TD7 : EXTENSIONS SÉPARABLES, NORMALES, GALOISIENNES

Diego Izquierdo

Les exercices 1, 2 et 3 sont à préparer avant le TD. Nous traiterons les exercices dans l'ordre suivant : 1, 2, 3, 10, 15, 16, 19. Si le temps le permet, nous traiterons aussi l'exercice 4.

Exercice 1 (à préparer) : Une infinité d'extensions intermédiaires Trouver une infinité d'extensions intermédiaires entre $\mathbb{F}_p(X^p, Y^p)$ et $\mathbb{F}_p(X, Y)$. Existe-t'il $\alpha \in \mathbb{F}_p(X, Y)$ tel que $\mathbb{F}_p(X, Y) = \mathbb{F}_p(X^p, Y^p)(\alpha)$?

Exercice 2 (à préparer) : Une extension inséparable en caractéristique 2

Soient $K = \mathbb{F}_2(X, Y)$, $L = K(\alpha)$ avec $\alpha^2 + X\alpha + Y = 0$, et $M = K(\beta)$ avec $\beta^2 = \alpha$.

- **1.** Montrer que [M : K] = 4.
- **2.** Montrer que $[M:K]_s=2$ et que $M_s=L$.
- 3. Montrer qu'un élément $\gamma \in M$ vérifie $\gamma^2 \in K$ si, et seulement si, $\gamma \in K$.
- **4.** Montrer qu'il n'existe pas de corps intermédiaire $K \subsetneq F \subseteq M$ purement inséparable sur K.

Exercice 3 (à préparer) : Extensions séparables et degré

Soit L/K une extension finie de corps de caractéristique p>0 de degré premier à p. Montrer qu'elle est séparable.

Exercice 4 : Une caractérisation des extensions séparables

Soit $F \subseteq E$ une extension finie de corps de caractéristique p > 0.

- 1. Montrer qu'un élément $x \in E$ est séparable si et seulement si on a $F(x) = F(x^p)$.
- 2. Montrer l'équivalence des assertions suivantes :
 - (i) il existe une base (x_1, \ldots, x_n) de E sur F telle que (x_1^p, \ldots, x_n^p) est aussi une F-base de E;
 - (ii) pour toute base (y_1, \ldots, y_n) de E sur F, (y_1^p, \ldots, y_n^p) est aussi une F-base de E.
- **3.** Montrer que (i) est vraie si et seulement si l'extension $F \subseteq E$ est séparable.

Exercice 5 : Éléments primitifs

1. Soit $K = \mathbb{Q}(\sqrt[3]{2}, \rho)$. Pour quelles valeurs de $t \in \mathbb{Q}$ l'élément $\sqrt[3]{2} + t\rho$ est-il un élément primitif de l'extension K/\mathbb{Q} ? Et $\sqrt[3]{2} + t\rho\sqrt[3]{2}$?

2. Donner un élément primitif de l'extension $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbb{Q}$.

Exercice 6: p-dimension

Soit $F \subseteq E$ une extension finie de corps de caractéristique p > 0. On suppose l'inclusion $E^{\times p} \subseteq F^{\times}$, de sorte que $F \subseteq E$ est purement inséparable. Appelons famille génératrice de E toute famille d'éléments $(x_1, ..., x_n)$ de E telle que $E = F(x_1, ..., x_n)$. Montrer que les familles génératrices minimales de E sont toutes de même cardinal (on pourra calculer le degré de [E:F]). On appelle ce cardinal la p-dimension de E/F.

Exercice 7 : Extensions purement inséparables

Soient K un corps de caractéristique p > 0, \overline{K} une clôture algébrique de K et K^s la clôture séparable de K dans \overline{K} .

- 1. Rappeler pourquoi K^s est bien définie.
- Soit $P \in K[X]$ un polynôme unitaire irréductible.
 - **2.** Montrer que P a une unique racine dans \overline{K} si et seulement si il existe $r \in \mathbb{N}$ et $a \in K$ tels que $P = X^{p^r} a$.

Soit $K \subseteq L$ une extension algébrique.

