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Représentations linéaires

Travaux dirigés du 6 et du 9 janvier 2026

3% Exercice 1. Représentation de permutation d'une action

Soit G un groupe fini agissant sur un ensemble fini X de cardinal supérieur a 3. On considere la représentation de
permutation CX.

1. Vérifier que I'on a une décomposition comme C[G]-module

CX:C(Z x)eaH avec H:{Z/lxx

xeX xeX

Z/lxzo}

xeX

et oll le premier terme est isomorphe a la représentation triviale. Vérifier également que H est engendré comme
3 /
C-espace vectoriel par les (x = x') e x.x-

Les sous-C-espaces vectoriels C (¥ yex X) et H sont G-stables. De plus, ils sont supplémentaires I'un de l'autre par
I'application C-linéaire et bijective

cxﬁ(c(zx))w, Z)Lxx»—»(%(Zx),z (A—%)x)

xeX xeX xeX xeX

On en déduit la décomposition de C[G]-modules, et le premier terme est isomorphe a la représentation triviale car
G agit trivialement sur )_ ¢ x X.

De plus, si nous choisissons xj € X, alors tout élément de H s’écrit

xeX xeX xeX xeX

Y Agx=), /lxx—(z Ax)xoz Y Ax(x—xp).

2. Soit Y un G-ensemble fini. Démontrer que le vecteur v = }_,cy A,y appartient aux points de CY fixes sous G si et
seulement si la fonction y — A, est G-invariante, i.e. constante sur les orbites.

Il faut écrire que
8(2 Aﬂ) =2 Aygy= ) Agyy
yey yeyYy yey

puis identifier.

On se propose de démontrer que H est irréductible si et seulement si I'action de G sur X est 2-transitive. Dans un
premier temps, supposons que l'action est 2-transitive.

3. Calculer pour tout x € X I'espace des invariants HC.

Soit v = ¥ cx Axx dans H%. Nous utilisons la question précédente pour le G,-ensemble X. Par 2-transitivité
de I'action de G, le G,-ensemble posséde deux orbites : {x} et X — {x}. Ceci implique que v € (CX)®* s'écrit v =
Ax+ puY 2, x'. En ajoutant le fait que v € H, on obtient que

el )

x'eX—{x}

4. Démontrer que H est irréductible. (Indication : pour une sous-représentation non nulle H', on pourra considérer
un vecteur non nul v € H' et prendre x tel que la coordonnée de v sur x est non nulle, puis essayer de créer un
élément dans H' n HCx.)

Soit H' une sous-représentation non nulle et v € H non nul. On pose x tel que la coordonnée de v sur x est non
nulle. En regardant la moyenne
, 1
vV =
|Gxl

> g v

g€Gy

on obtient un vecteur toujours dans H’, toujours de coordonnée non nulle sur x, et invariant par Gy. Autrement
dit, nous avons démontré que H% < H’ puisque la question 2 démontrait que H* était une droite.
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Puisque I'action de G est transitive, on peut choisir g tel que g- x # x. La différence suivante est toujours dans H' :

1 ) 1 ) ( 1 )
_ —o. — =1+ ( — 0. )
(x 1X1-1 (x’eXZ—{x}x)) ¢ (x 1X1—-1 (ﬂe;{x}x)) 1X1-1 e

Ainsi, le sous-espace H' contient I'un des x — x’ pour x # x/, et les contient donc tous par 2-transitivité de ’action.
Nous avons démontré que H' = H.

Supposons a présent que 'action n'est pas 2-transitive. Considérons I'action diagonale de G sur X x X et la représen-
tation de permutation C(X x X) associée.

5. Supposons que 'action de G sur X n’est pas 2-transitive. Trouver un sous-espace de dimension 3 du C(X x X) sur
lequel G agisse trivialement.
SiI'action n’est pas 2-transitive, de maniere générale, I'action de G sur (X x X)\{(x, x) | x € X} n’est pas transitive.
Prenons O; et O, deux orbites. Alors, la diagonale {(x, x) | x € X}, O; et O, sont trois orbites de X x X sous G. Les
vecteurs associés aux fonctions caractéristiques de ces trois orbites sont fixes sous G, et engendrent un espace de
dimension 3 puisque les orbites sont disjointes.

Pour parachever la preuve, il reste a démontrer que si H est irréductible, alors la dimension des points fixes de C(X x X)
sous l'action de G vaut 2. Nous commencons par énoncer un résultat un peu plus général sur les représentations de
permutation.

