TD14 : LISSITÉ, ANNEAUX DE VALUATION DISCRÈTE, ANNEAUX DE DEDEKIND

Diego Izquierdo

L'exercice 0 est à préparer avant la séance de TD. Pendant la séance, les exercices seront traités dans l'ordre suivant : 0, 2, 3, question 1 de 7, 12. Nous ferons éventuellement d'autres exercices en fonction du temps restant.

Exercice 0 (à préparer) : TD13

Faire les exercices du TD 13 que nous n'avons pas eu le temps de traiter, à l'exception de l'exercice 20.

Exercice 1: Lissité

Soit k un corps. La variété

$$V: x^2 - xz - y^2 - 1 = yz - x^2 - z^2 = 0$$

dans \mathbb{A}^3_k est-elle lisse?

Exercice 2 : Lissité versus régularité

Soient K un corps et $c \in K^{\times}$. Soit C la courbe d'équation $y^2 = x^3 - c$.

- **1.** Montrer que C est une courbe (ie dim C=1).
- 2. Montrer que C est lisse si, et seulement si, K est de caractéristique différente de 2 et 3.
- **3.** Dans le cas où K est de caractéristique 2 ou 3, quels sont les points non lisses de C? Sont-ils réguliers?

Exercice 3 : Surface normale singulière

Soit k un corps de caractéristique différente de 2. On considère le cône C d'équation $x^2 + y^2 = z^2$ dans \mathbb{A}^3_k . Montrer que le point (0,0,0) est singulier. Y a-t'il d'autres points singuliers? L'anneau $\mathcal{O}(C)$ est-il normal?

Exercice 4 : Variété réduite et extension des scalaires

Soient k un corps et A une k-algèbre de type fini réduite. Soit l une extension finie de k. Montrer que l'algèbre $A \otimes_k l$ n'est pas forcément réduite. Montrer que, si l'extension l/k est séparable, alors $A \otimes_k l$ est réduite.

Exercice 5 : Différentielles de Kähler

Soient A un anneau et B une A-algèbre. Soit M un B-module. On dit qu'une

application A-linéaire $d: B \to M$ est une A-dérivation de B dans M si $d(b_1b_2) = b_1db_2 + b_2db_1$ pour $b_1, b_2 \in B$ et da = 0 pour $a \in A$. On note $Der_A(B, M)$ l'ensemble des A-dérivations de B dans M.

- 1. Montrer qu'il existe un B-module $\Omega^1_{B/A}$ et une A-dérivation $d: B \to \Omega^1_{B/A}$ tels que, pour chaque B-module M, l'application $\operatorname{Hom}_B(\Omega^1_{B/A}, M) \to \operatorname{Der}_A(B, M), \phi \mapsto \phi \circ d$ est une bijection. Montrer que le couple $(\Omega^1_{B/A}, d)$ est unique à isomorphisme près. On l'appelle le module des formes différentielles relatives de B sur A.
- **2.** Montrer que le couple $(\Omega^1_{B/A}, d)$ s'identifie à $(I/I^2, \delta)$ où I est le noyau de $B \otimes_A B \to B, b \otimes b' \mapsto bb'$ et $\delta : B \to I/I^2, b \mapsto b \otimes 1 1 \otimes b$.
- **3.** Calculer $(\Omega^1_{B/A}, d)$ dans les cas suivants :
 - (a) $B = A[T_1, ..., T_n]$ pour un certain $n \ge 0$;
 - (b) B est un quotient de A;
 - (c) B est un localisé de A.
- 4. Montrer les propriétés suivantes :
 - (a) Pour toute A-algèbre A', si $B' = B \otimes_A A'$, il existe un isomorphisme canonique de B'-modules $\Omega^1_{B'/A'} \cong \Omega^1_{B/A} \otimes_B B'$.
 - (b) Si $B \to C$ est un morphisme de A-algèbres, il existe une suite exacte naturelle :

$$\Omega^1_{B/A} \otimes_B C \to \Omega^1_{C/A} \to \Omega^1_{C/B} \to 0.$$

- (c) Si S est une partie multiplicative de B, $S^{-1}\Omega^1_{B/A} \cong \Omega^1_{S^{-1}B/A}$.
- (d) Si C=B/J pour un certain idéal J, il existe une suite exacte naturelle :

