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This is the current draft of the lecture notes for the Master 2 course “Marches et graphes

aléatoires” given during the years 2016-2019 at université d’Orsay. Thanks are due to the stu-

dents of this course for having tested this material in particular to Maxime Berger, Jacques

De Catelan, Barbara Dembin, Alejandro Fernandez and Corentin Morandeau (promotion 2016)

Chenlin Gu, Enzo Miller, Arthur Blanc-Renaudie, Kévin Marchand, Rémy Mahfouf (promotion

2017) Antoine Picard-Weibel (promotion 2018), Pierre-Amaury Monard, Nicolas Zalduendo Vi-

dal, Romain Panis, Lucas d’Alimonte, Baojun Wu (promotion 2019). Additional materials and

complements may be found in [13, 17, 25, 27, 30, 33]. Remarks, comments and list of typos are

very much welcome at this stage!!!

They are many wonderful books about random walks ([39, 41, 27, 7] just to name a few)

and these lecture notes instead of seeking exhaustivity should rather be taken as a pretext to

present nice probabilistic techniques and geometric concepts (potential theory, rough isometries,

cyclic lemma, second moment method, stable random variables, large deviations estimations,

size-biasing, coding of trees via paths, probabilistic enumeration, Fourier transform, coupling,

recursive distributional equation, local limit theorems, local convergence...) in a master course.

To keep a certain unity in the book the main focus is on ”discrete probability” and we unfortu-

nately do not address Brownian motion limit and the many applications of Donsker’s invariance

principle.

We then use one-dimensional random walks to study the geometric properties of random

graphs. The prototype example is the coding of random plane trees via skip-free descending

random walks via their Lukasiewicz path. Obviously, there are many other shortcomings in

these lecture notes. May the reader forgive us.
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Part I:

Random walks on graphs
In this part we study general random walks on (weighted, finite or infinite) graphs. We

relate this object to the theory of electrical networks by interpreting the return probabilities

for the walk as potential for the associated electrical networks. In particular, we give

equivalent characterization of recurrence/transience of a graph in terms of resistance to

infinity. This enables us to give robust criteria for recurrence/transience on infinite graphs.

We also introduce the discrete Gaussian free field and connect it to potential theory. We

refer to [33, Chapter 2] (and its 139 additional exercices!) for more details and to [16] for

a smooth introduction to the subject.

Figure 1: ???
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Chapter I: Finite electrical networks

In this chapter we develop the well-known connection between potential theory and random

walks on finite (weighted) graphs. This enables us to give a probabilistic interpretation of

resistance, electric potential and electric current.

1.1 Random walks and Dirichlet problem

1.1.1 Random walk

A graph1 g is described by its set of vertices V = V(g) and its set of edges E = E(g) which is

a multiset of pairs of (non-necessarily distinct) vertices, that is, an edge e = {x, y} can appear

several times inside E and loops {x, x} are allowed. It is useful to also consider the multiset
~E = ~E(g) of oriented edges obtained by splitting every edge {x, y} of E into the two oriented

edges (x, y) and (y, x). The starting point of ~e is denoted by ~e∗ and its target is ~e ∗. The degree

of a vertex x ∈ V is the number of oriented edges (counted with multiplicity) starting at x:

deg(x) = #{(x, y) ∈ ~E(g)}.

0.1

3.14 0

∞

1

57.3

57.3

1

2/3

0

4

Figure 1.1: On the left a weighted graph. On the right the corresponding graph with

oriented edges.

1non-oriented multigraph to be precise
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Definition 1.1 (Conductance). A conductance is a function c : E(g) → [0,∞]. The conduc-

tance of an oriented edge is by definition the conductance of its associated non-oriented edge.

The pair (g, c) is a weighted graph. The weight of a vertex x is the sum of the conductance of

oriented edges starting from x:

π(x) =
∑

~e=(x,y)∈ ~E

c(~e).

Remark 1.1. Considering multi-graph may yield to a lack of precision in the notation, for ex-

ample if the edge {x, y} is present with a multiplicity, each of its copies may carry a different

conductance. Implicitly when summing over edges we will always sum over the different copies

of the edges carrying the possibly different conductances. The confused reader may assume at

first reading that all the graphs considered are simple (no loops nor multiple edges) so that this

problem disappears.

We write x ∼ y if the two vertices x, y ∈ V share an edge of positive conductance and say

that they are in the same connected component. Unless specified:

All the graphs considered in these notes are connected and all degrees are finite.

This notion of conductance is used in the definition of the random walk. The standard notion of

random walk is a process evolving on the vertices of the graph, but we will see that sometimes

it is more convient to think of it as the trace of a process evolving on the oriented edges of the

graph.

Definition 1.2 (Random walk on (g, c)). If (g, c) is a weighted graph, for any ~e0 ∈ ~E(g), the

edge-random walk started from ~e0 is the Markov chain ( ~En : n > 0) with values in ~E whose

probability transitions are given by

P( ~En+1 = ~en+1 | ~En = ~en) =
c(~en+1)

π(~e ∗n)
1~e ∗n=(~en+1)∗ .

The projection of the random walk on the vertices of g is thus the Markov chain (Xn : n > 0)

called “random walk on (g, c)” whose probability transitions p are

p(x, y) = P(Xn+1 = y | Xn = x) =
c(x, y)

π(x)
,

where c(x, y) is the sum of all the conductances of the oriented edges (x, y) ∈ ~E.

Example 1.1. When the conductance function is c ≡ 1, the degree of a vertex (for c) coincides

with its graph degree and the random walk (Xn)n>0 is the simple random walk on the graph g:

it chooses, independently of the past, a neighbor uniformly at random (according to the number

of connections to that point) and jumps to it.

Since (Xn) is a discrete time Markov 2 chain with a countable state space, it enjoys the

2 Andrëı Andrëıevitch Markov (1856-1922)
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Markov property which we now recall: If Fn is the filtration generated by the first n steps of

the walk, a stopping time is a random variable θ ∈ {0, 1, 2, . . . } ∪ {∞} such that {θ = n} is Fn-

measurable. The σ-field Fθ of the past before θ is made of those events A such that A∩{θ 6 n}
is Fn-measurable. The (strong) Markov property says that conditionally on Fθ and on {θ <∞}
the law of (Xθn+k : k > 0) is PXθ where we denote as usual

Px for the law of the Markov chain started from x ∈ V .

It is also very important to notice that the random walk (Xn : n > 0) in fact admits π(·)
as an invariant and even reversible measure (the easiest way to see this is to notice that the

conductance c(·) is in fact an invariant and reversible measure for the edge-random walk chain

( ~En)n>0 and the statement follows by projection).