6. Soit X, Y deux G-ensembles finis. Démontrer que 'application suivante est un isomorphisme de C[G]-modules :

Home(CX,CY) = C(XxY), T— Y tey(x,))ouT@) =) txy).
(x,y)eXxY yeyYy

C’est une application linéaire entre espace de méme dimension, autrement dit un isomorphisme de C-espaces
vectoriels. Pour prouver qu’il est G-équivariant, calculons

@gNx=g(T (g 'x)

=g(Z tglx,yy)

yey

= Z lg-1x,8Y
yey

= Z tg—lxyg—]yy
yey
Ainsi, I'image de g T est

Y ey, (K= ) fy(gx,gY)
(x,y)eXxY (x,y)eEXxY

qui est exactement I'image de T a laquelle on aurait appliqué g.
7. Conclure. (Indication : on pourra regarder les invariants par G de Hom¢ (CX,CX) et utiliser le lemme de Schur.)
En appliquant la question précédente a X = Y et passons aux invariants ce qui donne

Endc(CX)% = (C(X x X))°.

Le terme de droite correspond aux points fixes de C(X x X) sous 'action de G. Le terme de gauche, quant a lui,
correspond aux endomorphismes de C[G]-modules de CX. En effet, dire qu'un endomorphisme C-linéaire f est
fixe signifie que

VgeG, gf=gofog’l=f
ce qui se reformule en post-composant par g comme

VgeG, gof=feog.

Si H estirréductible, la représentation CX s’écrit en irréductibles 1@ H avec H non isomorphe a 1 puisque dim H =
|X|—1>1. Si f est un endomorphisme de C[G]-modules de CX, sa matrice dans une base adaptée a la décompo-
sition 1 @ H est de la forme

A B

< o

ol B et C ne correspondent pas a des isomorphismes donc sont nulles par Schur, et A et D sont des homothéties
encore par Schur. Les endomorphismes de C[G]-modules de CX sont donc exactement les endomorphismes par
blocs valant une homothétie sur 1 et sur H, i.e. de dimension 2.



Algebre 1, TD n°12, corrigé ENS-PSL, 2025-2026

8. On suppose que X est de cardinal pair. Adapter le raisonnement pour remplacer C par R.
La seule chose a modifier par rapport au cas complexe reste de garantir un lemme de Schur pour la question précé-
dente. II est valable sur R pour des représentations irréductibles de dimension impaire (nous avons toujours une
valeur propre réelle pour un endomorphisme linéaire d'un R-espace vectoriel de dimension impaire).

9. On suppose que G agit transitivement sur X. Adapter le raisonnement pour remplacer C par un corps algébrique-
ment clos de caractéristique p > 2 dans lequel |G| # 0.
Schur ne pose pas probleme, ce sont plutdt les calculs des premiéres questions qui peuvent s’avérer impossibles
dans notre corps. Pour les questions 1 et 4, considérer que p ne divise pas |G| car |G| # 0 dans le corps considéré, et
comme 'action est transitive on a que |G| divise | X| (par équation aux classes) donc p ne divise pas non plus | X].
Pour les questions 3 et 4, on n’avait en réalité pas besoin de diviser par | X|—1.

¥ Exercice 2. Action du centre

Soit G un groupe et V un C[G]-module de dimension finie.

1. Supposons V irréductible. Montrer que I'action de Z(G) se fait par homothéties, i.e. que pour tout z € Z(G),
I'élément z-— de GL(V) est dans C* idy .
Lélément z-— est un endomorphisme de C[G]-modules. En effet, c’est un endomorphisme de C-espaces vectoriels
et pour tout g € G, 'appartenance de z au centre entraine que

YveV, z-(g-v)=(z8)-v=(g2)-v=g-(z-v)

Puisque V est irréductible, ses seuls endomorphismes comme C[G]-module sont les homothéties par Schur.

2. Soit H un sous-groupe d’indice fini de G. On suppose que le C[H]-sous-module sous-jacent a V est semi-simple.
Démontrer que V est semi-simple. (Indication : si W est un sous- C[G]-module de V, on pourra regarder la projec-
tion 7 sur W parallélement a un supplémentaire de W, puis regarder ng = ﬁ Y gHeGIHEOTO g 1)

Nous utilisons ici des idées similaires a celle de la démonstration du théoreme de Maschke. Rappelons que ce
dernier repose fondamentalement sur la création d'un projecteur qui commute a l'action de G.

Soit W un sous-C[G]-module de V. 1l faut démontrer que W possede un sous-C[G]-module supplémentaire. En
utilisant la semi-simplicité du C[H]-module sous-jacent a V, on trouve un sous-C[H] module supplémentaire et la
projection sur W parallelement a ce supplémentaire fournit un projecteur sur W qui commute a I’action de H, que
nous notons 7.

