figure 3.7 as a visualization. Then we get
that

∥u∥2
L2(Lm,t) ⩽ C(d) (∥u∥2

L2(Lm,t∗) + ∥u∥L2(◻m) ∥∇u∥L2(◻m)) .

Then we put the eq. (3.130) and get

∥u∥2
L2(Lm,t) ⩽ 4C(d) (3−m ∥u∥2

L2(◻m) + ∥u∥L2(◻m) ∥∇u∥L2(◻m)) .

eq. (3.33) is just a result by summing all the levels of distance less than K.
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Figure 3.7: To construct the path γx,t
∗ for every x ∈ Lm,t, one can find at first the pivot

level Lm,t∗ . Then we connect O and x and find one of its closest discrete path in (Zd,Ed)
and denote by γx,t

∗ the segment from Lm,t∗ to x. By this consturction, every edge and
vertex is passed by the paths {γx,t∗}x∈Lm,t at most C(d) times. In this picture, the arrows
in blud indicate the vectors Ox1,Ox2,Ox3 and the segments with arrow in red are the paths
γx1,t∗ , γx2,t∗ , γx3,t∗ .

3.B Small clusters

This part is devoted to studying the small clusters in the percolation. Many of the arguments
presented here have appeared in the previous work [19]. We extract those results from [19]
and expand upon certain points that are useful for our purposes. The motivation to state
these results comes from the technique of partition of good cubes:

Question 3.B.1. In a cube ◻ ∈ T and its enlarged domain clP(◻), besides the maximal
cluster C∗(◻), what is the behavior of the other finite connected clusters ?

Question 3.B.2. When we apply Lemma 3.2.3, since C∗(◻) and ⋃z∈◻C∗(◻P(z)) are not
necessarily equal, how can we describe the difference between the two ?

Question 3.B.3. What is the difference between C∞ ∩◻ and C∗(◻) ?

We start with a first very elementary lemma:

Lemma 3.B.1. For any ◻ ∈ T and z ∈ (C∞ ∩ clP(◻))/C∗(◻), there exists a cluster C ′ such
that z ∈ C ′ and C ′ a←→ ∂ clP(◻).

Proof. For a cube ◻ ∈ T and its enlarged domain clP(◻), there exist three types of clusters:

1. One unique maximal cluster C∗(◻);

2. The isolated clusters which connect neither to C∗(◻) nor to the boundary ∂ clP(◻);

3. The clusters which do not connect to C∗(◻) but connect to the boundary.

Then it is clear the cluster C ′ containing z ∈ (C∞ ∩ clP(◻))/C∗(◻) can only be of the third
type and this proves the lemma.
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We define the third class above as small clusters (see Figure 3.9). For any z ∈ Zd, we
denote by C ′(z) the clusters containing z.

Definition 3.B.1 (Small clusters). For any ◻ ∈ T , we define small clusters in ◻ as the union
of clusters , restricted to clP(◻), different from C∗(◻) but connecting to ∂ clP(◻), and we
denote it by Cs(◻), i.e.

Cs(◻) ∶= ⋃
z∈∂ clP(◻)/C∗(◻)

C ′(z).

Intuitively, these small clusters should be of order size(◻)d−1 when the cube ◻ is large.
This is indeed true, as we prove the following lemma:

Lemma 3.B.2. For any ◻ ∈ T , the set Cs(◻) has the following decomposition

Cs(◻) ⊆ ⋃
z∈∂ clP(◻)

◻P(z), (3.131)

and has the estimate
∣Cs(◻)∣1{◻∈P∗} ⩽ O1(C size(◻)d−1). (3.132)

Proof. We prove at first eq. (3.131). In the case that ◻ ∉ P∗, it is obvious since it has to
enlarge to clP(◻) which is a larger cube, and all the terms on the right hand side of eq. (3.131)
refer to clP(◻).

In the case that ◻ ∈ P∗, we consider one cluster C ′ connecting to x ∈ ∂◻. We suppose
that it is not contained in the union of the elements of P lying on ∂◻, then it has to cross
into the interior. As illustration in Figure 3.8, it has several situations:

Figure 3.8: The image explain why C ′ is contained in the union of partition cubes lying at
the ∂◻. Without loss of generality, we suppose the big blue cube is ◻P(x) and the small one
is its neighbor good cube. The cube in color of green is the part of size 3

4 of the good cube.
The paths in red represent different typical situations that if a finite cluster connects to the
boundary ∂◻ and wants to cross ⋃z∈∂ clP(◻) ◻P(z).

1. The first case is that C ′ cross at least one pair of (d−1)-dimensional opposite face of par-
tition cube, as showed as γ1 or γ2. For the case γ1, we have ∣diam(C ′)∣ > size(◻P(x));
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for the case γ2, we have ∣diam(C ′)∣ > 1
3 size(◻P(x)). Then by the definition of partition

cube, we can find a cube ◻′ of 1
2 size(◻P(x)) to contain parts of γ1 and ◻′ intersects

3
4◻P(x), so by the definition of good cube we have necessarily C ′ a←→ C∗(◻P(x)). Same
discussion can be also applied to the case γ2. This gives a contradiction.

2. The second case is that C ′ does not cross any pair of (d − 1)-dimensional opposite
face of partition cube, but also enter the interior of ◻ by ∂◻P(x) or the boundary of
its neighbor, so ∣diam(C ′)∣ > 1

3 size(◻P(x)). One can always find a cube ◻′ of size
1
3 size(◻P(x)) crossed by C ′. If it is the case in γ3 that ◻′ intersects 3

4◻P(x), then we
apply the definition of good cubes and C ′ a←→ C∗(◻P(x)). Otherwise, in the case γ4,
C ′ must cross a cube ◻′′ of size 1

6 size(◻P(x) in its neighbor and we apply the same
discussion, which also gives a contradiction.

To estimate the upper bound eq. (3.132), we use the decomposition above and calcu-
late the volume of ⋃z∈∂◻◻P(z) by doing a contour integration along ∂◻ of height function
size(◻P(z)) and then applying eq. (3.23),

∣Cs(◻)∣1{◻∈P∗} ⩽ ∣ ⋃
z∈∂◻

◻P(z)∣ ⩽ ∑
z∈∂◻

size(◻P(z)) ⩽ O1(C size(◻)d−1).

Figure 3.9: The black cluster is C∗(◻). The cubes in blue are the good cubes at the boundary,
which contains the small cluster Cs(◻) in color red. Its volume can be controlled by the
integration along ∂◻ of the size of the partition cubes.

Thus, Lemmas 3.B.1 and 3.B.2 answer Question 3.B.1, and the notation of Cs(◻) also
helps us to solve Question 3.B.2:

Lemma 3.B.3. For ◻ ∈ T such that size(◻) > n > 0, we have the estimate

RRRRRRRRRRR
C∗(◻)/

⎛
⎝ ⋃
z∈3nZd∩◻

C∗(z +◻n)
⎞
⎠

RRRRRRRRRRR
1{◻∈P∗} ⩽ O1(C ∣◻∣3−n). (3.133)
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Proof. We decompose this difference in every cube of size 3n
RRRRRRRRRRR
C∗(◻)/

⎛
⎝ ⋃
z∈3nZd∩◻

C∗(z +◻n)
⎞
⎠

RRRRRRRRRRR
1{◻∈P∗}

⩽ ∑
z∈3nZd∩◻

RRRRRRRRRRR
(C∗(◻) ∩ (z +◻n))/

⎛
⎝ ⋃
z∈3nZd∩◻

C∗(z +◻n)
⎞
⎠

RRRRRRRRRRR
1{◻∈P∗}

⩽ ∑
z∈3nZd∩◻

∣(C∗(◻) ∩ (z +◻n))/C∗(z +◻n)∣1{◻∈P∗}

⩽ ∑
z∈3nZd∩◻

∣(C∗(◻) ∩ (z +◻n))/C∗(z +◻n)∣1{z+◻n∈P∗}

+ ∑
z∈3nZd∩◻

∣(C∗(◻) ∩ (z +◻n))/C∗(z +◻n)∣1{z+◻n∉P∗}.

The two terms can be treated separately. For the case z + ◻n ∈ P∗, as we have mentioned,
we have clP(z + ◻n) = z + ◻n and ∣(C∗(◻) ∩ (z +◻n))/C∗(z +◻n)∣ can be counted at the
boundary ∂(z +◻n).

We turn this argument into the estimate using eq. (3.34) and eq. (3.23)

∑
z∈3nZd∩◻

∣(C∗(◻) ∩ (z +◻n))/C∗(z +◻n)∣1{z+◻n∈P∗} ⩽ ∑
z∈3nZd∩◻

∣Cs(z +◻n)∣1{z+◻n∈P∗}

⩽O1(C ∣◻∣3−n).

For another part, we use eq. (3.34) and eq. (3.23) directly that

∑
z∈3nZd∩◻

∣(C∗(◻) ∩ (z +◻n))/C∗(z +◻n)1{z+◻n∉P∗}∣ ⩽ ∑
z∈3nZd∩◻

∣z +◻n∣1{z+◻n∉P∗}

⩽O1(C ∣◻∣3−n).

We combine all these estimates and conclude the result.

Finally, we study Question 3.B.3 on (C∞(◻) ∩◻)/C∗(◻):
Lemma 3.B.4. Under the condition ◻ ∈ P∗, and we use ◻̃ to represent its predecessor, then
we have (C∞ ∩◻) = (C∗(◻̃) ∩◻), and we have the estimate that

∣(C∞ ∩◻)/C∗(◻)∣1{◻∈P∗} ⩽ O1(C ∣◻∣
d−1
d ).

Proof. The lemma says when the cube ◻m is even better than a good cube, C∗(◻̃) ∩ ◻ can
contain all the part of C∞ ∩◻. One direction (C∗(◻̃) ∩◻) ⊆ (C∞ ∩◻) is obvious. We prove
the other direction (C∞ ∩◻) ⊆ (C∗(◻̃)∩◻) by contradiction. We suppose that this direction
is not correct so that there exists z ∈ (C∞ ∩◻) but z ∉ (C∗(◻̃)∩◻). By Lemma 3.B.1, there
exists a cluster C ′ different from C∗(◻̃) and z ∈ C ′ and C ′ connects to ∂◻̃.(◻ ∈ P∗ ⇒ ◻̃ ∈ P∗.)
Since C∗(◻) is part of C∗(◻̃), C ′ cannot connect to C∗(◻). Thus, there exists an open path
γ such that z ∈ γ ⊆ C ′ intersecting ∂◻ and we have ∣γ∣ > 1

3 size(◻̃). This violate the second
term in Proposition 3.2.1 that a large path should belong to part of C∗(◻̃). We suppose that
size(◻) = 3n and then apply Lemma 3.B.3 to obtain that

∣(C∞ ∩◻)/C∗(◻)∣1{◻∈P∗} = ∣(C∗(◻̃) ∩◻)/C∗(◻)∣1{◻∈P∗}

⩽
RRRRRRRRRRR
C∗(◻̃)/

⎛
⎝ ⋃
z∈3nZd∩◻̃

C∗(z +◻n)
⎞
⎠

RRRRRRRRRRR
1{◻∈P∗}

⩽ O1(C ∣◻∣3−n).
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Remark. The same argument can prove even a stronger result that (C∞ ∩ 3
4◻̃) = (C∗(◻̃) ∩ 3

4◻̃).

3.C Characterization of the effective conductance

In the literature, there are several approaches to define the effective conductance ā, and the
object of this section is to give a proof of the equivalence of these definitions in the context
of percolation.

Let us at first recall the definition and some useful propositions in the previous work
[19, Definition 5.1]: we define the energy in the domain U ⊆ Zd with lp(x) ∶= p ⋅ x boundary
condition

ν(U, p) ∶= inf
v∈lp+C0(clP(U))

1
2∣ clP(U)∣

⟨∇v ⋅ a∇v⟩Ea
d
(C∗(U)) , (3.134)

and we denote by v(⋅, U, p) its minimiser. The effective conductance ā is a deterministic
positive scalar defined by

1
2
p ⋅ āp ∶= lim

m→∞
E[ν(◻m, p)], (3.135)

with the rate of convergence [19, Lemma 4.8]: there exists s(d) > 0, α(d,p,Λ) ∈ (0, 1
4] and

C(d, p,Λ) <∞ such that for every ◻ ∈ T

∣1
2
p ⋅ āp − ν(◻, p)∣ ⩽ Os(C ∣p∣2 size(◻)−α). (3.136)

We will also use the following trivial bound several times in the proof

ν(U, p) ⩽ 1
2∣ clP(U)∣

⟨∇lp ⋅ a∇lp⟩Ea
d
(C∗(U)) ⩽ d∣p∣

2. (3.137)

The main theorem in this part is to prove the following characterization.

Theorem 3.C.1 (Characterization of the effective conductance). In the context of homoge-
nization in supercritical percolation, the effective conductance ā is a positive scalar constant
and the following definitions are equivalent:

p ⋅ āp a.s= lim
m→∞

1
∣ clP(◻m)∣

⟨∇v(⋅,◻m, p) ⋅ a∇v(⋅,◻m, p)⟩Ea
d
(C∗(◻m)) . (3.138)

p ⋅ āp a.s= lim
m→∞

1
∣◻m∣

inf
v∈lp+C0(◻m)

⟨∇v ⋅ a∇v⟩Ea
d
(◻m) . (3.139)

p ⋅ āp = E[D(φp + lp) ⋅ aCD(φp + lp)]. (3.140)
āp = E[aCD(φp + lp)]. (3.141)

Before starting the proof, we give some remarks on these definitions. Equation (3.138) is
just a variant of eq. (3.135). Equation (3.139) differs from the first one in that just it does
the minimization but does not enlarge the domain to clP(◻m) nor restricts the problem to
C∗(◻m). Equation (3.140) uses the linear a-harmonic function in the whole space instead of
that in ◻m, so it is stationary. The last one is a little different from the previous three ones,
but we need it in Proposition 3.1.2, thus we add it to the list of equivalent definitions.

Proof. Equation (3.138) is a direct consequence of eq. (3.135) and eq. (3.136), Markov’s
inequality and the lemma of Borel-Cantelli to transform it to an “almost sure” version.
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Equation (3.139) is a variant from the first one, especially when ◻m ∈ P∗ they are very
close. So we do the decomposition

∣ 1
∣◻m∣

inf
v∈lp+C0(◻m)

⟨∇v ⋅ a∇v⟩Ea
d
(◻m) − p ⋅ āp∣

⩽ ∣ 1
∣◻m∣

inf
v∈lp+C0(◻m)

⟨∇v ⋅ a∇v⟩Ea
d
(◻m) − p ⋅ āp∣1{◻m∈P∗}

+ ∣ 1
∣◻m∣

inf
v∈lp+C0(◻m)

⟨∇v ⋅ a∇v⟩Ea
d
(◻m) − p ⋅ āp∣1{◻m∉P∗}

and the second one can be handled easily by a trivial bound by comparing with lp as in
eq. (3.137)

∣ 1
∣◻m∣

inf
v∈lp+C0(◻m)

⟨∇v ⋅ a∇v⟩Ea
d
(◻m) − p ⋅ āp∣1{◻m∉P∗} ⩽ O1(C(d,p,Λ)∣p∣23−m).

By an argument of Borel-Cantelli, we prove this term converges almost surely to 0. Then we
focus on the case ◻m ∈ P∗, In fact, in this case the minimiser on Ea

d (◻m) is the sum of the
one on each clusters. Observing that the one on isolated cluster from ∂◻m can be null since
it has no boundary condition, so we have to deal with the one on C∗(◻m) and the one on
the small clusters Cs(◻m). We apply eq. (3.132), the estimate eq. (3.34) and a trivial bound
eq. (3.137) to get

∣ 1
∣◻m∣

inf
v∈lp+C0(◻m)

⟨∇v ⋅ a∇v⟩Ea
d
(◻m) − p ⋅ āp∣1{◻m∈P∗}

⩽ ∣ 1
∣ clP(◻m)∣

⟨∇v(⋅,◻m, p) ⋅ a∇v(⋅,◻m, p)⟩Ea
d
(C∗(◻m)) − p ⋅ āp∣

+ ∣ 1
∣ clP(◻m)∣

⟨∇v(⋅,◻m, p) ⋅ a∇v(⋅,◻m, p)⟩Ea
d
(C∗(◻m)) − p ⋅ āp∣1{◻m∉P∗}

+ ∣ 1
∣◻m∣

inf
v∈lp+C0(◻m)

⟨∇v ⋅ a∇v⟩Ea
d
(Cs(◻m))∣1{◻m∈P∗}

⩽ ∣ 1
∣ clP(◻m)∣

⟨∇v(⋅,◻m, p) ⋅ a∇v(⋅,◻m, p)⟩Ea
d
(C∗(◻m)) − p ⋅ āp∣

+C(d)∣p∣21{size(◻P(0))>3m} +C(d)∣p∣2
∣Cs(◻m)∣1{◻m∈P∗}

∣◻m∣

⩽ ∣ 1
∣ clP(◻m)∣

⟨∇v(⋅,◻m, p) ⋅ a∇v(⋅,◻m, p)⟩Ea
d
(C∗(◻m)) − p ⋅ āp∣ +O1(C(d,p,Λ)∣p∣23−m).

So its almost sure limit is the same as the first one when m→∞.
By a similar calculation, one can prove a variant of eq. (3.139) that reads

p ⋅ āp a.s= lim
m→∞

1
∣◻m∣

inf
v∈lp+C0(◻m)

⟨∇v ⋅ aC∇v⟩Ea
d
(◻m) , (3.142)

and we recall, see [145, Theorem 9.1], that this definition coincides with eq. (3.140). By a
calculus of variation argument, we have

∀p, q ∈ Rd, q ⋅ āp = E[D(φq + lq) ⋅ aCD(φp + lp)].
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Moreover, observing that 1{a≠0}Dφq + q and aC (Dφp + p) are stationary, and the former is a
the gradient and the latter is divergence free, we can use the Div-Curl and Birkhoff theorems

q ⋅ āp = E[1{a≠0}Dφq + q]E[aC (Dφp + p)] = q ⋅E[aC (Dφp + p)].

This concludes the equivalence with eq. (3.141).
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Chapter 4

Convergence rate of the heat kernel
on the infinite percolation cluster

We study the heat kernel and the Green’s function on the infinite supercritical percolation
cluster in dimension d ⩾ 2 and prove a quantitative homogenization theorem for these
functions with an almost optimal rate of convergence. These results are a quantitative
version of the local central limit theorem proved by Barlow and Hambly in [41]. The proof
relies on a structure of renormalization for the infinite percolation cluster introduced
in [19], Gaussian bounds on the heat kernel established by Barlow in [39] and tools of the
theory of quantitative stochastic homogenization. An important step in the proof is to
establish a C0,1-large-scale regularity theory for caloric functions on the infinite cluster
and is of independent interest.

This chapter corresponds to the article [85], which is joint work with Paul Dario and is
published in Annals of Probability.
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4.1 Introduction

4.1.1 General introduction and main results

In this article, we study the continuous-time random walk on the infinite cluster of the
supercritical Bernoulli bond percolation of the Euclidean lattice Zd, in dimension d ⩾ 2. The
model considered is a specific case of the general random conductance model and can be
described as follows. We let Ed be the set of bonds of Zd, i.e., the set of unordered pairs
of nearest neighbors of Zd. We denote by Ω the set of functions from Ed to the set of
non-negative real numbers [0,∞). A generic element of Ω is denoted by a and called an
environment.

For a given environment a ∈ Ω and a given bond e ∈ Ed, we call the value a(e) the
conductance of the bond e. We fix an ellipticity parameter λ ∈ (0,1] and add some randomness
to the model by assuming that the collection of conductances {a(e)}e∈Ed is an i.i.d. family
of random variables whose law is supported in the set {0}∪ [λ,1]. We define p ∶= P [a(e) ≠ 0]
and assume that

p > pc(d),

where pc(d) is the bond percolation threshold for the lattice Zd. This assumption ensures
that, almost surely, there exists a unique infinite connected component of edges with non-
zero conductances (or cluster) which we denote by C∞ (see [67]). This cluster has a non-zero
density which is given by the probability θ(p) ∶= P [0 ∈ C∞]. The model of continuous-time
random walk considered in this article is the variable speed random walk (or VSRW) and is
defined as follows. Given an environment a ∈ Ω and a starting point y ∈ C∞, we endow each
edge e ∈ Ed with a random clock whose law is exponential of parameter a(e) and assume that
they are mutually independent. We then let (Xt)t⩾0 be the random walk which starts from
y, i.e., X0 = y, and, when X(t) = x, the random walker waits at x until one of the clocks at
an adjacent edge to x rings, and moves across the edge to the neighboring point instantly.
We then restart the clocks. This construction gives rise to a continuous-time Markov process
on the infinite cluster C∞ whose generator is the elliptic operator ∇ ⋅ a∇ defined by, for each
function u ∶ C∞ → R and each point x ∈ C∞,

∇ ⋅ a∇u(x) ∶= ∑
z∼x

a({x, z}) (u(z) − u(x)) . (4.1)

We denote the transition density of the random walk by

p (t, x, y) = pa (t, x, y) ∶= Pa
y (Xt = x) ,

and often omit the dependence in the environment a in the notation. The transition density
can be equivalently defined as the solution of the parabolic equation

{ ∂tp(⋅, ⋅, y) −∇ ⋅ a∇p(⋅, ⋅, y) = 0 in (0,∞) ×C∞,
p(0, ⋅, y) = δy in C∞.

(4.2)

Due to this characterization, we often refer to the transition density p as the heat kernel or
the parabolic Green’s function.
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There are other related models of random walk on supercritical percolation clusters which
have been studied in the literature, two of the most common ones are:

(i) The constant speed random walk (or CSRW), the random walker starts from a point
y ∈ C∞. When X(t) = x, it waits for an exponential time of parameter 1 and then
jumps to a neighboring point z according to the transition probability

P (x, z) = a ({x, z})
∑w∼x a ({x,w})

. (4.3)

This construction also gives rise to a continuous-time Markov process whose generator
is given by, for each function u ∶ C∞ → R and each point y ∈ C∞,

1
∑z∼x a ({x, z}) ∑z∼x

a({x, z}) (u(z) − u(x)) .

(ii) The simple random walk (or SRW), the random walk (Xn)n∈N is indexed on the integers,
it starts from a point y ∈ C∞, when Xn = x, the value of Xn+1 is chosen randomly among
all the neighbors of x following the transition probability (4.3).

These processes have similar, although not identical, properties and have been the subject
of interest in the literature. In the case of the percolation cluster, i.e., when the environment
a is only allowed to take the values 0 or 1, an annealed invariance principle was proved
in [89] by De Masi, Ferrari, Goldstein and Wick. In [211], Sidoravicius and Sznitman proved
a quenched invariance principle for the simple random walk in dimension d ⩾ 4. This result
was extended to every dimension d ⩾ 2 by Berger and Biskup in [49] (for the SRW) and by
Mathieu and Piatnitski in [180] (for the CSRW).

For the VSRW, a similar quenched invariance principle holds: there exists a deterministic
diffusivity constant σ̄ > 0 such that, for almost every environment, the following convergence
holds in the Skorokhod topology

εX ⋅

ε2

(law)
Ð→
ε→0

σ̄B⋅, (4.4)

where B⋅ is a standard Brownian motion. From a homogenization perspective, the diffusivity
σ̄2 of the limiting Brownian motion is related to the homogenized coefficient ā associated to
the elliptic and parabolic problems on the percolation cluster by the identity ā = 1

2θ(p)σ̄
2

(see the formula (4.182) of Appendix 4.B).
The properties of the heat kernel p on the infinite cluster have been investigated in the

literature. In [181], Mathieu and Remy proved that, almost surely, the heat kernel decays as
fast as t−d/2. These bounds were extended in [39] by Barlow who established Gaussian lower
and upper bounds for this function; we will recall his precise result in Theorem 4.3.1 below.

In the article [41], Barlow and Hambly proved a parabolic Harnack inequality, a local
central limit theorem for the CSRW, and bounds on the elliptic Green’s function on the
infinite cluster. Their main result can be adapted to the case of the VSRW, and reads as
follows: if we define, for each t ⩾ 0 and x ∈ Rd,

p̄(t, x) ∶= 1
(2πσ̄2t)d/2

exp(− ∣x∣2

2 σ̄2t
) , (4.5)

the heat kernel with diffusivity σ̄, then, for each time T > 0, the following convergence holds,
P-almost surely on the event {0 ∈ C∞},

lim
n→∞

∣nd/2p(nt, gωn(x),0) − θ(p)−1p̄(t, x)∣ = 0, (4.6)
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uniformly in the spatial variable x ∈ Rd and in the time variable t ⩾ T , where the notation
gωn(x) means the closest point to

√
nx in the infinite cluster under the environment ω.

The main result of this article is a quantitative version of the local central limit theorem
for the VSRW and is stated below.

Theorem 4.1.1. For each exponent δ > 0, there exist a positive constant C <∞ and an ex-
ponent s > 0, depending only on the parameters d, λ,p and δ, such that for every y ∈ Zd, there
exists a non-negative random time Tpar,δ(y) satisfying the stochastic integrability estimate

∀T ⩾ 0, P (Tpar,δ(y) ⩾ T ) ⩽ C exp(−T
s

C
) ,

such that, on the event {y ∈ C∞}, for every x ∈ C∞ and every t ⩾ max (Tpar,δ(y), ∣x − y∣),

∣p(t, x, y) − θ(p)−1p̄(t, x − y)∣ ⩽ Ct−
d
2−(

1
2−δ) exp(− ∣x − y∣2

Ct
) . (4.7)

Remark. The heat kernel p does not exactly converge to the heat kernel p̄ and there is an
additional normalization constant θ(p)−1 in (4.7). A heuristic reason explaining why such
a term is necessary is the following: since p(t, ⋅, y) is a probability measure on the infinite
cluster, one has

∑
x∈C∞

p (t, x, y) = 1.

One also has, by definition of the heat kernel p̄,

∫
Rd
p̄(t, x − y)dx = 1.

Since the infinite cluster has density θ(p), we expect that

∑
x∈C∞

p̄(t, x − y) ≃ θ(p)∫
Rd
p̄(t, x − y)dx = θ(p),

and we refer to Proposition 4.A.3 for a precise statement. As a consequence, we cannot
expect the maps p and p̄ to be close since they have different mass on the infinite cluster;
adding the normalization term θ(p)−1 ensures that the mass of θ(p)−1p̄ on the infinite cluster
is approximately equal to 1.

As an application of this result, we deduce a quantitative homogenization theorem for
the elliptic Green’s function on the infinite cluster. In dimension d ⩾ 3, given an environment
a ∈ Ω and a point y ∈ C∞, we define the Green’s function g(⋅, y) as the solution of the equation

−∇ ⋅ a∇g(⋅, y) = δy in C∞ such that g(x, y) Ð→
x→∞

0.

This function exists, is unique almost surely and is related to the transition probability p
through the identity

g(x, y) = ∫
∞

0
p(t, x, y)dt. (4.8)

In dimension 2, the situation is different since the Green’s function is not bounded at infinity,
and we define g (⋅, y) as the unique function which satisfies

−∇ ⋅ a∇g(⋅, y) = δy in C∞,
1
∣x∣
g(x, y) Ð→

x→∞
0 and g(y, y) = 0.
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This function is related to the transition probability p through the identity

g(x, y) = ∫
∞

0
(p(t, x, y) − p(t, y, y)) dt.

In the statement below, we denote by ḡ the homogenized Green’s function defined by the
formula, for each point x ∈ Rd ∖ {0},

ḡ(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

− 1
πσ̄2θ(p) ln ∣x∣ if d = 2,
Γ(d/2−1)

(2πd/2σ̄2θ(p))
1

∣x∣d−2 if d ⩾ 3, (4.9)

where the symbol Γ denotes the standard Gamma function. Theorem 4.1.2 describes the
asymptotic behavior of the Green’s function g.

Theorem 4.1.2. For each exponent δ > 0, there exist a positive constant C < ∞ and an
exponent s > 0, depending only on the parameters d, λ,p and δ, such that for every y ∈ Zd,
there exists a non-negative random variableMell,δ(y) satisfying

∀R ⩾ 0, P (Mell,δ(y) ⩾ R) ⩽ C exp(−R
s

C
) ,

such that, on the event {y ∈ C∞}:

1. In dimension d ⩾ 3, for every point x ∈ C∞ satisfying ∣x − y∣ ⩾Mell,δ(y),

∣g(x, y) − ḡ(x − y)∣ ⩽ 1
∣x − y∣1−δ

C

∣x − y∣d−2 . (4.10)

2. In dimension 2, the limit

K(y) ∶= lim
x→∞

(g(x, y) − ḡ(x − y)) ,

exists, is finite almost surely and satisfies the stochastic integrability estimate

∀R ⩾ 0, P (∣K(y)∣ ⩾ R) ⩽ C exp(−R
s

C
) .

Moreover, for every point x ∈ C∞ satisfying ∣x − y∣ ⩾Mell,δ(y),

∣g(x, y) − ḡ(x − y) −K(y)∣ ⩽ C

∣x − y∣1−δ
. (4.11)

Remark. In dimension 2, the situation is specific due to the unbounded behavior of the
Green’s function, and the theorem identifies the first-order term. The second term in the
asymptotic development is of constant order and is random: with the normalization chosen
for the Green’s function, the constant K depends on the geometry of the infinite cluster and
cannot be deterministic. We nevertheless expect it not to be too large and prove that it
satisfies a stretched exponential stochastic integrability estimate.
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Figure 4.1: A simulation to illustrate the convergence of the parabolic Green’s function for
the VSRW on the infinite cluster with p = 0.6. We use different colors to represent the level
sets of the map t d2 p(t, ⋅, y) in the first two rows. The figures in first row are drawn for the
short times t = 100,200,300,400,500 in a cube of size 64 × 64 and the level sets of the heat
kernel are perturbed by the geometry of the infinite cluster. In the second row, the figures
are drawn for the long times t = 500,1000,2000,3000,4000 and in a cube of size 256 × 256;
in this case, homogenization happens and the geometry of the level sets of the heat kernel
is similar to the one of a Gaussian heat kernel. In the third row, we simulate the function
t
d
2 ∣p(t, ⋅, y) − θ(p)−1p̄(t, ⋅ − y)∣1{{x∈C∞}} associated to the figures in the second line and we
observe that the errors decay to 0 as the time tends to infinity.
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We complete this section by mentioning a potential application of these theorems. The-
orem 4.1.1 shows that the law of the VSRW on the infinite percolation cluster converges
quantitatively to the one of the Brownian motion (σ̄Bt)t⩾0. To go one step further in the
analysis, one can try to construct a coupling between the random walk (Xt)t⩾0 and the Brow-
nian motion (σ̄Bt)t⩾0 such that their trajectories are close, i.e., such that sup0⩽s⩽t ∣Xs − σ̄Bs∣
is small. This question is known as the embedding problem: a good error should be at least
of order o(

√
t). In the case of the simple random walk on Zd, the optimal result is given

by the Komlós-Major-Tusnády Approximation (see [155, 156]) and gives an error of order
O(log t). Adapting this result to the setting considered here requires to take into account the
degenerate geometry of the percolation cluster; we believe that Theorem 4.1.1 can be useful
in this regard.

4.1.2 Strategy of the proof

On the supercritical percolation cluster, a qualitative version of Theorem 4.1.1 is established
by Barlow and Hambly in [41], where the strategy implemented is to first prove a parabolic
Harnack inequality for the heat equation. From the Harnack inequality, one derives a C0,α-
Hölder regularity estimate (for some small exponent α > 0) on the heat kernel. It is then
possible to combine this additional regularity with the quenched invariance principle, estab-
lished on the percolation cluster in [211, 181, 49], to obtain the local central limit theorem.

In the present article, the strategy adopted is different and follows ideas from the theory
of stochastic homogenization, more specifically the ones of [25, Chapter 8]. A first crucial
ingredient in the proof is the first-order corrector, which can be characterized as follows:
given a slope p ∈ Rd, the corrector φp is defined as the unique function (up to a constant)
which is a solution of the elliptic equation

−∇ ⋅ a (p +∇φp) = 0 in C∞,

and which has sublinear oscillation, i.e.,

1
r

osc
x∈C∞∩Br

φp ∶=
1
r
( sup
x∈C∞∩Br

φp − inf
x∈C∞∩Br

φp) Ð→
r→∞

0.

The corrector is defined and some of its important properties are presented in Section 4.2.3.
We note that the use of the corrector to study random walk on supercritical percolation
cluster is not new: it is a key ingredient in the proofs of the quenched invariance principle
(see [211, 181, 49]). Once equipped with this function, the analysis relies on a classical
strategy in stochastic homogenization: the two-scale expansion. The general approach relies
on the definition of the function

h(t, x, y) ∶= θ(p)−1 (p̄ (t, x − y) +
d

∑
k=1

∂kp̄(t, x − y)φek(x)) , (4.12)

where (ek)k={1,⋯,d} denotes the canonical basis of Rd and p̄ is the continuous heat kernel
defined in (4.5). The strategy is then to compute the value of

∂th −∇ ⋅ a∇h, (4.13)

by using the explicit formula on h stated in (4.12) and to prove that it is quantitatively small
in the correct functional space (precisely, the parabolic H−1 space introduced in (4.33)).
Obtaining this result requires two types of quantitative information on the corrector:
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• One needs to have quantitative sublinearity of the corrector, i.e.,

1
rα

osc
x∈C∞∩Br

φp Ð→
r→∞

0, (4.14)

for every exponent α > 0.

• One needs to have a quantitative control on the flux of the corrector in the weak H−1

norm,
1
rα

∥a (p +∇φp) −
1
2
σ̄2p∥

H−1(C∞∩Br)
Ð→
r→∞

0, (4.15)

for every exponent α > 0, where σ̄2 is the same diffusivity constant as in the defini-
tion (4.5) of the heat kernel p̄.

The sublinearity of the corrector in the setting of the percolation cluster is established qual-
itatively in [211, 181, 49] and quantitatively in [19, 83, 134]. The second property (4.15)
cannot be directly deduced from the results of [19, 83, 134] and Appendix 4.B is devoted to
the proof of this result.

Once one has good quantitative control over the H−1-norm of ∂th −∇ ⋅ a∇h, the proof of
the result follows from the following two arguments:

(i) First, one shows that the function h is (quantitatively) close to the function θ−1(p)p̄.
This is achieved by proving that the second term in the right side of (4.12) is small and
relies on the quantitative sublinearity of the corrector stated in (4.14).

(ii) Second, one needs to show that the function h is (quantitatively) close to the heat
kernel p. To prove this, the strategy is to use that the map p solves the parabolic
equation

∂tp −∇ ⋅ a∇p = 0,

and subtract it from (4.13) to obtain that ∂t(p − h) −∇ ⋅ a∇(p − h) is small in the H−1

norm. We then use the function (p − h) as a test function in the previous equation, to
deduce that (p − h) has to be small in the H1-norm.

This strategy is essentially carried out in Section 4.4.2. Nevertheless, a number of diffi-
culties have to be treated in order to implement it. They are mainly due to three distinct
causes which are listed below.

First, the heat kernel p has an initial condition at time t = 0 which is a Dirac (see the
equation (4.2)). It is rather singular and causes serious troubles in the analysis. To fix this
issue, one replaces the initial condition in (4.2) by a function which is smoother, but which is
still a good approximation of the Dirac function. The argument is sketched in the following
paragraph. We fix a large time t > 0 and want to prove the main estimate (4.7) for this
particular time t. To this end, we replace the initial condition δy by the function p̄(τ, ⋅ − y)
for some time τ ≪ t, and we define

{ ∂tq −∇ ⋅ (a∇q) = 0 in (τ,∞) ×C∞,
q(τ, ⋅, y) = θ(p)−1p̄(τ, ⋅ − y) on C∞.

(4.16)

The strategy is then to make the following compromise: we want to choose the coefficient τ
small enough (in particular, much smaller than t) so that the initial data p̄(τ, ⋅ − y) is close
to the Dirac function δy, the objective being that the function q(t, ⋅, y) is close to p(t, ⋅, y)
(see Lemma 4.4.1); we also want to choose τ large enough so that the initial data p̄(τ, ⋅) is
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smooth enough. Our choice will be τ = t1−κ for some small exponent κ > 0. This approach is
essentially the subject of Section 4.4.1.

The second difficulty is that the two-scale expansion described at the beginning of the
section only yields the result for a small exponent, i.e., we obtain a result of the form

∣p(t, x, y) − θ(p)−1p̄(t, x − y)∣ ⩽ Ct−κt−
d
2 exp(− ∣x − y∣2

Ct
) , (4.17)

for a small exponent κ > 0. This result is much weaker than the near-optimal exponent 1
2 − δ

stated in Theorem 4.1.1. The strategy is thus to improve the value of the exponent by a
bootstrap argument: by redoing the two-scale expansion and by using the estimate (4.17) in
the proof, we obtain an improved estimate of the form

∣p(t, x, y) − θ(p)−1p̄(t, x − y)∣ ⩽ Ct−κ1t−
d
2 exp(− ∣x − y∣2

Ct
) , (4.18)

where κ1 is a new exponent which is strictly larger than the original exponent κ. We can
then redo the proof a second time and use the estimate (4.18) to obtain the inequality with
an exponent κ2 strictly larger than κ1. An iteration of the argument shows that there exists
an increasing sequence κn such that, for each n ∈ N, the following estimate holds

∣p(t, x, y) − θ(p)−1p̄(t, x − y)∣ ⩽ Ct−κnt−
d
2 exp(− ∣x − y∣2

Ct
) . (4.19)

The sequence κn is defined inductively (see the formula (4.149)) and we can prove that it
converges toward the value 1

2 ; this is sufficient to prove the near optimal estimate stated in
Theorem 4.1.1.

The third difficulty is the degenerate structure of the environment. It is treated by
defining a renormalization structure for the infinite cluster which was first introduced in [19]:
building upon standard results in supercritical percolation, we construct a partition of the
lattice Zd into cubes of different random sizes which are well-connected in the sense of Antal,
Penrose and Pisztora (see [17, 200]), using a Calderón-Zygmund type stopping time argument.
The sizes of the cubes of the partition are random variables which measure how close the
geometry of the cluster is from the geometry of the lattice: in the regions where the sizes of
the cubes are small, the cluster is well-behaved and its geometry is similar to the one of the
Euclidean lattice, while in the regions where the sizes of the cubes are large, the geometry
of the cluster is ill-behaved (see Figure 4.3). The probability to have a large cube in the
partition is small and stretched exponential integrability estimates are available for these
random variables (see Proposition 4.2.2 (iii) or [200]).

This partition provides a random scale above which the geometry of the infinite cluster is
similar to the one of the Euclidean lattice and it allows to adapt the tools of functional analysis
needed to perform the two-scale expansion to the percolation cluster. Similar strategies using
renormalization techniques where used to study random walk on the supercritical percolation
cluster and we refer for instance to the work of Barlow in [39], who established a Poincaré
inequality on the percolation cluster, or to the one of Mathieu and Remy in [181].

The general strategy to study the random walk on the infinite cluster is thus to prove that
there exists a random scale above which the geometry of the infinite cluster C∞ is similar to
the geometry of the lattice Zd, and to deduce from it that, above a random time which is
related to the aforementioned random scale, the random walk has a behavior which is similar
to the one of the random walk on Zd. As a consequence, most of the results described in
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this article only hold above a random scale (or random time) above which the infinite cluster
has renormalized. Moreover, we need to appeal to a number of random scales (or random
times) in the proofs, above which some analytical tools are available: the scaleMreg above
which a C0,1-regularity theory is valid (see Theorem 4.1.3), the time TNA above which a
Nash-Aronson estimate for the heat kernel is available (see Theorem 4.3.1) etc. For all these
random scales and times, stretched exponential integrability estimates are valid.

This strategy describes the proof of Theorem 4.1.1. Once this result is established, The-
orem 4.1.2, pertaining to the elliptic Green’s function, can be deduced from it thanks to the
Duhamel principle stated in (4.8). This is the subject of Section 4.5.

We complete this section by describing the content and purposes of Section 4.3. To
perform the analysis described in the previous paragraphs, and in particular to prove that
the function q defined (4.16) is a good approximation of the heat kernel p, one needs to have
some control over the quantities at stake. In particular, it is useful to have a good control
on the heat kernel p and its gradient ∇p. The first one is given by the article of Barlow [39],
which provides Gaussian upper and lower bounds for the heat kernel p (see Theorem 4.3.1).
For the gradient of the heat kernel, we expect to have a behavior similar to the one of the
gradient of the heat kernel on Rd, i.e., a C0,1-regularity estimate of the form

∣∇xp (t, x, y)∣ ⩽ Ct−
d
2−

1
2 exp(− ∣x − y∣2

Ct
) .

Section 4.3 is devoted to proving a large-scale version of this estimate and is independent of
Section 4.4 and Section 4.5. The precise statement established in this section is the following.

Theorem 4.1.3. There exist an exponent s (d,p, λ) > 0, a positive constant C(d,p, λ) <∞
such that for each point x ∈ Zd, there exists a non-negative random variable Mreg(x) satis-
fying the stochastic integrability estimate

∀R ⩾ 0, P (Mreg(x) ⩾ R) ⩽ C exp(−R
s

C
) , (4.20)

such that the following statement is valid: for every radius r ⩾Mreg(x), every point y ∈ C∞
and every time t ⩾ max (4r2, ∣x − y∣), the following estimate holds,

∥∇xp (t, ⋅, y)∥L2(Br(x)∩C∞) ⩽ Ct
− d2−

1
2 exp(− ∣x − y∣2

Ct
) ,

where the notation L2 (Br (x) ∩C∞) denotes the average L2-norm over the set Br (x) ∩ C∞
and is defined in (4.31).

Remark. By using the symmetry of the heat kernel, a similar regularity estimate holds for
the gradient in the second variable: for each point y ∈ Zd, there exists a non-negative random
variable Mreg(y) satisfying the stochastic integrability estimate (4.20) such that for every
radius r ⩾Mreg(y), every point x ∈ C∞ and every time t ⩾ max (4r2, ∣x − y∣),

∥∇yp (t, x, ⋅)∥L2(Br(y)∩C∞) ⩽ Ct
− d2−

1
2 exp(− ∣x − y∣2

Ct
) .

The strategy of the proof of this result relies on tools from homogenization theory, in
particular the two-scale expansion and the large-scale regularity theory. It is described at
the beginning of Section 4.3.
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4.1.3 Related results

Related results about the random conductance model

The random conductance model has been the subject of active research over the recent years,
by various authors and under different assumptions over the law of the environment. In the
case of uniform ellipticity, i.e., when the environment is allowed to take values in [λ,1], a
quenched invariance principle is proved by Osada in [195] (in the continuous setting) and by
Sidoravicius and Sznitman in [211] (in the discrete setting). Gaussian bounds on the heat
kernel follow from [92]. This framework is the one of the theory of stochastic homogenization
and we refer to Section 4.1.3 for further information.

In the setting when the conductances are only bounded from above, a quenched invariance
principle was proved by Mathieu in [179] and by Biskup and Prescott in [55]. In the case when
the conductances are bounded from below, a quenched invariance principle and heat kernel
bounds are proved in [40] by Barlow and Deuschel. In [10], Andres, Barlow, Deuschel and
Hambly established a quenched invariance principle in the general case when the conductances
are allowed to take values in [0,∞).

The i.i.d. assumption on the environment can be relaxed: in [12], Andres, Deuschel
and Slowik proved a quenched invariance principle for the random walk for general ergodic
environment under the moment condition

E [a(e)p] +E [a(e)−q] <∞ for p, q ∈ (1,∞) satisfying 1
p
+ 1
q
< 2
d
. (4.21)

We also refer to the works of Chiarni, Deuschel [77], Deuschel, Nguyen, Slowik [94] and
Bella and Schäffner [44] for additional quenched invariance principles in degenerate ergodic
environment. The case of ergodic, time-dependent, degenerate environment is investigated
by Andres, Chiarini, Deuschel, and Slowik in [11] where they establish a quenched invariance
principle under some moment conditions on the environment. More general models of random
walks on percolation clusters with long range correlation, including random interlacements
and level sets of the Gaussian free field, are studied by Procaccia, Rosenthal and Sapozhnikov
in [203], where a quenched invariance principle is established.

The heat kernel has been studied under various assumptions on the environment: a first
important property that needs to be investigated is the question of the existence of Gaussian
lower and upper bounds. Such estimates are valid in the case of the percolation cluster
presented in this article and were originally proved by Barlow in [39]. This result also holds
when the conductances are bounded from below and we refer to the works of Mourrat [182]
(Theorem 10.1 of the second arxiv version) and of Barlow, Deuschel [40]. It is also known that
it cannot hold in full generality: in [50], Berger, Biskup, Hoffman and Kozma established
that, when the law of the conductances has a fat tail at 0, the heat kernel can behave
anomalistically due to trapping phenomenon (even though a quenched invariance principle
still holds by [10]). We refer to the works of Barlow, Boukhadra [54] and Boukhadra [61, 62]
for additional results in this direction. Gaussian estimates on the heat kernel for more general
graphs were studied by Andres, Deuschel and Slowik in [14] and [15].

The question of Gaussian upper and lower bounds on the heat kernel is related, and
in many situations equivalent, to the existence of a parabolic Harnack inequality (see for
instance Delmotte [92]). On the percolation cluster, the parabolic Harnack inequality is
established in [41]. We refer to the article of Andres, Deuschel, Slowik [13] for a proof of
elliptic and parabolic Harnack inequalities on general graphs with unbounded weights, to the
work of Sapozhnikov [209] for a proof of quenched heat kernel bounds and parabolic Harnack
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inequality for a general class of percolation models with long-range correlations on Zd and
to the articles of Chang [72] and Alves and Sapozhnikov [9] for similar results on loop soup
models.

Results on the elliptic Green’s function usually follow from the ones established on the
parabolic Green’s function, by an application of the formula (4.8) in dimension larger than 3.
In dimension 2 the situation is different and requires separate considerations; in [16], Andres,
Deuschel and Slowik characterize the asymptotics of the Green’s function associated to the
random walk killed upon exiting a ball under general assumptions on the environment.

Finally, we refer to [53] for a general review on the random conductance model.

Related result about stochastic homogenization

The theory of qualitative stochastic homogenization was developed in the 80’s, with the
works of Kozlov [160], Papanicolaou and Varadhan [198] and Yurinskĭi [225] in the uni-
formly elliptic setting. Still in the uniformly elliptic setting, a quantitative theory of stochas-
tic homogenization has been developed in the recent years up to the point that it is now
well-understood thanks to the works of Gloria and Otto in [123, 124, 126, 125] and Gloria,
Neukamm, Otto [121, 122], building upon the ideas of Naddaf and Spencer in [188]. These
results have applications to random walks in random environment, as is explained in [102].
Another approach was initiated by Armstrong and Smart in [31], who extended the tech-
niques of Avellaneda and Lin [33, 35] and the ones of Dal Maso and Modica [80, 81]. These
results were then improved in [23, 24], and we refer to the monograph [25] for a detailed
review of this approach.

The aforementioned works treated the case of uniformly elliptic environments and the
question of the extension of the theory to degenerate environments has drawn some attention
over the past few years. A number of results have been achieved and some of them are closely
related to the works on the random conductance model presented in the previous section.
In [193], Neukamm, Schäffner and Schlömerkemper proved Γ-convergence of the Dirichlet
energy associated to some nonconvex energy functionals with degenerate growth. In [164],
Lamacz, Neukamm and Otto studied a model of Bernoulli bond percolation, which is modified
such that every bond in a fixed direction is declared open. In [108], Fleger, Heida and Slowik
proved homogenization results for a degenerate random conductance model with long range
jumps. In [43], Bella, Fehrman and Otto studied homogenization of degenerate environment
under the moment condition (4.21) and established a first-order Liouville theorem as well as
a large-scale C1,α-regularity estimate for a-harmonic functions. In [117], Giunti, Höfer and
Velázquez studied homogenization for the Poisson equation in a randomly perforated domain.
In [19], Armstrong and the first author implemented the techniques of [25] to the percolation
cluster to obtain quantitative homogenization results as well as a large-scale regularity theory.

4.1.4 Further outlook and conjecture

The results of this article present quantitative rates of convergence for the parabolic and
elliptic Green’s functions on the percolation cluster. We do not expect the result to be
optimal: the quantitative rate of convergence 1

2 − δ and the stochastic integrability s in
Theorem 4.1.1 can be improved and so is the case for Theorem 4.1.2. We expect the following
conjecture to hold.

Conjecture 1. Fix s ∈ (0, 2(d−1)
d ), there exists a positive constant C < ∞ depending on the

parameters d,p, λ and s, such that, for each time t > 0 and each pair of points x, y ∈ Zd such
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that ∣x − y∣ ⩽ t, conditionally on the event {x, y ∈ C∞},

∣p(t, x, y) − θ(p)−1p̄(t, x − y)∣ ⩽
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Os (Ct−
d
2−

1
2 exp (− ∣x−y∣2

Ct )) when d ⩾ 3,
Os (C log

1
2 (1 + t) t− 3

2 exp (− ∣x−y∣2
Ct )) when d = 2,

where the notation Os is used to measure the stochastic integrability and is defined in Sec-
tion 4.1.6. For the elliptic Green’s function, a similar result holds:

1. In dimension d ⩾ 3, for each x, y ∈ Zd, conditionally on the event {x, y ∈ C∞},

∣g(x, y) − ḡ(x − y)∣ ⩽ Os (C ∣x − y∣1−d) .

where the function ḡ is defined in the equation (4.9).

2. In dimension 2, for each y ∈ Zd, conditionally on the event {y ∈ C∞}, the limit

K(y) ∶= lim
x→∞

g(x, y) − ḡ(x − y),

exist, is finite almost surely and satisfies the stochastic integrability estimate

∣K(y)∣ ⩽ Os (C) .

Moreover, for every x ∈ Zd, conditionally on the event {x, y ∈ C∞}, one has

∣g(x, y) − ḡ(x − y) −K(y)∣ ⩽ Os (C log
1
2 (1 + ∣x − y∣) ∣x − y∣−1) .

Remark. This statement cannot be stated with a minimal scale as in Theorems 4.1.1 and 4.1.2.
This is due to the fact that the estimates scale optimally in time or space; the best possible
statements involving a minimal scale are the ones of Theorems 4.1.1 and 4.1.2.

This result can be conjectured from the theory of stochastic homogenization in the uni-
formly elliptic setting (see [25, Theorem 9.11 and Corollary 9.12]). There is one main differ-
ence between the results in the uniformly elliptic setting and in the percolation setting, which
is the stochastic integrability: we expect that the stochastic integrability will be reduced by
a factor (d − 1)/d. This is expected because of a surface order large deviation effect which
can be heuristically explained as follows. In the uniformly elliptic setting and in a given ball
BR, to design a bad environment, i.e., an environment on which no good control on the heat
kernel is valid, it is necessary to have a number of ill-behaved edges of order of the volume
of the ball. In the percolation setting, one can design a bad environment with a number of
ill-behaved edges of order of the surface of the ball: given a ball of size R, it is possible to
disconnect it into two half-balls with cRd−1 closed edges. This should result in a deterioration
of the stochastic integrability by a factor (d − 1)/d.

The conjecture improves Theorems 4.1.1 and 4.1.2 in two distinct directions: the spatial
scaling, where the coefficient 1/2− δ is replaced by 1/2 for the heat kernel and the coefficient
1− δ is replaced by 1 for the elliptic Green’s function, and the stochastic integrability, where
the exponent s can take any value in the interval (0, 2(d−1)

d ). We believe that the two
improvements should follow from different techniques: for the spatial integrability, we think
that it should follow by an adaptation of the techniques developed in [25, Chapter 9]. The
improvement of the stochastic integrability seems to be a much harder problem which requires
separate considerations and should rely on a precise understanding of the geometry of the
percolation clusters.
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We complete this section by mentioning that the results of this article pertain to the
variable speed random walk, but similar results, with similar proofs, should hold for other
related models of random walk on the infinite cluster such as the constant speed random
walk and the simple random walk. This choice is motivated by the fact that the generator
of the VSRW, written in (4.1), is more convenient to work with than the ones of the CSRW
and the SRW, which simplifies the analysis.

4.1.5 Organization of the article

The rest of this article is organized as follows. The remaining section of this introduction is
devoted to the presentation of some useful notations.

In Section 4.2, we record some preliminary results, including some results from the theory
of quantitative stochastic homogenization on the infinite cluster from [19, 83, 134]: the
quantitative sublinearity of the corrector and a quantitative estimate to control the H−1-
norm of the centered flux. In Section 4.3, we recall the Gaussian bounds on the heat kernel
which were established by Barlow in [39] and establish a large-scale C0,1-regularity theory
for the heat kernel.

In Section 4.4, we establish Theorem 4.1.1. The proof is organized in three subsections:
Section 4.4.1 is devoted to the proofs of three regularization steps, which can be seen as
a preparation for the two-scale expansion in Section 4.4.2. The heart of the proof is Sec-
tion 4.4.2, where we perform the two-scale expansion. In Section 4.4.3, we post-process the
result from Section 4.4.2 and deduce the result of Theorem 4.1.1.

In Section 4.5, we use Theorem 4.1.1 to prove the homogenization of the elliptic Green
function, i.e., Theorem 4.1.2.

Appendix 4.A and Appendix 4.B are devoted respectively to two technical estimates:
a concentration inequality for the density of the infinite cluster in a cube and the proof
of the quantitative estimate of the weak H−1-norm of the centered flux which is stated in
Section 4.2.3.

4.1.6 Notation and assumptions

General notations and assumptions

We let Zd be the standard d-dimensional hypercubic lattice and Ed ∶= {{x, y} ∶ x, y ∈ Zd, ∣x − y∣ = 1}
denote the set of bonds. We also denote by Ð→Ed the set of oriented bonds, or edges, of Zd. We
use the notation {x, y} to refer to a bond and (x, y) to refer to an edge.

We denote the canonical basis of Rd by {e1, . . . , ed}. For a vector p ∈ Rd and an integer
i ∈ {1, . . . , d}, we denote by [p]i its ith-component, i.e., p = ([p]1, . . . , [p]d). For x, y ∈ Zd, we
write x ∼ y if x and y are nearest neighbors. We usually denote a generic edge by e. We fix an
ellipticity parameter λ ∈ (0,1] and denote by Ω the set of all functions a ∶ Ed → {0} ∪ [λ,1],
i.e., Ω = ({0} ∪ [λ,1])Ed and we denote by a a generic element of Ω. The Borel σ-algebra on
Ω is denoted by F . For each U ⊆ Zd, we let F(U) ⊆ F denote σ-algebra generated by the
projections a ↦ a({x, y}), for x, y ∈ U with x ∼ y.

We fix an i.i.d. probability measure P on (Ω,F), that is, a measure of the form P = PEd0
where P0 is a measure of probability supported in the set {0}∪ [λ,1] with the property that,
for any fixed bond e,

p ∶= P0 [a(e) ≠ 0] > pc(d),
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where pc(d) is the bond percolation threshold for the lattice Zd. We say that a bond e is
open if a(e) ≠ 0 and closed if a(e) = 0. A connected component of open edges is called a
cluster. Under the assumption p > pc(d), there exists almost surely a unique maximal infinite
cluster, which is denoted by C∞ and we also note θ(p) ∶= P[0 ∈ C∞]. From now on, we always
consider environments a ∈ Ω such that there exists a unique infinite cluster of open edges.
We denote by E the expectation with respect to the measure P.

Notation of Os

For a parameter s > 0, we use the notation Os to measure the stochastic integrability of
random variables. It is defined as follows, given a random variable X, we write

X ⩽ Os(θ) if and only if E [exp((θ−1X)s+)] ⩽ 2, (4.22)

where (θ−1X)+ means max{θ−1X,0}. From the inequality (4.22) and the Markov’s inequality,
one deduces the following estimate for the tail of the random variable X: for all x > 0,
P[X ⩾ θx] ⩽ 2 exp(−xs).

Given a random variable X satisfying the identity X ⩽ Os(θ), one can check that, for
each λ ∈ R+, one has λX ⩽ Os(λθ). Additionally, one can reduce the stochastic integrability
parameter s according to the following statement: for each s′ ∈ (0, s], there exists a constant
0 < Cs′ <∞ such that X ⩽ Os′(Cs′θ).

To estimate the stochastic integrability of a sum of random variables, we use the following
estimate, which can be found in [25, Lemma A.4 of Appendix A]: for each exponent s > 0
there exists a positive constant Cs < ∞ such that for any measure space (E,S,m) and any
family of random variables {X(z)}z∈E , one has

∀z ∈ E,X(z) ⩽ Os(θ(z))Ô⇒ ∫
E
X(z)m(dz) ⩽ Os (Cs∫

E
θ(z)m(dz)) . (4.23)

The previous statement allows to estimate the stochastic integrability of a sum of random
variables: given X1, . . . ,Xn a collection of non-negative random variables and C1, . . . ,Cn a
collection of non-negative constants such that, for any i ∈ {1, . . . , n}, Xi ⩽ Os (Ci) , one has
the estimate

n

∑
i=1
Xi ⩽ Os (Cs

n

∑
i=1
Ci) . (4.24)

The following lemma is useful to construct minimal scales.

Lemma 4.1.1. [19, Lemme 2.2] Fix K ⩾ 1, s > 0 and β > 0 and let {Xn}n∈N be a sequence
of non-negative random variables satisfying the inequality Xn ⩽ Os(K3−nβ) for every n ∈ N.
There exists a positive constant C(s, β,K) <∞ such that the random scale M ∶= sup{3n ∈ N ∶
Xn ⩾ 1} satisfies the stochastic integrability estimate M ⩽ Oβs(C).

Topology, functions and integration

For every subset V ⊆ Zd and every environment a ∈ Ω, we consider two sets of bonds Ed(V )
and Ea

d (V ). The first one is inherited from the set of bonds Ed of Zd, the second one is
inherited from the bonds of non-zero conductance of the environment a. They are defined
by the formulas

Ed(V ) ∶= {{x, y} ∶ x, y ∈ V, x ∼ y} , Ea
d (V ) ∶= {{x, y} ∶ x, y ∈ V, x ∼ y, a({x, y}) ≠ 0} .
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We similarly define the set of edges Ð→Ed(V ) and
Ð→
Ea
d (V ).

The interiors of a set V with respect to Ed(V ) and Ea
d (V ) are defined by the formulas

int(V ) ∶= {x ∈ V ∶ y ∼ x Ô⇒ y ∈ V }, inta(V ) ∶= {x ∈ V ∶ y ∼ x, a({x, y}) ≠ 0 Ô⇒ y ∈ V },

and the boundaries of V are defined by ∂V ∶= V /int(V ) and ∂aV ∶= V /inta(V ). The
cardinality of a subset V ⊆ Zd is denoted by ∣V ∣ and called the volume of V . Given
two sets U,V ⊆ Zd, we define the distance between U and V according to the formula
dist(U,V ) ∶= minx∈U,y∈V ∣x − y∣ and the distance of a point x ∈ Zd to a set V ⊆ Zd by the
notation dist(x,V ) ∶= miny∈V ∣x − y∣.

For a subset V ⊆ Zd, the spaces of functions with zero boundary condition are defined by

C0(V ) ∶= {v ∶ V → R ∶ v = 0 on ∂V } , Ca
0 (V ) ∶= {v ∶ V → R ∶ v = 0 on ∂aV } . (4.25)

Given a subset U ⊆ Zd and a function u ∶ C∞∩U → R (resp. a function F ∶ Ea
d (C∞ ∩U)→ R),

the integration over the set C∞ ∩U (resp. over Ea
d (C∞ ∩U)) is denoted by

∫
C∞∩U

u ∶= ∑
x∈C∞∩U

u(x), resp. ∫
C∞∩U

F ∶= ∑
e∈Ea

d
(C∞∩U)

F (e), (4.26)

which means that we only integrate on the vertices (resp. open bonds) of the infinite cluster
C∞. We extend this notation to the setting of vector-valued functions u ∶ C∞ ∩U → Rn. We
also let (u)V ∶= 1

∣V ∣ ∫V u denote the mean of the function u over the finite subset V ⊆ Zd.

Given a subset V ⊆ Zd, a vector field is a function Ð→F ∶
Ð→
Ed(V ) → R satisfying the anti-

symmetry property
Ð→
F ({x, y}) = −

Ð→
F ({y, x}).

For y ∈ Zd and r > 0, we denote by Br(y) the discrete Euclidean ball of radius r > 0 and
center y; we often write Br in place of Br(0). A cube Q is a subset of Zd of the form

Q ∶= Zd ∩ (z + [−N,N]d) .

We define the center and the size of the cube given in the previous display above to be the
point z and the integer N respectively. The size of the cube Q is denoted by size (Q). Given
an integer n ∈ N, we use the non-standard convention of denoting by nQ the cube

nQ ∶= Zd ∩ (z + [−nN,nN]d) . (4.27)

A triadic cube is a cube of the form

◻m(z) ∶= z + (−3m
2
,
3m
2

)
d

, z ∈ 3mZd, m ∈ N.

