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Caracteres des représentations

Travaux dirigés du 13 et du 16 janvier 2026

3 Exercice 1. Quelques tables de caracteres

Déterminer la table de caracteres des groupes finis suivants. On essaiera dans chaque cas de donner une représenta-
tion irréductible qui a ce caractere.

1. Pour un entier n = 2, le groupe Z/nZ.

Puis_que Z/nZ est abélien, ses caracteres irréductibles sont de dimension 1. Nous les connaissons : ce sont les
X k—¢ k pour tous les { € 1, (C) possibles. La table des caractéres posséde des colonnes indexées par les éléments

de Z/nZ, des lignes indexées par les racines n-iemes de I'unité, et la valeur dans la case (%, () est k.

2. Le groupe diédral Ds.

On peut voir Dg comme le sous-groupe de GL,(R) engendré par la rotation directe d’angle 7/2 et la réflexion par
rapport a I’axe des abscisses :

0 1] __[1 o0

-1 0" "o 1]

On en tire, par I'inclusion GLy(R) < GL,(C), une représentation complexe de dimension 2 qui ne contient pas de
droite stable (puisque les matrices exprimées plus haut n’ont pas de vecteur propre commun). Nous avons ainsi
trouvé une représentation V irréductible de dimension 2 de Dg. Si I'intuition des représentations manquantes ne
vient pas, considérer que

Dg={c,7) < GL2(R) avec c=

8= Y (dimV)?

Velrr(Dg)
etqu’on a toujours au moins une représentation de dimension 1 (la triviale) donc toutes les représentations restantes
sont de dimension 1 etil y en a 4 (en comptant la triviale).
Déterminons donc les caracteres de dimension 1 sur Dg. On remarque que comme ils s’envoient dans un groupe
abélien, ils sont triviaux sur le groupe dérivé D(Dg) et donc ce sont en fait les caracteres de I’abélianisé ng. Oron
avu au TD n°5 Ils sont triviaux sur le groupe dérivé D(Dg), donc ce sont des caracteres de 1 or on sait que c’est le
sous-groupe engendré par c? et que le quotient (abélianisé) est le groupe de Klein (voir TD5). Les caractéres de
dimension 1 de Dg sont donc les caracteres du groupe de Klein. Or il y en a 4 selon les valeurs sur lesquelles ils
envoient (0,1) et (1,0) :

0,0) | (1,0) | (O,1) | (1,1
1 1 1 1 1
)((1,0) 1 -1 1 -1
X0,1) 1 1 -1 -1
Xw,0X01 1 -1 -1 1

Cherchons maintenant les classes de conjugaison de Dg. On sait que le sous-groupe engendré par c est distin-
gué, donc on peut commencer par regarder les classes des éléments de ce sous-groupe. Elles sont celle de 1 (qui
correspond a l'identité), celle de c? (qui correspond a moins 'identité) et celle de ¢ (qui correspond aux deux ro-
tations d’ordre 4). Ensuite on sait que la projection sur '’abélianisé est constante sur les classes de conjugaison.
Les trois classes de conjugaison déja obtenues s’envoient respectivement sur (0,0), (0,0) et (1,0). Oril y a autant de
classes de conjugaison que de représentations irréductibles, c’est-a-dire 5, donc les images réciproques de (0,1) et
de (1,1), i.e. les symétries par rapport a 'un des axes et les symétries par rapport a une diagonale, fournissent les
deux classes de conjugaison manquantes et on peut dresser la table des caracteres de Dg :

fcent 8 8 4 | 4 4
fconj 1 1 21 2|2
id | -id | ¢ T | cT
1 1 1 1 1 1
X(1,0) 1 1 -1 1 -1
X©,1) 1 1 1 -1 -1
Xaoxoyn | 1| 1T J-T]-1]1
Xv 2 -2 0 0

On remarque que Y (o,1) est égal au déterminant.
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3. Pour un premier p, le groupe Aff, = {x —ax+bl|lacF}, be [Fp} des transformations affines de [, (on pourra se
servir des résultats de 'exercice qui suit).

