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Abstract. We prove Russo-Seymour-Welsh type crossing estimates for the
FK-Ising model on general s-embeddings whose origami map has an asymp-
totic Lipschitz constant strictly smaller than 1, together with a mild constraint
on the level of local degeneracy of the embedding. This result extends the work
of [5] and provides a general framework to prove that usual connection prob-
abilities in boxes remain bounded away from 0 and 1. It is explained that
one cannot prove similar estimates without an assumption of this kind on the
origami map, and allows to propose some notion of critical model for generic
planar graphs, that can be rephrased from the perspective of the associated
propagator operator. Our theorem reproves along the way corresponding re-
sults in almost all already known setups but also treats new ones of interest.

1. Introduction, main results and perspectives

1.1. General context. The Ising model, introduced a century ago by Lenz, is one
of the most studied models in statistical mechanics. Its planar version (i.e., the
model on a planar graph with nearest-neighbor interactions) has received extensive
attention from both physicists and mathematicians and gives rise to numerous local
and global observables that can be computed exactly (see e.g. the monographs [24,
37, 39]). We focus in this article on the model with no exterior magnetic field, and
contrary to usual conventions, we assign spins to faces (denoted by G◦) of a planar
graph G (whose vertices are denoted by G•). When G is a finite connected graph
and β > 0 a positive number (called inverse temperature), one can attach to each
edge e ∈ E(G) separating the two faces v◦±(e) ∈ G◦ a coupling constant Je > 0 and
construct a discrete probabilistic model, whose partition function is given by

Z(G) :=
∑

σ:G◦→{±1}

exp
[
β
∑

e∈E(G)

Jeσv◦−(e)σv◦+(e)
]
. (1.1)

The domain walls representation (see e.g. [7, Sec 1.2]) allows to rewrite Z(G) as
Z(G) = 2

∏
e∈E(G)(x(e))−1/2 ×

∑
C∈E(G)

∏
e∈C x(e), where x(e) := exp[−2βJe]

and E(G) denotes the set of even subgraphs of G. By naturally identifying an
edge e of G to the associated face z(e) of the bipartite graph Λ(G) := G• ∪ G◦,
one can construct an abstract parametrization (i.e. a priori without any geometric
interpretation) of the coupling constant x(e) given by

θz(e) := 2 arctan x(e) ∈ (0, 1
2π). (1.2)

This abstract definition is purely combinatorial, and thus does not require to fix
an embedding of G into C: this fact was used by Chelkak to introduce the notion
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of s-embeddings in [6, 5]. The overall goal of his construction is to provide an
embedding procedure that allows to study large scale properties of weighted planar
graphs (G, x) carrying critical or near-critical weights, depending on its collection
of edge weights (x(e))e∈E , including those locally very irregular, in a spirit similar
to works such as e.g. circle packing embeddings [25], Tutte’s embeddings [26] or
more recently Cardy’s embeddings [27]. The notion of (near-)criticality, which we
understand here to be related to the existence of a non-trivial scaling limit, looks
to be not yet proposed for generic planar graphs, except in particular cases, whose
most famous examples are periodic lattices [15], the Z-invariant setup [4, 41] or Lis’
circle packings [33]. Therefore, one aim of this paper is to propose one notion of
criticality for general planar graphs, which can be read from the way the graph is
embedded into the plane. As an example, the square lattice chosen with critical
or off-critical weights will lead to embeddings with drastically different large scale
properties (see [5, Figure 2]). More importantly, this allows to propose a notion of
criticality (regarding crossing estimates) and reformulate it from the point of view
of the spectral properties of the operator associated to the propagation equation
(2.6) (see the question formulated in Section 1.4 for more details).

The route taken in [5] was to generalize the notion of discrete fermionic ob-
servables, in the spirit of the pioneering work of Smirnov [44, 43] that is based
on discrete complex analysis techniques, by constructing an embedding procedure
which is heavily tied to a combinatorial version of its obervables local relations.
In particular, the construction extends to a much larger class of graphs than sim-
ply the isoradial or periodic ones, and we explore here its application regarding
crossing probabilities. It is worth noting that the notion of s-embeddings is encap-
sulated in the more general framework of t-embeddings or Coulomb gauges, in the
context of the bipartite dimer model [32, 13, 12]. This fact allows to benefit from
the regularity theory of discrete harmonic and holomorphic functions developed
in [13, Sec. 6], as well as an existence statement for finite planar graphs in [32,
Sec. 7]. The s-embedding setup already proved its relevance in [5, Theorem 1.2] by
settling the question of conformal invariance of the critical double-periodic graphs
(the criticality condition in this setup was derived by Cimasoni and Duminil-Copin
in [15, Theorem 1.1]) but also for regular graphs with an origami function satisfying
Q = O(δ) (see Definition 2.2 for more details). In the critical double-periodic case,
even finding the correct canonical embedding [5, Lemma 2.3] and proving the con-
vergence of FK interfaces to SLE(16/3) remained open for nearly a decade. This
allowed one to go one step further regarding universality with respect to the local
lattice details (see also similar results on critical and near critical isoradial grids for
correlation functions in [14, 8, 41, 9, 40, 29, 11]). We hope that this framework will
allow to study the Ising model in some random environments (see the example of
a random triangulation decorated with the Ising model presented in Section 5.1),
targeting (in the best case) critical random maps equipped with the Ising model
-which is conjectured to converge to the Liouville Quantum Gravity (e.g. see [23])-
as well as deterministic graphs with random coupling constants (e.g. Z2 with I.I.D.
coupling constants studied numerically in [45]). We emphasize that the current
paper does not treat the last two difficult questions.

1.2. Definition of the embedding and the associated scale. In order to keep
the presentation compact, we postpone to Section 2 the precise definition of the
construction of a proper s-embeddings S and give a rather informal and concrete
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review on what a tiling obtained following the construction of [5] looks like. One
starts with a weighted planar graph (G, x) with the combinatorics of the plane
(or of the sphere in the finite case), whose vertices are denoted by G• and faces
by G◦. This graph is defined up to homeomorphism preserving the cyclic order
of edges at each vertex. The graph Λ(G) := G• ∪ G◦ can be viewed as a bipar-
tite graph with edges connecting neighbors of different color in Λ(G). A proper
s-embedding of G can be viewed as a map S : Λ(G) → C, such that all its edges
are straight segments, and that all the faces of Λ(G) (except maybe the outer face
in the case of a finite graphs) are tangential quadrilaterals, i.e. each face delimited
by the quadrilateral (S(v•0)S(v◦0)S(v•1)S(v◦1)) is tangential to a circle (more pre-
cisely the four lines containing the edges of that quad are tangential to a circle,
which includes also the case of non-convex quads). The embedding is called proper
and non-degenerate if different faces do not overlap each other and if none of the
quadrilaterals (S(v•0)S(v◦0)S(v•1)S(v◦1)) is degenerated to a segment. It is possible
to recover the Ising weight attached to an edge from the angles of the associated
tangential quadrilateral using the relation (2.11). In particular, the overall idea is
not based upon finding special weights that fit an embedded graph, but the other
way around. Moreover, there are typically many different pictures for the same
abstract graph, and all are as legitimate from the discrete complex analysis per-
spective. Those embeddings are stable under rotation, translation, homothecy and
conjugations.

The second object of crucial importance in the s-embeddings framework is the
so called origami map Q, recalled in Definition 2.2. In words, the origami map
Q : Λ(G)→ R is a real valued function, defined up to additive constant, such that
its increments between two neighboring vertices S(v•) ∼ S(v◦) are given by the
local rule Q(S(v•)) − Q(S(v◦)) := |S(v•) − S(v◦)|. This means that Q adds edge
lengths when going from vertices of S(G◦) to vertices of S(G•) and subtracts lengths
when traveling in the other direction. This definition is indeed locally consistent as
the alternate sum of edge-lengths in a tangential quadrilateral vanishes. It is easy
to see that the function Q is automatically 1-Lipschitz (as a map in the S plane). In
particular, it appears that some criticality of the model regarding crossing estimates
can be analyzed using simply the behavior of the function Q.

The preceding sentence looks at the first sight unclear, since to define the notion
of large scale behavior, one should first define a notion of scale of the embedding.
A priori, there is no natural notion of mesh size of a lattice in a highly irregular
grid formed of tangential quadrilaterals. This can be done using the origami map
Q and the assumption Lip(κ,δ) , as originally defined in [13].

Assumption 1.1 (Lip(κ,δ)). We say that the embedding S satisfies the assumption
Lip(κ,δ) for some positive constant κ < 1 and some δ > 0 if for any v, v′ vertices
of Λ(G)

|Q(v′)−Q(v)| ≤ κ · |S(v′)− S(v)| if |S(v′)− S(v)| ≥ δ. (1.3)

This allows to define the notion of scale of the embedding S.

Definition 1.1. We say that an s-embedding S covering an open set U ⊆ C has a
scale δ for the constant κ < 1 if

δ = δκ = inf{δ̃ > 0,Lip(κ, δ̃) holds}. (1.4)
In that case, we write S = Sδ = Sδκ (leaving the κ superscript unwritten).
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Figure 1. A piece of an s-embedding. The vertices of G• are
denoted by black dots, those of G◦ by white dots, and the center
of tangential quadrilaterals with diamonds. The tangential circles
are dashed.

In words, for some positive κ < 1, the scale of the embedding is the minimal
length δ at which Q becomes κ Lipschitz. Regarding the results stated in this
paper, the dependence in κ will play a role in the bounds of crossing estimates
but not in the qualitative results themselves, as long as κ remains bounded away
from 1. The dichotomy in behaviors of the statistical mechanics model happens
when the origami map Q has an optimal Lipschitz constant (at large scale) strictly
smaller than 1 or exactly equal to 1. In particular, when speaking about the scaling
limit of a sequence of s-embeddings (Sδ)δ>0, it is taken along subsequences of s-
embeddings (Sδn)δn with δn → 0 as n → ∞ and all s-embeddings Sδn satisfy
Lip(κ, δn) for the same κ < 1. For grids with angles bounded from below and edge-
lengths comparable to some δ (setup denoted by Unif(δ) in [5]), the definition
of the scale using Lip(κ,δ) coincides (up to an O(1) factor) with δ. It is notable
that there exist an even more natural way to embedd a planar graph as a space-like
surface in the Minkowski space R2,1, taking the origami map as the third coordinate
(see discussion in Section 5.2). The planar s-embedding setup is also stable under
some naturally associated isometries in R2,1. This passage to R2,1 is not artificial
as it is the natural environment to study the continuum scaling limit of fermionic
observables in the s-embeddings context (see [5, Section 2.7]).

1.3. Main Results. In the current paper, we prove Russo-Seymour-Welsh crossing
estimates (see [18, Sec. 5] for the statement on the critical square grid) for the
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FK-Ising model on a sequence of proper s-embeddings that satisfy the condition
Lip(κ,δ) for some κ < 1 (which we believe to be the crucial assumption of physical
significance for theorems of the present paper to hold), together with a mild local
constraint on the level of local degeneracy allowed in the considered embeddings
(this is quantified by the assumption Exp-Fat(δ) ). The use of assumption of the
kind Lip(κ,δ) is optimal and cannot be weakened, as we present graphs (which
correspond to already known off-critical systems) where both Lip(κ,δ) (for any
κ < 1) and the RSW property fail. Moreover, we explain in Section 5.2 that one
cannot hope to prove crossing estimates bounded away from 0 and 1 without an
assumption of the kind Lip(κ,δ) . Indeed, one needs to prevent constructing a
different embedding of the same statistical mechanics model, heavily stretched in
one direction while its optimal Lipschitz constant gets arbitrarily close to 1.

In the present article we do not rely upon any kind of bounded angle property,
comparable edge-length assumptions, symmetry or translation invariance, but use
the scale defined via the assumption Lip(κ,δ) together with discrete complex analy-
sis techniques. We answer a question of [5, Section 1.4 (I)] and treat the caseQ 6→ 0,
removing drastically conditions on the local and global geometrical features of the
embedding, providing one of the most flexible frameworks known to date where
crossing estimates are available. In that setup, the system behaves qualitatively
in a similar fashion as the usual critical model on the square lattice (existence of
macroscopic wired clusters, polynomial decay of correlations, precompactness of
FK interfaces, ect.)

As already mentioned, we believe that the only important assumption crucial to
prove Theorems 1.1 and 1.2 is exactly Lip(κ,δ) (see the discussion made in Section
5.2). Still, our proof is based on discrete complex analysis techniques. Therefore,
one needs to be able to prove precompactness of discrete s-holomorphic functions,
which requires adding to Lip(κ,δ) a mild assumption denoted Exp-Fat(δ) that
prescribes the local level of degeneracy that is allowed in the embeddings we work
on. This restriction on the local structure of the embedding ensures precompact-
ness of s-holomorphic functions via Theorem 2.19 and is stated now, following the
formalism of [13, Assumption 1.2].

Assumption 1.2. We say that a family of proper s-embeddings (Sδ)δ>0 satisfies
the assumption Exp-Fat(δ) on an open subset U ⊂ C if for each γ > 0:

after removing all quads (Sδ)�(z) with rz ≥ exp(−γδ−1) from U , the maximal
diameter of all vertex-connected components goes to 0 when δ → 0.

Translated in words, the assumption Exp-Fat(δ) means that there exists a pos-
itive function denoted oδ→0(1), converging to 0 as δ → 0, such that the connected
components of vertices attached to tangential quadrilaterals with a radius smaller
than exp(−oδ→0(1)δ−1) do not form macroscopic regions in the limiting regime. In
all examples presented in this article, the assumption Exp-Fat(δ) is verified with
a huge margin. From our perspective, the failure of the assumption Exp-Fat(δ)
corresponds to drastic degeneracies of the obtained planar embedding that do not
permit an analysis via the more flexible versions known to date of discrete complex
analysis.

Under the assumptions Lip(κ,δ) and Exp-Fat(δ) , we show that boxes of macro-
scopic size satisfy the usual Russo-Seymour-Welsh box crossing property for the
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associated FK-Ising model (see e.g. [18, Chapter 4] for precise definitions and re-
lations between the spin-Ising model and the random cluster representation). The
proof of such theorem starts with a proof of a lower bound for the magnetization
of the spin-Ising model with 4 alternating boundary conditions.

Theorem 1.1. Let x1 < x2, y1 < y2, R := (x1, x2) × (y1, y2) ⊂ C, and (Sδ)δ>0
be s-embeddings satisfying the assumptions Lip(κ,δ) and Exp-Fat(δ) covering an
open set containing R, for some fixed κ < 1.
Let Rδ = [R(x1, x2; y1, y2)]◦•◦•Sδ be a discretization of R whose boundary approxi-
mates the boundaries of R as δ goes to 0. We consider the Ising model in Rδ with
wired boundary conditions on the approximations (bδcδ)◦ and (dδaδ)◦ of ’horizontal’
segments and free boundary conditions the approximations (aδbδ)• and (cδdδ)• of
the ’vertical’ segments. Then one has

lim inf
δ→0

E◦•◦•Rδ [σ(bδcδ)◦σ(dδaδ)◦ ] ≥ cst > 0,

where the constant cst only depends on κ and the ratio |x2 − x1| · |y2 − y1|−1.

