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Abstract. In 1986, Kato and Kuzumaki stated several conjectures in order to give a diophantine
characterization of cohomological dimension of fields in terms of projective hypersurfaces of small
degree and Milnor K-theory. We establish these conjectures for finite extensions of C(x1, ..., z,)
and C(x1,...,2,)((t)), and we prove new local-global principles over number fields and global
fields of positive characteristic in the context of Kato and Kuzumaki’s conjectures.

Introduction

In 1986, in the article [KK86], Kato and Kuzumaki stated a set of conjectures which
aimed at giving a diophantine characterization of cohomological dimension of fields. For
this purpose, they introduced variants of the Cj-properties of fields involving Milnor K-
theory and projective hypersurfaces of small degree, and they hoped that these variants
would characterize fields of small cohomological dimension.

More precisely, fix a field L and two non-negative integers ¢ and i. Let K é\/f (L) be
the g-th Milnor K-group of L. For each finite extension L’ of L, one can define a norm
morphism Ny, /p, : KM(L') — K} (L) (see section 1.7 of [Kat80]). Thus, if Z is a scheme
of finite type over L, one can introduce the subgroup Ny(Z/L) of K, qM (L) generated by
the images of the norm morphisms Ny, when L' describes the finite extensions of L
such that Z(L') # 0. One then says that the field L is C{ if, for each n > 1, for each
finite extension L' of L and for each hypersurface Z in P}, of degree d with d’ < n, one
has Ny(Z/L') = KM(L'). For example, the field L is CZO if, for each finite extension L’
of L, every hypersurface Z in P}, of degree d with d' < n has a 0-cycle of degree 1.
The field L is C{ if, for each tower of finite extensions L”/L’/L, the norm morphism
Ny s KM(L") — KM (L) is surjective.

Kato and Kuzumaki conjectured that, for ¢ > 0 and ¢ > 0, a perfect field is C{ if,
and only if, it is of cohomological dimension at most ¢ + ¢. This conjecture generalizes
a question raised by Serre in [Ser65| asking whether the cohomological dimension of a
Cy-field is at most 4. In 2005, in an unpublished paper [Acq05], Acquista proved Kato and
Kuzumaki’s conjecture for i = 0 : in other words, a perfect field is C{ if, and only if, it is
of cohomological dimension at most ¢. As it was already pointed out at the end of Kato
and Kuzumaki’s original paper [KK86|, such a result also follows from the Bloch-Kato
conjecture, which has been established by Rost and Voevodsky. However, it turns out
that the conjectures of Kato and Kuzumaki are wrong in general. For example, Merkurjev
constructed in [Mer91] a field of characteristic 0 and of cohomological dimension 2 which
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did not satisfy property C3. Similarly, Colliot-Théléne and Madore produced in [CTMO04]
a field of characteristic 0 and of cohomological dimension 1 which did not satisfy property
CY. These counter-examples were all constructed by a method using transfinite induc-
tion due to Merkurjev and Suslin. The conjecture of Kato and Kuzumaki is therefore still
completely open for fields that usually appear in number theory or in algebraic geometry.

Very recently, in [Wit15], Wittenberg made an important step forward : he proved
that p-adic fields, the field C((¢1))((¢2)) and totally imaginary number fields all satisfy
property Ct. His method consists in introducing and proving a property which is stronger
than property C} : more precisely, he says that a field L is strongly C{ if, for each finite
extension L’ of L, each proper scheme Z over L’ and each coherent sheaf E on Z, the
Euler-Poincaré¢ characteristic x(Z, E) kills the abelian group KM (L')/Ny(Z/L’). It turns
out that this notion behaves much better with respect to dévissage than the C-property
of Kato and Kuzumaki : this allows Wittenberg to use methods that had been previously
developped in [ELW15].

Wittenberg’s article leaves open the question of the Ci-property for the following
fields : the field of rational functions C(z,y), the field of Laurent series in two variables
C((x,y)), and the fields C(x)((y)) and C((x))(y). That the property is satisfied by C(zx,y)
and C(z)((y)) is a particular case of the general theorems that are established in the
present paper (see theorems C and D below).

The article is divided into three parts that can be read almost independently and
that deal with Kato and Kuzumaki’s conjectures for different fields. In the first section,
we focus on the cases of number fields and of function fields of curves over finite fields.
In the case of number fields, we establish a local-global principle in the context of the
conjecture of Kato and Kuzumaki for varieties containing a geometrically integral closed
subscheme. Such a result was previously only known for smooth, projective, geometrically
irreducible varieties (see theorem 4 of [KS83|) or for proper varieties of Euler-Poincaré
characteristic equal to 1 (proposition 6.2 of [Wit15]) :

Theorem A. (Theorem 1.4, number field case)

Let K be a number field and let Qg be the set of places of K. Let Z be a K-variety
containing a geometrically integral closed subscheme. For each v € Qg, let K, be the
completion of K with respect to v and Z, be the K,-scheme Z X K,. Then :

Ker | K*/N1(Z/K) — [] KJ/Ni(Z./K.) | =0.

vEQ K

This theorem, which is established by using hilbertianity properties of number fields as
well as results due to Demarche and Wei (|[DW14]) concerning the local-global principle
for torsors under normic tori, then allows us to deduce a simplified and more effective
proof of Wittenberg’s result concerning the Ci-property for totally imaginary number
fields (see corollary 1.9 and paragraph 1.2.2). The explicitness of our proof allows us to
give new and more precise results in some situations (see proposition 1.14).

In the case of global fields of positive characteristic, we prove a local-global principle
similar to the one in theorem A but which involves a variant of the group N1(Z/K) :



Theorem B. (Theorem 1.4, function field case)

Let K be the function field of a curve over a finite field of characteristic p > 0 and let
QO be the set of places of K. Let Z be a proper K-scheme containing a geometrically
irreducible closed subscheme. For v € Qg, let K, be the completion of K with respect
to v and Z, be the K,-scheme Z x i K,. Let N7(Z/K) be the subgroup of K* spanned
by the images of the norm homomorphisms Ny /x : Ly — K> where L describes finite
extensions of K such that Z(L) # 0 and Ls stands for the separable closure of K in L.
Then :

Ker | K*/N} (Z/K) — ] KJX/N{(Zs/Ky) | =0.

’UEQK

This theorem then allows us to prove that global fields of positive characteristic have the
Ci-property "away from p" (corollary 1.18).

In the second part, by means of a surprisingly simple argument, we prove Kato and
Kuzumaki’s conjectures for function fields over C of arbitrary dimension :

Theorem C. (Theorem 2.2)

Let k be an algebraically closed field of characteristic 0. Then the function field of an
n-dimensional integral k-variety satisfies the C-property for all i > 0 and q¢ > 0 such
that i +q = n.

In particular, this shows that the field C(z,y) satisfies the C}-property, and hence ans-
wers question (3) in paragraph 7.3 of [Wit15] positively.

In the third and last part, we prove Kato and Kuzumaki’s properties for complete
discrete valuation fields whose residue field is the function field of a variety over an
algebraically closed field of characteristic zero :

Theorem D. (Theorem 3.9)

Let k be an algebraically closed field of characteristic zero. Let K be the function field
of an n-dimensional integral k-variety. Then the complete field K((t)) satisfies the C-
property for all i > 0 and ¢ > 0 such that i +q=n+ 1.

This theorem, whose proof relies on subtle refinements of Artin’s approximation theorem,
implies in particular that C(z)((t)) is C1.

