
Algèbre 1, TD n°13, corrigé ENS-PSL, 2025-2026

Caractères des représentations
Travaux dirigés du 13 et du 16 janvier 2026

5 Exercice 1. Quelques tables de caractères

Déterminer la table de caractères des groupes finis suivants. On essaiera dans chaque cas de donner une représenta-
tion irréductible qui a ce caractère.

1. Pour un entier n ≥ 2, le groupe Z/nZ.

Puisque Z/nZ est abélien, ses caractères irréductibles sont de dimension 1. Nous les connaissons : ce sont les
χζ : k 7→ ζk pour tous les ζ ∈µn(C) possibles. La table des caractères possède des colonnes indexées par les éléments

de Z/nZ, des lignes indexées par les racines n-ièmes de l’unité, et la valeur dans la case (k,ζ) est ζk .

2. Le groupe diédral D8.

On peut voir D8 comme le sous-groupe de GL2(R) engendré par la rotation directe d’angle π/2 et la réflexion par
rapport à l’axe des abscisses :

D8 = 〈c,τ〉 ⊆ GL2(R) avec c =
[

0 1
−1 0

]
, τ=

[
1 0
0 −1

]
.

On en tire, par l’inclusion GL2(R) ⊆ GL2(C), une représentation complexe de dimension 2 qui ne contient pas de
droite stable (puisque les matrices exprimées plus haut n’ont pas de vecteur propre commun). Nous avons ainsi
trouvé une représentation V irréductible de dimension 2 de D8. Si l’intuition des représentations manquantes ne
vient pas, considérer que

8 = ∑
V ∈Irr(D8)

(dimV )2

et qu’on a toujours au moins une représentation de dimension 1 (la triviale) donc toutes les représentations restantes
sont de dimension 1 et il y en a 4 (en comptant la triviale).

Déterminons donc les caractères de dimension 1 sur D8. On remarque que comme ils s’envoient dans un groupe
abélien, ils sont triviaux sur le groupe dérivé D(D8) et donc ce sont en fait les caractères de l’abélianisé Dab

8 . Or on
a vu au TD n°5 Ils sont triviaux sur le groupe dérivé D(D8), donc ce sont des caractères de l or on sait que c’est le
sous-groupe engendré par c2 et que le quotient (abélianisé) est le groupe de Klein (voir TD5). Les caractères de
dimension 1 de D8 sont donc les caractères du groupe de Klein. Or il y en a 4 selon les valeurs sur lesquelles ils
envoient (0,1) et (1,0) :

(0,0) (1,0) (0,1) (1,1)
1 1 1 1 1

χ(1,0) 1 -1 1 -1
χ(0,1) 1 1 -1 -1

χ(1,0)χ(0,1) 1 -1 -1 1

Cherchons maintenant les classes de conjugaison de D8. On sait que le sous-groupe engendré par c est distin-
gué, donc on peut commencer par regarder les classes des éléments de ce sous-groupe. Elles sont celle de 1 (qui
correspond à l’identité), celle de c2 (qui correspond à moins l’identité) et celle de c (qui correspond aux deux ro-
tations d’ordre 4). Ensuite on sait que la projection sur l’abélianisé est constante sur les classes de conjugaison.
Les trois classes de conjugaison déjà obtenues s’envoient respectivement sur (0,0), (0,0) et (1,0). Or il y a autant de
classes de conjugaison que de représentations irréductibles, c’est-à-dire 5, donc les images réciproques de (0,1) et
de (1,1), i.e. les symétries par rapport à l’un des axes et les symétries par rapport à une diagonale, fournissent les
deux classes de conjugaison manquantes et on peut dresser la table des caractères de D8 :

♯cent 8 8 4 4 4
♯conj 1 1 2 2 2

id -id c τ cτ
1 1 1 1 1 1

χ(1,0) 1 1 -1 1 -1
χ(0,1) 1 1 1 -1 -1

χ(1,0)χ(0,1) 1 1 -1 -1 1
χV 2 -2 0 0 0

On remarque que χ(0,1) est égal au déterminant.
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3. Pour un premier p, le groupe Affp =
{

x 7→ ax +b | a ∈ F×p , b ∈ Fp

}
des transformations affines de Fp (on pourra se

servir des résultats de l’exercice qui suit).