- **3.** Montrer que $K \subseteq L$ est purement inséparable si et seulement si il n'existe qu'un homomorphisme de K-algèbres de L dans \overline{K} .
- **4.** Montrer que L est une extension purement inséparable de $K^s \cap L$. On note L^{rad} le sous-corps de L constitué de tous les éléments $x \in L$ tels qu'il existe $r \in \mathbb{N}$ avec $x^{p^r} \in K$.
 - 5. Montrer que \overline{K} est une extension séparable de $\overline{K}^{\mathrm{rad}}$.
 - **6.** Est-ce vrai pour $L \subseteq \overline{K}$ et L^{rad} ?

Exercice 8: Plus grand sous-corps parfait

Soient n un entier naturel et q une puissance d'un nombre premier. Quel est le plus grand sous-corps parfait de $\mathbb{F}_q(X_1, ..., X_n)$?

Exercice 9: Un exemple de corps parfait

Donner un exemple de corps parfait infini de caractéristique positive non séparablement clos.

Exercice 10: Sous-corps d'un corps parfait

Soit L/K une extension de corps telle que L est parfait. Montrer que, si $[L:K] < \infty$, alors K est parfait. Que dire si $[L:K] = \infty$?

Exercice 11: Extensions de type fini d'un corps parfait

Soit L une extension de type fini d'un corps parfait K de caractéristique p > 0. Montrer que $[L:L^p] < \infty$.

Exercice 12: Partiel 2012

Le résultat de cet exercice est important, mais il n'est pas essentiel d'en connaître la preuve. Soit L/K une extension algébrique de corps. On suppose que tout polynôme de K[X] a une racine dans L. On veut montrer que L est une clôture algébrique de K.

- 1. Montrer la conclusion si on suppose de plus que tout polynôme de K[X] est scindé dans L.
- 2. Montrer la conclusion si on suppose de plus que K est parfait.
- **3.** On suppose à partir de maintenant que la caractéristique de K est p > 0. Montrer que $M = \{x \in L | \exists n \in \mathbb{N}^*, x^{p^n} \in K\}$ est un sous-corps parfait de L.
- 4. En déduire que L est un corps parfait.
- 5. Montrer que tout polynôme de M[X] a une racine dans L. Conclure.

Exercice 13: Produits tensoriels de corps

- 1. Exhiber un isomorphisme d'anneaux $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}$.
- **2.** Soit K une extension finie de \mathbb{Q} . Calculer $K \otimes_{\mathbb{Q}} \mathbb{R}$ et $K \otimes_{\mathbb{Q}} \mathbb{C}$.
- **3.** Calculer $\mathbb{F}_p(t^{1/p}) \otimes_{\mathbb{F}_p(t)} \mathbb{F}_p(t^{1/p})$.

Exercice 14: Algèbres étales

Soient K un corps et A une K-algèbre (commutative) de dimension finie sur K. Pour $a \in A$, on note $\operatorname{Tr}_{A/K}(a)$ la trace de l'application K-linéaire $A \to A, x \mapsto ax$. Montrer que les assertions suivantes sont équivalentes :

- (i) A est isomorphe à un produit fini d'extensions finies séparables de K;
- (ii) l'anneau $A \otimes_K \overline{K}$ est isomorphe à un produit fini de copies de \overline{K} ;
- (iii) l'anneau $A \otimes_K \overline{K}$ est réduit;
- (iv) la forme bilinéaire $A \times A \to K$, $(a,b) \mapsto \operatorname{Tr}_{A/K}(ab)$ est non dégénérée. On dit alors que A est une K-algèbre étale.

Exercice 15: Calcul de discriminant, le retour

Soient K un corps, $a, b \in K$ et $n > s \ge 1$. Quel est le discriminant de $X^n + aX^s + b \in K[X]$?

Exercice 16: Extensions normales

Soient $K = \mathbb{Q}(\sqrt{5})$ et $L = \mathbb{Q}(\sqrt{1 + \sqrt{5}})$. Montrer que les extensions $\mathbb{Q} \subseteq K$ et $K \subseteq L$ sont normales, mais que $\mathbb{Q} \subseteq L$ ne l'est pas. Quelle est sa clôture

normale dans $\overline{\mathbb{Q}}$?

Exercice 17: Partiel 2011

Soient K et K' deux sous-corps d'un corps L tels que l'extension $L/K \cap K'$ est algébrique. On suppose que L/K et L/K' sont normales. Montrer que $L/K \cap K'$ est normale.