Le groupe est engendré par les h.: x — cx etles 74 : x — x + d. On établit pour davantage de clarté la formule de
conjugaison pour ces deux types de transformations :

hw(x—»ax+b)0h;1 =heo(x—ax+b)oh.1=(x— ax+ch)

Tdo(x'—>ax+b)0‘[;ll =Tg0(x—ax+b)ot_g=(x—ax+(1-a)d+Db).

Ces deux formules illustrent que les classes de conjugaison de Aff}, sont celle de id (le singleton {id}), celle de 7,
('ensemble {7}, | b€ F}) et pour tout a # 1, celle de h, ('ensemble {ax+b| b€ Fp}). Nous avons donc 2+ (p—2) = p
classes de conjugaison dans Aff),.

On a une action naturelle de Aff,, sur F,,. Si p =2, on a Aff, = F, dont on connait déja la table de caracteéres.
Plagons-nous donc dans le cas p > 2. Alors I'action naturelle de Aff;, sur [, est 2-transitive puisque (0, 1) est envoyé
sur (b, c¢) par x — (¢ — b)x + b. Lexercice 2 nous donne alors l'irréductibilité de H dans la décomposition comme
CIAff,]-module

C[FP:C(Z x)@H avec H:{ Y Axx

xeFp xefp

> AX:O},
xefp

ol le premier terme est isomorphe a la représentation triviale. H nous fournit donc une représentation irréductible
de Aff}, de dimension p — 1. Son caractere est

XH(8) = xcr,(8) — x1(8) = |Fix(g)| - 1.

En particulier, ce caractere vaut p — 1 sur la classe de conjugaison de I'identité, —1 sur celle de 7, et 0 sur celles des
h, pour a # 1.

Comme on a p classes de conjugaison, il reste p — 1 autres caracteres de Aff,. On sait que la somme des carrés des
dimensions de ces p—1 caracteres vaut | Aff}, |- (dim H)?> = p(p-1)—-(p—-1)?> = p—1, donc ils sont tous de dimension
1. Comme a la question précédente, on va quotienter Aff,, pour le rendre abélien. On remarque que le quotient de
Affy, par le sous-groupe des translations {r, | b€ [} estF, dont on sait que c’est Z/(p — 1)Z. Puisque Z/(p—1)Z a
p — 1 caracteres irréductibles (ce sontles y;:a—( % pour { € tp-1(C)), on a trouvé tous les caracteres manquants
de Aff,, et on obtient la table suivante :

fcent p(p-1) p p-1
fconj 1 p—-1 p
id T ha,ae[F;—{l}
X0 € pp-1(©) 1 1 &
XH p-1 -1 0

3 Exercice 2. Représentation de permutation d’'un action, version caracteres

Soit G un groupe fini agissant sur un ensemble fini X de cardinal supérieur a 3. Cet exercice consideére la représentation
de permutation CX. Nous notons également yx le caractére associé. On rappelle qu’il existe une décomposition
comme C[G]-module

CX=C(Z x)eeH avec H:{Zaxx

xeX xeX

Z/lxzo}

xeX

et ol le premier terme est isomorphe a la représentation triviale.

1. Soit Y un G-ensemble fini. On rappelle que v =3} ,cy Ay y est fixe par G si et seulement si y — A, est constante sur
les orbites. Démontrer que le nombre d’orbites est égala (yy,1).
Les indicatrices de orbites forment une base de (CY)°. De plus, cet espaces d’invariants (CY)© est la composante
isotypique de la représentation triviale 1 dans CY. Or, nous savons que pour tout C[G]-module irréductible de
dimension finie V, de caractére y, nous avons

dimc(CY[V]) = (xy,x)dimc V,

ol CY[V] désigne la composante isotypique de V dans CY. Ceci implique pour V =1 que la dimension des
vecteurs fixes est exactement le produit scalaire annoncé.
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2. En déduire que I'action de G sur X est 2-transitive si et seulement si { y(xxx),1) = 2.
Sur X x X, nous avons deux sous-ensembles stables par G : la diagonale A = {(x, x) | x € X} et son complémentaire.
La diagonale est une orbite de X x X sous G si et seulement sil’action de G sur X est transitive. Le complémentaire
(X x X) — A est une orbite si et seulement si ’action de G sur X est 2-transitive. Ainsi, ’action de G sur X est
2-transitive si et seulement si X x X possede deux orbites sous G. On conclut avec la question précédente.