Proof. The theorem is a consequence of monotonicity with respect to boundary
conditions (e.g. [18, Section 4] for reminders on those statements) and the proof in
the case of the special discretizations constructed in Section 4. �

A similar theorem holds for the dual model, defined using Kramers-Wannier
duality. The next theorem classically follows from Theorem 1.1. Given u ∈ C
and d > 0, denote the annulus
�(u, d) := ([Reu− 3d,Reu+ 3d]× [Im u− 3d, Im u+ 3d])

r ((Reu− d,Reu+ d)× (Im u− d, Im u+ d))

and let Pfree
�δ(u,d) be the probability measure in the random cluster representation

of the Ising model with free boundary conditions on both the outer and the inner
boundaries of a discretization of �(u, d) by �δ(u, d). Then we have the following
theorem:

Theorem 1.2. There exists a constant p0 > 0, only depending on κ, such that for
all u ∈ C, d > 0, and all s-embeddings Sδ satisfying Lip(κ,δ) and Exp-Fat(δ) and
covering the disc B(u, 5d), one has

lim inf
δ→0

Pfree
�δ(u,d)

[
there exists a wired circuit in �δ(u, d)

]
≥ p0.

A similar uniform estimate holds for the dual model.

Proof. Once Theorem 1.1 is derived, one can apply the strategy of [19, Proposi-
tion 2.10] recalled in detail in [5, Section 5.6].) �

In the case of s-embeddings satisfying Unif(δ) , both theorems hold not only at
macroscopic distances but also starting at distances comparable to δ. One can also
note that the same proof works at mesoscopic scales compared to δ (e.g. δα for
0 < α < 1), modifying accurately the hypothesis Exp-Fat(δ) (see [5, Assumption
2.19]). It is even possible to weaken the local assumption Exp-Fat(δ) by a more
global one using the presence of long circuits of ’fat’ enough faces (with a large
enough inner circle). Let us also emphasize that the results stated below are stated
as lim inf, since coupling constant can be locally arbitrary large and thus among
finite size boxes, the crossing probabilities can indeed be close to 0.
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We explain now how to reformulate those theorems closer to their usual formula-
tion regarding crossing probabilities in boxes of increasing size, aiming to simplify
their understanding to percolation aficionados. Fix some κ < 1. Using a homoth-
ecy, one can rescale a finite proper s-embedding satisfying Lip(κ,δ) such that δ = 1.
Denote Λn the discretization of the square [−n, n]2 by this s-embedding of mesh size
1. In that case, the hypothesis Exp-Fat(δ) can be reformulated in the following
way:
There exist two functions on→∞(1) and õn→∞(1) going to 0 as n goes to ∞ such
that, after removing all quads (S1)�(z) with rz ≥ exp(−on→∞(1)n) from Λ2n, the

maximal diameter of all vertex-connected components is õn→∞(1).
Then one can reformulate the previous theorems in the following way
(1) Consider the discretization of Λn with wired boundary conditions on the

horizontal sides and free boundary conditions on the vertical sides. Then

lim inf
n→∞

E◦•◦•Λn [σbtm◦σtop◦ ] > cst(κ) (1.5)

(2) Consider the FK-Ising model on the discretization of the annulus (denoted
�n) between Λn and Λ 1

2n
, with free boundary conditions. Then

lim inf
n→∞

Pfree
�n
[

there exists a wired circuit in �n
]
≥ p0.

In particular, it is not required that the successive boxes exhaust the same infinite
grids, simply that they have the same κ < 1 Lipschitz constant.

In order to apply the aforementioned strategy, one should first ensure the pos-
sibility of constructing a proper s-embedding associated to the abstract weighted
graph (G, x), with faces of Λ(G) delimited by straight segments and no overlaps.
The existence of proper s-embeddings associated to any weighted finite graph G al-
ways holds, without any particular boundary requirement (see Section 5.1), and
it can even be constructed using an explicit algorithm coming from [32]. For infinite
grids, it is still an open question whether one can find a proper full plane picture in
the generic case, and this often requires finding a clever solution to the propagation
equation (see the brief discussion at the end of Section 5.1 on a natural condition on
the behavior at infinity of solutions to the propagation equation that lead to proper
pictures, following [12, Appendix]). We highlight that among the consequences of
the current paper, one obtains (see Section 5.1 for a detailed discussions):

• An alternative derivation of the RSW property for the FK-Ising model on
critical Z-invariant isoradial lattices as in [14]. Our result extends beyond
the scope of the paper of Chelkak and Smirnov, as it allows to replace the
bounded angle property by the assumption Exp-Fat(δ) . This replacement
allows in particular to rederive the RSW property for the FK representation
of the quantum Ising model [20, Section 5] in a more brief manner.
• An alternative derivation of the RSW property for the massive Z-invariant

model on isoradial grids as in [41], using the re-embedding procedure of
[11, Section 3.3]. On the square lattice, this follows directly from the re-
embedding procedure as a Layered model presented in Section 5.1.
• An alternative derivation of the RSW property for doubly-periodic graphs

given in [5]. In particular, there is no need to use a doubly-periodic canon-
ical embedding to deduce the Theorems 1.1 and 1.2 here. More generally
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our results apply to ‘flat‘ origami functions, including circle-patterns of Lis
with bounded angles [33] already treated in [5].

• The new derivation of the RSW property for the FK-Ising model on circle
patterns introduced in [33], replacing the bounded angle property by the
Exp-Fat(δ) assumption (the limiting origami map in this setup is auto-
matically 0). In particular, it is possible apply our result to finite pieces
of some random triangulations coming from the discrete mating-of-trees
model of Duplantier, Gwynne, Miller and Sheffied [22, 26], and decorate
that random graph with Ising weights naturally attached to the associated
circle packing. In [25], it was proven that this random map model has no
large circles in bounded regions with high probability, and this, together
with slightly more refined estimates on the typical number of vertices, fits
our framework.

• The derivation of the RSW property for tilings of the plane by tangen-
tial quadrilaterals (e.g. the construction of IC nets made by Akopyan and
Bobenko [1]) with an origami map whose Lipschitz constant is asymptoti-
cally smaller than 1 (see e.g. the zig-zag layered model [10]). In particular,
we present in Section 5.1 how to use a pair of discretized s-holomorphic
functions to construct starting from an s-embedding new critical lattices
with different weights. This method gives a rather simple way to con-
struct many new critical lattices out of already existing ones, via a discrete
Weierstrass parametrization of the space-like surface (z,Q(z)), following
[11, Section 3.3].

We hope our result motivates research regarding the construction of additional
concrete examples.

To prove Theorem 1.1, we use the flexibility of the s-embeddings setup in order
to extend the discretization of a well chosen rectangle in Sδ and paste it to a piece of
the square lattice (see Figure 6 in section 4). Once this extension is done, the proof
goes by contradiction, assuming Theorem 1.1 and finding an inconsistency between
the boundary behavior of discrete observables and the continuous counterparts.
Adding those pieces of the square lattice heavily simplifies the boundary analysis
and provides a more digestable proof of the aforementioned inconsistency.

1.4. Novelties of the paper, related works and open questions. This article
provides a general framework that we hope will open up a path to generalize already
known results to new graph settings, and already allows to construct a fair share
of new ‘critical‘ Ising models, e.g. in its most simple case using tilings of the plane
made out of tangential quadrilaterals coming from a pair of discrete s-holomorphic
functions. In all previously known setups, the symmetries, the integrability, the
bounded number of neighbors and the finite energy property play a key role. We
bypass this difficulty using the flexibility of s-embeddings framework. This idea
to paste a piece of an already understood grid is new and relates to the fact that
boundary to boundary connection probabilities of the FK model can be studied in
bigger domains, modulo the fact that the (abstract) layers where we ‘weld‘ the two
graphs do not completely break connectivity.

From our perspective, this allows to formulate some notion of criticality for the
Ising model on a generic planar graph, following [5, (II) in Section 1.5]:
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Which are the spectral properties of the propagation operator (2.6) (or the
associated Kac-Ward matrix) that imply the existence of a complex valued

solution X to the propagation equation such that the associated s-embedding SX
satisfies Lip(κ,δ) for a large enough δ?

This question has been investigated in a periodic setup in a joint work with Chelkak
and Hongler (see [10, Section 5]) and is related there to spectral characteristics of
the operator near the bottom of its spectrum. In that article, one even recovers
features of the canonical realization in the Euclidean plane in the coefficients of
the expansion of the integrated density of states near λ = 0 (see [10, Equation
(5.8)]). Generalizing this understanding would allow to reformulate exactly the
present notion of criticality from the Kac-Ward operator perspective.

We expect that off-critical models lead to embeddings with an optimal Lipschitz
contant being one, as discussed in Section 5.2 concerning near critical and off-critical
models. One can also hope to prove the convergence of crossing probabilities by
expressing them in the four points setup via some quasi-conformal uniformization
in a fashion similar to the critical or near critical case [41, Section 5]. This approach
is being investigated in a article in preparation with Park [35]. More generally, we
view the current paper as the first step towards the proof of existence of a scaling
limit for the Ising model on general s-embeddings. The associated continuous limit
and its relation to the Lorentz geometry and quasi-conformal maps (see [12] and [5,
Section 2.7]) will be carried out jointly with Park [35, 36] following the root started
in [34, Chapter 6]. In particular, our result classically ensures precompactness of
FK-Interfaces on general s-embeddings satisfying Lip(κ,δ) and Exp-Fat(δ) (see
e.g. [31]).

From our perspective, the most interesting question is to use the meta-framework
developed here to attack the question of crossing probabilities on random planar
maps (with some coupling constants to be properly chosen) or on Z2 with random
coupling constants. Finally, another interesting line of research would be to extend
the strategy of [21] to prove crossing estimates which are uniform with respect to
local structure of the lattice and boundary conditions, by bootstrapping Theorem
1.2 for Unif(δ) type grids. We are not able to handle such problem as for now, since
a similar strategy requires a comparison between primal and dual arm exponents
in the half-plane, which is not straightforward additional symmetries.
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Figure 2. (Left) Local notations of a graph given an arbitrary
embedding of a planar graph for a quad z♦(G). Vertices of the
primal graph G• are drawn as black dots, vertices of the dual graph
G◦ (which correspond to faces of G•) are drawn as white dots, and
corners (which correspond to edges of the bipartite graph G•∪G◦)
are drawn as triangles. We present here a piece of the double cover
of the corner graph that branches around z. Neighboring corners
in the double cover are linked with dashes. (Right) A small piece of
the associated face in an s-embedding, together with neighboring
faces. Each face in this proper s-embedding is a tangential quadri-
lateral, not necessarily convex. The bipartite splinting of each face
of Λ(G) in four triangles corresponds to the dimer identification
under the s/t-embeddings correspondence (see [5, Section 2.3 ] for
more details.)

2. Definitions and crash introduction to the s-embeddings formalism

We recall in the section the construction of s-embeddings introduced in [5, Sec-
tion 3] and the regularity theory of s-holomorphic functions, both based upon a
complexification procedure of the Kadanoff-Ceva formalism. The notations we use
in this paper follow exactly those of [5] and agree with those of [7, Section 3] and
[6]. We proceed below without giving any proof, referring to [5, Section 2] for more
details. The overall idea of the construction is to start with an abstract weighted
planar graph and construct an embedding where discrete complex analysis tech-
niques are available.

2.1. Notation and Kadanoff–Ceva formalism. We fix G a planar graph (al-
lowing multi-edges and vertices of degree two but forbidding loops and vertices of
degree one) with the combinatorics of the plane or of the sphere, considered up to
homeomorphisms preserving cyclic ordering of edges around each vertex. In the
sphere case, we prescribe one of the faces of G and call it the outer face of G. We
denote G = G• the original graph whose vertices are denoted by v• ∈ G• and G◦

its dual, whose vertices are denoted by v◦ ∈ G◦. The faces of the bipartite graph
Λ(G) := G◦ ∪ G• (with natural incidence relation) are in bijection with edges of
G. We also denote ♦(G) the graph dual to Λ(G), whose vertices are often denoted
by z ∈ ♦(G) and called quads. Finally, we denote by Υ(G) the medial graph of
Λ(G). The vertices of Υ(G) are in bijection with edges (v•v◦) of Λ(G). The vertices
c ∈ Υ(G) are called corners of G. To make the formalism consistent, one needs
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to consider several double covers of Υ(G), see e.g. [38, Fig. 27] or [5, Fig 3.A] for
relevant pictures. Denote by Υ×(G) the double cover that branches over all faces
of Υ(G) (each v• ∈ G•, v◦ ∈ G◦, z ∈ ♦(G)). When G is finite, this definition of the
double cover remains meaningful as #(G•) + #(G◦) + #(♦(G)) is even due to the
Euler theorem. Given $ = {v•1 , . . . , v•m, v◦1 , . . . , v◦n} ⊂ Λ(G) where n,m are even,
denote by Υ×$(G) the double cover of Υ(G) branching over all its faces except those
$, and by Υ$(G) the double cover of Υ(G) branching only over those $. We call a
spinor a function defined on one of the aforementioned double covers whose value
at two different lifts of the same corner differ by a multiplicative factor −1.

In this paper, we consider the Ising model on faces of G, including the outer face
in the disc case, i.e. the model assigns ±1 random variables to vertices of G◦ with a
partition function given by (1.1). The domain walls representation [7, Section 1.2]
(also called low-temperature expansion) assigns a spin configuration σ : G◦ → {±1}
to a subset C of edges of G that separates spins of opposite signs; this expansion
is a 2-to-1 mapping from spin configurations onto the set E(G) of even subgraphs
of G, depending on the value of the spin of the outer face.

Given v◦1 , . . . , v
◦
n ∈ G◦ where n is even, fix a subgraph γ◦ = γ[v◦1 ,...,v◦n] ⊂ G◦

with odd degree at vertices of v◦1 , . . . , v◦n and even degree at all other vertices of G◦.
On can represent such configuration as a collection of paths on G◦ linking pairwise
vertices of v◦1 , . . . , v◦n. Denote

x[v◦1 ,...,v◦n](e) := (−1)e·γ[v◦1 ,...,v
◦
n] x(e), e ∈ E(G),

where e · γ = 0 if e doesn’t cross γ and e · γ = 1 otherwise. One can see that
E
[
σv◦1 . . . σv◦n

]
= x[v◦1 ,...,v◦n](E(G))

/
x(E(G)), (2.1)

where x(E(G)) :=
∑
c∈E(G) x(C), x(C) :=

∏
e∈C x(e), and similarly for x[v◦1 ,...,v◦n].

