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Représentations linéaires
Travaux dirigés du 6 et du 9 janvier 2026

5 Exercice 1. Représentation de permutation d’une action

Soit G un groupe fini agissant sur un ensemble fini X de cardinal supérieur à 3. On considère la représentation de
permutation CX .

1. Vérifier que l’on a une décomposition comme C[G]-module

CX =C
( ∑

x∈X
x

)
⊕H avec H =

{ ∑
x∈X

λx x

∣∣∣∣∣ ∑
x∈X

λx = 0

}

et où le premier terme est isomorphe à la représentation triviale. Vérifier également que H est engendré comme
C-espace vectoriel par les

(
x −x ′)

(x,x′)∈X×X .

Les sous-C-espaces vectoriels C
(∑

x∈X x
)

et H sont G-stables. De plus, ils sont supplémentaires l’un de l’autre par
l’application C-linéaire et bijective

CX →
(
C

( ∑
x∈X

x

))
×H ,

∑
x∈X

λx x 7→
(∑

x∈X λx

|X |

( ∑
x∈X

x

)
,
∑

x∈X

(
λx −

∑
x ′∈X λx′

|X |
)

x

)
.

On en déduit la décomposition de C[G]-modules, et le premier terme est isomorphe à la représentation triviale car
G agit trivialement sur

∑
x∈X x.

De plus, si nous choisissons x0 ∈ X , alors tout élément de H s’écrit

∑
x∈X

λx x = ∑
x∈X

λx x −
( ∑

x∈X
λx

)
x0 =

∑
x∈X

λx (x −x0) .

2. Soit Y un G-ensemble fini. Démontrer que le vecteur v = ∑
y∈Y λy y appartient aux points de CY fixes sous G si et

seulement si la fonction y 7→λy est G-invariante, i.e. constante sur les orbites.

Il faut écrire que

g

( ∑
y∈Y

λy y

)
= ∑

y∈Y
λy g y = ∑

y∈Y
λg−1 y y

puis identifier.

On se propose de démontrer que H est irréductible si et seulement si l’action de G sur X est 2-transitive. Dans un
premier temps, supposons que l’action est 2-transitive.

3. Calculer pour tout x ∈ X l’espace des invariants HGx .

Soit v = ∑
x∈X λx x dans HGx . Nous utilisons la question précédente pour le Gx -ensemble X . Par 2-transitivité

de l’action de G , le Gx -ensemble possède deux orbites : {x} et X − {x}. Ceci implique que v ∈ (CX )Gx s’écrit v =
λx +µ∑

x ′ ̸=x x ′. En ajoutant le fait que v ∈ H , on obtient que

HGx =C
(

x − 1

|X |−1

( ∑
x′∈X−{x}

x ′
))

.

4. Démontrer que H est irréductible. (Indication : pour une sous-représentation non nulle H ′, on pourra considérer
un vecteur non nul v ∈ H ′ et prendre x tel que la coordonnée de v sur x est non nulle, puis essayer de créer un
élément dans H ′∩HGx .)

Soit H ′ une sous-représentation non nulle et v ∈ H ′ non nul. On pose x tel que la coordonnée de v sur x est non
nulle. En regardant la moyenne

v ′ = 1

|Gx |
∑

g∈Gx

g · v

on obtient un vecteur toujours dans H ′, toujours de coordonnée non nulle sur x, et invariant par Gx . Autrement
dit, nous avons démontré que HGx ⊆ H ′ puisque la question 2 démontrait que HGx était une droite.
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Puisque l’action de G est transitive, on peut choisir g tel que g · x ̸= x. La différence suivante est toujours dans H ′ :(
x − 1

|X |−1

( ∑
x ′∈X−{x}

x ′
))

− g ·
(

x − 1

|X |−1

( ∑
x′∈X−{x}

x ′
))

=
(
1+ 1

|X |−1

)
(x − g · x).

Ainsi, le sous-espace H ′ contient l’un des x − x ′ pour x ̸= x ′, et les contient donc tous par 2-transitivité de l’action.
Nous avons démontré que H ′ = H .

Supposons à présent que l’action n’est pas 2-transitive. Considérons l’action diagonale de G sur X ×X et la représen-
tation de permutation C(X ×X ) associée.