Le groupe est engendré par les hc : x 7→ cx et les τd : x 7→ x +d . On établit pour davantage de clarté la formule de
conjugaison pour ces deux types de transformations :

hc ◦ (x 7→ ax +b)◦h−1
c = hc ◦ (x 7→ ax +b)◦hc−1 = (x 7→ ax +cb)

τd ◦ (x 7→ ax +b)◦τ−1
d = τd ◦ (x 7→ ax +b)◦τ−d = (x 7→ ax + (1−a)d +b).

Ces deux formules illustrent que les classes de conjugaison de Affp sont celle de id (le singleton {id}), celle de τ1

(l’ensemble {τb | b ∈ F×p }) et pour tout a ̸= 1, celle de ha (l’ensemble {ax+b | b ∈ Fp }). Nous avons donc 2+(p−2) = p
classes de conjugaison dans Affp .

On a une action naturelle de Affp sur Fp . Si p = 2, on a Aff2 = F2 dont on connaît déjà la table de caractères.
Plaçons-nous donc dans le cas p > 2. Alors l’action naturelle de Affp sur Fp est 2-transitive puisque (0,1) est envoyé
sur (b,c) par x 7→ (c −b)x +b. L’exercice 2 nous donne alors l’irréductibilité de H dans la décomposition comme
C[Affp ]-module

CFp =C
( ∑

x∈Fp

x

)
⊕H avec H =

{ ∑
x∈Fp

λx x

∣∣∣∣∣ ∑
x∈Fp

λx = 0

}
,

où le premier terme est isomorphe à la représentation triviale. H nous fournit donc une représentation irréductible
de Affp de dimension p −1. Son caractère est

χH (g ) =χCFp (g )−χ1(g ) = |Fix(g )|−1.

En particulier, ce caractère vaut p −1 sur la classe de conjugaison de l’identité, −1 sur celle de τ1 et 0 sur celles des
ha pour a ̸= 1.

Comme on a p classes de conjugaison, il reste p −1 autres caractères de Affp . On sait que la somme des carrés des
dimensions de ces p−1 caractères vaut |Affp |−(dim H)2 = p(p−1)−(p−1)2 = p−1, donc ils sont tous de dimension
1. Comme à la question précédente, on va quotienter Affp pour le rendre abélien. On remarque que le quotient de
Affp par le sous-groupe des translations {τb | b ∈ F×p } est F×p , dont on sait que c’est Z/(p −1)Z. Puisque Z/(p −1)Z a
p −1 caractères irréductibles (ce sont les χζ : a 7→ ζa pour ζ ∈ µp−1(C)), on a trouvé tous les caractères manquants
de Affp et on obtient la table suivante :

♯cent p(p −1) p p −1
♯conj 1 p −1 p

id τ1 ha , a ∈ F×p − {1}
χζ, ζ ∈µp−1(C) 1 1 ζa

χH p −1 −1 0

5 Exercice 2. Représentation de permutation d’un action, version caractères

Soit G un groupe fini agissant sur un ensemble fini X de cardinal supérieur à 3. Cet exercice considère la représentation
de permutation CX . Nous notons également χX le caractère associé. On rappelle qu’il existe une décomposition
comme C[G]-module

CX =C
( ∑

x∈X
x

)
⊕H avec H =

{ ∑
x∈X

λx x

∣∣∣∣∣ ∑
x∈X

λx = 0

}
et où le premier terme est isomorphe à la représentation triviale.

1. Soit Y un G-ensemble fini. On rappelle que v =∑
y∈Y λy y est fixe par G si et seulement si y 7→λy est constante sur

les orbites. Démontrer que le nombre d’orbites est égal à
〈
χY ,1

〉
.

Les indicatrices de orbites forment une base de (CY )G . De plus, cet espaces d’invariants (CY )G est la composante
isotypique de la représentation triviale 1 dans CY . Or, nous savons que pour tout C[G]-module irréductible de
dimension finie V , de caractère χ, nous avons

dimC(CY [V ]) = 〈
χY ,χ

〉
dimCV ,

où CY [V ] désigne la composante isotypique de V dans CY . Ceci implique pour V = 1 que la dimension des
vecteurs fixes est exactement le produit scalaire annoncé.
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2. En déduire que l’action de G sur X est 2-transitive si et seulement si
〈
χ(X×X ),1

〉= 2.

Sur X ×X , nous avons deux sous-ensembles stables par G : la diagonale ∆= {(x, x) | x ∈ X } et son complémentaire.
La diagonale est une orbite de X ×X sous G si et seulement si l’action de G sur X est transitive. Le complémentaire
(X × X )−∆ est une orbite si et seulement si l’action de G sur X est 2-transitive. Ainsi, l’action de G sur X est
2-transitive si et seulement si X ×X possède deux orbites sous G . On conclut avec la question précédente.