For m even and v•1 , . . . , v
•
m ∈ G•, fix again subgraph γ• = γ[v•1 ,...,v

•
m] ⊂ G• with

even degree at all vertices of G• except those of v•1 , . . . , v•m. Following the formalism
of Kadanoff and Ceva [30], one changes the signs of the interaction constants Je 7→
−Je on edges e ∈ γ•. This inversion (which is equivalent to replacing x(e) by x(e)−1

along the edges of γ•) makes the model anti-ferromagnetic near γ•, favoring locally
configurations with nonaligned spins, and is denoted by the notation µv•1 . . . µv•m .
More precisely, we introduce the random variable (which depends on the choice of
γ•)

µv•1 . . . µv•m := exp
[
− 2β

∑
e∈γ[v•1 ,...,v

•
m] Jeσv◦−(e)σv◦+(e)

]
,

the domain walls representation shows that (e.g. [7, Propositon 1.3])

E
[
µv•1 . . . µv•m

]
= x(E [v•1 ,...,v

•
m](G))

/
x(E(G)), (2.2)

where E [v•1 ,...,v
•
m] denotes the set of subgraphs of G with even degrees at all vertices

except at those of v•1 , . . . , v•m which have odd degrees at the last mentioned. Let us
mention that when taking expectations in (2.2), the result does not depend on the
choice of the path γ•. One can also generalize (2.1) and (2.2) mixing the presence
of spins and disorder, which reads as (e.g. [7, Propositon 3.3])

E
[
µv•1 . . . µv•mσv◦1 . . . σv◦n

]
= x[v◦1 ,...,v◦n](E [v•1 ,...,v

•
m](G))

/
x(E(G)), (2.3)

where µv•1 . . . µv•m are understood as above. The sign of this last expression does
depends on the parity number of intersections between γ◦ and γ•. There is no
canonical way to chose of that sign in (2.3) staying on the Cartesian product
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(G•)×m×(G◦)×n. However, one can first fix S : Λ(G)→ C to be an arbitrarily cho-
sen embedding of G, and consider a natural double cover of this Cartesian product,
whose branching structure is the one of the spinor [

∏m
p=1

∏n
q=1(S(v•p)−S(v◦q )) ]1/2.

As discussed in great details in [9, Section 2.2], the expectations of the form (2.3) can
be seen as spinors on the above described double cover of (G•)×m× (G◦)×n. When
treating mixed correlation of the type (2.3), an extension of the usual Kramers-
Wannier duality (again [7, Propositon 3.3]) implies that the roles played by the
graphs G• and G◦ are now equivalent.

We are now going to consider special correlators of the form (2.3), in the case
where one of the disorders v•(c) ∈ G• and one of the spins v◦(c) ∈ G◦, are neighbors
in Λ(G), and separated by a corner c ∈ Υ(G). In that case, one can formally denote
the fermion at the corner c by

χc := µv•(c)σv◦(c), (2.4)

Using equation (2.3), one can then define the Kadanoff–Ceva fermionic observables
by

X$(c) := E[χcµv•1 . . . µv•m−1
σv◦1 . . . σv◦n−1

]. (2.5)
This definition is purely abstract and doesn’t require an embedding. Following
the above remarks, one can see that X$(c) is a priori defined up to the sign, but
the definition becomes fully legitimate when passing to Υ×$(G). Around a quad
z = (v•0 , v◦0 , v•1 , v◦1) whose vertices are listed in the counterclockwise order (see [5,
Figure 3.A] for the notation), that Kadanoff–Ceva fermionic observables satisfy a
local linear propagation equation, whose coefficients are determined by the Ising
interaction parameters. This propagation equation appeared in the works of [16],
[42] and [38, Section 4.3]) and reads as follows:

X(cpq) = X(cp,1−q) cos θz +X(c1−p,q) sin θz, (2.6)

where the corner cpq is identified as cpq = (v•pv◦q ), the lifts of cpq, cp,1−q and of c1−p,q
to Υ×$(G) are neighbors, and the angle θz corresponds to the abstract parametriza-
tion (1.2) of the edge of G• which corresponds to the quad centered at z. One can
easily show that solutions to (2.6) are automatically spinors on Υ×$(G).

We conclude this reminder on Kadanoff-Ceva correlators by recalling the defini-
tion of the spinor ηc, that is a special solution (i.e. with some geometrical interpre-
tation) to the propagation equation (2.6) on isoradial grids. Given any embedding
S : Λ(G)→ C of Λ(G) into the complex plane, denote following [14]

ηc := ς · exp
[
− i

2 arg(S(v•(c))− S(v◦(c)))
]
, ς := ei

π
4 , (2.7)

where the prefactor ς = ei
π
4 is chosen for convenience reasons. As explained previ-

ously, one can once again avoid the sign ambiguity in the definition (2.7) by passing
to the double cover Υ×(G), understanding the products ηcX$(c) : Υ$(G)→ C as
defined on the double cover Υ$(G) that only branches over $. Note that below,
we use the notation (2.7) even when S is not isoradial.

2.2. Definition of s-embeddings. We present now in a concise way the explicit
embedding procedure introduced in [6, Section 6] and then developed in great details
in [5]. We start by recalling the concrete definition of an s-embedding given in [5,
Definition 2.1], using the Kadanoff-Ceva formalism recalled in Section 2.1. The
general idea is to use a solution to (2.6) to construct the picture.
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Definition 2.1. Let (G, x) be a weighted planar graph with the combinatorics of
the plane and X : Υ×(G) → C a solution to the propagation equation (2.6). We
say that S = SX :Λ(G)→ C is an s-embedding of (G, x) associated to X if for each
c ∈ Υ×(G), we have

S(v•(c))− S(v◦(c)) = (X (c))2. (2.8)
For z ∈ ♦(G), denote by S�(z) ⊂ C the quadrilateral whose vertices are points
S(v•0(z)), S(v◦0(z)), S(v•1(z)), S(v◦1(z)). The s-embedding S is said to be proper
if the quadrilaterals S�(z) = (S(v•0(z))S(v◦0(z))S(v•1(z))S(v◦1(z))) do not overlap
with each other, and is said to be non-degenerate if no quads S�(z) degenerates to
a segment. In particular, the convexity of S�(z) is not required.

Let us make clear that it is not at all automatic that, given any solution X to the
propagation equation, the associated picture SX is proper, and finding a solution
to (2.6) that leads to a non-degenerate proper picture is a non-trivial step. One
can also extend the definition of S to the set ♦(G) by setting [5, Equation (2.5)]

S(v•p(z))− S(z) := X (cp0)X (cp1) cos θz,
S(v◦q (z))− S(z) := −X (c0q)X (c1q) sin θz,

(2.9)

where cp0 and cp1 (respectively, c0q and c1q) are neighbors on Υ×(G). The propa-
gation equation (2.6) implies directly the consistency of both definitions (2.8) and
(2.9).

The second object of crucial relevance in the s-embeddings framework is the so
called origami map. It is the large scale properties of the origami map that will
indicate whether one can interpret the abstract graph to a (near)-critical system or
not. We recall now the definition [5, Definition 2.2] which can also be found (with
appropriate Ising/dimers identifications) in [32, 13].

Definition 2.2. Given S = SX , one can construct the origami function denoted
by Q = QX : Λ(G)→ R, as a real valued function (defined up to a global additive
constant) by declaring its increments between v•(c) and v◦(c) to be

Q(v•(c))−Q(v◦(c)) := |X (c)|2 = |S(v•(c))− S(v◦(c))| . (2.10)

Once again, the propagation equation (2.6) implies directly the consistency of the
definition (2.2). In words, this implies that alternates sum of edge-length around
a quad vanishes. This ensures the image S�(z) of a quad into the complex plane
is a quadrilateral tangential to a circle centered at the point S(z) given by (2.9).
The point S(z) is the intersection point of the four bisectors of the angles of the
tangential quadrilateral S�(z). We denote by rz the radius of the circle, which can
be recovered from the values of χ, using e.g. [5, Equation (2.7)]. If one denotes
φvz the half-angle of the quad S�(z) at S(v), the Ising weight θz (in the parame-
tretrization (1.2)) can be recovered from the angles in S plane using the formula
[5, Equation (2.8)]

tan θz =
( sinφv•0z sinφv•1z

sinφv◦0z sinφv◦1z

)1/2
. (2.11)

As explained in [5, Section 2.3] (see also [32, Section 7]), one can see that if S
is proper and non-degenerate, the map S : Λ(G) ∪ ♦(G) → C is a t-embedding
T and ηc• = ηc◦ := ςηc is an origami square root (see [13, Definition 2.4]) of T .
This identification allows (e.g. [13, Appendix]) to extend the origami map Q into
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a piece-wise linear way to the entire plane (taking complex values inside the faces
of the t-embedding), and not only on edges of Λ(G).

2.3. S-holomorphic functions and associated functions HF and IC. We re-
call now the central notion of s-holomorphic functions (generalized to s-embeddings
in [5]), introduced first for the critical square grid by Smirnov [43, Definition 3.1]
and generalized to the isoradial context by Chelkak and Smirnov in [14, Defini-
tion 3.1] (it is in the latter paper that this name was coined). That notion is at
the heart of the use of of discrete complex analysis techniques to study the Ising
model. Under the link (briefly mentioned above) between s and t-embeddings, the
s-holomorphic functions are special cases of t-holomorphic functions introduced in
the dimers context in [13, Definition 3.2], which allows to use the regularity theory
proved in that later paper. We recall now the general definition on s-holomorphic
functions, given in [5, Definition 2.4].

Definition 2.3. A function F defined on a subset of ♦(G) is called s-holomorphic
if

Pr[F (z), ηcR] = Pr[F (z′), ηcR] (2.12)
for each pair of quads z, z′ ∈ ♦(G) adjacent to the same edge (v◦(c)v•(c)) in S.

The next proposition generalizes beyond the isoradial setup (e.g. [14, Lemma 3.4])
the (bijective) link between real valued solutions to the propagation equation (2.6)
and s-holomorphic functions. This link was already presented in [5, Proposition
2.5] and in [13, Appendix].

Proposition 2.4. Let S = SX be a proper s-embedding and F an s-holomorphic
on a subset of ♦(G). Then, the spinor X defined at corners c ∈ Υ×(G) belonging
to the face z ∈ ♦(G) by

X(c) := |S(v•(c))− S(v◦(c))| 12 · Re[ηcF (z)]
= Re[ςX (c) · F (z)] = ςX (c) · PrF (z)ηcR (2.13)

satisfies the propagation equation (2.6) around z.
Conversely for X : Υ×(G) → R a unique real valued solution to (2.6), there

exists a s-holomorphic function F such that (2.13) is fulfilled.

When F and X are linked by (2.13), one can reconstruct the value of F at z ∈ ♦
from the values of X at any pair of corners cpq(z) ∈ Υ×(G), e.g. [5, Corollary 2.6]

F (z) = −iς · X (c01(z))X(c10(z))−X (c10(z))X(c01(z))
Im[X (c01(z))X (c10(z))

. (2.14)

To study the regularity of s-holomorphic functions as well as the local behavior
of their scaling limit, one uses their ’integral’ while one uses generalization of the
’integral’ of the imaginary part of their square introduced by Smirnov in [43] to
derive their boundary behavior. The former is heavily studied in [13, Proposition
6.15] and will be useful deriving local regularity theory for discrete functions as
well as the local equation satisfied by subsequential limits in continuum, while
the latter was introduced by Smirnov in [43] on the critical square grid and has
since been exploited in several different contexts to identify the scaling limit of
fermionic observables. We start with the integral IC of an s-holomorphic function.
In [5, Section 2.5 of], s-holomorphic functions are described as gradients of harmonic



CROSSING ESTIMATES ON GENERAL S-EMBEDDINGS 15

functions on the associated S-graphs, specializing in the Ising context the technology
developed in [13, Section 4.2] for t-holomorphic functions. Given an s-holomorphic
function F on ♦(G), one can define in the continuum plane (up to a global additive
constant) [5, Section 2.3]

IC[F ] :=
∫ (

ςFdS + ςFdQ
)

(2.15)

Let v•1,2, v◦1,2 be vertices of the quad z ∈ ♦(G). Then one has for ? ∈ {•, ◦}

IC[F ](v?2)− IC[F ](v?1) = ςF (z)[S(v?2)− S(v?1)] + ςF (z)[Q(v?2)−Q(v?1)]. (2.16)

As for the imaginary part of the primitive of the square H, we start by recalling
first its combinatorial definition (i.e. which doesn’t require any particular embed-
ding into the plane) for spinors on Υ×(G) satisfying (2.6). Afterwards, we precise
its analytic interpretation in the context of s-embeddings. This definition, which
represents a generalisation of the original work of Smirnov, can be found in the
following form in [5, Definition 2.8].

Definition 2.5. Given X a spinor on Υ×(G) satisfying (2.6), one defines the
function HX up to a global additive constant on Λ(G) ∪ ♦(G) by setting

HX(v•p(z))−HX(z) := X(cp0(z))X(cp1(z)) cos θz, p = 0, 1,
HX(v◦q (z))−HX(z) := −X(c0q(z))X(c1q(z)) sin θz, q = 0, 1,

HX(v•p(z))−HX(v◦q (z)) := (X(cpq(z)))2,

(2.17)

similarly to (2.8) and (2.9).

The consistency of the above definition follows once again from the propagation
equation (2.6). Passing to an s-embedding S of (G, x), one can use the corre-
spondence between X and F recalled in Proposition 2.4 to interpret HX via the
s-holomorphic function F associated to X. More precisely, it is possible to define
[5, Equation (2.17)]

HF :=
∫

Re(ς2F 2dS + |F |2dQ) =
∫

(Im(F 2dS) + Re(|F |2dQ)), (2.18)

on Λ(G) ∪ ♦(G). The function HF extends linearly to a piece-wise affine function
on each faces of the t-embedding T = S (but not on each face of ♦(G) as each face
of T has its own origami square root dQ), at least if one stays in the bulk of G
(see [13, Proposition 3.10]). The next lemma links the definitions (2.17) and (2.18),
proving that they are in fact the same function.

Lemma 2.6. [5, Lemma 2.9] Let F be defined ♦(G) and X be defined on Υ×(G)
related by the identity (2.13). Then, the functions HF and HX coincide up to a
global additive constant.

If S is an isoradial grid, the origami map Q is constant on both G• and G◦ (as all
the edges of any quad S�(z) are all of the same length), thus HF is the primitive of
Im[F 2dS], recovering the original definition given in [14, Section 3.3]. We now recall
the comparison principle for functions HF = HX associated with s-holomorphic
functions. This statement is due to Park and can be found in [5, Proposition 2.11].
In particular, when one of the observables in the following proposition is identically
0, this proposition becomes a maximum principle.
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Proposition 2.7. Let spinors X,Y : Υ×(G) → R both satisfy the propagation
equation (2.6) and the associated functions HX , HY : Λ(G) ∪♦(G)→ R be defined
via (2.17). Then, the difference HX −HY cannot have an extremum at an interior
vertex of its domain of definition.