Si 7 commute a 'action de G, alors ker p est G-stable donc on a trouvé un sous-C[G]-module supplémentaire de
w.

En général, puisque 7 commute a I'action de H, nous avons pour tout h € H que homoh™! = 7, et donc que gomog™!
ne dépend que de gH. Il est alors possible de définir

1

Y gomog .

nGg =
(G: H] ¢hiecin

On va montrer que c’est un projecteur d’'image W qui commute al’actionde G. OnaImmg € W car W est G-stable.
De plus, pour xe Wet g€ G, ona g7 (x) e Wdoncmog™ (x) = g7 (%) et 16(X) = i Lgreq/m X = X, donc 7 est
un projecteur d'image W. Enfin, pour tout k € G, nous avons

1
ok = gomo gilk
¢ [G: H] gHeZé/H ( )
1 _ 1 51
= kolk lg omolk lg
(G:H] gHeZG/H ( ) ( )
1 _ 21 -1
= ko k™'g)omo(k'g
=kormng

puisque gH — k™! gH est une bijection correctement définie des classes a gauche ; on est ramenés au cas précé-
dent.

3. Supposons que Z(G) agit par homothéties et qu'il est d’indice fini dans G. Démontrer que V est semi-simple.
Si le centre agit par homothéties, n'importe quel sous-C-espace vectoriel de V est un sous-C[Z(G)]-module de V.
Ceci entraine que V est semi-simple comme représentation de Z(G), puis comme représentation de G en utilisant
la question précédente.
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¢ Exercice 3. Représentations d'un p-groupe sur Z/pZ

Soit G un p-groupe fini. Démontrer que le seul (Z/ pZ)[G]-module de dimension finie et irréductible est de dimension
1 et trivial.

Soit V un tel module, de dimension d. Le groupe G agit sur V — {0}, qui est de cardinal p? — 1. On rappelle que pour un
p-groupe G et un G-ensemble X, nous avons par équation aux classes et formule orbite-stabilisateur

1X]=|x¢

mod p

Ici, celaimplique qu’'un vecteur non nul de V est fixe par G, autrement dit que V possede une droite fixe. Lirréductibilité
de V la force a coincider avec cette droite fixe.

Exercice 4. Décomposition de Fourier finie et une motivation a la théorie des représentations

Soit G un groupe fini. On rappelle que I'on dispose de I'ensemble G des caracteres de G, c’est-a-dire des morphismes
de groupes G — C*. Par commutativité de C*, on a une structure naturelle de groupe abélien sur G.

Notons L, (G) le C-espace vectoriel des fonctions G — C, muni du produit scalaire hermitien (f, f) = ﬁ f (g)@. C’est
un espace de dimension finie |G|. Observons que pour tout g € G on dispose d’'un endomorphisme R, de L»(G) défini
par Rg(f) : h— f(hg) (translation a droite par g). Cet endomorphisme est unitaire : si f, f € L2(G), et si g € G, alors
(Rg (), Rg()) = ([, ). De plus, g — R définit une représentation de G ; on I'appelle représentation réguliére de G.

1. Constater que pour tout y € G et tout g € G, y est vecteur propre de Rg, de valeur propre y(g).
Pour ye Getge G,ona Rg(x) = x(g)x puisque y est un morphisme de groupes, d’ot1 le constat.

2. En déduire que 'ensemble G est une famille libre et orthonormée de Ly (G) (c’est la propriété d’orthogonalité des
caracteres), et que si G est abélien c’est une base de L, (G).
Montrons la premiére partie de la question. Pour y € Get g€ Gona y(8)'°' = y(g'h) = y(1) = 1 donc y(g)x(g) = 1.
On en déduit (y, ) = ﬁ -|G| = 1. Pour voir qu’ils sont orthogonaux, il suffit de dire que pour y # y/, il existe
g€ Gtel que x(g) # x'(g), et donc y et ¥’ sont dans des espaces propres pour des valeurs propres distinctes de
I'endomorphisme unitaire Rg. Ils sont donc orthogonaux : en effet on a

" =(RgX, Rex) =X @11 @x) =x@x @ 1"

et donc (y, x') =0 car X(g)w = y(g)x'(g)~! # 1. Prouvons enfin que les caractéres sont linéairements indépen-
dants. Siona 0= Zweé Ly W avec uy € C pour tout , en faisant (—, y) on en déduit uy = 0.