Here is a exercise to remind the reader a few basics in discrete Markov chain theory:

Exercise 1.1. Show that

• a reversible measure is necessarily invariant,

• if there exists a finite (6= 0) invariant measure, then if the chain is irreducible, it is recurrent,

• a recurrent Markov chain admits a unique invariant measure up to multiplicative constant,

• there exist infinite connected weighted graphs (necessarily transient) for which there are

two non proportional invariant measures for the random walk.

1.1.2 Harmonic functions and the Dirichlet problem

As we have seen above, Markov chains act on measures and leave invariant measures unchanged.

In the dual version, we can consider their actions on functions where the analog of the concept

of invariant measure is given by harmonic functions:

Definition 1.3. A function h : V (g)→ R is harmonic at x for the random walk on (g, c) if

h(x) =
∑
y∼x

p(x, y)h(y) = Ex[h(X1)].

We simply say that h is harmonic if it is harmonic at all vertices.

Exercise 1.2. Prove that (h(Xn) : n > 0) is a martingale (for the filtration generated by the

random walk) for the random walk on (g, c) if and only if h is harmonic.

The following problem amounts to find “harmonic extension” to prescribed functions. It is called

the Dirichlet3 problem and pops-up in many areas of physics and mathematics.

3 Johann Peter Gustav Lejeune Dirichlet (1805-1859). His paternal grandfather was born in Richelette a

small Belgium town, hence the name Lejeune Dirichlet ”the young from Richelette”
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Dirichlet problem: Let A ⊂ V be a subset of vertices of the graph g and suppose we are given a

function f0 : V \A → R. The Dirichlet problem consists in finding a harmonic extension inside

A, that is, a function f satisfying :

• f ≡ f0 on V \A,

• f is harmonic at every point x ∈ A.

Theorem 1.1 (Dirichlet problem, finite case)

If A ⊂ V is finite and f0 : V \A → R then the Dirichlet problem has a unique solution f

given by

f(x) = Ex[f0(XτAc )], where τAc = inf{k > 0 : Xk ∈ V \A}.

Since the above theorem is key in this chapter we give two proofs of it:

Proof 1: But our assumptions (A is finite, g is connected, all degrees are finite) it is clear that

τAc < ∞ almost surely and since f0(XτAc ) can take only finitely many values, it is bounded so

that f(x) = Ex[f0(XτAc )] is well-defined for every x ∈ V . Clearly, f coincides with f0 outside

of A. The fact that f is harmonic inside A follows from the Markov property applied at time

θ = 1 since for x ∈ A we have

f(x) = Ex[f0(XτAc )] =
τAc>1

Ex
[
EX1

[
f0(X̃τAc )

]]
= Ex[f(X1)].

Hence f is a solution to the Dirichlet problem. As for the uniqueness, consider another solution f̂

harmonic inside A and coinciding with f0 on V \A. Then by Exercise 1.2 the process (f̂(Xn∧τAc ) :

n > 0) is a bounded martingale and so by the optional sampling theorem we must have for x ∈ A

f̂(x) = f̂(X0) = Ex
[
f̂(XτAc )

]
=: f(x).

Proof 2: The Dirichlet problem is a linear problem with #A unknowns (the values of the

function f inside A) and #A equations (harmonicity of f at all points in A). It can thus be

written under the form AX = B where A is a square matrix, X are the unknowns and B is

prescribed by the boundary conditions. Hence the existence and unicity of the Dirichlet problem

reduces to show that the matrix A is invertible, or in other words that the equation AX = 0 has

at most a solution. It is easy to see that finding X such that AX = 0 is equivalent to finding a

harmonic function to the Dirichlet problem where the boundary condition is null i.e. when f0

equal 0. The uniqueness of a possible solution can then be proved by the maximum principle:

Let g be a solution of the above problem and consider x ∈ A such that g is maximum. If

g ∈ V \A then g(x) = f0(x) = 0, otherwise by harmonicity of g at x we deduce that all neighbors

of x share this maximum value (equality case in the triangle inequality). By connectedness the

maximal value of g is attained on ∂A and must be zero. Consequently g 6 0 and by a similar

argument we have g > 0, so g ≡ 0 as desired.
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Exercise 1.3. (*) Is there always existence and uniqueness to the Dirichlet problem when A is

not necessarily finite? More specifically investigate the cases:

• show that there is always uniqueness the recurrent case,

• the existence may fall down in the case when the function f is required to be positive (and

f0 > 0 as well),

• there is always existence in the general case.

1.2 Electrical networks

A (finite) network is the data formed by a finite weighted graph (g, c) together with two

(distinct) vertices xin, called the source, and xout called the sink. To help the intuition, it is good

to interpret this network as an actual (real) one where the edges have been replaced by resistors

whose conductance (the inverse of the resistance) is prescribed by c which is connected to a

battery. Beware though: the reader should not confuse the physical intuition with mathematical

statements!

xin xout

Figure 1.2: Setting of the next two sections: a (finite connected) weighted graph

together with two distinguished vertices.

1.2.1 Back to high school : reminder of physics laws

Let us start with the intuition and remind the reader of a few physics laws. In the above network,

imagine that we impose potential difference between xin and xout by plugging the network on

a battery of 1 Volt4. This creates an electrical current, an electric potential and dissipates the

energy of the battery. More precisely we can measure the following physical quantities/facts:

• The electrical potential is a function v : V → R (defined up to addition but which we can

fix to be) equal to 1 at xin and 0 at xout once the battery is plugged,

• The electrical current is a function i : ~E → R such that i(~e) = −i(←−e ),

4 Alessandro Giuseppe Antonio Anastasio Volta (1745-1827)

11



• Ohm’s law : for any oriented edge we have −c(~e) ·∇~e v = i(~e), where we used the notation

∇(x,y)f = f(y)− f(x).

• Flow property : for any x /∈ {xin, xout} we have
∑

~e=(x,·) i(~e) = 0.

Combining Ohm’s5 law for the potential and the flow property of the current we deduce that v

should be harmonic on V \{xin, xout}:

0 =
∑

~e=(x,·)

i(~e) =
∑

~e=(x,·)

1

π(x)
i(~e) =

∑
y∼x

p(x, y)(v(x)− v(y)).

Similarly, the fact that the current can be seen as the “derivative” of the potential implies the

cycle rule: the sum the current times the resistance along an oriented cycle C = (~e0, ~e1, . . . , ~ek)

in the graph is equal to 0

∑
C
i(~ei)/c(~ei) = −

∑
~e∈C
∇~e v = 0.