In particular if HX is bounded at the boundary of a domain (which is trivially
the case for the observables defined in Section 3), then HX = HF is bounded
everywhere in the domain.

2.4. Regularity theory for s-holomorphic functions. In this short subsection
we recall in a concise way the regularity theory of s-holomorphic functions, which
is developed in [5, Section 2.6], adapting to the Ising context results coming from
[13, Section 6]. Our proof of crossing estimates is based on a contradiction between
the discrete behavior and its scaling limit, and thus we need to explain how to
extract sub-sequential limits from discrete observables. We start by recalling that
regularity theory of s-holomorphic functions requires adding one (mild) geomet-
rical constraints on potential local degeneracies of the embedding, following [13,
Assumption 1.2]. In that case, an s-holomorphic function F satisfies a standard
Harnack-type estimate that controls |F |2 via the gradient of the function HF .

Corollary 2.8. [5, Corollary 2.20] Let κ < 1 and a sequence of s-embeddings Sδ
satisfying Lip(κ,δ) and Exp-Fat(δ) in a disc U = B(u, r). Assume that F δ is an
s-holomorphic function on Sδ and that maxv:S(v)∈U |HF δ(v)| ≤M for all δ. Then,
the following uniform (as δ → 0) estimate holds:

|F δ(z)|2 = O(r−1M) if Sδ(z) ∈ B(u, 1
2r). (2.19)

In particular, the functions HF δ are uniformly Lipschitz on compact subsets of U .

Remark 2.9. Under the assumptions of Corollary 2.8, [5, Remark 2.11] also ensures
that the functions F δ form a precompact family in the topology of the uniform
convergence on compacts of B(u, r) as δ → 0. Indeed, those functions are uni-
formly bounded and β-Hölder (see [5, Theorem 2.18]) on scales above cst(κ) · δ.
Let us also remark that, in the case where the functions F δ are constructed out
of Kadanoff-Ceva correlators, it is possible to weaken the assumptions of Corollary
2.8 in the approximation of a fixed macroscopic domain, replacing the assump-
tion Exp-Fat(δ)by simply assuming the existence of a positive function oδ→0(1)
such that all boundary quads approximating that domain have a radius rz ≥
exp(oδ→0(1)δ−1). Indeed, in that new scenario, that second alternative of [5,
Theorem 2.18] stating the exponential blow up (in δ−1) of |F |2 is not possible.
Indeed, the projections Re[F ] and Im[F ] are martingales for some random walk
in the appropriate S-graphs and thus satisfy the maximum and minimum princi-
ple. On the other hand, at the boundary quads, the formula (2.14) ensures that
|F | = O(exp(oδ→0(1)δ−1)), thus forcing the first alternative of [5, Theorem 2.18]
to hold, which is exactly Corollary 2.8.

2.5. Subsequential limits of s-holomorphic functions. We discuss now the
behavior of subsequential limits of s-holomorphic functions, under the general hy-
pothesis Lip(κ,δ) , following [5, Section 2.7]. In what follows, we work with proper
s-embeddings Sδ all satisfying the assumption Lip(κ,δ) as δ → 0 for the same con-
stant κ < 1, such that their respective images cover a given ball U = B(u, r) ⊂ C.
As the functions Qδ all are κ-lipschitz above scale � δ and are defined up to an
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additive constant, there exist a sub-sequence δk → 0 and a κ-Lipschitz function
ϑ : U → R such that uniformly on compacts of U,

Qδk ◦ (Sδk)−1 → ϑ. (2.20)
Assuming now we are in the setup of Corollary 2.8 and that (2.20) holds, consider
f : U → C a subsequential limit of s-holomorphic functions F δ on Sδ. Then
following [5, Proposition 2.21] and setting ς = ei

π
4 as in (2.7), the differential form

1
2 (ςfdz+ ςfdϑ) is closed. This comes as a natural counterpart of the consistency in
the definition of the primitive IC in (2.15) (as contour integrals of discrete functions
vanish before passing to the limit). With a consistent choice of additive constants,
the associated functions HF δ also converge uniformly on compact subsets of U to
h :=

∫
(Im(f2dz) + |f |2dϑ).

The previous condition on closeness of 1
2 (ςfdz+ςfdϑ) is not easily tractable and

hard to interpret in terms of the local relation satisfied by f . In [5, Section 2.7],
Chelkak provides a nicer description when passing to the conformal parametrization
of the an appropriate surface in the Minkowski space R2,1, equipped with the inner
product of signature (2, 1).

On first recalls that the function ϑ is κ-Lipschitz, thus differentiable almost every-
where. One can then consider (as in [5, Equation (2.26)]) an orientation-preserving
conformal parametrization of the space-like surface (z, ϑ(z))z∈U , equipped with a
positive metric coming from the ambient Minkowski space

D 3 ζ 7→ (z, ϑ) ∈ U × R ⊂ C× R ∼= R2+1 (2.21)
As noted in [5, below Equation (2.26)], in the case where ϑ is a smooth function, the
angles (measured in R2,1) of infinitesimal increments are preserved by the mapping
(2.21) if and only if everywhere in D, one has [5, Equation (2.27)]

zζzζ = (ϑζ)2 and |zζ | > |ϑζ | ≥ |zζ | , (2.22)
where zζ := ∂z/∂ζ (similarly, zζ and ϑζ) stands for the usual Wirtinger derivatives.

Without assuming any smoothness assumption on ϑ, one can note that conformal
parametrization of (2.22) can be equivalently rewritten as a quasi-conformal map
z 7→ ζ(z) (solution to a Beltrami equation):

ζz̄ = µ(z)ζz, (2.23)

(or in an equivalent way to zζ = −µ(ζ)zζ), with the Beltrami coefficient µ given by
the equation

µ̄

1 + |µ|2 = − ϑ2
z

1− 2|ϑz|2
, (2.24)

This equivalence can be seen by plugging the identity ϑζ = ϑzzζ + ϑz̄ z̄ζ (using
the fact that ϑ is real valued) into the condition (2.22), which rewrites as −µ =
(ϑz−µϑz̄)2. Since ϑz̄ = ϑz, this justifies the equality (2.24). Moreover the function
z 7→ ϑ(z) is κ-Lipschitz for some κ < 1, which proves that |ϑz| ≤ κ

2 and ensures
that |µ| ≤ cst(κ) < 1 (see [5, Equation (2.30)]). One can now proceed as follows

• Compute the Beltrami coefficient µ ∈ L∞ from the equation (2.24) almost
everywhere, as ϑ is differentiable almost everywhere for the Lebesgue mea-
sure.

• Use the Ahlfors-Bers’s measurable Riemann mapping theorem [2, Chapter
5] to solve the Beltrami equation (2.23), constructing a quasi-conformal
uniformization ζ : U 7→ D such that (2.22) holds almost everywhere in D.
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In the ζ ∈ D parametrization, one can make a convenient change of variables as
in [5, Equation (2.28)], by defining the functions

φ(ζ) := ςf(z(ζ)) · (zζ)1/2 + ςf(z(ζ)) · (zζ)1/2 (2.25)

Under this change of variables, IC[f ] :=
∫
ςf(z)dz + ςf(z)dϑ reads as

g(ζ) =
∫
ςφ(ζ) · z

1
2
ζ dζ + ςφ(ζ) · (zζ̄)

1
2 dζ̄. (2.26)

Computing their Wirtinger derivatives in the ζ variable and using the almost ev-
erywhere relation (2.22), one sees directly that g satisfies a conjugate Beltrami
equation

gζ = ν · gζ with ν := − (zζ)
1
2

(zζ)
1
2

= −ϑζ
zζ

(2.27)

where the Beltrami coefficient ν is bounded away from 1 (see [5, Equation (2.30)])
this bound depends again on κ). Indeed, one can see from the identity ϑζ =
ϑzzζ + ϑz̄zζ that |ν| < 2|ϑz| ≤ κ < 1.

The focus on the function g is two fold: beyond being solution to the conjugate
Beltrami equation (2.27), it is constructed as the primitive of a continuous differen-
tial form and thus inherits some additional a priori regularity. Provided one knows
that f is locally bounded, one can deduce directly that

• The function g has bounded distortion (see e.g. [2, Equation (2.27)] for the
precise definition), smaller than 1+κ

1−κ .
• The function g also belongs to L1,2

loc. Indeed using the formula gζ = ςf(z(ζ))zζ+
ςf̄(z(ζ))ϑζ and recall that f(z(ζ)) is locally bounded. Since the Jacobian of
z satisfies Jac(z) := |zζ |2−|zζ̄ |2 ≥ (1−κ2)|zζ |2, equation (2.22) ensures that
|zζ̄ | ≤ κ|zζ | in the ζ parametrization, and it is possible to use the area prin-
ciple. Namely,

∫
Ω |zζ |

2d2ζ ≤ (1−κ2)−1 ∫
Ω Jac(z)d2z = (1−κ2)−1Area(Ω) <

∞. This ensures then that g belongs to L1,2
loc.

Combining the two previous observations, one can apply the Stöılov factorization
stated in [2, Corollary 5.3.3] which allows to write the factorization g = g ◦ p with
p : Ω → Ω a β(κ)-Hölder homeomorphism and g an holomorphic function. In
particular, g cannot be constant in an open set except if it is constant everywhere
in the domain.

3. Proof of the positive magnetization Theorem 1.1

3.1. Description of the extended domain. We now prove Theorem 1.1, which
allows to deduce directly Theorem 1.2 as mentioned in Section 1, using the tech-
nology recalled in [5, Proof of Corollary 1.4] and originally introduced in [19]. The
proof of positive magnetization between opposite boundaries in the alternating
wired/free/wired/free spin-Ising setup is done first in a special topological rectan-
gle denoted Rδext, which corresponds to an extension of the approximation of a
rectangle of Sδ. Once the proof in is performed Rδext, standard monotonicity ar-
guments (e.g. [18, Theorem 7.6]) regarding the change of boundary conditions for
the spin-Ising model allow to deduce the same statements for any discretization of
a usual rectangle in Sδ. The main feature of this extended domain Rδext is that its
boundary contains two macroscopic pieces of the square lattice, which is enough to
obtain a contradiction and prove Theorem 1.1. Those two macroscopic regions are
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called the square grid districts. It is rather easy to construct, in the extended do-
main, a precompact sequence of s-holomorphic functions F δ, associated to 4-points
Kadanoff-Ceva correlators. The associated functions Hδ converge in their turn to
h =

∫
Im[f2dz] + |f |2dϑ, at least in the bulk of the extended domain. The con-

tradiction will come from the ’sign of the outer derivative’ of h (by this we mean
whether h tends to grow or decay near one of its boundary arcs). The introduction
of the pieces of the square lattice allows to use the technology developed [14] to
ensure that discrete Dirichlet boundary conditions of the function Hδ survive when
passing to the continuous limit, at least in the square grid districts. This allows
to bypass the use of special cuts introduced [5, Section 5] to control the boundary
behavior of Hδ. Let us point out that, instead of the partial rewiring procedure
between the wired arcs introduced in [14, Equations (6.3) and (6.4)], we present
here a more transparent derivation. Still, the rewiring procedure remains useful if
one wants to prove convergence (and not only a lower bound) of correlation in the
same 4 points setup.

We start by describing in a more precise way the extended domain where we
first prove an analogue of Theorem 1.1. Let (Sδ)δ>0 be a sequence of s-embeddings
satisfying Lip(κ,δ) and Exp-Fat(δ) . In the following lines and the rest of proof,
the quantity oδ→0(1) will be positive and goes to 0 as the mesh size of grid goes
to 0, is uniform on compacts of the plane, and determines the speed at which the
maximal diameter of the connected components of faces with exponentially small
radius vanishes, while we also use the notation õδ→0(1), which represents a positive
function that goes to 0 as δ goes to 0, and will count for distances in the Sδ plane.
We aim to find and extend the approximation of a rectangle of a fixed aspect ratio
in Sδ such that, one has (see Remark 4.5)

• All the tangential quadrilaterals of the boundary of the extended picture
have a radius rz ≥ exp(−oδ→0(1)δ−1).
• The extended picture contains two macroscopic pieces of the square grid

lattice whose faces all have a radius rz ≥ exp(−oδ→0(1)δ−1).
The special boundary of the special topological rectangle Rδ approximates up

to õδ→0(1) the rectangle [− 1
2 ,

1
2 ]× [−3, 3] is constructed using two approximations

of the segments {± 1
2}× [−4; 4] that are then connected with approximations of the

vertical segments {[− 1
2 ; 1

2} × {±3}, still with fat enough boundary quads.

Proposition 3.1. Provided δ is small enough, there exist Rδ in Sδ as above, such
that one can construct (see Figure 6) a finite piece of a proper s-embedding denoted
Rext
δ , approximating up õδ→0(1) the domain Ω = [−1

2 ; 1
2 ]×[−5; 5]∪[ 1

2 ; 1]×[− 9
2 ;− 7

2 ]∪
[−1;− 1

2 ]× [ 7
2 ; 9

2 ], such that:
• All the boundary quads of Rext

δ have a radius rz ≥ exp(−oδ→0(1)δ−1).
• One has Rδ ⊆ Rext

δ and the left and right ’vertical’ boundaries of Rδ belong
the boundary of Rext

δ .
• Rext

δ contains two pieces of a square lattice in the regions [ 1
2 ; 1]× [− 9

2 ;− 7
2 ]

and [−1;− 1
2 ]×[ 7

2 ; 9
2 ] whose quads have a radius rz ≥ exp(−10000oδ→0(1)δ−1).

Those two regions are called the south and the north square grid district.
• The vertices of S(G◦) at the bottom horizontal boundary of the south square

grid district are horizontally aligned.
• Rext

δ satisfies the assumption Lip(κ, 5δ).
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Proof. See section 4 for an explicit construction. �

3.2. Contradiction in the special extended domain. Let (Ωδ; aδ, bδ, cδ, dδ) be
a discrete simply connected domain of an s-embedding Sδ, with two wired boundary
arcs (bδcδ)◦, (dδaδ)◦ and a two dual-wired boundary arcs (cδdδ)• and (aδbδ)• (see
[14, Section 6] ,[5, Figure 7] or Figure 7). Here aδ, bδ, cδ, dδ are corners, separating
the extremities of these four arcs and correspond to the places where the discrete
function Hδ defined below has jumps (it is constant along each of the four arcs).
One can now define the Kadanoff-Ceva four points observable by setting Xδ(·) :=
EΩδ [χ(·)µ(cδdδ)•σ(dδaδ)◦ ] via (2.5). It is easy to see that

Xδ(aδ) = ±EΩδ [µ(aδbδ)•µ(cδdδ)• ], Xδ(dδ) = ±1,
Xδ(bδ) = ±EΩδ [µ(aδbδ)•µ(cδdδ)•σ(bδcδ)◦σ(dδaδ)◦ ], Xδ(cδ) = ±EΩδ [σ(bδcδ)◦σ(dδaδ)◦ ].