Remark 0.1. The Ci-property for the fields C(z,y) and C(z)((t)), which is a special
case of theorems C and D, cannot be obtained by the methods developped in [Wit15]
because those fields are not strongly C} (see remark 7.6 of [Wit15]).

Preliminaries

Let L be any field and let ¢ be a non-negative integer. The g-th Milnor K-group of
L is by definition the group K} (K) =Zif ¢ = 0 and :

KCJI\/[(L) =L"®z..Qz L /(1@ ... @ 24|34, 4,1 # j, @i + x5 =1)

q times
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if ¢ > 0. For 1, ...,x4 € L™, the symbol {z1, ..., x4} denotes the class of 21 ® ... ® x4 in
K éM (L). More generally, for » and s non-negative integers such that r + s = ¢, there is a
natural pairing :

KM(L)x KM(L) = K} (L)

T

which we will denote {-,-}.

When L' is a finite extension of L, one can construct a norm homomorphism N,y :
Ké\/[(L’) — Ké\/[(L) (see section 1.7 of [Kat80|) satisfying the following properties :
e for ¢ =0, the map N/, : KM(L') — KM (L) is given by multiplication by [L': L];
e for ¢ = 1, the map Np//p, : KM(L) — KM (L) coincides with the usual norm L% —
L*;
e if r and s are non-negative integers such that r + s = ¢, we have NL//L({m,y}) =
{2, Npyp(y)} for o € K}M(L) and y € K} (L');
e if 1" is a finite extension of L', we have Np»/p = Ny o Npvjpo.

For each L-scheme of finite type, we denote by N,(Z/L) the subgroup of K, éw (L)
generated by the images of the maps Ny, : KéW(L/) — Kéw(L) when L’ describes the
finite extensions of L such that Z(L') # (). In particular, No(Z/L) is the subgroup of Z
generated by the index of Z (ie the ged of the degrees [L : L] when L’ describes the finite
extensions of L such that Z(L') # (). For i > 0, we say that L satisfies the C/-property
if, for every finite extension L’ of L and for every hypersurface Z in P}, of degree d with
d' < n, we have Ny(Z/L') = K} (L'). In particular, L is C{ if, for each finite extension
L' of L, every hypersurface Z in P}, of degree d with d* < n has index 1.

The field L is Cj if, for each tower of finite extensions L”/L'/L, the norm Ny p/ :
KM(L") — KM (L) is surjective. As it was already pointed out by Kato and Kuzumaki
at the end of [KK86]|, by using the Bloch-Kato conjecture which identifies the groups
Ké\/[(L)/n and HY(L, us?) for n prime to the characteristic of L and which has been
proved by Rost and Voevodsky, one can show that a field of characteristic zero is C{ if,
and only if, it is of cohomological dimension at most gq.
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1. Global fields

1.1 Proof of theorems A and B

This section is devoted to number fields and function fields of curves over finite fields.
The main goal consists in establishing theorems A and B. Whenever K is a global field,
Qg stands for the set of places of K, and for v € Qg, we denote by K, the completion
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of K with respect to v and by O, the ring of integers in K.

We start with a preliminary lemma concerning Hilbertian fields. For a definition of
Hilbertian fields, the reader may refer to section 12.1 of [FJ08|.

Lemma 1.1. Let K be a Hilbertian field and fiz an algebraic closure K of K. Let F be a
finite Galois extension of K and let' Y be a geometrically integral K-variety. Then there
exists a finite extension Fy of K such that Y (Fy) # 0 and FoNF = K.

Proof. Of course, we can assume that dim Y > 0. By applying Bertini’s theorem to an
open dense quasi-projective subset of Y, one shows that Y contains a quasi-projective
geometrically integral curve C over K. Since Y is geometrically reduced, one can find
a curve C’ in P% birationally equivalent to C. Let g € K[X,Y, Z] be a homogeneous
polynomial which is irreducible over K and such that C’ is the curve defined by the
equation g = 0. Let U’ be a non-empty subset of C’ which is isomorphic to an open
subset of C'. We now distinguish two cases :

e if K has characteristic p > 0, we know that g € K[X,Y, Z]\ K[XP,YP, ZP], and we can
therefore assume without loss of generality that g € K[X,Y, Z]\ K[XP?,Y, Z]. Hence
we may consider an integer m > 1 and a polynomial h € K[Y, Z] \ {0} such that p
does not divide m and the coeflicient of X™ in ¢ is h. We also consider the set :

H:={(y,2) € F?|g(X,y, z) € F[X] is irreducible, h(y, z) # 0}.

e if K has characteristic 0, we can assume without loss of generality that g ¢ K[Y, Z]
and we consider the set :

H := {(y,2) € F*|g(X,y, 2) € F[X] is irreducible}.

To unify notations with the positive characteristic case, we also set h(Y,Z) := 1 €

K[Y, Z].
As ¢ is irreducible over F' and separable in the variable X, the set H is by definition
a separable Hilbert subset of F2. According to corollary 12.2.3 of [FJ08], H contains a
separable Hilbert subset H' of K?2. Since K is a Hilbertian field, the second paragraph
of section 12.1 of [FJ08| implies that H' is Zariski dense in K?2. In particular, the set H’
is infinite, and there exists an infinite number of pairs (y, z) € K2 such that g(X,y, 2) is
irreducible over F' and h(y, z) # 0. Each of these pairs corresponds to a point w € (C')(1)
such that K(w)NF = K and the extension K (w)/K is separable. Since C"\U’ is finite, we
conclude that there exists w € (U’)(") such that K (w) is a finite separable extension of K
satisfying K (w)NF = K. By setting Fy = K(w), we get Y (Fp) # 0 and FoNnF =K. O

Corollary 1.2. Let K be a Hilbertian field and fiz an algebraic closure K of K. Let F be
a finite Galois extension of K and let Y be a geometrically irreducible K-variety. Then
there exists a finite extension Fy of K such that Y (Fy) # 0 and FoNF = K.

Proof. If K has characteristic 0, the corollary immediately follows from lemma 1.1. As-
sume that K has positive characteristic. Let K’ be a purely inseparable finite extension
of K such that (Yx/)™! is geometrically integral. By lemma 1.1, there exists a finite
extension Fy of K’ such that Y(F}) # () and F; N (K’ - F) = K', where K’ - F denotes
the subfield of K generated by K’ and F. Then we also have Fy N F = K. O
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We now introduce a variant of the group N;1(Z/K) which will allow us to treat in a
unified way number fields and function fields of curves over finite fields :

Definition 1.3. Let K be a field and let Z be a K-scheme of finite type. We denote by
N} (Z/K) the subgroup of K> spanned by the images of the norm morphisms Np, i -
LY — K* where L describes finite extensions of K such that Z(L) # 0 and Lg stands
for the separable closure of K in L.

Note that, if K is a field of characteristic 0 and Z is a K-scheme of finite type, then
N{(Z/K) = Ni1(Z/K). We are now ready to prove the main theorem of this section :

Theorem 1.4. Let K be a number field or the function field of a curve over a finite
field. Let Z be a K-variety containing a geometrically irreducible closed subscheme. For
v € Q, we denote by Z, the K,-scheme Z X K,. Then :

Ker | K*/N{(Z/K) — [[ KJ/Ni(Z,/K,) | =0.

vEQK

Notation 1.5. Whenever M denotes a Galois module over K, we define the first Tate-
Shafarevich group of M by :

' (K, M) :=Ker | H'(K, M) —» [ H'(K,, M)

UEQK

Proof. In the sequel, we fix an algebraic closure K of K : all finite extensions of K will
therefore be considered as subfields of K.