3. Démontrer que χX est réel, puis que χ(X×X ) =χ2
X .

Pour tout g ∈G , nous avonsχX (g ) = ∣∣FixX (g )
∣∣ qui est réel. De plus, les points fixes par g dans X×X sont exactement

les couples formés de deux points fixes par g dans X . Par conséquent

χ(X×X )(g ) = ∣∣FixX (g )
∣∣2 =χX (g )2

4. Conclure que
〈
χ(X×X ),1

〉 = 2 si et seulement si CX est somme de deux représentations irréductibles non isomor-
phes, i.e. si et seulement si H est irréductible non triviale.

Il faut écrire en utilisant que χX est réel 〈
χ(X×X ),1

〉= 〈
χ2

X ,1
〉

= 〈
χX ,χX

〉
= 〈

χX ,χX
〉

et ce dernier vaut la somme des carrés des multiplicités des représentations irréductibles de G dans CX . Cette
somme ne peut valoir 2 qui si CX est somme de deux représentations irréductibles non isomorphes. Puisque CX
se décompose déjà comme 1⊕H , cette condition équivaut au fait que H est irréductible non triviale.

5 Exercice 3. Représentation de conjugaison

Soit G un groupe fini.

1. On fait agit G sur G par conjugaison et on note V la représentation de permutation associée. Déterminer χV .

Pour tout élément g ∈G , la valeur χV (g ) vaut le nombre de points fixes de G par conjugaison de g , autrement dit le
cardinal du centralisateur

∣∣CG (g )
∣∣.

2. En déduire que la somme de chaque ligne de la table des caractères de G est un entier naturel.

Soit W une représentation irréductible de G et χ le caractère associé. Nous cherchons à prouver que le complexe
suivant est un entier naturel : ∑

O∈Conj(G)
χ(O)

où Conj(G) est l’ensemble des classes de conjugaison de G . Remarquons que
∣∣CG (g )

∣∣ ne dépend que de la classe
de conjugaison de g ; nous écrirons ainsi sans ambiguïté |CG | (O). Nous pouvons écrire

∑
O∈Conj(G)

χ(O) = 1

|G|
∑

O∈Conj(G)
|G|χ(O)

= 1

|G|
∑

O∈Conj(G)
|O∥CG | (O)χ(O) (formule orbite-stabilisateur)

= 1

|G|
∑

O∈Conj(G)

( ∑
g∈O

∣∣CG (g )
∣∣χ(g )

)

= 1

|G|
∑

g∈G
χV (g )χ(g )

= 〈
χ,χV

〉
= 〈

χ,χV
〉

et la dernière égalité illustre que notre complexe est un entier naturel (la multiplicité de W dans V ).

Exercice 4. Factorisation du déterminant d’un groupe

Revenons, comme promis, sur la question de Dedekind consistant à factoriser pour un groupe fini G le déterminant

detG = det
(

Xg h−1

)
g ,h∈G

dans C [XG ] :=C
[{

Xg
}

g∈G

]
.
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On va montrer le résultat suivant, dû à Frobenius : si n1, . . . ,nh sont les dimensions des h caractères irréductibles de
G , alors on a une décomposition

detG =
h∏

i=1
F ni

i

où les Fi sont des polynômes irréductibles, homogènes de degré ni en les Xg , et deux à deux non associés. Pour
cela, associons à chaque C[G]-module de dimension finie V un polynôme DV ∈ C [XG ] en posant, pour tout |G|-uple
xG = (

x1, . . . , xg , . . .
) ∈CG ,

DV (xG ) := det

( ∑
g∈G

xgρV (g )

)
.

Ce polynôme DV est homogène de degré dimV , et ne dépend que de la classe d’isomorphisme de V .

1. Calculer DV si V est de dimension 1.

Si DV si V est de dimension 1, de caractère de degré 1 associé χ : G →C×, on a DV =∑
g∈G χ(g )Xg .

2. Si V =CG (représentation régulière), montrer DCG = detG .

En effet, soit z = ∑
g∈G xg g ∈ C[G]. Pout h ∈ G ⊆ CG on constate zh = ∑

g∈G xg g h = ∑
g∈G xg h−1 g , de sorte que la

matrice de la multiplication par z dans la base canonique de CG est
(
xg h−1

)
g ,h∈G

.