Choosing properly the global additive constant in the definition of HXδ associated
to Xδ via (2.17), one has

HXδ((cδdδ)•) = 1, HXδ((dδaδ)◦) = 0,
HXδ((aδbδ)•) = 1− E[µ(aδbδ)•µ(cδdδ)• ]2, HXδ((bδcδ)◦) = 1− E[σ(bδcδ)◦σ(dδaδ)◦ ]2.

We focus on the specific situation where (Ωδ; aδ, bδ, cδ, dδ) is the topological rec-
tangle Rext

δ constructed in Section 4 equipped with the Ising model, approximating
the domain Ω. Up to passing to another subsequence, one can also assume that
(Qδ)δ>0 converges uniformly to a κ < 1 Lipschitz function ϑ on compacts subsets
of the box [−10; 10]2 (recall that the functions Qδ are automatically 1-Lipschitz
and defined up to additive constant). One denotes by F δ and Hδ = HF δ = HXδ

the functions naturally associated to the correlator Xδ define above via (2.14) and
(2.17). Using the maximum principle for Hδ coming from Proposition 2.7, one
directly deduces from the boundary conditions (3.2) that the functions HF δ are
uniformly bounded by 1 on Ωδ. Recall that all the boundary faces of Rext

δ have
by construction a radius rz ≥ exp(−oδ→0(1)δ−1) (replacing if needed the original
function oδ→0(1) by 10000oδ→0(1)). While the assumption Lip(κ, 5δ) is fulfilled for
the domain Rext

δ , it is a priori not the case for the assumption Exp-Fat(δ) (as
one can see within the proof of Proposition (3.1)). Still, Remark 2.9 using that
all boundary quads are fat enough ensures there exist a subsequential limit of the
family (F δ)δ>0 such that, uniformly on compacts of Ω,

F δ → f, HF δ → h =
∫

Im[(f(z))2dz] + |f(z)|2dϑ.

It is clear from the discrete estimate 0 ≤ Hδ ≤ 1 that h takes its values in [0, 1].
In general dϑ 6= 0, and f is not holomorphic. Still, the function f is holomorphic
inside in the two square grid districts, as ϑ is constant there. This also implies that
h =

∫
Im[(f(z))2dz] in that region is a harmonic function in the two square grid

districts. Assuming EΩδ [σ(bδcδ)◦σ(dδaδ)◦ ] → 0 as δ → 0 along one subsequence, we
have HXδ((bδcδ)◦) = 1−EΩδ [σ(bδcδ)◦σ(dδaδ)◦ ]2 → 1 as δ goes to 0. The contradiction
is obtained in three steps:

• We show that h has Dirichlet boundary values 0 in a piece of the arc of
the top left region and has Dirichlet boundary values 1 in a piece of the
bottom right region. This requires to show that discrete Dirichlet boundary
conditions for the function Hδ survive when passing to the continuous limit.
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• The sign of the outer derivative of the functions Hδ depends on the type
of the arc (i.e. wired or free), at least in the square grid regions. In
particular, discrete functions Hδ tend to grow near wired arcs while the
continuous functions h has to decay near that same arc by the maximum
principle (recall that h ∈ [0, 1] thus h cannot increase near that part of
the boundary). At the level of observables, this will translate in the fact
that functions F δ are purely real at the discrete bottom boundary of the
southern district while continuous function f is purely imaginary at that
boundary. This leaves the only option that f vanishes identically at that
arc and thus in the entire southern square grid district.

• The Slöılov factorization for IC[f ] implies that the function f should actu-
ally vanish everywhere in Ω, contradicting the change of boundary values
of h between different districts.

The author is grateful to Mikhail Basok for pointing out the Stöılov factorization
allowing to obtain the final contradiction.

Proof. Proof of Theorem 1.1 in Rext
δ

Step 1: Boundary behavior of the continuous functions f and h

The proof can be followed with Figure 6. Recall that we assume that the corre-
lation EΩδ [σ(bδcδ)◦σ(dδaδ)◦ ]2 vanishes in the limit along one subsequence as δ → 0,
thus HXδ((bδcδ)◦) = 1 − EΩδ [σ(bδcδ)◦σ(dδaδ)◦ ]2 → 1 at the wired arc (bδcδ). This
statement remains in particular true at the horizontal arcs of the bottom right
square grid district. In the square grid districts and a priori only there, one can
apply [14, Proposition 3.6] and deduce directly that

• The function HF δ is sub-harmonic on G◦ for the natural Laplacian on G◦

defined in [14, Equation (3.1)].
• The function HF δ is super-harmonic on G• for the natural Laplacian on
G• defined in [14, Equation (3.1)].

Using the boundary modification trick of [14, Lemma 3.14, Remark 3.15] to compare
Hδ with discrete harmonic functions proves, exactly as in [14, Theorem 4.3]) that
discrete Dirichlet boundary conditions survive when passing to continuum i.e. h
extends continuously to 1 at the horizontal arc of the bottom right square grid
district. In continuum, the 1 Dirichlet boundary conditions of h at the horizontal
segment [ 1

2 ; 1] × {− 9
2} (drawn in orange in Figure 6) and the fact that 0 ≤ h ≤ 1

imply that f extends continuously up to the bottom boundary of the square grid
district. Moreover, f2 ∈ R− near that arc, i.e. f ∈ iR, as in [5, Proof of Theorem
1.3]. One can also note that a similar reasoning on survival of Dirichlet boundary
conditions applied at the top square grid district proves that h = 0 near the upper
vertical segments of its boundary.

Step 2: Boundary behavior of discrete functions F δ

For discrete observables F δ, at a boundary quad z∂ ∈ Sδ(♦(G)) of the arc
approximating the horizontal segment [ 1

2 ; 1]×{− 9
2}, the increment of HF δ between

two consecutive (from left to right) vertices of S(G◦) vanishes identically (this is a
direct consequence of (3.2)). That same increment is also positively proportional to
Im[F δ(z∂)2]. This allows to conclude that F δ(z∂)2 ∈ R and one can even go beyond
that observation, as the value of the boundary argument of F δ(z∂) is given directly
by the formula [5, Lemma 5.3], which implies that F δ(z∂) ∈ R. In particular
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F δ(z∂) is purely real at the boundary, which means that z′ 7→ Im[F δ(z′)] vanishes
identically at the bottom boundary of the south square grid district.

In the square grid district, z′ 7→ Im[F δ(z′)] is a martingale for the standard
random walk on quads (i.e. the probability to leave from z ∈ ♦(G) to one of its
four neighbors is 1

4 ). This is a simple implication of the discrete Cauchy-Riemann
equation satisfied by F δ (see e.g. [8, Equation (3.1)]). Set z0 = ( 3

4 ;− 9
2 + s)

and denote by Rδ
s

1
4

the square of width 2s 1
4 centered at ( 3

4 ;− 9
2 + s

1
4 ). Using the

standard gamblers ruin estimates for random walks on Z2, the probability that the
random walk associated to Im[F δ(z′)] leaves Rδ

s
1
4

from its top side is O(s 3
4 ). On

the other hand, using uniform crossing estimates for the standard random walk,
the probability that this walk leaves Rδ

s
1
4

from one of its vertical sides at a vertical
distance ρ from the bottom boundary of Rδ

s
1
4

is bounded by ρ 1
2 +ε, for some ε > 0

which is independent from s and δ̃ (the mesh size of the square lattice in the
southern district). We apply now the optional stopping theorem to the time the
walk started at z0 exits Rδ

s
1
4

to reconstruct the value Im[F δ(z0)]. One has

• The contribution to Im[F δ(z0)] coming from the bottom side of Rδ
s

1
4

van-
ishes identically as Im[F δ] vanishes there (which is a consequence of the
discussion above).

• The contribution of the top side is bounded by O(s 3
4 ·s− 1

8 ) as F δ is bounded
there by s− 1

8 in the top segments of Rδ
s

1
4

.
• The contribution of the vertical sides is polynomially small in s, as the

probability to leave from one of the vertical sides at a height ρ from
the bottom side is bounded by ρ

1
2 +ε and we have the bound |F δ(z)| =

O(dist(z, ∂Ω)− 1
2 ). To get this bound on the southern district formed by a

square grid of mesh size δ̃, one has to separate two cases.
– If the distance from z to the bottom boundary is larger than cstδ̃ (for

some uniform constant cst), one can apply Corollary 2.8.
– if the distance from z to the bottom boundary is smaller than cstδ̃,

the reconstruction of F δ via Xδ given in (2.14) ensures directly that
F δ = O(δ̃− 1

2 ).
All together, this ensures that | Im[F δ(z0)]| = O(sβ′′) for some positive exponent
β′′. Sending first δ to 0 and then s to 0 implies that f is purely real at ( 3

4 ;− 9
2 ) and

thus has to vanish at that point, as it is also purely imaginary according the step 1
of the proof given above). Repeating the same reasoning ensures f in fact vanishes
in the entire bottom arc of the south square grid district. Since f is holomorphic
in the square grid district and vanishes on a boundary arc, it vanishes everywhere
in the bottom square grid district. This implies that its primitive IC is constant in
that region.

Step 3: Final contradiction using the Stöılov factorization
We are now in position to conclude the final contradiction. Consider the function

g(ζ) = IC(ζ) defined by (2.26) in the ζ conformal parametrization of the surface
(z, ϑ(z)). As explained in Section 2.5, g satisfies a conjugate Beltrami equation
(2.27) with a Beltrami coefficient which is bounded away from 1 (this bound only
depends on κ). Moreover g is constant in the bottom square grid district. Writing
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Figure 3. Local notation related to the boundary analysis at the
south square grid district. The sign of the outer derivative are
opposite for discrete Hδ and continuous h, imposing that the con-
tinuous observable vanishes at that horizontal arc.

the Stoilov factorization g = g ◦ p with p : Ω → Ω a β(κ)-Hölder homeomorphism
and g an holomorphic function, the function g is constant in the south square grid
district, thus constant everywhere in Ω. In return, this proves that f vanishes
everywhere in Ω. This contradicts the change of boundary values from 0 to 1 for
the function h =

∫
Im[f2dz] + |f |2dϑ between the north and the south square grid

districts.
�

4. A proof of Proposition 3.1

In this section, we give a complete proof of Proposition 3.1 when starting with a
sequence of s-embeddings that satisfy Lip(κ,δ) and Exp-Fat(δ) . The key step into
proving Theorem 1.1 is to to it first in the domain Rδext and then deduce the same
statement for standard rectangles. We start with a subsection containing reminders
of rather simple geometrical features of tangential quadrilaterals. Extending a
finite piece of an s-embedding and pasting it to a piece of the square lattice, while
remaining in the s-embedding setup (i.e. requiring that all faces Λ(G) are tangential
quadrilaterals) is not obvious at first sight. Still, one notes that in the case of all
boundary vertices aligned along a straight line, there exist rather straightforward
extension strategies, either by using symmetry arguments or by pasting layers of
kites and squares.

4.1. Features of tangential quadrilaterals. In the following list of claims, we
recall simple geometrical features on tangential quadrilaterals. The claims are illus-
trated by Figure 4. On s-embeddings that satisfy Lip(κ,δ) for some fixed κ < 1, all
the edges of any quad of Sδ(♦(G)) are of length smaller than δ. Indeed, along the
edges of a quad z, the origami map Qδ is real a linear function with rate of growth
±1. To lighten the notations, we identify each vertex of Λ(G) with its image in
Sδ(Λ(G) in the embedding.

Let z = (v◦0v•0v◦1v•1) be a tangential quadrilateral with an inner circle of radius
rz and centered at ẑ. In what follows, we do not ask for the convexity of z, but
always assume all its edges are of length smaller than δ. Then one has:

(A) The four bisectors of the angles of the quadrilateral z intersect at ẑ.
(B) The area of the tangential quadrilateral is a product of the radius of its

inscribed circle rz by the half-perimeter of z. In the following paragraphs,
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Figure 4. (Left) Notations for the tangential quadrilateral with
center ẑ. The four bisectors intersect at the center ẑ of the tangen-
tial quadrilateral. (Middle) Hyperbola C drawn in blue denoting
in claim (E) the set of points such that (v◦0v•0v◦1v•) is a tangential
quadrilateral. (Right) Transformation described in (F) of a trian-
gle into a tangential quadrilateral by adding as a vertex to tangent
point of C and one of its sides.

in several occasions, we will bound from below the radius of a tangential
quad. This is done by bounding from below the area of z and from above
its perimeter.

(C) Let φv,z be one of the half-angles of z at v (i.e. the angle formed by an
edge containing v and the bisector that links v to ẑ). Then, provided the
angle φv,z is smaller than π

4 , there exists a universal constant C such that
φv,z ≥ C tanφv,z ≥ C rz

δ . The left inequality is true when φv,z goes to 0
while the right inequality is a direct computation on the straight triangle
formed by v, ẑ and the orthogonal projection of ẑ on one of the edges
containing v.

(D) Fix an edge e = [v◦v•] of a tangential quadrilateral z attached to vertices
v◦ and v• whose respective angles are φv◦,z and φv•,z. The length of the
edge e equals rz(cot(φv◦,z) + cot(φv•,z)) ≥ rz sin(φv◦,z + φv•,z).

(E) Fix three vertices v◦0,1 and v•0 . The set C of points v• in the plane such
that (v◦0v•0v◦1v•) is a tangential quadrilateral is an hyperbola (potentially
degenerated to a straight line) passing through v•0 and v•1 . Indeed, denoting
(x, y) the coordinates of v• and writing the equality |v• − v◦0 | − |v• − v◦1 | =
|v•0 − v◦0 | − |v•0 − v◦1 |, one recovers the algebraic equation of an hyperbola.
The conical C is clearly unbounded and admits the bisector of the angle
(v◦0v•0v◦1) as an asymptote when v• goes to infinity.

(F) Let T = (JKL) be a triangle (whose vertices are labeled in the counter-
clockwise order) and consider C the circle of radius r which is tangential to
its three sides. Consider e.g. M the point at the intersection of C and the
segment [JL]. Then one can view the quadrilateral (JKLM)(still labeling
vertices in the counter-clockwise order) as a tangential quadrilateral, whose
tangential circle is C.
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4.2. Horizontal alignment of the lattice. The now present the welding proce-
dure of a piece of a given s-embedding Sδ to a piece of the square lattice. The local
constrain of all quadrilaterals being tangential is rather unpleasant to handle, thus
we will first straighten the boundary by aligning along the same line all its vertices,
which provides a simpler situation to handle. The first step is to slice horizontally
a piece of an s-embedding to extend it afterwards by periodic layers. We present
now a very concrete method to replace the intersection of a tangential quadrilateral
and a closed half-plane by a similar picture but this time with bottom boundary
vertices all aligned along the border of that half-plane. We give the construction for
vertical half-planes, but it is rather straightforward to adapt for general half-planes.