Now fix x € K* whose class modulo N{(Z/K) lies in :

Ker | K*/NY(Z/K) — [] KS/N{(Zo/Ky)

veEQ K

We want to prove that z € N{(Z/K). To do so, we consider a finite normal extension L
of K such that Z(L) # 0. Let Ly be the separable closure of K in L : it is a finite Galois
extension of K. Let S C Qx be the set of places v of K satisfying one of the following
properties :

(i) v is finite and the extension L/K is ramified at v ;

(ii) v is finite and z is not a unit in O, ;

(iii) v is infinite.

Of course, S is a finite subset of Q.

Now fix v € Q. Two main cases arise :

e Assume in the first place that v € Qi \ S. In this case, v is a finite place, and as
the extension Lg, /K, is unramified, we know that Ny_ /x, (Ls, ) contains O . Since
r € OF, we conclude that x € Np_ /k, (Lsy, )-

e Assume now that v € S and fix an algebraic closure K, of K,. By assumption,
x € Nj(Z,/K,). Let then Ml(v),...,MT(LZ) be finite extensions of K, contained in
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K, such that, if M, .(U) denotes the separable closure of K, in M, (v) , we have x €
<NM ©/K, (M )|1 <i <nv> C K and Z(M, ) # () for each i. According to

Greenberg’s approximation theorem if v is finite (theorem 1 of [Gre66]) and Tarski-
Seidenberg principle if v is real (corollary 4.1.6 de [Pir11]), we have Z(Mi(v) NK) #0.
We can therefore consider a finite extension LEU) of K contained in Mi(v) N K such that
Z(LEU)) # (. Let LEZ,) be the separable closure of K in Lgv). The valuation on Mz-(v)
(v)

induces by restriction a place w of L, which divides v and such that the completion

of Ll(-};) with respect to w is a subextension of MZ(Z)/ K,. Hence :

v x v
Ny e, M2 ) € Ny e, i, (L7 @ o)) € K
Since z € <NM(U)/K (M( )1 <i< nv> C K5, we deduce that :

x e <NL§?;)®KK7J/K”((LS’S) QK Ko))1<i< n> C KX

To summmarize, we have just proved that, if T is the normic torus R}E /K(Gm) with

E =L x[les T ) and if [x] stands for the image of = in

Hl(KaT) = KX/NE/K(EX)u

then :
[z] € II'(K,T). (1)

Let now F' be the smallest finite Galois extension of K containing Ls and all the L(U)
Since Z contains a geometrically irreducible closed subscheme, corollary 1.2 shows that
Z has a point in a finite extension Fy of K such that Fp N F' = K. Denote by Fjy s the
separable closure of K in Fjp.

According to theorem 1 of [DW14], since Fy s N F = K and the extension F/K is Galois,
we have :

ml(K7Q) =0

where @ denotes the normic torus RE,/K(Gm), with B/ = Ly X Fo s X [[,es 111 LZ(»T;).
Noting that the torus 7' naturally embeds in @ and using (1), we conclude that the class

of z in H(K, Q) is trivial. Since Z(L) # 0, Z(Fy) # 0 and Z(L U)) # () for each v and
each 4, this shows that x € N{(Z/K) as desired. O

Remark 1.6. Let K be a number field and keep the notations and the assumptions of
theorem 1.4. The proof implies that, if Ly, ..., L, are finite extensions of K such that :

(NLiork, i, (Li ®x Ku) )1 <i <r) = K
for each v € Qg, then there exists a finite extension L,y; of K such that :
(Npy (LN <i<r+4+1)=K*.

Moreover, if L is a finite Galois extension of K containing all the L;, the field L, can
be chosen to be any finite extension of K which is linearly disjoint from L.
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1.2 Number fields

In this paragraph, we focus on the case when K is a number field. We give a new
proof of the Cf-property for totally imaginary number fields, and we see how this proof
allows one to study some concrete examples.

1.2.1 Property C} for totally imaginary number fields

In theorem 1.4, the assumption that Z contains a geometrically integral closed sub-
scheme cannot be removed. Indeed, one can for example choose K = Q, take for Z a
variety over L = Q(+/13,1/17) having a rational point in L and see Z as a K-variety. In
this case, theorem 1.4 fails since the affine Q-variety defined by the equation :

Npjo(z +yvV13 + 2V17 + tv/221) = —1

does not satisfy the local-global principle.

Nevertheless, the assumption that Z contains a geometrically integral closed sub-
scheme can be slightly weakened :

Corollary 1.7. Let K be a number field and let Z be K-variety. For v € Qg , we denote
by Z, the K,-scheme Z x i K,,. Assume that there exist finite extensions K1, ..., K, of K
such that Zk, conlains a geomelrically integral closed subscheme for each i and the ged
of the degrees [K; : K] is 1. Then :

Ker | K*/N1(Z/K) — [] KJ/Ni(Z,/Ky) | =0.

vEQK

Remark 1.8. This corollary was previously only known for smooth, projective, geo-
metrically irreducible K-varieties (theorem 4 of [KS83|) and for proper varieties with
Euler-Poincaré characteristic equal to 1 (proposition 6.2 of [Wit15]). It generalizes those
results according to proposition 3.3 of [Wit15].

Proof. According to theorem 1.4, for each i, we have :

Ker | K /N1(Zie,/Ki) =[] K/Ni(Zx, , / Kiw) | =0,

’LUGQKi

Therefore a restriction-corestriction argument shows that the group

Ker | K*/Ni(Z/K) — [[ K)/N1(Z0/Ky)

VEQK
is of [K; : K]-torsion for each i, hence trivial. O

Wittenberg has recently proved property C| for totally imaginary number fields
(theorem 6.1 of [Witl5]|). Theorem 1.4 allows us to obtain this result by a different
method. The passage from local results to global results is simpler and more explicit
than in section 6 of [Wit15].
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Corollary 1.9. Let K be a number field and let Z be a hypersurface of degree d in P
such that d < n and N1(Z,/K,) = K0 for each real place v of K. Then N1(Z/K) = K*.

Proof. By exercise 1.7.2(c) of [Har77|, we know that the Euler-Poincaré characteristic
X(Z,0z) = Y ;sodimg HY. (Z,07) is equal to 1. Hence, proposition 3.3 of [Wit15]
establishes the existence of finite extensions K7, ..., K, of K satisfying the assumptions
of corollary 1.7. We deduce that :

Ker | K*/Ni(Z/K) — [[ K)/Ni(Zo/K,) | =0.

VEQK

But by corollary 5.5 of [Wit15], we have Ni(Z,/K,) = K for each finite place v of K.
By assumption, we also know that Ni(Z,/K,) = K, for each infinite place v of K. We
conclude that N1(Z/K) = K*. O

Remark 1.10. Instead of using proposition 3.3 of [Witl5] and corollary 1.7 to prove
that :

Ker | K*/Ni(Z/K) — [] KJ/M(Z,/EKy) | =0,
’UGQK
we could have combined theorem 2 of [Kol07| (which asserts that a projective hypersurface
in P} of degree d with d < n always contains a geometrically integral closed subscheme)

with theorem 1.4. The proof of proposition 3.3 of [Wit15] is nevertheless more elementary
than the one of theorem 2 of [Kol07].