We usually write ◻m ∶= ◻m(0). Additionally, we note that size(◻m) = 3m, denote by
Tm ∶= {z +◻m ∶ z ∈ 3mZd} the set of triadic cubes of size 3m and by T the set of all tri-
adic cubes, i.e., T ∶= ∪m∈NTm.
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Discrete analysis and function spaces

In this article, we consider two types of objects: functions defined in the continuous space
Rd and functions defined on the discrete space Zd.

Notations for discrete functions. Given a discrete subset U ⊆ Zd, an environment a such
that there exists an infinite cluster C∞ of open edges, and a function u ∶ C∞ ∩ U → R, we
define its gradient ∇u to be the vector field defined on Ð→Ed by, for each edge e = (x, y) ∈

Ð→
Ed,

∇u(e) ∶= { u(y) − u(x) if x, y ∈ C∞ and a({x, y}) ≠ 0,
0 otherwise. (4.28)

For each x ∈ C∞, we also define the norm of the gradient that ∣∇u∣(x) ∶= ∑y∼x ∣u(y) − u(x)∣.
We frequently abuse notation and write ∣∇u(x)∣ instead of ∣∇u∣(x).

For a vector field Ð→F ∶
Ð→
Ed → R, we define the discrete divergence operator according to the

formula, for each x ∈ Zd,
∇ ⋅
Ð→
F (x) ∶= ∑

y∼x

Ð→
F (x, y).

By the discrete integration by parts, one has, for any discrete set U ⊆ Zd, any functions
v ∈ Ca

0 (C∞ ∩U) and u ∶ C∞ ∩U → R,

∫
C∞∩U

∇v ⋅ a∇u ∶= ∫
C∞∩U

a(e)∇v(e)∇u(e) = ∫
C∞∩U

v(−∇ ⋅ a∇u), (4.29)

where the finite difference elliptic operator −∇ ⋅ a∇ is defined in (4.1).
For p ∈ [1,∞), we define the Lp(C∞ ∩U)-norm and the normalized Lp(C∞ ∩U)-norm by

the formulas

∥u∥Lp(C∞∩U) ∶= (∫
C∞∩U

∣u∣p)
1
p

, ∥u∥Lp(C∞∩U) ∶= ( 1
∣C∞ ∩U ∣ ∫C∞∩U

∣u∣p)
1
p

. (4.30)

We also define the Lp(C∞ ∩ U)-norm and the normalized Lp(C∞ ∩ U)-norm of the gradient
of a function u ∶ C∞ ∩U → R by the formulas

∥∇u∥Lp(C∞∩U) ∶= (∫
C∞∩U

∣∇u∣p)
1
p

, ∥∇u∥Lp(C∞∩U) ∶= ( 1
∣C∞ ∩U ∣ ∫C∞∩U

∣∇u∣p)
1
p

. (4.31)

We define the normalized discrete Sobolev norm W 1,p(C∞ ∩U) by

∥u∥W 1,p(C∞∩U) ∶= ∣C∞ ∩U ∣−
1
d ∥u∥Lp(C∞∩U) + ∥∇u∥Lp(C∞∩U) , (4.32)

and the dual norm W −1,p (C∞ ∩U),

∥u∥W−1,p(C∞∩U) ∶= sup
v∈Ca

0 (C∞∩U),∥v∥
W1,p′

(C∞∩U)
⩽1

1
∣C∞ ∩U ∣ ∫C∞∩U

uv, (4.33)

with 1
p′ +

1
p = 1. We use the notation H1(C∞ ∩ U) ∶= W 1,2(C∞ ∩ U) and H−1(C∞ ∩ U) ∶=

W −1,2(C∞ ∩U).
For a function u ∶ Zd → R and a vector h ∈ Zd, we denote by Th(u) ∶= u(⋅ + h) the

translation and by Dek the finite difference operator defined by, for any function u ∶ Zd → R,

Deku ∶= { Zd → R,
x ↦ Tek(u)(x) − u(x).
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We also define the vector-valued finite difference operator Du ∶= (De1u,De2u,⋯,Dedu). This
definition has two main differences with the gradient on graph defined in (4.28): it is defined
on the vertices of Zd (not on the edges) and it is vector-valued. This second definition of dis-
crete derivative is introduced because it is convenient in the two-scale expansion (see (4.107)).

Given an environment a ∈ Ω, and a function u ∶ C∞ → R, we define the functions aDu
and 1{{a≠0}}Du by, for each x ∈ C∞,

aDu(x) = (a({x,x + e1})De1u(x), . . . ,a({x,x + ed})Dedu(x)) , (4.34)
1{{a≠0}}Du(x) = (1{{a({x,x+e1})≠0}}De1u(x), . . . ,1{{a({x,x+ed})≠0}}Dedu(x)) .

We extend these functions to the entire space Zd by setting, for each point x ∈ Zd ∖C∞,

aDu(x) = 1{{a≠0}}Du(x) = 0.

It is natural to introduce the dual operator D∗eku ∶= T−ek(u)−u and the divergence D∗⋅ defined
by, for any vector-valued function F̃ ∶ Zd → Rd, F̃ = (F̃1, F̃2,⋯F̃d),

D∗ ⋅ F̃ (x) =
d

∑
k=1
D∗ek F̃k(x).

By the discrete integration by parts, one has the equality, for any v ∈ Ca
0 (C∞ ∩U),

∫
C∞∩U

v (D∗ ⋅ aDu) = ∫
C∞∩U

Dv ⋅ aDu. (4.35)

In fact one can check that the identity −∇ ⋅ a∇ = D∗ ⋅ aD holds, which allows to interchange
the two notations.

Moreover, given a vector x = (x1, . . . , xd) ∈ Rd, we denote by ∣x∣ = (∑dj=1 x
2
j)

1
2 its norm.

This allows to extend the definition of the Sobolev norms (4.30), (4.32) and (4.33) to vector-
valued functions, and we note that

c ∥u∥W 1,p(C∞∩U) ⩽ ∣C∞ ∩U ∣−
1
d ∥u∥Lp(C∞∩U) + ∥1{{a≠0}}Du∥Lp(C∞∩U) ⩽ C ∥u∥W 1,p(C∞∩U) ,

for some constants c,C which only depend on the dimension d.

Notations for continuous functions. We use the notations ∂k, ∇, ∆ for the standard
derivative, gradient and Laplacian on Rd, which are only applied to smooth functions. It will
always be clear from context whether we refer to the continuous or discrete derivatives. We
sometime slightly abuse the notation and denote by ∣∇kη∣ the norm of k-th derivatives of the
function η.

Notations for parabolic functions. For r > 0, we define the time interval Ir ∶= (−r2,0] and
Ir(t) ∶= t+ (−r2,0]. We frequently use the parabolic cylinders Ir ×Br and Ir × (C∞ ∩Br) and
define their volumes by

∣(Ir ×Br)∣ = r2 × ∣Br ∣ and ∣(Ir × (C∞ ∩Br))∣ = r2 × ∣C∞ ∩Br ∣.

Given a function u ∶ Ir ×Br → R (resp. v ∶ Ir × (C∞ ∩Br)→ R), we define the integrals

∫
Ir×Br

u ∶= ∫
0

−r2 ∫Br
u(t, x)dxdt and ∫

Ir×(C∞∩Br)
v ∶= ∫

0

−r2 ∫C∞∩Br
v(t, x)dxdt,
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and denote the mean of these functions by the notation

(u)Ir×Br ∶=
1

∣(Ir ×Br)∣ ∫
0

−r2 ∫Br
u(t, x)dxdt,

(v)Ir×(C∞∩Br) ∶=
1

∣(Ir × (C∞ ∩Br))∣ ∫
0

−r2 ∫Br
v(t, x)dxdt.

Given a finite subset V ⊆ Zd or V ⊆ Rd, we denote by ∂⊔(Ir × V ) the parabolic boundary of
the cylinder Ir × V defined by the formula

∂⊔(Ir × V ) ∶= (Ir × ∂V ) ∪ ({−r2} × V ) .

Given a real number p ⩾ 1 and a Lebesgue-measurable function u ∶ Ir ×V → Rd, we define the
norm Lp (Ir × V ) and the normalized norm Lp (Ir × V ) according to the formulas

∥u∥Lp(Ir×V ) ∶= (∫
0

−r2
∥u(t, ⋅)∥p

Lp(V ) dt)
1
p

and ∥u∥Lp(Ir×V ) ∶= (r−2∫
0

−r2
∥u(t, ⋅)∥p

Lp(V ) dt)
1
p

.

These notations are extended to the gradient of a function u ∶ Ir × V → Rd by the formulas

∥∇u∥Lp(Ir×V ) ∶= (∫
0

−r2
∥∇u(t, ⋅)∥p

Lp(V ) dt)
1
p

and ∥∇u∥Lp(Ir×V ) ∶= (r−2∫
0

−r2
∥∇u(t, ⋅)∥p

Lp(V ) dt)
1
p

.

Given a real number q ⩾ 1, we also define the space Lq (Ir;W −1,p(V )) by

Lq (Ir;W −1,p(V )) ∶= {u ∶ Ir × V → Rn ∶ ∫
0

−r2
∥u∥q

W−1,p(V ) dt <∞} ,

and we equip this space with the normalized norm defined by

∥u∥Lq(Ir;W−1,p(V )) ∶= (r−2∫
0

−r2
∥u(t, ⋅)∥W−1,p(V ) dt)

1
q

.

We define the parabolic Sobolev space W 1,p
par(Ir × V ) to be the set of measurable functions

u ∶ Ir × V → R such that the time derivative ∂tu, understood in the sense of distributions,
belongs to the space W −1,p′(Ir × V ) with 1

p +
1
p′ = 1, i.e.,

W 1,p
par(Ir × V ) ∶= {u ∈ Lp (Ir × V ) ∶ ∂tu ∈ Lp

′

(Ir;W −1,p′(V ))} .

We also make use of the notations H1
par (Ir × V ) ∶=W 1,2

par(Ir × V ) for the H1 parabolic space
and L2 (Ir;H−1(V )) ∶= L2 (Ir;W −1,2(V )).

Convention for constants, exponents and minimal scales/times

Throughout this article, the symbols c and C denote positive constants which may vary from
line to line. These constants may depend only on the dimension d, the ellipticity λ and the
probability p. Similarly we use the symbols α, β, γ, δ to denote positive exponents which
depend only on d, λ and p. Usually, we use the letter C for large constants (whose value
is expected to belong to [1,∞)) and c for small constants (whose value is expected to be
in (0,1]). The values of the exponents α, β, γ, δ are always expected to be small. When
the constants and exponents depend on other parameters, we write it explicitly and use the
notation C ∶= C(d,p, t) to mean that the constant C depends on the parameters d,p and t.
We also assume that all the minimal scales and times which appear in this article are larger
than 1.



170 CHAPTER 4. GREEN’S FUNCTION ON PERCOLATION CLUSTER

4.2 Preliminaries

In this section, we collect a few results from the theory of supercritical percolation which are
important tools in the establishment of Theorems 4.1.1 and 4.1.2.

4.2.1 Supercritical percolation

A partition of good cubes

An important step to prove results on the behavior of the random walk on the infinite cluster
C∞ consists in understanding the geometry of this cluster. A general picture to keep in mind
is that the geometry of C∞ is similar, at least on large scales, to the one of the Euclidean
lattice Zd. To give a precise mathematical meaning to this statement, the common strategy
is to implement a renormalization structure for the infinite cluster. In this article, we use a
strategy, which was first introduced by Armstrong and the first author in [19]. It relies on
the following geometric definition and lemma which are due to Penrose and Pisztora [200].

Definition 4.2.1 (Pre-good cube). We say that a discrete cube ◻ ⊆ Zd of size N is pre-good
if:

(i) There exists a cluster of open edges which intersects the 2d faces of the cube ◻. This
cluster is denoted by C∗ (◻);

(ii) The diameter of all the other clusters is smaller than N
10 .

Figure 4.2: A pre-good cube, the cluster C∗(◻) is drawn in green and the clusters in yellow
are the small clusters.

We then upgrade this definition into the following definition of good cubes.

Definition 4.2.2 (Good cube). We say that a discrete cube ◻ ⊆ Zd of size N is good if:

(i) The cube ◻ is pre-good;

(ii) Every cube ◻′ whose size is between N/10 and N and which has non-empty intersection
with ◻ is also pre-good.
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We note that the event “the cube ◻ is good” is F (2◻)-measurable. The main reason
to use good cubes instead of pre-good cubes is that they satisfy the following connectivity
property, which can be obtained from straightforward geometric considerations and whose
proof can be found in [19, Lemma 2.8].

Lemma 4.2.1 (Connectivity property). Let ◻1,◻2 be two cubes of Zd which are neighbors,
i.e., which satisfy

dist (◻1,◻2) ⩽ 1,

which have comparable size in the sense that

1
3
⩽ size (◻1)

size (◻2)
⩽ 3,

and which are both good. Then there exists a cluster C such that

C∗(◻1) ∪C∗(◻2) ⊆ C ⊆ ◻1 ∪◻2.

The main interest in these definitions is that in the supercritical phase p > pc(d), the
probability of a cube to be good is exponentially close to 1 in the size of the cube. Such a
result is stated in the following proposition and is a direct consequence [201, Theorem 3.2]
and [200, Theorem 5].

Proposition 4.2.1. Consider a Bernoulli bond percolation of probability p ∈ (pc(d),1]. Then
there exists a positive constant C(d,p) <∞ such that, for every cube ◻ ⊆ Zd of size N ,

P [◻ is good] ⩾ 1 −C exp (−C−1N) . (4.36)

The renormalization structure we want to implement relies on the observation that Zd
can be partitioned into good cubes of varying sizes. Thanks to the exponential stochastic
integrability obtained by Penrose and Pisztora and stated in Proposition 4.2.1, we are able
to build such a partition. The precise statement is given in the following proposition.

Proposition 4.2.2 (Propositions 2.1 and 2.4 of [19]). Under the assumption p > pc, P–almost
surely, there exists a partition P of Zd into triadic cubes with the following properties:

(i) All the predecessors of elements of P are good cubes, i.e., for every pair of triadic cubes
◻,◻′ ∈ T , one has the property

◻′ ∈ P and ◻′ ⊆ ◻ Ô⇒ ◻ is good.

(ii) Neighboring elements of P have comparable sizes: for ◻,◻′ ∈ P such that dist(◻,◻′) ⩽ 1,
we have

1
3
⩽ size(◻′)

size(◻)
⩽ 3.

(iii) Estimate for the coarseness of P: if we denote by ◻P(x) the unique element of P
containing a given point x ∈ Zd, then there exists a constant C(p, d) <∞ such that,

size (◻P(x)) ⩽ O1(C). (4.37)
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(iv) Minimal scale for P. For each q ∈ [1,∞), there exists a constant C ∶= C(d,p, q) <∞, a
non-negative random variableMq(P) and an exponent r ∶= r(d,p, q) > 0 such that

Mq(P) ⩽ Or(C), (4.38)

and for each radius R satisfying R ⩾Mq(P),

R−d ∑
x∈Zd∩BR

size (◻P(x))q ⩽ C and sup
x∈Zd∩BR

size (◻P(x)) ⩽ R
1
q . (4.39)

Remark. To be precise, this proposition is a consequence of Propositions 2.1 and 2.4 of [19]
and of Proposition 4.2.1 as is explained in [19, Section 2.2].

Additionally, the precise result stated in [19, Proposition 2.4] is that there exists a minimal
scaleMq(P) above which supx∈Zd∩BR size (◻P(x)) ⩽ R

d
d+q , with an exponent d/(d+q) instead

of 1/q. Nevertheless, it is straightforward to recover the statement of Proposition 4.2.2 from
the one of [19, Proposition 2.4].

Figure 4.3: A realization of the partition P, where the cluster in green is the maximal cluster
and the cubes in red are elements of P.

Figure 4.3 (drawn with dyadic cubes instead of triadic cubes to improve readability)
illustrates what this partition looks like. It allows to extend functions defined on the infinite
cluster to the whole space Rd, as is explained below. We consider a function u ∶ C∞ → R.
For each point x ∈ Zd, we choose a point z (x) in the cluster C∗(◻P(x)) according to some
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deterministic procedure (for instance we choose the one which is the closest to the center of
the cube and break ties by using the lexicographical order). We then define the coarsened
function [u]P on Zd according to the formula, for each x ∈ Zd,

[u]P (x) ∶= {
u(x) if x ∈ C∞,

u (z (x)) otherwise,
(4.40)

and extend it to the whole space Rd by setting it to be piecewise constant on the cubes
[x − 1

2 , x +
1
2)
d, for x ∈ Zd. When the function u is defined on the parabolic space [0,∞)×C∞,

we define its extension to the space [0,∞) ×Zd, which we also denote by [u]P , according to
the formula

[u]P (t, x) ∶= {
u(t, x) if x ∈ C∞,

u (t, z (x)) otherwise.
(4.41)

For later purposes, we note that, given a function u ∶ C∞ → R, the Lp-norm of the function
∇ [u]P can be estimated in terms of Lp-norm of the function ∇u and the sizes of the cubes
in the partition P. Specifically, one has the formula, for any radius r ⩾ size (◻P(0)),

∥∇ [u]P∥
p
Lp(Zd∩Br) ⩽ C ∫Br∩C∞

size (◻P(x))pd−1 ∣∇u(x)∣p dx. (4.42)

The proof of this result can be found in [19, Lemma 3.3]. Additionally, one can estimate the
Lp-norm of the function [u]P in terms of the Lp-norm of the function u according to the
formula, for any radius r ⩾ size (◻P(0)),

∥[u]P∥
p
Lp(Br) ⩽ ∫B̂r∩C∞

size (◻P(x))d ∣u(x)∣p dx, (4.43)

where B̂r denotes the union of all the cubes in the partition P which intersect the ball Br,
i.e., B̂r ∶= ∪{◻ ∈ P ∶ ◻ ∩Br ≠ ∅}. This estimate is a consequence of the following argument:
by definition of the coarsened function [u]P , one has the estimates, for any cube ◻ of the
partition P,

∥[u]P∥
p
Lp(◻) ⩽ size (◻)d ∥[u]P∥

p
L∞(◻) ⩽ size (◻)d ∥u∥p

L∞(C∞∩◻) ⩽ size (◻)d ∥u∥p
Lp(C∞∩◻) ,

where we used the discrete L∞ − Lp-estimate in the third inequality. Summing over all the
cubes of the set B̂r completes the proof of the estimate (4.43).

4.2.2 Functional inequalities on the infinite cluster

In this section, we state mostly without proofs, some functional inequalities which are valid
on the infinite cluster C∞. The partition of good cubes presented in Section 4.2.1 allows to
prove these estimates and we refer to [19] for the details of the argument. Some of these
inequalities were already proved by other renormalization technique: it is in particular the
case of the Poincaré inequality which was established by Barlow in [39] (see also Mathieu,
Remy [181] and Benjamini, Mossel [46]).

The fact that these bounds are stated on a random graph which has an irregular nature
means that they are only valid on balls of size larger than some random minimal scales, de-
noted byMPoinc andMMeyers in the following statements, which depend on the environment
a and are large when the environment is ill-behaved.

The first functional inequality we record is the Poincaré inequality, it can be found in [39,
Theorem 2.18] for the L2-version.
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Proposition 4.2.3 (Poincaré inequality on C∞). Fix a real number p ∈ [ d
d−1 ,∞). There exist

a constant C ∶= C(d,p, p) <∞, an exponent s ∶= s(d,p, p) > 0 such that, for any y ∈ Zd, there
exists a non-negative random variableMLp−Poinc(y) which satisfies the stochastic integrability
estimate

MLp−Poinc(y) ⩽ Os (C) , (4.44)

such that for each radius R ⩾MLp−Poinc(y) and each function u ∶ C∞ ∩BR(y)→ R,

∥u − (u)C∞∩BR(y)∥Lp(C∞∩BR(y))
⩽ CR ∥∇u∥Lp(C∞∩BR(y)) .

Moreover for each function u ∶ C∞∩BR(y)→ R, such that u = 0 on the boundary ∂ (Zd ∩BR(y)) ∩C∞,

∥u∥Lp(C∞∩BR(y)) ⩽ CR ∥∇u∥Lp(C∞∩BR(y)) .

Remark. This inequality is frequently used in the case p = 2. To shorten the notation, we
writeMPoinc(y) to refer to the minimal scaleML2−Poinc(y).

Proof. By translation invariance of the model, we can always assume y = 0. The proof relies on
the Sobolev inequality as stated in [19, Proposition 3.4], together with the Hölder inequality
by setting MLp−Poinc(0) ∶=Mq (P), for a parameter q chosen large enough depending only
on the dimension d and the exponent p.

The second estimate we need to record is the parabolic Caccioppoli inequality. This
estimate is valid on any subgraph of Zd and is used in Section 4.3.2.

Proposition 4.2.4 (Parabolic Caccioppoli inequality on C∞). There exists a finite positive
constant C ∶= C(d, λ) such that, for each point y ∈ Zd, each radius R ⩾ 1 and each func-
tion u ∶ IR × (C∞ ∩BR(y))→ R which is a-caloric, i.e., which is a solution of the parabolic
equation

∂tu −∇ ⋅ a∇u = 0 in IR × (C∞ ∩BR(y)) ,

one has

∥∇u∥L2(IR/2×(C∞∩BR/2(y))) ⩽
C

R
∥u − (u)IR×(C∞∩BR(y))∥L2(IR×(C∞∩BR(y)))

.

Proof. The proof follows the standard arguments of the Caccioppoli inequality; the fact that
the function u is defined on the infinite cluster does not affect the proof and we omit the
details.

The third estimate we record is an L∞L2 gradient bound for a-caloric functions. The
proof of this result can be found in [25, Lemma 8.2] in the uniformly elliptic setting, the
extension to the percolation cluster makes no difference in the proof.

Lemma 4.2.2. There exists a positive constant C ∶= C(d, λ) < ∞ such that for any radius
R ⩾ 1, any point y ∈ Zd and any function u ∶ IR × (C∞ ∩BR(y))→ R which satisfies

∂tu −∇ ⋅ a∇u = 0 in IR × (C∞ ∩BR(y)) ,

one has the estimate

sup
t∈IR/2

∥∇u(t, ⋅)∥L2(C∞∩BR/2(y)) ⩽ C ∥∇u∥L2(IR×(C∞∩BR(y))) .



4.2. PRELIMINARIES 175

The last estimate we record in this section is the Meyers estimate for a-caloric functions on
the percolation cluster. This inequality is a non-concentration estimate and essentially states
that the energy of solutions of a parabolic equation cannot concentrate in small volumes. It
is used in Section 4.3.2.

Proposition 4.2.5 (Interior Meyers estimate on C∞). There exist a finite positive constant
C ∶= C(d,p, λ), two exponents s ∶= s(d,p, λ) > 0, δ0 ∶= δ0(d,p, λ) > 0 such that, for each
y ∈ Zd, there exists a non-negative random variableMMeyers(y) which satisfies the stochastic
integrability estimate

MMeyers(y) ⩽ Os (C) ,

such that, for each radius R ⩾ MMeyers(y) and each function u ∶ IR × (C∞ ∩BR(y)) → R
solution of the equation

∂tu −∇ ⋅ a∇u = 0 in IR × (C∞ ∩BR(y)) ,

one has
∥∇u∥L2+δ0(IR/2×(C∞∩BR/2(y))) ⩽ C ∥∇u∥L2(IR×(C∞∩BR(y))) .

Proof. The classical proof of the interior Meyers estimate (cf. [112]) is based on an application
of the Caccioppoli inequality, the Sobolev inequality and the Gehring’s lemma (cf. [118]).
The proof of this result on the percolation cluster for the elliptic problem is written in [19,
Proposition 3.8]. For the parabolic problem considered here, the proof in the case of uniformly
elliptic environments can be found in [18, Appendix B]. The argument can be adapted to the
percolation cluster following the strategy developed in [19, Section 3]. Since the analysis does
not contain any new idea regarding the method and the result can be obtained by essentially
rewriting the proof, we skip the details.

4.2.3 Homogenization on percolation clusters

In this section, we collect some results of stochastic homogenization in supercritical percola-
tion useful in the proof of Theorem 4.1.1. The proof of this theorem is based on a quantitative
two-scale expansion, which relies on two important functions: the first-order corrector and
its flux. They are introduced in Sections 4.2.3 and 4.2.3 respectively.

The first-order corrector

We let A1(C∞) be the random vector space of a-harmonic functions on the infinite cluster C∞
with at most linear growth. This latter condition is expressed in terms of average L2-norm
and we define

A1 (C∞) ∶= {u ∶ C∞ → R ∶ −∇ ⋅ (a∇u) = 0 in C∞ and lim
r→∞

r−2 ∥u∥L2(C∞∩Br) = 0} .

It is known that this space is almost surely finite-dimensional and that its dimension is equal
to (d + 1) (see [45]). Additionally, every function u ∈ A1 (C∞) can be uniquely written as

u(x) = c + p ⋅ x + φp(x),

where c ∈ R, p ∈ Rd and φp is a function called the corrector; it is defined up to a constant
and satisfies the quantitative sublinearity property stated in the following proposition.
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Proposition 4.2.6. For any exponent α > 0, there exist an exponent s(d,p, λ,α) > 0 and a
positive constant C(d,p, λ,α) <∞ such that, for any point y ∈ Zd, there exists a non-negative
random variableMcorr,α(y) satisfying the stochastic integrability estimate

Mcorr,α(y) ⩽ Os (C) , (4.45)

such that for every radius r ⩾Mcorr,α(y), and every p ∈ Rd,

osc
x∈C∞∩Br(y)

φp ∶=
⎛
⎝

sup
x∈C∞∩Br(y)

φp − inf
x∈C∞∩Br(y)

φp
⎞
⎠
⩽ C ∣p∣rα.

Proof. The proof of this result relies on the optimal scaling estimates for the corrector estab-
lished in [83]. Indeed by [83, Theorem 1], one has the following result: there exists a constant
C ∶= C(d, λ,p) <∞ and an exponent s ∶= s(d, λ,p) <∞ such that for each x, y ∈ Zd, and each
p ∈ Rd,

∣φp(x) − φp(y)∣1{{x,y∈C∞}} ⩽
⎧⎪⎪⎨⎪⎪⎩

Os(C ∣p∣) if d ⩾ 3,

Os(C ∣p∣ log
1
2 ∣x − y∣) if d = 2.

(4.46)

Proposition 4.2.6 is then a consequence of the previous estimate and an application of
Lemma 4.1.1 with the sequence of random variables

Xn ∶= 3−αn sup
x∈Zd∩B3n(y)

∣φp(x) − φp(y)∣1{{x,y∈C∞}}.

To be more precise, we use the estimate (4.24) to control the maximum of the random
variables

Xn = 3−αn sup
x∈Zd∩B3n(y)

∣φp(x) − φp(y)∣1{{x,y∈C∞}} (4.47)

⩽ 3−αn
⎛
⎝ ∑
x∈Zd∩B3n(y)

(∣φp(x) − φp(y)∣1{{x,y∈C∞}})
2d
α
⎞
⎠

α
2d

⩽
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Os (C ∣p∣3−
αn
2 ) if d ⩾ 3,

Os (C ∣p∣
√
n3−

αn
2 ) if d = 2.

Then the sequence {Xn}n⩾1 satisfies the assumption of Lemma 4.1.1.

The fact that the corrector is only defined up to a constant causes some technical diffi-
culties in the proofs, in particular the two-scale expansion stated in (4.107) and used in the
proof of Theorem 4.1.1 is ill-defined in this setting. To solve this issue, we choose the follow-
ing (arbitrary) normalization for the corrector: given a point y ∈ Zd and an environment a
in the set of probability 1 on which the corrector is well-defined, we let x ∈ C∞ which is the
closest to the point y (and break ties by using the lexicographical order) and normalize the
corrector by setting φp(x) = 0. The choice of the point y will always be explicitly indicated
to avoid confusions. We note that with this normalization, the corrector is not stationary.

The centered flux

A second important notion in the implementation of the two-scale expansion is the centered
flux; it is defined in the following paragraph.
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For a fixed vector p = (p1, . . . , pd) ∈ Rd, we consider the mapping a(p +Dφp) ∶ C∞ → Rd
defined by the formula, for each x ∈ Zd,

a(p +Dφp)(x) ∶= (a({x,x + e1}) (p1 +De1φp(x)) , . . . ,a({x,x + ed}) (pd +Dedφp(x))) .

This function oscillates quickly but it is close to the deterministic slope 1
2 σ̄

2p in the H−1-
norm on the infinite cluster, where σ̄ is the diffusivity of the random walk introduced in (4.4).
This motivates the following definition: for a fixed vector p ∈ Rd, we define the centered flux
g̃p ∶ C∞ → Rd according to the formula

g̃p ∶= a(Dφp + p) −
1
2
σ̄2p.

The following proposition estimates the H−1-norm of the centered flux. It it proved in
Appendix 4.B, Proposition 4.B.1.

Proposition 4.2.7. For any exponent α > 0, there exist a positive constant C(d,p, λ,α) <∞
and two exponents s(d,p, λ,α) > 0 and α(d,p, λ) > 0 such that, for any y ∈ Zd, there exists a
non-negative random variableMflux,α(y) satisfying the stochastic integrability estimate

Mflux,α(y) ⩽ Os (C) , (4.48)

such that for each radius r ⩾Mflux,α(y),

∥g̃p∥H−1(C∞∩Br(y)) ⩽ C ∣p∣rα. (4.49)

Remark. We emphasize that, in this article, the previous proposition is not a property of the
diffusivity σ̄2 but its definition: building on former result from [19, 83, 134], we prove that
there exists a coefficient such that the estimate (4.49) is satisfied and name this coefficient σ̄2.
Thanks to the estimate (4.49), we are then able to prove Theorem 4.1.1 and the invariance
principle (4.4) with the same coefficient σ̄2. We refer to (4.182) and Remark 4.B for a more
detailed discussion.

4.2.4 Random walks on graphs

In this section, we record the Carne-Varopoulos bound pertaining to the transition kernel
of the continuous-time random walk which holds on any infinite connected subgraph of Zd.
This estimate is not as strong as the ones we are trying to establish (for instance the ones of
Theorem 4.1.1, or of Theorem 4.3.1 proved in [39]) but can be applied in greater generality:
it applies to any realization of the infinite cluster, i.e., to any environment a in the set of
probability 1 where there exists a unique infinite cluster, without any consideration about
its geometry. From a mathematical perspective, this means that there is no minimal scale in
the statement of Proposition 4.2.8.

Proposition 4.2.8 (Carne-Varopoulos bound, Corollaries 11 and 12 of [87]). Let G be an
infinite, connected subgraph of Zd and a be a function from the bonds of G into [λ,1]. For
y ∈ G, we let p (⋅, ⋅, y) be the heat kernel associated to the parabolic equation

{ ∂tp (⋅, ⋅, y) −∇ ⋅ (a∇p (⋅, ⋅, y)) = 0 in (0,∞) × G,
p (0, ⋅, y) = δy in G.
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Then there exists a positive constant C ∶= C(d, λ) <∞ such that for each point x ∈ G,

p (t, x, y) ⩽

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C exp(− ∣x − y∣2

Ct
) if ∣x − y∣ ⩽ t,

C exp(− ∣x − y∣
C

(1 + ln ∣x − y∣
t

)) if ∣x − y∣ ⩾ t.
(4.50)

Remark. For later use, we note that, when ∣x − y∣ ⩾ t,

exp(− ∣x − y∣
C

(1 + ln ∣x − y∣
t

)) ⩽ exp(− t
C

) .

A consequence of this inequality is that, by increasing the value of the constant C, one can
add a factor t−d/2 in the second line of the right side of (4.50): for every constant 0 < C <∞
there exists a finite constant C ′ > C such that, when ∣x − y∣ ⩾ t,

C exp(− ∣x − y∣
C

(1 + ln ∣x − y∣
t

)) ⩽ C ′t−d/2 exp(− ∣x − y∣
C ′ (1 + ln ∣x − y∣

t
)) .

4.3 Decay and Lipschitz regularity of the heat kernel

In this section, we collect and establish some estimates about the decay of the parabolic
Green’s function. In Section 4.3.1, we record a result of Barlow in [39], which establishes
Gaussian upper bounds on the parabolic Green’s function on the infinite cluster. This result
is a percolation version of the Nash-Aronson estimate [32], originally proved for uniformly
elliptic divergence form diffusions. Building upon the result of Barlow, we then establish
estimates on the gradient of the parabolic Green’s function on the percolation cluster, stated
in Theorem 4.1.3, thanks to a large-scale C0,1-regularity estimate. The argument makes
use of techniques from stochastic homogenization and follows a classical route which can be
decomposed into three steps: we first establish a quantitative homogenization theorem for the
parabolic Dirichlet problem (see Section 4.3.2), once this is achieved we prove a large-scale
C0,1-regularity estimate for a-caloric functions (see Section 4.3.2). In Section 4.3.2, we use
this regularity estimate together with the heat kernel bound of Barlow to obtain the decay
of the gradient of the heat kernel stated in Theorem 4.1.3.

4.3.1 Decay of the heat kernel

In this section, we record the result of Barlow [39], who established Gaussian bounds on the
transition kernel. We first introduce the following function.
Definition 4.3.1. Given a point x ∈ Rd, a time t ∈ (0,∞) and a constant 0 < C < ∞, we
define the function ΦC according to the formula

ΦC(t, x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ct−d/2 exp(− ∣x∣2

Ct
) if ∣x∣ ⩽ t,

Ct−d/2 exp(− ∣x∣
C

(1 + ln ∣x∣
t
)) if ∣x∣ ⩾ t.

(4.51)

We note that this function is radial and increasing in the variable C. This function cor-
responds to a discrete heat kernel. For further use, we note that it satisfies the following
semigroup property, for each t1, t2 ∈ (0,∞) and each x, y ∈ Zd

∫
Zd

ΦC (t1, x − z)ΦC (t2, z − y) dz ⩽ ΦC′ (t1 + t2, x − y) , (4.52)
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for some larger constant C ′ > C. This property is proved by an explicit computation or by
using the semigroup property of the law of the random walk on Zd (see Remark 4.3.1). We
define the function ΨC according to the formula

ΨC(t, r) ∶=
⎧⎪⎪⎨⎪⎪⎩

(0,∞) × [0,∞) → R,

(t, r) ↦ − ln (ΦC(t, x)) , where x ∈ Rd satisfies ∣x∣ = r.
(4.53)

In particular, one has the identity,

∀x ∈ Rd, ΦC(t, x) = exp (−ΨC(t, ∣x∣)) .

The function ΨC satisfies the following properties:

(i) It is decreasing in the variable C, increasing in the variable r, and continuous with
respect to both variables;

(ii) It is convex with respect to the variable r.

We now record the result of Barlow.

Theorem 4.3.1 (Gaussian upper bound, Theorem 1 and Lemma 1.1 of [39]). There exist an
exponent s ∶= s (d,p, λ) > 0, a positive constant C ∶= C(d,p, λ) <∞ such that for each y ∈ Rd,
there exists a random time TNA(y) satisfying the stochastic integrability estimate

TNA(y) ⩽ Os (C) , (4.54)

such that, on the event {y ∈ C∞}, for every time t ∈ (0,∞) satisfying t ⩾ TNA(y), and every
point x ∈ C∞,

p (t, x, y) ⩽ ΦC(t, x − y). (4.55)

Remark. The stochastic integrability estimate (4.54) is not stated in Theorem 1.1 of [39] but
is mentioned in its remark equation (0.5) following the theorem.
Remark. The estimate in the regime t ⩽ ∣x−y∣ does not require the assumption that t is larger
than the minimal scale TNA(y) and is in fact a deterministic result: it is a consequence of
Proposition 4.2.8 (proved in [87]) and Remark 4.2.4.
Remark. The function ΦC can be used to obtain upper and lower bounds on the law of the
random walk on the lattice Zd: there exist constants C1,C2 depending only on the dimension
d such that

ΦC1(t, x − y) ⩽ p
Zd(t, x, y) ⩽ ΦC2(t, x − y), (4.56)

where we used the notation pZd(t, x, y) ∶= Py [Xt = x], and where (Xt)t⩾0 denotes the VSRW
on Zd starting from the point y. We refer to the work [92] of Delmotte and the work [87] for
this result. The estimates (4.56) can then be used to prove the property (4.52). Indeed, since
the random walk (Xt)t⩾0 is a Markov process, its transition function pZd has the semigroup
property, and we can write

∫
Zd

ΦC1 (t1, x − z)ΦC1 (t2, z − y) dz ⩽ ∫Zd
pZ

d

(t1, x, z)pZ
d

(t2, z, y) dz

= pZ
d

(t1 + t2, x, y)
⩽ ΦC2 (t1 + t2, x − y) .

This argument gives the estimate (4.52) in the case C = C1, but can be easily extended to
any constant C > 0.
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We complete this section by mentioning that the result of Barlow is proved for the heat
kernel associated to the constant speed random walk and on the percolation cluster only,
i.e., when the conductances are only allowed to take the values 0 or 1. The adaptation to
the variable speed random walk with uniformly elliptic conductances only requires a typo-
graphical change of the proof: all the computations performed in [39] to obtain the upper
bound (4.55) can be adapted to our setting and so is the case of the existing results in the
literature which are used in the proof.

4.3.2 Decay of the gradient of the Green’s function

The main objective of this section is to prove Theorem 4.1.3. The proof of this result makes
use of techniques from stochastic homogenization and can be split into three distinct steps,
which correspond to the three following subsections. The first idea is to prove that the
parabolic Green’s function is close, on large scales, to a caloric function. This is carried out
in Section 4.3.2 and the proof is based on a two-scale expansion. The analysis relies on the
sublinearity of the corrector and the estimate on the H−1-norm of the centered flux stated
in Section 4.2.3. This result is only necessary to establish a large-scale regularity theory for
which sharp homogenization errors are not needed; we thus do not try to prove an optimal
error estimate in the homogenization of the parabolic Dirichlet problem and only prove the
result with an algebraic and suboptimal rate of convergence. Then, in Section 4.3.2, we use
the homogenization estimate proved in Theorem 4.3.2 to establish a large-scale regularity
theory in the spirit of [25, Chapter 3] or [19, Section 7]. Finally, in Section 4.3.2, we combine
Proposition 4.3.1 and the heat kernel bound proved by Barlow and stated in Theorem 4.3.1
to deduce Theorem 4.1.3.

Homogenization of the parabolic Dirichlet problem

In this section, we prove a quantitative homogenization theorem for the parabolic Cauchy-
Dirichlet problem on the infinite cluster. In the following statement, we let η be a smooth,
non-negative function supported in the ball B 1

2
(0), and satisfying the identity ∫ η = 1. It is

used as a smoothing operator in the convolution (4.60). We also define the set Cv(Zd∩Br(y))
to be the convex hull of the set Zd ∩Br(y), i.e.,

Cv(Zd ∩Br(y)) ∶= {z ∈ Rd ∶ z =∑
i

αixi, xi ∈ Zd ∩Br(y), 0 ⩽ αi ⩽ 1 and ∑
i

αi = 1} .

(4.57)
It is used to define the domain of the homogenized equation so that the boundary condition
coincides.

Theorem 4.3.2. Fix an exponent δ > 0, then there exist a positive constant C(d, λ,p, δ) <∞,
two exponents s(d, λ,p, δ) > 0, α(d, λ,p, δ) > 0 such that for any point y ∈ Zd, there exists a
non-negative random variableMhom,δ(y) satisfying

Mhom,δ(y) ⩽ Os(C)

such that, for every r >Mhom(y), and every boundary condition f ∈W 1,2+δ
par (Ir × (C∞ ∩Br(y))),

the following statement is valid. Let u be the weak solution of the parabolic equation

{ (∂t −∇ ⋅ a∇)u = 0 in Ir × (C∞ ∩Br(y)),
u = f on ∂⊔ (Ir ×Cv(Zd ∩Br(y))) ∩ (Ir × (C∞ ∩Br(y))),

(4.58)
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and ū be the weak solution of the homogenized, continuous in space, parabolic equation
⎧⎪⎪⎨⎪⎪⎩

(∂t − 1
2 σ̄

2∆)ū = 0 in Ir ×Cv(Zd ∩Br(y)),
ū = f̃ on ∂⊔ (Ir ×Cv(Zd ∩Br(y))) ,

(4.59)

where the boundary condition f̃ is the extension of f to the continuous parabolic cylinder
defined by the formula

f̃ ∶= [f]P ⋆ η, (4.60)

and the extension [f]P is defined in the paragraph following Proposition 4.2.2. Then, the
following estimate holds

1
r
∥u − ū∥L2(Ir×(C∞∩Br(y))) ⩽ Cr

−α ∥∇f∥L2+δ(Ir×(C∞∩Br(y))) . (4.61)

Remark. The equation (4.58) is discrete in space and continuous in time, while equation (4.59)
is both continuous in space and time. The solution u and ū coincide on the parabolic
boundary ∂⊔ (Ir ×Cv(Zd ∩Br(y)))∩(Ir×(C∞∩Br(y))) for the equation on the clusters. All
the norms in the inequality (4.61) are discrete in space and continuous in time.
Remark. The reason we define the homogenized limit to be continuous is the following: we
need to use a number of results (e.g., regularity theory for the homogenized equation, the
Meyers estimate) which are usually stated in the continuous setting. Moreover, one has
explicit formulas for the elliptic and parabolic Green’s functions and the continuous object
is better behaved regarding scaling properties. On a higher level, the correct limiting object
should be the continuous function as, over large-scales, the discrete lattice approximates the
continuum.

Proof of Theorem 4.3.2. By translation invariance of the model, we assume without loss of
generality that y = 0 and do some preparation before the proof. We first define the minimal
scaleMhom,δ(0) to be equal to

Mhom,δ(0) ∶= max (MPoinc(0),Mq(P),Mcorr, 12
(0),Mflux, 12

(0)) ,

where the parameter q is assumed to be larger than 4d and will be fixed at the end of the
proof. Using the stochastic integrability estimates (4.38), (4.44), (4.45), (4.48) on the four
minimal scales together with the property (4.24) of the Os notation, one has

Mhom,δ(0) ⩽ Os (C) .

We record that under the assumption r ⩾Mhom,δ(0) ⩾M2d(P), one has

crd ⩽ ∣C∞ ∩Br ∣ ⩽ Crd, (4.62)

which allows to compare the number of points of the infinite cluster in the ball Br with the
volume of the ball Br. This estimate can be deduced by an application of the estimate (4.39)
with the Cauchy-Schwarz inequality:

∣Br ∣2 ⩽
⎛
⎝ ∑
◻∈P,◻∩Br≠∅

(size(◻))d
⎞
⎠

2

⩽
⎛
⎝ ∑
◻∈P,◻∩Br≠∅

1
⎞
⎠
⎛
⎝ ∑
◻∈P,◻∩Br≠∅

(size(◻))2d⎞
⎠
⩽ C ∣C∞ ∩Br ∣rd.

We record the following interior regularity estimate for the homogenized function ū, which is
standard for solutions of the heat equation (see [105, Theorem 9, Section 2.3]): for every pair



182 CHAPTER 4. GREEN’S FUNCTION ON PERCOLATION CLUSTER

(t, x) ∈ Ir×Cv(Zd∩Br), and every radii r1, r2 > 0 such that Ir1(t)×Br2(x) ⊆ Ir×Cv(Zd∩Br),
one has the inequality

∀k, l ∈ N, ∣∂lt∇k+1ū∣(t, x) ⩽ Ck+2l(r1)−2l(r2)−k ∥∇ū∥L2(Ir1(t)×Br2(x))
. (4.63)

We remark that in [105, Theorem 9, Section 2.3] the inequality is stated in the case when
r1 = r2; The estimate (4.63) can be recovered by a careful investigation of the proof.

We introduce a cut-off function Υ in the parabolic cylinder Ir ×Br constant equal to 1
in the interior of the cylinder and decreasing linearly to 0 in a mesoscopic boundary layer of
size r′ ≪ r,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Υ(t, x) ≡ 1 (t, x) ∈ Ir ×Br, dist(x, ∂Br) ⩾ 2r′ and dist(t, ∂Ir) ⩾ 2(r′)2,
0 ⩽ Υ(t, x) ⩽ 1 (t, x) ∈ Ir ×Br,
Υ(t, x) ≡ 0 (t, x) ∈ Ir ×Br, dist(x, ∂Br) ⩽ r′ or dist(t, ∂Ir) ⩽ (r′)2.

(4.64)

The precise value of the parameter r′ is given by the formula r′ = r1−β for some small
exponent β whose value is decided at the end of the proof. We additionally assume that the
function Υ is smooth and satisfies the estimate

∀k, l ∈ N, ∣∂lt∇kΥ∣ ⩽ Ck+2l(r′)−(k+2l). (4.65)

With these quantities, we can prove the following lemma.

Lemma 4.3.1. We have the estimate

∀k, l ∈ N, ∥∂lt∇k(Υ∇ū)∥L∞(Ir×Br) ⩽ Ck+2l(r′)−(k+2l) ( r
r′

)
2+d
2

∥∇f∥L2+δ(Ir×(C∞∩Br)) .

(4.66)

Proof. First, by using the inequality (4.63) and the fact that the map Υ is supported outside
a boundary layer of size r′ in the parabolic cylinder Ir ×Br, we obtain the estimate

∀(t, x) ∈ supp(Υ),∀k, l ∈ N, ∣∂lt∇k(Υ∇ū)∣(t, x) ⩽ Ck+2l(r′)−(k+2l) ∥∇ū∥L2(Ir′(t)×Br′(x))

⩽ Ck+2l(r′)−(k+2l) ( r
r′

)
2+d
2

∥∇ū∥L2(Ir×Cv(Zd∩Br)) .

(4.67)

The inequality (4.67) implies the L∞-estimate

∀k, l ∈ N, ∥∂lt∇k(Υ∇ū)∥L∞(Ir×Br) ⩽ Ck+2l(r′)−(k+2l) ( r
r′

)
2+d
2

∥∇ū∥L2(Ir×Cv(Zd∩Br)) . (4.68)

We then state the global Meyers estimate for the map ū: there exists an exponent δ0 (d, λ,p) > 0
such that for every δ′ ∈ [0, δ0],

∥∇ū∥L2+δ′(Ir×Cv(Zd∩Br)) ⩽ C ∥∇f̃∥
L2+δ′(Ir×Cv(Zd∩Br)) . (4.69)

A proof of this result can be found in [113, Proposition 5.1], where the statement is given for
cubes instead of parabolic cylinders (the adaptation to the setting considered here does not
affect the proof). Moreover, one can estimate the Lp-norm of the (continuous) gradient of
the function f̃ in terms of the Lp-norm of the (discrete) gradient of the maps f and the sizes
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of the cubes of the partition. The formula is a consequence of [19, Lemma 3.3] and recalled
in (4.42): for any p ⩾ 1, and any radius r ⩾ size (◻P(0)),

∥∇f̃∥
Lp(Cv(Zd∩Br)) ⩽ ∫Br∩C∞

size (◻P(x))pd−1 ∣∇f(x)∣p dx.

Applying the Hölder inequality to this estimate with r ⩾ Mhom,δ(0), using the assump-
tion the minimal scaleMhom,δ(0) is larger than the minimal scaleMq(P) so that Proposi-
tion 4.2.2 is valid, and choosing the parameter q to be large enough (larger than the value
(4+2δ)((2+ 1

2 δ)d−1)
δ ), one obtains the following inequality: for any p ∈ [2,2 + 1

2δ],

∥∇f̃∥
Lp(Cv(Zd∩Br)) ⩽ C ∥∇f∥L2+δ(Ir×(C∞∩Br)) . (4.70)

Together with (4.69), this shows the inequality, for any exponent δ′ ∈ [0,min (δ0,
1
2δ)],

∥∇ū∥
L2+δ′(Ir×Cv(Zd∩Br)) ⩽ C ∥∇f∥L2+δ(Ir×(C∞∩Br)) . (4.71)

Putting the inequality (4.71) back into the estimate (4.68) concludes the proof of (4.66).

The key ingredient in the proof of Theorem 4.3.2 is to use a modified two-scale expansion
on the percolation cluster, defined for each (t, x) ∈ Ir × (C∞ ∩Br) by the formula

w(t, x) ∶= ū(t, x) +Υ(t, x)
d

∑
k=1
Dek ū(t, x)φek(x), (4.72)

as an intermediate quantity: we prove that the function w is close to both functions u and
ū. Here and in the rest of this section, the map φek is the first order corrector normalized
according the procedure described in Section 4.2.3 around the point y = 0. The proof of
Theorem 4.3.2 can be decomposed into five steps.

Step 1: Control over 1
r ∥w − ū∥L2(Ir×(C∞∩Br)). We use the estimate (4.66) to compute

1
r
∥w − ū∥L2(Ir×(C∞∩Br))) =

1
r
∥
d

∑
k=1

Υ (Dek ū)φek∥
L2(Ir×(C∞∩Br)))

⩽ 1
r
∥Υ∇ū∥L∞(Ir×Br)

d

∑
k=1

∥φek∥L2(C∞∩Br)

⩽ C
r

( r
r′

)
2+d
2

∥∇f∥L2+δ(Ir×(C∞∩Br))

d

∑
k=1

∥φek∥L2(C∞∩Br) .

Using the assumption r ⩾Mhom,δ(0) ⩾Mcorr, 12
(0), we deduce

1
r
∥w − ū∥L2(Ir×(C∞∩Br))) ⩽ Cr

− 1
2 ( r
r′

)
2+d
2

∥∇f∥L2+δ(Ir×(C∞∩Br)) .

The proof of Step 1 is complete.
Step 2: Control of 1

r ∥w − u∥L2(Ir×(C∞∩Br)) by the norm ∥(∂t −∇ ⋅ a∇)w∥L2(Ir;H−1(C∞∩Br)).
We first note that the functions w and u are equal on the boundary of the parabolic cylinder
Ir × (C∞ ∩ Br), and use the assumption r ⩾Mhom,δ(0) ⩾MPoinc(0) to apply the Poincaré
inequality for each fixed time t and then integrate over time. This proves

1
r
∥w − u∥L2(Ir×(C∞∩Br)) ⩽ ∥∇(w − u)∥L2(Ir×(C∞∩Br)) .
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Then, we use an integration by part and the uniform ellipticity of the environment on the
infinite cluster

∥∇(w − u)∥2
L2(Ir×(C∞∩Br)) ⩽

1
λ∣Ir × (C∞ ∩Br)∣ ∫Ir ∫C∞∩Br

∇(w − u) ⋅ a∇(w − u)

= 1
λ ∣Ir × (C∞ ∩Br)∣ ∫Ir ∫C∞∩Br

(−∇ ⋅ a∇(w − u)) (w − u).

The fact that the functions w,u have the same initial condition over C∞ ∩Br implies that
the following integral is non-negative

∫
Ir
∫

C∞∩Br
(∂t(w − u)) (w − u) = 1

2
(∥(w − u)(0, ⋅)∥2

L2(C∞∩Br) − ∥(w − u)(−r2, ⋅)∥2
L2(C∞∩Br))

= 1
2
∥(w − u)(0, ⋅)∥2

L2(C∞∩Br) ⩾ 0.

We combine this formula and equation (4.58) to obtain

∥∇(w − u)∥2
L2(Ir×(C∞∩Br)) ⩽

1
λ∣Ir × (C∞ ∩Br)∣ ∫Ir ∫C∞∩Br

((∂t −∇ ⋅ a∇) (w − u)) (w − u)

⩽ 1
λ
∥w − u∥L2(Ir;H1(C∞∩Br)) ∥(∂t −∇ ⋅ a∇)w∥L2(Ir;H−1(C∞∩Br)) .

This shows that
1
r
∥w − u∥L2(C∞∩Br) ⩽ C ∥(∂t −∇ ⋅ a∇)w∥L2(Ir;H−1(C∞∩Br)) .

Step 3: Control over ∥(∂t −∇ ⋅ a∇)w∥L2(Ir;H−1(C∞∩Br)). In this step, we adopt the finite
difference notation and recall the identity (∂t −∇ ⋅ a∇)w = (∂t +D∗ ⋅ aD)w. To estimate the
H−1-norm of (∂t−∇⋅a∇)w, the idea is to derive an explicit formula for this quantity by using
the definition of w given in (4.72) and to make a centered flux g̃ek = a(Dφek + ek) −

1
2 σ̄

2ek
appear. We first calculate ∂tw and Dw and obtain the formulas

{ ∂tw = ∂tū +∑dk=1 ∂t(ΥDek ū)φek ,
Dw = (1 −Υ)Dū +∑dk=1(ΥDek ū)(ek +Dφek) +∑dk=1D(ΥDek ū)φek .

We combine the two equations to calculate (∂t +D∗ ⋅ aD)w,

(∂t +D∗ ⋅ aD)w = ∂tū +
d

∑
k=1

∂t(ΥDek ū)φek +D
∗ ⋅ ((1 −Υ)aDū)

+
d

∑
k=1
D∗ ⋅ ((ΥDek ū)a(ek +Dφek)) +

d

∑
k=1
D∗ ⋅ (aD(ΥDek ū)φek) .

(4.73)

Then, we use equation (4.59) which reads ∂tū = 1
2 σ̄

2∆ū to replace the term ∂tū in the
equation above. Notice that here 1

2 σ̄
2∆ū refers to the continuous Laplacian, but using the

regularity properties on the function ū stated in (4.66), we can replace this term by the
discrete Laplacian −1

2 σ̄
2D∗ ⋅Dū by paying only a small error. The advantage of this operation

is that we can use the two terms −1
2 σ̄

2D∗ ⋅ (ΥDū) and ∑dk=1D∗ ⋅ ((ΥDek ū)a(ek +Dφek)) to
make the flux appear: we have
d

∑
k=1
D∗ ⋅ ((ΥDek ū)a(ek +Dφek)) −

1
2
σ̄2D∗ ⋅ (ΥDū) =

d

∑
k=1
D∗ ⋅ ((ΥDek ū) (a(ek +Dφek) −

1
2
σ̄2ek))

=
d

∑
k=1
D∗(ΥDek ū) ⋅ g̃

∗
ek
, (4.74)
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where g̃∗ek is a translated version of the flux g̃ek defined by the formula, for each x ∈ C∞,

g̃∗ek(x) ∶=

⎛
⎜⎜⎜⎜
⎝

T−e1 [a (Dφek + ek) −
1
2 σ̄

2ek]1

⋮

T−ed [a (Dφek + ek) −
1
2 σ̄

2ek]d

⎞
⎟⎟⎟⎟
⎠

,

where we recall the notation [a (Dφek + ek) −
1
2 σ̄

2ek]i introduced in Section 4.1.6 for the
ith-component of the vector a (Dφek + ek) −

1
2 σ̄

2ek. In Appendix 4.B, it is proved that the
translated flux g̃∗ek has similar properties as the centered flux g̃ek . In particular, it is proved
in Remark 4.B that for every radius r ⩾Mcorr, 12

(0),

∥g̃∗ek∥H−1(C∞∩Br) ⩽ Cr
1
2 .

Combining the identities (4.73) and (4.74), one obtains

(∂t −D∗ ⋅ aD)w = 1
2
(∇ ⋅ σ̄2(Υ∇ū) − (−D∗ ⋅ σ̄2(ΥDū)))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4.75)-a

+
d

∑
k=1

∂t(ΥDek ū)φek
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(4.75)-b

+D∗ ⋅ ((1 −Υ)aDū)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(4.75)-c1

+ 1
2
(∇ ⋅ (σ̄2(1 −Υ)∇ū)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4.75)-c2

+
d

∑
k=1
D∗(ΥDek ū) ⋅ g̃

∗
ek

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4.75)-d

+
d

∑
k=1
D∗ ⋅ (aD(ΥDek ū)φek)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4.75)-e

.

(4.75)

There remains to use triangle inequality and estimate the L2(Ir;H−1(C∞ ∩ Br))-norm of
each term. The following estimates will be used several times: for A ∶ Ir × (C∞ ∩Br)→ R
and B ∶ Ir × (C∞ ∩Br)→ R, one has

∥AB∥L2(Ir;H−1(C∞∩Br)) = sup
∥v∥L2(Ir ;H1(C∞∩Br))

⩽1

1
∣Ir × (C∞ ∩Br)∣ ∫Ir×(C∞∩Br)

ABv

⩽ ∥A∥L2(Ir;H−1(C∞∩Br)) sup
∥v∥L2(Ir ;H1(C∞∩Br))

⩽1
∥Bv∥L2(Ir;H1(C∞∩Br))

⩽ ∥A∥L2(Ir;H−1(C∞∩Br)) (∥B∥L∞(Ir×(C∞∩Br)) + r ∥∇B∥L∞(Ir×(C∞∩Br))) .
(4.76)

From the definition of the L2(Ir;H−1(C∞ ∩Br))-norm, one also has the estimate

∥A∥L2(Ir;H−1(C∞∩Br)) ⩽ r ∥A∥L2(Ir×(C∞∩Br)) ⩽ r ∥A∥L∞(Ir×(C∞∩Br)) . (4.77)

The term (4.75)-a is a difference between a discrete derivative and a continuous derivative; it
can be estimated in terms of the third derivative of the function ū. Using the estimates (4.66)
and (4.77) shows

∥(4.75)-a∥L2(Ir;H−1(C∞∩Br)) ⩽ r ∥∇
2(Υ∇ū)∥

L∞(Ir×Br)

⩽ Cr−1 ( r
r′

)
3+ d2

∥∇f∥L2+δ(Ir×(C∞∩Br)) .
(4.78)
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A similar strategy can be used to estimate the term (4.75)-b

∥(4.75)-b∥L2(Ir;H−1(C∞∩Br)) ⩽ (r ∥∂t∇(Υ∇ū)∥L∞(Ir×Br) + ∥∂t(Υ∇ū)∥L∞(Ir×Br))
d

∑
k=1

∥φek∥H−1(C∞∩Br)

⩽ C r

(r′)3 ( r
r′

)
2+d
2

∥∇f∥L2+δ(Ir×(C∞∩Br))

d

∑
k=1

∥φek∥L2(C∞∩Br) (4.79)

⩽ Cr−
3
2 ( r
r′

)
4+ d2

∥∇f∥L2+δ(Ir×(C∞∩Br)) ,

where we use the assumption r ⩾Mhom,δ(0) ⩾Mcorr, 12
(0) to obtain the sublinearity of the

corrector and the regularity estimate (4.66) to go from the second line to the third line.
To estimate the term (4.75)-c1, we note that the function (1 −Υ) is equal to 0 outside a

mesoscopic boundary layer of size r′ of the ball Br. We thus apply the Meyers estimate (4.69),
with the exponent δ′ = min (δ0,

1
2δ), and the Hölder inequality. This shows

∥(4.75)-c1∥L2(Ir;H−1(C∞∩Br)) ⩽ ∥(1 −Υ)aDū∥L2(Ir×(C∞∩Br))

⩽ ∥1 −Υ∥
L

4+2δ′
δ′ (Ir×Br)

∥∇ū∥
L2+δ′(Ir×Br)

⩽ C (r
′

r
)

δ′

4+2δ′

∥∇f∥L2+δ(Ir×(C∞∩Br)) .

(4.80)

where we used the Hölder inequality to go from the first line to the second line and the
Meyers estimate to go from the second line to the third line.

We want to apply a similar technique to treat the term (4.75)-c2 since it is also a boundary
layer term. However, we should notice that here the derivative ∇ is the continuous gradient
defined on Rd and there is no conductance a, thus we cannot apply a discrete integration by
part on the cluster. We will focus on this term later in Step 4.

To estimate the term (4.75)-d, we apply the inequality (4.76), the regularity estimate (4.66),
and we use the assumption r ⩾Mhom,δ(0) ⩾Mflux, 12

(0). We obtain

∥(4.75)-d∥L2(Ir;H−1(C∞∩Br)) ⩽ (∥∇(Υ∇ū)∥L∞(Ir×Br) + r ∥∇
2(Υ∇ū)∥

L∞(Ir×Br))
d

∑
k=1

∥g̃∗ek∥H−1(C∞∩Br)

⩽ Cr−
1
2 ( r
r′

)
3+ d2

∥∇f∥L2+δ(Ir×(C∞∩Br)) . (4.81)

The term (4.75)-e can be estimated thanks to an integration by part and the regularity
estimate (4.66). This yields

∥(4.75)-e∥L2(Ir;H−1(C∞∩Br)) ⩽ ∥∇(Υ∇ū)∥L∞(Ir×Br)

d

∑
k=1

∥φek∥L2(Ir×(C∞∩Br))

⩽ Cr−
1
2 ( r
r′

)
2+ d2

∥∇f∥L2+δ(Ir×(C∞∩Br)) .