Definition 4.1. Let z ∈ ♦(G) a tangential quadrilateral, z the topological closure
of z and y a horizontal level intersecting z away from its vertices. We say that
Z ⊆ z is a horizontal alignment from above of z at level y if

• Z is the union of at most 3 tangential quadrilaterals (see Figure ??).
• Z = z ∩ (iy + H) i.e. Z is the intersection of z and the close half plane

above level y.

One can define in a similar fashion horizontal alignment from below, which con-
cerns the close half plane below level y. The next lemma ensures that it is possible
to perform a horizontal alignment (from above or from below) of a given tangential
quadrilateral.

Lemma 4.2. Let z a tangential quadrilateral and y a vertical level (represented by
the line iy in C) that intersects z at a level that doesn’t contain its highest vertex.
Then there exist an horizontal alignment from above of z at level y.

Proof. The proof is made by an explicit construction using the facts recalled above.
We make a dichotomy depending on the number of vertices of z below level y. We
encourage the reader to follow the proof with the pictures of Figure ??.

(1) There is only one vertex of z below level y
Up to swapping colors, one can assume that the vertex below level y is v•0 . Let

C the be hyperbola (claim (E)) of points v• such that (v◦0v•1v◦1v•) is a tangential
quadrilateral. This hyperbola is a continuous curve inside z containing the points v•0
and v•1 . A continuity argument ensures the existence of a point ṽ• with Im[ṽ•] = y
such that (v◦0v•1v◦1 ṽ•) is a tangential quadrilateral. As a consequence (e.g. checking
the alternate sum of edge-lenghts), the quadrilateral (v◦0v•0v◦1 ṽ•) is also tangential.
Set now the points ṽ•0 and ṽ•1 to be respectively the intersections of the segments
[v◦0v•0 ] and [v◦0v•1 ] with the level y. Using the claim (F), one can transform the
triangles (ṽ•v◦0 ṽ•0) and (ṽ•v◦1 ṽ•1) as tangential quadrilaterals by adding repectively
the vertices ṽ◦0,y and ṽ◦1,y to the segments [ṽ•0 ṽ•] and [ṽ•1 ṽ•].

(2) There are two vertices of z below level y
We make a dichotomy of the two subcases that appear here.
(a) The two vertices that lie below level y, v•0 and v◦0 , are of different colors.

Consider first C1 the hyperbola of points v• such that (v◦0v•0v◦1v•) is a tangential
quadrilateral linking continuously v•0 to v•1 inside z. There exists once again of a
point ṽ•, with Im[ṽ•] = y, such that (v◦0v•0v◦1 ṽ•) is a tangential quadrilateral. As
previously, the quadrilateral (v◦0v•1v◦1 ṽ•) is tangential. One then reapply the same
strategy, this time to the tangential quadrilateral (v◦0v•1v◦1 ṽ•) to construct inside
(v◦0v•0v◦1 ṽ•) a tangential quadrilateral (v◦1v•1 ṽ◦ṽ•) with Im[ṽ◦] = y. Set this time
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Figure 5. Top: (Left) Case 1 (Right) Case 2a. Bottom: (Left)
Case 2b (Right) Case 3

ṽ•0 and ṽ◦0 the respective intersections of the segments [v◦1v•0 ] and [v•1v◦0 ] with the
line y. Using claim (F), one can construct two tangential quadrilaterals out of the
triangles (ṽ•0v◦1v•0) and (ṽ◦0,yv•1v◦0) by adding respectively one white vertex to the
segment [ṽ•0v•] and one black vertex to the segment [ṽ◦0 ṽ◦], both located on the axis
y.

(b) The two vertices v•0 and v•1 below level y are of the same color (that we assume
to be black here up to swapping colors). In that case, (v◦0v•0v◦1v•) is non convex and
z∩(iy+H) is formed by two triangles containing respectively v◦0 and v◦1 . Denote by
ṽ•00, ṽ

•
01, ṽ

•
10, ṽ

•
11 the intersections of respectively [v•0v◦0 ], [v•0v◦1 ], [v•1v◦0 ], [v•1v◦1 ] and this

axis y. Then the triangles (ṽ•10ṽ
•
10v
◦
0) and (ṽ•01ṽ

•
11v
◦
1) can be viewed as tangential

quadrilaterals by adding two white vertices to the segments [ṽ•10ṽ
•
00] and [ṽ•01ṽ

•
11]

using claim (F).
(3) There are three vertices of z below level y
Assume e.g. that v•1 lies above level y. The consider ṽ◦0 and ṽ◦1 the intersections

of y and the segments [v•1v◦0 ] and [v•1v◦1 ]. Then one can view the triangle (v•1 ṽ◦0 ṽ◦1)
as a tangential quadrilateral by adding a black vertex to the segment [ṽ◦0 ṽ◦1 ], using
again claim (F).

�
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In our proof, in order to apply regularity theory for s-holomorphic function, it is
enough to check that the extended picture constructed has a boundary formed of
tangential quadrilaterals that all have a radius larger than rz ≥ exp(−oδ→0(1)δ−1).
In principle, if we are not careful when choosing the slicing level and use some sym-
metry techniques to extend the picture, it might happen that the newly constructed
boundary is composed of quads with exponentially small radii, not allowing to use of
regularity theory for s-holomorphic functions developed in Section 2.4. We explain
now that, if one starts with a quad in Sδ whose radius not so small, there is only
a small share of vertical levels intersecting that will produce horizontal alignments
with too small of a radii. The next definition precises this idea.

Definition 4.3. Let y be a horizontal a level that intersects the tangential quad
z. We say that y is a β-bad level for z if one of the tangential quadrilaterals
constructed with the algorithm of the horizontal alignment from above of Lemma
4.2 has a radius rz smaller than β. The complement of β-bad levels are called
β-good levels.

The next proposition upper bounds the share of bad levels in a tangential quadri-
lateral z whose radius is larger than exp(−γδ−1). Informally speaking, the proof
shows that β−bad levels (for a small β) are only those close to the horizontal lines
containing vertices of z.

Proposition 4.4. Let z be a tangential quad with a radius rz ≥ exp(−γδ−1) and
whose edges are all of length smaller than δ. Then provided δ is small enough, the
(vertical) one dimensional Lebesgue measure of exp(−40γδ−1)-bad levels intersect-
ing z is at most 4 exp(−4γδ−1).

Proof. We work with δ chosen small enough. Using claim (C) on the features of tan-
gential quadrilateral, the angles φv,z are bounded from below by δ−1 exp(−γδ−1) ≥
exp(−γδ−1), as rz ≥ exp(−γδ−1) and while edge-lengths of the boundary segments
of z are smaller than δ. Fix an horizontal level y, at a vertical distance at least
exp(−4γδ−1) from the (at most) 4 axes containing the vertices of z and perform an
horizontal alignment at level y following Lemma 4.2. We keep exactly the notations
of that Lemma and treat separately the four subcases presented there, depending on
the number of vertices below level y. We still denote ẑ the center of the tangential
quadrilateral.

(1) There is only one vertex of z below the axis y
One claims that, provided δ is small enough, the area of the tangential quadri-

laterals (v◦0v•1v◦1 ṽ•) and (v◦0v•0v◦1 ṽ•) can be bounded from below by the quantity
1
2 exp(−γδ−1) exp(−4γδ−1) exp(−4γδ−1) ≥ exp(−10γδ−1). To do that, we are first
lower bound the area the of tangential quadrilateral (v◦0v•0v◦1 ṽ•), then lower bound
one of its angles and derive the statement for (v◦0v•1v◦1 ṽ•) and (v◦0v•0v◦1 ṽ•).

Consider e.g. the triangle (filled in blue in the left Figure 4) denoted by
T(v◦0v•0v◦1 ṽ•)(v

•
0 , exp(−4γδ−1)) = T (v•0 , exp(−4γδ−1)) ⊆ (v◦0v•0v◦1 ṽ•), isoscele at v•0

such that
• The symmetry axis of T (v•0 , exp(−4γδ−1)) is the bisector of the angle

(v◦0v•0v◦1)
• Two sides of T (v•0 , exp(−4γδ−1)) belong respectively to the segments [v◦0v•0 ]

and [v◦1v•0 ].
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• The height of T (v•0 , exp(−4γδ−1)) (along the bisector of the angle (v◦0v•0v◦1))
is exp(−4γδ−1).

Since the angle φ̂v•0 ,z is bounded from below by exp(−γδ−1), the area A(v◦0v•0v◦1 ṽ•) of
T (v•0 , exp(−4γδ−1)) and thus the area of (v◦0v•0v◦1 ṽ•) is larger than exp(−10γδ−1).
Moreover, the perimeter Per(v◦0v•0v◦1 ṽ•) of (v◦0v•0v◦1 ṽ•) is at most 4δ (it is a general
fact that if a convex polygon lies inside another one, the perimeter of the outer one
is larger than the interior one).

(1) r(v◦0v•0v◦1 ṽ•) = 2A(v◦0v•0v◦1 ṽ•)Per−1
(v◦0v•0v◦1 ṽ•)

≥ 1
2 exp(−10γδ−1)·δ−1 ≥ exp(−10γδ−1)

using claim (B) when δ is small enough.
(2) The angles v̂•0v◦0 ṽ• and v̂•0v

◦
1 ṽ
• are both bounded from below by the quan-

tity Cr(v◦0v•0v◦1 ṽ•)δ
−1 ≥ C exp(−10γδ−1) · δ−1 ≥ exp(−10γδ−1), where the

absolute constant C comes from claim (C) and δ is chosen small enough.
(3) One can compute directly the area of the triangle [v•0v◦0 ṽ•], which is exactly

equal to 1
2 sin v̂•0v◦0 ṽ• |ṽ•0 − v◦0 ||ṽ• − v◦0 | ≥ 1

4 exp(−10γδ−1) · exp(−4γδ−1) ·
exp(−4γδ−1) ≥ exp(−20γδ−1) (as sin v̂•0v◦0 ṽ• ≥ 1

2 exp(−10γδ−1) and both
distances |ṽ•0 − v◦0 | and |ṽ•0 − v◦0 ||ṽ• − v◦0 | are larger than exp(−4γδ−1)).
Since the perimeter of [v•0v◦0 ṽ•] is smaller than 10δ, one gets the lower
bound rv•0v◦0 ṽ•ṽ◦0,y ≥ exp(−20γδ−1), repeating exactly the area/perimeter
argument given in step 1.

The same result holds for the triangle (v•0v◦1 ṽ•) viewed as a tangential quadrilateral.
(2) There are two vertices of opposite color of z below the axis y
Recall that the horizontal alignment is constructed by modifying along the ap-

propriate hyperbola (v•0v◦1v•1v◦0) into (ṽ•v◦1v•1v◦0) and then modifying along the ap-
propriate hyperbola (ṽ•v◦1v•1v◦0) into (ṽ•v◦1v•1 ṽ◦).

Repeating the arguments of the case with one vertex below the axis y, one gets
• The angles v̂•0v◦1 ṽ• and ˜̂v◦v•1v◦0 are larger than exp(−10γδ−1), as in (2). The

radii of the tangential quadrilaterals associated to the triangles (ṽ•0v◦1 ṽ•)
and (ṽ◦0v•1 ṽ◦) are then larger than exp(−20γδ−1) as (3).

• The tangential quadrilateral (v◦0 ṽ•v◦1v•1) has an area at least exp(−10γδ−1)
which implies that both the angle ˜̂v•v◦1v•1 and the radius rv◦0 ṽ•v◦1v•1 are larger
than exp(−10γδ−1).

• One can now consider the triangle T(v◦0 ṽ•v◦1v•1 )(v◦1 , exp(−12γδ−1)) =
T (v◦1 , exp(−12γδ−1)), isoscele at v◦1 whose height along the bisector of
(v◦0 ṽ•v◦1v•1) is exp(−12γδ−1). This triangle is contained in (v◦0 ṽ•v◦1v•1) and
has an area area is 1

2 sin ˜̂v•v◦1v•1 ·exp(−12γδ−1)·exp(−12γδ−1) ≥ exp(−40γδ−1).
One can then conclude that rv◦1 ṽ•ṽ◦1v•1 ≥ exp(−40γδ−1) as in (1).

(3) Remaining cases To handle the remaining cases (corresponding to 2b
and 3 in Lemma 4.2) it is sufficient to note that in e.g. the case where three
vertices of z are below the axis y, the triangle T(v•0v◦0v•1v◦1 )(v•1 , exp(−4γδ−1)) =
T (v•1 , exp(−4γδ−1)) is inside the triangle (ṽ◦0v•1 ṽ◦0) has an area at least exp(−10γδ−1)
as the angle of z at v•0 is bounded from below by exp(−γδ−1). In particular
the tangential quadrilateral associated to the triangle (ṽ◦0v•1 ṽ◦0) has then a radius
rz ≥ exp(−10γδ−1) as in (3).

All together, this proves that the one dimensional Lebesgue measure (in the ver-
tical direction) of exp(−40γδ−1)-bad levels intersecting z is at most 4 exp(−4γδ−1).
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�

Remark 4.5. In this remark, we translate the assumption Exp-Fat(δ) in words and
explain its consequences. The main features of the assumption Exp-Fat(δ) are the
following:

• Fix a straight segment ` in an open bounded region U , and parametrize
it naturally by [0; 1]. Then, there exist a positive function oδ→0(1) (which
depends on U and not on `), such that, for each δ > 0,

– There exist an injective sequence of neighboring vertices (vi)1≤i≤I
of Λ(G) (i.e. such that vi ∼ vi+1 in Λ(G)) such that each vi be-
longs only to tangential quadrilaterals whose radius is larger than
exp(−oδ→0(1)δ−1). The edges attached to this sequence of vertices
can be naturally viewed as an arc `δ, parametrized by [0; 1].

– supt∈[0;1](`(t), `δ(t)) → 0 as δ goes to 0. In that case we say that `δ
approximates `.

In particular, this induces a sequence (z`δ) of neighboring tangential quadri-
laterals, attached to edges linking consecutive vertices (vi)1≤i≤I , staying
e.g. always on the left of the arc `δ, such that all quads (z`δ) have a radius
larger than exp(−oδ→0(1)δ−1).

• Fix `1,2 two different straight segments in U which are parallel to each
other and z

`1,2
δ two approximating sequences by tangential quads as de-

scribed above, and `′ a segment of U which perpendicular to `1,2 and inter-
sects both segments. We assume that the intersections of `′ doesn’t happen
neither at the extremities of `1,2 nor `. Then there exist a sequence of neigh-
boring tangential quadrilaterals (which again can be taken with an injective
sequence of boundary vertices) such that all radii in that sequence ar larger
than exp(−oδ→0(1)δ−1) and that connects z`1

δ and z`1
δ , approximating the

segment of `′ that is between `1 and `2.
To see the first property, assume for simplicity that ` is a vertical segment of

length 1 and fix ε > 0. Consider the rectangle A`,ε of width 2ε, whose symmetry
axis is `. When covering A`,ε with Sδ and removing the connected components
of the vertices in Sδ ∩A`,ε belonging to tangential quadrilaterals whose associated
radii are smaller than exp(−oδ→0(1)δ−1), there exist a sequence of neighboring
vertices in A`,ε ∩Sδ, all belonging only to tangential quadrilaterals whose radius is
larger than exp(−oδ→0(1)δ−1), which connects õδ→0(1) close to the top of A`,ε to
õδ→0(1) close to the bottom of A`,ε and not backtracking macroscopically. Either
way, this would imply the existence of a macroscopic blocking surface between the
top and the bottom, formed by quads with a too small inner radius. This is enough
to conclude for the first claim. The second claim is straightforward once the first
is obtained, using simple topological arguments.