$$I/I^2 \to \Omega^1_{B/A} \otimes_B C \to \Omega^1_{C/A} \to 0.$$

- 5. Déduire de ce qui précède que, si B est une localisation d'une A-algèbre de type fini, alors $\Omega^1_{B/A}$ est un B-module de type fini. Calculer $(\Omega^1_{B/A}, d)$ lorsque $B = A[X_1, ..., X_n]/(f)$ pour un certain $f \in A[X_1, ..., X_n]$.
- 6. (a) Supposons que A = k est un corps et que B est une k-algèbre de type fini. Soit $\mathfrak{m} \in \operatorname{Spec} B$ tel que $B/\mathfrak{m} \cong k$. Montrer que $\mathfrak{m}/\mathfrak{m}^2$ et $\Omega^1_{B/k} \otimes_B B/\mathfrak{m}$ sont isomorphes.
 - (b) Supposons que A=k est un corps algébriquement clos et que B est une k-algèbre intègre de type fini. Soit $X=\operatorname{Spec} B$. Montrer que X est lisse si, et seulement si, $\Omega^1_{B/k}$ est un B-module localement libre de rang dim B. On dit qu'un B-module M est localement libre de rang n si, pour tout idéal premier $\mathfrak p$ de B, il existe $f\in B\setminus \mathfrak p$ tel que $M[f^{-1}]$ est un $B[f^{-1}]$ -module libre de rang n.

Exercice 6: Ouvert lisse

Soient k un corps algébriquement clos et A une k-algèbre intègre de type fini. Soit $X = \operatorname{Spec} A$. Montrer que X contient un ouvert dense et lisse.

Exercice 7: Valuations

- 1. Quelles sont les valuations de Q? Quels sont les anneaux de valuation correspondants? Quels sont leurs complétés?
- **2.** Même question pour $\mathbb{F}_q(t)$.

Exercice 8 : Théorème d'approximation faible d'Artin-Whaples

Soit K un corps. Soient $v_1, ..., v_n$ des valuations discrètes deux à deux distinctes sur K. Soient $x_1, ..., x_n$ des éléments de K. Soit $m \in \mathbb{N}$. Montrer qu'il existe $x \in K$ tel que $v_i(x - x_i) > m$ pour chaque i.

Exercice 9: Valuations et extensions de corps

Soit L/K un extension de corps. Soit v une valuation discrète sur K, qui en fait un corps complet. Montrer qu'il existe une unique valuation discrète sur L qui étend v.

Exercice 10: Avd complet à corps résiduel $\mathbb C$

Quels sont les anneaux de valuation discrète complets à corps résiduel \mathbb{C} ?

Exercice 11: Retour au lemme de Hensel

Soit K un corps, muni d'une valuation discrète v qui en fait un corps complet. Soit A l'anneau de valuation. Soit $\mathfrak p$ l'idéal maximal de A.

- 1. Soient $f, g, h \in A[X]$ tels que f est primitif, $\overline{f} = \overline{g}\overline{h} \in A/\mathfrak{p}[X]$ et \overline{g} et \overline{h} sont premiers entre eux. Montrer qu'il existe $G, H \in A[X]$ tels que f = GH, $\deg G = \deg \overline{g}$, $\overline{G} = \overline{g}$ et $\overline{H} = \overline{h}$.
- **2.** Soit $f = a_0 + a_1 X + ... + a_n X^n \in K[X]$ un polynôme irréductible avec $a_0 a_n \neq 0$. Montrer que $\min\{v(a_i)|0 \leq i \leq n\} = \min\{v(a_0), v(a_n)\}$. En déduire que, si $a_n = 1$ et $a_0 \in A$, alors $f \in A[X]$.

Exercice 12: Exemples d'anneaux de Dedekind

Parmi les anneaux suivants, lesquels sont de Dedekind?

$$\mathbb{Z}[\sqrt{5}], \ \mathbb{Z}[\frac{1+\sqrt{5}}{2}], \ \mathbb{Z}[\zeta_{81}], \ \mathbb{R}[X,Y]/(X^2+Y^2-1),$$

 $\mathbb{R}[X,Y]/(Y^2-X^3-X^2), \ \mathbb{R}[X,Y,Z]/(X^2+Y^2+Z).$

Exercice 13: Anneaux de Dedekind et anneaux principaux

Montrer qu'un anneau de Dedekind possédant un nombre fini d'idéaux premiers est un anneau principal.

Exercice 14 : Idéaux dans les anneaux de Dedekind

Montrer que tout idéal d'un anneau de Dedekind est engendré par deux éléments.

Exercice 15: "Moving lemma"

Soit I un idéal non nul d'un anneau de Dedekind A de corps des fractions K. Montrer qu'il existe $a \in K^{\times}$ tel que aI est un idéal de A premier avec I.

Exercice 16: Une réciproque

Soit A un anneau intègre tel que tout idéal non nul s'écrit de manière unique (à l'ordre près) comme produit d'idéaux premiers. Montrer que A est de Dedekind.

Exercice 17: Produit tensoriel d'idéaux

Soient A un anneau de Dedekind et I et J deux idéaux de A. Montrer que le morphisme de A-modules $f:I\otimes_A J\to IJ, i\otimes j\mapsto ij$ est un isomorphisme. Le résultat subsiste-t'il si A n'est pas de Dedekind?