In fact the potential and the current point of views are equivalent and it is easy to prove the

following:

Proposition 1.2. Fix a network ((g, c);xin, xout). There is a bijection between potential func-

tions v : V → R such that v(xout) = 0 which are harmonic on V \{xin, xout} and current functions

i : ~E → R which are symmetric, possess the flow property at any x /∈ {xin, xout} and obey the

cycle rule. The bijection is simply given by

v ←→ i =
(
− c(~e) · ∇~e v

)
~e∈ ~E .

Your high-school physics teacher also told you that the energy dissipated in the network by

“Joule6 heating” has a power proportional to E = 1
2

∑
~e i(~e)

2/c(~e) = 1
2

∑
~e c(~e)

(
∇~e v

)2
, and this

will be proved useful later on.

1.2.2 Probabilistic interpretations

Let us come back to mathematics. We consider the same network ((g, c);xin, xout) as above our

goal being to give a probabilistic interpretation to the functions v, i, . . . that are “physically”

built by the battery.

5 Georg Simon Ohm (1789-1854)

6 James Prescott Joule (1818-1889)
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Potential

The easiest quantity to interpret is the potential. Indeed, if we impose a unit voltage between

the source and sink vertices of the graph and require Ohm’s law and the flow property, then by

Theorem 1.1 there is indeed a unique function v satisfying v(xin) = 1, v(xout) = 0 and being

harmonic inside V \{xin, xout} it is given by:

Proposition 1.3 (Probabilistic interpretation of the potential). If τin and τout respectively are

the hitting times of xin and xout by the random walk on (g, c) then we have for any x ∈ V

v(x) = Ex[v(Xτin∧τout)] = Px(τin < τout).

Remark 1.2. Notice that if we impose different boundary conditions on the potential (e.g. by

plugging a different battery), then the new potential is obtained by an affine transformation.

Remark 1.3. The probabilistic interpretation of the potential suggests that electrons may behave

in the networks as random walkers, but unfortunately the physic knowledge of the author does

not permit to affirm such an assertion .... :)

Current and effective resistance

In the real-world situation, we could measure the electric current. In our mathematic setup, we

define it from the potential:

Definition 1.4. The current i is defined from the potential as follows: for any oriented edge we

put

i(~e) := −c(~e) · ∇~e v = c(~e) · (v(~e∗)− v(~e ∗)).

Py Proposition 1.2, it is automatic that i is symmetric, obeys the cycle rule and the flow property.

The total flux from xin to xout is then

itotal =
∑

~e=(xin,·)

i(~e)

=
∑

~e=(xin,·)

c(~e) · (v(~e∗)− v(~e ∗))

= π(xin)
∑
y∼xin

c(xin, y)

π(xin)
(1− Py(τin < τout))

= π(xin)Pxin

(
τout < τ+

in

)
,

where τ+
in = inf{k> 1 : Xk = xin}. Motivated by the real-world situation we define:

Definition 1.5 (Effective resistance). The total current itotal is proportional to the potential

difference v(xin)− v(xout) and the proportionallity factor is called the effective conductance Ceff

of the graph (g, c) between xin and xout (its inverse is the effective resistance Reff). From the

above we have

Ceff = Ceff

(
(g, c);xin ↔ xout)

)
= Reff

−1 = π(xin) · Pxin(τout < τ+
in).

13



Exercise 1.4. It is not clear from Definition 1.5 that the effective conductance is a symmetric

expression in xin and xout (i.e. there role can be interchanged). This is intuitively obvious if our

interpretations are correct, but prove it only using the reversibility of the random walk.

We can give a quick interpretation of the effective resistance in terms of so-called the Green7

function of the random walk: For any x ∈ V let G̃(x) be the expected number of visits to x by

the random walk strictly before τout. In particular G̃(xout) = 0 and since the number of visits

to xin is a geometric random variable with success parameter Pxin(τ+
in < τout) we have

G̃(xin) =
1

1− Pxin(τ+
in < τout)

=
1

Pxin(τ+
in > τout)

= π(xin)Reff .

Hence the effective resistance is, up to the weight of π(xin) the mean number of visits of xin,

before τout. This interpretation still holds for any v ∈ V if we add the potential in the game.

Definition 1.6. The Green function in (g, c) started at xin and killed at xout is the function

G(x) =
G̃(x)

π(x)
.

Lemma 1.4. For all x ∈ V we have G(x) = Reff · v(x) where v is the potential normalized so

that v(xin) = 1 and v(xout) = 0.

Proof. Since we know the boundary conditions for G(·) the lemma follows from the uniqueness

in the Dirichlet problem (Theorem 1.1) as soon as we have proved that the function G is harmonic

on V \{xin, xout}. To prove this observe that if x /∈ {xin, xout} we have

G(x) =
1

π(x)
Exin

[ ∞∑
k=1

1Xk=x1τout>k

]
=

1

π(x)

∑
y∼x

Exin

 ∞∑
k=1

1Xk−1=y1Xk=x 1τout>k︸ ︷︷ ︸
1τout>k−1


=

Markov

1

π(x)

∑
y∼x
G̃(y)p(y, x)

=
reversibility

1

π(x)

∑
y∼x
G̃(y)p(x, y)

π(x)

π(y)
⇒ harmonicity of G.

The last lemma enables us to give a wonderful interpretation of the resistance:

Theorem 1.5 (Commute time captures the resistance [11])

We have the following identity

Reff ·
∑
~e∈ ~E

c(~e) = Exin [τout] + Exout [τin]︸ ︷︷ ︸
commute time between xin and xout

.

7 George Green (1793-1841)
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Proof. With the notation of the preceding proof we have

Exin [τout] =
∑
x∈V
G̃(x) = Reff

∑
x∈V

π(x) · v(x),

where v is the potential equal to 1 at xin and 0 at xout. Reversing the roles of xin and xout ends

up in changing v(·) into 1− v(·). Summing the corresponding equalities, we get

Exin [τout] + Exout [τin] = Reff ·
∑
x∈V

π(x).

Remark 1.4. This commute time identity reflects the fact that the effective resistance is in fact

symmetric in exchanging the roles of xin and xout (see Exercise 1.4). It gives a practical and a

theoretical tool to interpret resistance.

Exercise 1.5. For n > 2, let Kn be the complete graph on vertices {0, 1, . . . , n− 1}, i.e. with an

edge between each pair of vertices 0 6 i 6= j 6 n− 1. All the conductances are set to 1.

1. Compute Reff((Kn, c ≡ 1); 0↔ 1).

2. Using the commute-time identify, deduce the expected hitting time of 1 for the random

walk on Kn started from 0.

We now move on to a probabilistic interpretation of the current. Recall that the edge-random

walk starting from xin is a sequence of oriented edges ( ~En : n > 1). We denote S(~e) the number

of times the random walk has gone through ~e in that particular direction until we first reach the

vertex xout. Then we have :

Proposition 1.6 (Probabilistic interpretation of the current). For any ~e ∈ ~E we have

Exin [S(~e)− S(←−e )] · itotal = i(~e).