(4.82)

Step 4: Control over the term ∥∇ ⋅ (σ̄2(1 −Υ)∇ū)∥
L2(Ir;H−1(C∞∩Br)). As was already men-

tioned, we cannot use a discrete integration by parts to estimate the L2(Ir;H−1(C∞ ∩Br))-
norm of this term. The strategy relies on the interior regularity estimate (4.63) which requires
careful treatments since it is close to the boundary. We apply the Whitney decomposition
on the ball Br stated below with a minor adaptation to triadic cubes.
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Lemma 4.3.2 (Whitney decomposition). There exits a family of closed triadic cubes {Qj}j⩾0
such that

(i) Br = ⋃jQj and the cubes Qj have disjoint interiors;

(ii)
√
d size(Qj) ⩽ dist(Qj , ∂Br) ⩽ 4

√
d size(Qj);

(iii) Two neighboring cubes Qj and Qk have comparable sizes in the sense that

1
3
⩽ size(Qk)

size(Qj)
⩽ 3;

(iv) Each cube Qj has at most C(d) neighbors.

We skip the construction of this partition, refer to [216, Theorem 3] or [127, Appendix
J] for the proof and to Figure 4.4 for an illustration. With the help of this decomposition,
we can estimate the norm ∥∇ ⋅ (σ̄2(1 −Υ)∇ū)∥

L2(Ir;H−1(C∞∩Br)). We first relabel the cubes
of the decomposition according to their size; we write

{Qj}i⩾1 ∶=
∞
⋃
n=0

Mn

⋃
k=1

{Qn,k}, 3−(n+1)r ⩽ size(Qn,k) < 3−nr.

where Mn is the number of the cubes whose size belongs to the interval [3−(n+1)r,3−nr).
Then, we decompose the set supp(1 −Υ) into two parts (see Figure 4.4)

supp(1 −Υ) = Π1 ⊔Π2,

Π1 ∶= {(t, x) ∈ Ir ×Br ∶ dist(x, ∂Br) ⩽ 2r′,−r2 + 2(r′)2 ⩽ t ⩽ 0} ,
Π2 ∶= {(t, x) ∈ Ir ×Br ∶ −r2 ⩽ t ⩽ −r2 + 2(r′)2} .

We estimate the weak norm thanks to its definition: we let ϕ be a function from Ir × (C∞ ∩Br)
to R which satisfies ∥ϕ∥L2(Ir;H1(C∞∩Br)) ⩽ 1 and is equal to 0 on the boundary Ir×∂a (C∞ ∩Br).
We split the integral

∫
Ir
∫

C∞∩Br
∇⋅(σ̄2(1−Υ)∇ū)ϕ = ∫(Ir×Zd)∩Π1

∇⋅(σ̄2(1−Υ)∇ū)ϕ+∫(Ir×Zd)∩Π2
∇⋅(σ̄2(1−Υ)∇ū)ϕ,

and treat the two terms separately.
Step 4.1: Control of the weak norm over Π1. For the term involving the set Π1, we use

the Whitney decomposition to integrate on every cube of the partition. We first introduce
the time intervals, for m,n ∈ N, I1,m ∶= −m + (−1,0] and nI1,m ∶= −m + (−n,0], and partition
the boundary layer Π1 according to the formula

Π1 =
⌊r2−(r′)2⌋
⋃
m=0

∞
⋃
n=0

Mn

⋃
k=1

(I1,m ×Qn,k) ∩Π1.

We remark that we can restrict our attention to the cubes whose sizes is between 1 and r′
thanks to the properties of the Whitney decomposition. Indeed, the cubes of size larger than
r′ remain outside the boundary layer Π1, since the distance of a cube to the boundary is
comparable to its size. On the other hand, the cubes of size smaller than 1 will not contain
a point in the lattice int(Cv(Zd ∩ Br)), as these cubes are too close to the boundary, and
the definition (4.57) implies that all the points of the lattice in the interior int(Cv(Zd ∩Br))
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Figure 4.4: The figure on the left illustrates the partition of the cylinder Ir ×Br, where the
domain in blue stands for the set Π1, the one in green for the set Π2 and the one in red for
{(t, x) ∶ Υ(t, x) = 1}. The figure on the right illustrates a Whitney decomposition in the ball
Br, where we use dyadic cubes to improve the readability.

are at distance at least 1√
2 from the boundary. We thus have the following partition, if we

denote by n0 and n1 the integers such that 3−(n0+1)r ⩽ r′ < 3−n0r, and 3−(n1+1)r ⩽ 1 < 3−n1r,

Π1 =
⌊r2−(r′)2⌋
⋃
m=0

n1

⋃
n=n0

Mn

⋃
k=1

(I1,m ×Qn,k) ∩Π1.

Using this partition, we can split the integral

∫(Ir×C∞)∩Π1
∇ ⋅ (σ̄2(1 −Υ)∇ū)ϕ =

⌊r2−(r′)2⌋
∑
m=0

n1

∑
n=n0

Mn

∑
k=1
∫(Ir×C∞)∩(I1,m×Qn,k)

∇ ⋅ (σ̄2(1 −Υ)∇ū)ϕ.

(4.83)
We fix a cylinder I1,m × Qn,k, apply the Cauchy-Schwarz inequality and use the interior
regularity estimate (4.63) of the function ū in the cylinder I1,m×Qn,k with the property that
the distance dist(Qn,k, ∂Br) is larger than

√
d size(Qn,k) and the inclusion 2Qn,k ⊆ Br. We

obtain

∣∫(Ir×C∞)∩(I1,m×Qn,k)
∇ ⋅ (σ̄2(1 −Υ)∇ū)ϕ∣ ⩽ ∥∇ ⋅ (σ̄2(1 −Υ)∇ū)∥

L2(I1,m×Qn,k)
∥ϕ∥L2(I1,m×(C∞∩Qn,k)

⩽ C(3−nr)−1 ∥∇ū∥L2(2I1,m×2Qn,k) ∥ϕ∥L2(I1,m×(C∞∩Qn,k) .

We sum over all the cubes {Qn,k}1⩽k⩽Mn and apply the Cauchy-Schwarz inequality
Mn

∑
k=1

∣∫(Ir×C∞)∩(I1,m×Qn,k)
∇ ⋅ (σ̄2(1 −Υ)∇ū)ϕ∣

⩽
Mn

∑
k=1

C(3−nr)−1 ∥∇ū∥L2(2I1,m×2Qn,k) ∥ϕ∥L2(I1,m×(C∞∩Qn,k)

⩽ C(3−nr)−1 (
Mn

∑
k=1

∥∇ū∥2
L2(2I1,m×2Qn,k))

1
2

∥ϕ∥
L2(I1,m×(C∞∩(⊔Mnk=1Qn,k)))

.

We then use the following three ingredients:
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• Given a discrete set A ⊆ Zd, the L2-norm of coarsened function [ϕ]P over A is larger
than the one of the function ϕ over the set C∞ ∩A;

• We have the inclusion ⊔Mn

k=1Qn,k ⊆ {x ∈ Br ∶ dist(x, ∂Br) ⩽ 5 × 3−n
√
dr};

• We choose the vertex z(⋅) (defined in (4.40)) to be a point on the boundary ∂Br for the
cubes of the partition intersecting ∂Br. With this convention, the coarsened function
[ϕ]P is equal to zero on ∂Br, so we can apply the Poincaré inequality for [ϕ]P in the
boundary layer {x ∈ Br ∶ dist(x, ∂Br) ⩽ 5 × 3−n

√
dr}.

We obtain the estimate

(3−nr)−1 ∥ϕ∥
L2(I1,m×(C∞∩(⊔Mnk=1Qn,k)))

⩽ C(3−nr)−1 ∥[ϕ]P1{{x∈Br ∶dist(x,∂Br)⩽5×3−n
√
dr}}∥

L2(I1,m×(Zd∩Br))

⩽ C ∥∇[ϕ]P1{{x∈Br ∶dist(x,∂Br)⩽5×3−n
√
dr}}∥

L2(I1,m×(Zd∩Br))

⩽ C ∥∇[ϕ]P∥L2(I1,m×(Zd∩Br)) .

We put these estimates back into (4.83) and apply once again the Cauchy-Schwarz inequality.
We notice that summing over the integers between n0 and n1 gives an additional error term
of order log

1
2 (1 + r),

∣∫(Ir×C∞)∩Π1
∇ ⋅ (σ̄2(1 −Υ)∇ū)ϕ∣

⩽C
⌊r2−(r′)2⌋
∑
m=0

n1

∑
n=n0

(
Mn

∑
k=1

∥∇ū∥2
L2(2I1,m×2Qn,k))

1
2

∥∇[ϕ]P∥L2(I1,m×(Zd∩Br))

⩽C log
1
2 (1 + r)

⎛
⎝

⌊r2−(r′)2⌋
∑
m=0

n1

∑
n=n0

Mn

∑
k=1

∥∇ū∥2
L2(2I1,m×2Qn,k)

⎞
⎠

1
2

∥∇[ϕ]P∥L2(Ir×(Zd∩Br)) .

(4.84)

We then estimate the norm ∥∇[ϕ]P∥L2(Ir×(Zd∩Br)) thanks to the inequalities (4.42), (4.39),
and the assumption r >Mq(P). We obtain

1
∣Ir × (C∞ ∩Br)∣

1
2
∥∇[ϕ]P∥L2(Ir×(Zd∩Br)) ⩽ Cr

2d−1
2q ∥∇ϕ∥L2(Ir×(C∞∩Br)) ⩽ Cr

2d−1
2q .

Moreover, by the properties of theWhitney covering, the sum∑⌊r2−(r′)2⌋
i=0 ∑n1

n=n0 ∑
Mn

k=1 ∥∇ū∥
2
L2(2I1,m×2Qn,k)

can be estimated by the L2-norm of the function ∇ū in a boundary layer of size 6r′ of the
parabolic cylinder Ir ×Cv(Zd ∩Br) (since every point in the ball Br belongs to at most C(d)
cubes of the form 2Qj). More specifically, we have the estimate

⎛
⎝

1
∣Ir × (C∞ ∩Br)∣

⌊r2−(r′)2⌋
∑
m=0

n1

∑
n=n0

Mn

∑
k=1

∥∇ū∥2
L2(2I1,m×2Qn,k)

⎞
⎠

1
2

⩽ C ∥∇ū∥L2(Ir×{x∈Br ∶dist(x,∂Br)⩽6r′}) .

We then apply the Hölder’s inequality and the global Meyers estimate (4.71) with the expo-
nent δ′ = min (δ0,

1
2δ). We obtain

⎛
⎝

1
∣Ir × (C∞ ∩Br)∣

⌊r2−(r′)2⌋
∑
m=0

n1

∑
n=n0

Mn

∑
k=1

∥∇ū∥2
L2(2I1,m×2Qn,k)

⎞
⎠

1
2

⩽ C ∥∇ū∥L2(Ir×{x∈Br ∶dist(x,∂Br)⩽6r′})

⩽ C (r
′

r
)

δ′

4+2δ′

∥∇f∥L2+δ(Ir×(C∞∩Br)) .
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We conclude that

∣ 1
∣Ir × (C∞ ∩Br)∣ ∫(Ir×C∞)∩Π1

∇ ⋅ (σ̄2(1 −Υ)∇ū)ϕ∣

⩽ C log
1
2 (1 + r)r

2d−1
2q (r

′

r
)

δ′

4+2δ′

∥∇f∥L2+δ(Ir×(C∞∩Br)) . (4.85)

Step 4.2: Control the weak norm over Π2. One can repeat all the arguments above to
estimate the weak norm over the set Π2, but we should pay attention to the decomposition
over the time interval Ir since now the support of Π2 is close to the time boundary (see
Figure 4.4). We define the time intervals

∀m ∈ N, I2,m ∶= −r2 + (2
3
)
m

(r′)2 + (−1
3
× (2

3
)
m

(r′)2,0] ,

so that they satisfy 2I2,m ⊆ Ir. We can then apply the same arguments as in the esti-
mates (4.84) and (4.85) to obtain the inequality

∣ 1
∣Ir × (C∞ ∩Br)∣ ∫(Ir×C∞)∩Π2

∇ ⋅ (σ̄2(1 −Υ)∇ū)ϕ∣

⩽ C log
1
2 (1 + r)r

2d−1
2q ( 1

r2 ∫
−r2+2(r′)2

−r2
∥∇ū(t, ⋅)∥2

L2(Cv(Zd∩Br)) dt)
1
2

.

Then, we apply Hölder’s inequality in the time variable and the estimate (4.71) to obtain

( 1
r2 ∫

−r2+2(r′)2

−r2
∥∇ū(t, ⋅)∥2

L2(Cv(Zd∩Br)) dt)
1
2

⩽ (r
′

r
)

2δ′
4+2δ′

∥∇f∥L2+δ(Ir×(C∞∩Br)) . (4.86)

This gives an estimate for the weak norm of the map ∇ ⋅ (σ̄2(1 − Υ)∇ū) over the set Π2.
Finally, we combine the estimates (4.85) and (4.86) to conclude that

∥∇ ⋅ (σ̄2(1 −Υ)∇ū)∥
L2(Ir;H−1(C∞∩Br)) ⩽ C log

1
2 (1 + r)r

2d−1
2q (r

′

r
)

δ′

4+2δ′

∥∇f∥L2+δ(Ir×(C∞∩Br)) .

(4.87)
Step 5: Choice of the parameters q, β and conclusion. We conclude the proof by combing

the estimates (4.78), (4.79), (4.80), (4.81), (4.82), (4.87) and by choosing r′ = r1−β for some
small exponent β ∈ (0,1/2] to obtain

1
r
∥u − ū∥L2(Ir×(C∞∩Br)) ⩽ CE(r, β, q) ∥∇f∥L2+δ(Ir×(C∞∩Br)) , (4.88)

where the quantity E(r, β, q) is defined by the formula

E(r, β, q) ∶= r−
1
2+β(3+ d2 ) + log

1
2 (1 + r)r

2d−1
2q − βδ′

4+2δ′ , (4.89)

where we recall that δ′ = min (δ0,
1
2δ) and that δ0 is the exponent given by the Meyers estimate

stated in (4.69).
It remains to select a value for the exponents β and q. We first choose the value of the

exponent β and set β ∶= 1
12+2d so that the first term in the right side of (4.89) is equal to r− 1

4 .
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Then we set q ∶= (12+2d)(2d−1)(4+2δ′)
δ′ so that 2d−1

2q = βδ′

2(4+2δ′) . With this choice, the second term

in the right side of (4.89) is equal to log
1
2 (1 + r)r−

βδ′

8+4δ′ .
We obtain that Theorem 4.3.2 holds with the exponent α ∶= δ′

(12+2d)(16+8δ′) > 0. The proof
is complete.

Large-scale C0,1-regularity estimate

The objective of this section is to prove the following C0,1-large-scale regularity estimate for
a-caloric functions on the infinite cluster.

Proposition 4.3.1. There exist a constant C(d, λ,p) <∞, an exponent s(d, λ,p) > 0 such
that for each point y ∈ Zd, there exists a non-negative random variableMC0,1−reg(y) satisfying

MC0,1−reg(y) ⩽ Os(C) (4.90)

such that, for every r ⩾MC0,1−reg(y), and every weak solution u ∈ H1
par(IR × (C∞ ∩BR(y)))

of the equation
∂tu −∇ ⋅ (a∇u) = 0 in IR × (C∞ ∩BR(y)),

one has the estimate, for every radius r ∈ [MC0,1−reg(y),R],

sup
t∈Ir

∥∇u (t, ⋅)∥L2(C∞∩Br(y)) ⩽
C

R
∥[u]P − ([u]P)IR×BR(y)∥L2(IR×BR(y))

. (4.91)

Remark. The right side of the estimate involves the coarsened function [u]P and we do not
try to remove the coarsening to obtain a result of the form

sup
t∈Ir

∥∇u (t, ⋅)∥L2(C∞∩Br(y)) ⩽
C

R
∥u − (u)IR×(C∞∩BR(y))∥L2(IR×(C∞∩BR(y)))

, (4.92)

even though such a result would be more natural and should be provable. There are two
reasons motivating this choice. First, the estimate (4.91) involving the coarsening is simpler
to prove than the inequality (4.92) and this choice reduces the amount of technicalities in
the proof. Second, the objective of this section is to prove the Lipschitz regularity on the
heat-kernel stated in Theorem 4.1.3 and the estimate (4.91) is sufficient in this regard.

This proposition proves that there exists a large random scale above which one has a
good control on the gradient of a-caloric functions. Such result belongs to the theory of
large-scale regularity which is an important aspect of stochastic homogenization. The result
presented above is a percolation version of a known result in the uniformly elliptic setting
(see [25, Theorem 8.7]) and can be considered a first step toward the establishment of a
general large-scale regularity theory for the parabolic problem on the infinite percolation
cluster.

We do not establish such a general theory here but we believe that it should follow
from similar arguments: in the elliptic setting a general large-scale regularity theory was
established in [19] and the generalization to the parabolic setting should be achievable. The
reason justifying this choice is that our objective is to prove an estimate on the gradient of
the Green’s function (Theorem 4.1.3) and we do not need the full strength of the large-scale
regularity theory to prove this result.

The main idea of the proof is that, thanks to Theorem 4.3.2, an a-caloric function is well-
approximated by a σ̄2-caloric function. It is then possible to transfer the regularity known
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for σ̄2-caloric functions to a-caloric functions following the classical ideas of the regularity
theory. Such result can only hold when the a-caloric function is well-approximated by a
σ̄2-caloric function which, according to Theorem 4.3.2, only holds on large scales.

This strategy has been carried out in [25] and is summarized in the following lemma, for
which we refer to [25, Lemma 8.9].

Lemma 4.3.3 (Lemma 8.9 of [25]). Fix an exponent β ∈ (0,1], k ⩾ 1 and X ⩾ 1. Let R ⩾ 4X
and v ∈ L2 (IR ×BR) have the property that, for every r ∈ [X, 1

4R], there exists a function
w ∈H1

par(Ir ×Br) which is a weak solution of

∂tw − σ̄
2

2
∆w = 0 in Ir ×Br, (4.93)

satisfying
∥v −w∥L2(Ir/2×Br/2) ⩽Kr

−β ∥v − (v)I4r×B4r
∥
L2(I4r×B4r)

.

Then there exists a constant C ∶= C(β,K, d, λ) <∞ such that for every radius r ∈ [X,R],

1
r
∥v − (v)Ir×Br∥L2(Ir×Br) ⩽

C

R
∥v − (v)IR×BR∥L2(IR×BR) .

To prove Proposition 4.3.1, we apply the previous lemma and combine it with Theo-
rem 4.3.2. One has to face the following difficulty: we want to apply the previous result in
the setting of percolation where the functions are only defined on the infinite cluster and not
on Rd as in the statement of Lemma 4.3.3.

To overcome this issue, the idea is to use the partition P to extend the function u, using
the definition of the coarsened map [u]P stated in (4.40). The strategy of the proof is then
the following:

(i) Proving that the function [u]P is a good approximation of the function u. In particular
we wish to prove that if the map u is well-approximated by a σ̄2-caloric function, then
the map [u]P is also well-approximated by a σ̄2-caloric function.

(ii) Apply Lemma 4.3.3 to the function [u]P to obtain a large-scale C0,1-regularity estimate
for this map.

(iii) Transfer the result from the function [u]P to the function u.

The details are carried out in the following proof.

Proof. Using the translation invariance of the model, we can assume without loss of generality
that y = 0. We also let δ0 be the exponent which appears in the Meyers estimate stated in
Proposition 4.2.5 and consider the minimal scaleMMeyers(0) given by Proposition 4.2.5. We
consider the minimal scaleMhom,δ0(0) given by Theorem 4.3.2 and we let α be the exponent
which appears in the estimate (4.61). We set q ∶= max ( d

α ,4d) and letMq(P) be a minimal
scale provided by Proposition 4.2.2. In particular, one has, for each radius r ⩾Mq(P),

r−d ∑
x∈Zd∩Br

size (◻P(x))q ⩽ C and sup
x∈Zd∩Br

size (◻P(x)) ⩽ r
1
q . (4.94)

The reasons justifying the choice of the exponents q will be become clear later in the proofs.
By Proposition 4.2.2, one knows that the minimal scaleMq(P) satisfies the stochastic inte-
grability estimate

Mq(P) ⩽ Os (C) .
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We then letMC0,1−reg(0) be the minimal scale defined by the formula

MC0,1−reg(0) ∶= max (Mq(P),MMeyers(0),Mhom,δ0(0)) .

In the rest of the proof, we assume that the radii r and R are always larger than this minimal
scale. We also note that, under the assumption r ⩾MC0,1−reg(0), we can compare the volume
of the ball Br and the cardinality of C∞ ∩Br, and we have the estimate

crd ⩽ ∣C∞ ∩Br ∣ ⩽ Crd.

This is a consequence of the assumptionMC0,1−reg(0) ⩾Mhom,δ0(0) and the estimate (4.62).
We apply Theorem 4.3.2 to the function u on the parabolic cylinder Ir × (C∞ ∩ Br),

with the boundary condition f = u and with the exponent δ0; this proves that there exists a
function ū ∈H1

par(Ir ×Cv(Zd ∩Br)), which is a solution of the equation (4.93), such that

1
r
∥u − ū∥L2(Ir×(C∞∩Br)) ⩽ Cr

−α ∥∇u∥L2+δ0(Ir×(C∞∩Br)) . (4.95)

We split the proof into 4 steps. In the first two steps, we prove that we can apply Lemma 4.3.3
with the coarsened function [u]P , we then post-process the result in Steps 3 and 4 and deduce
Proposition 4.3.1.

Step 1. In this step, we post-process the result of Theorem 4.3.2: in the statement of the
estimate (4.95), the right-hand side is expressed with an L2+δ0-norm, for some small strictly
positive exponent δ0. The goal of this step is to remove this additional assumption. To this
end, we use the assumption r ⩾MC0,1−reg(0) ⩾MMeyers(0), which implies

∥∇u∥L2+δ0(Ir×(C∞∩Br)) ⩽ C ∥∇u∥L2(I2r×(C∞∩B2r)) .

We then apply the parabolic Caccioppoli inequality, which is stated in Proposition 4.2.4, and
reads

∥∇u∥L2(I2r×(C∞∩B2r)) ⩽
C

r
∥u − (u)I4r×(C∞∩B4r)∥L2(I4r×(C∞∩B4r))

.

Combining the two previous displays with the inequality (4.95) shows

∥u − ū∥L2(Ir×(C∞∩Br)) ⩽ Cr
−α ∥u − (u)I4r×(C∞∩B4r)∥L2(I4r×(C∞∩B4r))

, (4.96)

and Step 1 is complete.

Step 2. The goal of this step is to prove that the L2-norm of the difference [u]P − ū on
the continuous parabolic cylinder Ir/2 ×Br/2 is small: we prove that there exists an exponent
β > 0 such that

∥[u]P − ū∥L2(Ir/2×Br/2) ⩽ Cr
−β ∥[u]P − ([u]P)I4r×B4r

∥
L2(I4r×B4r)

.

The proof of this inequality relies on the estimate (4.96), which establishes that ū is a good
approximation of u on the infinite cluster, together with the following parabolic regularity
result: since ū is σ̄2-caloric on the parabolic cylinder Ir ×Br, one has the estimate

∥∇ū∥L∞(Ir/2×Br/2) ⩽ Cr
−1 ∥ū − (ū)Ir×Cv(Zd∩Br)∥L2(Ir×Cv(Zd∩Br))

. (4.97)
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We then consider a (continuous) triadic cube ◻ of the partition P such that ◻∩Br/2 ≠ ∅.
By definition of the coarsening stated in (4.41), one sees that, for each time t ∈ Ir/2,

∥[u]P (t, ⋅) − ū(t, ⋅)∥L∞(◻) ⩽ ∥[u]P (t, ⋅) − [ū]P (t, ⋅)∥L∞(◻) + ∥[ū]P (t, ⋅) − ū(t, ⋅)∥L∞(C∞∩◻)

= ∥[u − ū]P (t, ⋅)∥L∞(◻) + ∥[ū]P (t, ⋅) − ū(t, ⋅)∥L∞(C∞∩◻) .

We then note that, by definition of the coarsening stated in (4.41), the L∞-norm of the func-
tion [u − ū]P is smaller than the L∞-norm of the function u− ū. Combining this observation
with the estimate (4.43), we obtain

∥[u]P (t, ⋅) − ū(t, ⋅)∥L∞(◻) ⩽ ∥u(t, ⋅) − ū(t, ⋅)∥L∞(C∞∩◻) + size (◻) ∥∇ū(t, ⋅)∥L∞(◻̂) ,

where the set ◻̂ stands for the union of the cube ◻ and all its neighbors in the partition P.
We use the L∞ −L2 estimate, valid in the discrete setting,

∥u(t, ⋅) − ū(t, ⋅)∥L∞(C∞∩◻) ⩽ ∥u(t, ⋅) − ū(t, ⋅)∥L2(C∞∩◻) ,

together with the regularity estimate (4.97) and the estimate (4.94) on the sizes of the cubes
of the partition P to deduce

∥[u]P − ū∥L2(Ir/2×◻) ⩽ size (◻)d/2 ∥u − ū∥L2(Ir/2×(C∞∩◻))

+C size (◻)1+d/2 r−1 ∥ū − (ū)Ir×Cv(Zd∩Br)∥L2(Ir×Cv(Zd∩Br))
.

We then use the bounds (4.94) to estimate the size of the cube ◻ and sum over all the cubes
of the partition P which intersect the ball Br/2, and use the estimate 1 + d

2 ⩽ d,

∥[u]P − ū∥L2(Ir/2×Br/2) ⩽ Cr
α
2 ∥u − ū∥L2(Ir×(C∞∩Br))+Cr

−1+α ∥ū − (ū)Ir×Cv(Zd∩Br)∥L2(Ir×Cv(Zd∩Br))
.

An estimate on the first term on the right side is provided by the estimate (4.96). For the
second term on the right-hand side, we apply the Poincaré inequality ([18, Corollary 3.4]),
use the estimate (4.71) for f = u, and apply Proposition 4.2.4 (the parabolic Caccioppoli
inequality) and Proposition 4.2.5 (the interior Meyers estimate)

∥ū − (ū)Ir×Cv(Zd∩Br)∥L2(Ir×Cv(Zd∩Br))
⩽ r ∥∇ū∥L2(Ir×Cv(Zd∩Br)) ⩽ r ∥∇u∥L2+δ(Ir×(C∞∩Br))

⩽ Cr ∥∇u∥L2(I2r×(C∞∩B2r)) ⩽ C ∥u − (u)I4r×(C∞∩B4r)∥L2(I4r×(C∞∩B4r))
.

Thus, we combine the two estimates and obtain

∥[u]P − ū∥L2(Ir/2×Br/2) ⩽ r
α
2 r−α ∥u − (u)I4r×(C∞∩B4r)∥L2(I4r×(C∞∩B4r))

+Cr−1+α ∥u − (u)I4r×(C∞∩B4r)∥L2(I4r×(C∞∩B4r))
. (4.98)

We then set the value β ∶= α
2 . Since, by the identity (4.89), the value of the exponent α is

smaller than 1
2 , we have the inequality 1 − α ⩾ α

2 . This implies

∥[u]P − ū∥L2(Ir/2×Br/2) ⩽ Cr
−β ∥u − (u)I4r×(C∞∩B4r)∥L2(I4r×(C∞∩B4r))

.
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By definition of the coarsened function [u]P , we also have

∥u − (u)I4r×(C∞∩B4r)∥L2(I4r×(C∞∩B4r))
⩽ ∥u − ([u]P)I4r×B4r

∥
L2(I4r×(C∞∩B4r))

⩽ C ∥[u]P − ([u]P)I4r×B4r
∥
L2(I4r×B4r)

.
(4.99)

The proof of Step 2 is complete.
Step 3. In the two previous steps, we proved that the coarsened function [u]P satisfies

the assumption of Lemma 4.3.3, with the choice X =MC0,1−reg(0). We consequently apply
the lemma and obtain that there exists a constant C ∶= C (d,p, λ) < ∞ such that, for every
pair of radii r,R satisfying R ⩾ r ⩾MC0,1−reg(0),

1
r
∥[u]P − ([u]P)Ir×Br∥L2(Ir×Br)

⩽ C
R

∥[u]P − ([u]P)IR×BR∥L2(IR×BR)
. (4.100)

Then, we apply once again the estimate (4.99) for the left-hand side of (4.100) in Ir×(C∞∩Br)
and we obtain

1
r
∥u − (u)Ir×(C∞∩Br)∥L2(Ir×(C∞∩Br))

⩽ C
R

∥[u]P − ([u]P)IR×BR∥L2(IR×BR)
. (4.101)

Step 4. In this final step, we upgrade the large-scale C0,1-regularity estimate into the
estimate (4.91). The strategy is to use an L∞t L

2
x regularity estimate which is valid for the

a-caloric functions since the environment a is assumed to be time independent. This result
is stated in Lemma 4.2.2 and we apply it to the function u to obtain, for each r ⩾ 1,

sup
t∈Ir/2

∥∇u (t, ⋅)∥L2(C∞∩Br/2) ⩽
C

r
∥u − (u)Ir×(C∞∩Br)∥L2(Ir×(C∞∩Br))

.

Combining this result with (4.101) completes the proof of Proposition 4.3.1 with the radius
r
2 instead of r; this is a minor difference which can be fixed by standard arguments.

Decay of the gradient of the heat kernel

The objective of this section is to post-process the regularity theory established in Propo-
sition 4.3.1 and to apply it to the heat kernel. Together with Theorem 4.3.1, we deduce
Theorem 4.1.3.

Proof of Theorem 4.1.3. We fix a time t ∈ (0,∞), two points x, y ∈ Zd and work on the event
{y ∈ C∞}. We letMC0,1−reg(x) be the minimal scale provided by Proposition 4.3.1 and, for
z ∈ Zd, we let TNA(z) be the minimal time provided by Theorem 4.3.1. We first define the
minimal time T ′NA(x) by the formula

T ′NA(x) ∶= sup{t ∈ [1,∞) ∶ ∃z ∈ Bt(x) such that TNA(z) ⩾ t} , (4.102)

so that for every time t larger than this minimal time, every point z ∈ C∞ ∩Bt(x), and every
point z′ ∈ C∞, one has the estimate

p(t, z, z′) ⩽ ΦC (t, z − z′) .

By using the symmetry of the heat kernel, we also have, for each time t ⩾ T ′NA(x), for each
point z ∈ C∞ ∩Bt(x), and each point z′ ∈ C∞,

p(t, z′, z) ⩽ ΦC (t, z − z′) . (4.103)
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Additionally, we claim that this minimal time satisfies the stochastic integrability estimate

T ′NA(x) ⩽ Os (C) . (4.104)

The proof of the estimate (4.104) relies on an application of Lemma 4.1.1 by choosing

Xn ∶= sup
z∈Zd∩B3n(x)

3−nTNA(z),

and we refer to the computation (4.47) for the details of the argument. We then define the
minimal scale

Mreg(x) ∶= max (MC0,1−reg(x),
√
T ′NA(x)) . (4.105)

Using the definition of theOs notation, the stochastic integrability estimates (4.90) and (4.104),
one has, by reducing the size of the exponent s if necessary,

Mreg(x) ⩽ Os (C) .

In particular the tail of the random variable Mreg(x) satisfies the inequality (4.20). We
define, for τ ∈ [−t,∞) and z ∈ C∞,

u(τ, z) ∶= p(t + 1 + τ, z, y).

We let R ∶=
√
t

2 and note that the function u is solution of the parabolic equation on the
cylinder IR × (C∞ ∩BR(x)). Applying Proposition 4.3.1 with the values r,R and using the
assumption R ⩾ r ⩾Mreg(x), we obtain

sup
τ∈Ir

∥∇u (τ, ⋅)∥L2(C∞∩Br(x)) ⩽
C

t1/2
∥[u]P − ([u]P)IR×BR(x)∥L2(IR×BR(x))

. (4.106)

We then note that the assumption R ⩾Mreg(x) implies t
4 ⩾ T ′NA(x) and allows to apply the

estimate (4.103) to bound the right side of the previous display. This shows

∥[u]P − ([u]P)IR×BR(x)∥L2(IR×BR(x))
⩽ ΦC(t, y − x).

Combining the previous display with (4.106), considering the specific value τ = −1, and
increasing the value of the constant C shows

∥∇p (t, ⋅, y)∥L2(C∞∩Br(x)) ⩽ t
−1/2ΦC(t, y − x).

The proof of Theorem 4.1.3 is complete.

4.4 Quantitative homogenization of the heat kernel

In this section, we establish the theorem of quantitative homogenization of the parabolic
Green’s function, Theorem 4.1.1. From now on, we fix a point y ∈ Zd and only work on the
event {y ∈ C∞}. The proof of this result relies on a two-scale expansion which takes the
following form:

h(t, x, y) ∶= θ(p)−1 (p̄ (t, x − y) +
d

∑
k=1
Dek p̄(t, x − y)φek(x)) , (4.107)

where the correctors φek are normalized around the point y, following the procedure described
after Proposition 4.2.6.

As is common for two-scale expansions, the proof relies on two important ingredients:
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• The sublinearity of the corrector, stated in Proposition 4.2.6;

• The sublinearity of the flux stated in Proposition 4.2.7.

The analysis also requires the estimates on the parabolic Green’s function and its gradient
provided by Theorem 4.3.1 and Theorem 4.1.3. We now present a sketch of the proof of
Theorem 4.1.1. The result can be rewritten by using the ΦC notation: for each exponent
δ > 0 and each x ∈ C∞,

∣p(t, x, y) − θ(p)−1p̄(t, x − y)∣ ⩽ t−
1
2+δΦC(t, x − y),

√
t ⩾ Tpar,δ(y). (4.108)

To prove this result, we first prove a weighted L2-estimate (see (4.53) for the definition of
ΨC)

∥(p(t, ⋅, y) − θ(p)−1p̄(t, ⋅ − y)) exp (ΨC(t, ∣ ⋅ −y∣))∥L2(C∞) ⩽ Ct
− d4−

1
2+δ, (4.109)

and deduce the estimate (4.108) thanks to the semigroup property, this is proved in Sec-
tion 4.4.3. Proving the estimate (4.109) is the core of the proof. To this end, we need to
introduce a mesoscopic time 1 ≪ τ ≪ t and a number of intermediate functions which are
listed below:

• The two-scale expansion h defined in (4.107);

• The function q ∶= q(⋅, ⋅, τ, y) introduced in (4.110);

• The function v ∶= v(⋅, ⋅, τ, y) introduced in (4.124);

• The function w defined by the formula w ∶= h − v − q.

The idea is to use these functions to split the difference

p(t, x, y) − θ(p)−1p̄(t, x − y) = (p(t, x, y) − q(t, x, τ, y)) − v(t, x, τ, y)
−w(t, x, τ, y) + (h(t, x, y) − θ(p)−1p̄(t, x − y))) ,

and then to prove that the L2-norm of each of the terms is smaller than t−
d
4−

1
2+δ. More

specifically, we organize the proof as follows:

(i) in Lemma 4.4.1, we prove that the term corresponding to the difference (p−q) is small;

(ii) in Lemma 4.4.2, we prove that the term corresponding to the function v is small;

(iii) in Proposition 4.4.1, we prove that the term corresponding to the function w is small;

(iv) the term (h(t, x, y) − θ(p)−1p̄(t, x − y))) is proved to be small by using the sublinearity
of the corrector, the proof is straightforward and not stated in a specific lemma.

The rest of this section is organized as follows. Section 4.4.1 is devoted to the proof of
Lemmas 4.4.1 and 4.4.2. Section 4.4.2 is devoted to the proof of Proposition 4.4.1 and is the
core of the analysis: we make use of the regularization Lemmas proved in Section 4.4.1 as well
as the various results recorded in the previous sections to perform the two-scale expansion.
In Section 4.4.3, we post-process the results and prove the quantitative convergence of the
heat kernel, Theorem 4.1.1.
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4.4.1 Two regularization steps

We now introduce the function q. For a fixed initial time τ > 0 and a vertex y ∈ C∞, we let
(t, x)↦ q(t, x, τ, y) be the solution of the parabolic problem

{ ∂tq −∇ ⋅ (a∇q) = 0 in (τ,∞) ×C∞,
q(τ, ⋅, τ, y) = θ (p)−1 p̄(τ, ⋅ − y) on C∞.

(4.110)

A reason justifying this construction is that the initial condition of the heat kernel p, which is
a Dirac at y, is too singular and one cannot perform the two-scale expansion due to this lack of
regularity. The idea is thus to replace the Dirac by a smoother function, the function p̄(τ, ⋅),
and to exploit its more favorable regularity properties to perform the two-scale expansion
(see Section 4.4.2). For this strategy to work, one needs to choose the value of the time τ to
be both:

• Large enough so that so that the function p̄(τ, ⋅) is regular enough: in particular we
want τ ≫ 1;

• Small enough so that the function q is a good approximation of the heat kernel p: we
want τ ≪ t.

The choice of τ will be τ ∶= t1−κ, for some small exponent κ whose value is decided at the
end of the proof.

The following lemma states that the function q is a good approximation of the heat kernel
p, when the coefficient τ is chosen such that 1 ≪ τ ≪ t. In the following lemma, given an
exponent α > 0, we use the notation Tdense,α(y) to denote the minimal time introduced in
Proposition 4.A.3, above which the mass of the homogenized heat kernel p̄ is almost equal
to the density of the infinite cluster C∞ up to an error of order t− 1

2+α.

Lemma 4.4.1. For each exponent α > 0 and each vertex y ∈ Zd, we let Tapprox,α(y) be the
minimal time defined by the formula

Tapprox,α(y) ∶= max (Mreg(y)2,Tdense,α(y)) .

This random variable satisfies the stochastic integrability estimate

Tapprox,α(y) ⩽ Os (C) ,

and the following property: there exists a positive constant C ∶= C(d,p, λ,α) <∞ such that, on
the event {y ∈ C∞}, for every pair of times t, τ ∈ (0,∞) such that t ⩾ 3τ and τ ⩾ Tapprox,α(y),
and for every x ∈ C∞, one has

∣q(t, x, τ, y) − p (t, x, y)∣ ⩽
⎛
⎝
(τ
t
)

1
2
+ τ−

1
2+α

⎞
⎠

ΦC(t, x − y). (4.111)

Proof. Before starting the proof, we note that the assumptions of the lemma imply the
following results:

• The two inequalities t ⩾ 3τ and τ ⩾ Tapprox,α(y) imply the estimates t ⩾ Tapprox,α(y)
and t − τ ⩾ Tapprox,α(y);

• By definition, the minimal time Tapprox,α(y) is larger than the minimal times Tdense,α(y),
T ′NA(y) and the square of the minimal scales MPoinc(y) and Mreg(y). We can thus
apply the corresponding results in the proof.
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Step 1: Set up. We fix a vertex y ∈ Zd and work on the event {y ∈ C∞}. We first record
the following estimate: under the assumption Tdense,α(y), for each radius r ⩾

√
τ , we can

compare the volume of the ball Br(y) and the cardinality of the set C∞∩Br(y), and we have
the estimate

crd ⩽ ∣C∞ ∩Br(y)∣ ⩽ Crd.

We consider a point x in the infinite cluster C∞ and two times t, τ > 0 such that t ⩾ τ ⩾ Tapprox,α(y).
By Duhamel’s principle, one has

q(t, x, τ, y) − p(t, x, y) = ∫
C∞

(θ(p)−1p̄ (τ, z − y) − p(τ, z, y))p(t − τ, x, z)dz. (4.112)

Using the inequality τ ⩾ Tdense,α(y) and Proposition 4.A.3, we have the inequality

∣θ(p)−1∫
C∞

p̄ (τ, z − y) dz − 1∣ ⩽ Cτ−
1
2+α.

Since the mass of the transition kernel p(τ, ⋅, y) on the infinite cluster is equal to 1, we deduce
that

∣∫
C∞

(θ(p)−1p̄ (τ, z − y) − p(τ, z, y)) dz∣ ⩽ Cτ−
1
2+α.

We can thus subtract a constant term equal to (p(τ, x, ⋅))C∞∩B√τ (y) in the right side of (4.112)

up to a small cost of order τ− 1
2+α,

∣q(t, x, τ, y) − p(t, x, y)∣

⩽ ∣∫
C∞

(θ(p)−1p̄ (τ, z − y) − p(τ, z, y)) (p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B√τ (y)) dz∣

+Cτ−
1
2+α ∣(p(t − τ, x, ⋅))C∞∩B√τ (y)∣ .

Using the inequality t − τ ⩾ T ′NA(y) and (4.102), we apply Theorem 4.3.1 to obtain

∣q(t, x, τ, y) − p(t, x, y)∣

⩽ ∫
C∞

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B√τ (y)∣ dz + τ
− 1

2+αΦC(t, x − y). (4.113)

We then treat the first term on the right side of (4.113). The strategy is to split the integral
into scales: for each integer n ⩾ 1, we let An be the dyadic annulus

An ∶= {z ∈ Zd ∶ 2n
√
τ ⩽ ∣z − y∣ < 2n+1√τ}

and then compute

∫
C∞

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B√τ (y)∣ dz (4.114)

= ∫
C∞∩B√τ (y)

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B√τ (y)∣ dz

+
∞
∑
n=0
∫

C∞∩An
ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B√τ (y)∣ dz.

Step 2: Multiscale analysis in the ball B√
τ(y). The term pertaining to small scales

B√
τ(y) can be estimated thanks to the estimate ΦC(τ, z − y) ⩽ Cτ−d/2 and the Poincaré
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inequality. This latter inequality can be applied since we assumed τ ⩾ MPoinc(y)2. This
gives

∫
C∞∩B√τ (y)

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B√τ (y)∣ dz (4.115)

⩽ C ∥p(t − τ, x, ⋅) − (p(t − τ, x, ⋅))C∞∩B√τ (y)∥L2(C∞∩B√τ (y))

⩽ C
√
τ ∥∇yp(t − τ, x, ⋅)∥L2(C∞∩B√τ (y))

,

where the notation ∇y means that the gradient is on the second spatial variable. We now
estimate the term on the right side thanks to Theorem 4.1.3, or more precisely Remark 4.1.2,
which can be applied since we assumed t − τ ⩾Mreg(y)2. We have

∥∇p(t − τ, x, ⋅)∥
L2(C∞∩B√τ (y))

⩽ C(t − τ)−1/2ΦC (t − τ, x − y)

⩽ Ct−1/2ΦC (t, x − y) ,

where to go from the first line to the second one we used that t − τ ⩾ 2
3 t and increased the

value of the constant C.
A combination of the two previous displays shows

∫
C∞∩B√τ (y)

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B√τ (y)∣ dz ⩽ C (τ
t
)

1/2
ΦC (t, x − y) .

(4.116)
This completes the estimate of the term corresponding to the small scales in (4.114).

Step 3: Multiscale analysis in the annuli An. To estimate the terms corresponding to the
dyadic annuli, we fix some integer n ∈ N and study the integral in the region An; thanks to
the triangle inequality, we insert a constant term equal to (p(t − τ, x, ⋅))C∞∩B2n+1√τ (y)

in the
integral,

∫
C∞∩An

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B√τ (y)∣ dz

⩽ ∫
C∞∩An

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B2n+1√τ (y)
∣ dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4.117)−a

(4.117)

+
(∫C∞∩An ΦC(τ, z − y)dz)

∣C∞ ∩B√
τ(y)∣

∫
C∞∩B√τ (y)

∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B2n+1√τ (y)
∣ dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4.117)−b

.

Step 3.1: Estimate for the term (4.117)-a in the annuli An. We estimate (4.117)-a and
distinguish three types of scales:

(i) The small scales which are defined as the annuli An such that 2n+2√τ ⩽
√
t;

(ii) The intermediate scales which are defined as the annuli An such that t ⩾ 2n+2√τ >
√
t;

(iii) The large scales which are defined as the annuli An such that 2n+2√τ > t.
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The following estimate for the function ΦC is easy to check by its definition (4.51) and is used
several times in the proof: for any constant C ′ > C, there exists a constant c > 0 depending
only on the values of C and C ′ such that

( sup
C∞∩An

ΦC(τ, ⋅ − y)) ⩽ e−c2
n√τ ( inf

C∞∩An
ΦC′(τ, ⋅ − y)) .

This implies that for any positive integer k ∈ N, there exists a constant Ck depending only
on the integer k and the constant C such that

( sup
C∞∩An

ΦC(τ, ⋅ − y)) ⩽ (2n
√
τ)−k ( inf

C∞∩An
ΦCk(τ, ⋅ − y)) . (4.118)

Step 3.1.1: Estimate for (4.117)-a in the small scales 2n+2√τ ⩽
√
t. We first focus on the

small scales and apply the Poincaré inequality. With a computation similar to (4.115), one
can estimate the first term in the right side of (4.117)

∫
C∞∩An

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B2n+1√τ
∣ dz

⩽ ( sup
C∞∩An

ΦC(τ, ⋅ − y))∫
C∞∩B2n+1√τ (y)

∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B2n+1√τ (y)
∣ dz

⩽ ( sup
C∞∩An

ΦC(τ, ⋅ − y))C(2n+1√τ)
d
2+1 ∥∇yp(t − τ, x, ⋅)∥L2(C∞∩B2n+1√τ (y)})

.

Using the assumption t − τ ⩾M2
reg(y), we apply Theorem 4.1.3. This shows

∥∇yp(t − τ, x, ⋅)∥L2(C∞∩B2n+1√τ (y))
⩽ Ct−1/2 (2n+1√τ)

d
2 ΦC(t, x − y).

Using the explicit formula for the function ΦC stated in (4.51), one has the estimate

( sup
C∞∩An

ΦC(τ, ⋅ − y)) (2n+1√τ)d ⩽ C2−2n.

Combining the three previous displays shows, for each integer n ∈ N such that 2n+2√τ ⩽
√
t,

∫
C∞∩An

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B2n+1√τ
∣ dz ⩽ C2−n (τ

t
)

1
2

ΦC(t, x − y).
(4.119)

Step 3.1.2: Estimate for (4.117)-a in the intermediate scales t ⩾ 2n+2√τ >
√
t. We now

treat the case of the intermediate scales. In this case, we have 2n+2 ⩾
√

t
τ , thus by the

estimate (4.118) for k = 2, one has

( sup
C∞∩An

ΦC(τ, ⋅ − y)) ⩽ 2−n (τ
t
)

1
2
( inf

C∞∩An
ΦC2(τ, ⋅ − y)) . (4.120)

Using the assumptions t − τ ⩾ T ′NA(y), we can apply Theorem 4.3.1, the previous esti-
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mate (4.120) and the convolution property (4.52) for the map ΦC . We obtain

( sup
C∞∩An

ΦC(τ, ⋅ − y))∫
C∞∩B2n+1√τ (y)

∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B2n+1√τ (y)
∣ dz(4.121)

⩽2−n (τ
t
)

1
2
( inf

C∞∩An
ΦC2(τ, ⋅ − y))∫

C∞∩B2n+1√τ (y)
ΦC (t − τ, x − z) dz

⩽2−n (τ
t
)

1
2

∫
C∞∩B2n+1√τ (y)

ΦC2(τ, y − z)ΦC (t − τ, x − z) dz

⩽2−n (τ
t
)

1
2

ΦC (t, x − y) ,

by increasing the value of the constant C and using (4.52) in the last line.
Step 3.1.3: Estimate for the term (4.117)-a in the large scales 2n+2√τ > t. The compu-

tation is similar to the one performed in (4.121) up to two differences listed below:

(i) For these scales, we cannot apply the Gaussian bounds on the heat kernel given by
Theorem 4.3.1. Instead, we thus apply the Carne-Varopoulos bound which is stated in
Proposition 4.2.8 and can be rewritten with the notation ΦC : for each x, z ∈ C∞,

p(t, x, z) ⩽ t
d
2 ΦC (t, x − z) ;

(ii) We use the inequality 2n+2√τ > t and the estimate (4.118) for k = d
2 + 2 to obtain the

bound in the annulus An

( sup
C∞∩An

ΦC(τ, ⋅ − y)) ⩽ 2−nt−
d
2 (τ

t
)

1
2
( inf

C∞∩An
ΦC′(τ, ⋅ − y)) ,

for some constant C ′ > C.

We can then perform the computation (4.121) and obtain the estimate

∫
C∞∩An

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))B2n+1√τ (y)
∣ dz ⩽ C2−n (τ

t
)

1
2

ΦC(t, x − y).
(4.122)

Combining the estimates (4.119), (4.121) and (4.122), we have obtained, for each integer
n ∈ N,

∫
C∞∩An

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))B2n+1√τ (y)
∣ dz ⩽ C2−n (τ

t
)

1
2

ΦC(t, x − y).
(4.123)

Step 3.2: Estimate for (4.117)-b in the annuli An. The second term (4.117)-b can be
estimated thanks to a similar strategy: we first apply the inequality (4.118) with k = d

(∫C∞∩An ΦC(τ, z − y)dz)
∣C∞ ∩B√

τ(y)∣
⩽ ∣C∞ ∩An∣

∣C∞ ∩B√
τ(y)∣

sup
C∞∩An

ΦC(τ, ⋅ − y)

⩽ 2dn sup
C∞∩An

ΦC(τ, ⋅ − y)

⩽ inf
C∞∩An

ΦC′(τ, ⋅ − y),
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for some constant C ′ > C. Using this estimate, we deduce

(∫C∞∩An ΦC(τ, z − y)dz)
∣C∞ ∩B√

τ(y)∣
∫

C∞∩B√τ (y)
∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B2n+1√τ (y)

∣ dz

⩽ inf
C∞∩An

ΦC′(τ, ⋅ − y)∫
C∞∩B2n+1√τ (y)

∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B2n+1√τ (y)
∣ dz.

We can then apply the same proof as for the first term in the right side of (4.117). This
proves the inequality

(∫C∞∩An ΦC(τ, z − y)dz)
∣C∞ ∩B√

τ(y)∣
∫

C∞∩B√τ (y)
∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B2n+1√τ (y)

∣ dz

⩽ C2−n (τ
t
)

1
2

ΦC(t, x − y).

Combining the previous inequality with the estimate (4.123), we obtain, for each integer
n ∈ N,

∫
C∞∩An

ΦC(τ, z − y) ∣p(t − τ, x, z) − (p(t − τ, x, ⋅))C∞∩B√τ (y)∣ dz ⩽ C2−n (τ
t
)

1
2

ΦC(t, x − y).

Combining this inequality with (4.113), (4.114), (4.116), and summing over the integer n ∈ N
completes the proof of Lemma 4.4.1.

We now introduce a second intermediate function useful in the proof of Theorem 4.1.1,
the function v which is defined as follows. For some fixed (τ, y) ∈ (0,∞) × C∞, we let
(t, x)↦ v(t, x, τ, y) be the solution of the parabolic equation

⎧⎪⎪⎨⎪⎪⎩

∂tv(⋅, ⋅, τ, y) −∇ ⋅ a∇v(⋅, ⋅, τ, y) = 0 in (τ,∞) ×C∞,

v(τ, ⋅, τ, y) = h(τ, ⋅, y) − θ (p)−1 p̄(τ, ⋅ − y) in C∞.
(4.124)

To define this function we run the parabolic equation starting from time τ and until time t
with the initial condition given by the difference between the two-scale expansion h defined
in (4.107) and the homogenized heat kernel θ (p)−1 p̄(τ, ⋅ − y). By the sublinearity of the
corrector stated in Proposition 4.2.6, we expect the function h(τ, ⋅, y) − θ (p)−1 p̄(τ, ⋅ − y) to
be small. The following proposition states that the solution of the parabolic equation with
this initial condition remains small (in the sense of the inequality (4.125)).
Lemma 4.4.2. For any exponent α > 0, there exists a positive constant C(d, λ,p, α) <∞
such that for each pair of times t, τ ∈ (0,∞) satisfying t ⩾ 3τ , (t − τ) ⩾ T ′NA(y), and√
τ ⩾Mcorr,α(y), the following estimate holds

∣v(t, x, τ, y)∣ ⩽ Cτ−
1
2+

α
2 ΦC(t, x − y). (4.125)

Proof. The proof relies on two main ingredients: the quantitative sublinearity of the corrector
and an explicit formula for the function v in terms of the heat kernel p.

First, by the definition (4.124), we have the formula

v(t, x, τ, y) = ∫
C∞

(h(τ, z, y) − θ(p)−1p̄(τ, z − y))p(t − τ, x, z)dz

= ∫
C∞

θ(p)−1 (
d

∑
k=1
Dek p̄(τ, z − y)φek(z))p(t − τ, x, z)dz.

We then apply the four following estimates:
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(i) The sublinearity of the corrector: under the assumption
√
τ ⩾ Mcorr,α(y) and the

normalization convention chosen for the corrector in the definition of the two-scale
expansion h stated in (4.107), one has, for each k ∈ {1, . . . , d},

∣φek(z)∣ ⩽
⎧⎪⎪⎨⎪⎪⎩

τ
α
2 if ∣z − y∣ ⩽ τ

1
2 ,

∣z − y∣α if ∣z − y∣ ⩾ τ
1
2 ;

(ii) The Gaussian bounds on the transition kernel p(t−τ, x, ⋅), valid under the assumptions
τ ⩾ T ′NA(y) and t ⩾ 3τ : for each z ∈ C∞ ∩Bt−τ(y),

p(t − τ, x, z) ⩽ ΦC (t − τ, x − z) ⩽ ΦC′ (t, x − z) ,

where the second inequality follows from the inequality t − τ ⩾ 2
3 t (by increasing the

value of the constant C);

(iii) The bound on the transition kernel p (t − τ, x, z): for any point z ∈ C∞ ∖Bt−τ(y),

p(t − τ, x, z) ⩽ (t − τ)d/2ΦC (t − τ, z − x) ,

which is a consequence of the definition of the map ΦC stated in (4.51), Proposition 4.2.8
and the assumption t ⩾ 3τ (by increasing the value of the constant C);

(iv) The estimate on the homogenized heat kernel p̄, which follows from standard results
from the regularity theory,

∣Dek p̄(τ, z − y)∣ ⩽ Cτ
− 1

2 ΦC(τ, z − y).

We obtain the inequality

∣v(t, x, τ, y)∣ ⩽ Cτ−
1
2+

α
2 ∫

C∞∩B√τ (y)
ΦC (τ, z − y)ΦC (t − τ, x − z) dz

+Cτ−
1
2 ∫

C∞∩(Bt−τ (y)∖B√τ (y))
∣z − y∣αΦC (τ, z − y)ΦC (t − τ, x − z) dz

+Cτ−
1
2 (t − τ)d/2∫

C∞∖Bt−τ (y)
∣z − y∣αΦC (τ, z − y)ΦC (t − τ, x − z) dz.

(4.126)

We then estimate the three terms in the right side of (4.126) separately. For the first term,
we use the inequality (4.52) and obtain, for some constant C ′ > C,

τ−
1
2+

α
2 ∫

C∞∩B√τ (y)
ΦC (τ, z − y)ΦC (t − τ, x − z) dz ⩽ τ−

1
2+

α
2 ∫

Zd
ΦC (τ, z − y)ΦC (t − τ, x − z) dz

⩽ τ−
1
2+

α
2 ΦC′ (t, x − y) . (4.127)

To estimate the second term, we use the estimate (4.118) and deduce that

∣z − y∣αΦC (τ, z − y) ⩽ τ
α
2 ΦC′ (τ, z − y) , (4.128)

for some constant C ′ > C. To estimate the third term in the right side of (4.126), we use the
estimate (4.118) again with the value k = d/2 + α (the estimate applies even though k is not
an integer). We obtain that for some constant C ′ > C and for any point z ∈ C∞ ∖Bt−τ(y),

(t − τ)d/2∣z − y∣αΦC (τ, z − y) ⩽ ∣z − y∣d/2+αΦC (τ, z − y) ⩽ ΦC′ (τ, z − y) . (4.129)

Finally combining the identity (4.126) and the estimates (4.127), (4.128), (4.129), we obtain

∣v(t, x, τ, y)∣ ⩽ Cτ−
1
2+

α
2 ΦC′ (t, x − y) .

The proof of Lemma 4.4.2 is complete.
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4.4.2 The two-scale expansion

The main objective of this section is to prove that the weighted L2 norm of the function
w is small in the sense of (4.130). Before starting the proof, we recall the notation for the
function ΨC introduced in (4.53). We also recall the notation convention for discrete and
continuous derivatives:

• In the proof of Proposition 4.4.1, the functions p̄, ψ and η are defined on Rd and
valued in R, for these functions, we use the symbols ∇ and ∆ to denote respectively the
continuous gradient and the continuous Laplacian. To refer to the discrete derivatives,
we use the notations D,D∗,D2,D3 etc.

• All the other functions are defined on the discrete lattice Zd or on the infinite cluster
C∞, for these functions, we use the notation ∇ to denote the discrete gradient defined
on the edges and the notation D for the discrete derivative defined on the vertices,
following the conventions of Section 4.1.6.

Proposition 4.4.1. For every exponent α > 0 , there exists a positive constant C(d,p, λ,α) <∞
such that for every point y ∈ Zd and every time t ∈ (0,∞) such that

√
t ⩾ max (Mcorr,α(y),Mflux,α(y)),

one has, on the event {y ∈ C∞},

∥w(t, ⋅, τ, y) exp(ΨC(t, ∣ ⋅ −y∣))∥L2(C∞) ⩽ C ( t
τ
)

1
2
τ−

d
4−

1
2+

α
2 . (4.130)

Proof. The key is to develop a differential inequality for the function w. The proof is decom-
posed into five steps and is organized as follows. In Step 1, we use the explicit formula for
w and apply the parabolic operator ∂t −∇ ⋅ a∇ to the map w to obtain the formulas (4.131)
and (4.132). In Step 2, we test the equation obtained in (4.131) with the function ψw, where ψ
is a map which is either equal to the constant 1 or equal to the function x↦ exp(ΨC(t, ∣x−y∣).
In the three remaining steps, we treat the different terms obtained and complete the proof
of the estimate (4.130).

Step 1 : Establishing the equation for w. We claim that the function w satisfies the
equation

{
∂tw(⋅, ⋅, τ, y) −∇ ⋅ a∇w(⋅, ⋅, τ, y) = f(⋅, ⋅, y) +D∗ ⋅ F (⋅, ⋅, y) + ξ(⋅, ⋅, y) in (τ,∞) ×C∞,

w(τ, ⋅, y) = 0 in C∞,
(4.131)

where the three functions f ∶ (0,∞) × C∞ × C∞ → R, F ∶ (0,∞) × C∞ × C∞ → Rd and
ξ ∶ (0,∞) ×C∞ ×C∞ → R are defined by the formulas, for each (t, y) ∈ (0,∞) ×C∞,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(t, ⋅, y) = 1
2
σ̄2 (∆p̄(t, ⋅ − y) − (−D∗ ⋅Dp̄(t, ⋅ − y))) +

d

∑
k=1

(∂tDek p̄(t, ⋅ − y))φek(⋅),

[F ]i(t, ⋅, y) =
d

∑
k=1

[aDDek p̄(t, ⋅ − y)]iTei(φek)(⋅), ∀i ∈ {1, . . . , d},

ξ(t, ⋅, y) =
d

∑
k=1
D∗Dek p̄(t, ⋅ − y) ⋅ g̃

∗
ek
(⋅),

(4.132)

where g̃∗ek is a translated version of the flux g̃ek defined by the formula, for each x ∈ C∞,

g̃∗ek(x) ∶=

⎛
⎜⎜⎜⎜
⎝

T−e1 [a (Dφek + ek) −
1
2 σ̄

2ek]1

⋮

T−ed [a (Dφek + ek) −
1
2 σ̄

2ek]d

⎞
⎟⎟⎟⎟
⎠

,
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and we recall the notation [a (Dφek + ek) −
1
2 σ̄

2ek]i introduced in Section 4.1.6 to denote the
ith-component of the vector a (Dφek + ek) −

1
2 σ̄

2ek. In Appendix 4.B, it is proved that the
translated flux g̃∗ek has similar properties as the centered flux g̃ek . In particular, it is proved
in Remark 4.B that, for every radius r ⩾Mflux,α(y),

∥g̃∗ek∥H−1(C∞∩Br(y)) ⩽ Cr
α.

The proof follows from a direct calculation. Since one has the equality (∂t −∇ ⋅ a∇)(v + q)(⋅, ⋅, s, y) = 0,
it suffices to focus on the term h in the definition of w, the details are left to the reader.