1.2.2 Some concrete examples over number fields

It is interesting to notice that the proof we have given of the Cf-property for totally
imaginary number fields is quite explicit : by this, we mean that in many numerical
examples, it allows us to establish more precise results than just the C{-property. To see
this, we first establish the following lemma :

Lemma 1.11. Let n > 1 be an integer. Let M be a field of characteristic prime to n.
Fiz an algebraic closure M of M. Assume that M contains all n-th roots of unity and
that M> /M*" is isomorphic to (Z/nZ)?. Let ag,...,a, be n+ 1 elements of M*. For

0<14,j <nwithi#j, set My; =M <1"/aiaj_1). Then :

M* = (Nag, (ML < i j < myi ).

Proof. Write n = pi'...pl* with pi,...,ps pairwise distinct prime numbers and 7y, ..., 75

positive integers. Since <NMZ.],/M(M1.§)\1 <i,j<n,i# j> contains M*™ and :

MX/MXTL ~ ﬁMX/MXP;.t
t=1

it is enough to show that for each t € {1, ..., s}, the group M* is spanned by the sub-
v
groups M*P* and Nigy (M) for 1<, j <n,i#j.
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We henceforth fix ¢ € {1,...,s}. If there exist integers i and j with 0 < i,j < n and

t
i # j such that am;l € M*Pt there is nothing to prove. We can therefore assume that

aia;' @ M for all 0 <, j < n with i # j.

For 0 < i,j < n with ¢ # j, let ¢;; be the largest divisor of p;* such that there exists

yij € M satisfying yief = aiaj_l. The following properties are satisfied :

(i) for 0 <1i,j < nwith i # j, the integer p;" does not divide e;;, because aiaj_1 g Mxptt7

¢ Tt
(ii) for 0 <4, < n with i # j, the order of y;; in M>/M*P* is p}* because M* /M >t

is isomorphic to (Z/p}'Z)?,
(iii) for 1 <14,j <n with i # j, one has yf]” = y° -yj_oejo,
Tt

and we want to prove that the group M*/M>*?* is spanned by the NMZ-J-/M(MS) for
0 < 4,57 < n,i # j. Since the group NM,L.J./M(Mg) contains y;; for each ¢ and j and

MX/Mxptt is isomorphic to (Z/p}'Z)?, it is enough to prove the following abstract

sublemma provided that one chooses A = MX/MX]th7 xij = vy for 1 < i, j < p;* with
i # jand m; = yio for i € {1,...,p;*}. O

Sublemma 1.12. Let p be a prime number and r > 1 an integer. Set n = p" and let
A = (Z/nZ)?. For each i € {1,...,n} and each j € {1,...,n}, let x;; be an element of A
and let e;; be a positive integer. Assume that :

(i) for 1 <i,j <n, the integer p" does not divide e;;.

(it) for each i and each j, the order of z;; in A is n.

(iii) for each i and each j such that i # j, one has e;jT;j = e;Ti; — €;T;.

Then A is spanned by all the x;;.

Proof. Consider an automorphism ¢ of A such that ¢(z1,1) = (1,0). By assumptions (i)

and (ii), we have e;;x;; # 0 for all ¢ and j. Hence ¢(e11211), ..., ¢(€nn®nn) are pairwise

distinct and non-zero. According to the pigeonhole principle, we deduce that we are in

one of the following situations :

o Case 1 : there exists ig € {1,...,n} such that ¢(ei,Tiyi,) € {0} X (Z/nZ\ {0}). We
then conclude that x1; and x;y;, span A.

o Case 2 : thereexist ig € {1,...,n} and jo € {1,...,n} such that ¢(eiyioTiyio ) —?(€jojoLjojo) €
{0} x (Z/nZ\ {0}). We conclude that 11 and x;,j, span the group A.

O

In the sequel, we will also need the following easy lemma, :

Lemma 1.13. Let n be a positive integer and let g(n) be the number of prime divisors
of n. Let X be a generating set of A :=Z/nZ. Then X contains a subset X' which has
at most q(n) elements and which spans A.

Proof. We proceed by induction on g(n).

e If g(n) = 1, then n = p* for some prime number p and some integer a. The set X
contains an element 2z which is not divisible by p, and one can simply choose X' = {x}.

e Now let ¢ be a positive integer and assume that the lemma is known when ¢(n) < q.
Take n > 1 such that ¢(n) = ¢ + 1 and write n = p‘fl...pgfll for p1, ..., pg+1 pairwise
distinct prime numbers and a1, ..., ag41 positive integers. The set X contains an element
x which is not divisible by py4+1. The quotient group A/ (z) is spanned by the image
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X of X in A/ (z). Since A/ (x) is a cyclic group whose order m satisfies g(m) < g, the
induction hypothesis shows that one can find a subset Xy of X which has at most ¢
elements and which spans A/ (x). By choosing any lifting Xo C X of Xo C X having
at most ¢ elements, one sees that {x} U Xy is a subset of X which has at most g(n)

elements and which spans A.
O

Lemma 1.11 applies to p-adic fields containing n'* roots of unity and such that p does not
divide n. From this, our proof of Kato and Kuzumaki’s conjecture yields the following
proposition :

Proposition 1.14. Let n > 1 be an integer. Let K be a totally imaginary number field
containing n' roots of unity. Let f € K[Xy,..., X, be a homogencous polynomial of
degree n of the form :

f=ao Xy + ... +a. X + 9(Xo, ..., Xpn)
where each monomial appearing in g contains at least three different variables. Set :

n(n+1)
2

N = +1+[K : QJg(n)(q(n) + 1),

where q(n) denotes the number of prime divisors of n. Then there exist N finite extensions
Kq,..., KN of K such that :

(1) the equation f =0 has non-trivial solutions in K; for each i,

(ii) K* is spanned by the subgroups N, i (K;*) for 1 <i < N.

Proof. For 0 < ¢ < j < n, consider the field K;; = K <\"/aia;1). Fix v a place of K

not dividing n and denote by k(v) the residue field of K. Since K contains n'" roots

of unity, n divides the order of k(v)*. Hence proposition I1.5.7 of [Neu99| implies that
K)}/KX" = (Z/nZ)?. Lemma 1.11 then shows that K¢ is spanned by the subgroups

Nk ork, 5, (Kij @k Ky)™).

Fix now v a place of K dividing n. Since the maximal unramified extension of K, is a
Ci-field (theorem 12 of [Lan52|), there exists a finite unramified extension L, of K,
such that the equation f = 0 has a non-trivial solution in L, o. As Ly /K, is unramified,
the group Ny, /K, (Lvo™) contains O, . Moreover, by corollary 5.5 of [Wit15], the group
K is spanned by the images of the norm morphisms Nj;/x, when M describes finite

extensions of K, such that the equation f = 0 has non-trivial solutions in M : hence, by
applying lemma 1.13 to the group A = (K JKX") /(OUX JOX™) (which is isomorphic to
Z/nZ), one can find g(n) finite extensions Ly 1, ..., Ly q(n) of K, such that the equation
f = 0 has non-trivial solutions in L, ; for each ¢ and the subgroup of K spanned by the
subgroups Np, /K, (L:Z) contains a uniformizer. Hence the group K is spanned by the
subgroups NLU,1~®KKU/KU(L§,1‘) for 0 < i < g(n). By Greenberg’s approximation theorem,
we deduce that there exist finite extensions My 0, My 1, ..., My 40y of K such that the
equation f = 0 has non-trivial solutions in M, ; for 0 < i < ¢(n) and K is spanned by

the subgroups Ny, o5 ¢,/ 1, (My,i @K Ky)™).

