Duality and local-global principle over two-dimensional henselian local rings

Diego Izquierdo

According to Sansuc, over number fields, Brauer-Manin obstruction is the only obstruction to the local-global principle for torsors under linear connected algebraic groups. In a recent article ([1]), Colliot-Thélène, Parimala and Suresh introduce a new kind of obstruction to the local-global principle over function fields of regular integral schemes of any dimension, and they ask whether it is the only obstruction to the local-global principle for torsors under linear connected algebraic groups over the Laurent series field $\mathbb{C}((x, y))$. In this talk, I will explain why this question has a positive answer.

1 Fields of interest

In this report, we are interested in finite extensions of the Laurent series field in two variables $\mathbb{C}((x, y))$. More generally, we adopt the following notations :

$$\begin{split} &k: \text{algebraically closed field of characteristic 0.} \\ &R: \text{integral, local, normal, henselian, 2-dimensional k-algebra with residue field k. \\ &\mathcal{X}:= \operatorname{Spec} R. \\ &X:= \mathcal{X} \setminus \{s\} \text{ where s is the closed point of \mathcal{X}.} \\ &X^{(1)}: \text{ set of codimension 1 points in X.} \\ &K: \text{ the fraction field of R.} \end{split}$$

We are interested in the field K.

2 Brauer-Hasse-Noether exact sequence

In this paragraph, we want to understand the Brauer group of K. To do so, consider a desingularization $f: \tilde{\mathcal{X}} \to \mathcal{X}$ of \mathcal{X} such that :

- f is projective and $\hat{\mathcal{X}}$ is an integral, regular, 2-dimensional scheme;
- $f: f^{-1}(X) \to X$ is an isomorphism;

• the special fiber $Y := f^{-1}(s)$ is a strict normal crossing divisor of $\tilde{\mathcal{X}}$. Such a desingularization always exists.

Now observe that Y is a projective k-curve whose irreducible components are smooth. Let $g_1, ..., g_n$ be the genera of the irreducible components of Y. Let also Γ be the graph attached to Y : by definition, this is the graph whose vertices are the irreducible components of Y and whose edges connect two vertices if, and only if, the corresponding irreducible components intersect. Denote by c the first Betti number of $\Gamma.$

Theorem 2.1. There is an exact sequence :

$$0 \to (\mathbb{Q}/\mathbb{Z})^{c+2\sum g_i} \to BrK \to \bigoplus_{v \in X^{(1)}} BrK_v \to \mathbb{Q}/\mathbb{Z} \to 0$$

where K_v is the completion of K at v for $v \in X^{(1)}$ and the middle map is the restriction map.

The proof uses the Gersten conjecture for the regular scheme $\tilde{\mathcal{X}}$ (such a result is due to Panin) and requires to carry out a geometrical and combinatorial study of the desingularization $\tilde{\mathcal{X}}$.

3 Duality theorems

3.1 Duality in étale cohomology

Let $j: U \hookrightarrow X$ be an open immersion, with U non-empty. Let F be a finite étale group scheme over U. By using the Brauer-Hasse-Noether exact sequence of the previous paragraph, one can define a natural pairing :

$$AV: H^{r}(U,F) \times H^{3-r}(X, j_{!}F') \to H^{3}(X, j_{!}\mathbb{G}_{m}) \cong \mathbb{Q}/\mathbb{Z},$$

where $F' = \underline{Hom}(F, \mathbb{G}_m)$ is the Cartier dual of F.

Theorem 3.1. The pairing AV is a perfect pairing of finite groups for each integer $r \in \{0, 1, 2, 3\}$.

There are two proofs for this theorem : one can proceed "by hand" by making quite subtle dévissages to reduce to the case when F is constant and then use the Brauer-Hasse-Noether exact sequence of the previous paragraph, or one can use Gabber's general results on the existence of dualizing complexes ([3]).

3.2 Duality in Galois cohomology

For each Galois module M over K, we define its Tate-Shafarevich groups by :

$$\operatorname{III}^{r}(K,M) := \operatorname{Ker}\left(H^{r}(K,M) \to \prod_{v \in X^{(1)}} H^{r}(K_{v},M)\right).$$

By using extensively theorem 3.1, one can prove the following duality theorem :

Theorem 3.2. Let T be a K-torus. Let \hat{T} be its module of characters. Then there is a natural pairing :

$$PT: \mathrm{III}^1(K,T) \times \mathrm{III}^2(K,T) \to \mathbb{Q}/\mathbb{Z}$$

which is non-degenerate on the left, and whose right-kernel is the maximal divisible subgroup of $\operatorname{III}^2(K, \hat{T})$.

4 Obstructions to the local-global principle

Recall the Brauer-Hasse-Noether exact sequence :

$$\operatorname{Br} K \to \bigoplus_{v \in X^{(1)}} \operatorname{Br} K_v \xrightarrow{\theta} \mathbb{Q}/\mathbb{Z} \to 0.$$

When Z is a smooth K-variety, one can introduce the set of adelic points $Z(\mathbb{A}_K)$ of Z and then define a pairing :

$$BM: Z(\mathbb{A}_K) \times \operatorname{Br} Z \to \mathbb{Q}/\mathbb{Z}, ((p_v)_{v \in X^{(1)}}, \alpha) \mapsto \theta((p_v^* \alpha)_v)$$

By using theorem theorem 3.2 and by comparing the pairings PT and BM, it is possible to describe the obstructions to local-global principle for torsors under linear connected algebraic groups over K:

Theorem 4.1. Let G be a linear connected algebraic group over K. Let Z be a K-torsor under G. If the orthogonal of BrZ in $Z(\mathbb{A}_K)$ for the pairing BM is non-empty, then Z has a rational point.

References

- J.-L. Colliot-Thélène, R. Parimala, and V. Suresh : Lois de réciprocité supérieures et points rationnels, Transactions of the American Mathematical Society, 368, 4219–4255 (2016).
- [2] D. Izquierdo : Dualité et principe local-global pour les anneaux locaux henséliens de dimension 2, with an appendix by Joël Riou, to appear in Algebraic Geometry.
- [3] J. Riou : Exposé XVII. Dualité, in Travaux de Gabber sur l'uniformisation locale et la cohomologie étale des schémas quasi-excellents, Astérisque, 363-364, 351-453 (2014).