Step 2 : A differential inequality. In this step and the rest of the proof, we let ψ be the
function from (0,∞) ×Rd to R which is either:
(i) The constant function equal to 1;

(ii) The function exp(ΨC(t, ∣ ⋅ −y∣)), for some large constant C > 0.
We note that in both cases, the function ψ is smooth and satisfies the following property

∃C̃ > 1, ∀∣h∣ ⩽ 1, ∣∇ψ(⋅ + h)∣ ⩽ C̃ ∣∇ψ∣. (4.133)

This estimate allows to replace the discrete derivative Dψ, by the continuous derivative ∇ψ
by only paying a constant. The strategy of the proof is then to test the equation (4.131)
with the function wψ2 to derive a differential inequality. We first write

∫
C∞

((∂tw −∇ ⋅ a∇w)ψ2w)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LHS

= ∫
C∞

fwψ2 + ∫
C∞

F ⋅D(wψ2) + ∫
C∞

ξwψ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
RHS

. (4.134)

We then estimate the terms on the left and right-hand sides separately. Before starting the
computation, we mention that in the following paragraphs all the derivatives and integrations
are acting on the first spatial variable. For the left-hand side of (4.134), we have

LHS = ∫
C∞

((∂tw −∇ ⋅ a∇w)ψ2w)

= ∫
C∞

1
2
∂t(ψ2w2) − ∫

C∞
(∂tψ)ψw2 + ∫

C∞
∇(ψ2w) ⋅ a∇w.

Using (4.133) and Young’s inequality, we have, for any a ∈ (0,∞),

∫
C∞

∇(ψ2w) ⋅ a∇w ⩾ λ∫
C∞

∣∇w∣2ψ2 − a∫
C∞

∣∇w∣2ψ2 − C̃
2

a
∫

C∞
∣∇ψ∣2w2,

where, following the notation convention recalled at the beginning of this section, the notation
∇ψ denotes the continous gradient for functions ψ, while the notation ∇(ψw) refers to the
discrete gradient on the infinite cluster since the map w is only defined on C∞. By choosing
the value a = λ

2 , the previous display can be rewritten

LHS ⩾ ∫
C∞

1
2
∂t(ψ2w2) + λ

2 ∫C∞
∣∇w∣2ψ2 − ∫

C∞
(∂tψ)ψw2 − 2C̃2

λ
∫

C∞
∣∇ψ∣2w2. (4.135)

We now focus on terms on the right-hand side of the equality (4.134). For the first two terms,
we use Young’s inequality and obtain

∫
C∞

fwψ2 + ∫
C∞

F ⋅D(wψ2) ⩽ ∫
C∞

tf2ψ2 + 1
4t ∫C∞

w2ψ2 + C̃
2

λ
∫

C∞
∣F ∣2ψ2 + λ

4 ∫C∞
∣∇w∣2ψ2

+ λ
2 ∫C∞

∣F ∣2ψ2 + 2C̃2

λ
∫

C∞
∣∇ψ∣2w2.
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A combination of the two previous displays and the identity (4.134) shows

∫
C∞

(1
2
∂t(ψ2w2) + λ

4
∣∇w∣2ψ2) ⩽ ∫

C∞
w2 ((∂tψ)ψ +

1
4t
ψ2 + 4C̃2

λ
∣∇ψ∣2) (4.136)

+2∫
C∞

tf2ψ2 + ( C̃
2

λ
+ λ

2
)∫

C∞
∣F ∣2ψ2 + ∫

C∞
ξwψ2.

The value of the constants in the second line of the estimate (4.136) does not need to be
tracked in the proof, we thus rewrite it in the following form

∫
C∞

(1
2
∂t(ψ2w2) + λ

4
∣∇w∣2ψ2) ⩽ ∫

C∞
w2 ((∂tψ)ψ +

1
4t
ψ2 + 4C̃2

λ
∣∇ψ∣2) (4.137)

+C (∫
C∞

tf2ψ2 + ∣F ∣2ψ2 + ξwψ2) .

To complete the proof, we need to prove that the quantities on the second line of the previous
display are small:

• One needs to prove that the term ∫C∞ ξ(t, ⋅, y)(ψ
2(t, ⋅, y)w(t, ⋅, s, y)) is small, this is

proved in Step 3;

• One needs to prove that the term ∫C∞ (tf2(t, ⋅, y) + ∣F ∣2(t, ⋅, y))ψ2(t, ⋅, y) is small, this
is proved in Step 4.

Step 3 : Estimate of the term ∫C∞ ξ(t, ⋅, y)(ψ
2(t, ⋅, y)w(t, ⋅, s, y)). The term ξ involves the

centered flux g̃∗ek , to prove that this integral is small, the strategy is to use the weak norm
estimate on this function stated in Proposition 4.2.7 and a multiscale argument. Specifically,
the goal of this step is to prove the inequality

∫
C∞

ξψ2w ⩽ Ct−
d
4−1+α2 ∥∇(wψ)∥L2(C∞) +Ct

− d4−
3
2+

α
2 ∥wψ∥L2(C∞) . (4.138)

As in Lemma 4.4.1, we need to split the space into scales and we define the dyadic annuli: for
each integer m ⩾ 1, we let Am be the annulus Am ∶= {z ∈ Zd ∶ 2m−1√t ⩽ ∣z − y∣ < 3 ⋅ 2m

√
t},

we also let A0 ∶= B√
t(y). We then split the proof into two steps:

(i) We first prove the estimate

∫
C∞

ξψ2w ⩽ CΞ1 ∥∇(wψ)∥L2(C∞) +CΞ2 ∥wψ∥L2(C∞) , (4.139)

where the two quantities Ξ1,Ξ2 are defined by the formulas

Ξ1 ∶= (
d

∑
k=1

∞
∑
m=0

(2m
√
t)d ∥g̃∗ek∥

2
H−1(C∞∩Am) ∥D

2p̄(t, ⋅ − y)ψ∥2
L∞(Am))

1
2

,

Ξ2 ∶= (
d

∑
k=1

∞
∑
m=0

(2m
√
t)d ∥g̃∗ek∥

2
H−1(C∞∩Am)

× (∥D3p̄(t, ⋅ − y)ψ∥2
L∞(Am) + ∥D2p̄(t, ⋅ − y)Dψ∥2

L∞(Am) + (3m
√
t)−2 ∥D2p̄(t, ⋅ − y)ψ∥2

L∞(Am)))
1
2 ;

(4.140)
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(ii) We then prove the estimates

Ξ1 ⩽ Ct−
d
4−1+α2 and Ξ2 ⩽ Ct−

d
4−

3
2+

α
2 . (4.141)

The estimate (4.138) is a consequence of the inequalities (4.139) and (4.141).
We now focus on the proof of the inequality (4.139). The strategy is to use a multiscale

analysis. We let η be a smooth cutoff function from Rd to R satisfying the properties

0 ⩽ η ⩽ 1, ∣∇η∣ ⩽ 1, supp(η) ⊆ B3(y), η ≡ 1 in B1(y). (4.142)

For an integerm, we define the rescaled version ηm of η according to the formula ηm ∶= η ( ⋅ −y
2m

√
t
+ y),

we also set the convention η−1,y ≡ 0. This function satisfies the property: for each m ∈ N,

∣∇ηm∣ ⩽ (2m
√
t)−1

, supp(ηm) ⊆ B2m+1
√
t(y), ηm ≡ 1 in B2m

√
t(y), supp(ηm−ηm−1) ⊆ Am.

We also note that the family of functions ηm can be used as a partition of unity and we have

1 =
∞
∑
m=0

(ηm − ηm−1) .

With this property, we compute

∫
C∞

ξψ2w =
∞
∑
m=0

∫
C∞

(ηm − ηm−1) ξψ2w (4.143)

=
d

∑
k=1

∞
∑
m=0

∫
C∞∩B2m+1√t(y)

g̃∗ek ⋅D
∗Dek p̄(t, ⋅ − y) (ηm − ηm−1)ψ2w

⩽
d

∑
k=1

∞
∑
m=0

(2m
√
t)d ∥g̃∗ek∥H−1(C∞∩Am) ∥D

∗Dek p̄(t, ⋅ − y) (ηm − ηm−1)ψ2w∥
H1(C∞∩Am) .

Then we calculate the H1-norm of the term D∗Dek p̄(t, ⋅ − y) (ηm − ηm−1)ψ2w. We use the
fact that the function (ηm − ηm−1) is supported in the annulus Am and write

∥D∗Dek p̄(t, ⋅ − y) (ηm − ηm−1)ψ2w∥
H1(C∞∩B2m+1√t(y))

⩽ C (I1 + I2) ,

where the two terms I1 and I2 are defined by the formulas

I1 ∶= ∥D2p̄(t, ⋅ − y)ψ∥
L∞(Am) ∥∇(wψ)∥L2(C∞∩Am)

I2 ∶= (∥D3p̄(t, ⋅ − y)ψ∥
L∞(Am) + ∥D2p̄(t, ⋅ − y)Dψ∥

L∞(Am)

+ (3m
√
t)−1 ∥D2p̄(t, ⋅ − y)ψ∥

L∞(Am)) ∥wψ∥L2(C∞∩Am) .

We put these equations back into the right-hand side of the estimate (4.143). This gives

∫
C∞

ξψ2w ⩽ C
d

∑
k=1

∞
∑
m=0

(2m
√
t)

d
2 ∥g̃∗ek∥H−1(C∞∩Am) (I1 + I2) .
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We then estimate the two terms on the right side by applying the Cauchy-Schwarz inequality.
For the term involving the quantity I1, we obtain

d

∑
k=1

∞
∑
m=0

(2m
√
t)

d
2 ∥g̃∗ek∥H−1(C∞∩Am) I1

⩽(
d

∑
k=1

∞
∑
m=0

(2m
√
t)d ∥g̃∗ek∥

2
H−1(C∞∩B2m+1√t(y))

∥D2p̄(t, ⋅ − y)ψ∥2
L∞(Am))

1
2

× (
d

∑
k=1

∞
∑
m=0

∥∇(wψ)∥2
L2(C∞∩Am))

1
2

⩽CΞ1 ∥∇(wψ)∥L2(C∞) ,

where to go from the second to the third line, we used the definition of Ξ1 given in (4.140)
and the inequality ∑∞

m=1 1{Am(y)} ⩽ 4. The same argument works for the terms involving the
quantities I2 and Ξ2, this concludes the proof of the estimate (4.139).

We now prove an estimate on the terms Ξ1,Ξ2; precisely we prove the inequality (4.141)
which is recalled below

Ξ1 ⩽ Ct−
d
4−1+α2 and Ξ2 ⩽ Ct−

d
4−

3
2+

α
2 . (4.144)

The proof comes from a direct calculation of the quantities Ξ1 and Ξ2. We recall that
the function ψ is chosen to be either the constant function equal to 1, or the function
exp(ΨC(t, ∣ ⋅ −y∣)), for some large constant C.

We first focus on the estimate of the term Ξ1; if the constant C in the definition of ψ is
chosen large enough, for instance larger than 8σ̄2, then one has the estimate

∥D2p̄(t, ⋅ − y)ψ∥
L∞(Am(y)) ⩽ Ct

− d2−1 exp(−22m

8σ̄2 ) .

Thanks to the assumption
√
t >Mflux,α(y), we have the estimate

∥g̃∗ek∥H−1(C∞∩Am) ⩽ ∥g̃∗ek∥H−1(C∞∩B2m+1√t(y))
⩽ C (2m

√
t)α .

Combining these two bounds with the definition of Ξ1 given in (4.140), we obtain

(Ξ1)2 ⩽ C
d

∑
k=1

∞
∑
m=0

(2m
√
t)d+2α

t−d−2 exp(−22m

4σ̄2 ) ⩽ Ct−
d
2−2+α.

The term Ξ2 can be estimated thanks to a similar strategy and the details are left to the
reader. The proof of the estimate (4.144), and thus of the inequality (4.138) is complete.

Step 4 : Quantification of the term ∫C∞ (tf2(t, ⋅, y) + ∣F ∣2(t, ⋅, y))ψ2(t, ⋅, y). The goal of
this step is to prove the inequality

∫
C∞

(tf2(t, ⋅, y) + ∣F ∣2(t, ⋅, y))ψ2(t, ⋅, y) ⩽ Ct−
d
2−2+α. (4.145)

As was the case in the previous step, the function ψ is either the constant function equal to
1 or the function exp(ΨC(t, ∣ ⋅ −y∣)). In the latter case, we assume that the constant C is at
least larger than 8σ̄2.
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We first consider the term involving the function f . From the definition of this function
given in (4.132), we see that it is the sum of two terms. The first one is the difference of the
discrete and the continuous Laplacian of the heat kernel p̄; it can be estimated as follows

∣(∆p̄(t, ⋅ − y) − (−D∗ ⋅Dp̄(t, ⋅ − y)))ψ∣ ⩽ Ct−
d
2−

3
2 exp(− ∣ ⋅ −y∣2

4σ̄2t
) .

The second term is the quantity ∑dk=1 ∂tDek p̄(t, ⋅ −y)φek(⋅). To estimate it, we split the space
into different scales using the functions ηm introduced in Step 3. This gives

∫
C∞

t
d

∑
k=1

(∂t (Dek p̄(t, ⋅ − y)φek)ψ)
2

=
d

∑
k=1

∞
∑
m=0

∫
C∞

t(ηm − ηm−1) (∂tDek p̄(t, ⋅ − y)ψ)
2 φ2

ek

⩽
d

∑
k=1

∞
∑
m=0

t (2m
√
t)d ∥φek∥

2
L2(C∞∩B2m+1√t(y))

∥(∂tDek p̄(t, ⋅ − y)ψ)∥
2
L∞(Am) .

We then use the assumption
√
t >Mcorr,α(y), which implies ∥φek∥L2(C∞∩B2m+1√t(y))

⩽ C (2m
√
t)α,

and the estimate

∥(∂tDek p̄(t, ⋅ − y)ψ)∥L∞(Am) ⩽ Ct
− d2−

3
2 exp(−22m

8σ̄2 ) ,

to obtain the inequality

∫
C∞

t
d

∑
k=1

(∂t (Dek p̄(t, ⋅ − y)φek)ψ)
2 ⩽ C

d

∑
k=1

∞
∑
m=0

t (2m
√
t)d+2α

t−d−3 exp(−22m

4σ̄2 )

⩽ Ct−
d
2−2+α.

The estimate for the term involving the function F is similar and we skip its proof.

Step 5 : The conclusion. We collect the results established in the previous steps and
complete the proof of Proposition 4.4.1. We first consider the inequality (4.137) in the case
ψ = 1. This gives

∫
C∞

(1
2
∂tw

2 + λ
4
∣∇w∣2) ⩽ 1

4t ∫C∞
w2 +C (∫

C∞
tf2 + ∣F ∣2 + ξw) ,

since in this case the constant C̃ introduced in (4.133) is equal to 1. Applying the main
results (4.138) of Step 3 and (4.145) of Step 4, we deduce

∫
C∞

(∂tw2 + λ
2
∣∇w∣2) ⩽ 1

2t ∫C∞
w2 +Ct−

d
2−2+α +Ct−

d
4−1+α2 (∥∇w∥L2(C∞) + t

− 1
2 ∥w∥L2(C∞)) .

By Young’s inequality, the previous display can be simplified

∫
C∞

(∂tw2 + λ
4
∣∇w∣2) ⩽ 1

t
∫

C∞
w2 +Ct−

d
2−2+α,

which implies
∂t∫

C∞
w2 ⩽ 1

t
∫

C∞
w2 +Ct−

d
2−2+α.
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By integrating over the time interval [τ, t], we obtain that there exists a constant C(d,p, λ) <∞
such that

∫
C∞

w2(t, ⋅, s, y) ⩽ C ( t
τ
) τ−

d
2−1+α. (4.146)

We now consider the inequality (4.137) in the case ψ = exp(ΨC(t, ⋅ − y)). This gives

∫
C∞

(1
2
∂t(ψ2w2) + λ

4
∣∇w∣2ψ2) ⩽ ∫

C∞
w2 ((∂tψ)ψ +

1
8t
ψ2 + 4C̃2

λ
∣∇ψ∣2)

+Ct−
d
2−2+α +Ct−

d
4−1+α2 (∥∇ (wψ)∥L2(C∞) + t

− 1
2 ∥wψ∥L2(C∞)) .

Applying Young’s inequality, the previous display can be simplified and we obtain

∫
C∞

(1
2
∂t(ψ2w2) + λ

8
∣∇w∣2ψ2) ⩽ ∫

C∞
w2 ((∂tψ)ψ +

1
4t
ψ2 + 8C̃

λ
∣∇ψ∣2) +Ct−

d
2−2+α.

We then note that if the constant C in the definition of ψ = exp(ΨC(⋅, ⋅ − y)) is chosen large
enough, then we have

(∂tψ)ψ +
1
4t
ψ2 + 8C̃

λ
∣∇ψ∣2 ⩽ C

t
. (4.147)

A combination of the two previous displays shows the differential inequality

∂t∫
C∞

1
2
ψ2w2 ⩽ C

t
∫

C∞
w2 +Ct−

d
2−2+α.

We then apply (4.146) to obtain

∂t∫
C∞

1
2
ψ2w2 ⩽ Ct−1 ( t

τ
) τ−

d
2−1+α +Ct−

d
2−2+α.

Integrating with respect to the time t and recalling that w (τ, ⋅, τ, y) = 0, we obtain

∫
C∞

(wψ)2 ⩽ C ( t
τ
) τ−

d
2−1+α,

for some constant C ∶= C(d,p, λ) <∞. This completes the proof of Proposition 4.4.1.

Remark. The reason why we choose the function ψ = exp(ΨC(⋅, ⋅ − y)), and why the main
result (4.130) of Proposition 4.4.1 is stated with this function can be explained by the in-
equalities (4.133) and (4.147). Indeed, the function (t, x)↦ exp(ΨC(t, x−y)) is the one which
has the fastest growth as x tends to infinity such that the inequalities (4.133) and (4.147)
are satisfied. In particular there is an important difference between the discrete setting
and the continuous setting: in the latter, one does not need the inequality (4.133) to hold
which allows to choose the function ψ(t, x) ∶= exp( ∣x−y∣2

Ct ), and to obtain the result with
this function (see [25, Lemma 8.22]). This observation is consistent with the asymptotic
behavior of the discrete heat kernel on the percolation cluster or on Zd which is described by
Proposition 4.2.8.

We have now collected all the necessary results to prove Theorem 4.1.1. The following
section is devoted to its proof.
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4.4.3 Proof of Theorem 1

By translation invariance of the model, it is sufficient to prove the result when y = 0 ∈ C∞. We
fix an exponent δ > 0; the objective is to apply the results of Proposition 4.4.1, Lemma 4.4.1
and Lemma 4.4.2 with the mesoscopic time τ = t1−κ and with following values of exponents

α ∶= δ
2

and κ ∶= δ

d + 2
,

For later use, we note that with these specific choices of exponents, the following estimates
hold

(1 − κ) (1
2
− α

2
) > 1

2
− δ and − κ + (1 − κ) (d

4
+ 1

2
− α

2
) > d

4
+ 1

2
− δ. (4.148)

The proof relies on an induction argument and we give a setup of the proof. We first define
the sequence κn of real numbers inductively by the formula

κ0 =
κ

2
and κn+1 ∶= min((1 − κ)κn +

κ

2
,
1
2
− δ) (4.149)

This sequence is increasing and is ultimately constant equal to the value 1
2 − δ. We let N be

the integer
N ∶= inf {n ∈ N ∶ κn =

1
2
− δ} ,

and we note that this integer only depends on the parameters d,p, λ and δ. For each point
z ∈ Zd, we define the random time T 0

par(z) according to the formula

T 0
par(z) ∶= 4 max (Tapprox,α(z)

1
1−κ ,Mcorr,α(z)

2
1−κ ,Mflux,α(z)2)

so that for any time t ⩾ T 0
par(z), all the results of Sections 4.4.1 and 4.4.2 are valid with the

value τ ∶= t1−κ. We then upgrade the random variable T 0
par(z) and define

T 1
par ∶= sup{t ∈ [1,∞) ∶ ∃z ∈ C∞ such that ∣z∣ ⩽ (N + 1)t

1
(1−κ)N and T 0

par(z) ⩾ t} , (4.150)

so that for any time t ⩾ T 1
par, and any point z ∈ C∞ satisfying ∣z∣ ⩽ (N +1)t

1
(1−κ)N , one has the

estimate t ⩾ T 0
par(z); this implies that all the results of Sections 4.4.1 and 4.4.2 are valid with

the value τ ∶= t1−κ for the heat kernel started from the point z. This construction is identical
to the used to define the minimal time T ′NA(x) in (4.102). As it was the case for the random
variable T ′NA(x), an application of Lemma 4.1.1 shows the stochastic integrability estimate

T 1
par ⩽ Os (C) .

For each integer n ∈ {0, . . . ,N}, we let Hn be the following statement.

Statement Hn. There exists a constant C(d, λ, n) <∞ such that for each time t ⩾ (T 1
par)

1
(1−κ)n ,

each point x ∈ C∞, and each point z ∈ C∞ satisfying ∣z∣ ⩽ (N−n)t
1

(1−κ)N−n , one has the estimate

∣p(t, x, z) − θ(p)−1p̄(t, x − z)∣ ⩽ Ct−κnΦC (t, x − z) . (4.151)

We prove by induction that the statement Hn holds for each integer n ∈ {0, . . . ,N}.
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The base case. We prove that H0 holds and first prove the L2-estimate: for each time
t ⩾ T 1

par, and each point z ∈ C∞ satisfying ∣z∣ ⩽ (N + 1)t
1

(1−κ)N ,

∥ (p(t, ⋅, z) − θ(p)−1p̄(t, ⋅ − z)) exp (ΨC(t, ∣ ⋅ −z∣)) ∥L2(C∞) ⩽ Ct−
d
4−

κ
2 . (4.152)

We recall the definitions of the functions h, q and v stated in (4.107), (4.110), (4.124) respec-
tively as well as the definition of w given by the formula w ∶= h − v − q. We write

p(t, x, z) − θ(p)−1p̄(t, x − z) = (p(t, x, z) − q (t, x, τ, z)) − v(t, x, τ, z) +w(t, x, τ, z) (4.153)
+ (h(t, x, z) − θ (p)−1 p̄ (t, x, z)) .

To prove the estimate (4.152), we split the L2-norm according to the decomposition (4.153)
and estimate each terms thanks to the results established in Sections 4.4.1 and 4.4.2:

• The term (p(t, x, z) − q (t, x, τ, z)) is estimated thanks to Lemma 4.4.1, this term ac-
counts for an error of order

⎛
⎝
(τ
t
)

1
2
+ τ−

1
2+α

⎞
⎠
t−

d
4 = (t−

κ
2 + t(1−κ)(−

1
2+α)) t−

d
4 ⩽ t−

d
4−

κ
2 ;

• The term w is estimated thanks to Proposition 4.4.1, this term accounts for an error
of order

( t
τ
)

1
2
τ−

d
4−

1
2+

α
2 ⩽ t−

d
4−

1
2+δ,

where we used the estimate (4.148);

• The term v(t, x, τ, z) is estimated thanks to Lemma 4.4.2, this term accounts for an
error of order

t−
d
4 τ−

1
2+

α
2 = t−

d
4+(1−κ)(−

1
2+

α
2 ) ⩽ t−

d
4−

1
2+δ,

where we used the estimate (4.148);

• The term h(t, x, z) − θ (p)−1 p̄ (t, x, z) can be estimated as follows. By the definition of
h given in (4.107), we have

h(t, x, z) − θ (p)−1 p̄ (t, x, z) =
d

∑
k=1
Dek p̄(t, x − z)φek(x).

The term can then be estimated by using the sublinearity of the corrector stated in
Proposition 4.2.6 and the assumption

√
t ⩾Mcorr,α(z). The proof is similar to the one

of Lemma 4.4.2 and the details are left to the reader. It accounts for an error of order
t−

d
4−

1
2+δ.

There remains to obtain the pointwise estimate (4.151) in the case n = 0 from the L2-
estimate (4.152). To this end, we fix a point z ∈ C∞ such that ∣z∣ ⩽ Nt

1
(1−κ)N . We may without

loss of generality restrict our attention to the points x ∈ C∞ such that ∣x∣ ⩽ (N + 1)t
1

(1−κ)N ,
otherwise we necessarily have ∣x − z∣ ⩾ t and the inequality (4.151) is satisfied by Proposi-
tion 4.2.8 and Remark 4.2.4. We then use the semigroup property on the heat kernels p and
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p̄: for each x, z ∈ C∞, one has

p(t, x, z) − θ(p)−1p̄(t, x − z) (4.154)

= ∫
C∞

p( t
2
, x, y)p( t

2
, y, z) − θ(p)−2p̄( t

2
, x − y) p̄( t

2
, y − z) dy

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4.154)-a

+ θ(p)−1 (θ(p)−1∫
C∞

p̄( t
2
, x − y) p̄( t

2
, y − z) dy − p̄(t, x − z))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4.154)-b

.

We first treat the part (4.154)-a using the following L2-estimate

∣(4.154)-a∣ ⩽ (4.154)-a1 + (4.154)-a2,

where the two terms (4.154)-a1 and (4.154)-a2 are defined by the formulas

(4.154)-a1 = ∥(p( t
2
, x, ⋅) − θ(p)−1p̄( t

2
, x − ⋅)) exp(ΨC ( t

2
, ∣x − ⋅∣))∥

L2(C∞)

× ∥p( t
2
, ⋅, z) exp(−ΨC ( t

2
, ∣x − ⋅∣))∥

L2(C∞)

and

(4.154)-a2 = ∥(p( t
2
, ⋅, z) − θ(p)−1p̄( t

2
, ⋅ − z)) exp(ΨC ( t

2
, ∣ ⋅ −z∣))∥

L2(C∞)

× ∥θ(p)−1p̄( t
2
, x − ⋅) exp(−ΨC ( t

2
, ∣ ⋅ −z∣))∥

L2(C∞)
.

The term (4.154)-a1 can be estimated by using the three following ingredients:

• The symmetry of the heat kernel p;

• The L2-estimate (4.152) applied with the point z = x which is valid under the assump-
tion ∣x∣ ⩽ (N + 1)t

1
(1−κ)N ;

• The upper bound stated in Theorem 4.3.1, which can be applied since we assumed
t ⩾ T 1

par ⩾ 2T ′NA(z), and reads, by increasing the value of the constant C in the right
side if necessary,

∥p( t
2
, ⋅, z) exp(−ΨC ( t

2
, ∣x − ⋅∣))∥

L2(C∞)
⩽ t

d
4 ΦC(t, x − z).

These arguments imply the estimate

(4.154)-a1 ⩽ t−
κ
2 ΦC(t, x − y).

The term (4.154)-a2 can be treated similarly and we omit the details. There remains to
estimate the term (4.154)-b. We note that by an application of the parallelogram law, i.e.,
the identity ∣x − y∣2 + ∣y − z∣2 = 2 (∣x−z2 ∣2 + ∣y − x+z

2 ∣2), the function p̄ satisfies the following
property: for each t ⩾ 0, and each x, y, z ∈ Rd,

p̄( t
2
, x − y) p̄( t

2
, y − z) = p̄ (t, x − z) p̄( t

4
, y − x + z

2
) .
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By combining this identity with Proposition 4.A.3, we obtain

∣(4.154)-b∣ = p̄(t, x − z) ∣∫
C∞

θ(p)−1p̄( t
4
, y − x + z

2
) dy − 1∣ ⩽ Ct−

1
2+δp̄(t, x − z).

This finishes the proof of the base case.

The iteration step. We prove that, for each integer n ∈ N, the statement Hn−1 im-
plies the statement Hn. The strategy follows the one of the base case and we first prove
the L2-estimate, under the assumption that the statement Hn−1 is valid: for each time
t ⩾ (T 1

par)
1

(1−κ)n , each point x ∈ C∞, and each point z ∈ C∞ satisfying ∣z∣ ⩽ (N + 1 − n)t
1

(1−κ)N−n ,

∥ (p(t, ⋅, z) − θ(p)−1p̄(t, ⋅ − z)) exp (ΨC(t, ∣ ⋅ −z∣)) ∥L2(C∞) ⩽ Ct−
d
4−κn . (4.155)

We use the decomposition (4.153) with the same value for the mesoscopic time τ = t1−κ. The
error introduced by the terms w, v and h − θ−1(p)p̄ are of order t− d4− 1

2+δ which is smaller
than the value t− d4−κn we want to prove in this step. The limiting factor comes from the
term (p(t, x, z) − q (t, x, τ, z)) which is estimated in Lemma 4.4.1 and gives an error of order
t−

d
4−

κ
2 . The objective of the induction step is to improve this error by using the statement

Hn−1.
Under the assumption t ⩾ (T 1

par)
1

(1−κ)n , we have τ = t1−κ ⩾ (T 1
par)

1
(1−κ)n−1 . We can thus

apply the induction hypothesis Hn−1 with time τ . This gives the inequality, for each point
x ∈ C∞, and each point z ∈ C∞ satisfying ∣z∣ ⩽ (N + 1 − n)τ

1
(1−κ)N+1−n = (N + 1 − n)t

1
(1−κ)N−n ,

∣p(τ, x, z) − θ(p)−1p̄(τ, x − z)∣ ⩽ Cτ−
d
4−κn−1ΦC (τ, x − z) . (4.156)

This estimate can be used to improve the result of Lemma 4.4.1 according to the following
procedure. We go back to the proof of Lemma 4.4.1 and in the inequality (4.113), instead
of using the Nash-Aronson estimate stated in Theorem 4.3.1, we use the homogenization
estimate (4.156). We then proceed with the proof and do not make any other modification.
This implies the following improved version of Lemma 4.4.1

∣q(t, x, τ, z) − p (t, x, z)∣ ⩽
⎛
⎝
τ−κn−1 (τ

t
)

1
2
+ τ−

1
2+α

⎞
⎠

ΦC(t, x − z).

Once equipped with this estimate, we can prove the L2-estimate (4.155). The proof is the
same as the one presented in the base case, we only use the estimate (4.155) instead of
Lemma 4.4.1. We obtain, for any point z ∈ C∞ satisfying ∣z∣ ⩽ (N + 1 − n)τ

1
(1−κ)N−n ,

∥ (p(t, ⋅, z) − θ(p)−1p̄(t, ⋅ − z)) exp (ΨC(t, ∣ ⋅ −z∣)) ∥L2(C∞) ⩽ t−
d
4 τ−κn−1 (τ

t
)

1
2
+ t−

d
4−

1
2+δ.

We then use the equality τ = t1−κ and the inductive definition of the sequence κn stated
in (4.149) to deduce the estimate

∥ (p(t, ⋅, z) − θ(p)−1p̄(t, ⋅ − z)) exp (ΨC(t, ∣ ⋅ −z∣)) ∥L2(C∞) ⩽ Ct−
d
4−κn .

The proof of the pointwise estimate (4.151) is identical to the proof written for the base case
and we omit the details. This completes the proof of the induction step.
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We then define the minimal time Tpar,δ(0) ∶= (T 1
par)

1
(1−κ)N . Since the statement HN holds,

we have the estimate, for each time t ⩾ Tpar,δ(0),

∣p(t, x,0) − θ(p)−1p̄(t, x)∣ ⩽ Ct−
1
2+δΦC (t, x) .

The proof of Theorem 4.1.1 is complete in the case y = 0. The proof in the general case is
obtained by using the stationarity of the model.

4.5 Quantitative homogenization of the elliptic Green’s func-
tion

The objective of this section is to present a theorem of quantitative homogenization for the
elliptic Green’s function on the infinite cluster, i.e., to establish Theorem 4.1.2. This result is
a consequence of the quantitative homogenization theorem for the parabolic Green’s function,
Theorem 4.1.1, established in the previous section: in dimension d ⩾ 3, it can be essentially
obtained by integrating the heat kernel over time since one has the identity, for each x, y ∈ C∞,

g (x, y) = ∫
∞

0
p(t, x, y)dt. (4.157)

The case of the dimension 2 is more specific and requires some additional attention. In
this setting the heat kernel is not integrable as the time t tends to infinity. This difficulty
is related to the recurrence of the random walk on Z2 or to the unbounded behavior of
the Green’s function in dimension 2. To remedy this, we use a corrected version of the
formula (4.157): for each x, y ∈ C∞, one has

g(x, y) = ∫
∞

0
(p(t, x, y) − p(t, y, y)) dt,

where g is the unique elliptic Green’s function on the infinite cluster under the environment
a such that g(y, y) = 0.

Proof of Theorem 4.1.2. We first treat the case of the dimension d ⩾ 3. By the stationarity
of the model, we prove the result in the case y = 0. To simplify the notation we write g(x)
instead of g(x,0). We let Tpar,δ/2(0) be the minimal time provided by Theorem 4.1.1 with
exponent δ/2 and define the minimal scaleMell,δ(0) according to the formula

Mell,δ(0) ∶= Tpar,δ/2(0).

It is on purpose that we do not respect the parabolic scaling, and we need to have that
Mell,δ(0) ≫

√
Tpar,δ/2(0). As was mentioned in the introduction of this section, in dimension

d ⩾ 3, we use the explicit formula (4.157) and note that Duhamel’s principle implies the
identity

ḡ (x) = θ(p)−1∫
∞

0
p̄(t, x)dt.

We obtain
∣g(x) − ḡ(x)∣ ⩽ ∫

∞

0
∣p(t, x,0) − θ(p)−1p̄(t, x)∣ dt.

We then split the integral at time ∣x∣,

∣g(x) − ḡ(x)∣ ⩽ ∫
∣x∣

0
∣p(t, x,0) − θ(p)−1p̄(t, x)∣ dt (4.158)

+ ∫
∞

∣x∣
∣p(t, x,0) − θ(p)−1p̄(t, x)∣ dt,
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and estimate the two terms on the right side separately. The second term is the simplest one,
we apply the quantitative estimate (4.7) provided by Theorem 4.1.1 and use the assumption
∣x∣ ⩾ Tpar,δ/2(0). This shows

∫
∞

∣x∣
∣p(t, x,0) − θ(p)−1p̄(t, x)∣ dt ⩽ C ∫

∞

∣x∣
t−

d
2−

1
2+

δ
2 exp(− ∣x∣2

Ct
) dt (4.159)

⩽ C ∫
∞

0
t−

d
2−

1
2+

δ
2 exp(− ∣x∣2

Ct
) dt

⩽ C ∣x∣−1+δ ∣x∣2−d.

To treat the first term in the right side of (4.158), we use the first estimate (4.50) of Propo-
sition 4.2.8, which is recalled below, for each t ∈ (0,∞), x ∈ C∞ such that ∣x∣ ⩾ t,

p(t, x,0) ⩽ C exp(−C−1∣x∣ (1 + ln ∣x∣
t
)) .

The same estimate is also valid for the function p̄. Therefore, the term ln (∣x∣/t) is positive
on the interval (0, ∣x∣] and one has the estimate

∫
∣x∣

0
∣p(t, x,0) − θ(p)−1p̄(t, x)∣ dt ⩽ C ∫

∣x∣

0
exp(−C−1∣x∣ (1 + ln ∣x∣

t
)) dt

⩽ C ∫
∣x∣

0
exp (−C−1∣x∣) dt

⩽ C ∣x∣ exp (−C−1∣x∣) .

By increasing the value of the constant C, one has

∫
∣x∣

0
∣p(t, x,0) − θ(p)−1p̄(t, x)∣ dt ⩽ C exp (−C−1∣x∣) .

Combining the previous estimate with (4.159), we deduce

∣g(x) − ḡ(x)∣ ⩽ C ∣x∣−1+δ ∣x∣2−d +C exp (−C−1∣x∣)
⩽ C ∣x∣−1+δ ∣x∣2−d.

This completes the proof of the estimate (4.10) in dimension larger than 3.
We now focus on the case of the dimension 2. The strategy is similar, but some additional

attention is needed due to the fact that the integral (4.157) is ill-defined in dimension 2. We
define the elliptic Green’s function g on the infinite cluster by the formula

g(x) = ∫
∞

0
(p(t, x,0) − p(t,0,0)) dt. (4.160)

For the homogenized Green’s function, we cannot use the formula (4.160) by replacing the
transition kernel p by the homogenized heat kernel p̄; indeed the integral

∫
∞

0
(p̄(t, x) − p̄(t,0)) dt, (4.161)

is ill-defined as soon as x ≠ y since the term p̄(t,0) is of order t−1 around 0. To overcome this
issue, we introduce the notation (p̄(t, ⋅))B1

∶= ⨏B1
p̄(t, z)dz and note that, for each x ∈ Rd,

the integral
∫

∞

0
(p̄(t, x) − (p̄(t, ⋅))B1

) dt
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is well-defined. Additionally, the function

x↦ θ(p)−1 (∫
∞

0
p̄(t, x) − (p̄(t, ⋅))B1

dt)

is equal to ḡ up to a constant (see [98, Chapter 1.8] for detailed discussions). We denote this
constant by K1, i.e., we write, for any x ∈ Rd ∖ {0},

K1 ∶= θ(p)−1 (∫
∞

0
p̄(t, x) − (p̄(t, ⋅))B1

dt) − ḡ(x). (4.162)

We note that the value K1 depends only on the diffusivity σ̄2. Using these two integrals, we
have

g(x) − ḡ(x) = ∫
∞

0
(p(t, x,0) − p(t,0,0)) − θ(p)−1 (p̄(t, x) − (p̄(t, ⋅))B1(y)) dt +K1

= ∫
∞

0
(p(t, x,0) − θ(p)−1p̄(t, x)) dt +K1 −K2(0),

where K2 is defined by the formula

K2(0) ∶= ∫
∞

0
p(t,0,0) − θ(p)−1 (p̄(t, ⋅))B1

dt. (4.163)

We now prove that this integral is well-defined, and that the constantK2 satisfies the stochas-
tic integrability estimate

∣K2(0)∣ ⩽ Os(C).

The proof relies on Theorem 4.1.1 and on the estimates on the discrete heat kernel p(t,0,0) ⩽ 1
and (p̄(t, ⋅))B1

⩽ 1 for all times t. We compute

∣K2(0)∣ ⩽ ∫
∞

0
∣p(t,0,0) − θ(p)−1 (p̄(t, ⋅))B1

∣ dt

⩽ ∫
Tpar,δ(0)

0
∣p(t,0,0) − θ(p)−1 (p̄(t, ⋅))B1

∣ dt + ∫
∞

Tpar,δ(0)
∣p(t,0,0) − θ(p)−1p̄(t,0)∣ dt

+ θ(p)−1∫
∞

Tpar,δ(0)
∣p̄(t,0) − (p̄(t, ⋅))B1

∣ dt

⩽ ∫
Tpar,δ(0)

0
C dt + ∫

∞

Tpar,δ(0)
Ct−

3
2+δ dt + ∫

∞

Tpar,δ(0)
Ct−

3
2 dt

⩽ CTpar,δ(0) +C.

This implies the estimate ∣K2(0)∣ ⩽ Os(C). We define K(0) ∶= K1 − K2(0), and by the
previous computation, it satisfies the stochastic integrability estimate ∣K(0)∣ ⩽ Os(C).

To complete the proof Theorem 4.1.2 in dimension 2, it is thus sufficient to control the
term ∫

∞
0 (p(t, x,0) − θ(p)−1p̄(t, x) dt; the argument is the same than in dimension larger than

3 and the details are omitted.

4.A A concentration inequality for the density of C∞

In this appendix, we study the density of the infinite cluster in a cube ◻, which is defined as
the random variable ∣C∞∩◻∣

∣◻∣ . As the size of the cube tends to infinity, an application of the
ergodic theorem shows that this random variable converges, almost surely and in L1, to the
value θ(p). The objective of the following proposition is to provide a quantitative version of
this result.
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Proposition 4.A.1. There exists a positive constant C(d,p) <∞ such that for any triadic
cube ◻ ∈ T of size 3m, one has an estimate

∣ ∣C∞ ∩◻∣
∣◻∣

− θ(p)∣ ⩽ O 2(d−1)
3d2+2d−1

(C3−
dm
2 ) . (4.164)

As a corollary, we obtain that, for any exponent α > 0, there exist a positive constant
C(d,p, α) < ∞, an exponent s(d,p, α) > 0, and a minimal scale Mdense,α ⩽ Os(C) such
that for every 3m ⩾Mdense,δ(y),

∣ ∣C∞ ∩◻m∣
∣◻m∣

− θ(p)∣ ⩽ 3−(
d
2−α)m. (4.165)

Remark. The stochastic integrability exponent 2(d−1)
3d2+2d−1 in the estimate (4.164) is suboptimal

and we do not try to reach optimality. The spatial scaling is the one of the central limit
theorem and is optimal. We note that a result of large deviation for the concentration of the
density of the infinite cluster can be found in the article [201, Theorem 1.2] of Pisztora: for
any ε > 0 and p > pc(d), there exist two constants C1(p, d, ε) < ∞,C2(p, d, ε) < ∞ such that
for any cube ◻ of size 3m,

P(∣ ∣C∞ ∩◻∣
∣◻∣

− θ(p)∣ > ε) ⩽ C1 exp (−C23(d−1)m) .

However, this estimate cannot be used in the setting considered in this article since the
dependence of the constants C1 and C2 in the variable ε is not explicit.

We prove Proposition 4.164 with an exponential version of the Efron-Stein inequality.
A proof of this result can be found in [27, Proposition 2.2]. In the context of supercritical
percolation, this inequality was used in [83, Proposition 2.18, Proposition 3.3] to study the
corrector and in [134, Proposition 3.2] to study the flux. It is stated in the following propo-
sition and we recall the notations introduced in Section 4.1.6: we denote by (Ω,F ,P) the
probability space and by F(Ed/{e}) denotes the sigma algebra generated by the collection
of random variables {a(e′)}e′∈Ed/{e}.

Proposition 4.A.2 (Exponential Efron-Stein inequality, Proposition 2.2 of [27]). Fix an
exponent β ∈ (0,2) and let X be a random variable defined on the probability space (Ω,F ,P).
We define the random variables

Xe ∶= E [X ∣F(Ed/{e})] , V[X] ∶= ∑
e∈Ed

(X −Xe)2. (4.166)

There exists a positive constant C ∶= C(d, β) <∞ such that

E [exp (∣X −E[X]∣β)] ⩽ CE [exp((CV[X])
β

2−β )]
2−β

2
. (4.167)

We define X ∶= ∣C∞∩◻∣
∣◻∣ − θ(p). To prove Proposition 4.A.1, it suffices to prove the two

inequalities

E[X] ⩽ C1(p, d)3−
dm
2 and V[X] ⩽ Os′ (C2(d,p)3−dm) , (4.168)

and to use the estimate (4.167) to deduce that X ⩽ Os(C) with the exponent s = 2s′
1+s′ . These

two inequalities are natural since they mean that the bias and variance of the random variable
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satisfy the desired upper bounds. Since the random variable X = 1
∣◻∣ ∑x∈◻ (1{{x∈C∞}} − θ(p))

is centered, we can focus on the term V[X].
To estimate this term, we consider an independent copy of the environment a which

we denote by ã (and enlarge the underlying probability space to achieve this if necessary).
Given a bond e ∈ Ed, we define {ae(e′)}e′∈Ed “the environment obtained by resampling the
conductance at the bond e” by the formula

ae(e′) = { a(e′) if e′ ≠ e,
ã(e′) if e′ = e.

We denote by Xe the random variable obtained by resampling the bond e, i.e., Xe =X (ae).
We also denote by C e

∞ the infinite cluster under the environment ae. We have the following
implication

∑
e∈Ed

(Xe −X)2 ⩽ Os′(C3−dm)Ô⇒ V[X] ⩽ Os′(C3−dm), (4.169)

whose proof can be found in [134, Lemma 3.1]. We note that since the two environments
{a(e′)}e′∈Ed and {ae(e′)}e′∈Ed are only different on one bond, the following statement holds
P-almost surely

C e
∞ ⊆ C∞ or C∞ ⊆ C e

∞.

We have the following identity

∣Xe −X ∣ = 1
∣◻∣

∣(C e
∞△C∞) ∩◻∣ ,

where C e
∞△C∞ ∶= (C e

∞ ∖C∞)∪ (C∞∖C e
∞) denotes the symmetric difference between the two

clusters C∞ and C e
∞. This suggests to study the properties of this quantity and we prove the

following lemma.

Lemma 4.A.1. The following estimates hold:

1. There exists a positive constant C(d,p) <∞ such that

∀e ∈ Ed, ∣C e
∞△C∞∣ ⩽ O d−1

d
(C). (4.170)

2. There exists a positive constant C(d,p) <∞ such that

∀e ∈ Ed ∖Ed(3◻), ∣(C e
∞△C∞) ∩◻∣2 ⩽ O d−1

(3d+1)d
( C

dist(e,◻)d+1) , (4.171)

where we recall the notation 3◻ introduced in (4.27). As a corollary, we have that

∑
e∈Ed∖Ed(3◻)

∣(C e
∞△C∞) ∩◻∣2 ⩽ O d−1

(3d+1)d
(C). (4.172)

We first show how to obtain Proposition 4.A.1 from Lemma 4.A.1 and then prove Lemma 4.A.1.
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Proof of Proposition 4.A.1. The result is a consequence of the estimate (4.23) and Lemma 4.A.1.
We have

∑
e∈Ed

(Xe −X)2 = 1
∣◻∣2 ∑e∈Ed

(∣C e
∞ ∩◻∣ − ∣C∞ ∩◻∣)2

= 3−2dm ∑
e∈Ed(3◻)

∣(C e
∞△C∞) ∩◻∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽3d(m+1)×O d−1

2d
(C)

+3−2dm ∑
e∈Ed∖Ed(3◻)

∣(C e
∞△C∞) ∩◻∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽O d−1

(3d+1)d
(C)

⩽ O d−1
(3d+1)d

(C3−dm) .

We then complete the proof by applying the implication (4.169) and Proposition 4.A.2 with
the exponent s = 2(d−1)

3d2+2d−1 .

We now prove Lemma 4.A.1. The argument relies on the upper and lower bounds on the
tail of the distribution of the finite clusters in supercritical percolation. The result is stated
below, was proved by Kesten and Zhang in [150] for the upper bound and by Aizenman,
Delyon and Souillard in [1] for the lower bound. We also refer to the monograph [131,
Section 8.6] for related discussions.

Theorem 4.A.1 (Sub-exponential decay of cluster size distribution [150, 1]). For any super-
critical probability p ∈ (pc(d),1], there exist positive constants 0 < c1(d,p), c2(d,p) < ∞ such
that, if we denote by C (0) the cluster containing 0 and let n be a strictly positive integer,
then we have the estimate

∀n ∈ N+, exp (−c1n
d−1
d ) ⩽ P [∣C (0)∣ = n] ⩽ exp (−c2n

d−1
d ) . (4.173)

Remark. With the notation Os, one can reformulate the upper bound as ∣C (0)∣ ⩽ O d−1
d

(C).

Remark. The estimate (4.173) implies the inequality P [n ⩽ ∣C (0)∣ <∞] ⩽ exp (−c3n
d−1
d ).

Proof of Lemma 4.A.1. We first prove the inequality (4.170). We use the definition of Os
notation and prove the estimate

E
⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝
(∣C e

∞△C∞∣
C

)
d−1
d ⎞

⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
⩽ 2,

for some constant C(d,p) <∞. By symmetry, it suffices to consider the case {ae(e) > 0,a(e) = 0}
and we have the identity

E
⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝
(∣C e

∞△C∞∣
C

)
d−1
d ⎞

⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
= 1 + 2E

⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝
(∣C e

∞△C∞∣
C

)
d−1
d ⎞

⎟
⎠

1{{ae(e)>0,a(e)=0}}

⎤⎥⎥⎥⎥⎥⎦
.

We then notice that, under the condition {ae(e) > 0,a(e) = 0}, we have the equality
C e
∞△C∞ = C e

∞ ∖C∞. We then distinguish two cases:

• Either there exists a finite cluster connected to the bond e in the environment {a(e′)}e′∈Ed .
In that case, we denote this cluster by C (e) and we have the identity

C (e) = C e
∞△C∞;
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• Or both ends of the bond e are connected to the infinite cluster C∞ under the environ-
ment {a(e′)}e′∈Ed . In that case, we have the equality C e

∞△C∞ = ∅.

We then use Theorem 4.A.1 to estimate the volume of the cluster C (e) and we obtain

E
⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝
(∣C e

∞△C∞∣
C

)
d−1
d ⎞

⎟
⎠

1{{ae(e)>0,a(e)=0}}

⎤⎥⎥⎥⎥⎥⎦
⩽

∞
∑
n=0

exp
⎛
⎝
n
d−1
d

C
d−1
d

⎞
⎠

exp (−c1n
d−1
d ) .

Then, we can choose a constant C depending on the parameters d and p such that

E
⎡⎢⎢⎢⎢⎣
exp(∣C e

∞△C∞∣
C

)
d−1
d

⎤⎥⎥⎥⎥⎦
⩽ 2.

This implies that ∣C e
∞△C∞∣ ⩽ O d−1

d
(C).

Figure 4.5: The figure illustrates the situation when the set (C e
∞ △ C∞) ∩ ◻ is nonempty

under the condition ae(e) > 0, a(e) = 0. The blue cluster is the infinite cluster C∞ under the
environment a, and the yellow cluster is the finite cluster connecting the bond e to the cube
◻. The green square represents the cube 3◻. The probability of the event depicted in the
picture becomes exponentially small when the sizes of the cubes are large.

We now prove the estimate (4.171). It relies on the following observation: when the bond
e is far away from the cube ◻, the set (C e

∞△C∞)∩◻ is non-empty with exponentially small
probability. More precisely, if we denote by l = dist(e,◻), then we have the estimate

P [(C e
∞△C∞) ∩◻ ≠ ∅] = 2P [C e

∞△C∞ ≠ ∅ and C (e) ∩◻ ≠ ∅ and ae(e) > 0,a(e) = 0]
(4.174)

⩽ 2P[C e
∞△C∞ ≠ ∅ and ∣C (e)∣ > l and ae(e) > 0,a(e) = 0]

⩽ 2 exp (−c3l
d−1
d ) .

We also note that, since the bond e lies outside the cube 3◻, we have the estimate l ⩾ 3m.
This implies the almost sure inequalities

∣(C e
∞△C∞) ∩◻∣ ⩽ 3dm ⩽ ld.
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Then, we can calculate the expectation

E
⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝
( l
d+1 ∣(C e

∞△C∞) ∩◻∣2

C
)

d−1
(3d+1)d⎞

⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

=E [1{{(C e
∞
△C∞)∩◻=∅}}] +E

⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝
( l
d+1 ∣(C e

∞△C∞) ∩◻∣2

C
)

d−1
(3d+1)d⎞

⎟
⎠

1{{(C e
∞
△C∞)∩◻≠∅}}

⎤⎥⎥⎥⎥⎥⎦

⩽1 + exp
⎛
⎜
⎝
( l

3d+1

C
)

d−1
(3d+1)d⎞

⎟
⎠
P[(C e

∞△C∞) ∩◻ ≠ ∅]

⩽1 + exp
⎛
⎝

l
d−1
d

C
d−1

(3d+1)d

⎞
⎠
P[(C e

∞△C∞) ∩◻ ≠ ∅].

We use the estimate (4.174) and select a constant C large enough such that

E
⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝
( l
d+1 ∣(C e

∞△C∞) ∩◻∣2

C
)

d−1
(3d+1)d⎞

⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
⩽ 1 + 2 exp

⎛
⎝

l
d−1
d

C
d−1

(3d+1)d

⎞
⎠

exp (−c4l
d−1
d ) ⩽ 2.

This completes the proof of the inequality (4.171). The estimate (4.172), is then a conse-
quence of the inequality (4.23), by noting that the sum ∑e∈Ed∖Ed(3◻) dist(e,◻)−d−1 is finite.
Finally, we define

Mdense,α ∶= sup{3m ∈ N ∶ 3( d2−α)m ∣ ∣C∞ ∩◻m∣
∣◻m∣

− θ(p)∣ ⩾ 1} ,

and use Lemma 4.1.1 to obtain that this random variable satisfies the stochastic integrability
estimateMdense,α ⩽ Os(C).

We complete this section by stating and proving a version of the concentration estimate
of Lemma 4.A.1 involving the homogenized heat-kernel. This result is used in Lemma 4.4.1.

Proposition 4.A.3. There exists a positive constant C(d,p) < ∞ such that, for any time
t > 0, and any vertex y ∈ Zd, one has the estimate

∣∫
C∞

p̄(t, x − y)dx − θ(p)∣ ⩽ O 2(d−1)
3d2+2d−1

(Ct−
1
2 ) . (4.175)

As a corollary, for any α > 0 and y ∈ Zd, there exist a positive constant C(d,p, α) < ∞, an
exponent s(d,p, α) > 0, and a minimal time Tdense,α(y) ⩽ Os(C) such that, for every time
t > Tdense,α(y), we have

∣∫
C∞

p̄(t, x − y)dx − θ(p)∣ ⩽ Ct−(
1
2−α). (4.176)

Proof. Without loss of generality, we suppose that y = 0. The strategy is similar to the
one of the proof of Proposition 4.A.1. We denote by X ∶= ∫C∞ p̄(t, x)dx − θ(p), apply the
concentration inequality stated in Proposition 4.A.2 and verify the two conditions (4.168)
and (4.169). For the term involving the expectation, we have

∣E[X]∣ = ∣∫
Zd
p̄(t, x)1{{x∈C∞}} dx − θ(p)∣ = θ(p) ∣∫

Zd
p̄(t, x)dx − ∫

Rd
p̄(t, x)dx∣ ⩽ C√

t
,
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by the estimate on the gradient of the heat kernel. We then focus on the variation, i.e.,

∑
e∈Ed

(Xe −X)2 = ∑
e∈Ed

(∫
Zd
p̄(t, x) (1{{x∈C e

∞
}} − 1{{x∈C∞}}) dx)

2
.

We apply a multiscale analysis: we define the balls and annuli

B−1 ∶= ∅, ∀n ⩾ 1, Bn ∶= {x ∈ Zd ∶ ∣x∣ ⩽ 3n
√
t}, ∀n ⩾ 0, An ∶= Bn ∖Bn−1.

We also define, for any subset A ⊆ Zd, IeA ∶= ∫A p̄(t, x) (1{{x∈C e
∞
}} − 1{{x∈C∞}}) dx. This

notation is useful to localize the random variables (Y e − Y ). We write

∑
e∈Ed

(Y e − Y )2 = ∑
e∈Ed

(IeZd)
2 = ∑

e∈Ed
(
∞
∑
n=0

IeAn)
2
.

Then, we use the Cauchy-Schwarz inequality to factorize the sum

(
∞
∑
n=0

IeAn)
2
= (

∞
∑
n=0

IeAn3n × 3−n)
2
⩽ (

∞
∑
n=0

32n (IeAn)
2)(

∞
∑
n=0

3−2n) ⩽ 2
∞
∑
n=0

32n (IeAn)
2
.

With Fubini’s theorem, we obtain

∑
e∈Ed

(Y e − Y )2 ⩽ 2
∞
∑
n=0

32n ∑
e∈Ed

(IeAn)
2
. (4.177)

We fix an integer n ∈ N and estimate the quantity ∑e∈Ed (I
e
An

)2. The strategy is similar to
the proof of Proposition 4.A.1 and we adapt the proof of Lemma 4.A.1 from the case of cubes
to the case of balls

∑
e∈Ed

(IeAn)
2 = ∑

e∈Ed(Bn+1)
(IeAn)

2 + ∑
e∈Ed∖Ed(Bn+1)

(IeAn)
2

⩽ (max
An

p̄(t, x))
2 ⎛
⎝ ∑
e∈Ed(Bn+1)

∣(C e
∞△C∞) ∩An∣2 + ∑

e∈Ed∖Ed(Bn+1)
∣(C e

∞△C∞) ∩An∣2
⎞
⎠

⩽ 1
(2πtσ̄2)d/2

exp(− 32n

2σ̄2)
⎛
⎝ ∑
e∈Ed(Bn+1)

∣(C e
∞△C∞) ∩Bn∣2 + ∑

e∈Ed∖Ed(Bn+1)
∣(C e

∞△C∞) ∩Bn∣2
⎞
⎠

⩽ O d−1
(3d+1)d

(C3dnt−
d
2 exp(− 32n

2σ̄2)) .

We put this inequality back in equation (4.177) and use the estimate (4.23) to conclude

∑
e∈Ed

(Y e − Y )2 ⩽ O d−1
(3d+1)d

(Ct−
d
2 (

∞
∑
n=0

3(d+2)n exp(− 32n

2σ̄2))) ⩽ O d−1
(3d+1)d

(Ct−
d
2 ) .

Finally, for any exponent α > 0, we define

Tdense,α(0) ∶= sup{t ∈ (0,∞) ∶ t(
1
2−α) ∣∫

C∞
p̄(t, x)dx − θ(p)∣ ⩾ 1} ,

and apply Lemma 4.1.1 to conclude Proposition 4.A.3.
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4.B Quantification of the weak norm of the flux on C∞

In this appendix, we prove a quantification of the H−1-norm of the flux on the cluster. We
recall that the flux on the cluster associated to the direction ek is defined by

g̃ek ∶ C∞ → Rd, g̃ek = a(Dφek + ek) −
1
2
σ̄2ek. (4.178)

The main estimate is stated in the following proposition.

Proposition 4.B.1. Fix a point y ∈ Zd, for each exponent α > 0, there exist a positive
constant C ∶= C(λ, d,p, α) <∞, an exponent s ∶= s(λ, d,p, α) > 0, and a random variable
Mflux,α(y) satisfying the stochastic integrability estimate

Mflux,α(y) ⩽ Os (C) ,

such that, for every radius r ⩾Mflux,α(y), one has

d

∑
k=1

∥g̃ek∥H−1(C∞∩Br(y)) ⩽ Cr
α. (4.179)

Without loss of generality, we assume y = 0. The strategy of the proof is to make use of
another centered flux defined on the entire space Zd,

gek ∶ Z
d → Rd, gek = a(Dφek + ek) − āek.

The homogenized conductance ā is defined in [19, Definition 5.1] by the formula: for each
p ∈ Rd,

1
2
p ⋅ āp ∶= lim

n→∞
E [ν (◻m, p)] ,

where the energy ν (◻m, p) is defined by

ν (◻m, p) ∶= inf
u∈lp+C0(C∞∩◻m)

1
2∣◻m∣ ∫◻m

∇u ⋅ a∇u, (4.180)

where the notation lp denotes the affine function of slope p (i.e., for each point x ∈ Zd,
lp(x) = p ⋅ x) and the symbol C0 (C∞ ∩◻m) denotes the set of functions defined on the set C∞∩
◻m, valued in R, which are equal to 0 on the boundary C∞ ∩∂◻m. The reason we introduce
this quantity is that, building upon the results of [19], we can prove the following H−1-
estimate: there exists a non-negative random variable Mflux−Zd,α satisfying the stochastic
integrability estimateMflux−Zd,α ⩽ Os (C) such that, for every r ⩾Mflux−Zd,α,

d

∑
k=1

∥gek∥H−1(Zd∩Br) ⩽ Cr
α, (4.181)

where the H−1(Zd ∩Br)-norm is defined by the formula

∥gek∥H−1(Zd∩Br) = sup
∥ϕ∥

H1(Zd∩Br)
⩽1

1
∣Zd ∩Br ∣ ∫Zd∩Br

ϕgek ,

and where theH1(Zd∩Br)-norm of a function ϕ ∶ Zd∩Br → R, denotes the discrete normalized
Sobolev norm defined by the formula

∥ϕ∥2
H1(Zd∩Br) ∶= r

−1 ∥ϕ∥L2(Zd∩Br) + ∥∇ϕ∥L2(Zd∩Br) .
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Once this result is established, we set the value

σ̄2 ∶= 2θ(p)−1ā, (4.182)

and deduce Proposition 4.B.1 from the estimate. The main difference between the esti-
mates (4.179) and (4.181) is that in the former estimate, the H−1-norm is computed on the
ball Br while in the latter is computed on the intersection C∞∩Br. This makes an important
difference and motivates the introduction of the diffusivity σ̄2 in (4.182) and of the new flux
g̃ek in (4.178). In the following paragraph, we give an heuristic argument explaining why we
expect Proposition 4.B.1 to hold assuming that the estimate (4.181) is valid.

We start by using the constant test function equal to 1 in the definition of the H−1(Br)
norm in the estimate (4.181) shows

∫
Zd∩Br

a(Dφek + ek) ≃ ∫Zd∩Br
āek, (4.183)

where the symbol ≃ means that the two quantities on the left and right sides differ by a small
term, which by (4.181) is of order r−(1−α). Since the function a(Dφek + ek) is defined to be
equal to 0 outside the infinite cluster, the left side of (4.183) can be rewritten

∫
Zd∩Br

a(Dφek + ek) = ∫
C∞∩Br

a(Dφek + ek).

For the right-hand side of (4.183), using that the density of the cluster has density θ(p), one
expects

∫
Zd∩Br

āek ≃ ∫
C∞∩Br

θ(p)−1āek.

This shows
∫

C∞∩Br
a(Dφek + ek) ≃ ∫

C∞∩Br
θ(p)−1āek.