5. Supposons que l’action de G sur X n’est pas 2-transitive. Trouver un sous-espace de dimension 3 du C(X × X ) sur
lequel G agisse trivialement.

Si l’action n’est pas 2-transitive, de manière générale, l’action de G sur (X × X )\{(x, x) | x ∈ X } n’est pas transitive.
Prenons O1 et O2 deux orbites. Alors, la diagonale {(x, x) | x ∈ X },O1 et O2 sont trois orbites de X × X sous G . Les
vecteurs associés aux fonctions caractéristiques de ces trois orbites sont fixes sous G , et engendrent un espace de
dimension 3 puisque les orbites sont disjointes.

Pour parachever la preuve, il reste à démontrer que si H est irréductible, alors la dimension des points fixes deC(X ×X )
sous l’action de G vaut 2. Nous commençons par énoncer un résultat un peu plus général sur les représentations de
permutation.

6. Soit X ,Y deux G-ensembles finis. Démontrer que l’application suivante est un isomorphisme de C[G]-modules :

HomC(CX ,CY ) →C(X ×Y ), T 7→ ∑
(x,y)∈X×Y

tx,y (x, y) où T (x) = ∑
y∈Y

tx,y y.

C’est une application linéaire entre espace de même dimension, autrement dit un isomorphisme de C-espaces
vectoriels. Pour prouver qu’il est G-équivariant, calculons

(g T )x = g
(
T

(
g−1x

))
= g

( ∑
y∈Y

tg−1x,y y

)
= ∑

y∈Y
tg−1x,y g y

= ∑
y∈Y

tg−1x,g−1 y y

Ainsi, l’image de g T est ∑
(x,y)∈X×Y

tg−1x,g−1 y (x, y) = ∑
(x,y)∈X×Y

tx,y (g x, g y)

qui est exactement l’image de T à laquelle on aurait appliqué g .

7. Conclure. (Indication : on pourra regarder les invariants par G de HomC(CX ,CX ) et utiliser le lemme de Schur.)

En appliquant la question précédente à X = Y et passons aux invariants ce qui donne

EndC(CX )G = (C(X ×X ))G .

Le terme de droite correspond aux points fixes de C(X × X ) sous l’action de G . Le terme de gauche, quant à lui,
correspond aux endomorphismes de C[G]-modules de CX . En effet, dire qu’un endomorphisme C-linéaire f est
fixe signifie que

∀g ∈G , g f = g ◦ f ◦ g−1 = f

ce qui se reformule en post-composant par g comme

∀g ∈G , g ◦ f = f ◦ g .

Si H est irréductible, la représentation CX s’écrit en irréductibles 1⊕H avec H non isomorphe à 1 puisque dim H =
|X |−1 > 1. Si f est un endomorphisme de C[G]-modules de CX , sa matrice dans une base adaptée à la décompo-
sition 1⊕H est de la forme [

A B
C D

]
où B et C ne correspondent pas à des isomorphismes donc sont nulles par Schur, et A et D sont des homothéties
encore par Schur. Les endomorphismes de C[G]-modules de CX sont donc exactement les endomorphismes par
blocs valant une homothétie sur 1 et sur H , i.e. de dimension 2.
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8. On suppose que X est de cardinal pair. Adapter le raisonnement pour remplacer C par R.

La seule chose à modifier par rapport au cas complexe reste de garantir un lemme de Schur pour la question précé-
dente. Il est valable sur R pour des représentations irréductibles de dimension impaire (nous avons toujours une
valeur propre réelle pour un endomorphisme linéaire d’un R-espace vectoriel de dimension impaire).

9. On suppose que G agit transitivement sur X . Adapter le raisonnement pour remplacer C par un corps algébrique-
ment clos de caractéristique p > 2 dans lequel |G| ̸= 0.

Schur ne pose pas problème, ce sont plutôt les calculs des premières questions qui peuvent s’avérer impossibles
dans notre corps. Pour les questions 1 et 4, considérer que p ne divise pas |G| car |G| ̸= 0 dans le corps considéré, et
comme l’action est transitive on a que |G| divise |X | (par équation aux classes) donc p ne divise pas non plus |X |.
Pour les questions 3 et 4, on n’avait en réalité pas besoin de diviser par |X |−1.