Let M be a Galois extension of K containing all the Kj;; and all the M, ;. Let L be a
finite field extension of K which is linearly disjoint from M and such that the equation
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f = 0 has a non-trivial zero in L. Such an extension L exists by theorem 2 of [Kol07]
and by lemma 1.1. Then, by remark 1.6, the group K* is spanned by the subgroups
Ny, i (KG5) (for 0 < < j < n), Ny, k(M) (for 0 < i < g(n)) and Np g (L*). The
corollary follows since the number of finite extensions of K that enter the game here is
at most V. O

Here is a concrete example :
Example 1.15. Consider the case where K = Q(¢) and :
f=X3+2X? +aX3 € K[Xo, X1, X

for some a € Z such that a is congruent to 1, 3, 9, 11, 17, 19, 25 or 27 modulo 32. Let vy
be the unique place of K above 2 and note that we have :

, 1
1+Z:NK'U2(\/§)/KU2 <1+ 2 \/5)7

hence :
1+i€ Ny, (Kn(vVD)). (2)

Moreover, one easily checks that the assumptions on a imply that the extension K, (v/a)/ K,
is unramified. Hence

O € Ny, (vay /i, (Ko (vVa)™). (3)

From the inclusions (2) and (3), we get that the group K, is spanned by the sub-
groups NKUQ(\/i)/KUQ (Ku,(V2)*) and Nk, (Va)/Kn, (Ky,(v/a)*). By using lemma 1.11,
we deduce that for each place v of K, the group K is spanned by the subgroups
N, (V) /s (Kv(\/l;)x) for b € {2,a,2a}. One can then easily check that the exten-
sions K (v/2,v/a) and K(y/a + 2) are always linearly disjoint over K. Therefore K* is
spanned by the subgroups Ny ) /¢ (K(ﬂ)x) for b € {2,a,2a,a + 2}. Of course, for
such b, the equation f = 0 has non-trivial solutions in K (v/b).

1.3 Global fields of positive characteristic

In this paragraph, we focus on the case when K is a global field of positive characte-
ristic. We prove of the Cf-property « away from p », and, as in the case of number fields,
we see how the proof allows one to study some concrete examples.

We start by introducing a variant of the group N;(Z/K) which will allow us to study
the Cf-property « away from p » for global fields of positive characteristic :

Definition 1.16. Let K be a field of characteristic p > 0. Let Z be a K-scheme of finite
type. We denote by N¥(Z/K) the set of x € K™ such that there exists an integer r > 1
satisfying 2P € N1(Z/K).

The following proposition is a consequence of theorem 1.4 :
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Proposition 1.17. Let K be the function field of a curve over a finite field of characteris-
tic p > 0. Let Z be a K-variety containing a geometrically irreducible closed subscheme.
For v € Qg, we denote by Z, the K,-scheme Z X K,. Then the abelian group :

Ker | K*/Ni(Z/K) — [] KJ/NV(Zo/K)

UEQK
1S G P-primary group.

Proof. Consider an element x € K* whose class modulo N;(Z/K) lies in :

Ker | K*/N1(Z/K) — [] E)/NY(Zu/Ky)

VEQK

By assumption, for each v € Qg, there exists r, > 0 such that 2" € Ny(Z,/K,) C
N{(Z,/K,). Furthermore, there exists an integer m > 0 such that 2™ € Nj(Z,/K,) for
each v € Q. We conclude that there exists r > 0 such that 27" € N{(Z,/K,) for each
v € Q. According to theorem 1.4, this shows that 27" € N{(Z/K). We can therefore
consider finite extensions K7, ..., K, of K such that, if K; ; denotes the separable closure

of K in K;, we have zP" € <NK1-,S/K(K¢T3>‘1 <i< n> and Z(K;) # () for each 4. Since
all the degrees [K; : K; 5] are powers of p, this implies that there exists an integer 7' > 0

such that (a:pr)pTl € (N, /k(K)|1 < i < n). We conclude that e Ni(Z/K), which
finishes the proof of the corollary. O

We are now ready to prove the Ci-property « away from p » for global fields of
characteristic p.

Theorem 1.18. Let K be the function field of a curve over a finite field of characteristic
p > 0 and let Z be a hypersurface of degree d in P such that d < n. Then the exponent
of the group K*/N1(Z/K) is a power of p.

For the proof, it is useful to recall from [Wit15] that a field L is said to be strongly C}
away from p if, for each finite extension L’ of L, each proper scheme Z over L' and each

coherent sheaf E on Z, the Euler-Poincaré characteristic x(Z, F) kills every element of
KM(L')/N4(Z/L') whose order is not divisible by p.

Proof. If A is a torsion abelian group, we denote by A{p’} the subgroup of A constituted
by elements of A whose order is not divisible by p. For each proper K-scheme Z, we
define :

H\(2/K) = K* /N\(Z/K)

and we denote by ny the exponent of the abelian group Hy(Z/K){p'} if Z is non-empty

or 0 otherwise. We say that Z satisfies property P if Z is normal. We are now going to

check the three assumptions that appear in proposition 2.1 of [Wit15].

(1) This is obvious, because a morphism of proper K-schemes Y — Z induces a surjective
morphism Hy(Y/K) — H1(Z/K).



14 Diego IZQUIERDO

(2) Let Z be a proper normal K-scheme. Let K’ be the algebraic closure of K in K(Z).
Then Z is naturally endowed with a structure of proper geometrically irreducible K’-
scheme. According to theorem 1.17 :

Ker | Hi(Z/K') — [ Hi(Z,/K}) | {¢'} =0.

’UEQK

Moreover, since K/ is strongly Cf away from p for each v € Qg according to co-
rollary 4.7 of [Wit15], the group Hi(Z,/K,){p'} is killed by xx/(Z,Oz). We deduce
that the group Hi(Z/K'){p'} is also killed by xx/(Z,0z). But xx(Z,0z) = [K' :
Klxk'(Z,0z). Hence a restriction-corectriction argument shows that xx(Z,Oz) kills
H,(Z/K){p'}. The integer nz has therefore to divide xx(Z, Oz).
(3) Tt suffices to choose the normalization morphism.
We can therefore apply proposition 2.1 of [Wit15] and deduce that the field K is strongly
C} away from p. The corollary then follows from the fact an (n—1)-dimensional projective
hypersurface of degree d with d < n has FKuler-Poincaré characteristic 1. O

Remark 1.19. While corollary 1.9 was already proved in [Wit15], corollary 1.18 is new.

In the same way as in the case of number fields, one can get more precise results. For
example, one can prove the following proposition similarly to proposition 1.14 :

Proposition 1.20. Let n > 1 be an integer. Let K the function field of a curve over
a finite field and assume that K contains n'* roots of unity. Let f € K[Xy, ..., X,] be a
homogeneous polynomial of degree n of the form :

f=aX§ + ... +a. X + 9(Xo, ..., Xn)

where each monomial appearing in g contains at least three different variables. Assume
that the projective hypersurface defined by f = 0 is geometrically irreducible. Set :

n(n+1)
2

Then there exist N finite extensions K1, ..., Ky of K such that :
(1) the equation f =0 has non-trivial solutions in K; for each i,
(i4) K> is spanned by the subgroups N, /i (K*) for 1 <i < N.