Thus if we want the estimate (4.179) to hold, the only admissible value for the coefficient
σ̄2 is 2θ(p)−1ā, indeed testing the constant function equal to 1 in the definition of the
H−1(C∞ ∩Br)-norm of the estimate (4.179) shows

∫
C∞∩Br

a(Dφek + ek) ≃ ∫
C∞∩Br

1
2
σ̄2ek.

Remark. We note that the identity (4.182) is the definition of the diffusivity σ̄2 used in this
article: thanks to this definition and the result of Proposition 4.B.1, we are able to prove
Theorem 4.1.1, and then to recover the invariance principle stated in (4.4).

The rest of this section is organized as follows. We first explain how to prove the esti-
mate (4.181) by using the results of [134] and the strategies of stochastic homogenization in
the uniformly elliptic setting presented in [25]. We then show how to deduce Proposition 4.B.1
from the inequality (4.181).

Proof of the estimate (4.181). We first extend the function gek from Zd to Rd and let [gek]
be the function defined on Rd, which is equal to gek on Zd and which is piecewise constant on
the unit cubes z + [−1

2 ,
1
2)
d. We have the identity ∥gek∥H−1(Zd∩Br) ≃ C ∥[gek]∥H−1(Br) up to a

constant C depending only on the dimension, where H−1(Br) is the standard Sobolev norm.
We then want to control the continuous H−1(Br) norm of [gek]. The strategy is to apply
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the multiscale Poincaré inequality stated in [25, Remark D.6, equation (D.28)]. Its rescaled
version reads

∥[gek]∥H−1(Br)) ⩽ Cr (∫
1

0
(∫

Rd
r−de−

∣x∣
r ∣Φr2t ⋆ [gek]∣

2(x)dx) dt)
1
2
, (4.184)

where the function Φt is the standard heat kernel defined by Φt ∶= 1
(2πt)

d
2

exp (− ∣x∣2
2t ) and the

operator ⋆ is the standard convolution on Rd. We then apply the following results:

• The spatial average of the flux decays: one has the estimate, for each t > 0,

∣Φt ⋆ [gek]∣ ⩽ Os (Ct
− d4 ) . (4.185)

A proof of this result can be found in [134, Section 3.1, Proposition 1.1] (see Proposi-
tion 3.1.2).

• The flux is essentially bounded: one has the estimate, for each t > 0,

∣Φt ⋆ [gek]∣ ⩽ Os(C), (4.186)

To prove this estimate, we first note that the bound on the corrector stated in (4.46)
imply the following Lipschitz estimate on the corrector (by choosing x and y to be two
neighboring points): for each vector p ∈ B1, and each edge e ∈ Ed,

∣∇φp(e)∣ ⩽ Os (C ∣p∣) . (4.187)

This estimate is also stated in [19, Remark 1.1]. The inequality (4.186) is then a
consequence of the estimate (4.187) and the property (4.23) of the Os notation.

We then truncate the integral in the right side of (4.184) at the value t = r−2 and obtain

∥gek∥H−1(Zd∩Br) ⩽ Cr (∫
r−2

0
(∫

Rd
r−de−

∣x∣
r ∣Φr2t ⋆ [gek]∣

2(x)dx) dt)
1
2

+Cr (∫
1

r−2
(∫

Rd
r−de−

∣x∣
r ∣Φr2t ⋆ [gek]∣

2(x)dx) dt)
1
2
.

To estimate the first term in the right side, we apply the estimate (4.186) and, to estimate
the second term, we apply the estimate (4.185). Together with the property (4.23) of the Os
notation, this gives

∥gek∥H−1(Zd∩Br) ⩽
⎧⎪⎪⎨⎪⎪⎩

Os(C) if d ⩾ 3,
Os (log

1
2 (1 + r)) if d = 2. (4.188)

Finally, for every exponent α > 0, we set

Mflux−Zd,α ∶= sup{r ∈ R+ ∶ r−α
d

∑
k=1

∥gek∥H−1(Zd∩Br) ⩾ 1} ,

and apply Lemma 4.1.1. This completes the proof of the estimate (4.181).
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Proof of Proposition 4.B.1. We fix an exponent α > 0. We define the exponent q ∶= max ( (2d−1)
α ,2d)

and split the proof into 3 steps.

Step 1. In this step, we establish the inequality, for any radius r ⩾Mq (P),

∥g̃ek∥H−1(C∞∩Br) ⩽ Cr
α
2 (∥gek∥H−1(Zd∩Br) + ∥1

2
σ̄2ek(1{C∞} − θ(p))∥

H−1(Zd∩Br)
) , (4.189)

where C is a constant depending only on the parameters λ, d,p. We recall the definition of
the H−1-norm on the infinite cluster

∥g̃ek∥H−1(C∞∩Br) = sup
∥ϕ∥H1(C∞∩Br)

⩽1

1
∣C∞ ∩Br ∣ ∫C∞∩Br

ϕg̃ek .

We fix a function ϕ ∶ C∞ ∩Br → R such that ∥ϕ∥H1(C∞∩Br) ⩽ 1. The main idea is to extend
the function ϕ from the infinite cluster to Zd. To this end, we use the coarsened function
[ϕ]P introduced in Section 4.2.1. We extend the function g̃ek by 0 outside the infinite cluster
so that we have

∫
C∞∩Br

ϕg̃ek = ∫Zd∩Br
[ϕ]P g̃ek .

Since the radius r is assumed to be larger than the minimal scaleMq (P), the ratio ∣Zd∩Br ∣
∣C∞∩Br ∣

is bounded from above by a constant C(d,p). Then, we compute

1
∣C∞ ∩Br ∣ ∫C∞∩Br

ϕg̃ek (4.190)

= 1
∣C∞ ∩Br ∣ ∫Zd∩Br

[ϕ]P (g̃ek − gek) +
1

∣C∞ ∩Br ∣ ∫Zd∩Br
[ϕ]Pgek

⩽ ( ∣Zd ∩Br ∣
∣C∞ ∩Br ∣

) ∥[ϕ]P∥H1(Zd∩Br) (∥g̃ek − gek∥H−1(Zd∩Br) + ∥gek∥H−1(Zd∩Br))

⩽ C(d,p) ∥[ϕ]P∥H1(Zd∩Br) (∥
1
2
σ̄2ek(1{C∞} − θ(p))∥

H−1(Zd∩Br)
+ ∥gek∥H−1(Zd∩Br)) ,

where we used the equation ā = 1
2θ(p)σ̄

2 to go from the second line to the third line. We
then use the estimates (4.42) and (4.43) to estimate the H1-norm of the coarsened function
ϕ in terms of the H1-norm of the function ϕ, and the assumption r ⩾Mq(P) to estimate
the size of the cubes of the partition. This gives

∥[ϕ]P∥H1(Zd∩Br) ⩽ Cr
α
2 ∥ϕ∥H1(C∞∩Br) .

Combining the previous estimate with the inequality (4.190) completes the proof of Step 1.

Step 2: Control over the quantity ∥σ̄2ek(1{C∞} − θ(p))∥H−1(Br). We let ◻m be the triadic
cube such that ◻m−1 ⊆ Br ⊆ ◻m. We note that

∥σ̄2ek(1{C∞} − θ(p))∥H−1(Zd∩Br) ⩽ C ∥σ̄2ek(1{C∞} − θ(p))∥H−1(◻m) ,

where the constant C depends only on the dimension d. We apply another version of the
multiscale Poincaré inequality, which is stated in [25, Proposition 1.7] (in the continuous
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setting, the extension to the discrete setting considered here does not affect the proof) and
reads

∥σ̄2ek(1{C∞} − θ(p))∥H−1(◻m) ⩽ C
m−1
∑
n=0

3n
⎛
⎝

1
∣3nZd ∩◻m∣ ∑

y∈3nZd∩◻m
σ̄4(1{C∞} − θ(p))2

y+◻n
⎞
⎠

1
2

,

where we recall the notation (f)y+◻n = 1
∣◻n∣ ∑x∈y+◻n f(x). We apply Proposition 4.A.1

(1{C∞} − θ(p))y+◻n ⩽ Os (C3−
dn
2 ) .

Using that the dimension is larger than 2 and the property (4.23) of the Os notation, we
obtain

∥σ̄2ek(1{C∞} − θ(p))∥H−1(◻m) {
Os(C) if d ⩾ 3,
Os(Cm) if d = 2.

We then apply Lemma 4.1.1 to the collection of random variables

Xm ∶= 3−
αm
2 ∥σ̄2ek(1{C∞} − θ(p))∥H−1(◻m) ,

to construct a minimal scaleMcluster,α2 such that, for any radius r ⩾Mcluster,α2 ,

∥σ̄2ek(1{C∞} − θ(p))∥H−1(Zd∩Br) ⩽ Cr
α
2 . (4.191)

Step 3: The conclusion. We let Mflux−Zd,α2
be the minimal scale provided by equa-

tion (4.181) with the exponent α
2 . We define the random variable Mflux,α(0) according to

the formula
Mflux,α(0) ∶= max (Mcluster,α2 ,Mflux−Zd,α2

,Mq(P)) .

Combining the main results (4.189) of Step 1 and (4.191) of Step 2 shows, for any r ⩾Mflux,α(0),

∥g̃ek∥H−1(C∞∩Br) ⩽ Cr
α
2 (∥gek∥H−1(Zd∩Br) + ∥1

2
σ̄2ek(1{C∞} − θ(p))∥

H−1(Zd∩Br)
)

⩽ Cr
α
2 (r

α
2 + r

α
2 )

⩽ Crα.

Thus, we obtain the main result (4.179) of Proposition 4.B.1.

Remark. One result used in this article is a variation of Proposition 4.B.1. We are interested
in another function g̃∗ek ∶ C∞ → Rd, satisfying the identity, for each function u ∶ C∞ → R,

D∗ ⋅ (u(a (Dφek + ek) −
1
2
σ̄2ek)) = D∗u ⋅ g̃∗ek . (4.192)

One can check that the quantity g̃∗ek is different from g̃ek with an exact formula

g̃∗ek ∶=

⎛
⎜⎜⎜⎜
⎝

T−e1 [a (Dφek + ek) −
1
2 σ̄

2ek]1

⋮

T−ed [a (Dφek + ek) −
1
2 σ̄

2ek]d

⎞
⎟⎟⎟⎟
⎠

,
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where the (minor) difference comes from the translation when applying the finite difference
operator. The H−1-norm of the function g̃∗ek can also be controlled and one has the following
property: for any exponent α > 0, any vertex y ∈ Zd, and any radius r ⩾Mflux,α(y), one has
the estimate

d

∑
k=1

∥g̃∗ek∥H−1(C∞∩Br(y)) ⩽ Cr
α.

The proof is identical to the proof of Proposition 4.B.1 and the details are left to the reader.



Chapter 5

Decay of the semigroup for particle
systems

We show the heat kernel type variance decay t−
d
2 , up to a logarithmic correction, for

the semigroup of an infinite particle system on Rd, where every particle evolves following
a divergence-form operator with diffusivity coefficient that depends on the local config-
uration of particles. The proof relies on the strategy from [142], and generalizes the
localization estimate to the continuum configuration space introduced by S. Albeverio,
Y.G. Kondratiev and M. Röckner.

This chapter corresponds to the article [135].
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5.1 Introduction

In this work, we study an interacting diffusive particle system in Rd and the heat kernel type
estimate for its semigroup. Let us give an informal introduction to the model and main result
at first. We denote byMδ(Rd) the set of point measures of type µ = ∑∞

i=1 δxi on Rd, which
we call configurations of particles, by FU the σ-algebra generated by µ(V ) tested with all

231
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the Borel set V ⊆ U , and use the shorthand F ∶= FRd . Let Pρ be the Poisson point process of
density ρ ∈ (0,∞) as the law for the configuration µ, with Eρ,Varρ the associated expectation
and variance. We have a○ ∶Mδ(Rd) → Rd×dsym an FB1-measurable symmetric matrix, i.e. it
only depends on the configuration in the unit ball B1, and ∣ξ∣2 ⩽ ξ ⋅a○ξ ⩽ Λ∣ξ∣2 for any ξ ∈ Rd.
Then let a(µ,x) ∶= a○(τ−xµ) be the diffusive coefficient with local interaction at x, where
τ−x represents the transport operation by the direction −x. Denoting by µt ∶= ∑∞

i=1 δxi,t the
configuration at time t ⩾ 0, our model can be informally described as an infinite-dimensional
system with local interaction such that every particle xi,t evolves as a diffusion associated
to the divergence-form operator −∇ ⋅ a(µt, xi,t)∇. More precisely, it is a Markov process
(Ω, (Ft)t⩾0,Pρ) defined by the Dirichlet form

Ea(f, f) ∶= Eρ [∫
Rd
∇f(µ,x) ⋅ a(µ,x)∇f(µ,x)dµ(x)] , (5.1)

where the directional derivative ek ⋅ ∇f(µ,x) ∶= limh→0
1
h(f(µ − δx + δx+hek) − f(µ)) along the

canonical direction {ek}1⩽k⩽d is defined for a family of suitable functions and x ∈ supp(µ).
One may expect that the diffusion follows the heat kernel estimate established by the

pioneering work of John Nash [192], as every single particle is a diffusion of divergence type.
This is the object of our main theorem. We denote by C∞

c (Rd) functions smooth with respect
to the transport of every particle (see Section 5.2.1 for its rigorous definition), Qlu ∶= [− lu2 ,

lu
2 ]d

the closed cube of side length lu, L∞ ∶= L∞(Mδ(Rd),F ,Pρ), and let ut ∶= Eρ[u(µt)∣F0], then
we have the following estimate.

Theorem 5.1.1 (Decay of variance). There exist two finite positive constants γ ∶= γ(ρ, d,Λ),
C ∶= C(ρ, d,Λ) such that for any u ∈ C∞

c (Rd) ∩L∞ which is FQlu -measurable, then we have

Varρ[ut] ⩽ C(1 + ∣ log t∣)γ (1 + lu√
t

)
d

∥u∥2
L∞ . (5.2)

Interacting particle systems remain an active research topic, and it is hard to list all
the references. We refer to the excellent monographs [152, 157, 172, 215] for a panorama of
the field. In recent years, many works in probability and stochastic processes illustrate the
diffusion universality in various models: a well-understood model is the random conductance
model, see [53] for a survey, and especially the heat kernel bound and invariance principle
is established for the percolation clusters in [49, 180, 211, 179, 39, 41, 209]; from the view
point of stochastic homogenization, the quantitative results are also proved in a series of
work [30, 23, 31, 24, 123, 124, 120, 121], and the monograph [25], and these techiques also
apply on the percolation clusters setting, as shown in [19, 83, 134, 85]; for the system of
hard-spheres, Bodineau, Gallagher and Saint-Raymond prove that Brownian motion is the
Boltzmann-Grad limit of a tagged particle in [57, 56, 58]. All these works make us believe
that the model in this work should also have diffusive behavior in large scale or long time.

Notice that our model is of non-gradient type, and our result is established in the con-
tinuum configuration space rather than a function space on Rd. In previous works, the
construction of similar diffusion processes is studied by Albeverio, Kondratiev and Röckner
using Dirichlet forms in [2, 3, 4, 5]; see also the survey [206]. To the best of our knowledge,
we do not find Theorem 5.1.1 in the literature. While in the lattice side, let us remark one
important work [142] by Janvresse, Landim, Quastel and Yau, where the decay of variance is
proved in the Zd zero range model, which is of gradient type. Since our research is inspired by
[142] and also uses some of their techniques, we point out our contributions in the following.
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Firstly, we give an explicit bound with respect to the size of the support of the local
function u, that is uniform over t; the bound ( lu√

t
)
d
captures the correct typical scale. For

comparison, [142, Theorem 1.1] states the result

Varρ[ut] =
[ũ′(ρ)]2χ(ρ)
[8πφ′(ρ)t] d2

+ o (t−
d
2 ) , (5.3)

which should be considered as the asymptotic behavior in long time, and the term o (t−
d
2 ) is of

type (lu)5dt−(
d
2+ε) if one tracks carefully the dependence of lu in the steps of the proof of [142,

Theorem 1.1]. To get the typical scale ( lu√
t
)
d
, we do some combinatorial improvement in the

intermediate coarse-graining argument in eq. (5.27); see also Figure 5.1 for illustration. On
the other hand, we also wonder if we could establish a similar result as eq. (5.3) to identify the
diffusive constant in the long time behavior. This an interesting question and one perspective
in future research, but a major difficulty here is to characterize the effective diffusion constant,
because the zero range model satisfies the gradient condition while our model does not.
We believe that it is related to the bulk diffusion coefficient and the equilibrium density
fluctuation in the lattice nongradient model as indicated in [215, eq.(2.14), Proposition 2.1].

Secondly, we extend a localization estimate to the continuum configuration space: under
the same context of Theorem 5.1.1, and recalling that FQK represents the information of µ
in the closed cube QK = [−K2 ,

K
2 ]d, we define AKut ∶= Eρ[ut∣FQK ], and show that for every

t ⩾ max {(lu)2,16Λ2} and K ⩾
√
t

Eρ [(ut −AKut)2] ⩽ C(Λ) exp(− K√
t
)Eρ [u2] . (5.4)

This is a key estimate appearing in [142, Proposition 3.1], and is also natural as
√
t is the

typical scale of diffusion, thus when K ≫
√
t one gets very good approximation in eq. (5.4).

Its generalization in the continuum configuration space is non-trivial, since in the proof of
[142, Proposition 3.1], one tests the Dirichlet form with AKut, but in our model it is not in
the domain of Dirichlet form D(Ea) and one cannot put AKut directly in the Dirichlet form
eq. (5.1). This is one essential difference between our model and a lattice model. To solve it,
we have to apply some regularization steps which we present in Theorem 5.4.1.

Finally, we remark kindly a minor error in the proof in [142] and fix it when revisiting
the paper. This will be presented in Section 5.3.1 and Section 5.3.1.

The rest of this article is organized as follows. In Section 5.2, we define all the notations
and the rigorous construction of our model. Section 5.3 is the main part of the proof of
Theorem 5.1.1, where Section 5.3.1 gives its outline and we fix the minor error in [142]
mentioned above. The proof of some technical estimates used in Section 5.3 are put in the
last two sections, where Section 5.4 proves the localization estimate eq. (5.4) in continuum
configuration space, and Section 5.5 serves as a toolbox of other estimates including spectral
inequality, perturbation estimate and calculation of the entropy.

5.2 Preliminaries

5.2.1 Notations

In this part, we introduce the notations used in this paper. We write Rd for the d-dimensional
Euclidean space, Br(x) for the ball of radius r centered at x. We denote byQs(x) ∶= x + (− s2 ,

s
2)
d
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as the cube of edge length s centered at x, and Qs(x) for its closure. We also denote by Br
and Qs respectively short for Br(0) and Qs(0). The lattice set is defined by Zs ∶= Zd ∩Qs.

Continuum configuration space

For any metric space (E,d), we denote by M(E) the set of Radon measures on E. For
every Borel set U ⊆ E, we denote by FU the smallest σ-algebra such that for every Borel
subset V ⊆ U , the mapping µ ∈M(E)↦ µ(V ) is measurable. For a FU -measurable function
f ∶M(E) → R, we say that f supported in U i.e. supp(f) ⊆ U . In the case µ ∈M(E) is of
finite total mass, we write

⨏ f dµ ∶= ∫ f dµ
∫ dµ

. (5.5)

We also define the collection of point measureMδ(E) ⊆M(E)

Mδ(E) ∶= {µ ∈M(E) ∶ µ =∑
i∈I
δxi for some I finite or countable, and xi ∈ E for any i ∈ I} ,

which serves as the continuum configuration space where each Dirac measure stands the
position of a particle. In this work we will mainly focus on the Euclidean space Rd and its
associated point measure spaceMδ(Rd), and use the shorthand notation F ∶= FRd .

We define two operations for elements inMδ(Rd): restriction and transport.

• For every µ ∈Mδ(Rd) and Borel set U ⊆ Rd, we define the restriction operation µ U ,
such that for every Borel set V ⊆ Rd, (µ U)(V ) = µ(U ∩ V ). Then for a function
f ∶Mδ(Rd)→ R which is FU -measurable, we have f(µ) = f(µ U).

• The transport on the set is defined as

∀h ∈ Rd, U ⊆ Rd, τhU ∶= {y + h ∶ y ∈ U}.

Then for every µ ∈Mδ(Rd) and h ∈ Rd, we define the transport operation τhµ such
that for every Borel set U , we have

τhµ(U) ∶= µ(τ−hU). (5.6)

For f an FV -measurable function, we also define the transport operation τhf as a
pullback that

τhf(µ) ∶= f(τ−hµ), (5.7)

which is an FτhV -measurable function.

Notice that the restriction operation can be defined similarly in M(E) for a metric space,
but the transport operation requires that E is at least a vector space.

We fix ρ > 0 once and for all, and define Pρ a probability measure on (Mδ(Rd),F), to be
the Poisson measure on Rd with density ρ (see [151]). We denote by Eρ the expectation, Varρ
the variance associated with the law Pρ, and by µ the canonical Mδ(Rd)-valued random
variable on the probability space (Mδ(Rd),F ,Pρ). In the case U ⊆ Rd a bounded Borel
set and f a FU -measurable function, we can rewrite the expectation Eρ[f] in an explicit
expression

Eρ [f] =
+∞
∑
N=0

e−ρ∣U ∣ (ρ∣U ∣)N

N ! ⨏
UN

f (
N

∑
i=1
δxi) dx1⋯dxN . (5.8)
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For instance, for every bounded Borel set U ⊆ Rd and bounded measurable function g ∶ U → R,
we can write

Eρ [∫
U
g(x)dµ(x)] = ρ∫

U
g(x)dx.

Notice that the measure µ is a Poisson point process under Pρ. In particular, the measures
µ U and µ (Rd ∖ U) are independent, and the conditional expectation Eρ [⋅∣F(Rd∖U)] can
thus be described equivalently as an averaging over the law of µ U .

For any 1 ⩽ p <∞, we denote by L p the set of F-measurable functions f ∶Mδ(Rd) → R
such that the norm

∥f∥L p ∶= (Eρ [∣f ∣p])
1
p ,

is finite. We denote by L∞ the norm defined by essential upper bound under Pρ.

Derivative and C∞
c (U)

We define the directional derivative for a F-measurable function f ∶ Mδ(Rd) → R. Let
{ek}1⩽k⩽n be d canonical directions, for x ∈ supp(µ), we define

∂kf(µ,x) ∶= lim
h→0

1
h
(f(µ − δx + δx+hek) − f(µ)),

if the limit exists, and the gradient as a vector

∇f(µ,x) ∶= (∂1f(µ,x), ∂2f(µ,x),⋯∂df(µ,x)).

One can define the function with higher derivative iteratively, but here we use a more natural
way: for every Borel set U ⊆ Rd and N ∈ N, letMδ(U,N) ⊆Mδ(E) be defined as

Mδ(U,N) ∶= {µ ∈Mδ(Rd) ∶ µ =
N

∑
i=1
δxi , xi ∈ U for every 1 ⩽ i ⩽ N} .

Then a function f ∶Mδ(U,N)→ R can be identified with a function f̃ ∶ UN → R by setting

f̃(x) = f̃(x1, . . . , xN) ∶= f (
N

∑
i=1
δxi) . (5.9)

The function f̃ is invariant under permutations of its N coordinates. Conversely, any function
satisfying this symmetry can be identified with a function fromMδ(U,N) to R. We denote by
C∞(Mδ(U,N)) the set of functions f ∶Mδ(U,N)→ R such that f̃ is infinitely differentiable.
For every f ∈ C∞(Mδ(U,N)) and x1, . . . , xN ∈ U , the gradient at x1 coincides with the its
canonical sense for the coordinate x1.

∇f (
N

∑
i=1
δxi , x1) = ∇x1 f̃(x1, . . . , xN). (5.10)

We denote by C∞
c (U) the set of functions f ∶Mδ(Rd)→ R that satisfy:

1. there exists a compact Borel set V ⊆ U such that f is FV -measurable;

2. for every N ∈ N,

the mapping { Mδ(U,N) → R
µ ↦ f(µ) belongs to C∞(Mδ(U,N)).
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A more heuristic description for f ∈ C∞
c (U) is a function depending only on the information

in a compact subset V ⊆ U , and when we do projection f(µ) = f(µ V ) it can be identified
as a function C∞ with finite coordinate, and also smooth when the number of particles in V
changes. However, as the number of particles can be arbitrarily large, C∞

c (U) is not a subset
of any L p with p ⩾ 1.

Sobolev space on Mδ(U)

We define the H 1(U) norm by

∥f∥H 1(U) ∶= (∥f∥2
L 2 +Eρ [∫

U
∣∇f ∣2 dµ])

1
2
,

and denote by H 1(U) the Sobolev space of F-measurable functions with finite norm. Let
H 1

0 (U) denote the completion with respect to this norm of the space

{f ∈ C∞
c (U) ∶ ∥f∥H 1(U) <∞} .

We remark that H 1(U) is not necessarily FU -measurable.

5.2.2 Construction of model

Diffusion coefficient

In this part, we define the coefficient field of the diffusion. We give ourselves a symmetric
matrix valued function a○ ∶Mδ(Rd)→ Rd×dsym which satisfies the following properties:

• uniform ellipticity: there exists Λ ∈ [1,+∞) such that for every µ ∈Mδ(Rd) and every
ξ ∈ Rd,

∣ξ∣2 ⩽ ξ ⋅ a○(µ)ξ ⩽ Λ∣ξ∣2 ; (5.11)

• locality: for every µ ∈Mδ(Rd), a○(µ) = a○ (µ B1).

We extend a○ by stationarity using the transport operation defined in eq. (5.7): for every
µ ∈Mδ(Rd) and x ∈ Rd,

a(µ,x) ∶= τxa○(µ) = a○(τ−xµ).

A typical example of a coefficient field a of interest is a○(µ) ∶= (1 + 1{{µ(B1)=1}})Id whose
extension is given by a(µ,x) ∶= (1 + 1{{µ(B1(x))=1}})Id. In words, for x ∈ supp(µ), the
quantity a(µ,x) is equal to 2 whenever there is no other point than x in the unit ball around
x, and is equal to 1 otherwise.

Markov process defined by Dirichlet form

In this part, we construct our infinite particle system on Mδ(Rd) by Dirichlet form (see
[109, 177] for the notations). We define at first the non-negative bilinear symmetric form

Ea(f, g) ∶= Eρ [∫
Rd
∇f(µ,x) ⋅ a(µ,x)∇g(µ,x)dµ(x)] ,

on its domain D(Ea) that

D(Ea) ∶= H 1
0 (Rd).
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We also use Ea(f) ∶= Ea(f, f) for short. It is clear that Ea is closed and Markovian thus
it is a Dirichlet form, so it defines the correspondence between the Dirichlet form and the
generator L that

Ea(f, g) = Eρ [f(−L)g] , D(Ea) = D(−L).

and a L 2 strongly continuous Markov semigroup (Pt)t⩾0. We denote by (Ft)t⩾0 its filtration
and (µt)t⩾0 the associatedMδ(Rd)-valued Markov process which stands the configuration of
the particles, then for any u ∈ L 2,

ut(µ) ∶= Ptu(µ) = Eρ[u(µt)∣F0],

is an element in D(Ea) and is characterized by the parabolic equation on Mδ(Rd) that for
any v ∈ D(Ea)

Eρ[utv] −Eρ[uv] = −∫
t

0
Ea(us, v)ds. (5.12)

Finally, we remark that the average is conserved for ut as we test eq. (5.12) by constant 1
that

Eρ[ut] −Eρ[u] = −∫
t

0
Eρ [∫

Rd
∇1 ⋅ a(µ,x)∇us(µ,x)dµ] ds = 0. (5.13)

In this work, we focus more on the quantitative property of Pt; see [206] for more details
about the trajectory property of similar type of process.

5.2.3 A solvable case

We propose a solvable model to illustrate that the behavior of this process is close to the
diffusion and the rate of decay is the best one that we can expect.

In the following, we suppose that a = 1
2 which means that in fact every particle evolves

as a Brownian motion i.e. µ = ∑∞
i=1 δxi , µt = ∑∞

i=1 δB(i)t
that (B(i)

t )
t⩾0

is a Brownian motion
issued from xi and (B(i)

⋅ )
i∈N is independent.

Example 5.2.1. Let u(µ) ∶= ∫Rd f dµ with f ∈ C∞
c (Rd). In this case, we have

ut(µ) = Ptu(µ) = Eρ [u(µt)∣F0] = Eρ [∑
i∈N
f (B(i)

t )∣F0] = ∫
Rd
ft(x)dµ(x),

where ft ∈ C∞(Rd) is the solution of the Cauchy problem of the standard heat equation:
Φt(x) = 1

(2πt)
d
2

exp (− ∣x∣2
2t ) and ft(x) = Φt ⋆ f(x). Then we use the formula of variance for

Poisson process

Varρ [u] = ρ∫
Rd
f2(x)dx = ρ∥f∥2

L2(Rd),

Varρ [ut] = ρ∫
Rd
f2
t (x)dx = ρ∥ft∥2

L2(Rd).

By the heat kernel estimate for the standard heat equation, we known that ∥ft∥2
L2(Rd) ≃ C(d)t−

d
2 ∥f∥2

L1(Rd),

thus the scale t−
d
2 is the best one that we can obtain. Moreover, if we take f = 1{Qr}, and
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t = r2(1−ε) for a small ε > 0, then we see that the typical scale of diffusion is a ball of size
r1−ε. So for every x ∈ Q

r(1−r−
ε
2 ), the value ft(x) ≃ 1 − e−r

ε
2 and we have

Varρ [ut] = ρ∫
Rd
f2
t (x)dx ⩾ ρrd(1 − r−

ε
2 ) = (1 − r−

ε
2 )Varρ [u] .

It illustrates that before the scale t = r2, the decay is very slow so in the Theorem 5.1.1 the
factor ( lu√

t
)
d
is reasonable.

5.3 Strategy of proof

In this part, we state the strategy of the proof of Theorem 5.1.1. We will give a short outline
in Section 5.3.1, which can be seen as an “approximation-variance decomposition”, and then
focus on the term approximation in Section 5.3.2. Several technical estimates will be used in
this procedure and their proofs will be postponed in Section 5.4 and Section 5.5.

5.3.1 Outline

As mentionned, this work is inspired from [142], and we revisit the strategy here. We pick a
centered u ∈ C∞

c (Rd)∩L∞ supported in Qlu such that Eρ[u] = 0 and this implies Eρ[ut] = 0
from eq. (5.13). Then we set a multi-scale {tn}n⩾0, tn+1 = Rtn, where R > 1 is a scale factor
to be fixed later. It suffices to prove that eq. (5.2) for every tn, then for t ∈ [tn, tn+1], one can
use the decay of L 2 that

Eρ[(ut)2] ⩽ Eρ[(utn)2] ⩽ C(1 + log(tn))γ (
1 + lu√
tn

)
d

∥u∥2
L∞ ⩽ CR

d
2 (1 + log t)γ (1 + lu√

t
)
d

∥u∥2
L∞ ,

then by resetting the constant C one concludes the main theorem. Another ingredient of the
proof is an “approximation-variance type decomposition”:

ut = vt +wt,

vt ∶= ut −
1

∣ZK ∣ ∑y∈ZK
τyut,

wt ∶=
1

∣ZK ∣ ∑y∈ZK
τyut,

(5.14)

where we recall ZK = QK ∩Zd is the lattice set of scale K. The philosophy of this decompo-
sition is that in long time, the information in a local scale K is mixed, thus wt as a spatial
average is a good approximation of ut and vt is the error term. Thus, the following control
Proposition 5.3.1 and Proposition 5.5.2 of the two terms wt and vt proves the main theorem
Theorem 5.1.1.

Proposition 5.3.1. There exists a finite positive number C ∶= C(d) such that for any
u ∈ C∞

c (Rd) ∩L∞ which is FQlu -measurable and with mean zero, and any K ⩾ lu, we have

Varρ
⎡⎢⎢⎢⎢⎣

⎛
⎝

1
∣ZK ∣ ∑y∈ZK

τyut
⎞
⎠

2⎤⎥⎥⎥⎥⎦
⩽ C(d) ( lu

K
)
d

Eρ[u2]. (5.15)
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Proof. Then we can estimate the variance simply by L 2 decay that

Eρ[(wt)2] = Eρ
⎡⎢⎢⎢⎢⎣

⎛
⎝
Pt

⎛
⎝

1
∣ZK ∣ ∑y∈ZK

τyu
⎞
⎠
⎞
⎠

2⎤⎥⎥⎥⎥⎦
⩽ Eρ

⎡⎢⎢⎢⎢⎣

⎛
⎝

1
∣ZK ∣ ∑y∈ZK

τyu
⎞
⎠

2⎤⎥⎥⎥⎥⎦
= 1

∣ZK ∣2 ∑
x,y∈ZK

Eρ [(τx−yu)u] .

We know that for ∣x− y∣ ⩾ lu, then the term τx−yu and u is independent so Eρ [(τx−yu)u] = 0.
This concludes eq. (5.15).

Proposition 5.3.2. There exist two finite positive numbers C ∶= C(d, ρ), γ ∶= γ(d, ρ) such
that for any u ∈ C∞

c (Rd) ∩L∞ which is FQlu -measurable, K ⩾ lu and vt defined in eq. (5.14),
tn ⩾ max {l2u,16Λ2}, tn+1 = Rtn with R > 1 we have

(tn+1)
d+2
2 Eρ[(vtn+1)

2] − (tn)
d+2
2 Eρ[(vtn)2] ⩽ C(log(tn+1))γK2(lu)d∥u∥2

L∞ +Eρ[u2]. (5.16)

Proof of Theorem 5.1.1 from Proposition 5.3.2 and Proposition 5.3.1. For the case t ⩽ (lu)2

or t ⩽ 16Λ2, the right hand side of eq. (5.2) is larger than Eρ[u2] and we can use the L 2

decay to prove the theorem. Thus without loss of generality, we set t0 ∶= max {l2u,16Λ2} and
put eq. (5.16) into eq. (5.2) by setting K ∶=

√
tn+1 that

Eρ[(utn+1)
2]

⩽2Eρ[(vtn+1)
2] + 2Eρ[(wtn+1)

2]

⩽2( tn
tn+1

)
d+2
2

Eρ[(vtn)2] + 2(tn+1)−
d+2
2 (C(log(tn+1))γtn+1(lu)d∥u∥2

L∞ +Eρ[u2])

+ 2Eρ[(wtn+1)
2]

⩽4( tn
tn+1

)
d+2
2

Eρ[(utn)2] + 2(tn+1)−
d+2
2 (C(log(tn+1))γtn+1(lu)d∥u∥2

L∞ +Eρ[u2])

+ 4( tn
tn+1

)
d+2
2

Eρ[(wtn)2] + 2Eρ[(wtn+1)
2].

(5.17)

We set Un = (tn)
d
2Eρ[(utn)2] and put eq. (5.15) into the equation above, we have

Un+1 ⩽ θUn +C2 ((log(tn+1))γ(lu)d∥u∥2
L∞ + (tn+1)−1Eρ[u2]) +C3(lu)dEρ[u2],

where θ = 4R−1. By choosing R large such that θ ∈ (0,1), we do a iteration for the equation
above to obtain that

Un+1 ⩽
n

∑
k=1

(C2 ((log(tn+1))γ(lu)d∥u∥2
L∞ +Eρ[u2]) +C3(lu)dEρ[u2]) θn−k +U0θ

n+1

⩽ 1
1 − θ

(C2 ((log(tn+1))γ(lu)d∥u∥2
L∞ +Eρ[u2]) +C3(lu)dEρ[u2]) + (lu)dEρ[u2]

Ô⇒Eρ[(utn+1)
2] ⩽ C4(log(tn+1))γ (

lu√
tn+1

)
d

∥u∥2
L∞ .

Remark. We remark that there is a small error in the similar argument in [142, Proof of
Proposition 2.2]: the authors apply eq. (5.16) from t0 to tn, and they neglect the change of
scale in K at the endpoints {tn}n⩾0. However, it does not harm the whole proof and we fix
it here: we add one more step of decomposition in eq. (5.17), and put the iteration directly
in ut instead of vt, which avoids the problem of the changes of K.
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5.3.2 Error for the approximation

In this part, we prove Proposition 5.3.2. The proof can be divided into 6 steps.

Proof of Proposition 5.3.2. . Step 1: Setting up. To shorten the equation, we define

∆n ∶= (tn+1)
d+2
2 Eρ[(vtn+1)

2] − (tn)
d+2
2 Eρ[(vtn)2], (5.18)

and it is the goal of the whole subsection. In the step setting up, we do derivative for the
flow t

d+2
2 Eρ[(vt)2] that

∆n = ∫
tn+1

tn
(d + 2

2
) t

d
2Eρ[(vt)2] − 2t

d+2
2 Eρ[vt(−Lvt)]dt. (5.19)

Step 2: Localization. We set ALvt = E [vt∣FQL] and use it to approximate vt in L 2. Since
it is a diffusion process, one can guess naturally a scale larger than

√
t will have enough

information for this approximation. In Theorem 5.4.1 we prove an estimate

Eρ [(vt −ALvt)2] ⩽ C(Λ) exp(− L√
t
)Eρ [(v0)2] ,

and we choose L = ⌊γ log(tn+1)⌋
√
tn+1, γ > d+4

2 here, and put it back to eq. (5.19) to obtain

∆n ⩽∫
tn+1

tn
(d + 2)t

d
2Eρ [(ALvt)2] + (d + 2)t

d
2−γEρ [(v0)2] − 2t

d+2
2 Eρ[vt(−Lvt)]dt

⩽Eρ[(u0)2] + ∫
tn+1

tn
(d + 2)t

d
2Eρ [(ALvt)2] − 2t

d+2
2 Eρ[vt(−Lvt)]dt.

(5.20)

Step 3: Approximation by density. We apply a second approximation: we choose another
scale l > 0, whose value will be fixed but L/l ∈ N and l ≃

√
tn+1. We denote by q = (L/l)d and

ML,l = (M1,M2⋯Mq) a random vector, where Mi is the number of the particle in i-th cube
of scale l. Then we define an operator

BL,lvt ∶= Eρ [vt∣ML,l] .

The main idea here is that the random vector ML,l captures the information of convergence,
once we know the density in every cube of scale l ≃

√
tn+1 converges to ρ. In Proposition 5.5.1

we will prove a spectral inequality that

Eρ [(ALvt −BL,lvt)2] ⩽ R0l
2Eρ [vt(−Lvt)] .

We put this estimate into eq. (5.20)

∆n ⩽Eρ[(u0)2] + ∫
tn+1

tn
2(d + 2)t

d
2Eρ [(BL,lvt)

2] + 2t
d
2 ((d + 2)R0l

2 − t)Eρ[vt(−Lvt)]dt

⩽Eρ[(u0)2] + ∫
tn+1

tn
2(d + 2)t

d
2Eρ [(BL,lvt)

2] dt,

where we obtain the last line by choosing a scale l = c
√
tn+1 such that (d + 2)R0l

2 ⩽ tn and
L/l ∈ N.

It remains to estimate how small Eρ [(BL,lvt)
2] is. The typical case is that the density is

close to ρ in every cube of scale l in QL. Let us define M = (M1,M2,⋯Mq), and we have

BL,lvt(M) = Eρ [vt∣ML,l =M] .
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Then we call CL,l,ρ,δ the δ-good configuration that

CL,l,ρ,δ ∶= {M ∈ Nq ∣∀1 ⩽ i ⩽ q, ∣ Mi

ρ∣Ql∣
− 1∣ ⩽ δ} . (5.21)

We can use standard Chernoff bound and union bound to prove the upper bound of Pρ [ML,l ∉ CL,l,ρ,δ]:
for any λ > 0, we have

Pρ [∃ ⩽ i ⩽ q,
Mi

ρ∣Ql∣
⩾ 1 + δ] ⩽ (L

l
)
d

exp(−λ(1 + δ))Eρ [exp(λµ(Ql)
ρ∣Ql∣

)]

= (L
l
)
d

exp(−λ(1 + δ) + ρ∣Ql∣ (e
λ

ρ∣Ql ∣ − 1))

⩽ (L
l
)
d

exp(−λδ + λ2

ρ∣Ql∣
) .

In the second line we use the exact Laplace transform for µ(Ql) as we know µ(Ql)
law∼ Poisson(ρ∣Ql∣).

Then we do optimization by choosing λ = δρ∣Ql∣
2 . The other side is similar and we conclude

Pρ [ML,l ∉ CL,l,ρ,δ] ⩽ (γ log(tn+1))d exp(−ρ∣Ql∣δ
2

4
) . (5.22)

For the case M ∉ CL,l,ρ,δ, we can bound BL,lvt(M) naively by ∣BL,lvt(M)∣ ⩽ C∥u0∥L∞ , thus
we have

Eρ [(BL,lvt)
2] ⩽ ∑

M∈CL,l,ρ,δ
Pρ[ML,l =M](BL,lvt(M))2 + (γ log(tn+1))d exp(−ρ∣Ql∣δ

2

4
)∥u0∥2

L∞

and we finish this step by

∆n ⩽Eρ[(u0)2] + (tn+1)
d+2
2 (γ log(tn+1))d exp(−ρ∣Ql∣δ

2

4
)∥u0∥2

L∞

+ ∑
M∈CL,l,ρ,δ

Pρ[ML,l =M]∫
tn+1

tn
2(d + 2)t

d
2 (BL,lvt(M))2 dt.

(5.23)

We remark that the parameter δ > 0 will be fixed at the end of the proof.
Step 4: Perturbation estimate. It remains to estimate the term (BL,lvt(M))2 for the the

δ-good configuration. Now we put the expression of vt in and obtain

(BL,lvt(M))2 =
⎛
⎝

1
∣ZK ∣ ∑y∈ZK

(BL,l(ut − τyut))(M)
⎞
⎠

2

,

and our aim is to control

∫
tn+1

tn
2(d + 2)t

d
2
⎛
⎝

1
∣ZK ∣ ∑y∈ZK

(BL,l(ut − τyut))(M)
⎞
⎠

2

dt. (5.24)

To treat eq. (5.24), we calculate the Radon-Nikodym derivative that

gM ∶=
dPρ[⋅∣ML,l =M]

dPρ
= 1
Pρ[ML,l =M]]

1{ML,l=M]}. (5.25)
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Then we use the reversibility of the semigroup Pt and denote by gM,t ∶= PtgM

BL,l(ut − τyut)(M) = Eρ[gM(ut − τyut)] = Eρ [gM,t(u − τyu)] .

Then we would like to apply the a perturbation estimate Proposition 5.5.2 to control it: let
lk ∶= lu + 2k then for any ∣y∣ ⩽ k, we have

Eρ[gM(ut − τyut)] ⩽ C(d)(lk∥u∥L∞)2EQlk (
√
gM),

where EQlk (
√
gM) is a localized Dirichlet form defined in eq. (5.59). A heuristic analysis of

order is EQlk (
√
gM) ≃ O ((lk)d) since it is a Dirichlet form on Qlk . If we choose k = K here

to cover all the term, the bound will be of order O(Kd), which is big when K ≃
√
t ⩾ lu.

Therefore, we apply a coarse-graining argument: let [0, y]k ∶= {zi}0⩽i⩽n(y) be a lattice path
that of scale k, z0 = 0, zn(y) = y,{zi}1⩽i<n(y) ∈ (kZ)d so the length of path is the shortest one.
(See Figure 5.1 for illustration.) Then we have

(u − τyu) =
n(y)−1
∑
i=0

(τziu − τzi+1u) =
n(y)−1
∑
i=0

τzi(u − τhziu),

where hzi = zi+1 − zi the vector connecting the two and ∣hzi ∣ ⩽ k. This expression with the
transport invariant law of Poisson point process, Cauchy-Schwartz inequality implies

(BL,l(ut − τyut)(M))2 =
⎛
⎜
⎝
∑

z∈[0,y]k

Eρ [gM,tτz(u − τhzu)]
⎞
⎟
⎠

2

=
⎛
⎜
⎝
∑

z∈[0,y]k

Eρ [(τ−zgM,t) (u − τhzu)]
⎞
⎟
⎠

2

⩽ C(d)n(y) ∑
z∈[0,y]k

(Eρ [(τ−zgM,t) (u − τhzu)])
2 .

(5.26)

This term appears a perturbation estimate, which will be proved in Proposition 5.5.2 that

(Eρ [(τ−zgM,t) (u − τhzu)])
2 ⩽ C(d)(lk∥u∥L∞)2EQlk (√τ−zgM,t)

= C(d)(lk∥u∥L∞)2EτzQlk (√gM,t) ,

where in the last step we use the transport invariant property of Poisson point process. Now
we turn to the choice of the scale k. By the heuristic analysis that every EQlk contributes
order O((lk)d) and taking in account n(y) ⩽K/k we have in eq. (5.26)

(BL,l(ut − τyut)(M))2 ≃ O ((K
k
)

2
(lk)d+2) ≃ O ((K

k
)

2
(lu + 2k)d+2) .

From this we see that a good scale should be k = lu so the term above is of order O(K2(lu)d).
We put these estimate back to eq. (5.24)

eq. (5.24) ⩽ ∥u∥2
L∞ ∫

tn+1

tn
2(d + 2)t

d
2Klu

⎛
⎜
⎝

1
∣ZK ∣ ∑y∈ZK

∑
z∈[0,y]lu

EτzQ3lu
(√gM,t)

⎞
⎟
⎠

dt. (5.27)
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Figure 5.1: The illustration of the coarse-graining argument, where we take a lattice path of
scale k to connect 0 and y. The ball in blue is the support of u and the box in red is Qlk .
For the one on the left, the scale is k = lu; the one on the right the scale is finer and we see
that the coarse-graining is too dense.

Step 5: Covering argument. In this step, we calculate the right hand side of eq. (5.27),
where we notice one essential problem: there are totally about Kd+1/lu terms of Dirichlet
form EτzQ3lu

(√gM,t) in the sum ∑y∈ZK ∑z∈[0,y]lu
EτzQlu (√gM,t), but the one with z close to

0 are counted of order Kd times, while the one with z near ∂ZK are counted only constant
times. To solve this problem, we have to reaverage the sum: by the transport invariant
property of Poisson point process, at the beginning of the Step 1, we can write

∆n =
1

∣Zl∣
∑
x∈Zl

((tn+1)
d+2
2 Eρ[(τxvtn+1)

2] − (tn)
d+2
2 Eρ[(τxvtn)2]) .

Then all estimates works in Step 1, Step 2 and Step 3 work by replacing vt ↦ τxvt and
ut ↦ τxut. In the Step 4, this operation will change our object term eq. (5.24)

eq. (5.24)-avg = ∫
tn+1

tn
2(d + 2)t

d
2
⎛
⎝

1
∣Zl∣

∑
w∈Zl

1
∣ZK ∣ ∑y∈ZK

(BL,lτw(ut − τyut)(M))2⎞
⎠

dt,

and the perturbation argument Proposition 5.5.2 reduces the problem as

eq. (5.24)-avg ⩽ ∥u∥2
L∞ ∫

tn+1

tn
2(d + 2)t

d
2Klu

×
⎛
⎜
⎝

1
∣Zl∣

∑
w∈Zl

1
∣ZK ∣ ∑y∈ZK

∑
z∈[0,y]lu

Eτw+zQ3lu
(√gM,t)

⎞
⎟
⎠

dt.

(5.28)
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Now we can apply the Fubini’s lemma

1
∣Zl∣

∑
w∈Zl

1
∣ZK ∣ ∑y∈ZK

∑
z∈[0,y]lu

Eτw+zQ3lu
(√gM,t)

= 1
∣Zl∣

1
∣ZK ∣

Eρ

⎡⎢⎢⎢⎢⎢⎣
∫
Rd

⎛
⎜
⎝
∑
w∈Zl

∑
y∈ZK

∑
z∈[0,y]lu

1{x∈τw+zQ3lu}
⎞
⎟
⎠
∇√

gM,t(µ,x) ⋅ ∇
√
gM,t(µ,x)dµ(x)

⎤⎥⎥⎥⎥⎥⎦
,

while we notice that

∑
w∈Zl

∑
y∈ZK

∑
z∈[0,y]lu

1{x∈τw+zQ3lu} = ∑
y∈ZK

∑
z∈[0,y]lu

∑
w∈Zl

1{x−w∈τzQ3lu}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽∣Q3lu ∣

⩽ ∑
y∈ZK

∑
z∈[0,y]lu

(3lu)d ⩽ C(d)(lu)d−1Kd+1,

so we have

1
∣Zl∣

∑
w∈Zl

1
∣ZK ∣ ∑y∈ZK

∑
z∈[0,y]lu

Eτw+zQ3lu
(√gM,t) ⩽

C(d)(lu)d−1K

∣Zl∣
E(√gM,t).

We put this estimate to eq. (5.28) and use l = c
√
tn+1,

eq. (5.24)-avg ⩽ C(d)∥u∥2
L∞K2(lu)d∫

tn+1

tn

⎛
⎝
t

1
2

l

⎞
⎠

d

E(√gM,t)dt

⩽ C(d)∥u∥2
L∞K2(lu)d∫

tn+1

tn
E(√gM,t)dt.

(5.29)

We put eq. (5.29) back to eq. (5.24) and eq. (5.23) and conclude

∆n ⩽Eρ[(u0)2] + (tn+1)
d+2
2 (γ log(tn+1))d exp(−ρ∣Ql∣δ

2

4
)∥u0∥2

L∞

+C(d)∥u∥2
L∞K2(lu)d ∑

M∈CL,l,ρ,δ
Pρ[ML,l =M]∫

tn+1

tn
E(√gM,t)dt.

(5.30)

Step 6: Entropy inequality. In this step, we analyze the quantity ∫
tn+1
tn
E(√gM,t)dt. We

recall the definition of the entropy inequality: let H(gM) = Eρ[gM log(gM)], then

H(gM,t) =H(gM) − 4∫
t

0
Eρ[

√
gM,s(−L

√
gM,s)]ds, (5.31)

we have

∫
tn+1

tn
E(√gM,t)dt ⩽ ∫

tn+1

tn
Eρ[

√
gM,t(−L

√
gM,t)]dt ⩽H(gM,tn+1) ⩽H(gM).

For anyM ∈ CL,l,ρ,δ, one can calculate the bound of the entropy and we prove it in Lemma 5.5.2

H(gM) ⩽ C(d, ρ) (L
l
)
d

(log(l) + ldδ2) .
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This helps us conclude that

∆n ⩽ Eρ[(u0)2]

+ ∥u0∥2
L∞ (γ log(tn+1))d ((tn+1)

d+2
2 exp(−ρ∣Ql∣δ

2

4
) +K2(lu)d (log(l) + ldδ2)) .

To make the bound small, we choose a parameter δ = c(d, ρ)(log tn+1)
1
2 (tn+1)−

d
2 , where c(d, ρ)

is a positive number large enough to compensate the term (tn+1)
d+2
2 and this proves eq. (5.16)

5.4 Localization estimate

In this part, we prove the key localization estimate: we recall our notation of conditional
expectation here that Asf = E [f ∣FQs] for Qs a closed cube [− s2 ,

s
2]
d.

Theorem 5.4.1. For u ∈ L 2 which is FQlu -measurable, any t ⩾ max {l2u,16Λ2}, K ⩾
√
t,

and ut the function associated to the generator L at time t, then we have the estimate

Eρ [(ut −AKut)2] ⩽ C(Λ) exp(− K√
t
)Eρ [u2] . (5.32)

This is an important inequality which allows us to pay some error to localize the function,
and it is introduced in [142] and also used in [116]. The main idea to prove it is to use a
multi-scale functional and analyze its evolution with respect to the time. Let us introduce
its continuous version: for any f ∈ L 2, f ↦ (Asf)s⩾0 is a càdlàg L 2-martingale with respect
to (Ω, (FQs)s⩾0

,P).

Our multi-scale functional for f ∈ H 1
0 (Rd) is defined as

Sk,K,β(f) = αkEρ [(Akf)2] + ∫
K

k
αs dEρ [(Asf)2] + αKEρ [(f −AKf)2] , (5.33)

with αs = exp ( sβ) , β > 0. We can apply the integration by part formula for the Lebesgue-
Stieltjes integral and obtain

Sk,K,β(f) = αKEρ [f2] − ∫
K

k
α′sEρ [(Asf)2] ds, (5.34)

where α′s is the derivative with respect to s. The main idea is to put ut in eq. (5.34) and
then study its derivative d

dtSk,K,β(ut) and use it to prove Theorem 5.4.1. In this procedure,
we will use the Dirichlet form for Asut, but we have to remark that in fact we do not know
a priori this is a function in H 1

0 (Rd). We will give a counter example to make it clearer in
the next section and introduce a regularized version of Asf to pass this difficulty.

5.4.1 Conditional expectation, spatial martingale and its regularization

(Asf)s⩾0 has nice property: we can treat it as a localized function or a martingale. Thus we
use the notation

M f
s ∶= Asf, (5.35)
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which is a more canonical notation in martingale theory. In this subsection, we would like
to understand the regularity of the closed martingale (M f

s )
s⩾0

. We will see it is a càdlàg
L 2-martingale and the jump happens when there is particles on the boundary ∂Qs. At first,
we remark a useful property for Poisson point process.
Lemma 5.4.1. With probability 1, for any 0 < s <∞, there is at most one particle one the
boundary ∂Qs.
Proof. We denote by

N ∶= {µ ∶ ∃0 < s <∞, there exist more than two particles on ∂Qs}.

Then we choose an increasing sequence {sεk}k⩾0 with sε0 = 0, such that

Rd =
∞
⊔
k=1

Csε
k
, Csε

k
∶= Qsε

k
/Qsε

k−1
, ∣Csε

k
∣ = ε

k
.

Then we have that

Pρ [N ] ⩽ Pρ [∃k,µ(Csε
k
) ⩾ 2]

⩽
∞
∑
k=1

Pρ [µ(Csε
k
) ⩾ 2]

⩽
∞
∑
k=1

(ρ∣Csε
k
∣)2

⩽ (ρε)2.

We we let ε go down to 0 and prove that Pρ [N ] = 0.

For this reason, in the following, we can do modification of the probability space and
always suppose that there is at most one particle on the boundary. This helps us to prove
the following regularity property for (M f

s )
s⩾0

.

Lemma 5.4.2. After a modification, for any f ∈ L 2 the process (M f
s )

s⩾0
is a càdlàg L 2-

martingale, and the discontinuity point occurs for s such that µ(∂Qs) = 1.
Proof. By the classical martingale theory, we know that {FQs}s⩾0 is a right continuous fil-
tration, thus after a modification the process is càdlàg. Moreover, from Lemma 5.4.1 we can
modify the value to 0 on a negligible set so that µ(∂Qs) ⩽ 1 for all positive s. It remains to
prove that if µ(∂Qs) = 0, then the process is also left continuous. In this case, there exists a
0 < ε0 < s such that for any 0 < ε < ε0, we have

µ Qs = µ Qs−ε = µ Qs−ε0 . (5.36)

We use µ Qs = (µ Qs−ε) + (µ (Qs/Qs−ε)), then As−εf(µ) has an expression

As−εf(µ) = ∫Mδ(Rd)
Asf(µ Qs−ε + µ′ (Qs/Qs−ε))dPρ(µ′)

= ∫Mδ(Rd)
Asf(µ Qs−ε + µ′ (Qs/Qs−ε))1{µ′(Qs/Qs−ε)=0} dPρ(µ′)

+ ∫Mδ(Rd)
Asf(µ Qs−ε + µ′ (Qs/Qs−ε))1{µ′(Qs/Qs−ε)⩾1} dPρ(µ′)

= e−ρ∣Qs/Qs−ε∣Asf(µ Qs−ε)

+ ∫Mδ(Rd)
Asf(µ Qs−ε + µ′ (Qs/Qs−ε))1{µ′(Qs/Qs−ε)⩾1} dPρ(µ′).
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This helps us estimate

∣As−εf(µ) −Asf(µ)∣

⩽ (1 − e−ρ∣Qs/Qs−ε∣) ∣Asf(µ Qs−ε)∣

+ (1 − e−ρ∣Qs/Qs−ε∣)
1
2 (∫Mδ(Rd)

∣Asf(µ Qs−ε + µ′ (Qs/Qs−ε))∣2 dPρ(µ′))
1
2

⩽ (1 − e−ρ∣Qs/Qs−ε∣) ∣Asf(µ Qs−ε)∣ + (1 − e−ρ∣Qs/Qs−ε∣)
1
2 (As−ε(f2)(µ Qs−ε))

1
2 ,

where we use Jensen’s inequality at the last line. Notice that f ∈ L 2, so (As(f2))s⩾0 is also
a càdlàg martingale. Thus limε↘0 As−ε(f2) admits a left limit As−(f2). Moreover, we use
eq. (5.36) and locally we have

∣As−εf(µ) −Asf(µ)∣ ⩽ Cρεsd−1∣Asf(µ Qs−ε0)∣ +Cρ
1
2 ε

1
2 s

d−1
2 ∣As−(f2)(µ Qs−ε0)∣

1
2 .

This implies that almost surely the càdlàg martingale (M f
s )

s⩾0
is also continuous at s for

µ(∂Qs) = 0.

The following corollaries are simple applications of the result above.

Corollary 5.4.1. For f ∈ L 2, we can define a bracket process for (M f
s )

s⩾0
: we define that

[M f ]
s
∶= ∑

0<τ⩽s
(∆M f

τ )2
, ∆M f

τ = M f
τ −M f

τ−, τ is jump point. (5.37)

Then ((M f
s )

2
− [M f ]

s
)
s⩾0

is a martingale with respect to (Ω, (FQs)s⩾0
,Pρ).

Proof. This is a direct result from jump process; see [141, Chapter 4e].

Corollary 5.4.2. Let x ∈ supp(µ), and we define a stopping time for x

τ(x) ∶= min{s ⩾ 0∣x ∈ Qs}, (5.38)

and the normal direction Ð→n (x) and we define

Aτ(x)−f(µ − δx + δx−) ∶= lim
ε↘0

Aτ(x)−εf(µ − δx + δx−εÐ→n (x)). (5.39)

Then for any f ∈ L 2 we have almost surely

Aτ(x)−f(µ) = Aτ(x)f(µ − δx), Aτ(x)−f(µ − δx + δx−) = Aτ(x)f(µ). (5.40)

Proof. The equation Aτ(x)−f(µ) = Aτ(x)f(µ − δx) is the result of left continuous: from
Lemma 5.4.1 we know with probability 1 there is only x on ∂Qτ(x) and µ − δx does not
have particle on the boundary so we apply Lemma 5.4.2 and obtain this equation.

For the second equation, we have

Aτ(x)f(µ) = lim
ε1↘0

Aτ(x)f(µ − δx + δx−ε1Ð→n (x))

= lim
ε1↘0

Aτ(x)f(µ − δx + δx−ε1Ð→n (x))

= lim
ε2↘0

lim
ε1↘ε2

Aτ(x)−ε2f(µ − δx + δx−ε1Ð→n (x))

= lim
ε↘0

Aτ(x)−εf(µ − δx + δx−εÐ→n (x)).

In the last step, we use the uniformly left continuous for Asf and the continuity with respect
to x.
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One important remark about the conditional expectation is that in fact for f ∈ C∞
c (Rd),

we may have ALf ∉ C∞
c (Rd). The reason is that the conditional expectation creates a small

gap at the boundary for the function. Here we give an example of the conditional expectation
for Eρ[f ∣FBr], which is easier to state but it shares the same property of ALf .

Example 5.4.1. Let η ∈ C∞
c (Rd) be a plateau function:

supp(η) ⊆ B1,0 ⩽ η ⩽ 1, η ≡ 1 in B 1
2
, η(x) = η(∣x∣) decreasing with respect to ∣x∣.

and we define our function

f(µ) = (∫
Rd
η(x)dµ(x)) ∧ 3.

We define the level set Br such that

Br ∶= {x ∈ Rd ∣1
2
⩽ η(x) ⩽ 1} .

Then, we have Eρ[f ∣FBr] ∉ C∞
c (Rd).

Proof. Let µ1 = µ Br, µ2 = µ (B1/Br), then since supp(f) ⊆ B1, we have that

Eρ[f ∣FBr] = (µ1(η) + µ2(η)) ∧ 3.

Let us choose a specific configuration to see that Eρ[f ∣FBr](µ) is not even continuous:

µ1 = δx1 + δx2 + δx3 , where x1, x2 ∈ B 1
2
, x3 ∈ Br/B 1

2
.

Then we can calculate that 2.5 ⩽ µ1(η) < 3 and 2.5 ⩽ Eρ[f ∣FBr](µ) < 3. However, if we take
another µ1 that

µ1 = δx1 + δx2 + δx3 + δx4 , where x1, x2 ∈ B 1
2
, x3 ∈ Br/B 1

2
, x4 ∈ Br.