4.3. Pasting of a piece of the square lattice. We are now in prove Proposition
3.1

Proof of Proposition 3.1. We encourage the reader to follow the construction given
below using Figure 6. We only treat with greater details the construction and
extension the bottom boundary.

Step 1: Determination of central part of the vertical boundaries of
Rext
δ
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Following Remark 4.5, one can find two sequence of neighboring tangential
quadrilaterals with large enough inner circle, respectively denoted Wδ and Eδ that
approximate the vertical segments {∓ 1

2} × [−4; 4] up to õδ→0(1). We focus on
the construction of left arc Wδ, the construction of Eδ is similar. First consider
a sequence of neighboring vertices (vi) of Λ(G) with alternating colors (i.e. v◦i ∼
v•i ∼ v◦i+2), that approximates up to õδ→0(1) the segment {− 1

2}× [−4; 4], attached
only to tangential quadrilaterals whose radius satisfies rz ≥ exp(−oδ→0(1)δ−1).
For each triple of consecutive vertices v◦i ∼ v•i+1 ∼ v◦i+2 (or v•i ∼ v◦i+1 ∼ v•i+2) of
this injective path `δ of vertices, one can order, in the counterclockwise direction,
all tangential quadrilaterals attached to v•i+1 that lie between the oriented edges
−−−−→
v•i+1v

◦
i and −−−−−→v•i+1v

◦
i+2. Concatenating this sequences of tangential quadrilaterals in

the natural order, this creates the arcs Wδ of tangential quadrilaterals such that
two neighbors share an edge and all quads are attached to `δ. At the end of this
first step, on gets the two arcs, labeled (starting from the bottom part of the graph)
respectively Wδ = (zwδk )1≤k≤|Wδ| and Eδ = (zeδk )1≤k≤|Eδ|. The sequences of quads
are injective and we have zwδk ∼ zwδk+1 and zeδk ∼ zeδk+1 in ♦(G). Both Wδ and Eδ
are represented in purple in Figure 6.

Step 2: Determination of the blue alignment (from above) level
The rest of the construction will be combination of symmetry arguments, hori-

zontal alignments and explicit extensions. Our first goal is to find a vertical level to
apply an horizontal alignment from above to all tangential quadrilaterals that lie
betweenWδ and Eδ intersecting that level, while forcing that leftmost and rightmost
created tangential quadrilateral (which are respectively obtained from alignment of
quads of Wδ and Eδ) to have a large enough inner circle radius. We explain now
the construction in greater details.

There are at most O(exp(2oδ→0(1)δ−1)) tangential quadrilaterals in [−10× 10]2
with a radius rz ≥ exp(−oδ→0(1)δ−1). In particular, there exist a horizontal level
yδb = −7

2 + õδ→0(1) (drawn in blue in Figure 6) which remains at a vertical distance
at least 10 exp(−4oδ→0(1)δ−1) from all vertices of Λ(G)∩ [−10× 10]2 belonging to
one of the tangential quadrilaterals with a radius rz ≥ exp(−oδ→0(1)δ−1). Up to
an arbitrary small vertical shift, we can also assume that yδb doesn’t intersect any
vertex of Λ(G) in the box [−10× 10]2.

Let 1 ≤ kWδ
≤ |Wδ| be the index such that the tangential quadrilateral zkWδ

intersects the vertical level yδb and such that for any l > kWδ
, all quads of Wδ

lie strictly above the level yδb . In particular, zwδkWδ is the last quadrilateral of Wδ

that intersects yδb (meaning that for all l > kWδ
, the quad zwδl lies strictly above

yδb ). Define in a similar way the integer kEδ such that zeδkEδ is the last quadrilateral
of Eδ that intersects yδb . One then performs a horizontal alignment at level yδb to
all tangential quadrilaterals that lie (horizontally) between zwδkWδ

and zeδkEδ
. Due to

Proposition 4.4, after this horizontal alignment zwδkWδ and zeδkEδ are each transformed
in at most 3 tangential quadrilaterals with a radius rz ≥ exp(−40oδ→0(1)δ−1).

Step 3 : Determination of the (dashed) red symmetrization level
Recall that the leftmost and the rightmost tangential quadrilaterals attached to

the level yδb and between Eδ and Wδ have both a radius rz ≥ exp(−40oδ→0(1)δ−1).
The level yδr = yδb + 10 exp(−4 × 40oδ→0(1)δ−1) = yδb + 10 exp(−160oδ→0(1)δ−1)
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(again slightly shifting vertically if needed) is used to perform an horizontal align-
ment from above at the level yδr to all quadrilaterals intersecting yδr (drawn in
red dashes in Figure 6). One obtains thanks to this procedure a ’strip’ of height
δ̃ = 10 exp(−160oδ→0(1)δ−1) and of width 1+õδ→0(1), formed by tangential quadri-
laterals. Using again Proposition 4.4, the leftmost and the rightmost tangential
quadrilaterals of this ’strip’ have a radius rz ≥ exp(−1600oδ→0(1)δ−1). Denote Srb
this strip of width δ̃ and Sbr the symmetric picture with respect to yδb . Given that
δ̃ << exp(−40oδ→0(1)δ−1), it is easy to check that there is indeed only one leftmost
and one rightmost tangential quadrilaterals in the strip (meaning that there those
extremal quads indeed connect the top to the bottom of the strip), as the alignment
from above at level yδb will corresponds this time to the case 3 of the construction
of Lemma 4.2.

Step 4 : Perform the symmetrization
We are now going to extend the picture obtained at the end of step 2 below

the blue level yδb by symmetrizing the strip between yδb and yδr . In order to do
that, paste (below yδb ) alternatively the strips Sbr and Srb until we reach the level
− 9

2 + õδ→0(1), starting with a strip of the type Sbr and finishing with a strip of the
type Srb . Finally, we paste to this lowest line the picture symmetric of the region
delimited by ybδ, the ’vertical’ boundaries of Wδ and Eδ (drawn in purple dashes)
and one arc, constructed in a similar fashions as Wδ and Eδ that connects the last
two mentioned arcs using tangential quads all with a radius rz ≥ exp(−oδ→0(1)δ−1)
while approximating the level y = −3 + õδ→0(1) (the arc is drawn in green solid
line while its symmetric is drawn in green dashes). Here the fact that all tangential
quadrilaterals of the arcsWδ and Eδ whose respective labels are larger than kWδ

and
kEδ are above yδb ensure that the obtained picture is proper as there is no overlap
with the symmetrization.

Step 5: Pasting kites then squares
The strip region is a sequence of alternating strips Sbr and Srb , pasted below

each other. In particular, since the construction is made using symmetries, the
vertex right boundary of the strip region (in green solid in Figure 6) is delimited
by a sequence of neighboring vertices of Λ(G), labeled (up to swapping colors by)
v•2k ∈ G•, v◦2k+1 ∈ G◦, and vi ∼ vi+1 in Λ(G). In our case, we label vertices in
the natural order, from top to bottom. One can see that Re[v•2k] = Re[v•2k+2],
Re[v◦2k+1] = Re[v◦2k+3] and Im[vi] − Im[vi+2] = 2δ̃. Let xδ = max(Re[v•2 ],Re[v◦3 ]),
which represents the rightmost point of the slit region. We treat the case where
this rightmost point belongs to G•, a similar treatment can be easily done if it
belongs to G◦. One can construct a vertical layer of kites formed by the points
v•2k, v

◦
2k+1, v

•
2k and ṽ◦2k+1 = v•2k − iδ̃ + δ̃. This kite has an area larger than the

straight triangle (v•2kv•2k+2ṽ
◦
2k+1) whose area is 1

2 δ̃
2. In particular it is not hard to

see that radius of the inner circle of one of those kites is at least δ̃4. Once this first
layer of kites is constructed for the right part strip region, the right part of the vertex
boundary of the strip region is now formed by a sequence of neighboring vertices in
Λ(G), with vertices of G• vertically aligned, vertices of G◦ vertically aligned, and
boundary edges (seen as vectors oriented from G• to G◦) taking alternatively the
values

√
2δ̃e±iπ4 . It is straightforward to extend this boundary into a region of the

square lattice of edge length
√

2δ̃. We repeat the same construction in the upper left
part of the embedding. We now set the boundary of Rδext to be the approximation
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natural approximation of the domain Ω =
(
[−1

2 ; 1
2 ]× [−5; 5]

)
∪
(
[ 1
2 ; 1]× [− 9

2 ;− 7
2 ] ∪(

[−1;− 1
2 ]× [ 7

2 ; 9
2 ]
)
, using the boundaries of all pieces constructed in all the steps of

the construction, chosen so that all boundary quadrilaterals of Rδext have a radius
rz ≥ exp(−10000oδ→0(1)δ−1) and imposing that all vertices of G◦ belonging to the
lower horizontal arc of the south left district are horizontally aligned.

Step 6: Checking the Lip condition
One still needs to check that the constructed picture Rδext satisfies Lip(κ, 5δ).

When computing the increment of the origami map between two points of original
part of the graph (before extension), it automatically holds, as well as in the square
grid regions (where the origami map only takes, up to a global additive constant,
the values

√
2δ̃ or 0). In the slit regions, the origami map has vertical increment

(between two points vertically aligned) at most 2δ̃ << δ while its horizontal incre-
ments corresponds are exactly the same as along yδb , which also satisfies Lip(κ, 4δ).
Finally, when considering the increment of the origami map between points be-
longing to two different regions (original embedding, strip regions or square grid
districts), it is enough to use the above observations together with the fact that
the origami map is trivially 1-Lipschitz for the tiny layers (of size much smaller
than δ) of transition between different regions, and thus the above results allow to
conclude.

�

We now precise the topological quadrilateral (Ωδ; aδ, bδ, cδ, dδ) seen as a discrete
simply domain in Sδ with two wired boundary arcs (bδcδ)◦, (dδaδ)◦ and a two
dual-wired boundary arcs (cδdδ)• and (aδbδ)• (see [14, Section 6], [5, Figure 7] or
Figure 7) using Rext

δ . We started with an injective path `δ in Λ(G) approximat-
ing a segment and such that all the vertices of that path only belong to quads
with a large enough radius. Labeling the vertices of `δ by (vk)0≤k≤2n assuming
e.g. that v2i = v◦2i ∈ G◦ and v2i+1 = v•2i+1 ∈ G•, one gets for each v•2i+1 of `δ,
to a sequence of counterclockwise ordered tangential quads between the vectors−−−−−→
v•2i+1v

◦
2i and −−−−−−−→v•2i+1v

◦
2i+2 (and similarly for v◦2i). Concatenating them in the nat-

ural order along the boundary of Rext
δ , one then gets a sequence of neighboring

tangential quadrilaterals (zk) attached to the vertex boundary of Rext
δ . One can

now apply a construction of the alternating Dobrushin arcs, similar to [14, Figure
2] or [5, Figure 7]. Each wired arc can be viewed as a sequence of boundary half
quads (v◦2iv•2i+1v

◦
2i+2zi) (see [5, Section 5.3]) with zi ∈ ♦(G) and all three vertices

v◦2i, v
•
2i+1, v

◦
2i+2 belonging to zi. From a statistical mechanics perspectives, all the

faces attached to that arc are wired, and all attached spins are in fact a single
one. Similarly all disorders attached to a free arc are in fact a single disorder. The
corners aδ, bδ, cδ, dδ correspond to edges of Λ(G) linking the four arcs. In the case
we use here, the boundary of (Ωδ; aδ, bδ, cδ, dδ) is constructed using the one of Rext

δ

and is formed by:
• Two free arcs approximating respectively the segments {∓ 1

2}× [−3; 3] seen
as a sequence of boundary half-quads originating from the ’vertical’ bound-
ary of Rδext.

• A wired arc containing the approximations of {− 1
2}× [−5; 3]∪ {[− 1

2 ; 1
2 ]}×

{−5} ∪ { 1
2} × [−5;− 9

2 ] ∪ { 1
2} × [− 7

2 ;−3] together with the bottom (chosen
with all boundary quads exactly horizontally aligned), right and upper part
of the square grid district.
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Figure 6. Picture attached to the construction of the extended
domain Rδext. The slicing line yδb to perform the horizontal align-
ment from above is drawn in blue solid, while the symmetrization
is made using successive copies of the strip between yδr (in red
dashes) and yδb . Finally, one pastes a layer of kites and a piece of
the square lattice to construct the south square grid district. All
quads attached to the bottom boundary of the bottom square grid
district are chosen to be horizontally aligned.

• A similarly defined picture for the above wired arc.
• The four edges of Λ(G) linking those arcs opposite colors, containing re-

spectively aδ = (−3; 1
2 ) + õδ→0(1), bδ = (−3; −1

2 ) + õδ→0(1), cδ = (3; −1
2 ) +

õδ→0(1) and finally dδ = (3; 1
2 ) + õδ→0(1).

The required picture is sufficient to fill in the hypotheses used in the proof of
Theorem 1.1.

5. Construction of the embedding in known setups and further
perspectives

In this short section, we explain in greater details how the s-embedding setup
applies in already known and new contexts.

5.1. Description of the embedding procedure in several cases
. Critical isoradial lattice
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Figure 7. Domain (Ωδ; aδ, bδ, cδ, dδ) seen as a discrete simply do-
main in Sδ with two wired boundary arcs (bδcδ)◦, (dδaδ)◦ (wired
with irregular dashes) and a two dual wired boundary arcs (cδdδ)•
and (aδbδ)• (wired with regular dashes). The wired boundary half
quads are filled in white while the free boundary half quads are
filled in black.

Recall that an isoradial embedding is an embedding in the plane such that each
face is inscribed in a circle, the center of each circle is inside the face, and all the
circles radii are equal (say to δ). In that case, the graph Λ(G) is a rhombus tiling.
When the grid is equipped with critical Z-invariant weights (invariant under star-
triangle transformations, see [3, 4]), counterparts to Theorems 1.1 and 1.2 were
proven in [14], under the bounded-angle assumption, starting from a solution to
(2.6) being X(c) := ηc, defined in (2.7), with the arbitrary embedding S being
in that case one isoradial embedding. Removing the bounded angles assumption
allows to apply directly [20, Proposition 5.1] to derive the box crossing property
for the Quantum Ising model on Z× R.