5 Exercice 2. Action du centre

Soit G un groupe et V un C[G]-module de dimension finie.

1. Supposons V irréductible. Montrer que l’action de Z(G) se fait par homothéties, i.e. que pour tout z ∈ Z (G),
l’élément z ·− de GL(V ) est dans C× idV .

L’élément z ·− est un endomorphisme deC[G]-modules. En effet, c’est un endomorphisme deC-espaces vectoriels
et pour tout g ∈G , l’appartenance de z au centre entraîne que

∀v ∈V , z · (g · v) = (zg ) · v = (g z) · v = g · (z · v)

Puisque V est irréductible, ses seuls endomorphismes comme C[G]-module sont les homothéties par Schur.

2. Soit H un sous-groupe d’indice fini de G . On suppose que le C[H ]-sous-module sous-jacent à V est semi-simple.
Démontrer que V est semi-simple. (Indication : si W est un sous- C[G]-module de V , on pourra regarder la projec-
tion π sur W parallèlement à un supplémentaire de W , puis regarder πG = 1

[G :H ]

∑
g H∈G/H g ◦π◦ g−1.)

Nous utilisons ici des idées similaires à celle de la démonstration du théorème de Maschke. Rappelons que ce
dernier repose fondamentalement sur la création d’un projecteur qui commute à l’action de G .

Soit W un sous-C[G]-module de V . Il faut démontrer que W possède un sous-C[G]-module supplémentaire. En
utilisant la semi-simplicité du C[H ]-module sous-jacent à V , on trouve un sous-C[H ] module supplémentaire et la
projection sur W parallèlement à ce supplémentaire fournit un projecteur sur W qui commute à l’action de H , que
nous notons π.

Si π commute à l’action de G , alors ker p est G-stable donc on a trouvé un sous-C[G]-module supplémentaire de
W .

En général, puisqueπ commute à l’action de H , nous avons pour tout h ∈ H que h◦π◦h−1 =π, et donc que g◦π◦g−1

ne dépend que de g H . Il est alors possible de définir

πG = 1

[G : H ]

∑
g H∈G/H

g ◦π◦ g−1.

On va montrer que c’est un projecteur d’image W qui commute à l’action de G . On a ImπG ⊆W car W est G-stable.
De plus, pour x ∈W et g ∈G , on a g−1(x) ∈W donc π◦ g−1(x) = g−1(x) et πG (x) = 1

[G :H ]

∑
g H∈G/H x = x, donc πG est

un projecteur d’image W . Enfin, pour tout k ∈G , nous avons

πG ◦k = 1

[G : H ]

∑
g H∈G/H

g ◦π◦ (
g−1k

)
= 1

[G : H ]

∑
g H∈G/H

k ◦ (
k−1g

)◦π◦ (
k−1g

)−1

= k ◦
(

1

[G : H ]

∑
g H∈G/H

(
k−1g

)◦π◦ (
k−1g

)−1

)
= k ◦πG

puisque g H 7→ k−1g H est une bijection correctement définie des classes à gauche ; on est ramenés au cas précé-
dent.

3. Supposons que Z (G) agit par homothéties et qu’il est d’indice fini dans G . Démontrer que V est semi-simple.

Si le centre agit par homothéties, n’importe quel sous-C-espace vectoriel de V est un sous-C[Z(G)]-module de V .
Ceci entraîne que V est semi-simple comme représentation de Z(G), puis comme représentation de G en utilisant
la question précédente.
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5 Exercice 3. Représentations d’un p-groupe surZ/pZ

Soit G un p-groupe fini. Démontrer que le seul (Z/pZ)[G]-module de dimension finie et irréductible est de dimension
1 et trivial.

Soit V un tel module, de dimension d . Le groupe G agit sur V −{0}, qui est de cardinal pd −1. On rappelle que pour un
p-groupe G et un G-ensemble X , nous avons par équation aux classes et formule orbite-stabilisateur

|X | ≡ ∣∣X G ∣∣ mod p

Ici, cela implique qu’un vecteur non nul de V est fixe par G , autrement dit que V possède une droite fixe. L’irréductibilité
de V la force à coïncider avec cette droite fixe.