Exercice 18 : Irréductibilité de polynômes

- 1. Soit L/K une extension finie galoisienne. Soit $f \in L[X]$ un polynôme unitaire. Montrer que le polynôme $g = \prod_{\sigma \in \mathbf{Gal}(L/K)} \sigma f \in L[x]$ est en fait à coefficients dans K, puis que si g est irréductible dans K[X], alors f est irréductible dans L[X].
- **2.** Montrer que, pour tout entier naturel n, les polynômes $X^n + 2 + \sqrt{10} \in \mathbb{Q}(\sqrt{10})[X]$ et $X^n + 1 + \sqrt[3]{2} \in \mathbb{Q}(\sqrt[3]{2})[X]$ sont irréductibles.

Exercice 19: Automorphismes de corps

Déterminer les groupes d'automorphismes suivants :

$$\operatorname{Aut}(\mathbb{C}/\mathbb{R}),\ \operatorname{Aut}(\mathbb{Q}(\sqrt{3},\sqrt{5})/\mathbb{Q}),\ \operatorname{Aut}(\mathbb{Q}(\sqrt[3]{3})/\mathbb{Q}),\ \operatorname{Aut}(\mathbb{Q}(\sqrt[3]{3},j)/\mathbb{Q}),$$

$$\operatorname{Aut}(\mathbb{Q}(\sqrt{2},\sqrt[3]{3})/\mathbb{Q}),\ \operatorname{Aut}(\mathbb{Q}(\sqrt{2},\sqrt[3]{3},j)/\mathbb{Q}),\ \operatorname{Aut}(\mathbb{R}/\mathbb{Q}).$$

Exercice 20: Partiel 2013

Quel est le groupe de Galois d'un corps de décomposition du polynôme X^3-10 sur $\mathbb Q$? Et sur $\mathbb Q(i\sqrt{3})$?

Exercice 21 : Automorphismes et degré séparable

Soit L/K une extension finie. Montrer que $|\operatorname{Aut}_K(L)|$ divise $[L:K]_s$.

Exercice 22 : Théorème de Lüroth

Soit K un corps.

- 1. Soit $F \in K(X)\backslash K$. Soient P et Q deux polynômes dans K[X] premiers entre eux tels que F = P/Q. Montrer que l'extension K(X)/K(F) est finie. Quel est son degré?
- 2. Montrer qu'il existe un isomorphisme entre Gal(K(X)/K) et $PGL_2(K)$. Soit maintenant L une extension de K contenue dans K(X). On suppose que $K \neq L$.
 - **3.** Montrer que X est algébrique sur L.
 - **4.** On note $P = T^n + F_{n-1}T^{n-1} + ... + F_0 \in L[T]$ le polynôme minimal de X sur L. Montrer qu'il existe i tel que $F_i \notin K$.
 - **5.** (Difficile) Montrer que $L = K(F_i)$.

6. Quelles sont les fractions rationnelles $F \in K(X)$ telles que $F \circ F \circ ... \circ F = X$?

Exercice 23 : Non fonctorialité de la clôture algébrique

On va considérer les sous-corps suivants de \mathbb{C} : $K = \mathbb{Q}(i)$, $L = K(\sqrt{2})$, $M = K(2^{1/4})$ et $\overline{\mathbb{Q}}$ le corps des nombres algébriques sur \mathbb{Q} . Soit $f \in \operatorname{Aut}_K(L)$ l'automorphisme qui envoie $\sqrt{2}$ sur son opposé.

- 1. Montrer qu'il existe un automorphisme de M qui prolonge f, mais qu'il n'existe pas d'automorphisme involutif de M qui prolonge f.
- **2.** Montrer que tout automorphisme de $\overline{\mathbb{Q}}$ laisse M stable.
- **3.** En déduire qu'il n'existe pas d'automorphisme involutif de $\overline{\mathbb{Q}}$ qui prolonge f.
- 4. Montrer qu'il n'existe pas d'application : vérifiant :
 - (i) à tout corps k est associé un corps \overline{k} , algébriquement clos et extension algébrique de k, et un morphisme de corps $k \to \overline{k}$;
 - (ii) à tout morphisme de corps $f:k\to k'$ est associé un morphisme $\overline{f}:\overline{k}\to\overline{k'}$ tel que le diagramme

commute et tel que, pour tous f,g on ait $\overline{f\circ g}=\overline{f}\circ \overline{g}.$ On dira qu'il n'existe pas de foncteur « clôture algébrique ».