3. Démontrer que yx est réel, puis que x(xxx) = Xx-

Pour tout g € G, nous avons yx(g) = |FiXX(g) | qui est réel. De plus, les points fixes par g dans X x X sont exactement
les couples formés de deux points fixes par g dans X. Par conséquent

Yoo (@) = |Fixx (9] = xx(g)?

4. Conclure que (¥ (xxx),1) = 2 si et seulement si CX est somme de deux représentations irréductibles non isomor-
phes, i.e. si et seulement si H est irréductible non triviale.

11 faut écrire en utilisant que y x est réel
(o 1) = (x5 1)
={xx,¥x)
=(xx,xx)
et ce dernier vaut la somme des carrés des multiplicités des représentations irréductibles de G dans CX. Cette

somme ne peut valoir 2 qui si CX est somme de deux représentations irréductibles non isomorphes. Puisque CX
se décompose déja comme 1 & H, cette condition équivaut au fait que H est irréductible non triviale.

3 Exercice 3. Représentation de conjugaison

Soit G un groupe fini.

1. On fait agit G sur G par conjugaison et on note V la représentation de permutation associée. Déterminer yv.
Pour tout élément g € G, la valeur yy (g) vaut le nombre de points fixes de G par conjugaison de g, autrement dit le
cardinal du centralisateur |Cg(g)|.

2. En déduire que la somme de chaque ligne de la table des caractéres de G est un entier naturel.

Soit W une représentation irréductible de G et y le caractere associé. Nous cherchons a prouver que le complexe
suivant est un entier naturel :

P (®)

0€eConj(G)

ol Conj(G) est 'ensemble des classes de conjugaison de G. Remarquons que |Cc,(g)| ne dépend que de la classe
de conjugaison de g ; nous écrirons ainsi sans ambiguité |C¢| (O). Nous pouvons écrire

1
Y x0=— Y [Gly(0)
0€Conj(G) Gl oeconj6)

1

=— Z |OlICgl(0)x(0) (formule orbite-stabilisateur)
Gl 0O€eConj(G)
1

=— Y |2 ICc(g)Ix(g))
|Gl 0O€eConj(G) \geO
1

=— > w@xe
Gl &%

=(xxv)

= {0 av)

et la dernieére égalité illustre que notre complexe est un entier naturel (la multiplicité de W dans V).

Exercice 4. Factorisation du déterminant d'un groupe

Revenons, comme promis, sur la question de Dedekind consistant a factoriser pour un groupe fini G le déterminant

detG:det(Xghq)g’hec dans C[Xg]:=C [{Xg}peq]-
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On va montrer le résultat suivant, dii a Frobenius : si ny,..., nj sont les dimensions des h caracteres irréductibles de
G, alors on a une décomposition
h
detG = H El

i=1
ou les F; sont des polyndomes irréductibles, homogeénes de degré n; en les X, et deux a deux non associés. Pour
cela, associons a chaque C[G]-module de dimension finie V un polynéme Dy € C[X] en posant, pour tout |G|-uple
xg = (x1,...,%g,...) €CC,

Dy (xg) :=det

> xgpv(g)).

geG
Ce polynéme Dy est homogene de degré dim V, et ne dépend que de la classe d’isomorphisme de V.

1. Calculer Dy si V est de dimension 1.
SiDy si V est de dimension 1, de caractere de degré 1 associé y : G — C*,ona Dy = Y ¢ x(8)Xg.
2. Si V =CG (représentation réguliere), montrer D¢ = detG.
En effet, soit z =} ¢ec xg8 € CIG]. Pout h € G < CG on constate zh = Y ¢ec Xg8h = X geG Xgpp-1 8, de sorte que la

matrice de la multiplication par z dans la base canonique de CG est | x,,-1 .
8" )¢ neG

Si V est un C[G]-module, on dispose d'un morphisme de C-algebres naturel
ny :C[G] — Endc(V), x— (v— x.V)

3. Montrer que si V est irréductible, alors 7y est surjectif, et que si Sy, ..., Sy, sont les C[G]-modules irréductibles de
G, deux a deux non isomorphes, alors le morphisme de C-algebres

7 : C[G] — Endc (S1) x Endc (S2) x --- x Endc (Sp,)

x— (s, (%), 78, (%), ..., s, (%))

est un isomorphisme.