Exercice 4. Décomposition de Fourier finie et une motivation à la théorie des représentations

Soit G un groupe fini. On rappelle que l’on dispose de l’ensemble Ĝ des caractères de G , c’est-à-dire des morphismes
de groupes G →C×. Par commutativité de C×, on a une structure naturelle de groupe abélien sur Ĝ .

Notons L2(G) leC-espace vectoriel des fonctions G →C, muni du produit scalaire hermitien 〈 f , f 〉 = 1
|G| f (g ) f (g ). C’est

un espace de dimension finie |G|. Observons que pour tout g ∈G on dispose d’un endomorphisme Rg de L2(G) défini
par Rg ( f ) : h 7→ f (hg ) (translation à droite par g ). Cet endomorphisme est unitaire : si f , f ∈ L2(G), et si g ∈ G , alors
〈Rg ( f ),Rg ( f )〉 = 〈 f , f 〉. De plus, g 7→ Rg définit une représentation de G ; on l’appelle représentation régulière de G .

1. Constater que pour tout χ ∈ Ĝ et tout g ∈G , χ est vecteur propre de Rg , de valeur propre χ(g ).

Pour χ ∈ Ĝ et g ∈G , on a Rg (χ) =χ(g )χ puisque χ est un morphisme de groupes, d’où le constat.

2. En déduire que l’ensemble Ĝ est une famille libre et orthonormée de L2(G) (c’est la propriété d’orthogonalité des
caractères), et que si G est abélien c’est une base de L2(G).

Montrons la première partie de la question. Pour χ ∈ Ĝ et g ∈G on a χ(g )|G| = χ(g |G|) = χ(1) = 1 donc χ(g )χ(g ) = 1.
On en déduit 〈χ,χ〉 = 1

|G| · |G| = 1. Pour voir qu’ils sont orthogonaux, il suffit de dire que pour χ ̸= χ′, il existe
g ∈ G tel que χ(g ) ̸= χ′(g ), et donc χ et χ′ sont dans des espaces propres pour des valeurs propres distinctes de
l’endomorphisme unitaire Rg . Ils sont donc orthogonaux : en effet on a

〈χ,χ′〉 = 〈Rgχ,Rgχ
′〉 = 〈χ(g )χ,χ′(g )χ′〉 =χ(g )χ′(g )〈χ,χ′〉

et donc 〈χ,χ′〉 = 0 car χ(g )χ′(g ) = χ(g )χ′(g )−1 ̸= 1. Prouvons enfin que les caractères sont linéairements indépen-
dants. Si on a 0 =∑

ψ∈Ĝ µψψ avec µψ ∈C pour tout ψ, en faisant 〈−,χ〉 on en déduit µχ = 0.

Montrons la deuxième partie de la question. Si G est abélien, les endomorphismes Rg avec g ∈G commutent. De
plus, les Rg sont diagonalisables (on peut soit invoquer la fait qu’un endomorphisme unitaire est diagonalisable,
soit dire que les Rg annulent le polynôme X |G|−1 qui est scindé à racines simples). Ils sont donc codiagonalisables
: L2(G) possède une base constituée de vecteurs propres communs à tous les Rg . Si f est un tel vecteur propre, on
a Rg f = λg f pour tout g ∈ G , avec λg ∈ C× (car Rg est inversible d’inverse Rg−1 , ou encore car Rg est unitaire). La

relation Rg h = Rg ◦Rh entraîne λg h = λgλh pour g ,h ∈G . Autrement dit, la fonction g 7→ λg est dans Ĝ . Enfin, on
a par définition (Rg f )(h) = f (hg ), donc f (hg ) = λg f (h) pour tout g ,h ∈G , puis f (g ) = λg f (1). Comme f ̸= 0, on a
f (1) ̸= 0, et quitte à remplacer f par f / f (1) on peut supposer f (1) = 1, i.e. f est dans Ĝ .

3. En déduire que si G est abélien, on a |Ĝ| = |G| et pour toute fonction f : G →C, on a

f = ∑
χ∈Ĝ

〈 f ,χ〉χ.