Then we see that µ1(η) > 3 and we have Eρ[f ∣FBr](µ) = 3. Therefore, once the 4-th particle
x4 enters the ball Br, the value of the function will jump to 3. From this we conclude that
Eρ[f ∣FBr] ∉ C∞

c (Rd).

To make the conditional expectation more regular, we introduce its regularized version:
for any 0 < ε <∞, we define

As,εf ∶=
1
ε
∫

ε

0
As+tf dt, (5.41)

Then we have the following properties.

Proposition 5.4.1. For any f ∈ H 1
0 (Rd), the function As,εf ∈ H 1

0 (Rd) and (Eρ [(As,εf)2])
s⩾0

a C1 increasing process.

Proof. We calculate the formula for Eρ [(As,εf)2]:

Eρ [(As,εf)2] = 1
ε2 ∫

ε

0 ∫
ε

0
Eρ [As+t1fAs+t2f] dt1dt2.
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As we know that Eρ [As+t1fAs+t2f] = Eρ [(As+(t1∧t2)f)
2], we obtain that

Eρ [(As,εf)2] = 2
ε2 ∫

ε

0
(ε − t)Eρ [(As+tf)2] dt. (5.42)

Then we calculate its derivative that for 0 < h < ε

lim
h↘0

1
h
(Eρ [(As+h,εf)2] −Eρ [(As,εf)2])

= lim
h↘0

2
hε2 (∫

ε+h

ε
(ε + h − t)Eρ [(As+tf)2] dt − ∫

h

0
(ε − t)Eρ [(As+tf)2] dt + ∫

ε

h
hEρ [(As+tf)2] dt)

= 2
ε2 ∫

ε

0
Eρ [(As+tf)2] −Eρ [(Asf)2] dt.

In the last step, we use the right continuity and this proves that

d

ds
Eρ [(As,εf)2] = 2

ε2 ∫
ε

0
Eρ [(As+tf)2] −Eρ [(Asf)2] dt. (5.43)

Then we calculate the partial derivative. We use the formula that

ek ⋅ ∇As,εf(µ,x) = lim
h→0

1
h
(1
ε
∫

ε

0
As+tf(µ − δx + δx+hek) −As+tf(µ)dt) . (5.44)

We study this derivative case by case.

1. Case x ∈ Qcs+ε. In this case, in eq. (5.44), for a h small enough, for any t ∈ [0, ε], neither
x nor x+hek is in Qt+s, so we have As+tf(µ−δx+δx+hek) = As+tf(µ Qs+t). This implies
that eq. (5.44) is 0 in this case.

2. Case x ∈ Qs. In this case, for a h small enough, for any t ∈ [0, ε], both x and x + hek is
in Qt+s, then we have

ek ⋅ ∇As,εf(µ,x) = lim
h→0

1
h
(1
ε
∫

ε

0
As+tf(µ − δx + δx+hek) −As+tf(µ)dt)

= 1
ε
∫

ε

0
lim
h→0

1
h
(As+tf(µ − δx + δx+hek) −As+tf(µ)) dt

= As,ε (ek ⋅ ∇f(µ,x)) .

3. Case x ∈ (Qs+ε/Qs), ek is the normal direction. In this case, we study at first the
situation Ð→n (x) and h↘ 0. We divide eq. (5.44) in three terms:

ek ⋅ ∇As,εf(µ,x) = I + II + III

I = 1
ε
∫

ε

0
1{s+t<τ(x)}

1
h
(As+tf(µ − δx + δx+hek) −As+tf(µ)) dt

II = 1
ε
∫

ε

0
1{s+t⩾τ(x)+h}

1
h
(As+tf(µ − δx + δx+hek) −As+tf(µ)) dt

III = 1
ε
∫

ε

0
1{τ(x)⩽s+t<τ(x)+h}

1
h
(As+tf(µ − δx + δx+hek) −As+tf(µ)) dt.

The term I and II are similar as we have discussed above and we have

lim
h↘0

I + II = 1
ε
∫

ε

0
1{s+t>τ(x)}As+t (ek ⋅ ∇f(µ,x)) dt.
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For the term III, since x + hek ∉ Qs+t, we have As+tf(µ − δx + δx+hek) = As+tf(µ − δx).
Then, we use the right continuity of Asf

lim
h↘0

III = lim
h↘0

1
hε
∫

τ(x)−s+h

τ(x)−s
As+tf(µ − δx) −As+tf(µ)dt

= 1
ε
(Aτ(x)f(µ − δx) −Aτ(x)f(µ)) .

We should also remark that is is also the case we do partial derivative from left, in this
case we should pay attention on the term III which is

lim
h↘0

III′ = lim
h↘0

1
hε
∫

ε

0
1{τ(x)−h⩽s+t<τ(x)} (As+tf(µ − δx) −As+tf(µ − δx + δx−hek)) dt

= 1
ε
(Aτ(x)−f(µ − δx) −Aτ(x)−f(µ − δx + δx−)) .

In the last step, we use the left continuity of Aτ(x)f when the particle on the boundary
is removed. Thanks to Corollary 5.4.2, we know this limit coincide with that of III. In
conclusion, we could use the notation eq. (5.37)

∆Aτ(x)f = Aτ(x)f −Aτ(x)−f, (5.45)

to unify the two. Thus we see it is nothing but the jump of the càdlàg martingale.

4. Case x ∈ (Qs+ε/Qs), ek is not the normal direction. This case is simpler than ek is
normal direction, where we do not have to consider the term III in the discussion
above.

In summary, we obtain the formula that for any x ∈ supp(µ)

∇As,εf(µ,x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

As,ε (∇f(µ,x)) x ∈ Qs;
1
ε ∫

ε
τ(x)−sAs+t (∇f(µ,x)) dt −

Ð→n (x)
ε ∆Aτ(x)f x ∈ (Qs+ε/Qs) ;

0 x ∈ Qcs+ε.
(5.46)

Finally, we prove that As,εf ∈ H 1
0 (Rd). It is clear that As,εf ∈ L 2 by Jensen’s inequality for

conditional expectation. For its gradient, we have

Eρ [∫
Rd

∣∇As,ε∣2 dµ] ⩽ Eρ [∫
Qs

∣As,ε (∇f) ∣2 dµ] + 2Eρ [∫
Qs+ε/Qs

∣1
ε
∫

ε

τ(x)−s
As+t (∇f) dt∣

2
dµ]

+ 2
ε2Eρ [∫Qs+ε/Qs

∣∆Aτ(x)f ∣2 dµ] .

For the first and second term in the equation above, we use Jensen’s inequality for conditional
expectation and Cauchy’s inequality that

Eρ [∫
Qs

∣As,ε (∇f) ∣2 dµ] + 2Eρ [∫
Qs+ε/Qs

∣1
ε
∫

ε

τ(x)−s
As+t (∇f) dt∣

2
dµ]

⩽ Eρ [∫
Qs

∣∇f ∣2 dµ] + 2
ε
Eρ [∫

Qs+ε/Qs
∣∇f ∣2 dµ] .
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For the third term, it is in fact the sum of square of the jump part in the martingale (M f
s )

s⩾0
,

so we use Corollary 5.4.1 that

Eρ [∫
Qs+ε/Qs

∣∆Aτ(x)f ∣2 dµ] = Eρ [ ∑
s⩽τ⩽s+ε

∣∆M f
τ ∣2] = Eρ [[M f ]s+ε − [M f ]s]

= Eρ [(M f
s+ε)

2
− (M f

s )2] = Eρ [(As+εf)2 − (Asf)2] ,

where in the last step we also use the L2 isometry for martingale. This concludes the desired
result As,εf ∈ H 1

0 (Rd).

5.4.2 Proof of Theorem 5.4.1

In this part, we prove Theorem 5.4.1 in three steps.

Proof. Step 1: Setting up. We propose a regularized multi-scale functional of eq. (5.33)

Sk,K,β,ε(f) = αkEρ [(Ak,εf)2]+∫
K

k
αs (

d

ds
Eρ [(As,εf)2]) ds+αKEρ [f2 − (AK,εf)2] , (5.47)

where we recall that αs = exp ( sβ). The advantage is that Eρ [(As,εf)2] is C1 for s from
eq. (5.43), we can treat it as usual Riemann integral and apply integration by part to obtain
an equivalent definition

Sk,K,β,ε(f) = αKEρ [f2] − ∫
K

k
α′sEρ [(As,εf)2] ds. (5.48)

Our object is to calculate d
dtSk,K,β,ε(ut), and we pay attention to d

dtEρ [(As,εut)
2]. We use

the formula from eq. (5.42)

d

dt
Eρ [(As,εut)2] = d

dt

2
ε2 ∫

ε

0
(ε − r)Eρ [(As+rut)2] dr

= d

dt

2
ε2 ∫

ε

0
(ε − r)Eρ [(As+rut)ut] dr.

We define that

Ãs,εf ∶=
2
ε2 ∫

ε

0
(ε − r)As+rf dr, (5.49)

and it satisfies similar property as As,εf . For example, we have also the formula

∇Ãs,εf(µ,x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ãs,ε (∇f(µ,x)) x ∈ Qs;
2
ε2 (∫

ε
τ(x)−s(ε − r)As+r (∇f(µ,x)) dr − (s + ε − τ(x))∆Aτ(x)fÐ→n (x)) x ∈ (Qs+ε/Qs) ;

0 x ∈ Qcs+ε.
(5.50)

then we have

d

dt
Eρ [(As,εut)2] = d

dt
Eρ [(Ãs,εut)ut] = Eρ [(

d

dt
Ãs,εut)ut] +Eρ [Ãs,εut(Lut)] . (5.51)
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We study at first the semi-group. For a function g ∈ H 1
0 (Rd), we recall the definition that

gt(µ) = Ptg(µ) ∶= Eρ [g(µt)∣F0] .

We also know its semi-group that

d

dt
Ptg(µ) = LPtg(µ)⇒ ∂tgt(µ) = Lgt(µ).

Now in our question we propose that g = Ãs,εu0, then we have

gt(µ) = Pt (
2
ε2 ∫

ε

0
(ε − r)Eρ[u(µ)∣FQs+r]dr)

= Eρ [(
2
ε2 ∫

ε

0
(ε − r)Eρ[u(µt)∣FQs+r]dr) ∣F0 ]

= 2
ε2 ∫

ε

0
(ε − r)Eρ [Eρ [u(µt) ∣F0 ] ∣FQs+r] dr

= Ãs,εut(µ).

Therefore, we have d
dt Ãs,εut(µ) = LÃs,εut(µ) and put it back to eq. (5.51) and use reversibility

to obtain that

d

dt
Eρ [(As,εut)2] = 2Eρ [Ãs,εut(Lut)] .

We conclude that

d

dt
Sk,K,β,ε(ut) = 2αKEρ [ut(Lut)] + ∫

K

k
2α′sEρ [Ãs,εut(−Lut)] ds. (5.52)

Step 2: Estimate of a localized Dirichlet energy. In this step, we will give an estimate for
the term Eρ [Ãs,εut(−Lut)] appeared in eq. (5.52). We will establish the following lemma.

Lemma 5.4.3. For any f ∈ H 1
0 (Rd), we define that

Ifs ∶= Eρ [∫
Qs
∇f ⋅ a∇f dµ] , (5.53)

then for Ãs,εf introduced in eq. (5.49), for any s, θ, ε ∈ (0,∞), we have

Eρ [Ãs,εf(−Lf)] ⩽ Ifs−1 +Λ (Ifs − I
f
s−1) +Λ(θ

ε
+ 1)(Ifs+ε − Ifs ) +

Λ
2θ

d

ds
Eρ [(As,εf)2] . (5.54)

Proof. From eq. (5.50), we can decompose the quantity Eρ [Ãs,εf(−Lf)] into three terms

Eρ [Ãs,εf(−Lf)] = Eρ [∫
Qs−1

∇(Ãs,εf) ⋅ a∇f dµ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

eq. (5.55)-a

+Eρ [∫
Qs/Qs−1

∇(Ãs,εf) ⋅ a∇f dµ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

eq. (5.55)-b

+Eρ [∫
Qs+ε/Qs

∇(Ãs,εf) ⋅ a∇f dµ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

eq. (5.55)-c

.
(5.55)
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For the first term eq. (5.55)-a, since x ∈ Qs−1, then the coefficient is FQs measurable. We
use the formula eq. (5.50), eq. (5.49) and apply Jensen’s inequality for conditional expectation

eq. (5.55)-a = 2
ε2Eρ [∫Qs−1

∫
ε

0
(ε − r)As+r(∇f) ⋅ a∇f dr dµ]

= 2
ε2Eρ [∫Qs−1

∫
ε

0
(ε − r)Eρ [As+r(∇f) ⋅ aAs+r(∇f) ∣FQs+r] dr dµ]

⩽ 2
ε2Eρ [∫Qs−1

∫
ε

0
(ε − r)Eρ [∇f ⋅ a∇f ∣FQs+r] dr dµ]

= Eρ [∫
Qs−1

∇f ⋅ a∇f dµ]

For the second term eq. (5.55)-b, it is similar but a is no longer FQs measurable. We use
at first Young’s inequality

eq. (5.55)-b ⩽ 2
ε2Eρ [∫Qs/Qs−1

∫
ε

0
(ε − r)As+r(∇f) ⋅ a∇f dr dµ]

⩽ Λ
ε2Eρ [∫Qs/Qs−1

∫
ε

0
(ε − r) (∣As+r(∇f)∣2 + ∣∇f ∣2) dr dµ] .

Then for the part with conditional expectation, we use the uniform bound 1 ⩽ a ⩽ Λ that

Λ
ε2Eρ [∫Qs/Qs−1

∫
ε

0
(ε − r) ∣As+r(∇f)∣2 dr dµ] ⩽ Λ

2
Eρ [∫

Qs/Qs−1
∣∇f ∣2dµ]

⩽ Λ
2
Eρ [∫

Qs/Qs−1
∇f ⋅ a∇fdµ] .

This concludes that eq. (5.55)-b ⩽ ΛEρ [∫Qs/Qs−1
∇f ⋅ a∇fdµ].

For the third term eq. (5.55)-c, we use eq. (5.50) and obtain

eq. (5.55)-c ⩽ eq. (5.55)-c1 + eq. (5.55)-c2

eq. (5.55)-c1 = 2
ε2 ∣Eρ [∫

Qs+ε/Qs
∫

ε

τ(x)−s
(ε − r)As+r(∇f) ⋅ a∇f dr dµ]∣

eq. (5.55)-c2 = 2
ε2 ∣Eρ [∫

Qs+ε/Qs
(s + ε − τ(x))∆Aτ(x)fÐ→n (x) ⋅ a∇f dµ]∣ .

The part of eq. (5.55)-c1 is similar as that of eq. (5.55)-b and we have that

eq. (5.55)-c1 ⩽ ΛEρ [∫
Qs+ε/Qs

∇f ⋅ a∇fdµ] .

We study the part eq. (5.55)-c2 with Young’s inequality

2
ε2 ∣Eρ [∫

Qs+ε/Qs
(s + ε − τ(x))∆Aτ(x)fÐ→n (x) ⋅ a∇f dµ]∣

⩽ Λ
θε2Eρ [∫Qs+ε/Qs

(s + ε − τ(x))∣∆Aτ(x)f ∣2 dµ] + θΛ
ε2 Eρ [∫

Qs+ε/Qs
(s + ε − τ(x))∣∇f ∣2 dµ]

⩽ Λ
θε2Eρ [∫Qs+ε/Qs

(s + ε − τ(x))∣∆Aτ(x)f ∣2 dµ] + θΛ
ε
Eρ [∫

Qs+ε/Qs
∇f ⋅ a∇f dµ] .
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The first part is in fact the bracket process defined in Corollary 5.4.1

Λ
θε2Eρ [∫Qs+ε/Qs

(s + ε − τ(x))∣∆Aτ(x)f ∣2 dµ] = Λ
θε2Eρ [ ∑

s⩽τ⩽s+ε
(s + ε − τ)∣∆M f

τ ∣2] .

Then we develop it with Fubini theorem and apply the L 2-isometry of martingale that
Eρ [[M f ]

s
] = Eρ [(M f

s )2] = Eρ [(Asf)2]

Λ
θε2Eρ [ ∑

s⩽τ⩽s+ε
(s + ε − τ)∣∆M f

τ ∣2] = Λ
θε2Eρ [ ∑

s⩽τ⩽s+ε
∫

s+ε

s
1{τ⩽r⩽s+ε} dr∣∆M f

τ ∣2]

= Λ
θε2Eρ [∫

s+ε

s
∑
s⩽τ⩽r

∣∆M f
τ ∣2 dr]

= Λ
θε2Eρ [∫

s+ε

s
[M f ]

r
− [M f ]

s
dr]

= Λ
θε2 ∫

ε

0
Eρ [(As+rf)2] −Eρ [(Asf)2] dr

= Λ
2θ

d

ds
Eρ [(As,εf)2] .

In the last step, we use the identity eq. (5.43). This concludes that

eq. (5.55)-c ⩽ (θΛ
ε
+Λ)Eρ [∫

Qs+ε/Qs
∇f ⋅ a∇f dµ] + Λ

2θ
d

ds
Eρ [(As,εf)2] ,

and we combine all the estimate for the three terms eq. (5.55)-a, eq. (5.55)-b, eq. (5.55)-c to
obtain the desired result in eq. (5.54).

Step 3: End of the proof. We take k =
√
t,K > k and and put the estimate eq. (5.54) into

eq. (5.52) with θ, ε, β > 0 to be fixed,

d

dt
Sk,K,β,ε(ut)

=2αKEρ [ut(Lut)] + ∫
K

k
2α′sEρ [Ãs,εut(−Lut)] ds

⩽ − 2αKIut∞ + ∫
K

k
2α′s {Iuts−1 +Λ (Iuts − Iuts−1) +Λ(θ

ε
+ 1) (Iuts+ε − Iuts ) + Λ

2θ
d

ds
Eρ [(As,εut)2]} ds.

We recall that α′s = αs
β , then we do some calculus and obtain that

d

dt
Sk,K,β,ε(ut) ⩽∫

K+ε

k−1
(−2αK∧(s+1) + 2Λ(αs+1 − αs) + 2Λ(θ

ε
+ 1) (αs − αs−ε)) dIuts

+ ∫
k−1

0
−2αk dIuts + ∫

∞

K+ε
−2αK dIuts + Λ

βθ
∫

K

k
αs (

d

ds
Eρ [(As,εut)2]) ds.

We see that the term 2Λ(αs+1 − αs) ≃ 2Λ
β αs and 2Λ ( θ

ε + 1) (αs − αs−ε) ≃ 2Λ ( θβ +
ε
β)αs. One

can choose the parameters θ = β
2Λ , ε =

1
2 , then for β > 4Λ, the part of integration with respect

to Iuts is negative. We use the definition eq. (5.47) and obtain that

d

dt
Sk,K,β,ε(ut) ⩽

Λ
βθ
∫

K

k
αs (

d

ds
Eρ [(As,εut)2]) ds ⩽ 2Λ2

β2 Sk,K,β,ε(ut),
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which implies that for k =
√
t ⩾ lu, (lu the diameter of support of u0 in Theorem 5.4.1)

αKEρ [(ut)2 − (AK,εut)2] ⩽ Sk,K,β,ε(ut) ⩽ exp(2Λ2t

β2 )Sk,K,β,ε(u0) = exp(2Λ2t

β2 )αkEρ [(u0)2] .

Finally we remark that

Eρ [(ut −AK+εut)2] = Eρ [(ut)2 − (AK+εut)2] ⩽ Eρ [(ut)2 − (AK,εut)2] ,

and choose β =
√
t and it gives us the desired result, after shrinking a little the value of

K.

5.5 Spectral inequality, perturbation and perturbation

In this section, we collect several estimates used in the proof of the main result. They can
also be read for independent interests.

5.5.1 Spectral inequality

The spectral inequality is an important topic in probability theory and Markov process, and
it has its counterpart in analysis known as Poincaré’s inequality.

Let L > l > 0 and L/l ∈ N, and denote by q = (L/l)d,{Qil}1⩽i⩽q the partition of QL by the
small cube by scale l. Let ML,l = (M1,M2⋯Mq), be a random vector that Mi = µ (Qil), and
we define BL,lf ∶= Eρ [f ∣ML,l], then we have the following estimate.

Proposition 5.5.1 (Spectral inequality). There exists a finite positive number R0(d), such
that for any 0 < l < L <∞, L/l ∈ N, we have an estimate for any f ∈ H 1

0 (Rd),

Eρ [(ALf −BL,lf)2] ⩽ R0l
2Eρ [∫

QL
∣∇f ∣2 dµ] . (5.56)

Proof. We prove at first a simple corollary from Efron-Stein inequality [60, Chapter 3]: let
fn ∈ C1(Rd×n) and X = (X1,X2⋯Xn), where (Xi)1⩽i⩽n a family independent Rd-valued
random variables following uniform law in Ql, then Efron-Stein inequality states

Var [fn(X)] ⩽ 1
2

n

∑
i=1

E [(fn(X) − fn(Xi))2] , (5.57)

where fn(Xi) ∶= E [fn(X)∣X1⋯Xi−1,Xi+1,⋯Xn]. From this, we calculate the expectation
with respect to Xi for (fn(X) − fn(Xi))2, and apply the standard Poincaré’s inequality for
Xi

EXi [(fn(X) − f(Xi))2] = ⨏
Ql

(fn(x1, x2,⋯xn) − ⨏
Ql
fn(x1, x2,⋯xn)dxi)

2
dxi

⩽ C(d)l2⨏
Ql

∣∇xifn∣
2(x1, x2,⋯xn)dxi,

Ô⇒ E [(fn(X) − f(Xi))2] ⩽ C(d)l2E[∣∇xifn(X)∣2].

We combine the sum of all the term and obtain

Var [fn(X)] ⩽ C(d)l2
n

∑
i=1

E[∣∇xifn(X)∣2]. (5.58)
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We then apply eq. (5.58) in eq. (5.56).

Eρ [(ALf −BL,lf)2] = ∑
M∈Nq

Pρ[ML,l =M]Eρ [(ALf −BL,lf)2∣ML,l =M] .

Conditioned {ML,l = M}, we know that the expectation of ALf is BL,lf(M) and all the
particles are distributed uniformly in its small cubes of size l, thus we can apply eq. (5.58)
that

Eρ [(ALf −BL,lf)2∣ML,l =M] = Varρ [ALf ∣ML,l =M]

⩽ C(d)l2Eρ [∫
QL

∣∇ALf ∣2 dµ ∣ML,l =M ]

⩽ C(d)l2Eρ [∫
QL

∣AL∇f ∣2 dµ ∣ML,l =M ] .

Then we do the sum and concludes eq. (5.56).

5.5.2 Perturbation

A similar version of the following lemma appears in [142], where the authors give some sketch
and here we prove it in our model with some more details. We define a localized Dirichlet
form for Borel set U ⊆ Rd that

EU(f, g) = Eρ[g(−∆Uf)] ∶= Eρ [∫
U
∇g(µ, d) ⋅ ∇f(µ,x)dµ(x)] , (5.59)

and we use EU(f) ∶= EU(f, f) and E(f) ∶= ERd(f) for short.

Proposition 5.5.2 (Perturbation). Let u ∈ C∞
c (Rd) and lk ∶= lu + 2k be the minimal scale

such that for any ∣h∣ ⩽ k, supp(τhu) ⊆ Qlk , then for any g such that Eρ[g] = 1,√g ∈ H 1
0 (Rd),

we have

(Eρ[g(u − τhu)])2 ⩽ C(d)(lk∥u∥L∞)2EQlk (
√
g). (5.60)

Proof. The proof of this proposition relies on the following lemma:

Lemma 5.5.1 (Lemma 4.2 of [142]). Let (Ω,P,F) be a probability space and let ⟨f, g⟩ = ∫Ω fg dP
denote the standard inner product on L2(Ω,P,F). Let A be a non-negative definite symmetric
operator on L2(Ω,P,F), which has 0 as a simple eigenvalue with corresponding eigenfunction
the constant function 1, and second eigenvalue δ > 0 (the spectral gap). Let V be a function
of means zero, ⟨1, V ⟩ = 0 and assume that V is essential bounded. Denote by λε the principal
eigenvalue of −A + εV given by the variational formula

λε = sup
∥f∥L2=1

⟨f, (−A + εV )f⟩. (5.61)

Then for 0 < ε < δ(2∥V ∥L∞)−1,

0 ⩽ λε ⩽
ε2⟨V,A−1V ⟩

1 − 2∥V ∥L∞εδ−1 . (5.62)
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In our context, we should look for a good frame for this lemma. Since for any ∣h∣ ⩽ k,
(u − τhu) ∈ FQlk , we have

Eρ[g(u − τhu)] = Eρ[(AQlk g)(u − τhu)]

=
∞
∑
n=0

Pρ[µ(Qlk) = n]Eρ[(AQlk g)(u − τhu)∣µ(Qlk) = n].
(5.63)

Then, we focus on the estimate of Eρ[(AQlk g)(u− τhu)∣µ(Qlk) = n]: to shorten the notation,
we use Pρ,n for the probability Pρ[⋅∣µ(Qlk) = n] and Eρ,n for its associated expectation. Then
we apply Lemma 5.5.1 on the probability space (Ω,FQlk ,Pρ,n), where we set V = u− τhu and
the symmetric non-negative operator A is (−∆Qlk

) defined for any f ∈ H 1(Qlk)

Eρ,n[f(−∆Qlk
f)] ∶= Eρ,n [∫

Qlk

∣∇f ∣2 dµ] .

We should check that this setting satisfies the condition of Lemma 5.5.1:

• Spectral gap for A = −∆Qlk
: by eq. (5.57) we have the spectral gap δ = (lk)−2 for any

function f ∈ H 1(Qlk) with Eρ,n[f] = 0

Eρ,n[f2] ⩽ (lk)2Eρ,n[f(−∆Qlk
f)].

• Mean zero for V = u − τhu: under the probability Pρ this is clear by the transport
invariant property of Poisson point process, while under Pρ,n this requires some calculus.
By the definition of lk, we know that supp(u) ⊆ Qlu , thus we denote by the projection
u(µ) = ũm(x1, x2,⋯xm) under the case µ Qlu = ∑mi=1 δxi . Then we have

Eρ,n[u] =
n

∑
m=0

Pρ,n[µ(Qlu) =m]Eρ,n[u∣µ(Qlu) =m]

=
n

∑
m=0

(n
m

)(∣Qlu ∣
∣Qlk ∣

)
m

(1 − ∣Qlu ∣
∣Qlk ∣

)
n−m

⨏(Qlu)m
ũm(x1,⋯xm)dx1⋯dxm,

because under Pρ,n, the number of particles in Qlu follows the law Bin(n, ∣Qlu ∣∣Qlk ∣
) and

they are uniformly distributed conditioned the number. We use the similar argument
for the expectation of τhu, where we should study the case for particles in τ−hQlu ⊆ Qlk

Eρ,n[τhu] =
n

∑
m=0

Pρ,n[µ(τ−hQlu) =m]Eρ,n[τhu∣µ(τ−hQlu) =m]

=
n

∑
m=0

(n
m

)(∣τ−hQlu ∣
∣Qlk ∣

)
m

(1 − ∣τ−hQlu ∣
∣Qlk ∣

)
n−m

× ⨏(τ−hQlu)m
ũm(x1 + h,⋯xm + h)dx1⋯dxm

=
n

∑
m=0

(n
m

)(∣Qlu ∣
∣Qlk ∣

)
m

(1 − ∣Qlu ∣
∣Qlk ∣

)
n−m

⨏(Qlu)m
ũm(x1,⋯xm)dx1⋯dxm.

Thus we establish Eρ,n[τhu] = Eρ,n[u] and V has mean zero.
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Now we can apply the lemma: for any 0 < ε < 1
8(∥u∥L∞(lk)2)−1, we put

√
AQlk g/Eρ,n[AQlk g]

at the place of f in eq. (5.61) and combine with eq. (5.62) to obtain that

Eρ,n [AQlk g(u − τhu)] ⩽ 2εEρ,n[(u − τhu)((−∆Qlk
)−1(u − τhu))]Eρ,n[AQlk g]

+ 1
ε
Eρ,n [

√
AQlk g ((−∆Qlk

)
√

AQlk g)] .

Notice that (−∆Qlk
)−1 ∶ L2 → H1 well-defined thanks to the Lax-Milgram theorem and the

spectral bound, we get

Eρ,n [AQlk g(u − τhu)]

⩽ 8ε(lk)2∥u∥2
L∞Eρ,n[AQlk g] +

1
ε
Eρ,n [

√
AQlk g ((−∆Qlk

)
√

AQlk g)] . (5.64)

For the case ε > 1
8(∥u∥L∞(lk)2)−1, we have 1 ⩽ 8ε∥u∥L∞(lk)2, thus we use a trivial bound

Eρ,n [AQlk g(u − τhu)] ⩽ 2∥u∥L∞Eρ,n [AQlk g] ⩽ 16ε(lk)2∥u∥2
L∞ [AQlk g] . (5.65)

We combine eq. (5.64), eq. (5.65) and do optimization with for ε to obtain that

Eρ,n [AQlk g(u − τhu)] ⩽ 4lk∥u∥L∞ (Eρ,n [AQlk g]Eρ,n [
√

AQlk g ((−∆Qlk
)
√

AQlk g)])
1
2
.

Here the term Eρ,n [
√

AQlk g ((−∆Qlk
)
√

AQlk g)] is not the desired term and we should re-
move the conditional expectation here. For any x ∈ Qlk , using Cauchy-Schwartz inequality
we have

AQlk (∣∇g(µ,x)∣2

g(µ)
)AQlk g(µ) ⩾ (AQlk ∣∇g(µ,x)∣)

2
⩾ ∣AQlk∇g(µ,x)∣

2
.

Thus, in the term Eρ,n [
√

AQlk g ((−∆Qlk
)
√

AQlk g)] we have

Eρ,n [
√

AQlk g ((−∆Qlk
)
√

AQlk g)] =
1
4
Eρ,n

⎡⎢⎢⎢⎢⎢⎣
∫
Qlk

∣AQlk∇g(µ,x)∣
2

AQlk g(µ)
dµ

⎤⎥⎥⎥⎥⎥⎦

⩽ 1
4
Eρ,n [∫

Qlk

AQlk (∣∇g(µ,x)∣2

g(µ)
) dµ]

= Eρ,n [√g ((−∆Qlk
)√g)] .

Using the transpose invariant property for µ, we obtain

∣Eρ,n [AQlk g(u − τhu)]∣ ⩽ 4lk∥u∥L∞ (Eρ,n [AQlk g]Eρ,n [√g ((−∆Qlk
)√g)])

1
2
,
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and put it back to eq. (5.63) and use Cauchy-Schwartz inequality

(Eρ[g(u − τhu)])2

=(lk∥u∥L∞)2 (
∞
∑
n=0

Pρ[µ(Qlk) = n] (Eρ,n [AQlk g]Eρ,n [√g ((−∆Qlk
)√g)])

1
2 )

2

⩽(lk∥u∥L∞)2 (
∞
∑
n=0

Pρ[µ(Qlk) = n]Eρ,n [AQlk g])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Eρ[AQlk g]=Eρ[g]=1

(
∞
∑
n=0

Pρ[µ(Qlk) = n]Eρ,n [√g ((−∆Qlk
)√g)])

=(lk∥u∥L∞)2Eρ[
√
g(−∆Qlk

√
g)].

5.5.3 Entropy

We recall the definition of δ-good configuration for L
l ∈ N

CL,l,ρ,δ = {M ∈ N(L
l
)d ∣∀1 ⩽ i ⩽ (L

l
)
d

, ∣ Mi

ρ∣Ql∣
− 1∣ ⩽ δ} .

Lemma 5.5.2 (Bound for entropy). Given l ⩾ 1, Ll ∈ N, 0 < δ < ρ
2 for any M ∈ CL,l,ρ,δ, we

have a bound for the entropy of gM defined in eq. (5.25) that

H(gM) ⩽ C(d, ρ) (L
l
)
d

(log(l) + ldδ2) . (5.66)

Proof.

H(gM) = Eρ[gM log(gM)] = −Eρ[gM log(Pρ[ML,l =M])].

It suffices to prove a upper bound for − log(Pρ[ML,l =M]), which is

− log(Pρ[ML,l =M]) = − log
⎛
⎜
⎝

(L
l
)d

∏
i=1

e−ρ∣Ql∣
(ρ∣Ql∣)Mi

Mi!
⎞
⎟
⎠
=

(L
l
)d

∑
i=1

− log(e−ρ∣Ql∣ (ρ∣Ql∣)
Mi

Mi!
) . (5.67)

For every termMi, we set δi ∶= Mi

ρ∣Ql∣−1, and use Stirling’s formula upper bound n! ⩽ e
√
n (n

e
)n

for any n ∈ N

− log(e−ρ∣Ql∣ (ρ∣Ql∣)
Mi

Mi!
) = ρ∣Ql∣ −Mi log(ρ∣Ql∣) + log(Mi!)

⩽ ρ∣Ql∣ −Mi log(ρ∣Ql∣) + log(e
√
Mi (

Mi

e
)
Mi

)

⩽ ρ∣Ql∣ (
Mi

ρ∣Ql∣
log( Mi

ρ∣Ql∣
) + 1 − Mi

ρ∣Ql∣
) + 1

2
log(Mi)

= ρ∣Ql∣
⎛
⎜⎜
⎝
(1 + δi) log (1 + δi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽δi

−δi
⎞
⎟⎟
⎠
+ 1

2
log(Mi)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽C log(l)

⩽ ρ∣Ql∣(δi)2 +C log(l).

We use ∣δi∣ ⩽ δ and put it back to eq. (5.67) and obtain the desired result.
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Chapter 6

Quantitative homogenization of
interacting particle systems

For a class of interacting particle systems in continuous space, we show that finite-volume
approximations of the bulk diffusion matrix converge at an algebraic rate. The models we
consider are reversible with respect to the Poisson measures with constant density, and
are of non-gradient type. Our approach is inspired by recent progress in the quantitative
homogenization of elliptic equations. Along the way, we develop suitable modifications of
the Caccioppoli and multiscale Poincaré inequalities, which are of independent interest.

This chapter corresponds to the article [115] written in collaboration with Arianna Giunti
and Jean-Christophe Mourrat.
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6.1 Introduction

The goal of this paper is to make progress on the quantitative analysis of interacting particle
systems. We consider a class of models in which each particle follows a random evolution on
Rd which is influenced by the configuration of neighboring particles. The models we consider
are reversible with respect to the Poisson measures with constant density, uniformly elliptic,
and of non-gradient type. For similar models in this class, the hydrodynamic limit and the
equilibrium fluctuations have been identified rigorously. In both these results, the limit object
is described in terms of the bulk diffusion matrix. The main result of this paper is a proof
that finite-volume approximations of this diffusion matrix converge at an algebraic rate.

Our strategy is inspired by recent developments in the quantitative analysis of elliptic
equations with random coefficients, and in particular on the renormalization approach devel-
oped in [31, 30, 23, 24, 25, 20, 21]; see also [185] for a gentle introduction, and [188, 182, 123,
124, 121, 125, 122] for another approach based on concentration inequalities. This renormal-
ization approach has shown its versatility in a number of other settings, covering now the
homogenization of parabolic equations [18], finite-difference equations on percolation clusters
[19, 83, 85], differential forms [84], the “∇φ” interface model [82, 29], and the Villain model
[86].

Here as in the other settings mentioned above, we start from a representation of the
finite-volume approximation of the bulk diffusion matrix as a family of variational problems,
denoted by ν(U, p), where U ⊆ Rd and p ∈ Rd encodes a slope parameter. This quantity is
subadditive as a function of the domain U . We then identify another subadditive quantity,
denoted by ν∗(U, q), with U ⊆ Rd and q ∈ Rd, such that ν∗(U, ⋅) is approximately convex dual
to ν(U, ⋅). These quantities ν and ν∗ provide with finite-volume lower and upper approxi-
mations of the limit diffusion matrix. Roughly speaking, the algebraic rate of convergence is
obtained by showing that the defect in the convex duality between ν and ν∗ can be controlled
by the variation of ν and ν∗ between two scales; we refer to [185, Section 3] for some intuition
as to why a control of this sort is plausible.

Besides the identification of the most appropriate subadditive quantities ν and ν∗, one of
the main difficulties we encounter relates to the development of certain functional inequalities.
As is to be expected, we will make use of Poincaré inequalities, which allow to control the
L2 oscillation of a function by the L2 norm of its gradient. However, we will need to be more
precise than this. Indeed, we want to be able to assert that if the gradient of a function
is small in some weaker norm, then we can control the L2 oscillation of the function more
tightly. In other words, we need some analogue of the inequality ∥u∥L2 ⩽ C∥∇u∥H−1 . Recall
that in the current paper, the functions of interest are defined over the space of all possible
particle configurations. The precise statement of our “multiscale Poincaré inequality” is in
Proposition 6.3.5.

Another crucial ingredient we need is a version of the Caccioppoli inequality. In the
standard setting of elliptic equations, this inequality states that the L2 norm of the gradient
of a harmonic function can be controlled by the L2 norm of its oscillation on a larger domain;
one can think of this inequality as a “reverse Poincaré inequality” for harmonic functions. If
u denotes the harmonic function, then a standard proof of this inequality consists in testing
the equation for u with uφ, where φ is a smooth cutoff function which is equal to 1 in the
inner domain, and is equal to 0 outside of the larger domain.

In our context, we need to “turn off” the influence of any particle that would come too
close to the boundary of the larger domain. In this case, a naive modification of the standard
elliptic argument is inapplicable. This comes from the fact that, as the domains become large,
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there will essentially always be many particles that come dangerously close to the boundary
of the larger domain; so the cutoff function φ would essentially always have to vanish, except
on an event of very small probability. We therefore need to identify a different approach. In
fact, we settle for a modified form of the Caccioppoli inequality, in which we control the L2

norm of the gradient of a solution by the L2 norm of the solution on a larger domain, plus
a fraction of the L2 norm of its gradient on the larger domain; see Proposition 6.3.6 for the
precise statement.

At present, we think that the results presented here should allow to derive a quantita-
tive version of the hydrodynamic limit, as well as to derive “near-equilibrium” fluctuation
results. To be precise, for a domain of side length R and an initial density profile varying
macroscopically, it should be possible to control the convergence to the hydrodynamic limit
at a precision of R−α, for some α > 0. Conversely, starting from a density profile that has
variations of size bounded by R− d2+α, it should be possible to identify the asymptotic fluctua-
tions of the density field. These would represent first steps towards bridging the gap between
these two results.

By analogy with the results obtained for elliptic equations and other contexts, see in
particular [185, Section 3] and [25, Chapter 2 and following], we hope that the results obtained
here will provide the seed for more refined, and hopefully sharp, quantitative results. This
will hopefully allow to improve the exponent α > 0 appearing in the previous paragraph to
some explicit exponent (ideally α = d

2), and thereby to bring us closer to a full understanding
of non-equilibrium fluctuations.

We now turn to a brief overview of related works on interacting particle systems. The
result in the literature that is possibly closest to ours is that of [166]. In this work, the authors
consider the diffusion matrix associated with the long-time behavior of a tagged particle in the
symmetric simple exclusion process, which is called the self-diffusion matrix. The main result
of [166] is a proof that finite-volume approximations of the self-diffusion matrix converge to
the correct limit. However, no rate of convergence could be obtained there. The qualitative
result of [166] was extended to the mean-zero simple exclusion process, and to the asymmetric
simple exclusion process in dimension d ⩾ 3, in [143].

An easy consequence of the results of the present paper is that the bulk diffusion matrix
is Hölder continuous as a function of the density of particles. However, for related models,
it was shown in [222, 165, 51, 167, 217, 189, 190, 191] that the diffusion matrix depends
smoothly on the density of particles. The situation seems comparable to that encountered
when considering Bernoulli perturbations of the law of the coefficient field for elliptic equa-
tions, see [183, 96]. Possibly more difficult situations for obtaining regularity results on the
homogenized parameters, with less independence built into the nature of the perturbation,
include the ∇φ model [29], and nonlinear elliptic equations [20, 21].

Two classical approaches to the identification of the hydrodynamic limit have been de-
veloped. The first, called the entropy method, was introduced in [136], and extended to
certain non-gradient models in [221, 204]. The second, called the relative entropy method,
was introduced in [224], and was extended to a non-gradient model in [111].

The asymptotic description of the fluctuations of interacting particle systems at equilib-
rium has been obtained in [66, 214, 91, 69, 71]. The extension of this result to non-gradient
models was obtained in [174, 70, 110].

We are not aware of any results concerning the non-equilibrium fluctuations of a non-
gradient model. For gradient models (or small perturbations thereof), we refer in particular
to [202, 90, 106, 71, 144]. We also refer to the books [215, 152, 157] for much more thorough
expositions on these topics, and reviews of the literature.
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In relation to the purposes of the present paper, several works considered the problem
of obtaining a rate of convergence to equilibrium for a system of interacting particles [173,
93, 52, 142, 168, 68, 135]. Heat kernel bounds for the tagged particle in a simple exclusion
process were obtained in [116].

In all likelihood, the results presented here can be extended to other reversible models of
non-gradient type, provided that the invariant measures satisfy some mixing condition (an
algebraic decay of correlations would suffice, see [30]). More challenging directions include
dynamics that are not uniformly elliptic, such as hard spheres. Extensions to situations in
which the noise only acts on the velocity variable are likely to also be very challenging. Even
further away are purely deterministic dynamics of hard spheres, as considered for instance
in [59]. For any of these models, it would of course also be desirable to make progress on the
quantitative analysis of the large-scale behavior of a tagged particle.

The rest of the paper is organized as follows. In Section 6.2, we introduce some notation
and state the main result precisely, see Theorem 6.2.1. We then prove several functional
inequalities in Section 6.3, including the multiscale Poincaré inequality and the modified
Caccioppoli inequality. In Section 6.4, we define the subadditive quantities, and establish
their elementary properties. Finally, in Section 6.5 we prove Theorem 6.2.1.

6.2 Notation and main result

In this section, we introduce some notation and state our main result.
LetMδ(Rd) be the set of σ-finite measures that are sums of Dirac masses on Rd, which

we think of as the space of configurations of particles. We denote by Pρ the law onMδ(Rd)
of the Poisson point process of density ρ ∈ (0,∞), with Eρ the associated expectation. We
denote by FU the σ-algebra generated by the mappings V ↦ µ(V ), for all Borel sets V ⊆ U ,
completed with all the Pρ-null sets, and we set F ∶= FRd . We give ourselves a function
a○ ∶Mδ(Rd) → Rd×dsym, where Rd×dsym is the set of d-by-d symmetric matrices. We assume that
this mapping satisfies the following properties:

• uniform ellipticity: there exists Λ <∞ such that for every µ ∈Mδ(Rd),

∀ξ ∈ Rd, ∣ξ∣2 ⩽ ξ ⋅ a○(µ)ξ ⩽ Λ∣ξ∣2 ; (6.1)

• finite range of dependence: denoting by B1 the Euclidean ball of radius 1 centered at
the origin, we assume that a○ is FB1-measurable.

We denote by τ−xµ the translation of the measure µ by the vector −x ∈ Rd; explicitly, for
every Borel set U , we have (τ−xµ)(U) = µ(x + U). We extend a○ by stationarity by setting,
for every µ ∈Mδ(Rd) and x ∈ Rd,

a(µ,x) ∶= a○(τ−xµ).

While it would be possible to provide with a direct definition of the asymptotic bulk diffusion
matrix, see for instance [152, Chapter 7], our purposes require that we identify suitable finite-
volume versions of this quantity. Accordingly, for every bounded open set U ⊆ Rd, we define
the matrix ā(U) ∈ Rd×dsym to be such that, for every p ∈ Rd,

1
2
p ⋅ ā(U)p = inf

φ∈H 1
0 (U)

Eρ [
1
ρ∣U ∣ ∫U

1
2
(p +∇φ(µ,x)) ⋅ a(µ,x)(p +∇φ(µ,x))dµ(x)] . (6.2)
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In this expression, the gradient ∇φ(µ,x) is such that, for any sufficiently smooth function φ,
x ∈ suppµ, and k ∈ {1, . . . , d},

ek ⋅ ∇φ(µ,x) = lim
h→0

φ(µ − δx + δx+hek) − φ(µ)
h

, (6.3)

with (e1, . . . , ed) being the canonical basis of Rd. As will be explained in more details below,
the space H 1

0 (U) is a completion of a space of functions that are FK-measurable for some
compact set K ⊆ U . The expectation Eρ is taken with respect to the variable µ, a notation
we will always use to denote the canonical random variable on (Mδ(Rd),F ,Pρ) (an explicit
writing of ∫U ⋯dµ(x) would actually involve a summation over every point in the intersection
of U and the support of µ). For every m ∈ N, we let ◻m = Q3m denote the cube of side length
3m. We define the bulk diffusion matrix ā as

ā ∶= lim
m→∞

ā(◻m). (6.4)

Although we keep this implicit in the notation, we point out that the matrices ā(U) and ā
depend on the density ρ of particles, which we keep fixed throughout the paper. Our main
result is to obtain an algebraic rate for the convergence in (6.4).

Theorem 6.2.1. The limit in (6.4) is well-defined. Moreover, there exist an exponent
α(d,Λ, ρ) > 0 and a constant C(d,Λ, ρ) <∞ such that for every m ∈ N,

∣ā(◻m) − ā∣ ⩽ C3−αm. (6.5)

In the remainder of this section, we clarify some of the definitions appearing earlier, and
introduce some more useful notation.

6.2.1 Continuum configuration space

For the purposes of the present paper, we will not need to construct the stochastic process
of interacting particles whose large-scale behavior is captured by the bulk diffusion matrix
ā, so we contend ourselves with brief remarks here. Intuitively, the dynamics is a cloud of
particles, which we can denote by

µ(t) =
∞
∑
i=1
δXi(t) ∈Mδ(Rd), t ⩾ 0,

and each coordinate (Xi(t))t⩾0 performs a diffusion with local diffusivity matrix given by
a(µ(t),Xi(t)). General properties of interacting diffusions on the spaceMδ(Rd) have been
studied using Dirichlet forms in [2, 3, 4, 5]; see also the survey [206]. In our current setup, for
a finite N number of particles, the diffusion process can be defined in the standard way (say,
using De Giorgi-Nash regularity results on the heat kernel, and Kolmogorov’s theorems) as
a diffusion on (Rd)N . For Pρ-almost every µ ∈Mδ(Rd), one can then define the dynamics of
the entire cloud of particles using finite-volume approximations.

Although we have defined a(µ,x) for every x ∈ Rd, we will in fact only need to appeal
to this quantity in the case when x is in the support of µ. One possible example of local
diffusivity function is a○(µ) ∶= (1 + 1{{µ(B1)=1}})Id. For this example, a particle at position
x ∈ Rd follows a Brownian motion with variance 2 whenever there are no other particles in
the unit ball centered at x, while it follows a Brownian motion with unit variance whenever
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there is at least one additional particle in this ball (there are also reflection effects at the
transition between these two situations).

For every Borel set U ⊆ Rd, we denote by BU the set of Borel subsets of U . For every
µ ∈Mδ(Rd), we denote by suppµ the support of µ, and by µ U ∈Mδ(Rd) the measure such
that, for every Borel set V ⊆ Rd,

(µ U)(V ) = µ(U ∩ V ).

We will often use the following “disintegration” lemma for functions defined onMδ(Rd). For
definiteness, we state it for functions taking values in R, but this plays no particular role. Its
proof is deferred to Appendix 6.A. Whenever U ⊆ Rd, we write U c to denote the complement
of U in Rd.

Lemma 6.2.1 (Canonical projection). Let f ∶ Mδ(Rd) → R be a function, and for every
Borel set U , measure µ ∈ Mδ(Rd), and n ∈ N, let fn(⋅, µ U c) denote the (permutation-
invariant) function

fn(⋅, µ U c) ∶ { Un → R
(x1, . . . , xn) ↦ f (∑ni=1 δxi + µ U c) .

The following statements are equivalent.
(1) The function f is F-measurable.
(2) For every n ∈ N, the function fn is B⊗nU ⊗FUc-measurable.

Abusing notation, on the event that µ U = ∑ni=1 δxi , we may sometimes write fn(µ) =
fn(∑ni=1 δxi + µ U c), so that f(µ) = ∑∞

n=0 fn(µ)1{{µ(U)=n}}.

6.2.2 Lebesgue and Sobolev function spaces

We define L 2 to be the space of F-measurable functions f such that Eρ[f2] is finite.
Recall that for sufficiently smooth f ∶ Mδ(Rd) → R, µ ∈ Mδ(Rd) and x ∈ suppµ, we

define ∇f(µ,x) according to the formula in (6.3). We write ∇f = (∂1f,⋯, ∂df).
For every open set U ⊆ Rd, we define the sets of smooth functions C∞(U) and C∞

c (U)
in the following way. We have that f ∈ C∞(U) if and only if f is an F-measurable function,
and for every bounded open set V ⊆ U , µ ∈Mδ(Rd) and n ∈ N, the function fn(⋅, µ V c)
appearing in Lemma 6.2.1 is infinitely differentiable on V n. The space C∞

c (U) is the subspace
of C∞(U) of functions that are FK-measurable for some compact set K ⊆ U .

We now define H 1(U), an infinite dimensional analogue of the classical Sobolev space
H1. For every f ∈ C∞(U), we set

∥f∥H 1(U) = (Eρ[f2(µ)] +Eρ [∫
U
∣∇f(µ,x)∣2 dµ(x)])

1
2
.

The space H 1(U) is the completion, with respect to this norm, of the space of functions
f ∈ C∞(U) such that ∥f∥H 1(U) is finite (elements in this function space that coincide Pρ-
almost surely are identified). As in classical Sobolev spaces, for every f ∈ H 1(U), we can
interpret ∇f(µ,x), with x ∈ U , in some weak sense. We stress that functions in H 1(U) need
not be FU -measurable. Indeed, the function f can depend on µ U c in a relatively arbitrary
(measurable) way, as long as f ∈ L 2. If V ⊆ U is another open set, then H 1(U) ⊆ H 1(V ).

We also define the space H 1
0 (U) as the closure in H 1(U) of the space of functions

f ∈ C∞
c (U) such that ∥f∥H 1(U) is finite. Notice in particular that, in stark contrast with
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functions in H 1(U), a function in H 1
0 (U) does not depend on µ U c. In the notation

of Lemma 6.2.1, when f ∈ H 1
0 (U), certain compatibility conditions between the functions

(fn)n∈N also have to be satisfied. If V ⊆ U is another open set, we have that H 1
0 (V ) ⊆ H 1

0 (U)
(notice that the inclusion is in the opposite direction to that for H 1 spaces). We also have
the following result.

Lemma 6.2.2. For every bounded open set U ⊆ Rd with Lipschitz boundary and f ∈ H 1
0 (U),

we have

Eρ [∫
U
∇f(µ,x)dµ(x)] = 0. (6.6)

Proof. By density, we can assume that f ∈ C∞
c (U). We use the functions (fn)n∈N appearing in

Lemma 6.2.1; moreover, since f(µ) does not depend on µ U c, we simply write fn(x1, . . . , xn)
in place of fn(x1, . . . , xn, µ U c). For every k ∈ {1, . . . , d}, we have

Eρ [∫
U
∂kf(µ,x)dµ(x)] =

∞
∑
n=1

Pρ[µ(U) = n]
n

∑
i=1
⨏
Un
ek ⋅ ∇xifn(x1,⋯, xn)dx1⋯dxn.

We use Green’s formula for the integral ek ⋅ ∇xif(x1,⋯, xn) with respect to xi

∫
U
ek ⋅ ∇xifn(x1,⋯, xn)dxi = ∫

∂U
fn(x1,⋯, xn)ek ⋅ n(xi)dxi,

where n(xi) is the unit outer normal. Since f ∈ C∞
c (U), the quantity fn(x1, . . . , xn) remains

constant when xi moves along the boundary ∂U . Denoting this constant (which depends on
(xj)j≠i) by c, we apply once again Green’s formula to get

∫
U
ek ⋅ ∇xifn(x1,⋯, xn)dxi = ∫

∂U
cek ⋅ n(xi)dxi = ∫

U
ek ⋅ ∇xicdxi = 0.

This proves the desired result.

6.2.3 Localization operators

We now introduce families of operators that allow to localize a function defined onMδ(Rd).
We state some properties of these operators without proof, and refer to [135, Section 4.1](see
Section 5.4.1) for more details.

Recall that for every s > 0, we write by Qs ∶= (− s2 ,
s
2)
d. We denote the closure of the cube

Qs by Qs, and define Asf ∶= Eρ[f ∣FQs]. For any f ∈ L 2, the process (Asf)s⩾0 is a càdlàg
L 2-martingale with respect to (Mδ(Rd), (FQs)s⩾0,Pρ). We denote the jump at time s by

∆s(Af) ∶= Asf −As−f = Asf − lim
t<s,t→s

Atf.

We can have ∆s(Af) ≠ 0 only on the event where the support of the measure µ intersects
the boundary ∂Qs. The bracket process ([Af]s)s⩾0 is defined by

[Af]s ∶= ∑
0⩽τ⩽s

∆τ(Af). (6.7)

We have that ((Asf)2 − [Af]s)s⩾0 is a martingale with respect to (FQs)s⩾0.
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Notice that the operator As can be interpreted as an averaging of the variable µ Q
c
s,

keeping µ Qs fixed. As a consequence, for every open set Qs ⊆ U , if f ∈ H 1(U) and
x ∈ Qs ∩ supp(µ), there is no ambiguity in considering the quantity As(∇f)(µ,x). Moreover,

∇Asf(µ,x) = As(∇f)(µ,x), (6.8)

and Asf belongs to H 1(Qs), by Jensen’s inequality; see Proposition 6.A.1 for details. How-
ever, in general, this function does not belong to H 1

0 (Rd), or any other H 1
0 space. This

comes from the fact that the function Asf may be discontinuous as a particle enters or leave
Qs. To solve this problem, we regularize this conditional expectation in the following way.
For any s, ε > 0, we define

As,εf ∶=
1
ε
∫

ε

0
As+tf dt. (6.9)

As above, for every open set U containing Qs+ε, f ∈ H 1(U), and x ∈ Qs+ε ∩ supp(µ), the
quantity As,ε(∇f)(µ,x) is well-defined. Irrespectively of the position of the point x ∈ supp(µ),
the gradient of As,εf can be calculated explicitly. Indeed, writing τ(x) ∶= inf{r ∈ R ∶ x ∈ Qr},
and Ð→n (x) for the outer unit normal to Qτ(x) at the point x, we have

∇As,εf(µ,x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

As,ε (∇f) (µ,x) if x ∈ Qs;
1
ε ∫

ε
τ(x)−sAs+t (∇f(µ,x)) dt −

Ð→n (x)
ε ∆τ(x)(Af) if x ∈ (Qs+ε/Qs) ;

0 if x ∈ Qcs+ε.
(6.10)

Recalling that Qs+ε ⊆ U , one can check that As,εf ∈ H 1
0 (U). Similarly, one can define another

regularized localization operator Ãs,ε

Ãs,εf ∶=
2
ε2 ∫

ε

0
(ε − t)As+tf dt, (6.11)

which can be obtained by applying As,ε twice: Ãs,ε = As,ε ○As,ε. We have the identity

Eρ[(As,εf)2] = Eρ[f(Ãs,εf)] = Eρ [
2
ε2 ∫

ε

0
(ε − t)(As+tf)2 dt] . (6.12)

The operator Ãs,ε satisfies properties similar to those of As,ε, and we have

∇Ãs,εf(µ,x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ãs,ε (∇f(µ,x)) x ∈ Qs;
2
ε2 (∫

ε
τ(x)−s(ε − t)As+t (∇f(µ,x)) dt − (s + ε − τ(x))∆τ(x)(Af)Ð→n (x)) x ∈ (Qs+ε/Qs) ;

0 x ∈ Qcs+ε.
(6.13)

6.3 Functional inequalities

The goal of this section is to derive functional inequalities that will be fundamental to the
proof of our main result. The first crucial estimate is a multiscale Poincaré inequality, see
Proposition 6.3.5. This inequality is an improvement over the standard Poincaré inequality
that substitutes the L2 norm of the gradient of the function of interest by a weighted sum of
spatial averages of this gradient. It has a structure comparable to that of ∥u∥L2 ≲ ∥∇u∥H−1 ,
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where we moreover decompose the H−1 norm into a series a scales, in analogy with the
standard definition of Besov spaces, or the equivalent definition of H−1 norm in terms of
spatial averages, see for instance [25, Appendix D]. The proof of this estimate is based on an
H2 estimate for solutions of “−∆u = f”, with “∆” being the relevant Laplacian adapted to
our setting; see Proposition 6.3.4.

The second crucial functional inequality derived here is a Caccioppoli inequality, see
Proposition 6.3.6. In the standard elliptic setting, the Caccioppoli inequality allows to control
the L2 norm of the gradient of a solution by the L2 norm of the function itself, on a larger
domain; it can thus be thought of as a reverse Poincaré inequality for solutions. In our
context, we are not able to prove such a strong estimate, but prove instead a weaker version
of this inequality that allows to control the L 2 norm of the gradient of a solution by the
L 2 norm of the function itself, plus a fraction of the L 2 norm of the gradient on a larger
domain.

For every k ⩽ n ∈ N, we define Zn,k ∶= 3kZd ∩◻n. Up to a set of null measure, the family
(z +◻k)z∈Zn,k forms a partition of ◻n. For any y ∈ Rd, we write ◻n(y) to denote the unique
cube containing y that can be written in the form z + ◻n for some z ∈ 3nZd. This is well-
defined except for some y’s in a set of null measure; we can decide on an arbitrary convention
for these remaining cases. We also write Zn,k(y) ∶= 3kZd ∩◻n(y).

The following “multiscale spatial filtration” will be useful in the rest of the paper: for
every n, k ∈ N with k ⩽ n, and y ∈ Rd, we define the σ-algebra Gyn,k by

Gyn,k ∶= σ ({µ(z +◻k)}z∈Zn,k(y), µ (Rd/◻n(y))) . (6.14)

We use the shorthand Gn,k ∶= G0
n,k and Gn ∶= Gn,n. One can verify that, for every n,n′, k, k′ ∈ N

and y, y′ ∈ Rd,

n ⩽ n′, k ⩽ k′ and ◻n(y) ⊆ ◻n′(y′) Ô⇒ Gy
′

n′,k′ ⊆ G
y
n,k. (6.15)

We also define the analogue of Gn for a general Borel set U ⊆ Rd as

GU ∶= σ (µ(U), µ (Rd/U)) . (6.16)

The condition Eρ[f ∣GU ] = 0 will appear many times in this paper, usually in the context of
centering a function in H 1(U). Using the functions (fn) defined defined in Lemma 6.2.1, we
can rewrite the condition Eρ[f ∣GU ] = 0 as: for every n ∈ N and Pρ-almost every µ ∈Mδ(Rd),

∫
Un
fn(x1,⋯, xn, µ U c)dx1⋯dxn = 0. (6.17)

6.3.1 Poincaré inequality

We present two types of Poincaré inequalities: one for the space H 1
0 (U), and one for the

space H 1(U). We first state an elementary version for product spaces and functions in
the standard Sobolev H1 space. The proof is classical and can be found for instance in [171,
Theorem 13.36 and Proposition 13.34]. For any bounded Borel set U ⊆ Rd, we write diam(U)
to denote the diameter of U , and for every f ∈ L1(U), we denote the Lebesgue integral of f ,
normalized by the Lebesgue measure of U , by

⨏
U
f ∶= ∣U ∣−1∫

U
f.
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Proposition 6.3.1 (Poincaré inequality in classical Sobolev spaces). There exists a constant
C(d) < ∞ such that for every bounded convex open set U ⊆ Rd, n ∈ N, and f ∈ H1(Un), we
have

⨏
Un

(f − (⨏
Un
f))

2
⩽ C diam(U)2

n

∑
i=1
⨏
Un

∣∇xif ∣
2. (6.18)

A direct application of Proposition 6.3.1 gives the following proposition.

Proposition 6.3.2 (Poincaré inequality in H 1(U)). There exists a constant C(d) <∞ such
that for every bounded convex open set and f ∈ H 1(U), we have

Eρ [(f −Eρ[f ∣GU ])2] ⩽ C diam(U)2Eρ [∫
U
∣∇f ∣2 dµ] . (6.19)

Proof. Without loss of generality, we may assume that Eρ[f ∣GU ] = 0; subtracting Eρ[f ∣GU ]
from f does not change the right side of eq. (6.19). We use the functions (fn) from
Lemma 6.2.1, so that f = ∑∞

n=0 fn1{µ(U)=n}, and recall that since Eρ[f ∣GU ] = 0, we have that
every function fn is centered; see eq. (6.17). We can apply Proposition 6.3.1 to every fn: for
a constant C <∞ independent of n, we have

⨏
Un

∣fn(x1,⋯, xn, µ U c)∣2 dx1⋯dxn

⩽ C diam(U)2
n

∑
i=1
⨏
Un

∣∇xifn(x1,⋯, xn, µ U c)∣2 dx1⋯dxn.