Montrons la deuxieme partie de la question. Si G est abélien, les endomorphismes R, avec g € G commutent. De
plus, les R, sont diagonalisables (on peut soit invoquer la fait qu'un endomorphisme unitaire est diagonalisable,
soit dire que les Rg annulent le polyndme X 161 1 qui est scindé a racines simples). Ils sont donc codiagonalisables
: L2(G) possede une base constituée de vecteurs propres communs a tous les Rg. Si f est un tel vecteur propre, on
aRgf = Agf pour tout g € G, avec Ag € C* (car Rg est inversible d’inverse R,-1, ou encore car Ry est unitaire). La
relation Rgp, = Rg o Ry, entraine Agy, = AgAp, pour g, h € G. Autrement dit, la fonction g — A, est dans G. Enfin, on
a par définition (Rg f)(h) = f(hg), donc f(hg) = Ag f(h) pour tout g, h € G, puis f(g) = Agf(1). Comme [ #0,0na
f(@) #0, et quitte a remplacer f par f/f(1) on peut supposer f(1) =1, i.e. f estdans G.

3. En déduire que si G est abélien, on a IGI = |G| et pour toute fonction f:G— C,on a

f=YXf0n

1eG

Les (f, x) sont appelés coefficients de Fourier de f, et la fonction fe L, (G) définie par f()() =|GI{f, x) est appelée
transformée de Fourier de f.

On a |G| = dimL,(G), et aussi dimL,(G) = |G| par la question précédente. Cela montre la premiére partie de la
question. Pour la deuxieme, on écrit [ =3 .~ A, x pour certains 1, € Cetona(f,x) = A, toujours par la question
précédente.

e

4. En déduire une nouvelle preuve du fait que 'on peut prolonger tout caractére défini sur un sous-groupe d'un
groupe abélien fini (on I'avait déja montré dans le préambule du TD précédent).
En effet, soit G un groupe abélien et H un sous-groupe de G, considérons I'application de restriction r : G — H,
x — xlm. C’est un morphisme de groupes. Son noyau est le sous-groupe des caracteres de G triviaux sur H. Par la
propriété universelle du groupe quotient G/ H, si 7 : G — G/ H désigne la projection canonique, alors I'application
¥ — o induit une bijection entre G/ H etker r,donc |Imr| = I@I/Ikerrl = I(A?I/ICT/—?II. Par la question précédente
on peut enlever et remettre les chapeaux a loisir donc |Imr| = |G|/|G/H| = |H| = Iﬁl, et donc r est surjective.
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Suivant Dedekind, le déterminant de G est le polynéme

detG:=det (Xgh‘l )g,hEG

oules X, sont des indéterminées indexées par les éléments de G. C’est donc un polynome homogene de degré |G| en
les X, etla question posée par Dedekind est de le factoriser dans C[Xg, g € G]. Dans le cas ou G est abélien, Dedekind
montre qu'on a

detG=[] (Z x(g)Xg).

xeG \geG

On se propose de montrer ce résultat ; supposons donc G abélien. Pour (xg)gec € CC, on regarde I'endomorphisme
u= deg XgRg de L2(G).

5. Montrer que |'évaluation de det G en les x; est égale a det u.
Notons ey, : G — C la fonction caractéristique du singleton {h}. Les ey, h € H, forment une base de L,(G). On a
Rg(ep) = epg-1, et donc ulep) = Ygeg Xgepg-1 = LgieG Xpg-1€g par le changement de variable g =hg™!. Onen
déduit que det G, évalué en les xg, coincide avec det u.

6. Conclure.

Il suffit de montrer I'égalité des deux polynomes de I'énoncé apres évaluation des X, en xg, c’est-a-dire que

detu=[] (Z x(g)xg)

1eG \8eG

par la question précédente. Or pour tout y € G on a par le constat de la question 1 que y est un vecteur propre de u
associé a la valeur propre Y ¢ x (8) Xg. Puisque les caracteres forment une base de L, (G) (question 2), on conclut.

7. En déduire une formule pour le déterminant de la matrice circulante (Xl-_ j mod n) \<ij<n’

Ce déterminant est celui du groupe abélien Z/nZ, il s’agit donc de déterminer les caracteres sur Z/nZ. Un tel carac-
tére est uniquement déterminé par I'image de la classe de 1, qui est une racine n-ieéme de I'unité. Réciproquement,
chaque racine n-iéme de I'unité { donne un caractere y; : k mod n— ¢ k qui est bien défini, et les X¢ sont deux a
deux distincts par évaluation on 1. On en déduit

n—1 n-1
(Xi—j mod n)lsi,jin = l_[ Z X((k mod 1) X mod n) = l_[ (Z (kamod ”)'

Ceun \k=0 Cepp \k=0

Pour G non commutatif, detG reste divisible par le terme de droite mais a d’autres facteurs. C’est en souhaitant
déterminer ces facteurs que Frobenius a inventé la théorie des représentations des groupes finis. Dans le prochain
TD, on déterminera les facteurs en question.