Proof. Observe that for a given oriented edge ~e we have

E[S(~e)] =
∞∑
k=0

Pxin(Xk = ~e∗ for k < τout and ~Ek = ~e)

= G̃(~e∗)
c(~e)

π(x)
=

Lemma 1.4
c(~e) · Reff · v(~e∗).

Hence we have Exin [S(~e)− S(←−e )] · itotal = c(e) · (v(~e∗)− v(~e ∗)) = i(~e) by definition.

Exercise 1.6. Let ((g, c);xin, xout) be a network. Let T be a random spanning tree of g chosen

with a probability proportional to

P(T = t) ∝
∏
e∈t

c(e).

We write {~e ∈ T} for the event where the unique path from xin to xout in T traverses the edge

~e in that particular direction. Prove that

i(~e) =
(
P(~e ∈ T )− P(←−e ∈ T )

)
· itotal,
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is the electric current. Hint: to show that the cycle rule is satisfied consider a random forest i.e.

a pair (Tin, Tout) of trees attached to xin and xout whose weight is proportional to the product

of the conductances of the edges. Show that P((a, b) ∈ T ) is proportional to

P(a ∈ Tin, b ∈ Tout and Tin ∪ Tout ∪ {a, b} is a spanning tree).

Reminder on excursion theory. If (g, c) is a weighted graph, the trajectory of a random walk

starting from x can be decomposed in a succession of excursions away from x. More precisely,

if 0 = τ
(0)
x < τ+

x = τ
(1)
x < τ

(2)
x < τ

(3)
x < · · · are the successive return times of the walk to the

point x then the excursions

E(i) =
(
X
τ

(i)
x +k

)
06k6τ (i+1)

x −τ (i)
x

,

are independent identically distributed excursions (piece of a trajectory) starting and ending at

x. This is valid more generally as soon as the random walk is recurrent and is key to prove that

the invariant measure (unique up to multiplicative constant) is given by

µ(y) = Ex

 τ+
x∑

k=1

1Xk=y

 . (1.1)

In particular, when the invariant measure is finite we deduce that

π(x)

π(V )
=

1

Ex[τ+
x ]
. (1.2)

The last formula and the excursion decomposition are used in the following exercises:

Exercise 1.7 (From [34]). Let G be a finite connected graph with n edges having all conductances

equal to 1 and (Wk)k>0 be the associated random walk which starts from x ∈ V (G) under Px.

We write τ+
x = inf{k > 1 : Wk = x} for the first return time to x. Since the invariant measure

on vertices for the random walk is proportional to the degree, we have by (1.2)

Ex[τ+
x ] =

2n

degG(x)
. (1.3)

The goal of the exercise is to give an “electrical” proof of this well-known fact. To do this, we

consider the graph G̃ obtained from G by adding a new vertex x̃ attached to x via a single

edge of conductance 1. We denote by τx̃ the hitting time of x̃ by the random walk on G̃. For

clarity we denote by E the expectation under which the random walk moves on G and by E the

expectation under which it moves along G̃.

1. Show carefully that

Ex[τx̃] =
1

degG(x) + 1

∞∑
k=0

(
degG(x)

degG(x) + 1

)k (
k · Ex[τ+

x ] + 1
)
.

2. Conclude using the commute time identity.
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Exercise 1.8. Let ((g, c);xin, xout) be a network. Consider τ+
in the first return time at xin and

σin,out the first return time to xin after visiting xout, that is Exin [σin,out] is the commute time

between xin and xout. Show that τ+
in 6 σin,out and that

Exin [σin,out − τ+
in ] = Pxin(τ+

in < τout)Exin [σin,out].

Re-deduce Theorem 1.5.

Exercise 1.9. Let (g, c) be a weighted graph with three distinguished points x, a, b ∈ V(g). By

decomposing the random walk into independent and identically distributed excursions from x

show that Px(τa < τb) = Px(τa < τb | τ{a,b} < τ+
x ) and deduce

Px(τa < τb) 6
Ceff(x↔ a)

Ceff(x↔ {a, b}) .

Exercise 1.10. Let (g, c) be a finite network with n vertices. Using (1.2) show that∑
e∈E(g)

ie(e) = n− 1

where ie denotes the unit current flow from the origin to the extremity of e.

1.2.3 Equivalent networks

Proposition 1.7. In a network we can perform the following operations without affecting the

effective resistance (and in fact without changing the potential and the current outside of the

current zone of transformation):

c1 c2

c1

c2

c1 c2

c3

c3

c2

c1

c = (c−1
1 + c−1

2 )−1
c = c1 + c2 cici =

c1c2c3

c1 + c2 + c3

12

3

12

3

c c

Figure 1.3: The series and parallel transformations. The last one is known as the

star-triangle transformation.
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Proof. For the series rule, the current flowing through the two edges must be the same hence

the resistances add up. For the parallel rule, the potential difference between the two edges are

the same hence the conductances add up. For the star-triangle transformation, one has to check

that whatever the potentials (v1, v2, v3) the current flowing from the three apexes are the same

in the two circuits. If α denotes the value of the potential in the middle of the “star” replacing

the triangle we must have

(c1 + c2 + c3)α = c1v1 + c2v2 + c3v3

and

(v1 − α)c1 = (v1 − v2)c3 + (v1 − v3)c2,

(v2 − α)c1 = (v2 − v1)c3 + (v2 − v3)c1,

(v3 − α)c1 = (v3 − v1)c2 + (v3 − v2)c1,

Since these equality must be true for all v1, v2, v3 this indeed imposes cici = c1c2c3/(c1 +c2 +c3)

(we leave as an exercise to see that this defines uniquely the ci’s).

Exercise 1.11 (From [33]). Find P(τout < τ+
in) in the two networks where all conductances are

equal to 1:

in out in out

Exercise 1.12. Compute the effective resistance in the following sequence of networks (the Sier-

pinski triangles):

xin xin xin xin

xout
xoutxoutxout

1.3 Energy and variational principles

We finally explore the mathematical interpretation of the “Joule heating”. Rather than a

probabilistic interpretation, this will motivate the introduction of a functional, the energy –

physically this is rather a power–, which the electrical potential minimizes. This is a general

concept in physics : we can usually describe the behavior of some process by local laws (here

Ohm’s law, flow and cycle rules etc) or by the minimization of some potential “the least action

principle”. The outcome in maths are variational principles for the potential/current which are
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softer to use and in particular enables us to prove inequalities instead of computing exactly the

quantities of interests.