We then sum over n and take the expectation to obtain the result.

Functions in the space H 1
0 (U) enjoy certain continuity properties as particles enter and

leave the domain U . For this reason, it suffices to center the function by its mean value to
have a Poincaré inequality.

Proposition 6.3.3 (Poincaré inequality in H 1
0 (U)). There exists a constant C(d) <∞ such

that for every bounded open set U ⊆ Rd, and every f ∈ H 1
0 (U),

Eρ [(f −Eρ[f])2] ⩽ C diam(U)2 Eρ [∫
U
∣∇f ∣2 dµ] . (6.20)

Proof. Without loss of generality, we assume that Eρ[f] = 0. By density, we may restrict to
f ∈ C∞

c (U). Applying [169, Theorem 18.7] to f , we have that

Eρ [f2] ⩽ ρ∫
Rd

Eρ [(f(µ + δx) − f(µ))2]dx.

By the Fubini-Tonelli theorem, and since f is FU -measurable, this reduces to

Eρ [f2] ⩽ ρEρ [∫
U
(f(µ + δx) − f(µ))2dx] .

To establish Proposition 6.3.3, it thus only remains to show that

Eρ [∫
U
(f(µ + δx) − f(µ))2dx] ⩽ C(d)

ρ
Eρ [∫

U
∣∇f ∣2dµ] . (6.21)
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We recall that

∫
U
Eρ [(f(⋅ + δx) − f(⋅))2]dx

= ∑
n∈N

P(µ(U) = n)⨏
Un

(∫
U
∣fn+1(x1,⋯, xn, x) − fn(x1,⋯, xn)∣2dx)dx1⋯dxn, (6.22)

where we used the notation (similar but simpler than in Lemma 6.2.1)

fn(x1, . . . , xn) ∶= f (
n

∑
k=1

δxk) , x1,⋯, xn ∈ U. (6.23)

Let n ∈ N be fixed. Since f ∈ C∞
c (U), for every x̄ ∈ ∂U we have that

fn(x1,⋯, xn) = fn+1(x1,⋯, xn, x̄).

That is, for every x1,⋯, xn ∈ Un, the (smooth) function

G ∶ U → R, G(⋅) ∶= fn+1(x1,⋯, xn, ⋅) − fn(x1,⋯, xn),

belongs to the (standard) Sobolev space H1
0(U). We may thus apply the standard Poincaré

inequality for functions in H1
0(U) to infer that

∫
U
∣fn+1(x1,⋯, xn, x)−fn(x1,⋯, xn)∣2dx

⩽ C(d)diam(U)2∫
U
∣∇xfn+1(x1,⋯, xn, x)∣2dx.

Inserting this into (6.22), using that P(µ(U) = n) = e−ρ∣U ∣ (ρ∣U ∣)n
n! and relabelling n + 1 as n,

yields that

∫
U
Eρ [(f(⋅ + δx) − f(⋅))2]dx

⩽ C(d)
ρ

diam(U)2 ∑
n∈N

P(µ(U) = n)n⨏
Un

∣∇xnfn(x1,⋯, xn)∣2dx1⋯dxn.

To establish (6.21) from this, it only remains to observe that, since by definition (6.23) each
function fn is invariant under permutations, we have

⨏
Un

∣∇x1fn∣
2 = ⨏

Un
∣∇xifn∣

2 for all i = 1,⋯, n.

This concludes the proof of (6.21) and establishes Proposition 6.3.3.

6.3.2 H 2 estimate for the homogeneous equation

When the diffusion matrix a is a constant, the solutions to the corresponding equation have
a better regularity than otherwise, and in particular, the following H 2 estimate holds. One
can define the function with higher derivative iteratively: for x, y ∈ supp(µ), x ≠ y

∂j∂kf(µ,x, y) ∶= lim
h→0

∂kf(µ − δy + δy+hej , x) − ∂kf(µ,x)
h

,
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and for the case x = y, it makes sense as

∂j∂kf(µ,x, x) ∶= lim
h→0

∂kf(µ − δx + δx+hej , x + hej) − ∂kf(µ,x)
h

.

We also denote by ∇2f(µ,x, y) the matrix {∂j∂kf(µ,x, y)}1⩽j,k⩽d, and its norm is defined as

∣∇2f(µ,x, y)∣2 ∶= ∑
1⩽j,k⩽d

∣∂j∂kf(µ,x, y)∣2.

Proposition 6.3.4 (H 2 estimate). Let f ∈ L 2, and let u ∈ H 1(Qr) solve “−∆u = f” in the
sense that for any v ∈ H 1(Qr),

Eρ [∫
Qr
∇u(µ,x) ⋅ ∇v(µ,x)dµ] = Eρ[fv]. (6.24)

We have the H 2(Qr) estimate

Eρ [∫(Qr)2
∣∇2u(µ,x, y)∣2 dµ(x)dµ(y)] ⩽ Eρ[f2]. (6.25)

Remark. By testing eq. (6.24) with v = 1{µ(Qr)=n,µ Qcr(V )=m}, we see that f has to satisfy
Eρ[f ∣GQr] = 0 as a condition of compatibility.

Proof of Proposition 6.3.4. Although this is not really part of the statement, we start by
showing that for every f ∈ L 2 satisfying the compatibility condition Eρ[f ∣GQr] = 0, there
exists a solution u to eq. (6.24), and we will show its link with the classical elliptic equation.
At first, we notice that the problem can be studied on the space of functions

W = {g ∈ H 1(Qr) ∶ Eρ[g ∣GQr] = 0}.

Because for a general function v ∈ H 1(Qr), Eρ[v∣GQr] can be seen as a constant in eq. (6.24):
its derivative is 0 so the left-hand side of eq. (6.24) is 0. For the right-hand side, we have

Eρ[fEρ[v∣GQr]] = Eρ [Eρ[f ∣GQr]Eρ[v∣GQr]] = 0.

Thus when applying the operation v ↦ v − Eρ[v∣GQr], we do not change eq. (6.24) and we
can restrict the Laplace equation on W . Moreover, with the notation in Lemma 6.2.1 that
v = ∑∞

n=0 vn1{µ(Qr)=n}, Eρ[v∣GQr] = 0 implies every vn is centered; see eq. (6.17).
Secondly, we test eq. (6.24) by conditioning the environment outside Qr and the number

of particles µ(Qr), i.e. let

v = vn(x1,⋯, xn, µ Qcr)1{µ(Qr)=n}1{µ Qcr(V )=m},

for some Borel set V using the canonical projection Lemma 6.2.1. Then for arbitrary choices
of n,m,V , in fact we have a classical elliptic equation

∫(Qr)n

n

∑
k=1

∇xkun(x1,⋯, xn, µ Qcr) ⋅ ∇xkvn(x1,⋯, xn, µ Qcr)dx1⋯dxn

= ∫(Qr)n
fn(x1,⋯, xn, µ Qcr)vn(x1,⋯, xn, µ Qcr)dx1⋯dxn, (6.26)

with the notation of the canonical projection. Thus the solution u can be described as follows:
we sample the environment outside Qr and fix the number of particle µ(Qr) = n at first, then
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solve the classical elliptic equation in H1(Rnd) with mean zero. Finally we combine all the
un and this gives the solution of eq. (6.24). In other words, the statement of eq. (6.24) can
be reinforced as

∀v ∈W, Eρ
⎡⎢⎢⎢⎢⎣
∫
Qr
∇u(µ,x) ⋅ ∇v(µ,x)dµ

RRRRRRRRRRR
GQr

⎤⎥⎥⎥⎥⎦
= Eρ [fv ∣GQr] .

We now turn to study the H 2 estimate. We apply the classical H2(Rnd) estimate for
eq. (6.26) (see for instance [25, Lemma B.19] and its proof)

∫(Qr)n
∑

1⩽i,j⩽n
∣∇xi∇xjun∣

2(x1,⋯, xn, µ Qcr)dx1⋯dxn

⩽ ∫(Qr)n
∣fn∣2(x1,⋯, xn, µ Qcr)dx1⋯dxn, (6.27)

Taking the expectation of eq. (6.27) then gives the result.

6.3.3 Multiscale Poincaré inequality

For cubes of size 3n, the Poincaré inequalities derived in the previous subsection (say with
k = n in Proposition 6.3.2) have a right-hand side that scales like 32n. In this subsection,
we derive a multiscale version of the Poincaré inequality, that aims to improve upon this
scaling, provided that some local average of the gradient of the function is not too large. We
recall that the multiscale spatial filtration Gyn,k is defined in eq. (6.14). For every k ⩽ n ∈ N,
x, y ∈ Rd such that x ∈ ◻n(y), open set U containing ◻k(x), and f ∈ H 1(U), the following
quantity is well defined

(Syn,k∇f)(µ,x) ∶= Eρ
⎡⎢⎢⎢⎢⎣
⨏◻k(x)

∇f dµ
RRRRRRRRRRR
Gyn,k

⎤⎥⎥⎥⎥⎦
, (6.28)

where we use the notation, for every Borel set V such that µ(V ) ∈ (0,∞) and function g
defined on supp(µ) ∩ V ,

⨏
V
g dµ ∶= 1

µ(V ) ∫V
g dµ, (6.29)

and for definiteness, we also set ⨏V g dµ = 0 if µ(V ) = 0. We use the shorthand notation
Sn,k ∶= S0

n,k and Sn ∶= Sn,n. This operator has a convenient spatial martingale structure, as
displayed in the following lemma.

Lemma 6.3.1 (Martingale structure for Sn,k). For every n,n′, k, k′ ∈ N, y, y′ ∈ Rd satisfying

n ⩽ n′, k ⩽ k′, ◻n(y) ⊆ ◻n′(y′),

every x ∈ ◻k′(y′), and f ∈ H 1(◻n′(y′)), we have

Sy
′

n′,k′∇f(µ,x) = Eρ
⎡⎢⎢⎢⎢⎣
⨏◻k′(x)

(Syn,k∇f)dµ
RRRRRRRRRRR
Gy

′

n′,k′

⎤⎥⎥⎥⎥⎦
. (6.30)
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Figure 6.1: The largest cube on this figure is ◻n′(y′). The operator Sy
′

n′,k′ computes the
spatial average in every subcubeof size 3k′ , for example the cube in red in the image. We
can apply at first the operator Syn,k, which works on the finer scales 3k and 3n, represented
by the cubes with orange and blue boundaries respectively.

Proof. The key observation is eq. (6.15), stating that Gyn,k is a finer σ-algebra than Gy
′

n′,k′ , so
that

Sy
′

n′,k′∇f(µ,x)

= Eρ
⎡⎢⎢⎢⎢⎣

1
µ(◻k′(x)) ∫◻k′(x)

∇f dµ
RRRRRRRRRRR
Gy

′

n′,k′

⎤⎥⎥⎥⎥⎦

= Eρ
⎡⎢⎢⎢⎢⎣

∑
z∈Zn,k∩◻k′(x)

µ(z +◻k)
µ(◻k′(x))

Eρ
⎡⎢⎢⎢⎢⎣

1
µ(z +◻k) ∫◻k(z)

∇f dµ
RRRRRRRRRRR
Gyn,k

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRR
Gy

′

n′,k′

⎤⎥⎥⎥⎥⎦
.

By the definition of Syn,k∇f(µ, z), we obtain

Sy
′

n′,k′∇f(µ,x) = Eρ
⎡⎢⎢⎢⎢⎣

∑
z∈Zn,k∩◻k′(x)

µ(z +◻k)
µ(◻k′(x))

(Syn,k∇f)(µ, z)
RRRRRRRRRRR
Gy

′

n′,k′

⎤⎥⎥⎥⎥⎦

= Eρ
⎡⎢⎢⎢⎢⎣

1
µ(◻k′(x)) ∫◻k′(x)

Syn,k∇f dµ
RRRRRRRRRRR
Gy

′

n′,k′

⎤⎥⎥⎥⎥⎦
.

This is eq. (6.30).

To prepare further for the multiscale Poincaré inequality, we also give the following explicit
expression for Syn,k∇f . We use the notation

⨏(zi+◻k)1⩽i⩽N
∶= ⨏

zi+◻k
⋯⨏

zN+◻k
.

Lemma 6.3.2. Using the notation of Lemma 6.2.1 with µ ◻n(y) = ∑Ni=1 δxi, for any x ∈ ◻n(y)
and any f ∈ H 1(◻n(y)), we have

(Syn,k∇f)(µ,x) ∏
z∈Zn,k(y)

1{µ(z+◻k)=Nz}

= 1
µ(◻k(x)) ∑

j∶xj∈◻k(x)
⨏(zi+◻k)1⩽i⩽N

∇xjfN(⋅, µ ◻cn) ∏
z∈Zn,k(y)

1{µ(z+◻k)=Nz}, (6.31)
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with N = ∑z∈Zn,k(y)Nz and {zi}1⩽i⩽N any fixed sequence such that

∀z ∈ Zn,k(y), ∣{i ∈ {1, . . . ,N} ∶ zi = z}∣ = Nz. (6.32)

Moreover, for every j, j′ such that xj , xj′ ∈ ◻k(x), we have

⨏(zi+◻k)1⩽i⩽N
∇xjfN(⋅, µ ◻cn) = ⨏(zi+◻k)1⩽i⩽N

∇xj′fN(⋅, µ ◻cn). (6.33)

Proof. Without loss of generality, we set y = 0. Then let N = ∑z∈Zn,k Nz and we use the
canonical projection

(Sn,k∇f)(µ,x) ∏
z∈Zn,k(y)

1{µ(z+◻k)=Nz}

= 1
µ(◻k(x))

Eρ
⎡⎢⎢⎢⎢⎣

∑
xj∈◻k(x)

∇xjfN(⋅, µ ◻cn) ∏
z∈Zn,k

1{µ(z+◻k)=Nz}
RRRRRRRRRRR
Gn,k

⎤⎥⎥⎥⎥⎦
.

The key point is to write∏z∈Zn,k 1{µ(z+◻k)=Nz} with respect to {xi}1⩽i⩽N such that µ ◻n = ∑Ni=1 δxi .
Let {zi}1⩽xi⩽N be any fixed sequence so that every z in Zn,k appears exactly Nz times, as
displayed in eq. (6.32). We have

∏
z∈Zn,k

1{µ(z+◻k)=Nz} = ∑
σ∈SN

N

∏
i=1

1{xσ(i)∈zi+◻k},

where SN is the symmetric group. Moreover, under Gn,k every permutation has equal prob-
ability, and then each xi is uniformly distributed in the associated cube zσ(i) +◻k. Thus, we
have

(Sn,k∇f)(µ,x) ∏
z∈Zn,k

1{µ(z+◻k)=Nz}

= 1
µ(◻k(x))

1
∣SN ∣ ∑σ∈SN

⨏(zσ(i)+◻k)1⩽i⩽N
∑

xj∈◻k(x)
∇xjfN(⋅, µ ◻cn)

N

∏
i=1

1{xi∈zσ(i)+◻k}.

Notice that for every 1 ⩽ i ⩽ N , xi ∈ zσ(i)+◻k means xσ−1(i) ∈ zi+◻k, and∑xj∈◻k(x)∇xjfN(⋅, µ ◻cn)
is permutation-invariant. So we have

∑
xj∈◻k(x)

∇xjfN(x1,⋯, xN , µ ◻cn)
N

∏
i=1

1{xi∈zσ(i)+◻k}

= ∑
xj∈◻k(x)

∇xjfN(x1,⋯, xN , µ ◻cn)
N

∏
i=1

1{xσ−1(i)∈zi+◻k}

= ∑
xσ−1(j)∈◻k(x)

∇xσ−1(j)
fN(xσ−1(1),⋯, xσ−1(N), µ ◻cn)

N

∏
i=1

1{xσ−1(i)∈zi+◻k}

= ∑
xj∈◻k(x)

∇xjfN(x1,⋯, xN , µ ◻cn)
N

∏
i=1

1{xi∈zi+◻k}.

Therefore, the term for each permutation has the same contribution, and we thus obtain
eq. (6.31).
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Then we prove eq. (6.33). To avoid possible confusion in the notation, we let yj , yj′ be the
j-th and j′-th coordinates, then we exchange them and use the invariance under permutation
of fN ,

ek ⋅ ∇xjfN(⋯, yj ,⋯yj′ ,⋯) = lim
h→0

fN(⋯, yj + hek,⋯yj′ ,⋯) − fN(⋯, yj ,⋯yj′ ,⋯)
h

= lim
h→0

fN(⋯, yj′ ,⋯yj + hek,⋯) − fN(⋯, yj′ ,⋯yj ,⋯)
h

= ek ⋅ ∇xj′fN(⋯, yj′ ,⋯yj ,⋯).

(6.34)

Moreover, the condition xj , xj′ ∈ ◻k(x) implies that zj = zj′ and

1{yj∈zj+◻k}1{yj′∈zj′+◻k} = 1{yj′∈zj+◻k}1{yj∈zj′+◻k}. (6.35)

We combine eq. (6.34) and eq. (6.35) to conclude eq. (6.33).

We now use the operators Syn,k as our locally averaged gradient to obtain the following
multiscale Poincaré inequality. Notice in particular the factor of 3k inside the sum on the right
side of eq. (6.36), which we aim to leverage upon later by combining this with information
on the smallness of Sn,k∇u for k close to n.

Proposition 6.3.5 (Multiscale Poincaré inequality). There exists a constant C(d) <∞ such
that for every function u ∈ H 1(◻n) satisfying Eρ[u ∣Gn] = 0, we have

∥u∥L 2 ⩽ C (Eρ [∫◻n
∣∇u∣2 dµ])

1
2
+C

n

∑
k=0

3k (Eρ [∫◻n
∣Sn,k∇u∣2 dµ])

1
2
. (6.36)

Proof. Let w ∈ H 1(◻n) be such that Eρ[w ∣Gn] = 0 and that solves “−∆w = u”, in the sense
that

∀v ∈ H 1(◻n), Eρ [∫◻n
∇w ⋅ ∇v dµ] = Eρ[uv], (6.37)

and this relation also holds conditionally on Gn:

∀v ∈ H 1(◻n), Eρ
⎡⎢⎢⎢⎢⎣
∫◻n

∇w ⋅ ∇v dµ
RRRRRRRRRRR
Gn

⎤⎥⎥⎥⎥⎦
= Eρ[uv ∣Gn]. (6.38)

Thanks to the condition Eρ[u ∣Gn] = 0, these equations are well-defined; see the proof of
Proposition 6.3.4 for a detailed discussion. This proposition asserts that

Eρ [∫(◻n)2
∣∇2w(µ,x, y)∣2 dµ(x)dµ(y)] ⩽ Eρ[u2]. (6.39)

We test eq. (6.37) with u and write a telescopic sum with (Sn,k∇w)0⩽k⩽n to get

Eρ[u2] = Eρ [∫◻n
∇w ⋅ ∇udµ] = eq. (6.40)-a + eq. (6.40)-b + eq. (6.40)-c,

eq. (6.40)-a = Eρ [∫◻n
(∇w − Sn,0∇w) ⋅ ∇udµ] ,

eq. (6.40)-b =
n−1
∑
k=0

Eρ [∫◻n
(Sn,k∇w − Sn,k+1∇w) ⋅ ∇udµ] ,

eq. (6.40)-c = Eρ [∫◻n
(Sn,n∇w) ⋅ ∇udµ] .

(6.40)
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We treat each of these three terms in turn. For eq. (6.40)-a, we use the Cauchy-Schwarz
inequality to write

eq. (6.40)-a ⩽ (Eρ [∫◻n
∣∇w − Sn,0∇w∣2 dµ])

1
2
(Eρ [∫◻n

∣∇u∣2 dµ])
1
2
.

The first term on the right side above can be rewritten as

Eρ [∫◻n
∣∇w − Sn,0∇w∣2 dµ] = Eρ

⎡⎢⎢⎢⎢⎣
∑

z∈Zn,0
Eρ

⎡⎢⎢⎢⎢⎣
∫
z+◻0

∣∇w − Sn,0∇w∣2 dµ
RRRRRRRRRRR
Gn,0

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
. (6.41)

We use the canonical projection Lemma 6.2.1 for w with µ ◻n = ∑Ni=1 δxi , and the do the
decomposition conditioned on Gn,0 that

w(µ) =
∞
∑
N=0

∑
∑z∈Zn,0 Nz=N

wN(x1,⋯, xN , µ ◻cn) ∏
z∈Zn,0

1{µ(z+◻0)=Nz}.

It suffices to study one term wN(x1,⋯, xN , µ ◻cn)∏z∈Zn,0 1{µ(z+◻0)=Nz}. We can apply
eq. (6.31): let {zi}1⩽i⩽N be a fixed sequence such that eq. (6.32) holds (with y = 0 there). For
any x ∈ ◻n we have

Sn,0∇w(µ,x) ∏
z∈Zn,0

1{µ(z+◻0)=Nz}

= 1
µ(◻0(x))

∑
xj∈◻0(x)

⨏(zi+◻0)1⩽i⩽N
∇xjwN(⋅, µ ◻cn) ∏

z∈Zn,0
1{µ(z+◻0)=Nz}. (6.42)

We apply eq. (6.42) in eq. (6.41) and just study the sum over one z′ in Zn,0

Eρ
⎡⎢⎢⎢⎢⎣
∫
z′+◻0

∣∇w − Sn,0∇w∣2 dµ ∏
z∈Zn,0

1{µ(z+◻0)=Nz}

RRRRRRRRRRR
Gn,0

⎤⎥⎥⎥⎥⎦

= ∑
xj∈z′+◻0

⨏(zi+◻0)1⩽i⩽N

RRRRRRRRRRRR
∇xjwN(⋅, µ ◻cn) −

1
µ(z′ +◻0)

∑
xj′∈z′+◻0

⨏(zi+◻0)1⩽i⩽N
∇xj′wN(⋅, µ ◻cn)

RRRRRRRRRRRR

2

× ∏
z∈Zn,0

1{µ(z+◻0)=Nz}.

Then we use the symmetry proved in eq. (6.33), that in fact every ∇xjwN has the same
contribution for all xj ∈ z′ +◻0,

Eρ
⎡⎢⎢⎢⎢⎣
∫
z′+◻0

∣∇w − Sn,0∇w∣2 dµ ∏
z∈Zn,0

1{µ(z+◻0)=Nz}

RRRRRRRRRRR
Gn,0

⎤⎥⎥⎥⎥⎦

= ∑
xj∈z′+◻0

⨏(zi+◻0)1⩽i⩽N
∣∇xjwN(⋅, µ ◻cn) − ⨏(zi+◻0)1⩽i⩽N

∇xjwN(⋅, µ ◻cn)∣
2
∏

z∈Zn,0
1{µ(z+◻0)=Nz}.

For the equation above, we can use the Poincaré inequality Proposition 6.3.1 because it is
centered and every xi lives uniformly in its associated small cube zi + ◻0. We remark that
the constant C here is independent of N .

Eρ
⎡⎢⎢⎢⎢⎣
∫
z′+◻0

∣∇w − Sn,0∇w∣2 dµ ∏
z∈Zn,0

1{µ(z+◻0)=Nz}

RRRRRRRRRRR
Gn,0

⎤⎥⎥⎥⎥⎦
⩽ C ∑

1⩽i⩽N
∑

xj∈z′+◻0
⨏(zi+◻0)1⩽i⩽N

∣∇xi∇xjwN(⋅, µ ◻cn)∣
2
∏

z∈Zn,0
1{µ(z+◻0)=Nz}.
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We put this estimate back to eq. (6.41), do the sum over all z′ ∈ Zn,0

∑
z′∈Zn,0

Eρ
⎡⎢⎢⎢⎢⎣
∫
z′+◻0

∣∇w − Sn,0∇w∣2 dµ ∏
z∈Zn,0

1{µ(z+◻0)=Nz}

RRRRRRRRRRR
Gn,0

⎤⎥⎥⎥⎥⎦
⩽ C ∑

1⩽i,j⩽N
⨏(zi+◻0)1⩽i⩽N

∣∇xi∇xjwN(⋅, µ ◻cn)∣
2
∏

z∈Zn,0
1{µ(z+◻0)=Nz}

= CEρ
⎡⎢⎢⎢⎢⎣
∫(◻n)2

∣∇2w(µ,x, y)∣2 dµ(x)dµ(y) ∏
z∈Zn,0

1{µ(z+◻0)=Nz}

RRRRRRRRRRR
Gn,0

⎤⎥⎥⎥⎥⎦
.

Finally, we do the expectation and the sum over all ∏z∈Zn,0 1{µ(z+◻0)=Nz}, and use the H 2-
estimate eq. (6.39) to obtain that

Eρ [∫◻n
∣∇w − Sn,0∇w∣2 dµ]

⩽ CEρ [∫(◻n)2
∣∇2w(µ,x, y)∣2 dµ(x)dµ(y)]

⩽ CEρ[u2],

(6.43)

and this concludes that

eq. (6.40)-a ⩽ C(Eρ[u2])
1
2 (Eρ [∫◻n

∣∇u∣2 dµ])
1
2
. (6.44)

The term eq. (6.40)-b can be treated similarly. For every k, we apply at first the condi-
tional expectation with respect to Gn,k

Eρ [∫◻n
(Sn,k∇w − Sn,k+1∇w) ⋅ ∇udµ]

= ∑
z∈Zn,k

Eρ
⎡⎢⎢⎢⎢⎣
Eρ

⎡⎢⎢⎢⎢⎣
∫
z+◻k

(Sn,k∇w − Sn,k+1∇w) ⋅ ∇udµ
RRRRRRRRRRR
Gn,k

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

= Eρ
⎡⎢⎢⎢⎢⎣
∑

z∈Zn,k
∫
z+◻k

(Sn,k∇w − Sn,k+1∇w) ⋅ (Sn,k∇u)dµ
⎤⎥⎥⎥⎥⎦
.

Then we use the Cauchy-Schwarz inequality to obtain that

Eρ [∫◻n
(Sn,k∇w − Sn,k+1∇w) ⋅ ∇udµ]

⩽
⎛
⎝
Eρ

⎡⎢⎢⎢⎢⎣
∑

z∈Zn,k
∫
z+◻k

∣Sn,k∇w − Sn,k+1∇w∣2 dµ
⎤⎥⎥⎥⎥⎦

⎞
⎠

1
2 ⎛
⎝
Eρ

⎡⎢⎢⎢⎢⎣
∑

z∈Zn,k
∫
z+◻k

∣Sn,k∇u∣2 dµ
⎤⎥⎥⎥⎥⎦

⎞
⎠

1
2

.

We use the definition in eq. (6.28) and Jensen’s inequality for ∣Sn,k∇w−Sn,k+1∇w∣2. For every
z ∈ Zn,k, since (Sn,k+1∇w)(µ, z) is Gn,k-measurable,

∣Sn,k∇w − Sn,k+1∇w∣2(µ, z) =
⎛
⎝
Eρ

⎡⎢⎢⎢⎢⎣
⨏
z+◻k

(∇w − Sn,k+1∇w)dµ
RRRRRRRRRRR
Gn,k

⎤⎥⎥⎥⎥⎦

⎞
⎠

2

⩽ Eρ
⎡⎢⎢⎢⎢⎣
⨏
z+◻k

∣∇w − Sn,k+1∇w∣2 dµ
RRRRRRRRRRR
Gn,k

⎤⎥⎥⎥⎥⎦
.

(6.45)
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Then we sum over all z ∈ Zn,k, and we can treat it like eq. (6.40)-a and eq. (6.43) with the
Poincaré inequality in the scale 3k and the H 2-estimate eq. (6.39), yielding

Eρ
⎡⎢⎢⎢⎢⎣
∑

z∈Zn,k
∫
z+◻k

∣Sn,k∇w − Sn,k+1∇w∣2 dµ
⎤⎥⎥⎥⎥⎦
⩽ Eρ [∫◻n

∣∇w − Sn,k+1∇w∣2 dµ]

⩽ C32kEρ[u2].

We have thus shown that

eq. (6.40)-b ⩽ C(Eρ[u2])
1
2
⎛
⎝

n−1
∑
k=0

3k (Eρ [∫◻n
∣Sn,k∇u∣2 dµ])

1
2 ⎞
⎠
. (6.46)

For eq. (6.40)-c, we use eq. (6.28) and the Cauchy-Schwarz inequality to get that

eq. (6.40)-c = Eρ [∫◻n
(Sn,n∇w) ⋅ (Sn,n∇u)dµ]

⩽ (Eρ [∫◻n
∣Sn,n∇w∣2 dµ])

1
2
(Eρ [∫◻n

∣Sn,n∇u∣2 dµ])
1
2
.

To treat the term Eρ [∫◻n ∣Sn,n∇w∣2 dµ], we define the random affine function

p ∶=
(Sn,n∇w)(µ,0)
∣(Sn,n∇w)(µ,0)∣

, `p,◻n ∶= ∫◻n
p ⋅ xdµ(x). (6.47)

Notice that here p is random, but when the particles in◻n move within◻n, it does mot change
the value; more precisely, the slope p is Gn,n-measureable. We test `p,◻n with eq. (6.38),

Eρ [u`p,◻n ∣Gn,n] = Eρ
⎡⎢⎢⎢⎢⎣
∫◻n

∇w ⋅ p dµ
RRRRRRRRRRR
Gn,n

⎤⎥⎥⎥⎥⎦

= Eρ
⎡⎢⎢⎢⎢⎣
∫◻n

∇w dµ
RRRRRRRRRRR
Gn,n

⎤⎥⎥⎥⎥⎦
⋅ p

= ∫◻n
(Sn,n∇w) ⋅ p dµ.

Recalling the definition in eq. (6.47), we obtain that

∫◻n
∣Sn,n∇w∣dµ = Eρ [u`p,◻n ∣Gn,n]

⩽ (Eρ [u2 ∣Gn,n])
1
2 (Eρ [`2p,◻n ∣Gn,n])

1
2

⩽ C
√
µ(◻n)3n (Eρ [u2 ∣Gn,n])

1
2 ,

where in the last step, we use a direct calculation of (Eρ [`2p,◻n ∣Gn,n])
1
2 , and where the

constant C may depend on d. Since Sn,n∇w is constant for every point in ◻n, we have shown
that √

µ(◻n)∣Sn,n∇w∣(µ,0) ⩽ C3n (Eρ [u2 ∣Gn,n])
1
2 .

We thus obtain that

Eρ [∫◻n
∣Sn,n∇w∣2 dµ] = Eρ [µ(◻n)∣Sn,n∇w∣2(µ,0)]

⩽ C32nEρ [Eρ [u2 ∣Gn,n]]
= C32nEρ[u2],
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and therefore

eq. (6.40)-c ⩽ C3n(Eρ[u2])
1
2 (Eρ [∫◻n

∣Sn,n∇u∣2 dµ])
1
2
. (6.48)

We now combine eq. (6.40), (6.44), (6.46), and (6.48), to obtain eq. (6.36).

6.3.4 Caccioppoli inequality

For every bounded open set U ⊆ Rd, we define the space of a-harmonic functions onMδ(Rd)
by

A(U) ∶= {u ∈ H 1(U) ∶ ∀ϕ ∈ H 1
0 (U), Eρ [∫

U
∇u ⋅ a∇ϕdµ] = 0} . (6.49)

Recalling that, for any two bounded open sets V ⊆ U , we have H 1(U) ⊆ H 1(V ) and
H 1

0 (V ) ⊆ H 1
0 (U), we see that A(U) ⊆ A(V ). For the classical Caccioppoli inequality,

a standard proof is as follows: we multiply the harmonic function by a cutoff function,
and then use this as a test function against the harmonic function itself. Adapting this
argument to our space of particle configurations is not immediate. A naive approach would
be to introduce a cutoff that brings the value of the function to zero whenever a particle
approaches the boundary of the domain. But proceeding in this way is a very bad idea, since
as we increase the size of the domain, there will essentially always be some particles near
the boundary. We will instead rely on a suitable averaging procedure for particles that fall
outside of a given region, using the localization operators defined in Subsection 6.2.3. Notice
that our goal thus is not to bring the function to zero as a particle approaches the boundary
of the box. Rather, it is only to produce a function that stops depending on the position of
a particle that progressively approaches the boundary of the domain, in agreement with our
definition of the space H 1

0 (U) (and departing from the traditional definition of the Sobolev
H1

0 spaces).

Proposition 6.3.6 (Modified Caccioppoli inequality). There exist θ(d,Λ) ∈ (0,1), C(d,Λ) <∞,
and R0(d,Λ) <∞ such that for every r ⩾ R0 and u ∈ A(Q3r), we have

Eρ [
1

ρ∣Qr ∣ ∫Qr
∇(Ar+2u) ⋅ a∇(Ar+2u)dµ]

⩽ C

r2ρ∣Q3r ∣
Eρ[u2] + θEρ [

1
ρ∣Q3r ∣ ∫Q3r

∇u ⋅ a∇udµ] . (6.50)

Remark. Inequality eq. (6.50) controls the norm of the gradient of a harmonic function in
the small cube Qr by a sum of terms involving the norm of the gradient in the larger cube
Q3r. This does not seem to be useful at first glance. However, the key point is that the
multiplicative factor θ is smaller than one.

The proof of Proposition 6.3.6 will be divided into two steps. In the first step, provided
by the lemma below, we prove a weaker Caccioppoli inequality, without the normalization
of the volume. In the second step we use an iterative argument to improve the result and
obtain Proposition 6.3.6.

Recall that As,ε is the regularized localization operator defined in eq. (6.9).
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Lemma 6.3.3 (Weak Caccioppoli inequality). Fix θ′(Λ) ∶= 2Λ
2Λ+1 ∈ (0,1). For every r > 0,

s ⩾ r + 2, ε > 0 and u ∈ A(Qs+ε), we have

θ′

2ε2Eρ[(Asu)
2] +Eρ [∫

Qr
∇(As,εu) ⋅ a∇(As,εu)dµ]

⩽ θ′ ( 1
2ε2Eρ[(As+εu)

2] +Eρ [∫
Qs+ε

∇u ⋅ a∇udµ]) . (6.51)

Proof. The proof of this lemma borrows some elements from [135, Lemma 4.8]; in both
settings, the main point is to construct and analyze an appropriate “cut-off” version of the
function u. We use the function Ãs,εu ∈ H 1

0 (Qs+ε) defined in eq. (6.11) as a cut-off of the
function u and test it against u ∈ A(Qs+ε) to get

Eρ [∫
Qs+ε

∇(Ãs,εu) ⋅ a∇udµ] = 0. (6.52)

Combining this with the decomposition

Eρ [∫
Qs+ε

∇(Ãs,εu) ⋅ a∇udµ] = Eρ [∫
Qs−2

∇(Ãs,εu) ⋅ a∇udµ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

eq. (6.53)-a

+Eρ [∫
Qs/Qs−2

∇(Ãs,εu) ⋅ a∇udµ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

eq. (6.53)-b

+Eρ [∫
Qs+ε/Qs

∇(Ãs,εu) ⋅ a∇udµ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

eq. (6.53)-c

,

(6.53)

we obtain that

eq. (6.53)-a ⩽ ∣eq. (6.53)-b∣ + ∣eq. (6.53)-c∣. (6.54)

We now study each of these three terms. For the first term eq. (6.53)-a, since x ∈ Qs−2, the
coefficient a is FQs-measurable. We can thus use eq. (6.8), eq. (6.11), (6.13) and (6.12) to
get

eq. (6.53)-a = 2
ε2Eρ [∫Qs−2

∫
ε

0
(ε − t)As+t(∇u) ⋅ a∇udtdµ]

= 2
ε2Eρ [∫Qs−2

∫
ε

0
(ε − t)Eρ [As+t(∇u) ⋅ aAs+t(∇u) ∣FQ̄s+t] dtdµ]

= Eρ [∫
Qs−2

∇(As,εu) ⋅ a∇(As,εu)dµ] .

We then apply eq. (6.13) for the second term eq. (6.53)-b. We notice that a is no longer
FQs-measurable and use Young’s inequality and the bound a ⩽ ΛId

∣eq. (6.53)-b∣ = 2
ε2Eρ [∫Qs/Qs−2

∫
ε

0
(ε − t)As+t(∇u) ⋅ a∇udtdµ]

⩽ Λ
ε2Eρ [∫Qs/Qs−2

∫
ε

0
(ε − t) (∣As+t(∇u)∣2 + ∣∇u∣2) dtdµ] .
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For the part with conditional expectation, we use Jensen’s inequality and the uniform bound
Id ⩽ a ⩽ ΛId

Λ
ε2Eρ [∫Qs/Qs−2

∫
ε

0
(ε − t) ∣As+t(∇u)∣2 dtdµ] ⩽ Λ

2
Eρ [∫

Qs/Qs−2
∣∇u∣2 dµ]

⩽ Λ
2
Eρ [∫

Qs/Qs−2
∇u ⋅ a∇udµ] .

This concludes that ∣eq. (6.53)-b∣ ⩽ ΛEρ [∫Qs/Qs−2
∇u ⋅ a∇udµ].

For the third term eq. (6.53)-c, we use eq. (6.13) and obtain

∣eq. (6.53)-c∣ ⩽ eq. (6.53)-c1 + eq. (6.53)-c2

eq. (6.53)-c1 = 2
ε2 ∣Eρ [∫

Qs+ε/Qs
∫

ε

τ(x)−s
(ε − t)As+t(∇u) ⋅ a∇udtdµ]∣

eq. (6.53)-c2 = 2
ε2 ∣Eρ [∫

Qs+ε/Qs
(s + ε − τ(x))∆τ(x)(Au)Ð→n (x) ⋅ a∇udµ]∣ .

The part of eq. (6.53)-c1 can be treated as that of eq. (6.53)-b, so that

eq. (6.53)-c1 ⩽ ΛEρ [∫
Qs+ε/Qs

∇u ⋅ a∇udµ] .

We study the part eq. (6.53)-c2 using Young’s inequality with a parameter β > 0 to be fixed
later:

2
ε2 ∣Eρ [∫

Qs+ε/Qs
(s + ε − τ(x))∆τ(x)(Au)Ð→n (x) ⋅ a∇udµ]∣

⩽ Λ
βε2Eρ [∫Qs+ε/Qs

(s + ε − τ(x))∣∆τ(x)(Au)∣2 dµ] + βΛ
ε2 Eρ [∫

Qs+ε/Qs
(s + ε − τ(x))∣∇u∣2 dµ]

⩽ Λ
βε2Eρ [∫Qs+ε/Qs

(s + ε − τ(x))∣∆τ(x)(Au)∣2 dµ] + βΛ
ε
Eρ [∫

Qs+ε/Qs
∇u ⋅ a∇udµ] .

(6.55)

The first term above will be responsible for producing the L 2 term on the right side of
eq. (6.51). We start by writing

Λ
βε2Eρ [∫Qs+ε/Qs

(s + ε − τ(x))∣∆τ(x)(Au)∣2 dµ]

= Λ
βε2Eρ [ ∑

s⩽τ⩽s+ε
(s + ε − τ)∣∆τ(Au)∣2] ,

where on the right side, the sum is over all τ ’s that are jump discontinuites for (Asu)s⩾0.
Recalling the definition of the bracket process ([Au]s)s⩾0 defined in eq. (6.7), we use Fubini’s
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lemma and the L 2 isometry Eρ [[Au]s] = Eρ [(Asu)2]:

Λ
βε2Eρ [ ∑

s⩽τ⩽s+ε
(s + ε − τ)∣∆τ(Au)∣2] =

Λ
βε2Eρ [ ∑

s⩽τ⩽s+ε
∫

s+ε

s
1{τ⩽t⩽s+ε} dt∣∆τ(Au)∣2]

= Λ
βε2Eρ [∫

s+ε

s
∑
s⩽τ⩽t

∣∆τ(Au)∣2 dt]

= Λ
βε2Eρ [∫

s+ε

s
([Au]t − [Au]s) dt]

= Λ
βε2 ∫

s+ε

s
(Eρ [(Atu)2] −Eρ [(Asu)2]) dt

⩽ Λ
βε

(Eρ [(As+εu)2] −Eρ [(Asu)2]) .

Putting this estimate back into eq. (6.55), we conclude the estimating of the term eq. (6.53)-
c2, obtaining

eq. (6.53)-c2 ⩽ Λ
βε

(Eρ [(As+εu)2] −Eρ [(Asu)2]) + βΛ
ε
Eρ [∫

Qs+ε/Qs
∇u ⋅ a∇udµ] .

By choosing β = ε, recalling eq. (6.54), and that r ⩽ s− 2, we can combine this estimate with
those of eq. (6.53)-a, eq. (6.53)-b, and eq. (6.53)-c1 to get

Λ
ε2Eρ [(Asu)

2] +Eρ [∫
Qr
∇(As,εu) ⋅ a∇(As,εu)dµ]

⩽ Λ
ε2Eρ [(As+εu)

2] + 2ΛEρ [∫
Qs+ε/Qr

∇u ⋅ a∇udµ] .

We now proceed with a hole-filling argument: adding 2ΛEρ [∫Qr ∇As,εu ⋅ a∇As,εudµ] to both
sides of the equation above, and using Jensen’s inequality, we obtain

Λ
ε2Eρ [(Asu)

2] + (2Λ + 1)Eρ [∫
Qr
∇(As,εu) ⋅ a∇(As,εu)dµ]

⩽ Λ
ε2Eρ [(As+εu)

2] + 2ΛEρ [∫
Qs+ε

∇u ⋅ a∇udµ] .

Dividing both sides by (2Λ + 1), and setting θ′ ∶= 2Λ
2Λ+1 , we obtain the desired inequality

eq. (6.51).

We remark that eq. (6.51) does not imply directly eq. (6.50). For example, let r > 2 and
we choose s = 2r and ε = r in eq. (6.51), then with a normalization of volume we get

θ′

2r2ρ∣Qr ∣
Eρ[(A2ru)2] +Eρ [

1
ρ∣Qr ∣ ∫Qr

∇(A2r,ru) ⋅ a∇(A2r,ru)dµ]

⩽ 3dθ′ ( 1
2r2ρ∣Q3r ∣

Eρ[(A3ru)2] +Eρ [
1

ρ∣Q3r ∣ ∫Q3r
∇u ⋅ a∇udµ]) .

Then another factor 3d will be added, and we typically do not have 3dθ′ ∈ (0,1), since we
recall that θ′ = 2Λ

2Λ+1 .
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Proof of Proposition 6.3.6. We apply Lemma 6.3.3 iteratively, with very small increments of
the volume. Let δ > 0 to be fixed later, and choose s = (1 + δ)r, ε = δr. For convenience, we
assume that r is sufficiently large that

s = (1 + δ)r ⩾ r + 2, that is r ⩾ 2δ−1. (6.56)

Equation (6.51) and Jensen’s inequality give us that, provided (1 + 2δ)r ⩽ 3r,

Eρ [
1

ρ∣Qr ∣ ∫Qr
∇(A(1+δ)r,δru) ⋅ a∇(A(1+δ)r,δru)dµ]

⩽ θ̃ ( 1
2(δr)2ρ∣Q(1+2δ)r ∣

Eρ[u2] +Eρ [
1

ρ∣Q(1+2δ)r ∣
∫
Q
(1+2δ)r

∇u ⋅ a∇udµ]) , (6.57)

with θ̃ = (1 + 2δ)dθ′. We choose the constant δ > 0 sufficiently small that θ̃ < 1. In order
to obtain eq. (6.50), we will now apply eq. (6.57) iteratively, from the cube Qr to the larger
cube Q3r.

We give the details for this argument—see also Figure 6.2 for an illustration. We plan to
use eq. (6.57) (N + 1) times, and and let δ ∈ (0,1), N ∈ N satisfy

θ̃ = (1 + 2δ)dθ′ < 1, (1 + 2δ)N+1 = 3. (6.58)

Then we set the scale and the a-harmonic functions in every scale

⎧⎪⎪⎪⎨⎪⎪⎪⎩

rn = (1 + 2δ)nr 0 ⩽ n ⩽ N + 1,
uN+1 = u ,
un = A(1+δ)rn,δrnun+1 0 ⩽ n ⩽ N.

(6.59)

We can prove by induction that un ∈ A(Qrn) under the condition eq. (6.56). Then for every
0 ⩽ n ⩽ N , we apply eq. (6.57) from un on Qrn to un+1 on Qrn+1

Eρ [
1

ρ∣Qrn ∣
∫
Qrn

∇un ⋅ a∇un dµ]

⩽ θ̃ ( 1
2(δrn)2ρ∣Q(1+2δ)rn ∣

Eρ[(un+1)2] +Eρ [
1

ρ∣Qrn+1 ∣
∫
Qrn+1

∇un+1 ⋅ a∇un+1 dµ]) . (6.60)

Iterating on eq. (6.60) until uN+1 = u on Q3r, we get

Eρ [
1

ρ∣Qr ∣ ∫Qr
∇u0 ⋅ a∇u0 dµ]

⩽ (3d
2

N

∑
n=0

(1 + 2δ)−2n) 1
(δr)2ρ∣Q3r ∣

Eρ[u2] + (θ̃)N+1Eρ [
1

ρ∣Q3r ∣ ∫Q3r
∇u ⋅ a∇udµ] .

We notice that u0 can be seen as as a weighted sum of As′u, for scales s′ satisfying s′ ⩾ (1 + δ)r ⩾ r + 2,
by eq. (6.56). So we apply once Jensen’s inequality for u0 and obtain eq. (6.50) by setting

C(d,Λ) ∶= 3d
2δ2

N

∑
n=0

(1 + 2δ)−2n, θ ∶= (θ̃)N+1.

Although we will not use this later, we now give more explicit estimates for the choice of
the parameters in the proof above, resulting from the conditions listed in eq. (6.56) and
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eq. (6.58). It suffices to pick an integer N larger than ⌊ d log 3
log(1+ 1

2Λ )⌋, and then in eq. (6.58) use

δ ∶= 1
2(3

1
N+1 − 1) to fix δ, and in eq. (6.56) we require r ⩾ 2δ−1, which gives the condition for

the minimal scale R0. A possible choice is the following

N ∶= 2
⎢⎢⎢⎢⎣

d log 3
log (1 + 1

2Λ)

⎥⎥⎥⎥⎦
+ 1, δ ∶= 1

2
(3

1
N+1 − 1) ≃ 1

8dΛ
, R0 ∶= 2δ−1 ≃ 16dΛ,

θ̃ ∶= θ′(1 + 2δ)d ≃ (1 + 1
2Λ

)
− 1

2
, θ ∶= (θ̃)N+1 ≃ 3−d, C ∶= 3d

2δ2

N

∑
n=0

(1 + 2δ)−2n ≃ 283dd3Λ3.

Figure 6.2: An illustration of the iterative argument for the proof of Proposition 6.3.6. Since
Lemma 6.3.3 can imply Proposition 6.3.6 only for a comparison from scale r to (1+2δ)r with
δ very small, we add many intermediate scales rn = (1 + 2δ)nr between r and 3r.

6.4 Subadditive quantities

We aim to adapt the strategy in [25, Chapter 2] for our model in continuum configuration
space. In this section, we define several subadditive quantities, denoted by ν, ν∗, J , and
develop their elementary properties. We then we use them and a renormalization argument
to obtain a quantitative rate of convergence for ā in Section 6.5.

6.4.1 Subadditive quantities ν and ν∗

For every bounded domain U ⊆ Rd and p, q ∈ Rd, we define the affine function in U with
slope p by

`p,U(µ) ∶= ∫
U
p ⋅ xdµ(x), (6.61)

and introduce the subadditive quantities

ν(U, p) ∶= inf
v∈`p,U+H 1

0 (U)
Eρ [

1
ρ∣U ∣ ∫U

1
2
∇v ⋅ a∇v dµ] ,

ν∗(U, q) ∶= sup
u∈H 1(U)

Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇u ⋅ a∇u + q ⋅ ∇u) dµ] .

(6.62)
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The quantity ν can be thought of as the average energy per unit volume of the solution which
matches with the behavior of the affine function `p,U when a particle leaves the domain U .
The quantity ν∗ is analogous to a Neumann problem with prescribed average flux of q. As
will be seen below, the quantities ν and ν∗ are approximately dual to one another; the
quality of this approximation as the domain U grows to Rd will be central to the proof of
Theorem 6.2.1. If the matrix a were constant, then by eq. (6.6) the minimizer for ν(U, p)
would be `p,U , and we would have ν(U, p) = 1

2p ⋅ap; and similarly, were a constant, we would
have ν∗(U, q) = 1

2q ⋅ a
−1q.

We start by recording elementary properties satisfied by ν and ν∗. We recall that
GU = σ(µ(U), µ (Rd/U)). For every r > 0, we denote by Br(U) the r-enlargement of U ,
that is, Br(U) ∶= {x ∈ Rd ∶ dist(x,U) < r}.

Proposition 6.4.1 (Elementary properties of ν and ν∗). The following properties hold for
every bounded domain U ⊆ Rd with Lipschitz boundary and p, q, p′, q′ ∈ Rd.

(1) There exists a unique solution for the optimization problem in the definition of ν(U, p)
that satisfies Eρ[v − `p,U ] = 0; we denote it by v(⋅, U, p). For the optimization problem in the
definition of ν∗(U, q), there exists a maximizer u(⋅, U, q) that is FB1(U)-measurable and such
that Eρ[u ∣GU ] = 0. They are a-harmonic functions on U , i.e. v(⋅, U, p), u(⋅, U, q) ∈ A(U).

(2) There exist two d × d symmetric matrices ā(U) and ā∗(U) such that

ν(U, p) = 1
2
p ⋅ ā(U)p, ν∗(U, q) = 1

2
q ⋅ ā−1

∗ (U)q, (6.63)

and these matrices satisfy Id ⩽ ā(U) ⩽ ΛId and Id ⩽ ā∗(U) ⩽ ΛId. Moreover,

p′ ⋅ ā(U)p = EU [ 1
ρ∣U ∣ ∫U

p′ ⋅ a(µ,x)∇v(µ,x,U, p)dµ(x)] , (6.64)

q′ ⋅ ā−1
∗ (U)q = EU [ 1

ρ∣U ∣ ∫U
q′ ⋅ ∇u(µ,x,U, q)dµ(x)] . (6.65)

(3) Slope: v(µ,U, p) satisfies

Eρ
⎡⎢⎢⎢⎢⎣
⨏
U
∇v(µ,x,U, p)dµ(x)

RRRRRRRRRRR
GU

⎤⎥⎥⎥⎥⎦
= Eρ [

1
ρ∣U ∣ ∫U

∇v(µ,x,U, p)dµ(x)] = p. (6.66)

For the function u(⋅, U, q), there exists a d × d symmetric matrix Id ⩽ a∗(U ;GU) ⩽ ΛId such
that

Eρ
⎡⎢⎢⎢⎢⎣
⨏
U
∇u(µ,x,U, q)dµ(x)

RRRRRRRRRRR
GU

⎤⎥⎥⎥⎥⎦
= a−1

∗ (U ;GU)q, (6.67)

and ā−1
∗ (U) = 1

ρ∣U ∣Eρ[a
−1
∗ (U ;GU)µ(U)], so that

Eρ [
1
ρ∣U ∣ ∫U

∇u(µ,x,U, q)dµ(x)] = ā−1
∗ (U)q. (6.68)

(4) Quadratic response: for every v′ ∈ `p,U +H 1
0 (U), we have

Eρ [
1
ρ∣U ∣ ∫U

1
2
∇(v′ − v(µ,U, p)) ⋅ a∇(v′ − v(µ,U, p))dµ]

= Eρ [
1
ρ∣U ∣ ∫U

1
2
∇v′ ⋅ a∇v′ dµ] − ν(U, p). (6.69)



6.4. SUBADDITIVE QUANTITIES 287

Similarly, for every u′ ∈ H 1(U), we have

Eρ [
1
ρ∣U ∣ ∫U

1
2
∇(u′ − u(µ,U, q)) ⋅ a∇(u′ − u(µ,U, q))dµ]

= ν∗(U, q) −Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇u′ ⋅ a∇u′ + q ⋅ ∇u′) dµ] . (6.70)

(5) The quantities ν and ν∗ are subadditive: for every n ∈ N,

ν(◻n+1, p) ⩽ ν(◻n, p), ν∗(◻n+1, q) ⩽ ν∗(◻n, q). (6.71)

Proof. We prove each of these points in turn.
(1)We study at first the maximizer for the problem ν∗(U, q). A first observation is that

the maximizer can be found in FB1(U)-measurable functions. Because for any u ∈ H 1(U), its
conditional expectation Eρ[u ∣FB1(U)] reaches a larger value for the functional in ν∗(U, q).
We use Jensen’s inequality that

Eρ [∫
U
(−1

2
∇Eρ[u ∣FB1(U)] ⋅ a∇Eρ[u ∣FB1(U)] + q ⋅ ∇Eρ[u ∣FB1(U)]) dµ]

=Eρ [Eρ [∫
U
(−1

2
Eρ[∇u ∣FB1(U)] ⋅ aEρ[∇u ∣FB1(U)] + q ⋅Eρ[∇u ∣FB1(U)]) dµ ∣FB1(U)]]

⩾Eρ [∫
U
(−1

2
∇u ⋅ a∇u + q ⋅ ∇u) dµ] .

By a variational calculus, we know the characterization of a maximizer with elliptic equation
that for any φ ∈ H 1(U)

Eρ [∫
U
∇u ⋅ a∇φdµ] = Eρ [∫

U
q ⋅ ∇φdµ] . (6.72)

Similarly to the discussion in the proof of Proposition 6.3.4, we know that a solution for this
problem also satisfies the more precise equation

Eρ [∫
U
∇u ⋅ a∇φdµ ∣GU] = Eρ [∫

U
q ⋅ ∇φdµ ∣GU] , (6.73)

and we can define its solution in the space

W = {f ∈ H 1(U) ∶ Eρ[f ∣GU ] = 0}.

In this space, we have

Eρ[f2 ∣GU ] ⩽ C diam(U)2Eρ [∫
U
∣∇f ∣2 dµ ∣GU] ,

by the Poincaré inequality Proposition 6.3.2. Then the coercivity on left hand side in
eq. (6.73) is ensured and we can apply the Lax-Milgram theorem. We call this maximizer
u(µ,U, q). Testing eq. (6.72) with φ ∈ H 1

0 (U), eq. (6.6) implies that its right hand side is 0,
so we have u(µ,U, q) ∈ A(U).

Then we turn to ν(U, p). By a first order variation calculus, we know that a minimizer v
for ν(U, p) is characterized by an elliptic equation that for any φ ∈ H 1

0 (U)

Eρ [∫
U
∇(v − `p,U) ⋅ a∇φdµ] = Eρ [∫

U
−p ⋅ a∇φdµ] . (6.74)



288 CHAPTER 6. QUANTITATIVE HOMOGENIZATION OF PARTICLE SYSTEMS

We remark that one cannot treat this equation as eq. (6.72), because Eρ[v∣GU ] is not an
element in H 1

0 (U) and we cannot subtract it. On the other hand, we can apply the Lax-
Milgram theorem on the space

V = {f ∈ H 1
0 (U) ∶ Eρ[f] = 0},

to define the unique solution v − `p,U ∈ V . We notice that the right hand side of eq. (6.74)
is clearly a bounded linear functional, and the coercivity of the left hand side of eq. (6.74)
is ensured by the Poincaré inequality Proposition 6.3.3 on V . We denote this minimizer by
v(µ,U, p), and eq. (6.74) implies that v(µ,U, p) ∈ A(U).

(2) We test at first eq. (6.74) with v(µ,U, p′) − `p′,U ∈ H 1
0 (U) and obtain that

Eρ [∫
U
∇v(µ,x,U, p) ⋅ a(µ,x)∇v(µ,x,U, p′)dµ(x)]

= Eρ [∫
U
∇v(µ,x,U, p) ⋅ a(µ,x)p′ dµ(x)] , (6.75)

and this implies (p, p′)↦ Eρ [ 1
ρ∣U ∣ ∫U ∇v(µ,x,U, p) ⋅ a(µ,x)∇v(µ,x,U, p

′)dµ(x)] is a bilinear
map p ⋅ ā(U)p′. This definition with eq. (6.75) proves eq. (6.64). We let p = p′ and obtain
that ν(U, p) = 1

2p ⋅ ā(U)p. To obtain the bound of ā(U), we use the bound of a and the
definition of eq. (6.62)

inf
v∈`p,U+H 1

0 (U)
Eρ [

1
ρ∣U ∣ ∫U

1
2
∣∇v∣2 dµ] ⩽ ν(U, p) = 1

2
p ⋅ ā(U)p

⩽ inf
v∈`p,U+H 1

0 (U)
Eρ [

1
ρ∣U ∣ ∫U

Λ
2
∣∇v∣2 dµ] .

We can check that `p,U is the minimizer for infv∈`p,U+H 1
0 (U)Eρ [∫Rd

Λ
2 ∣∇v∣

2 dµ] , then it con-
cludes the proof of the bound Id ⩽ ā(U) ⩽ ΛId.

The same argument works for ν∗(U, q). We test eq. (6.72) with u(µ,U, q′) and obtain
that

Eρ [∫
U
∇u(µ,x,U, q) ⋅ a(µ,x)∇u(µ,x,U, q′)dµ(x)]

= Eρ [∫
U
q ⋅ ∇u(µ,x,U, q′)dµ(x)] . (6.76)

This proves that (q, q′) ↦ Eρ [ 1
ρ∣U ∣ ∫U ∇u(µ,x,U, q) ⋅ a(µ,x)∇u(µ,x,U, q

′)] is also bilinear
and we denote it by q ⋅ ā−1

∗ (U)q′, and this also concludes eq. (6.65). Then we put q′ = q and
eq. (6.76) in the definition of eq. (6.62) that

ν∗(U, q)

= Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇u(µ,x,U, q) ⋅ a(µ,x)∇u(µ,x,U, q) + q ⋅ ∇u(µ,x,U, q)) dµ(x)]

= Eρ [
1
ρ∣U ∣ ∫U

1
2
∇u(µ,x,U, q) ⋅ a(µ,x)∇u(µ,x,U, q)dµ(x)]

= 1
2
q ⋅ ā−1

∗ (U)q.
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This proves the bilinear map expression for ν∗(U, q). Concerning the bound for the matrix
ā−1
∗ (U), we use the bound for a and the equations above to obtain that

sup
u∈H 1(U)

Eρ [
1
ρ∣U ∣ ∫U

(−Λ
2
∣∇u∣2 + q ⋅ ∇u) dµ] ⩽ ν∗(U, q)

⩽ sup
u∈H 1(U)

Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∣∇u∣2 + q ⋅ ∇u) dµ] . (6.77)

One can check for the lower bound, ` q
Λ ,U

attains the maximum and for the upper bound it
is `q,U that attains the maximum. Then we put the expression ν∗(U, q) = 1

2q ⋅ ā
−1
∗ (U)q and

obtain that

Λ−1

2
∣q∣2 ⩽ ν∗(U, q) = 1

2
q ⋅ ā−1

∗ (U)q ⩽ 1
2
∣q∣2,

which implies the bound for ā∗(U).

(3) The slope identity eq. (6.66) for v(µ,U, p) is directly the result from eq. (6.6) that

Eρ
⎡⎢⎢⎢⎢⎣
⨏
U
∇v(µ,x,U, p)dµ(x)

RRRRRRRRRRR
µ(U)

⎤⎥⎥⎥⎥⎦
= Eρ

⎡⎢⎢⎢⎢⎣
⨏
U
pdµ

RRRRRRRRRRR
µ(U)

⎤⎥⎥⎥⎥⎦
= p.

For the function u(µ,U, q), the identity eq. (6.68) comes directly from eq. (6.65), but con-
ditioned GU , the averaged slope is not ā−1

∗ (U)q. In fact, we recall that u(µ,U, q) is also the
conditioned maximizer for eq. (6.73), so we can define the matrix a−1

∗ (U ;GU), the quenched
slope eq. (6.67). The estimate for this matrix is then obtained by repeating the argument in
eq. (6.63) for eq. (6.73).

(4) We test eq. (6.74) with (v′ − `p,U) and put it in the left hand side of eq. (6.69)

Eρ [
1
ρ∣U ∣ ∫U

1
2
∇(v′ − v(⋅, U, p)) ⋅ a∇(v′ − v(⋅, U, p))dµ]

=Eρ [
1
ρ∣U ∣ ∫U

1
2
∇v′ ⋅ a∇v′ dµ] +Eρ [

1
ρ∣U ∣ ∫U

1
2
∇v(⋅, U, p) ⋅ a∇v(⋅, U, p)dµ]

−Eρ [
1
ρ∣U ∣ ∫U

∇v′ ⋅ a∇v(⋅, U, p)dµ]

=Eρ [
1
ρ∣U ∣ ∫U

1
2
∇v′ ⋅ a∇v′ dµ] +Eρ [

1
ρ∣U ∣ ∫U

1
2
∇v(⋅, U, p) ⋅ a∇v(⋅, U, p)dµ]

−Eρ [
1
ρ∣U ∣ ∫U

p ⋅ a∇v(⋅, U, p)dµ] .