Si V est un C[G]-module, on dispose d’un morphisme de C-algèbres naturel

πU :C[G] → EndC(V ), x 7→ (v 7→ x.v)

3. Montrer que si V est irréductible, alors πV est surjectif, et que si S1, . . . ,Sh sont les C[G]-modules irréductibles de
G , deux à deux non isomorphes, alors le morphisme de C-algèbres

π :C[G] → EndC (S1)×EndC (S2)×·· ·×EndC (Sh)

x 7→ (
πS1 (x),πS2 (x), . . . ,πSh (x)

)
est un isomorphisme.

Le morphisme π est injectif. En effet, si on a z ∈ C[G] avec π(z) = 0, alors l’élément z agit par 0 dans tout C[G]-
module irréductible, donc par Maschke dans toutC[G]-module de dimension finie. Dans le cas de la représentation
régulière, on a z.1 = z et donc z = 0 d’où l’injectivité de π. Mais on a

dimCG =
h∑

i=1
(dimSi )2 = dim

h∏
i=1

EndC (Vi ) ,

de sorte que l’injectivité de π implique sa bijectivité, d’où la deuxième partie de la question. En particulier, pour
tout i = 1, . . . ,h on a Imπi = EndC (Si ), ce qui démontre la première partie de la question.

4. Montrer que le déterminant de la matrice
(
Ti , j

)
1Éi , jÉn est irréductible dans C

[{
Ti , j

}
1Éi , jÉn

]
.

On note D = det
(
Ti , j

)
1Éi , jÉn . Supposons que l’on ait une décomposition D = PQ dans C

[{
Ti , j

}
1Éi , jÉn

]
. En

développant par rapport à la première ligne, on obtient que D est de degré 1 en T1,1. Donc un des polynômes
P,Q est de degré 1 en T1,1 et l’autre de degré 0 en T1,1. De même, pour tous i et j , un des polynômes P,Q est de
degré 1 en Xi , j et l’autre de degré 0 en Xi , j . Supposons pour fixer les idées que P est de degré 1 en Xi ,i pour un i
que l’on fixe. Alors Q n’implique aucun des Xi , j ni des X j ,i . Sinon, D aurait des termes en Xi ,i Xi , j ou Xi ,i X j ,i , ce
qui est impossible par définition du déterminant. Si Q contient un X j , j , on obtient par le même raisonnement que
P ne peut contenir aucun Xk, j ni aucun X j ,k ; contradiction car alors Xi , j et X j ,i ne peuvent être ni dans P ni dans
Q. On en déduit que P contient tous les X j , j , puis tous les X j ,k et Xk, j , et donc Q est constant.

5. Montrer que si U et V sont deux C[G]-modules irréductibles, le polynôme DU est irréductible dans C [XG ] et que si
U et V sont non isomorphes, alors DU et DV ne sont pas proportionnels.

Montrons d’abord la deuxième partie de la question. Soient U et V deux C[G]-modules irréductibles non isomor-
phes. D’après la deuxième partie de la question 3, il existe z ∈ C[G] tel que πU (z) = IdU et πV (z) = 0. Écrivons
z =∑

g∈G xg g et posons x = (
xg

)
g∈G ∈CG . Alors on a DU (x) = detπU (x) = 1 et DV (x) = detπV (x) = 0. Cela montre la

deuxième partie de la question.

Montrons maintenant la première partie de la question. On fixe une base e = (e1, . . . ,en) de V et on pose

Mate ρV (g ) = (
mi , j (g )

)
1Éi , jÉn
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Les n2 formes linéaires
Li , j :CG →C,

(
xg

)
g∈G 7→ ∑

g∈G
xg mi , j (g )

sont linéairement indépendantes d’après la première partie de la question 3. On les complète arbitrairement en
une base du dual de CG , en ajoutant L1, . . . , Lr (avec r = |G|−n2 ). Dans ces nouvelles variables linéaires, on a donc

C [XG ] =C
[{

Li , j
}

i , j

]
[L1, . . . , Lr ]. Mais par définition, on a aussi

DV = det
((

Li , j
)

1Éi , jÉn

)
On conclut par la question précédente.

6. Conclure.

On a une décomposition
CG ≃⊕h

i=1S⊕ni
i

où Si est un C[G]-module irréductible de dimension ni , non isomorphe à S j pour j ̸= i . On en déduit

detG =
h∏

i=1
Dni

Si
.

Posant Fi = DSi , le résultat découle de la question précédente.
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