N = + 1.

2. Function fields of varieties over an algebraically closed
field

In this section, we are going to establish Kato and Kuzumaki’s conjectures for function
fields of varieties over an algebraically closed field of characteristic 0. We have already
recalled that the Bloch-Kato conjecture implies that a field of characteristic 0 is C{ if,
and only if, it is of cohomological dimension at most q. The proposition that follows is
a particular case of this result. Anyway, we give an elementary proof, because its ideas
will be useful in the sequel in order to establish theorems 2.2 and 3.9 :

Proposition 2.1. Let k be an algebraically closed field of characteristic 0. Then the field
K = k(t, ...,tq) satisfies property Cg.
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Proof. We proceed by induction on ¢g. The result is obvious for ¢ = 0. Assume now that
we have proved the proposition for some ¢ > 0 and consider the field K = k(t1, ..., tq+1).
Let L1 be a finite extension of K and L9 be a finite extension of Ly. Let uq, ..., uq+1 be
elements of L. We are going to prove that {ui,...,uq+1} € NL2/L1(Kﬁ1(L2)).

To do so, we construct a family (wy, ..., ws) of elements in L{* in the following way :
o if uy,...,ug41 are not algebraically independent over k, we consider a transcendence ba-
sis (v1, ..., vy) of the extension Ly /k(u1, ..., ug+1) and we set (w1, ..., ws) = (U1, ..., Ug1, V1, ooy Vp—1).

o if uy,...,uq41 are algebraically independent over k, we set (wy, ..., ws) = (u1, ..., Uq)-
Let M, (rvesp. M) be the algebraic closure of k(wi, ..., ws) in Ly (resp. La). Let Cy (resp.
C3) be a geometrically integral curve over M; (resp. Ma) such that M;(Cy) = Ly (resp.
Ms(Cy) = Ls). Since M;(Ch) is a Cy field and Ma(Cy)/M;(Ch) is a finite extension, pro-
positions 10 and 11 of section X.7 of [Ser79| imply that u,41 € NE(CQ)/E(CQ(E(CE)X)'
And so there exist a finite extension F' of My and y € F(C2)* such that ugi1 =
Np(cy)/r(cy)(y). Moreover, by the inductive assumption, M satisfies property C{, and
hence there exists x € Ké\/[(F) such that {u1,...,us} = Np/py, (7). We deduce that

Niy o (Neewy/n. ({7, 9}1)) = Neco) an oy ({2, y1)
= Npcyym ) (Nees) pien ({2, y)))
= NF(Cl)/Ml(cl)({ﬂ%UqH})

= {u1, ..., ugt1}-

We have therefore proved that {u1,...,uqy1} € Np, /1, (K%1<L2)). As a consequence, the
field K satisfies the Cg-property. O

We are now ready to establish Kato and Kuzumaki’s conjectures for the function field
of a variety over an algebraically closed field of characteristic 0 :

Theorem 2.2. Let k be an algebraically closed field of characteristic 0. Then the function
field of a q-dimensional integral k-variety satisfies the C} -property for alli > 0 and j > 0
such that i+ j = q.

Proof. Let K be the function field of a ¢g-dimensional integral k-variety. Let ¢ > 0 and
7 > 0 be integers such that ¢+ j = q. If j = 0, there is nothing to prove because the field
K is Cy4. If i = 0, the result follows from the previous proposition. Hence we can now
assume that ¢ # 0 and j # 0.

Fix a finite extension L of K. Let Z be a hypersurface of degree d in P with d’ < n and
let uq, ..., u; be elements of L*. We will show that the symbol {u1,...,u;} is in N;(Z/K).
Let (v1, ..., v,) be a transcendence basis of the extension L/k(u1, ..., u;) (with r > 0). Let
M be the algebraic closure of k(u1, ..., uj, Vg—j+1,...,v,) in L (so that the transcendence
degree of M/k is j) and let X be a geometrically integral M-variety of dimension i
such that M(X) = L. Since the field M(X) is C;, the variety Z has points in M(X).
Therefore, there exists a finite extension F of M such that Z(F(X)) # (). Moreover,
since the norm Np/p : KJM(F) — KJM(M) is surjective according to proposition 2.1
and {ui,...,u;} € KJM(M), we get {ui,...,u;} € NF/M(K;”(F)). As a consequence,

{ur,...,u;} € NF(X)/M(X)(KjM(F(X))), and K has the CJ-property. O
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Remark 2.3. In the previous theorem, we have in fact proved that, if L is a finite
extension of k(t1,...,t,) and Z is a hypersurface of degree d in P} with d° < n, then for
each j-symbol x € KJM(L), there exists a finite extension M of L such that Z(M) # ()
and z € NM/L(KJJ-”(M)). In particular, if i = ¢ — 1 and j = 1, for each element x in L*,
there exists a finite extension M of L such that Z(M) # ) and = € Ny (M>).

3. Local fields with a function field as residue field

3.1 Problem and strategy

The goal of this section is to prove the conjectures of Kato and Kuzumaki for com-
plete discrete valuation fields whose residue field is the function field of a variety over
an algebraically closed field of characteristic 0. In particular, this applies to the field
C(z)((t)), for which properties C2 and CY are already known and for which we are going
to establish property C1.

The main difficulty we face in order to establish the C}-property for the field K =
C(z)((t)) lies in proving that, if Z is a hypersurface in P}, of degree d < n, then t €
Ni(Z/K). To do so, we are going to show that if we adjoin all the roots of ¢ to K, then
the field Ko, we obtain is C4 : this will imply that Z(Ky) # 0. In order to establish
the Ci-property for K., we will have to establish a modular criterion allowing us to
determine whether an affine variety over K, has a rational point (corollary 3.8). For this
purpose we will heavily use the constructions of the article [Gre66] by Greenberg.

3.2 Greenberg’s approximation theorem revisited

We start by recalling theorem 1 of [Gre66] :

Theorem 3.1. (Theorem 1 of [Gre66])

Let R be a henselian discrete valuation ring with field of fractions K. Let t be o uniformi-
zer of R. Let F = (F1, ..., F}) be a system of r polynomials in n variables with coefficients
i R. We assume that K has characteristic 0. Then there exist integers N > 1, ¢ > 1 and
s > 0 (depending exclusively on the ideal FR[X] of R[X] generated by F,...,F,) such
that, for each v > N and each z € R™ satisfying :

F(z)=0 mod t",
there exists Y€ R"™ such that :
y=2z mod t/d=s und F(y) =0.

In particular, if the system F = 0 has solutions modulo ¢ for each m > 1, then it has a
solution in R.

From now on, fix a henselian discrete valuation ring R with field of fractions K.
Assume that K has characteristic 0 and fix an algebraic closure K of K. Let ¢ be a
uniformizer of R and choose a compatible system {tl/q}qzl of roots of ¢ in K : by this,
we mean that the elements t'/9 of K satisfy the relation (£/(29))¢ = ¢/ for each
¢,¢ > 1. For ¢ > 1, we set K; = K(tl/q) and R, = Of,. We also set Ko, = Uq>1 K,
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and Ry = qul R,. We want to establish a similar result to theorem 3.1 for the field
K. In that respect, we start by proving a simple lemma in commutative algebra.

Definition 3.2. We say that an ideal I of R[X] is t-saturated if, for each f € R[X] such
that tf € I, we have f € I.