1.3.1 Energy

Definition 1.7. Let ((g, c);xin, xout) be a finite network, j : xin → xout be a flow in the graph

and f : V (g) → R be a function on its vertices. The energy of the flow j and of the function f

are by definition (with a slight abuse of notation)

E(j) :=
def.

1

2

∑
~e∈ ~E

j(~e)2/c(~e) E(f) :=
def.

1

2

∑
~e∈ ~E

c(~e) ·
(
∇~e f

)2
.

Notice that the factors 1/2 are present in the definition to count each non-oriented edge once in

the definition (this is only a matter of convention). In the case of the electric current i and the

associated electric potential v, the two energies agree and are

E(i) = E(v) =
∑
e∈E

i(e)2/c(e)

=
1

2

∑
~e∈ ~E

c(~e)(∇~e v)2

=
∑
x∈V

v(x)
∑

~e=(x,y)

c(~e)(v(x)− v(y))

=
v(xout)=0

harmonicity

v(xin)
∑

~e=(xin,·)

c(~e)(v(xin)− v(~e ∗))

= ∆v · itotal = Reff · (itotal)
2 = Ceff · (∆v)2. (1.4)

1.3.2 Variational principles

We now give two variational principles for the energy:

Theorem 1.8 (Thomson’s principle)

If j : xin → xout is a flow of the same total flux as i then E(i) 6 E(j) with equality if and

only if i = j. In words, the electric current minimizes the energy for a given flux and

Reff((g, c);xin ↔ xout) = min{E(j) : j : xin → xout unit flow}.

Proof. By assumptions j satisfies the flow rule and has the same flux as i. We consider the

flow i− j which has then 0 flux. It is easy to see that we can decompose any 0-flux flow into a

sum of currents along oriented cycles. However, it is easy to see that any current along a cycle

is orthogonal (for the scalar product whose normed squared is the energy) with respect to i.
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Hence we get that

E(j) = E(i+ (j − i)) = E(i) + E(j − i) + 2
∑

cycles

(i | j − i)︸ ︷︷ ︸
=0

> E(i),

and with equality if and only if i = j as Thomson8 wanted. The display in the theorem then

follows from (1.4).

Theorem 1.9 (Dirichlet’s principle)

If f : V(g)→ R such that f(xin) = v(xin) and f(xout) = v(xout) is a function with the same

boundary conditions as the electrical potential then E(v) < E(f) with equality if and only if

v = f . In words, the electric potential minimizes the energy for a given boundary condition

Ceff((g, c);xin ↔ xout) = min{E(f) : f : V(g)→ R such that f(xin) = 1 and f(xout) = 0}.

Proof. The proof is almost the same as for Thomson’s principle and reduces to showing that for

the scalar product whose norm is E(·) the set of 0-boundary condition functions f is orthogonal

to the set of functions which are harmonic except at the boundary. We leave the details as an

exercise for the reader.

The great advantage of the last two results is that if we want upper and lower bounds on the

resistance, we just need to produce a flow or a function rather than computing exactly the value

of the resistance. This flexibility will be used a lot in the next chapter. Here is some “trivial”

corollary whose physical interpretation is clear, but whose proof is far from obvious without the

tools developed in this chapter!:

Corollary 1.10 (Rayleigh monotonicity). The effective conductance is a non-decreasing func-

tion of each conductance of the graph.

Proof. Let c 6 c′ two conductances on the same graph g. We write i and i′ respectively for

the electrical current carrying a unit flux (in particular, the two potential differences may be

different). We write Ec for the energy relative to the conductances c. Then we have

Reff((g, c);xin ↔ xout) = Ec(i) >
c6c′
Ec′(i) >

Thm.1.8
Ec′(i′) = Reff((g, c′);xin ↔ xout).

Remark 1.5. The result of Rayleigh9 is very useful : we can modify the graph in order to estimate

the effective resistance. In particular, if the conductance of an edge is put to 0 this boils down

to just removing the edge from the graph whereas if its conductance is set to ∞ it is equivalent

to identifying its extremities.

8 Joseph John Thomson (1856-1940)

9 John William Strutt, 3rd Baron Rayleigh (1842–1919)
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Exercise 1.13. Suppose that the resistances of the finite graph g denoted by (r(e), e ∈ E(g))

are variables. The effective resistance Reff(r) = Reff((g, r−1);xin, xout)) is thus a function of

(r(e) : e ∈ E(g)).

1. Show that the derivative of Reff with respect to r(e) is given by i(e)2 where i is the unit-flow

electrical current going through e.

2. Deduce that Reff is a concave function of each resistance.

Exercise 1.14 (From Arvind Singh). (*) Let (g, c;xin, xout) be a finite network and let i = xin →
xout the unit-flux electrical current flowing from xin to xout. Show that for every edge e ∈ E(g)

we have |i(e)| 6 1.

1.4 Discrete Gaussian Free Field

In this section we introduce the discrete Gaussian free field. Although not used in the rest of

these lecture notes, this random object is central in probability theory and especially in planar

random geometry. We will see that its definition is intimately connected with the electric notions

that we developed so far and this gives us an excuse to shed new light on a few calculations we

performed in the preceding pages. In the remaining of this section (g, c) is a finite weighted graph

and ∂g is a set of (at least one) distinguished vertices of g (previously we had ∂g = {xin, xout}).

1.4.1 The “physics” definition

Given ((g, c); ∂g), the discrete Gaussian Free Field (GFF) with zero boundary condition on ∂g

is a random function H : V(g) → R which vanishes on ∂g. It models the fluctuations of a

membrane or a system of springs. As usual in physics, the probability distribution is related

to the potential energy of the system through the formalism of Gibbs measure, in our case this

boils down to considering the following density

1

C
exp

−1

2
· 1

2

∑
~e∈~E(g)

c(~e)(∇~eH)2

 , (1.5)

with respect to the product Lebesgue measure on RV(g)\∂g where the coordinates along vertices

on the boundary are set to 0. The first 1/2 in the exponential is here to count each non-oriented

edge only once, the second one is the usual factor in the density of the standard Gaussian

distribution. The normalization constant C > 0 is, at this stage, inexplicit (see Exercise 1.15).

This definition immediately raises the question of the individual law of H(x) and the correlations

between values at different points. To answer these questions, we first need some background

and an equivalent definition of H.
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1.4.2 The `2-definition

Another definition of the discrete GFF goes through the L2 machinery of Gaussian processes.

