Algèbre 1, TD n°5 ENS-PSL, 2025-2026

Produits semi-directs, suites exactes et groupes dérivés

Travaux dirigés du 14 et du 17 octobre 2025

Exercice 1. Tout automorphisme est intérieur (quitte à agrandir le groupe)

Soient G un groupe et $f \in \text{Aut}(G)$. Montrer qu'il existe un groupe G', un morphisme injectif $i : G \to G'$ et un élément $x \in G'$, tels que pour tout $g \in G$ on a $i(f(g)) = xi(g)x^{-1}$.

Exercice 2. Fin de la discussion sur S₄

Montrer que $S_4 = K_4 \rtimes S$, où S est un sous-groupe de S_4 isomorphe à S_3 . En déduire que pour tout isomorphisme $\alpha: S_3 \xrightarrow{\sim} \operatorname{Aut} \left((\mathbb{Z}/2\mathbb{Z})^2 \right) = \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$, on a $S_4 \simeq (\mathbb{Z}/2\mathbb{Z})^2 \rtimes_{\alpha} S_3$.

Exercice 3. Le produit semi-direct de deux groupes dépend du choix de morphisme

Si un entier n est le produit de deux nombres premiers impairs distincts p et q, il existe (par l'isomorphisme chinois) $a,b \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ avec $a \equiv 1$ [p], $a \equiv -1$ [q], $b \equiv -1$ [p] et $b \equiv 1$ [q]. Alors le groupe $(\mathbb{Z}/n\mathbb{Z})^{\times}$ contient exactement quatre racines carrées de l'unité : 1, a, b et ab = -1. Si s est l'une de ces racines carrées de l'unité, il existe un unique morphisme $a : \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ (qui dépend de s) envoyant $\overline{1}$ sur l'automorphisme $s \mapsto ss$ de $\mathbb{Z}/n\mathbb{Z}$; on pose alors $s \coloneqq \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}$. Déterminer le centre des groupes $s \mapsto ss$ et en déduire qu'ils sont non isomorphes.

Exercice 4. Autour du groupe diédral

Dans cet exercice on étend la définition de D_{2n} à $1 \le n \le 2$ en posant $D_2 := \mathbb{Z}/2\mathbb{Z}$ et $D_4 := \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Avec cette définition, on constate que l'on a $D_{2n} \simeq \mathbb{Z}/n\mathbb{Z} \rtimes_{\alpha} \mathbb{Z}/2\mathbb{Z}$ pour tout entier $n \ge 1$, où la morphisme $\alpha : \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ est tel que $\alpha_{\overline{L}}(x) = (-1)^k x$ pour $k \in \mathbb{Z}$ et $x \in \mathbb{Z}/n\mathbb{Z}$ comme vu en cours dans le cas $n \ge 3$.

- 1. Soient $m, n \ge 1$ des entiers. Montrer que D_{2m} possède un sous-groupe isomorphe à D_{2n} si et seulement si $n \mid m$.
- 2. Montrer $D_{2n} \simeq \langle s, t | s^2 = t^2 = (st)^n = 1 \rangle$ pour tout $n \ge 1$.
- 3. (Groupe diédral infini) Soient s et t les isométries de la droite euclidienne \mathbb{R} définies par $x \mapsto -x$ et $x \mapsto 1-x$, et $G := \langle s, t \rangle \subseteq \operatorname{Iso}(\mathbb{R})$. Montrer que $H := \langle st \rangle$ est un sous-groupe distingué de G isomorphe à \mathbb{Z} , et que la conjugaison par s induit l'automorphisme $x \mapsto x^{-1}$ de H. En déduire $G \simeq \mathbb{Z} \rtimes_{\alpha} \mathbb{Z}/2\mathbb{Z}$ où $\alpha : \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z})$ envoie $\overline{1}$ sur $x \mapsto -x$.

Exercice 5. Calculs de cardinaux

1. On se donne $n \ge 1$ et une suite exacte de groupes

$$1 \longrightarrow G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} G_n \longrightarrow 1.$$

On suppose que les G_i sont finis pour tout i. Montrer $\prod_{i=1}^n |G_i|^{(-1)^i} = 1$.

2. Soient G un groupe abélien fini et $n \ge 1$ un entier. On a les sous-groupes $G[n] = \{g \in G \mid g^n = 1\}$ (n-torsion) et $G^{(n)} = \{g^n \mid g \in G\}$ de G. Montrer $|G[n]| = |G/G^{(n)}|$ (sans utiliser le théorème de structure).

※ Exercice 6. Manipulations de groupes dérivés

Soit G un groupe.

- 1. Montrer que tout sous-groupe de *G* contenant D(*G*) est distingué dans *G*.
- 2. Déterminer le groupe dérivé et l'abélianisé de H_8 . Faire de même avec D_{2n} .

Exercice 7. Le théorème de Lie-Kolchin

Soient $n \ge 1$ et G un sous-groupe résoluble connexe de $GL_n(\mathbb{C})$. On se propose de montrer que G est co-trigonalisable. On raisonne par récurrence sur n+r où r est la classe de résolubilité de G.

- 1. Montrer que D(G) est connexe.
- 2. Montrer que D(G) est inclus dans $SL_n(\mathbb{C})$.
- 3. Conclure si D(G) est constitué d'homothéties.
- 4. Conclure s'il existe un sous-espace $\{0\} \subseteq W \subseteq \mathbb{C}^n$ avec $g(W) \subseteq W$ pour tout $g \in G$.

Pour tout groupe Γ , on note $\widehat{\Gamma} := \operatorname{Hom}(\Gamma, \mathbb{C}^*)$ et on appelle *caractères* de Γ les éléments de $\widehat{\Gamma}$. On pose $\mathscr{C} = \widehat{\operatorname{D}(G)}$. Pour un caractère $\chi \in \mathscr{C}$ on considère le sous-espace vectoriel

$$V_{\chi} = \left\{ v \in \mathbb{C}^n \mid g(v) = \chi(g) \, v, \, \forall g \in \mathrm{D}(G) \right\}.$$

On pose aussi $S = \{ \chi \in \mathcal{C} \mid V_{\chi} \neq 0 \}$ et $V = \sum_{\gamma \in S} V_{\chi}$.

Algèbre 1, TD n°5 ENS-PSL, 2025-2026

- 5. Montrer $S \neq \emptyset$.
- 6. Montrer $V = \bigoplus_{\chi \in S} V_{\chi}$.
- 7. En déduire que S est fini.

Pour $g \in G$ et $\chi \in \mathcal{C}$ on pose ${}^g\chi : D(G) \to \mathbb{C}^{\times}$, $x \mapsto \chi(g^{-1}xg)$.

- 8. Montrer que $(g,\chi) \mapsto {}^g \chi$ est une action de G sur \mathscr{C} , et vérifier $g(V_\chi) = V_{g\chi}$. En déduire que cette action de G est triviale sur S.
- 9. Conclure puis donner un contre-exemple dans le cas n=2 pour G non connexe.