Remark 3.3. Of course, the previous definition is independent of the choice of the
uniformizer ¢. But since in the sequel we will have to replace R by R, it will be useful
to systematically track a uniformizer of the ring we will be working on.

Lemma 3.4. Let I be an ideal of R[X].
(i) If I is t-saturated, then IR,[X] is t'/9-saturated for each q > 1.
(ii) If I is radical and t-saturated, then I1R,[X] is radical for each q¢ > 1.

Proof. (i) Assume that [ is t-saturated. Fix an integer ¢ > 1 and let f € Ry[X] such
that t'/9f € IR,[X]. Write t'/9f = 37| figi, with f; € T et g; € R [X]. For each
i € {1,...,n}, let h; be a polynomial in R[X] such that ¢t'/7 divides g; — h; in R, (ie
the valuation of g; — h; is strictly positive) : this can be achieved because R and R,
have the same residue field. We can now write :

tf =" filgi —ha) + > fihi
i=1 i=1

Thus, ¢ divides Y _;_; fih; in R[X]. Since [ is t-saturated and >, fih; € I, we deduce
that M € I. The equality :

- (¢-1)/q  2oiz1 Jili
f= Zfz tl/q St ,

then implies that f € TR,[X] and hence the ideal IR,[X] is t'/%-saturated.

(ii) Assume that I is radical and ¢-saturated. Fix ¢ > 1 and let f be a polynomial in
R,[X] such that f™ € IR,[X] for some n > 0. Since [ is radical, one immediately
checks that I K[X] is also radical. This implies that I /K,[X] is also radical, because the
extension K,/K is separable. Hence f € IK,[X]. This means that there exists r > 1
such that t"/9f € TR,[X]. Since IR,[X] is tl/q—saturated (by part (1)), we deduce that
f € IR,[X]. Hence the ideal IR,[X] is indeed radical.

O

In order to prove a similar result to theorem 3.1 for K., we need to work simul-
taneously with all the fields K, which all satisfy theorem 3.1. More precisely, if we fix
a system of polynomial equations over R, we can see it as a system of equations with
coefficients in R, for each ¢ > 1 : theorem 3.1 then gives us integers Ny, ¢, and s4, and
our goal in the sequel is to control these integers when ¢ varies. It is therefore quite
natural to introduce the following technical definition :

Definition 3.5. Let F' = (Fy, ..., F}) be a system of r polynomials in n wvariables with

coefficients in R.

(i) Fiz q € N. We say that a triplet (N, c,s) € N x N x Ny is associated to (R,t,q, F) if
it satisfies the following property : for each v > N and each z € Ry such that

F(z) =0 mod t*/9,
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there exists y € Rg such that
y=z mod t/e=s)/a ¢ EF(y) =0.

(1) We say that a 4-tuple (qo, N,c,s) € N x N x N x Ny is (R, t, F)-admissible if, for
each ¢ > 1, the triplet (¢N,c,qs) is associated to (R,t,qqo, F).

We are now ready to state the following theorem :

Theorem 3.6. Let R be a henselian discrete valuation ring with field of fractions K.
Assume that K has characteristic 0 and fix a uniformizer t of R. For ¢ > 1, we set
K, = K(t"/9) and R, = Ok,. Let F = (Fy,...,F}) be a system of r polynomials in n
variables with coefficients in R. Then there ezists a 4-tuple (qo, N, c, s) which is (R,t, F)-
admissible.

In order to establish this theorem, we are going to use considerably the constructions
developped in the proof of theorem 3.1 (see [Gre66]).

Proof. Denote by V the affine K-variety defined by £ = 0 and let m be its dimension.
We are going to prove by induction on m that there exists a (R, t, F')-admissible 4-tuple
of integers.

o If m = —1 (ie V = 0), then there exists u € (RNFR[X])\{0}. The 4-tuple (1, valp(u)+
1,1,0) is then (R, t, F')-admissible, since for these values of qg, IV, ¢, s, the assumption
appearing in the definition 3.5(i) fails.

e Assume now that m > 0.

o Assume in the first place that F'R[X] is radical and ¢-saturated, and that Vi is
irreducible. In this case, lemma 3.4 shows that the ideal FR,[X] of Ry[X] is radical
for each ¢ > 1. Let J be the jacobian matrix of F and let D be the system of minors
of size n —m in J. By the inductive assumption, there exists a 4-tuple (¢{, N',c,s")
which is (R,t, F, D)-admissible. For I C {1,...,r} with |I| = n —m, denote by F;
the system constituted by the polynomials F; for ¢ € I. Let Vi be the K-variety
defined by the system £'; = 0. Let V;r be the union of the irreducible components of
Vi which are m-dimensional and different from V. Let G; be a system of generators
of the ideal of V;" in R[X]. By the inductive assumption, there exists a 4-tuple
(qo.1, N1,cr, sr) which is (R, t, G, F)-admissible. Set :

% = 4o H 4o,1-

[I|=n—m
IC{1,..., n}

According to the proof of theorem 1 of [Gre66], for each ¢ > 1, the triplet (N(9), ¢(0) 5()
defined by :

N’ N
N@ =94 2qq0max{/,max{lf C{l,..,n},|I|=n— m}}
0y 0,1
c(q) — Qmax{c/7maX {C[’I C {1, ...,n}, ‘I‘ =n— m}}
/

s@ =1 +qg0max{8,,max{811 CA{l,...,nh|I|=n-— m}}
4o 0,1
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is associated to (R,t,qqo, F). We deduce that the 4-tuple (qo, N, ¢, s) defined by :

N’ N,
N:2+2q0max{,,max{l\l C{1,...,n}, || :n—m}}
q

0 do,1
¢ =2max {¢,max {¢;|[I C{1,...n},|I| =n—m}}
/
s=1 +q0max{sl,maX{S]|I CA{l,..,n}h|I| = nm}}
90 0,1

s (R, t, F')-admissible.
o We do not make any assumptions anymore. Let ¢ > 1 be an integer such that the
irreducible components W7y, ..., W,, of VK : remain irreducible over K,,. For each

j € {1,...;u}, let I} be the prime ideal of K ;[ X] defining Wj. Consider the ideal :
Ij = IJ/ N Rqé[x]

Let G be a system of generators of [;. The ideal I; is radical and t1/%0-saturated.
Moreover, the Kqé—variety defined by I; is W : it is a variety of dimension at most
m and (W;) .. is irreducible. We deduce that there exists a 4-tuple (qo ;, IV}, ¢, S5)
which is (Ry,t 1 , G j)-admissible. Note now that there exists an integer w € N*
such that (I7...I},)" € FK, [X]. Hence there exists v € N* such that :

£e/9 (1. 0,)" C F Ry [X]. (4)

g0 = ¢ | [ 20.-
j

and consider an integer ¢ > 1. Denote by val : Ry, — Z U {00} the valuation on
R4y, and introduce the integers :

N@ = uw@ (maX{Nj} +v>
o 4o,j
9 = ywmax{c;}
sl = 1—|—@ <U—|—max{sj}> .
qO qo0.5

Fix v > N@ and z € Ry, such that F(z) = 0 mod /(@) If we are given
polynomials g1 € I1 Ryq,[X], ..., gu € TuRyq,[X], the inclusion (4) implies that :

Set :

w

u
v < val |¢"vw/% H gj(x) —uvw +w Z val(g;(z
j=1

Hence there exists an integer jo € {1,...,u} such that :