(6.78)

The term Eρ [ 1
ρ∣U ∣ ∫U p ⋅ a∇v(⋅, U, p)dµ] also appears on the right side of eq. (6.64) with p = p′,

thus we obtain that

Eρ [
1
ρ∣U ∣ ∫U

p ⋅ a∇v(⋅, U, p)dµ] = p ⋅ ā(U)p = Eρ [
1
ρ∣U ∣ ∫U

∇v(⋅, U, p) ⋅ a∇v(⋅, U, p)dµ] ,

and we put it back to eq. (6.78) to conclude for the validity of eq. (6.69).
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Similarly, we develop the left hand side of eq. (6.70) as eq. (6.78), and use eq. (6.72) with
φ = u′ to treat the inner product term of u′ and u(⋅, U, q).

Eρ [
1
ρ∣U ∣ ∫U

∇u′ ⋅ a∇u(⋅, U, q)dµ] = Eρ [
1
ρ∣U ∣ ∫U

∇u′ ⋅ q dµ] .

We put this term in the left hand side of eq. (6.70) and use the bilinear map expression of
ν∗(U, q) to obtain that

Eρ [
1
ρ∣U ∣ ∫U

1
2
∇(u′ − u(⋅, U, q)) ⋅ a∇(u′ − u(⋅, U, q))dµ]

=Eρ [
1
ρ∣U ∣ ∫U

1
2
∇u′ ⋅ a∇u′ dµ] +Eρ [

1
ρ∣U ∣ ∫U

1
2
∇u(⋅, U, q) ⋅ a∇u(⋅, U, q)dµ]

−Eρ [
1
ρ∣U ∣ ∫U

∇u′ ⋅ a∇u(⋅, U, q)dµ]

=Eρ [
1
ρ∣U ∣ ∫U

1
2
∇u′ ⋅ a∇u′ dµ] + ν∗(U, q) −Eρ [

1
ρ∣U ∣ ∫U

∇u′ ⋅ q dµ] .

This concludes the proof of eq. (6.70).
(5) For ν(◻n+1, p), we test the associated variational problem with a sub-minimiser

v′ = ∑z∈Zn+1,n v(⋅, z +◻n, p), which is an element of `p,◻n+1 +H 1
0 (◻n+1), so that

ν(◻n+1, p) ⩽ Eρ [
1

ρ∣◻n+1∣ ∫◻n+1
∇v′ ⋅ a∇v′ dµ]

= 3−d ∑
z∈Zn+1,n

Eρ [
1

ρ∣◻n∣ ∫z+◻n
∇v(⋅, z +◻n, p) ⋅ a∇v(⋅, z +◻n, p)dµ]

= ν(◻n, p).
In the last step, we also use the stationarity of the coefficient field a.

For ν∗(◻n+1, p), we also use that, for every z ∈ Zn+1,n, we have the inclusion H 1(◻n+1) ⊆ H 1(z +◻n),
so its unit energy on every small cube z +◻n is less than the maximum ν∗(z +◻n, p), thus

ν∗(◻n+1, q)

=3−d ∑
z∈Zn+1,n

Eρ [
1

ρ∣◻n∣ ∫z+◻n
−1

2
∇u(⋅,◻n+1, q) ⋅ a∇u(⋅,◻n+1, q) + q ⋅ ∇u(⋅,◻n+1, q)dµ]

⩽3−d ∑
z∈Zn+1,n

ν∗(z +◻n, q)

=ν∗(◻n, q).

6.4.2 Subadditive quantity J

We now study the quantity J defined by

J(U, p, q) ∶ = ν(U, p) + ν∗(U, q) − p ⋅ q

= 1
2
p ⋅ ā(U)p + 1

2
q ⋅ ā−1

∗ (U)q − p ⋅ q.
(6.79)

By the properties of ν and ν∗, the quantity J is also subadditive. We briefly explain why
this quantity will be convenient for our purposes. If the functions ν(U, ⋅) and ν∗(U, ⋅) were
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exactly convex dual of one another, then we would have that J ⩾ 0 and that for every p ∈ Rd,
the infimum of J(U, p, ⋅) is zero. This would correspond to the situation in which ā(U) and
ā∗(U) are equal, and for every p ∈ Rd, we would in fact have that J(U, p, ā(U)p) = 0. Instead,
we will show below that, for any symmetric matrix Id ⩽ ã ⩽ ΛId, we have

∣ã − ā(U)∣ + ∣ã − a∗(U)∣ ⩽ sup
p∈B1

C(J(U, p, ãp))
1
2 .

The right side of the inequality above can be thought of as a measure of the defect in the
convex duality relationship between ν and ν∗. For U = ◻m and using ã = ā∗(◻m), we obtain
that

∣ā∗(◻m) − ā(◻m)∣ ⩽ sup
p∈B1

C(J(U, p, ā∗(◻m)p))
1
2 .

Since we know that {ā(◻m)}m⩾0 is a decreasing sequence while {ā∗(◻m)}m⩾0 is a increasing
sequence from eq. (6.63) and eq. (6.71), each sequence has a limit. Therefore, once we prove
a rate of convergence to zero for J(U, p, ā∗(◻m)p), we get that the two limits coincide, and
also a rate for the convergence of {ā(◻m)}m⩾0.

The rest of this section will present this strategy in details. We establish at first a
variational description for the quantity J and the properties mentioned above.

Lemma 6.4.1. (1) For every p, q ∈ Rd, we have the variational representation

J(U, p, q) = sup
w∈A(U)

Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) dµ] . (6.80)

(2) We have that J(U, p, q) ⩾ 0 and ā(U) ⩾ ā∗(U).
(3) There exists a constant C(d,Λ) < ∞ such that and for every symmetric matrix ã

satisfying Id ⩽ ã ⩽ ΛId, we have

∣ã − ā(U)∣ + ∣ã − ā∗(U)∣ ⩽ C sup
p∈B1

(J(U, p, ãp))
1
2 . (6.81)

Proof. (1) We start by rewriting the expression of J(U, p, q) using the definition of ν∗(U, q)
and the quadratic expression of ν(U, p). Noting also that the maximizer of ν∗(U, q) belongs
to A(U), we can write

J(U, p, q) = Eρ [
1
ρ∣U ∣ ∫U

1
2
∇v(⋅, U, p) ⋅ a∇v(⋅, U, p)dµ]

+ sup
u∈A(U)

Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇u ⋅ a∇u + q ⋅ ∇u) dµ] − p ⋅ q. (6.82)

We claim that for any u ∈ A(U), with w ∶= u − v(⋅, U, p), we have

Eρ [
1
ρ∣U ∣ ∫U

(1
2
∇v(⋅, U, p) ⋅ a∇v(⋅, U, p) − 1

2
∇u ⋅ a∇u + q ⋅ ∇u) dµ] − p ⋅ q

= Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) dµ] . (6.83)
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To prove it, we can develop the right hand side of eq. (6.83)

Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) dµ]

=Eρ [
1
ρ∣U ∣ ∫U

(1
2
∇v(⋅, U, p) ⋅ a∇v(⋅, U, p) − 1

2
∇u ⋅ a∇u + q ⋅ ∇u) dµ] − p ⋅ q

+Eρ [
1
ρ∣U ∣ ∫U

∇ (v(⋅, U, p) − `p,U) ⋅ (a∇u − a∇v(⋅, U, p) − q ) dµ] .

(6.84)

Because (v(⋅, U, p) − `p,U) ∈ H 1
0 (U), we apply u, v(⋅, U, p) ∈ A(U) and eq. (6.6), the last line

of eq. (6.84) is 0 and we prove eq. (6.83). Then we take the maximum as eq. (6.82) and
obtain the definition eq. (6.80).

(2) The properties that J(U, p, q) ⩾ 0 comes from the definition of ν∗(U, q): we test the
functional in the definition of ν∗(U, q) with the minimizer v(⋅, U, p) of ν(U, p) and obtain that

ν∗(U, q)

⩾ Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇v(µ,x,U, p) ⋅ a(µ,x)∇v(µ,x,U, p) + q ⋅ ∇v(µ,x,U, p)) dµ]

= p ⋅ q − ν(U, p),

so that
J(U, p, q) = ν(U, p) + ν∗(U, q) − p ⋅ q ⩾ 0.

Then we test J(U, p, q) ⩾ 0 with that q = ā∗(U)p and obtain that

0 ⩽ J(U, p, ā∗(U)p) = 1
2
p ⋅ ā(U)p + 1

2
(ā∗(U)p) ⋅ ā−1

∗ (U)(ā∗(U)p) − p ⋅ ā∗(U)p,

and therefore ā(U) ⩾ ā∗(U).
(3) Using this property, we have

J(U, p, q) = 1
2
p ⋅ ā(U)p + 1

2
q ⋅ ā−1

∗ (U)q − p ⋅ q

⩾ 1
2
p ⋅ ā(U)p + 1

2
q ⋅ ā−1(U)q − p ⋅ q

= 1
2
(ā(U)p − q)ā−1(U) ⋅ (ā(U)p − q).

We put q = ãp and obtain ∣ā(U) − ã∣ ⩽ C supp∈B1(J(U, p, ãp))
1
2 . The proof of the statement

concerning ∣ā∗(U) − ã∣ is similar.

In view of the definition of J , this functional enjoys properties similar to those described
in Proposition 6.4.1 for ν and ν∗.

Proposition 6.4.2 (Elementary properties of J). For every bounded domain U ⊆ Rd with
Lipschitz boundary and p, q ∈ Rd, the quantity J(U, p, q) defined in eq. (6.79) satisfies the
following properties:

(1) Characterization of optimizer: the optimization problem in eq. (6.80) admits a unique
solution v(⋅, U, p, q) ∈ H 1(U) such that Eρ[v(⋅, U, p, q) ∣GU ] = 0. This solution is such that for
every w ∈ A(U),

Eρ [∫
U
∇v(⋅, U, p, q) ⋅ a∇w dµ] = Eρ [∫

U
(−p ⋅ a∇w + q ⋅ ∇w) dµ] , (6.85)
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and (p, q) ↦ v(⋅, U, p, q) a linear map. The function v(⋅, U, p, q) can be expressed in terms of
the optimizers in eq. (6.62) as

v(µ,U, p, q) = u(µ,U, q) − v(µ,U, p) −Eρ[u(µ,U, q) − v(µ,U, p) ∣GU ]. (6.86)

We have the quadratic expression

J(U, p, q) = Eρ [
1
ρ∣U ∣ ∫U

1
2
∇v(⋅, U, p, q) ⋅ a∇v(⋅, U, p, q)dµ] . (6.87)

(2) Slope: v(⋅, U, p, q) satisfies

Eρ
⎡⎢⎢⎢⎢⎣
⨏
U
∇v(⋅, U, p, q)dµ

RRRRRRRRRRR
GU

⎤⎥⎥⎥⎥⎦
= a−1

∗ (U ;GU)q − p,

Eρ [
1
ρ∣U ∣ ∫U

∇v(⋅, U, p, q)dµ] = ā−1
∗ (U)q − p,

(6.88)

where the matrix a−1
∗ (U ;GU) is defined in eq. (6.67).

(3) Quadratic response: for every w ∈ A(U), we have

Eρ [
1
ρ∣U ∣ ∫U

(1
2
∇(w − v(⋅, U, p, q)) ⋅ a∇(w − v(⋅, U, p, q))) dµ]

= J(U, p, q) −Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) dµ] . (6.89)

(4) Subadditivity: for every n ∈ N, we have

J(◻n+1, p, q) ⩽ J(◻n, p, q). (6.90)

Proof. (1) The equation eq. (6.85) comes directly from the first order variation calculus. The
proof of the existence and uniqueness of the solution v(⋅, U, p, q) is similar as the one for
ν∗(U, q). Equation (6.85) also implies that the map (p, q)↦ v(⋅, U, p, q) is linear because for
any p1, p2, q1, q2 ∈ Rd, and any w ∈ A(U) we have

Eρ [∫
U
∇v(⋅, U, p1 + p2, q1 + q2) ⋅ a∇w dµ]

= Eρ [∫
U
−(p1 + p2) ⋅ a∇w + (q1 + q2) ⋅ ∇w dµ]

= Eρ [∫
U
∇(v(⋅, U, p1, q1) + v(⋅, U, p2, q2)) ⋅ a∇w dµ] .

Then (v(⋅, U, p1, q1)+v(⋅, U, p2, q2)) is also a solution for the problem eq. (6.85) with parameter
(p1 + p2, q1 + q2). Notice that we have

Eρ[(v(⋅, U, p1, q1) + v(⋅, U, p2, q2)) ∣GU ] = 0,

it implies v(µ,U, p1 + p2, q1 + q2) = v(µ,U, p1, q1)+ v(µ,U, p2, q2) and the linearity of the map.
The exact expression of v(µ,U,P, q) comes from the equivalent definition eq. (6.80) of

J(U, p, q) and its proof. We put v(µ,U, p, q) in the first order variation eq. (6.85)

Eρ [
1
ρ∣U ∣ ∫U

(−p ⋅ a∇v(⋅, U, p, q) + q ⋅ ∇v(⋅, U, p, q)) dµ]

= Eρ [
1
ρ∣U ∣ ∫U

∇v(⋅, U, p, q) ⋅ a∇v(⋅, U, p, q)dµ] .
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Then we put this equation into eq. (6.80) to get eq. (6.87).
(2) The slope identity eq. (6.88) comes from eq. (6.86), (6.66), (6.67), and (6.68).
(3) We use the expression in eq. (6.86) with w ∶= u′ − v(⋅, U, p), then we use the quadratic

response for ν∗(U, q) eq. (6.70) that

Eρ [
1
ρ∣U ∣ ∫U

(1
2
∇(w − v(⋅, U, p, q)) ⋅ a∇(w − v(⋅, U, p, q))) dµ]

= Eρ [
1
ρ∣U ∣ ∫U

(1
2
∇(u′ − u(⋅, U, q)) ⋅ a∇(u′ − u(⋅, U, q))) dµ]

= ν∗(U, q) −Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇u′ ⋅ a∇u′ + q ⋅ ∇u′) dµ] .

Then we add back the term ν(U, p) and it gives the desired result

Eρ [
1
ρ∣U ∣ ∫U

(1
2
∇(w − v(⋅, U, p, q)) ⋅ a∇(w − v(⋅, U, p, q))) dµ]

= J(U, p, q) − (ν(U, p) +Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇u′ ⋅ a∇u′ + q ⋅ ∇u′) dµ] − p ⋅ q)

= J(U, p, q) −Eρ [
1
ρ∣U ∣ ∫U

(−1
2
∇w ⋅ a∇w − p ⋅ a∇w + q ⋅ ∇w) dµ] .

(4) Equation (6.90) is a consequence of eq. (6.71) and eq. (6.79).

We conclude this section with the following lemma.

Lemma 6.4.2 (Comparison between two scales). For every n, k ∈ N with k ⩽ n, and p, q ∈ Rd,
writing v(U) as shorthand for v(⋅, U, p, q), we have

1
∣Zn,k∣

∑
z∈Zn,k

Eρ [
1

ρ∣◻k∣ ∫z+◻k
1
2
∣∇v(◻n) −∇v(z +◻k)∣2 dµ]

⩽ J(◻k, p, q) − J(◻n, p, q). (6.91)

Proof. For any z ∈ Zn,k, since v(◻n) ∈ A(z + ◻k), we use the quadratic response eq. (6.89)
for J(z +◻k, p, q) that

Eρ [
1

ρ∣◻k∣ ∫z+◻k
1
2
∣∇v(◻n) −∇v(z +◻k)∣2 dµ]

⩽ Eρ [
1

ρ∣◻k∣ ∫z+◻k
1
2
(∇v(◻n) −∇v(z +◻k)) ⋅ a(∇v(◻n) −∇v(z +◻k))dµ]

= J(z +◻k, p, q)

−Eρ [
1

ρ∣◻k∣ ∫z+◻k
(−1

2
∇v(◻n) ⋅ a∇v(◻n) − p ⋅ a∇v(◻n) + q ⋅ ∇v(◻n)) dµ] .



6.5. QUANTITATIVE RATE OF CONVERGENCE 295

We sum this expression over all z ∈ Zn,k to obtain that

1
∣Zn,k∣

∑
z∈Zn,k

Eρ [
1

ρ∣◻k∣ ∫z+◻k
1
2
∣∇v(◻n) −∇v(z +◻k)∣2 dµ]

⩽ 1
∣Zn,k∣

∑
z∈Zn,k

(J(z +◻k, p, q)

−Eρ [
1

ρ∣◻k∣ ∫z+◻k
(−1

2
∇v(◻n) ⋅ a∇v(◻n) − p ⋅ a∇v(◻n) + q ⋅ ∇v(◻n)) dµ])

= J(◻k, p, q) − J(◻n, p, q).
In the last step, we use the stationarity of J and also eq. (6.80) for v(◻n).

6.5 Quantitative rate of convergence

We are now ready to prove Theorem 6.2.1. We decompose the argument into a series of four
steps.

6.5.1 Step 1: setup

We use the shorthand ān ∶= ā∗(◻n), so that by eq. (6.88), the average slope of the function
v(⋅,◻n, p, q) is ā−1

n q − p, in the sense that

Eρ [
1

ρ∣◻n∣ ∫U
∇v(⋅,◻n, p, q)dµ] = ā−1

n q − p. (6.92)

We let τn denote a measure of the defect in the subadditivity of J , precisely,

τn ∶= sup
p,q∈B1

(J(◻n, p, q) − J(◻n+1, p, q))

= sup
p∈B1

(ν(◻n, p) − ν(◻n+1, p)) + sup
q∈B1

(ν∗(◻n, q) − ν∗(◻n+1, q)).
(6.93)

A direct corollary from eq. (6.93) is that for any integers n <m,

∣ā−1
n − ā−1

m ∣ = sup
q∈B1

q ⋅ (ā−1
n − ā−1

m )q = sup
q∈B1

(ν∗(◻n, q) − ν∗(◻m, q)) ⩽ C
m−1
∑
k=n

τk. (6.94)

We recall that {ā(◻m)}m⩾0 is decreasing and {ā∗(◻m)}m⩾0 is increasing, with the comparison
ā∗(◻m) ⩽ ā(◻m). From eq. (6.81), we know that

∣ā(◻m) − ā∣ ⩽ ∣ā(◻m) − ā∗(◻m)∣ ⩽ C sup
p∈B1

(J(◻m, p, āmp))
1
2 .

From now on, we thus fix p ∈ B1, and focus on estimating J(◻m, p, āmp). We also assume
without further notification that m is sufficiently large that 3m ⩾ R0, for the constant R0
appearing in Proposition 6.3.6. We use A3m+2v(⋅,◻m+1, p, āmp) to compare with eq. (6.87)
and apply the quadratic response eq. (6.89). In the rest of Step 1, we write v(U) as a
shorthand for v(⋅, U, p, āmp), and decompose

(J(◻m, p, āmp))
1
2 = (Eρ [

1
ρ∣◻m∣ ∫◻m

1
2
∇v(◻m) ⋅ a∇v(◻m)dµ])

1
2

⩽ eq. (6.95)-a + eq. (6.95)-b,
(6.95)
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with

eq. (6.95)-a

= (Eρ [
1

ρ∣◻m∣ ∫◻m
1
2
(∇v(◻m) −∇A3m+2v(◻m+1)) ⋅ a(∇v(◻m) −∇A3m+2v(◻m+1))dµ])

1
2

,

and

eq. (6.95)-b = (Eρ [
1

ρ∣◻m∣ ∫◻m
1
2
∇A3m+2v(◻m+1) ⋅ a∇A3m+2v(◻m+1)dµ])

1
2

.

We treat the two terms separately. For eq. (6.95)-a, since A3m+2v(◻m+1) ∈ A(◻m) (see Propo-
sition 6.A.1 for details), we use eq. (6.89) to get

∣eq. (6.95)-a∣2

= J(◻m, p, āmp) −Eρ [
1

ρ∣◻m∣ ∫◻m
(−1

2
∇A3m+2v(◻m+1) ⋅ a∇A3m+2v(◻m+1)) dµ]

−Eρ [
1

ρ∣◻m∣ ∫◻m
(−p ⋅ a∇A3m+2v(◻m+1) + āmp ⋅ ∇A3m+2v(◻m+1)) dµ] .

Using Jensen’s inequality, we have

Eρ [∫◻m
(1

2
∇A3m+2v(◻m+1) ⋅ a∇A3m+2v(◻m+1)) dµ]

⩽ Eρ [∫◻m
(1

2
∇v(◻m+1) ⋅ a∇v(◻m+1)) dµ] ,

and the conditional expectation also implies that

Eρ [∫◻m
(−p ⋅ a∇A3m+2v(◻m+1) + āmp ⋅ ∇A3m+2v(◻m+1)) dµ]

= Eρ [∫◻m
(−p ⋅ a∇v(◻m+1) + āmp ⋅ ∇v(◻m+1)) dµ] .

Thus we combine these terms with the quadratic response eq. (6.89) to obtain

∣eq. (6.95)-a∣2 ⩽ J(◻m, p, āmp) −Eρ [
1

ρ∣◻m∣ ∫◻m
(−1

2
∇v(◻m+1) ⋅ a∇v(◻m+1)) dµ]

−Eρ [
1

ρ∣◻m∣ ∫◻m
(−p ⋅ a∇v(◻m+1) + āmp ⋅ ∇v(◻m+1)) dµ]

= Eρ [
1

ρ∣◻m∣ ∫◻m
(1

2
∇(v(◻m+1) − v(◻m)) ⋅ a∇(v(◻m+1) − v(◻m))) dµ] ,

and we use Lemma 6.4.2 between ◻m and ◻m+1 to get

∣eq. (6.95)-a∣2 ⩽ 3d(J(◻m, p, āmp) − J(◻m+1, p, āmp)) ⩽ C(d,Λ)τm, (6.96)

where the quantity τm is defined in eq. (6.93).
For the term eq. (6.95)-b, we can apply the modified Caccioppoli inequality eq. (6.50):

there exist two finite positive constants C(d,Λ) and θ(d,Λ) ∈ (0,1) such that

Eρ [
1

ρ∣◻m∣ ∫◻m
∇(A3m+2v(◻m+1)) ⋅ a∇(A3m+2v(◻m+1))dµ]

⩽ C

32mρ∣◻m+1∣
Eρ[(v(◻m+1))2] + θEρ [

1
ρ∣◻m+1∣ ∫◻m+1

∇v(◻m+1) ⋅ a∇v(◻m+1)dµ] . (6.97)
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Using eq. (6.87), we see that the averaged gradient term on the right side of eq. (6.97) is
J(◻m+1, p, āmp), and eq. (6.90) asserts that J(◻m+1, p, āmp) ⩽ J(◻m, p, āmp). Therefore, we
get the bound for eq. (6.95)-b

∣eq. (6.95)-b∣2 ⩽ C

32mρ∣◻m+1∣
Eρ[(v(◻m+1))2] + θJ(◻m, p, āmp). (6.98)

We put eq. (6.96) and eq. (6.98) back to eq. (6.95), obtaining

(J(◻m, p, āmp))
1
2 ⩽ Cτ

1
2
m + ( C

32mρ∣◻m+1∣
∥v(◻m+1)∥2

L 2 + θJ(◻m, p, āmp))
1
2

⩽ Cτ
1
2
m + C

3m(ρ∣◻m+1∣)
1
2
∥v(◻m+1)∥L 2 + θ

1
2 (J(◻m, p, āmp))

1
2 .

Since θ < 1, this gives

J(◻m, p, āmp) ⩽ C (τm + 1
32mρ∣◻m+1∣

∥v(µ,◻m+1, p, āmp)∥2
L 2) . (6.99)

6.5.2 Step 2: flatness estimate

In this step, we estimate the L 2-flatness of optimizers of J . Notice that, using the result of
Lemma 6.101 with v(⋅,◻m+1, p, āmp), the corresponding affine function is 0 and we obtain
from eq. (6.99) that

J(◻m, p, āmp) ⩽ C (3−βm +
m

∑
n=0

3−β(m−n)τn) . (6.100)

Lemma 6.5.1 (L 2-flatness estimate). There exist β(d) > 0 and C(d,Λ, ρ) < ∞ such that
for every p, q ∈ B1 and m ∈ N,

1
ρ∣◻m+1∣

∥v(⋅,◻m+1, p, q) − `ā−1
m q−p,◻m+1∥

2
L 2 ⩽ C32m (3−βm +

m

∑
n=0

3−β(m−n)τn) . (6.101)

Proof. In the rest of the proof, we write v(U) ∶= v(⋅, U, p, q) as we will not change p, q in
the proof. Since Eρ [v(◻m+1) − `ā−1

m q−p,◻m+1 ∣Gm+1] = 0, we can use the multiscale Poincaré
inequality eq. (6.36)

1
(ρ∣◻m+1∣)

1
2
∥v(◻m+1) − `ā−1

m q−p,◻m+1∥L 2

⩽ C (Eρ [
1

ρ∣◻m+1∣ ∫◻m+1
∣∇v(◻m+1) − (ā−1

m q − p)∣2 dµ])
1
2

+C
m+1
∑
n=0

3n (Eρ [
1

ρ∣◻m+1∣ ∫◻m+1
∣Sm+1,n∇v(◻m+1) − (ā−1

m q − p)∣2 dµ])
1
2

.

(6.102)

The first term on the right side above is of constant order, by eq. (6.87). For the second
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term, we use a two-scale comparison for every 0 ⩽ n ⩽m + 1 that

(Eρ [
1

ρ∣◻m+1∣ ∫◻m+1
∣Sm+1,n∇v(◻m+1) − (ā−1

m q − p)∣2 dµ])
1
2

⩽ ∣ā−1
m − ā−1

n ∣ +
⎛
⎝
Eρ

⎡⎢⎢⎢⎢⎣

1
ρ∣◻m+1∣

∑
z∈Zm+1,n

∫
z+◻n

∣Sm+1,n∇v(◻m+1) − Sm+1,n∇v(z +◻n)∣2 dµ
⎤⎥⎥⎥⎥⎦

⎞
⎠

1
2

+
⎛
⎝
Eρ

⎡⎢⎢⎢⎢⎣

1
ρ∣◻m+1∣

∑
z∈Zm+1,n

∫
z+◻n

∣Sm+1,n∇v(z +◻n) − (ā−1
n q − p)∣2 dµ

⎤⎥⎥⎥⎥⎦

⎞
⎠

1
2

.

(6.103)

For the first term ∣ā−1
m − ā−1

n ∣ we have

∣ā−1
m − ā−1

n ∣2 ⩽ C(d,Λ)∣ā−1
m − ā−1

n ∣ ⩽
m−1
∑
k=n

τk.

For the second term in eq. (6.103), recalling eq. (6.28), we use Jensen’s inequality and
eq. (6.91) to get

Eρ
⎡⎢⎢⎢⎢⎣

1
ρ∣◻m+1∣

∑
z∈Zm+1,n

∫
z+◻n

∣Sm+1,n∇v(◻m+1) − Sm+1,n∇v(z +◻n)∣2 dµ
⎤⎥⎥⎥⎥⎦

⩽ Eρ
⎡⎢⎢⎢⎢⎣

1
ρ∣◻m+1∣

∑
z∈Zm+1,n

∫
z+◻n

∣∇v(◻m+1) −∇v(z +◻n)∣2 dµ
⎤⎥⎥⎥⎥⎦

⩽
m

∑
k=n

τk.

For the third term eq. (6.103), we use eq. (6.30), Jensen’s inequality, and stationarity. Here
we remark that the operator Szn,n is a conditional expectation with more information than
Sm+1,n.

Eρ
⎡⎢⎢⎢⎢⎣

1
ρ∣◻m+1∣

∑
z∈Zm+1,n

∫
z+◻n

∣Sm+1,n∇v(z +◻n) − (ā−1
n q − p)∣2 dµ

⎤⎥⎥⎥⎥⎦

⩽ Eρ
⎡⎢⎢⎢⎢⎣

1
ρ∣◻m+1∣

∑
z∈Zm+1,n

∫
z+◻n

∣Szn,n∇v(z +◻n) − (ā−1
n q − p)∣2 dµ

⎤⎥⎥⎥⎥⎦

= Eρ [
1

ρ∣◻n∣ ∫◻n
∣Sn∇v(◻n) − (ā−1

n q − p)∣2 dµ] .

The estimation of this term is postponed to the next step. We will prove in Lemma 6.5.2
below that

Eρ [
1

ρ∣◻n∣ ∫◻n
∣Sn∇v(◻n) − (ā−1

n q − p)∣2 dµ] ⩽ C3−βn +
n−1
∑
k=0

3−β(n−k)τk.

We put these estimates back to eq. (6.102) and obtain that

1
(ρ∣◻m+1∣)

1
2
∥v(◻m+1) − `ā−1

m q−p,◻m+1∥L 2 ⩽ C
m

∑
n=0

3n (3−βn +
n−1
∑
k=0

3−β(n−k)τk +
m

∑
k=n

τk)
1
2

.
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We square the two sides and use the Cauchy-Schwarz inequality to obtain

1
ρ∣◻m+1∣

∥v(◻m+1) − `ā−1
m q−p,◻m+1∥

2
L 2

⩽ C (
m

∑
n=0

3n)(
m

∑
n=0

3n (3−βn +
n−1
∑
k=0

3−β(n−k)τk +
m

∑
k=n

τk))

⩽ C32m (3−βm +
m

∑
n=0

3−β(m−n)τn) ,

as announced.

6.5.3 Step 3: variance estimate

In this part, we prove the following variance estimate, which was used in Step 2.

Lemma 6.5.2 (Variance estimate). There exist β(d) > 0 and C(d,Λ, ρ) < ∞ such that for
every p, q ∈ B1 and n ∈ N,

Eρ [
1

ρ∣◻n∣ ∫◻n
∣Sn∇v(µ,◻n, p, q) − (ā−1

n q − p)∣2 dµ] ⩽ C3−βn +
n−1
∑
k=0

3−β(n−k)τk. (6.104)

Proof. In the rest of the proof, we write v(U) ∶= v(⋅, U, p, q), as we will not change p, q in the
proof. From eq. (6.92), we know that the average slope of v(◻n) is (ā−1

n q − p), and notice
that v(◻n) is FB1(◻n)-measurable. Thus the idea is to use {v(z +◻k)}z∈Zn,k to approximate
eq. (6.104) in scale 3k with some error, and then apply the independence for v(z + ◻k) and
v(z′ +◻k) for dist(z, z′) large. However, different from the standard elliptic setting, here we
will see a renormalization with random weights.

We start by relaxing eq. (6.104) to Gn,n−2. We observe that in fact Sn∇v(◻n) is constant
in ◻n, so

∫◻n
∣Sn∇v(◻n) − (ā−1

n q − p)∣2 dµ = 1
µ(◻n)

∣∫◻n
(Sn∇v(◻n) − (ā−1

n q − p)) dµ∣
2
.

We denote by Vn the left hand side of eq. (6.104). By triangle inequality, we have

(Vn)
1
2 ⩽ eq. (6.105)-a + eq. (6.105)-b + eq. (6.105)-c, (6.105)

with

eq. (6.105)-a = ∣ā−1
n − ā−1

n−2∣,

eq. (6.105)-b =
⎛
⎜
⎝
Eρ

⎡⎢⎢⎢⎢⎣

1
ρ∣◻n∣

1
µ(◻n)

RRRRRRRRRRRR
∑

z∈Zn,n−2
∫
z+◻n−2

(Sn,n∇v(◻n) − Sn,n−2∇v(z +◻n−2)) dµ
RRRRRRRRRRRR

2⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠

1
2

,

eq. (6.105)-c =
⎛
⎜
⎝
Eρ

⎡⎢⎢⎢⎢⎣

1
ρ∣◻n∣

1
µ(◻n)

RRRRRRRRRRRR
∑

z∈Zn,n−2
∫
z+◻n−2

(Sn,n−2∇v(z +◻n−2) − (ā−1
n−2q − p)) dµ

RRRRRRRRRRRR

2⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠

1
2

.

The term eq. (6.105)-a can be controlled by eq. (6.94):

eq. (6.105)-a ⩽ C(τn−2 + τn−1)
1
2 . (6.106)
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For the term eq. (6.105)-b, recalling eq. (6.30) and eq. (6.28), we use Jensen’s inequality
and the two-scale comparison eq. (6.91) to get

eq. (6.105)-b ⩽
⎛
⎝
Eρ

⎡⎢⎢⎢⎢⎣

1
ρ∣◻n∣ ∑

z∈Zn,n−2
∫
z+◻n−2

∣Sn,n∇v(◻n) − Sn,n−2∇v(z +◻n−2)∣2 dµ
⎤⎥⎥⎥⎥⎦

⎞
⎠

1
2

⩽
⎛
⎝
Eρ

⎡⎢⎢⎢⎢⎣

1
ρ∣◻n∣ ∑

z∈Zn,n−2
∫
z+◻n−2

∣∇v(◻n) −∇v(z +◻n−2)∣2 dµ
⎤⎥⎥⎥⎥⎦

⎞
⎠

1
2

⩽ (τn−2 + τn−1)
1
2 .

(6.107)

The term eq. (6.105)-c is the key for our result. To simplify a little more the notation,
we write

{ Xz ∶= Sn,n−2∇v(z +◻n−2)(µ, z) − (ā−1
n−2q − p),

mz ∶= µ(z +◻n−2).
(6.108)

Notice that Xz,mz are Fz+◻n−1-measurable. With this notation in place, we have

∫
z+◻n−2

(Sn,n−2∇v(z +◻n−2) − (ā−1
n−2q − p)) dµ =mzXz,

and by eq. (6.92),
Eρ[mzXz] = 0.

The term eq. (6.105)-c we want to estimate can be rewritten as

eq. (6.105)-c =
⎛
⎜
⎝
Eρ

⎡⎢⎢⎢⎢⎣

1
ρ∣◻n∣

(∑z∈Zn,n−2 mzXz)
2

∑z∈Zn,n−2 mz

⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠

1
2

.

If the coefficients mz were deterministic, then we would be able to leverage on the finite
range of dependence of Xz in this variance term. However, since the number of particles mz

is random, we introduce the event

Cn,ρ,δ ∶= {µ ∈Mδ(Rd) ∶ ∀z ∈ Zn,n−2, ∣
µ(z +◻n−2)
ρ∣◻n−2∣

− 1∣ ⩽ δ, and ∣µ(◻n)
ρ∣◻n∣

− 1∣ ⩽ δ} , (6.109)

thus we can divide eq. (6.105)-c into two terms

eq. (6.105)-c ⩽ eq. (6.105)-c1 + eq. (6.105)-c2,

eq. (6.105)-c1 =
⎛
⎜
⎝
Eρ

⎡⎢⎢⎢⎢⎣

1{(Cn,ρ,δ)c}

ρ∣◻n∣
(∑z∈Zn,n−2 mzXz)

2

∑z∈Zn,n−2 mz

⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠

1
2

,

eq. (6.105)-c2 =
⎛
⎜
⎝
Eρ

⎡⎢⎢⎢⎢⎣

1{Cn,ρ,δ}

ρ∣◻n∣
(∑z∈Zn,n−2 mzXz)

2

∑z∈Zn,n−2 mz

⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠

1
2

.

For the term eq. (6.105)-c1, we know that (Cn,ρ,δ)c is not typical in large scales, and we have
the Chernoff bound

Pρ[µ ∉ Cn,ρ,δ] ⩽ 32d+1 exp(−ρ∣◻n−2∣δ2

4
) .
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Moreover, by the Cauchy-Schwarz inequality,

(∑z∈Zn,n−2 mzXz)
2

∑z∈Zn,n−2 mz
⩽ ∑
z∈Zn,n−2

mz ∣Xz ∣2.

We need a bound for the term ∣Xz ∣2: recalling the definition in eq. (6.28) and eq. (6.88),

Szn−2,n−2∇v(z +◻n−2)(µ, z) = Eρ
⎡⎢⎢⎢⎢⎣
⨏
z+◻n−2

∇v(z +◻n−2)dµ
RRRRRRRRRRR
Gzn−2,n−2

⎤⎥⎥⎥⎥⎦
= a(z +◻n−2;Gz+◻n−2)

−1q − p.

Using the martingale structure of eq. (6.30), we have

Xz = Sn,n−2∇v(z +◻n−2)(µ, z) − (ā−1
n−2q − p)

= Eρ
⎡⎢⎢⎢⎢⎣
⨏
z+◻n−2

Szn−2,n−2∇v(z +◻n−2)dµ
RRRRRRRRRRR
Gn,n−2

⎤⎥⎥⎥⎥⎦
− (ā−1

n−2q − p)

= Eρ
⎡⎢⎢⎢⎢⎣
a(z +◻n−2;Gz+◻n−2)

−1 − ā−1
n−2

RRRRRRRRRRR
Gn,n−2

⎤⎥⎥⎥⎥⎦
q.

Then we use Jensen’s inequality and the bound of Id ⩽ a(z +◻n−2;Gz+◻n−2) ⩽ ΛId

∣Xz ∣2 = ∣Sn,n−2∇v(z +◻n−2) − (ā−1
n−2q − p)∣2

= Eρ [∣a(z +◻n−2;Gz+◻n−2) − ā−1
n−2∣2 ∣Gn,n−2] ⩽ Λ2.

(6.110)

This concludes that

eq. (6.105)-c1 ⩽ Λ2Eρ [
1{(Cn,ρ,δ)c}

ρ∣◻n∣
µ(◻n)] ⩽ C(d,Λ) 1

ρ∣◻n−2∣
exp(−ρ∣◻n−2∣δ2

4
)

⩽ C(d,Λ, ρ)3−dn.
(6.111)

Finally, we treat eq. (6.105)-c2. We calculate eq. (6.105)-c2 at first with the conditional
expectation with respect to Gn,n−2. Clearly, Cn,ρ,δ is Gn,n−2-measurable, and under this con-
dition µ(◻n) ⩾ (1 − δ)ρ∣◻n∣, so we have

∣eq. (6.105)-c2∣2 = 1
ρ∣◻n∣

Eρ
⎡⎢⎢⎢⎢⎣

1{Cn,ρ,δ}

µ(◻n)
Eρ

⎡⎢⎢⎢⎢⎣

⎛
⎝ ∑
z∈Zn,n−2

mzXz
⎞
⎠

2 RRRRRRRRRRR
Gn,n−2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

⩽ 1
ρ∣◻n∣

Eρ
⎡⎢⎢⎢⎢⎣

1
(1 − δ)ρ∣◻n∣

Eρ
⎡⎢⎢⎢⎢⎣
1{Cn,ρ,δ}

⎛
⎝ ∑
z∈Zn,n−2

mzXz
⎞
⎠

2 RRRRRRRRRRR
Gn,n−2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
.

(6.112)

We would like to develop the term ∣∑z∈Zn,n−2 mzXz ∣2 and also drop out the indicator term.
The argument here is deterministic

RRRRRRRRRRRR
∑

z∈Zn,n−2

mzXz

RRRRRRRRRRRR

2

= ∑
z,z′∈Zn,n−2
∣z−z′∣∞<3n−1

mzmz′Xz ⋅Xz′ + ∑
z,z′∈Zn,n−2
∣z−z′∣∞⩾3n−1

mzmz′Xz ⋅Xz′

⩽ 1
2 ∑

z,z′∈Zn,n−2
∣z−z′∣∞<3n−1

((mz)2∣Xz ∣2 + (mz′)2∣Xz′ ∣2) + ∑
z,z′∈Zn,n−2
∣z−z′∣∞⩾3n−1

mzmz′Xz ⋅Xz′ ,
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where ∣z − z′∣∞ ∶= max1⩽i⩽d ∣zi − z′i∣. We now add back the indicator 1{Cn,ρ,δ} and develop it

1{Cn,ρ,δ}

RRRRRRRRRRRR
∑

z∈Zn,n−2

mzXz

RRRRRRRRRRRR

2

⩽ 1{Cn,ρ,δ}

⎛
⎜⎜⎜⎜
⎝

(1 + δ)ρ∣◻n−2∣
2 ∑

z,z′∈Zn,n−2
∣z−z′∣<3n−1

(mz ∣Xz ∣2 +mz′ ∣Xz′ ∣2) + ∑
z,z′∈Zn,n−2
∣z−z′∣⩾3n−1

mzmz′Xz ⋅Xz′

⎞
⎟⎟⎟⎟
⎠

⩽ (1 + δ)ρ∣◻n−2∣
2 ∑

z,z′∈Zn,n−2
∣z−z′∣<3n−1

(mz ∣Xz ∣2 +mz′ ∣Xz′ ∣2) + ∑
z,z′∈Zn,n−2
∣z−z′∣⩾3n−1

mzmz′Xz ⋅Xz′ .

(6.113)

From the first line to the second line above, we use that mz ⩽ (1 + δ)ρ∣◻n−2∣ under the event
Cn,ρ,δ. We then keep in mind that the quantity in (⋯) on the second line of eq. (6.113) is

always larger than ∣∑z∈Zn,n−2 mzXz ∣
2, so it is nonnegative. Therefore, from the second line

to the third line, we can drop the indicator function in front. Inserting this estimate into
eq. (6.112), we obtain that

∣eq. (6.105)-c2∣2 ⩽ 1
ρ∣◻n∣

(1 + δ)∣◻n−2∣
(1 − δ)∣◻n∣ ∑

z,z′∈Zn,n−2
∣z−z′∣∞<3n−1

Eρ [
1
2
(mz ∣Xz ∣2 +mz′ ∣Xz′ ∣2)]

+ 1
ρ∣◻n∣

1
(1 − δ)∣◻n∣ ∑

z,z′∈Zn,n−2
∣z−z′∣∞⩾3n−1

Eρ [mzmz′Xz ⋅Xz′] .

The sum in the second line is 0, because for ∣z−z′∣∞ ⩾ 3n−1,mzXz andmz′Xz′ are independent,

Eρ [mzmz′Xz ⋅Xz′] = Eρ [mzXz] ⋅Eρ [mz′Xz′] = 0.

For the sum in the first line, Eρ[mz ∣Xz ∣2] is nothing but

Eρ [∫
z+◻n−2

∣Sn,n−2∇v(z +◻n−2) − (ā−1
n−2q − p)∣2 dµ] .

We use Jensen’s inequality to shrink the operator to Szn−2,n−2 that

Eρ [∫
z+◻n−2

∣Sn,n−2∇v(z +◻n−2) − (ā−1
n−2q − p)∣2 dµ]

⩽ Eρ [∫
z+◻n−2

∣Szn−2,n−2∇v(z +◻n−2) − (ā−1
n−2q − p)∣2 dµ]

= Eρ [∫◻n−2
∣Sn−2∇v(◻n−2) − (ā−1

n−2q − p)∣2 dµ] .

There are at most 9d × 5d pairs z, z′ ∈ Zn,n−2 such that ∣z − z′∣∞ < 3n−1; see Figure 6.3 for an
illustration. Therefore, we obtain

∣eq. (6.105)-c2∣2 ⩽ (5
9
)
d

(1 + δ
1 − δ

)Eρ [
1

ρ∣◻n−2∣ ∫◻n−2
∣Sn−2∇v(◻n−2) − (ā−1

n−2q − p)∣2 dµ]

= (5
9
)
d

(1 + δ
1 − δ

)Vn−2,
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where we recall that Vn is the left hand side of eq. (6.104). We put this estimate together
with eq. (6.106), (6.107), (6.111) back to eq. (6.105) to obtain the recurrence relation

(Vn)
1
2 ⩽ (5

9
)
d
2
(1 + δ

1 − δ
)

1
2
(Vn−2)

1
2 +C(τn−2 + τn−1)

1
2 +C3−dn.

By choosing δ(d) > 0 sufficiently small, we obtain the desired result eq. (6.104).

Figure 6.3: In the cube ◻n and all its sub-cubes {z + ◻n−2}z∈Zn,n−2 , for a chosen sub-cube
z0 + ◻n−2 (the cube in dark red), the support of v(z0 + ◻n−2) is in z0 + ◻n−1 (the cube in
light red), so it has at most 5d cubes of scale 3n−2 whose associated function has a support
intersecting with z1+◻n−1 (the cube in blue). For example, v(z2+◻n−2) has correlation with
v(z0 + ◻n−2), while v(z1 + ◻n−2), v(z3 + ◻n−2) do not. This gives us the contraction factor
(5

9)
d.

6.5.4 Step 4: iterations

Once we obtain the estimate eq. (6.100), it remains to do some numerical iterations, similarly
to [25, Page 59-60]. For the reader’s convenience, we recall the main steps here. Let {ei}1⩽i⩽d
denote the canonical basis in Rd, and define

Fm ∶=
d

∑
i=1
J(◻m, ei, āmei).

In order to obtain an exponential decay for (Fm)m⩾0, we first introduce a weighted version
of this quantity:

F̃m ∶=
m

∑
n=0

3−
β
2 (m−n)Fn.

Here the exponent β is the same as in eq. (6.100). It is clear that Fm ⩽ F̃m, so it suffices
to prove an exponential decay for (F̃m)m⩾0. We will do so by proving a recurrence equation
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of type F̃m+1 ⩽ C(F̃m − F̃m+1) for some constant C(d,Λ) < ∞. Thus in the following, we
calculate some bounds for (F̃m − F̃m+1) and F̃m+1.

Starting with (F̃m − F̃m+1), we write

F̃m − F̃m+1 ⩾
n

∑
n=0

3−
β
2 (m−n)(Fn − Fn+1) −C3−

βm
2 .

Noticing that ān+1p is the minimizer for the mapping q ↦ J(◻n+1, p, q) in eq. (6.79), we have

Fn+1 =
d

∑
i=1
J(◻n+1, ei, ān+1ei) ⩽

d

∑
i=1
J(◻n+1, ei, ānei). (6.114)

Using also eq. (6.79), that Id ⩽ ān ⩽ ΛId, and that the map p↦ ν(◻n, p) − ν(◻n+1, p) and
q ↦ ν∗(◻n, q) − ν∗(◻n+1, q) are positive semidefinite quadratic forms, we get

Fn − Fn+1 ⩾
d

∑
i=1

(J(◻n, ei, ānei) − J(◻n+1, ei, ānei))

=
d

∑
i=1

(ν(◻n, ei) − ν(◻n+1, ei)) +
d

∑
i=1

(ν∗(◻n, ānei) − ν∗(◻n+1, ānei))

⩾ C−1 (sup
p∈B1

(ν(◻n, p) − ν(◻n+1, p)) + sup
q∈B1

(ν∗(◻n, q) − ν∗(◻n+1, q)))

⩾ C−1τn,

and thus
F̃m − F̃m+1 ⩾ C−1

m

∑
n=0

3−
β
2 (m−n)τn −C3−

βm
2 . (6.115)

For the upper bound of F̃m+1, we use eq. (6.114) to see that Fn ⩽ Fn+1, so

F̃m+1 = 3−
β
2 (m+1)F0 +

m

∑
n=0

3−
β
2 (m−n)Fn+1

⩽ C3−
βm
2 +

m

∑
n=0

3−
β
2 (m−n)Fn.

Then we apply eq. (6.100) into the result above to get

F̃m+1 ⩽ C3−
βm
2 +

m

∑
n=0

3−
β
2 (m−n) (3−βn +

n

∑
k=0

3−β(n−k)τk)

⩽ C3−
βm
2 + 3−

β
2m

m

∑
k=0

τk
m

∑
n=k

3
β
2 (2k−n)

⩽ C3−
βm
2 +C

m

∑
k=0

3−
β
2 (m−k)τk.

(6.116)

We combine eq. (6.115) and eq. (6.116), to obtain C(F̃m − F̃m+1 + C̃3−
βm
2 ) ⩾ F̃m+1, which

implies

F̃m+1 ⩽ θF̃m +C3−
βm
2 ,

for some θ(d,Λ) ∈ (0,1). We thus conclude for the exponential decay of (F̃m)m⩾0, and thus
also of Fm, since Fm ⩽ F̃m. By eq. (6.81), this completes the proof of Theorem 6.2.1.
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6.A Some elementary properties of the function spaces

Lemma 6.A.1 (Canonical projection). Let f ∶Mδ(Rd) → R be a function, and for every
Borel set U , measure µ ∈ Mδ(Rd), and n ∈ N, let fn(⋅, µ U c) denote the (permutation-
invariant) function

fn(⋅, µ U c) ∶ { Un → R
(x1, . . . , xn) ↦ f (∑ni=1 δxi + µ U c) .

The following statements are equivalent.
(1) The function f is F-measurable.
(2) For every n ∈ N, the function fn is B⊗nU ⊗FUc-measurable.

Proof. We start from (1) ⇒ (2). Because F = FU ⊗FUc , it suffices to study the product
function

f = 1{µ(V1)=n1}1{µ(V2)=n2}1{µ(U)=n},

for some Borel sets V1 ⊆ U,V2 ⊆ U c. In this case, we have

{fn = 1} = {µ(V1) = n1} ∩ {µ(V2) = n2} ∩ {µ(U) = n}

= ⋃
σ∈Sn

⎛
⎝

n1

⋂
i=1

{xσ(i) ∈ V1}
n

⋂
j=n1+1

{xσ(j) ∈ (U/V1)}⋂{µ(V2) = n2}
⎞
⎠
,

where Sn is the symmetric group. This proves that fn is B⊗nU ⊗FUc-measurable.
We turn to (2) ⇒ (1). Let us pick a suitable fn and µ U = ∑ni=1 δxi , then the main

point is to establish the F-measurable property. Since fn is B⊗nU ⊗ FUc-measurable and
permutation-invariant, it suffices to study the function of type

fn = ∑
σ∈Sn

(
n

∏
i=1

1{xσ(i)∈Vi})1{µ Uc(V0)=n0}1{µ(U)=n}, (6.117)

for {Vi}0⩽i⩽n Borel sets. This is still a complicated function, but we can add one more
condition

∀1 ⩽ i, j ⩽ n, Vi = Vj or Vi ∩ Vj = ∅. (6.118)

For example, let {Ṽj}0⩽j⩽m be all the different elements in {Vi}0⩽i⩽n, and Ṽj appears nj times.
For the functions of type eq. (6.117) satisfying the condition eq. (6.118), the F-measurable
property is easy to treat since we have

∑
σ∈Sn

(
n

∏
i=1

1{xσ(i)∈Vi})1{µ Uc(V0)=n0}1{µ(U)=n} =
⎛
⎝

m

∏
j=1

1{µ(Ṽj)=nj}
⎞
⎠

1{µ Uc(V0)=n0}1{µ(U)=n},

which is an F-measurable function.
Finally, let us conclude that for a general fn in eq. (6.117), they can be decomposed into

the sum of the functions with the propriety eq. (6.118). Let us see the case n = 2, where we
have the following decomposition

1{x1∈V1}1{x2∈V2} = (1{x1∈(V1/V2)} + 1{x1∈(V1∩V2)})(1{x2∈(V2/V1)} + 1{x2∈(V1∩V2)})
= 1{x1∈(V1/V2)}1{x2∈(V2/V1)} + 1{x1∈(V1/V2)}1{x2∈(V1∩V2)}

+ 1{x1∈(V1∩V2)}1{x2∈(V2/V1)} + 1{x1∈(V1∩V2)}1{x2∈(V1∩V2)}.

For a general n, one can use induction and this concludes the proof.
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Proposition 6.A.1. For every s > 0 and f ∈ H 1(Qs), we have Asf ∈ H 1(Qs), and for
every x ∈ supp(µ) ∩Qs

∇(Asf)(µ,x) = As(∇f)(µ,x). (6.119)

Moreover, if s > 2 and f ∈ A(Qs), then Asf ∈ A(Qs−2).

Proof. At first, we should remark the well-definedness of the right side of eq. (6.119). Notice
that the Poisson measure can be decomposed as a sum of the independent parts µ = µ Qs + µ Q

c
s,

we have

Asf = ∫Mδ(Rd)
f(µ Qs + µ′ Q

c
s)dPρ(µ′).

Thus the right-hand side of eq. (6.119) is defined as

As(∇f)(µ,x) = ∫Mδ(Rd)
∇f(µ Qs + µ′ Q

c
s, x)dPρ(µ′). (6.120)

We prove eq. (6.119) and Asf ∈ H 1(Qs) for the functions in C∞(Qs) ∩H 1(Qs) as they
are dense, and we can focus on the case µ(Qs) = n fixed. We use Lemma 6.A.1 to write
f(µ)1{µ(Qs)=n} = fn(x1,⋯, xn, µ Q

c
s)1{µ(Qs)=n}, and observe that

∥∇fn∥L∞((Qs)n) = sup
(Qs)n

(
n

∑
k=1

∣∇xkfn(x1,⋯, xn, µ Q
c
s)∣2)

1
2

= sup
(Q∩Qs)n

(
n

∑
k=1

∣∇xkfn(x1,⋯, xn, µ Q
c
s)∣2)

1
2

,

is finite and FQcs-measurable. Thus we can define a cut-off version of f that

fM = fn1{µ(Qs)=n}1{∥∇fn∥L∞((Qs)n)⩽M},

and then we can establish eq. (6.119) for fM

∂k(AsfM)(µ,x)

= lim
h→0∫Mδ(Rd)

fn((µ − δx + δx+hek) Qs + µ′ Q
c
s) − fn(µ Qs + µ′ Q

c
s)

h

× 1{∥∇fn∥L∞((Qs)n)⩽M} dPρ(µ′)1{µ(Qs)=n},

for h small enough. Since fn ∈ C∞((Qs)n), we use the mean value principle
fn(µ − δx + δx+hek) − fn(µ)

h
= ∂kfn(µ − δx + δx+θek , x + θek),

for some θ ∈ (0,1). With the indicator 1{∥∇fn∥L∞((Qs)n)⩽M}, this term is bounded by M , so
we can use the dominated convergence theorem that

∂k(AsfM)(µ,x)

= ∫Mδ(Rd)
lim
h→0

fn((µ − δx + δx+hek) Qs + µ′ Q
c
s) − fn(µ Qs + µ′ Q

c
s)

h

× 1{∥∇fn∥L∞((Qs)n)⩽M} dPρ(µ′)1{µ(Qs)=n}

= ∫Mδ(Rd)
∂kfn(µ Qs + µ′ Q

c
s, x)1{∥∇fn∥L∞((Qs)n)⩽M} dPρ(µ′)1{µ(Qs)=n},
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which establishes the eq. (6.119) in the sense eq. (6.120). Then by Jensen’s inequality and
Fubini’s lemma we observe that

Eρ [∫
Qs

∣∇(AsfM)∣2(µ,x)dµ(x)]

= Eρ [∫
Qs

∣∫Mδ(Rd)
∇fM(µ Qs + µ′ Q

c
s, x)dPρ(µ′)∣

2
dµ(x)]

⩽ Eρ [∫
Qs
∫Mδ(Rd)

∣∇fM(µ Qs + µ′ Q
c
s, x)∣

2 dPρ(µ′)dµ(x)]

= Eρ [∫
Qs

∣∇fM ∣2 (µ,x)dµ(x)] .

This implies that AsfM ∈ H 1(Qs). Then we use once again Jensen’s inequality for fM and
fM

′ with M <M ′

Eρ [∫
Qs

∣∇(AsfM) −∇(AsfM
′

)∣2(µ,x)dµ(x)]

⩽ Eρ [∫
Qs

∣∇fM −∇fM
′

∣
2
(µ,x)dµ(x)]

= Eρ [∫
Qs

∣∇fn∣2 (µ,x)dµ(x)1{µ(Qs)=n}1{M<∥∇fn∥L∞((Qs)n)⩽M ′}] .

So {fM}M⩾0 gives a Cauchy sequence in H 1(Qs), and the only candidate is f because it is
the limit in L 2. By this, we also establish eq. (6.119) for f in C∞(Qs) ∩H 1(Qs), and we
can then extend to a general function in H 1(Qs) by the density argument.

For the part of a-harmonic function, we suppose f ∈ A(Qs) and test φ ∈ H 1
0 (Qs−2) with

eq. (6.119),

Eρ [∫
Qs−2

(∇Asf)(µ,x) ⋅ a(µ,x)∇φ(µ,x)dµ(x)]

= Eρ [∫
Qs−2

As(∇f)(µ,x) ⋅ a(µ,x)∇φ(µ,x)dµ(x)]

= Eρ [∫
Qs−2

(∫Mδ(Rd)
∇f(µ Qs + µ′ Q

c
s, x)dPρ(µ′)) ⋅ a(µ,x)∇φ(µ,x)dµ(x)] .

Restricted on x ∈ Qs−2, we have a(µ,x),∇φ(µ,x) are FQs ⊗ BQs-measurable, so we have

∀x ∈ supp(µ) ∩Qs−2, a(µ,x)∇φ(µ,x) = a(µ Qs, x)∇φ(µ Qs, x).

We can enter the part in the integration, and then use Fubini’s lemma

Eρ [∫
Qs−2

(∇Asf)(µ,x) ⋅ a(µ,x)∇φ(µ,x)dµ(x)]

= Eρ [∫
Qs−2

(∫Mδ(Rd)
∇f(µ Qs + µ′ Q

c
s, x) ⋅ a(µ Qs, x)∇φ(µ Qs, x)dPρ(µ′)) dµ(x)]

= Eρ [∫
Qs−2

∇f(µ,x) ⋅ a(µ,x)∇φ(µ,x)dµ(x)]

= 0.

In the last step, we use f ∈ A(Qs) and this finishes the proof.
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MOTS CLÉS

Homogénéisation, algorithmes numériques, percolation, systèmes de particules en interaction.

RÉSUMÉ

Cette thèse étudie l’interaction entre la théorie de l’homogénéisation quantitative et deux modèles stochastiques : le
modèle de percolation surcritique et les systèmes de particules en interaction. L’homogénéisation stochastique se con-
centre sur les propriétés de grande échelle dans l’environnement aléatoire, et ces deux modèles représentent respec-
tivement la généralisation dans l’environnement aléatoire dégénéré et dans l’environnement aléatoire dynamique.
Dans les chapitres 2 et 3, nous étudions un algorithme efficace pour le problème de Dirichlet avec des coefficients
aléatoires. Cet algorithme est proposé par Armstrong, Hannukainen, Kuusi et Mourrat, et permet une approximation
dans H1 pour la solution avec une grande précision et un faible coût de calcul. Nous confirmons sa cohérence au
chapitre 2, puis nous l’étendons au modèle de percolation surcritique au chapitre 3.
Le chapitre 4 est consacré à l’homogénéisation quantitative du semigroupe pour la marche aléatoire sur l’amas de per-
colation surcritique infini. Son interprétation probabiliste est un théorème limite central local quantitatif, et ce résultat im-
plique également le taux de convergence de la fonction de Green elliptique. La preuve dans ce chapitre combine plusieurs
estimations quantitatives sur le modèle de percolation : les correcteurs de premier ordre, le flux, le développement à deux
échelles, et aussi la concentration de la densité de l’amas.
Dans les chapitres 5 et 6, nous développons la théorie de l’homogénéisation pour un système de particules en interaction
sans condition de gradient dans l’espace de configuration continu. Dans le chapitre 5, nous construisons ce modèle et
prouvons une décroissance de la variance de type gaussien. Dans le chapitre 6, nous étudions son coefficient de
diffusion global, et obtenons un taux de convergence pour l’approximation en volume fini. Notre stratégie est l’approche
de sous-additivité et renormalisation, et nous développons également de nouvelles inégalités fonctionnelles adaptées à
cette situation de dimension infinie.

ABSTRACT

This thesis studies the interaction between quantitative homogenization theory and two stochastic models: the supercrit-
ical percolation model and interacting particle systems. Stochastic homogenization focuses on large-scale properties in
the random environment, and these two models represent generalization in the degenerate random environment and the
dynamic random environment, respectively.
In chapters 2 and 3, we study an efficient algorithm for the Dirichlet problem with random coefficients. This algorithm
is proposed by Armstrong, Hannukainen, Kuusi and Mourrat, which allows an approximation in H1 for the solution with
high precision and low computational cost. We confirm its consistency in chapter 2, then extend it to the supercritical
percolation model in chapter 3.
Chapter 4 is devoted to the quantitative homogenization of the semigroup for the random walk on the infinite supercritical
percolation cluster. Its probabilistic interpretation is as a quantitative local central limit theorem, and it also implies the
convergence rate of the elliptic Green’s function. The proof in this chapter combines several quantitative estimates on the
percolation model: first-order correctors, flux, two-scaled expansion, and also the cluster density concentration.
In chapters 5 and 6, we develop the homogenization theory for an interacting particle system without gradient condition
in continuum configuration space. In chapter 5, we construct this model and prove its variance decay of Gaussian type.
In chapter 6, we study its bulk diffusion coefficient and obtain a rate of convergence for the finite-volume approximation.
Our strategy is the subadditivity-renormalization approach, and we also develop new functional inequalities adapted to
this infinite-dimensional setting.
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