Le morphisme 7 est injectif. En effet, si on a z € C[G] avec 7(z) = 0, alors I'élément z agit par 0 dans tout C[G]-
module irréductible, donc par Maschke dans tout C[G]-module de dimension finie. Dans le cas de la représentation
réguliere, on a z.1 = z et donc z = 0 d'ou I'injectivité de #. Mais on a

h h
dimCG =) (dimS;)* = dim [| Endc (V}),
i=1 i=1

de sorte que l'injectivité de m implique sa bijectivité, d’ol1 la deuxieme partie de la question. En particulier, pour
touti=1,...,honalmm; = Endc (S;), ce qui démontre la premiere partie de la question.

4. Montrer que le déterminant de la matrice (T;, ;) est irréductible dans C [{T,-

1<i,j<n J}lsi,jsn]'

On note D = det(Tij),_; ic- lsi,jsn]' En
développant par rapport a la premiere ligne, on obtient que D est de degré 1 en 77,;. Donc un des polynémes
P Q estde degré 1 en T et 'autre de degré 0 en 77,;. De méme, pour tous i et j, un des polynéomes P, Q est de
degré 1 en Xj ; et I'autre de degré 0 en X; ;. Supposons pour fixer les idées que P est de degré 1 en X; ; pour un i
que 'on fixe. Alors Q n’'implique aucun des X; ; ni des X ;. Sinon, D aurait des termes en X; ; X; j ou X; ;X ;, ce
qui est impossible par définition du déterminant. Si Q contient un X; ;, on obtient par le méme raisonnement que
P ne peut contenir aucun X, ; ni aucun Xj i ; contradiction car alors X; j et X; ; ne peuvent étre ni dans P ni dans

Q. On en déduit que P contient tous les X ;, puis tous les X ;. et X ;, et donc Q est constant.

Supposons que l'on ait une décomposition D = PQ dans C [{Ti, it

5. Montrer que si U et V sont deux C[G]-modules irréductibles, le polyndme Dy est irréductible dans C[X] et que si
U et V sont non isomorphes, alors Dy et Dy ne sont pas proportionnels.
Montrons d’abord la deuxiéme partie de la question. Soient U et V deux C[G]-modules irréductibles non isomor-
phes. D’apres la deuxiéme partie de la question 3, il existe z € C[G] tel que 7y (z) = Idy et my(z) = 0. Ecrivons
z= dec Xgg et posons x = (xg)g€G € CC. Alors on a Dy(x) =detny(x) =1etDy(x) =detmy(x) = 0. Cela montre la
deuxieme partie de la question.
Montrons maintenant la premiere partie de la question. On fixe une base e = (ey,...,e;) de V et on pose

Mat, pv (g) = (mi,j(8))

1<i,j<n
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Les n? formes linéaires
.G .
Lij:C7"— C’(xg)geG - Zéxgmw (8
8¢€

sont linéairement indépendantes d’apres la premiere partie de la question 3. On les compléte arbitrairement en
une base du dual de C®, en ajoutant Ly,..., L, (avecr =|G|— n?). Dans ces nouvelles variables linéaires, on a donc

Cl[Xgl=C [{Livj}i,j] [L1,..., L;]. Mais par définition, on a aussi

Dy = det((Li,j)lsi,jsn)

On conclut par la question précédente.

6. Conclure.

On a une décomposition
CG=ol S

ou §; est un C[G]-module irréductible de dimension 7;, non isomorphe a S; pour j # i. On en déduit
h .
detG = [[ Dy
i=1

Posant F; = Dg;, le résultat découle de la question précédente.