Since this is true whatever the chosen polynomials g1 € I1 Ryqy[X], ..., gu € Ty Rgqo[X]
are, we conclude that there exists j; € {1,...,u} such that :

Vg € Iy Ry [X], val(g () = — — Lo, (5)
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As v > N@, we also have :
v 440 q4o
v > Nj . (6)

/
uw 0 440,50

Since the 4-tuple (qo,jo Nijo: Cjos Sjo) 18 (R s tl/q{),Q] )-admissible, the triplet ( pi —~Njo Cjo. ﬁsjo
J0

is associated to (Rqé,tl/qé, %,Qﬁ)). We then deduce from (5) and (6) that there
0
exists y € Ry, such that :

0

y=z mod /(a90) et G, (y) =0,
where p = [Cjo”uw] - ﬁv -1- qO‘quOJO 8jo- This implies that :

y=z mod (/e D]=s) /(q0) 419 F(y) =0,

and hence the triplet (N @ 5(9)) is associated to (R,t,qqo, F). Therefore the
4-tuple (qo, N, ¢, s) defined by :

NA
N = qu—? (max {J} +v)
90 q0,j

¢ = vwmax{c;}

= 1+— <v+max{sj}>
qO q0,j

s (R, t, F')-admissible.
O

Corollary 3.7. Let R be a henselian discrete valuation ring with field of fractions K.
Assume that K has characteristic 0 and fix a uniformizer t of R. For ¢ > 1, we set
K, = K(tY9) and Ry = Ok,. We also set Ko, = Ugs1 Kq and Roo = U,>q Ry Let
F = (F1,...,F.) be a system of v polynomials in n variables with coefficients in Rso
There exists M € Qsg, v € N and o € Qs satisfying the following property : for each
rational number u > M and each x € R2 such that

F(z)=0 mod t*,
there exists y € Ry, such that
y =2z mod = and F(y) =0.

Proof. By replacing R by R, for some sufficiently large ¢, we can assume that the system
F has coefficients in R. According to theorem 3.6, there exists a (R,t, F')-admissible
4-tuple (qo, N,c,s). Set M = N/qp, v = c and 0 = SH Consider p € Q such that
w > M and write p = a/b with a,b € N. Assume that there exists z € R}, such that
F(z) =0 mod t*. Let ¢1 > 1 be such that z € Rgl. We know that, for each ¢ > 1, the
triplet (¢N,c,qs) is associated to (R,t,qqo, F'). In particular, the triplet (bg1 N, ¢, bgis)
is associated to (R,t,bq1qo, F). Since F(z) =0 mod t* and p > N/qo, we deduce that
there exists y € Ry, = such that F(y) = 0 and :

with A = m] — bqls). This finishes the proof because A > £ — o O

m([ c

)
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Corollary 3.8. Under the assumptions of corollary 3.7, if the congruence F(xz) = 0
mod t¥ has solutions in Ro for each integer v > 1, then the equation F(z) = 0 has
solutions in Rs.

3.3 Statement for the field C(zy,...,2,,)((t))

We are finally ready to establish Kato and Kuzumaki’s conjectures for complete
discrete valuation fields whose residue field is the function field of a variety over an
algebraically closed field of characteristic 0 :

Theorem 3.9. Let k be an algebraically closed field of characteristic zero and fix m > 1.
Let Y be an m-dimensional integral k-variety and set K = k(Y')((t)). Then the complete
field K satisfies the CY -property for all i > 0 and j > 0 such that i +j = m+ 1.

Proof. Since the field K is C),+1 and has cohomological dimension m+ 1, we can assume
that j # 0 and i # 0. In the sequel, we fix an algebraic closure K of K. All fields will be
understood as subfields of K.

Let Z be a hypersurface of P of degree d, with d* < n. We want to prove that N;(Z/K) =

e Fix first a j-tuple (uy,...,u;) € k(Y)*). We are going to prove that {us,..,u;} €
N;(Z/K). For this purpose, let (v1,...,v,) be a transcendence basis of the extension
k(Y)/k(u1,...,u;) and denote by M the algebraic closure of the field k(u1, ..., uj, Vm—j11, ..., Ur)
in K : it is a field of transcendence degree j over k. Let Y’ be a geometrically integral
M-variety of dimension i — 1 such that k(Y) = M (Y"). The field M (Y") is C;_1, and
therefore the field :

Kv= | FOO)
F/M finite
is C;. We deduce that Z(Kjr) # 0, and hence there exists a finite extension F of M
such that Z(F(Y')((t))) # 0. Since M is C}, we have {uy,...,u;} € NF/AI(Ky(F)),
and hence {u1,...,u;} € N;(Z/K) as desired.

e Fixnowa (j—1)-tuple (ug,...,uj—1) € k(Y)*?~!. We are going to prove that {us, ..., uj_1,t} €
N;(Z/K). For this purpose, consider a homogeneous polynomial f € k(Y)[[t]][Xo, ..., Xn]
defining Z. Let (v1, ..., v,) be a transcendence basis of the extension k(Y') /k(u1, ..., uj—1)
and denote by M the algebraic closure of k(u1, ..., uj—1,Vm—jy2,...,0,) in K : it is a
field of transcendence degree j —1 over k. Let Y/ be a geometrically integral M-variety
of dimension 4 such that k(Y) = M(Y”). We set :

Ku= |J FO)@)

F/M finite
Ry:= |J F@)IH).
F/M finite

The ring Ry is a henselian discrete valuation ring with fraction field K}, uniformizer
t and residue field M(Y”). We also set :

Ky = U KM(tl/q),
q>1

Roo = | Ru[t"7).
q>1
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Let moo be the maximal ideal of R and fix an integer v > 1. Let f, € M ((¢))(Y")[Xo, ..., X»]
and g, € Roo[Xo, ..., X»] be homogeneous polynomials of degree d such that :

f=f+tg.

Since M ((t))(Y") is C; and is contained in K, there exists (zg, ..., z,) € R¥\ mi!
such that f,(xo,...,zn) = 0. We therefore have :

f(zo,...,zn) =0 mod t”.

Since this is satisfied for each v > 1, we deduce from corollary 3.8 that Z(K.) #
(). We can then consider a finite extension F//M and an integer ¢ > 1 such that
Z(F(Y")((t'/9))) # 0. As M has the C’gfl—property, there exists x € K]Afl(F) such
that Np g (z) = {u1,...,uj—1}. Hence :

NF(Y’)((tl/‘?))/K({xytl/q}) — NF(Y/)((t))/M(Y’)((t)) (NF(Y’)((tl/q))/F(Y’)((t))({xytl/q})>

= Negenyaymor ey (@, £t})
= {ul, sy Uj—1, :tt}.

We conclude that {u1,...,uj_1,t} € Nj(Z/K).
Since the group KJM(K)/d is spanned by symbols of the form {uy, ..., u;} and {u1, ..., uj_1,t}
with (ug,...,u;) € k(Y)*, we get N;(Z/K) = KM (K). O

Remark 3.10. Let k be an algebraically closed field of characteristic 0 and let Y be
an integral k-variety of dimension m. The previous proof shows in fact that, if M is an

extension of transcendence degree j — 1 over k contained in k(Y') and if Y is an integral
M-variety such that M(Y”’) = k(Y'), then the field :

Ko=) U FO@)E

¢>1 F/M finite

is Cynt1-;. In particular, the field U, s, C(x)((t))(t*/9) is C1.
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