Consider the space `20 of functions f : V(g)→ R that are vanishing on ∂g. It is easy to see that

this space can be turned into a Hilbert space of dimension #V(g)−#∂g endowed with the inner

product

< f, g >=
1

2

∑
(x,y)∈~E(g)

c(~e)∇~e f · ∇~e g,

where the factor 1/2 is here to count each non-oriented edge once in the definition. Its associated

norm is nothing but E(f), the energy of f seen in the last section. Now, as soon as we are in

possession of a finite dimensional Hilbert space, one can canonically construct a Gaussian random

variable on it:

Definition 1.8. If (E,< ·, · >) is a finite dimensional Hilbert space with an orthonormal basis

(e1, . . . , en). Then the following random variable is well-defined and its law does not depend on

the choice of the orthonormal basis:

H =
n∑
i=1

Ni · ei ∈ E,

where Ni are independent identically distributed standard real Gaussian variables. The law of H

is called the “Gaussian distribution” on (E,< ·, · >).

To see that the law of H does not depend on the orthonormal basis, we just have to remark that

if Zi are the coefficients of H in another orthonormal basis (f1, . . . , fn) then these are obtained

from N1, . . . ,Nn by multiplication by an orthogonal matrix. But by standard properties of

Gaussian vectors we then have (Zi)16i6n = (Ni)16i6n.

Exercise 1.15. Show that in our case the law of H agrees with (1.5) and prove in particular that

the constant C > 0 is explicitly given by

C =
√

2π
n

det(ei(xj))16i,j6n,

where x1, . . . , xn are the n vertices of g\∂g and e1, . . . , en is an orthonormal basis of `20.

1.4.3 Expression of the covariance

By Definition 1.8, the random function H is Gaussian, that is, any linear combination of its

entries is Gaussian (and centered). It is then natural to explicit the distribution of H which is

encoded in its covariance structure. The starting point is to notice the following integration by
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part formula (that we already used implicitly in Equation 1.4 of Chapter 1):

< f, g > =
1

2

∑
(x,y)∈~E(g)

(f(x)− f(y))(g(x)− g(y))c((x, y))

=
∑

x∈V(g)\∂g

f(x)
∑
y∼x

(g(x)− g(y))c(x, y)

= −
∑

x∈V(g)\∂g

f(x)π(x)∆g(x),

where we introduced the discrete Laplacian operator ∆ acting on functions g : V(g)→ R:

∆g(x) =
∑
y∼x

p(x, y)(g(y)− g(x)) = Ex[g(X1)− g(x)].

Hence, if gx(·) is a function such that ∆gx(·) is zero inside V(g)\∂g except at x where it is equal

to −1
π(x) then we have < f, gx >= f(x). It is easy to see that such a function exist, more generally

one can always find a function f satisfying

(?)

{
f = f0 on ∂g,

∆f = u0 on V(g)\∂g,

where u0 and f0 are two prescribed functions. Indeed, using our knowledge on the Dirichlet

problem, we easily deduce that the above problem has at most one solution (since the difference

of two solutions solves the Dirichlet problem with zero boundary condition). The existence can

also be deduced using similar lines as those developed in Chapter 1 and the reader can check

that a solution can be represented probabilistically as follows (exercise!)

f(x) = Ex

f0(Xτ∂g)−
τ∂g−1∑
k=0

u0(Xk)

 .
When f0 = 0 and u0(·) = δx,· we recover the fact that the function Ex[# visits to y before τ∂g]

is harmonic in y except at y = x (this was already observed in Lemma 1.4) and if we recall the

definition of the Green function (Definition 1.6) where the dependence in the starting point is

now stressed:

G(x, y) =
1

π(y)
Ex[# visits to y before τ∂g],

then we have G(x, y) = G(y, x) and G is harmonic in both coordinates except on the diagonal

where its Laplacian equal −1
π(·) . We can thus come back to our quest and prove

Proposition 1.11. The covariance structure of the discrete Gaussian free field is given by

Cov(H(x), H(y)) = G(x, y).

In particular, we have E[H(x)2] = Reff((g, c);x↔ ∂g).
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Proof: Fix x, y ∈ V(g)\∂g. By the above reasoning we deduce that G(x, ·) and G(y, ·) are two

functions of `20 which are harmonic in V(g)\∂g except respectively at x and y where they satisfy

∆G(x, ·)|x = −1
π(x) and ∆G(y, ·)|y = −1

π(y) . By the above remark we have

H(x) = −
∑
z

H(z)π(z)∆gx(z) = < H, gx >,

H(y) = −
∑
z

H(z)π(z)∆gy(z) = < H, gy >,

so that

Cov(H(x), H(y)) = E[H(x)H(y)]

= E

[〈
n∑
i=1

Niei
∣∣G(x, ·)

〉〈
n∑
i=1

Niei
∣∣G(y, ·)

〉]
= < G(x, ·)|G(y, ·) >
= −

∑
z

G(x, z)π(z) ∆G(y, ·)|z

= G(x, y).

When x = y we have G(x, x) = Reff((g, c);x↔ ∂g) as proved in Lemma 1.4.

1.4.4 The statistical definition

The action (1.5) defining the discrete GFF also pops up in statistics. Assume that on each vertex

of your graph g is a mountain, a peak, whose altitude you want to measure. Alas, you only

know that the peaks on ∂g are at height 0 and you are only able to measure altitude differences

along edges of your graph (once for each edge)... but with an independent Gaussian error with

variance 1/c(e). Performing all these measurements you end-up with a collection of noisy height

differences

∇̂(~e) = N~e +∇~e h0,

where the function h0 is the true height and the errors are independent for each non-oriented

edges and so that N~e = −N←−e . What is then the best estimator of the true height of the peaks?

The maximum likelihood estimator returns the function h minimizing the Gaussian errors i.e.

argminh exp

1

4

∑
~e∈~E(g)

c(e)
(
∇̂(~e)−∇~e h)

)2

 ,

so that if h = h0 +H the (random) function H minimizes∑
~e∈~E(g)

c(~e) (∇~eH −N~e)2 . (1.6)
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Proposition 1.12. The function H minimizing (1.6) is distributed as the discrete Gaussian

Free Field on ((g, c); ∂g).

Proof. The Hilbert space `20 can be embedded in the larger Hilbert space `2sym of antisymmetric

functions θ = ~E→ R on oriented edges. Indeed on `2sym we can define the inner product

< θ, ψ >=
1

2

∑
~e

c(~e)θ(~e) · ψ(~e),

and we embed f ∈ `20 ↪→ (∇~e f)~e ∈ `2sym so that the inner products match. In particular, the

minimization problem (1.6) is nothing but the projection onto the smaller `20 space made of those

functions on oriented edges that actual comes from “derivatives” of usual functions on vertices.

But the function N = (N~e) ∈ `2sym is standard Gaussian in `2( ~E) and thus its coordinates are

i.i.d. standard Gaussian in any orthonormal basis. We just have to form such a basis by starting

with the basis for `20 used in Definition 1.8 and then complete with a basis of the orthogonal.