Massive isoradial lattice
In this case, we still work on an isoradial grid but this time being equipped with

near critical weights, with a nome q = mδ
2 (see [41, Section 1] or [11, Equation

(1.1)-(1.3)]) on a grid of mesh size δ, that satisfies the bounded angle property.
In the classical formulation of the Ising model, it corresponds to looking at the
homogeneous model on 1

nZ
2 at the uniform inverse temperature βc + m

2n . In this
framework, the parameterm is called the mass and measures how far from criticality
is the system. Using the so called discrete exponentials introduced and studied in
[3, 4] as solution to (2.6), one can re-embed the near critical model and construct an
s-embedding as done in details in [11, Section 3.3]. In particular, in the embedding
given in [11, Theorem 3.19], the space-like surface constructed in the Minkowski
space R2,1 (see discussion in the next sub-section) is of mean-curvature equal to the
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mass m (scaled in the surface embedded in R2,1). It is not hard to see in the formula
[11, Equation (3.12)] that, when the mass |m| → ∞, the smallest possible Lipschitz
constant for the origami map Qδ gets closer and closer to 1. This fact should be
compared with the results of [41, Section 6] that state that crossing probabilities go
respectively to 0/1 when |m| → ∞, approaching the off-critical regime. In this case,
crossing estimates are not bounded away from 0 and 1 while the optimal Lipschitz
constant for the origami map gets closer and closer to 1.

Critical double-periodic lattice
In that setup, the criticality condition was derived in [15] by Cimasoni and

Duminil-Copin. The question of finding an embedding for the critical model was
settled by Chelkak in [5, Lemma 2.3]. In this lemma, it is used that the real linear
vector space of periodic solutions to (2.6) is two dimensional, and one cleverly chosen
complex combination of a basis of that vector space to construct the canonical
embedding, which leads to a double periodic picture in the S plane. Let us mention
that from the crossing estimates perspective, such clever choice is not needed as any
non trivial complex linear combination of that basis of solution leads to a proper
non-degenerate s-embedding, which constructs an origami functions which grows
linearly with a Lipschitz constant strictly smaller than 1.

Lis’ circle patterns
In [33], Lis introduces the notion of Ising model on circle patterns depending

on some inverse temperature β, the latter being constructed as follows (translating
the notation of the original paper to our framework). A circle pattern is a pair
of planar graphs G = (G•, E) and G? = (G◦, E?) mutually dual to each other,
embedded in the complex plane in such a way that each face of G? is inscribed in
a circle inside the closure of the face, and the vertices of G lie at the center of the
circles. In that case, the faces of the graph Λ(G) = G◦ ∪ G• are kites, which fits
into our s-embeddings framework and the weights fit at the inverse temperature
β = 1. Seen as an s-embedding, the origami map is constant (set e.g. to vanish)
on S(G◦) and takes the edge-length of the kites on S(G•). In particular in the
case of graphs with non-smashed angles and comparable edge-length (assumption
Unif(δ) , in [5]), one can easily see that Qδ = O(δ). Our theorem allows to study
the model without those bounded angle and edge-length comparability properties,
in particular in the case of circle packings presented in [33, Example 2], coming
potentially from random graphs as one can see in the next example.

Circle patterns coming from random planar triangulation
We continue the previous discussion, but this time using Lis’ circle patterns

coming from a random triangulation. We keep here exactly the notations of [25].
The discrete mating-of-trees, introduced by Duplantier, Gwynne, Miller and Shef-
filed [22, 26] is a model of random triangulation in the plane of the vertex set εZ.
This random triangulation, indexed by a positive number ε > 0 and Gε, is built
using a pair of correlated Brownian motions (see [25, Section 1.2] for a short in-
troduction to that setup), and belongs to the universality class of a γ-LQG surface
(with γ ∈]0; 2[). Doing minor modification procedures as in [25, Section 1.2] (at the
boundary of a finite set and removing some double edges), one can extract from Gε
a finite triangulation with boundary, denoted (Gε2 , ρ). The graph (Gε2 , ρ) can then
be circle packed in the unit disc D, uniquely up to rotations. This circle packing is
denoted by Pερ = {Cv}v∈VGε2 , where the circle Cρ is centered at the origin. Theorem
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1.4 of [25] ensure that, with probability 1− oε→0(1), the maximal size of one circle
in Pερ is of order O(log(ε−1)−1), with the constant O and o only depend on γ ∈]0; 2[.

We are now going to use Lis’ critical weights on circle patterns to decorate the
faces of this circle packed triangulation (see Figure ??) with an Ising model. Set
the vertices of G• to be located at the center of the circles of Pερ and while the
vertices of G◦ correspond to the center of the circles of the dual triangulation,
which correspond here to the centers of the inscribed circles attached to faces of
that triangulation. This means that each vertex of G◦ in fact corresponds exactly
to one face of the original circle packing. This context falls into Lis’ framework of
circle patterns, and the graph Λ(G) is indeed formed of kites. We can then assign
a coupling constant x(e) = tan θe

2 to the edge of the triangulation associated to the
quad ze ∈ Λ(G), where the abstract angle θe is given by the angle formula (2.11).

Set δ = − log(ε−1)−1. Then with probability 1 − oδ→0(1), one has the origami
map that satisfies Q = O(δ). One still needs to check the Exp-Fat(δ) condition
to be able to apply Theorem 1.2. This can done using the SLE/LQG estimate
coming from [28, Proposition 6.2], that state that with probability 1− oε→0(1), the
triangulation contains at most a polynomial power of log(ε)−1 vertices. In partic-
ular the ensures that, with probability going to 1 as δ goes to 0, the assumption
Exp-Fat(δ) is fullfiled.

In conclusion, decorating the circle packing Pερ with weights coming naturally
from the associated circle pattern, the graph satisfies, with probability 1−oε→0(1),
the usual RSW property inside D(0, 3

4 ).

Layered model in the zig-zag grid. We discuss here the notion of s-embedding
attached to the so called Ising model on the zig-zag lattice, defined and studied in
greater details in [10, Section 5.2] . One can start with the rotated square grid (by
π
4 ) and consider the Ising model on faces of that graph, chosen with all coupling
constants attached to the edges separating the spins of two neighboring verticals
columns Ck and Ck−1 being the same and equal to some xk. The collection of
coupling constants (xk)k∈Z = (tan(θk))k∈Z defines an Ising model on the faces of
ei
π
4 Z2. One natural question is to find an s-embedding attached to this model

and describe one of its realizations in the plane. It is possible to make such a
construction using simple Euclidean geometrical tool as in [10, Figure 5] by pasting
layers of tangential quadrilaterals all having a radius of inscribed circle equal to 1.
In that case, the origami map is rather easy to compute and gives rise to an explicit
formula. The vertical increments of the origami map between vertices of the same
color in S(Λ(G)) vanishes exactly, while the horizontal ones for S and Q between
the columns S(Cl) and S(Cn) are given by the formulae (see [10, Section 5.2])

S(Cn)− S(Cl) =
n∑
k=l

k∏
p=l+1

tan2(θp) +
n∑
k=l

k∏
p=l+1

cot2(θp) (5.1)

Q(Cn)−Q(Cl) =
n∑
k=l

k∏
p=l+1

tan2(θp)−
n∑
k=l

k∏
p=l+1

cot2(θp) (5.2)

In particular, provided that in the regime n→∞, the ratios
∑n

k=1

∏k

p=1
tan2(θp)∑n

k=1

∏k

p=1
cot2(θp)

and
∑n

k=l

∏k

p=1
tan2(θp)+

∑n

k=1

∏k

p=1
cot2(θp)

n remain bounded away from 0 and ∞,
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usual RSW property holds. This gives a concise proof of the RSW property for the
homogeneous massive square lattice.

Construction of new critical grids using pairs of s-holomorphic func-
tions

We present now a simple and new method to construct new proper s-embeddings
out of already existing ones. We are grateful to Dmitry Chelkak and SC Park for
discussions that lead to this construction (which will be detailed in a subsequent
work, jointly with Park), and we present here its spirit. We present it in the case
where the original embedding is the square lattice, but the technique applies in a
fairly general setup given a sequence of proper s-embeddings satisfying Lip(κ,δ)
(one should be careful with uniqueness statements in the case the limiting origami
map ϑ is very rough). The first step it to discretize an holomorphic function f as
a limit of s-holomorphic function (F δ)δ>0 in a fixed closed ball U in the plane. Set
I =

∫
f(z)dz the primitive of f that vanishes at one fixed point of the domain. Then

consider Hδ the discrete harmonic extension of Re[I] using the boundary values of
Re[I] on the boundary of (S + iQ) ∩ U , for the forward random walk associated
to the Laplacian given in [5, Definition 2.15]. That random walk satisfies uniform
crossing estimates (see [5, Section 2.3-2.6]), which ensures (using the regularity
theory developed in [13, Section 6]) that the family of functions Hδ is precompact
and its gradients F δ are bounded s-holomorphic function at least in a ball twice
smaller than U . In its turn, this makes the family (F δ)δ>0 also precompact. It is
the not hard to see that the functions Hδ and F δ converge respectively to Re[I]
and f .

We are now going to construct a proper s-embedding coming from a discrete
Weierstrass parametrization of a space-like surface in R2,1, following the route of
[11, Section 3.3]. Fix f and g two holomorphic functions on D such that Im[fg] > 0,
respectively discretized by F δ and Gδ. Then setting (as in [11, equation (3.11)]

(Re[S], Im[S],Q) = 1
2(Im

∫
2F δGδ, Im

∫
(F δ)2−(Gδ)2, Im

∫
(F δ)2+(Gδ)2) (5.3)

construct an s-embedding (the integration here is understood as (2.18)). Using the
identification (2.14) with X = ς(Xf − iXg) and Re[SX ] = 2H[Xf ,Xg], Im[SX ] =
HXf − HXg and QX = HXf + HXg . It is easy to see from [5, Proposition 3.20]
that all the faces of Λ(G) in the associated s-embedding are oriented in the same
way, they all satisfy an assumption of the kind Unif(δ) and that the associated
s-embedding is proper provided δ is small enough (using the argument principle to
prove properness [5, Proposition 3.20]).

The argument principle to ensure properness of the embedding, presented in a
very complete manner in [12, Appendix] can be roughly summarized that one can
derive properness of a piece of an s-embedding inside one oriented boundary contour
in the abstract planar graph if this contour only winds once around a twice smaller
region in the associated s-embedding realization. This can be used as a starting
points for deterministic graphs with random coupling constants, in the case where
one can find some solutions to (2.6) that average to the deterministic setup at large
scale. We leave this remark as a starting point for further researches.

Finite graphs. We discuss now the existence of a proper s-embedding for a given
finite graph, following [32, Section 7]. One of the important output of [32] is that
if one starts with bipartite weighted planar graph with an outer face of degree



38 RÉMY MAHFOUF

4, it is possible to find a t-embedding of its dual. The dimer model on faces of
that t-embedding has edge weights which are gauge equivalent to edge-lengths of
t-embedding. There, the construction is made by an algorithm, placing new points
of the embedding step by step using Miquel’s six-circles theorem. Start with a
weighted finite planar graph (G, x) with a marked face which corresponds to its
unbounded region of one of its embedding E into the plane and proceed as follows.

• Up to adding at most 3 faces to the unbounded face of E , one can assume
that the external boundary of that unbounded face in the graph (G, x) has
4n edges.

• Weld abstractly the obtained outer-face with the inner boundary of [−2n; 2n]2\
[−n;n]2. Moreover, declare the edge-weights between the added faces to be
the ones of the critical square lattice. This creates an (G̃, x̃) and now an
outer face with a boundary of 16n edges.

• Consider the graph Λ(G̃) = G̃• ∪ G̃◦ and declare the outer-face of that
graph to be the quad of Λ(G̃) that corresponds an edge of the box Λ2n
(before the welding) near ( 3

2n; 3
2n).

• Now one has a bipartite graph with outer face of degree 4 and can then
apply the construction of [32] to construct the associated t-embedding of
the associated dimer model under the bozonisation identities of [17]. It is
possible to apply [32, Section 7] and obtain a proper s-embedding whose
edge weights correspond to the one of (G̃, x̃), except at that new marked
faces. In particular, this provides a solution to the propagation equation
(2.6) except at that marked outer face.

Extracting the picture coming associated to original part of (G, x) provides a
proper s-embedding.

5.2. Optimality of the Lip assumption and embedding in the Minkowski
space. One can wonder it if is possible to prove the same RSW type estimate
without an assumption of the kind Lip(κ,δ) . The answer to this question is
negative and proves the optimality of this kind of assumption. Consider first
the off-critical homogeneous model on the square lattice (at a fixed β 6= βc).
The RSW box-crossing property classically fails there. Using formulae in the
homogeneous layered model presented above (see also [5, Figure 2]), one easily
sees that lim supz→∞ |

Q(z)
S(z) | = 1, which indicates that the assumption Lip(κ,δ)

fails, together with the box-crossing property. Even in the case of the critical
square lattice, there is a more conceptual reason to this phenomenology passing
to surfaces in the Minkowski space R2,1. As noted in [5, Remark 1.2], replac-
ing X by X̃ (t) = cosh(t)X + sinh(t)X for t in R constructs a new s-embedding
on the plane. The functions S and Q are now replaced by (ReS, ImS,Q) 7→
(cosh(2t) ReS + sinh(2t)Q, ImS, sinh(2t) ReS + cosh(2t)Q). When viewed as a
space-like surface in R2,1, the surfaces (SX ,QX ) and (SX̃ (t),QX̃ (t)) are isometric in
R2,1.

Consider now the critical square lattice of mesh size
√

2, with its usual square
embedding. In that case Q = 1 on S(G•) and Q = 0 on S(G◦). One can apply
the transformation given above with a large t. In that case, one can make the
surface (SX̃ (t),QX̃ (t)) becomes closer and closer to the light cone in R2,1, meaning
the optimal Lipschitz constant for the associated origami map gets closer and closer
to 1 as t→∞. Considering an [0;n]2 box over this newly constructed s-embedding
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Figure 8. Circle pattern associated to a circle packing. The edges
of the triangulation are in solid black, the circles of the pack-
ing are in solid grey, while the circles of the dual packing are in
dashed grey. Each edge of the triangulation corresponds to a kite
in Λ(G), which allows to decorate faces of the triangulation with
Ising weights coming from (2.11).

in the SX̃ (t) plane, it corresponds to a smashed rectangle [0; 1
cosh(2t)n]× [0;n] in the

SX plane, where the RSW property fails as t→∞. Such stretching (replacing X by
X+|t|X with |t| → 1) leading to an optimal Lipschitz constant close to 1 is a general
fact for proper s-embeddings and is not compatible with RSW type estimates. The
two previous example ensure that the assumption of the kind Lip(κ,δ) is necessary
to prove our results in the general s-embeddings setup.
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PhD thesis. Université Paris-Saclay, 2022.
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