Les 〈 f ,χ〉 sont appelés coefficients de Fourier de f , et la fonction f̂ ∈ L2(Ĝ) définie par f̂ (χ) = |G|〈 f ,χ〉 est appelée
transformée de Fourier de f .

On a |G| = dimL2(G), et aussi dimL2(G) = |Ĝ| par la question précédente. Cela montre la première partie de la
question. Pour la deuxième, on écrit f =∑

χ∈Ĝ λχχ pour certains λχ ∈C et on a 〈 f ,χ〉 =λχ toujours par la question
précédente.

4. En déduire une nouvelle preuve du fait que l’on peut prolonger tout caractère défini sur un sous-groupe d’un
groupe abélien fini (on l’avait déjà montré dans le préambule du TD précédent).

En effet, soit G un groupe abélien et H un sous-groupe de G , considérons l’application de restriction r : Ĝ → Ĥ ,
χ 7→ χ|H . C’est un morphisme de groupes. Son noyau est le sous-groupe des caractères de G triviaux sur H . Par la
propriété universelle du groupe quotient G/H , si π : G →G/H désigne la projection canonique, alors l’application
ψ 7→ψ◦π induit une bijection entre �G/H et kerr , donc | Imr | = |Ĝ|/|kerr | = |Ĝ|/|�G/H |. Par la question précédente
on peut enlever et remettre les chapeaux à loisir donc | Imr | = |G|/|G/H | = |H | = |Ĥ |, et donc r est surjective.
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Suivant Dedekind, le déterminant de G est le polynôme

detG := det
(

Xg h−1

)
g ,h∈G

où les Xg sont des indéterminées indexées par les éléments de G . C’est donc un polynôme homogène de degré |G| en
les Xg , et la question posée par Dedekind est de le factoriser dans C[Xg , g ∈G]. Dans le cas où G est abélien, Dedekind
montre qu’on a

detG = ∏
χ∈Ĝ

( ∑
g∈G

χ(g )Xg

)
.

On se propose de montrer ce résultat ; supposons donc G abélien. Pour (xg )g∈G ∈ CG , on regarde l’endomorphisme
u =∑

g∈G xg Rg de L2(G).

5. Montrer que l’évaluation de detG en les xg est égale à detu.

Notons eh : G → C la fonction caractéristique du singleton {h}. Les eh , h ∈ H , forment une base de L2(G). On a
Rg (eh) = ehg−1 , et donc u(eh) = ∑

g∈G xg ehg−1 = ∑
g ′∈G xhg ′−1 eg ′ par le changement de variable g ′ = hg−1. On en

déduit que detG , évalué en les xg , coïncide avec detu.

6. Conclure.

Il suffit de montrer l’égalité des deux polynômes de l’énoncé après évaluation des Xg en xg , c’est-à-dire que

detu = ∏
χ∈Ĝ

( ∑
g∈G

χ(g )xg

)

par la question précédente. Or pour tout χ ∈ Ĝ on a par le constat de la question 1 que χ est un vecteur propre de u
associé à la valeur propre

∑
g∈G χ(g )xg . Puisque les caractères forment une base de L2(G) (question 2), on conclut.

7. En déduire une formule pour le déterminant de la matrice circulante
(
Xi− j mod n

)
1≤i , j≤n .

Ce déterminant est celui du groupe abélienZ/nZ, il s’agit donc de déterminer les caractères surZ/nZ. Un tel carac-
tère est uniquement déterminé par l’image de la classe de 1, qui est une racine n-ième de l’unité. Réciproquement,
chaque racine n-ième de l’unité ζ donne un caractère χζ : k mod n 7→ ζk qui est bien défini, et les χζ sont deux à
deux distincts par évaluation on 1. On en déduit

(
Xi− j mod n

)
1≤i , j≤n = ∏

ζ∈µn

(
n−1∑
k=0

χζ(k mod n)Xk mod n

)
= ∏

ζ∈µn

(
n−1∑
k=0

ζk Xk mod n

)
.

Pour G non commutatif, detG reste divisible par le terme de droite mais a d’autres facteurs. C’est en souhaitant
déterminer ces facteurs que Frobenius a inventé la théorie des représentations des groupes finis. Dans le prochain
TD, on déterminera les facteurs en question.
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