After the projection, we end-up with a function of `20 (hence the derivative of a function) whose

coefficients in the basis of Definition 1.8 are just i.i.d. standard normals as wanted.

Remark 1.6. The discrete Gaussian Free Field is also related to random walks on (g, c) via

“Dynkin type” isomorphisms relating the occupation (local) times of a random walk to version of

the discrete Gaussian free field, see [31]. More generally, the (discrete and continuous) Gaussian

free field pops up in many context such as Liouville conformal field theory in dimension 2,

uniform spanning trees, loop erased random walks etc. The interested reader should consult the

bible [33] and the references therein for much more on this wonderful object.

Bibliographical notes. The connection between random walks on weighted graphs and potential

theory is a classic subject covered in e.g. in [33, ?, ?, 41, ?, ?]. See also [16] for a smooth

introduction. Our presentation is mostly inspired from [33] from which we borrowed Exercises .
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Chapter II: Infinite graphs and recurrence/transience

In this chapter we use the connection between potential theory, electrical networks and random

walks to give robust and practical recurrence/transience criteria for infinite graphs. Here (g, c)

is a weighted infinite connected graph whose degrees are all finite. In particular, the vertex set

V is countable and the random walk on (g, c) is irreducible.

2.1 Recurrence and resistance

If xin ∈ V we recall that under Pxin the process (Xn)n>0 is the random walk (directed

by the conductances c) on the graph g and started from X0 = xin. The classical dichotomy

for irreducible countable Markov chains then ensures that either Xn = X0 for infinitely many

n’s in which case (g, c) is called recurrent, otherwise Xn = X0 finitely many times (and even

E[
∑

n 1{Xn = X0}] <∞) and the graph is transient1. To relate these concepts with the effective

resistance we consider

xin = g0 ⊂ g1 ⊂ · · · ⊂ gn ⊂ · · · ⊂ g,

an exhaustion of g i.e. an increasing sequence of finite connected subgraphs of g such that

∪gn = g. We denote by ∂gn the set of vertices of gn which have a neighbor in g which is not

in gn. We can interpret gn as a finite network where the conductances are inherited from g and

where xout = ∂gn where all the vertices are collapsed into a single vertex. By the result of the

last chapter we have

π(xin)Pxin(τout < τ+
in) = Ceff((gn, c);xin ↔ ∂gn) −−−→

n→∞
π(xin)Pρ(τ+

in =∞) := Ceff((g, c);xin ↔∞).

Using Rayleigh’s monotonicity it is easy to see that the above definition does not depend on

the exhaustion of the graph: if (g′n)n>0 is another exhaustion then for any n > 0 we can find

m, p > 0 such that gn ⊂ g′m ⊂ gp and by monotonicity of the conductance

Ceff((gn, c);xin ↔ ∂gn) > Ceff((g′m, c);xin ↔ ∂g′m) > Ceff((gp, c);xin ↔ ∂gp),

hence the limits are the same. We have thus proved:

Proposition 2.1. The graph (g, c) is recurrent if and only if there exists (equivalently : for

all) xin ∈ V such that the effective conductance between xin and ∞ is equal to 0 (the effective

resistance is infinite).
1and the notion does not depend upon xin ∈ V
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Example 2.1. The line Z is recurrent when all conductances are equal to 1 (all trees with at most

two ends are recurrent). By monotonicity of the resistance, if (g, c) is recurrent then so is any

subgraph of it (with the same conductances): this is not trivial even in the case of subgraphs of

Z2!!!

Exercise 2.1. Show that the complete binary tree is transient.

2.2 Criterions for recurrence/transience

We establish a few useful criteria to determine recurrence/transience.

2.2.1 Nash-Williams cutsets

Instead of giving the Nash-Williams2 criterion in its full generality (see Proposition 2.3) we

illustrate the most common application which readily follows from monotonicity of the effective

resistance. Fix (g, c) a weighted infinite graph and xin ∈ V . A cutset between xin and ∞ in the

graph g is a subset Γ of edges such that any path γ : xin → ∞ must pass through Γ. Imagine

that we can build in the graph (g, c) a sequence of disjoints cutsets Γ1,Γ2, . . . which are nested

in the sense that we can contract all the edges of the graph except those on the cutsets and

identify vertices to obtain a line graph with parallel edges belonging to Γ1,Γ2, . . . , see below

contraction
xin

xin

Figure 2.1: Setup of application of the Nash-Williams criterion

It is easy to pass to the limit in Theorem 1.10 and get that the effective resistance Reff((g, c);xin ↔
∞) is monotone in each of the resistance of the graph. However, the previous operation (con-

traction of edges and identification of vertices) only diminishes the resistance: contracting an

edge is the same as setting its resistance to 0 (or its conductance to ∞) and identifying two

vertices boils down to adding an edge of resistance 0 between them (we can imagine that before

they shared an edge of infinite resistance). Hence we have

Reff((g, c);xin ↔∞) > Reff

(
xin

)
=
∞∑
i=1

∑
e∈Γi

c(e)

−1

.

2 Crispin St. John Alvah Nash-Williams 1932–2001

27



Application to Z2. The last method can be successfully applied in the case of Z2 (with the

obvious edge set and with all conductances equal to 1) : the disjoints cutsets made of the edges

in-between [−n, n]2 and [−(n + 1), n + 1]2 have size 4(2n + 1) and so the effective resistance

between 0 and ∞ in Z2 is larger than
∑∞

n=0
1

4(2n+1) = ∞. This proves that Z2 (as well as any

subgraph of it !) is recurrent.

Exercise 2.2. Consider the graph Z3 made of a stack of horizontal copies of Z2. We split each

vertical edge at height i > 1 in-between two copies of Z2 into |i| edges in series. Our goal is to

prove that the resulting graph G where all the conductances are equal to 1 is recurrent.

1. Prove that we cannot find disjoint cutsets for which we can apply Nash-Williams criterion

and deduce recurrence.

We now split the edges in each horizontal Z2 as follows: for n > 1 each edge connecting [−n, n]2

to [−(n+ 1), (n+ 1)]2 is split in n edges in series, each of which has conductance 1/n. The new

weighted graph is denoted by G′.

3. Prove that G and G′ are equivalent.

4. Find good cutsets in G′ in order to apply Nash-Williams criterion and deduce recurrence.

2.2.2 Variational principles

We now use Theorem 1.8 to give a transience criterion in the infinite setting due to Terry Lyons

Theorem 2.2 (T. Lyons)

The graph (g, c) is transient if and only if there exists (equivalently for all) xin ∈ V such that

we can create a flow j : ~E → R of unit flux whose only source is xin and with finite energy

i.e.

Ec(j) =
∑
e∈E

j(e)2

c(e)
<∞.

Proof. In order to use the result on the finite setting we fix (gn)n>0 an exhaustion of the graph

g. Suppose first that we possess a flow as in the theorem. By restricting it to gn we obtain a

unit flow xin → ∂gn whose energy is bounded by the energy of the total flow. Using Theorem

1.8 we deduce that the energy of the unit electric courant in : xin → ∂gn is also bounded by the

same constant, and this proves

∀n, Reff((gn, c);xin ↔ ∂gn) 6 Ec(j) <∞.

By passing to the limit n→∞ we deduce that the effective resistance to ∞ is indeed finite and

so the graph is transient.

Conversely, if (g, c) is transient we know that the unit electric current flow in : xin → ∂gn has an

energy bounded above by the resistance between xin and ∞ in the graph. By taking a diagonal

extraction if necessary we can consider a sub sequential limit unit flow in j. An application
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of Fatou’s lemma then entails that the energy of this flow is again bounded by the resistance

between xin and ∞ in the graph.

Random path. Here is a convenient method to build a unit flux on a graph. Suppose that we

dispose of a random infinite oriented path ~Γ starting from xin. Erasing loops if necessary, we

can suppose that ~Γ is a simple path. We then put

j(~e) = P(~Γ goes through ~e in that direction).

Because ~Γ is infinite and starts at xin it is easy to check that j is indeed a unit flow whose only

source is xin. Bounding the energy of j reduces to bounding
∑

e∈E P(e ∈ Γ)2.

Application to Zd with d > 3. Let Zd be the d-dimensional lattice with the usual edge set and

conductances equal to 1. We imagine that Zd is embedded in Rd is the natural way. We then

consider γ ⊂ Rd a random semi infinite line starting from 0 such that its intersection with the

unit sphere is uniform on the d − 1 surface. We can then approximate in the discrete γ by a

simple oriented path ~Γ which stays within a constant distance from γ. It is then easy to see that∑
e∈Zd

P(e ∈ Γ)2 ≈
∑
e∈Zd

(dist(0, e))2(1−d) ≈
∞∑
r=1

1

rd−1
<∞ whenever d > 3,

and so by Theorem 2.2 the graphs Zd are transient when d > 3.

We can also use the flow criterion in order to prove a strong version of the Nash-Williams

criterion without assuming any geometric condition on the cutsets:

Proposition 2.3. Suppose that Γ1,Γ2, . . . are disjoint cutsets separating xin from ∞ in g. We

then have ∑
i>1

∑
e∈Γi

c(e)

−1

=∞ ⇒ (g, c) is recurrent.

Proof. If (g, c) is transient then by Theorem 2.2 there exists a unit flow j with source xin

and finite energy. Clearly the unit flux has to escape through any cutset Γi which means that∑
e∈Γi
|j(e)| > 1. On the other hand by Cauchy–Schwarz we have

1 6

∑
e∈Γi

|j(e)|

2

6

∑
e∈Γi

j(e)2/c(e)

∑
e∈Γi

c(e)

 ,

hence
(∑

e∈Γi
j(e)2/c(e)

)
>
(∑

e∈Γi
c(e)

)−1
and summing over i > 0 leads a contradiction to the

finiteness of the energy.

Exercise 2.3 (From [33]). If A ⊂ Zd for d > 1 we denote by GA the subgraph whose vertices are

indexed by A and whose edges are inherited from the standard edges in Zd. All the conductances

are set to 1. Let f : N → N∗ be a non-decreasing function. We write Af = {(x, y, z) ∈ Z3 :

x, y > 0, 0 6 z 6 f(x)}.
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1. Show that ∑
n>1

1

nf(n)
=∞ =⇒ GAf recurrent.

2. We suppose that ∀n > 0, f(n + 1) 6 f(n) + 1. Show the converse to the last implication

(Hint: Consider a random path in GAf close to (n,U1n,U2f(n)) where U1, U2 are i.i.d.

uniform over [0, 1]).

Exercise 2.4 (First passage percolation). Let g be an infinite graph. We endow each edge of g

with an independent exponential edge weight ωe of parameter 1 which we interpret as a length.

The first-passage distance is then defined as

dfpp(x, y) = inf

{∑
e∈γ

ωe : γ is a path x→ y

}
.

Show that if E[dfpp(xin,∞)] <∞ then g is transient (with unit conductances).

As Lyons’ criterion follows from a passage to the limit in Thomson criterion in the finite

setting (Theorem 1.8), a recurrence criterion can easily be deduced from Dirichlet’s formulation

of the resistance (Theorem 1.9). We leave the proof as an exercise for the reader.

Theorem 2.4

The graph (g, c) is recurrent if and only if there exists (equivalently for all) xin ∈ V such

that we can create a functions fn : V → R with fn(xin) = 1 and fn = 0 outside of a finite

set of vertices whose energy Ec(fn) are tending to 0 as n→∞.

2.3 Perturbations

In this section we will prove that the concept of recurrence/transience is stable under per-

turbations of the underlying lattice as long as they are not too severe at large scales. We will

restrict ourselves to the case of “bounded geometry” where vertex degrees and conductances are

bounded away from 0 and ∞.

2.3.1 Quasi-isometries

Definition 2.1. Let (E,d) and (F, δ) two metric spaces. A map φ : E → F is a quasi-isometry

if there exist A,B > 0 such that

(i) ∀y ∈ F,∃x ∈ E, δ(y, φ(x)) 6 B, “quasi-surjectivity”

(ii) ∀x, x′ ∈ E, 1

A
d(x, x′)−B 6 δ(φ(x), φ(x′)) 6 Ad(x, x′) +B “quasi-isometry”.

If there exists a quasi-isometry between (E,d) and (F, δ) then the two spaces are said to be

quasi-isometric. Sometimes this notion is also called rough isometry or coarse isometry. It is an

exercise to see that being quasi-isometric is an equivalence relation on all metric spaces.
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Example 2.2. The trivial mapping Zd → Rd shows that they are quasi isometric. All finite

metric spaces are trivially quasi isometric to a point. If two graphs g and g′ (endowed with their

graph metrics) are quasi isometric then they share the same rough rate of growth of balls. We

deduce in particular that Zd is not quasi-isometric to Zd′ if d 6= d′.

Exercise 2.5 (A few geometric comparisons). (*) We write � for the quasi-isometry relation. All

graphs are endowed with the graph distance.

• Prove T3 � T4 where Td is the infinite tree where all vertices have degree d > 1.

• Show that Z2 6� Z× N � N2.

• (Benjamini & Shamov [8]) Show that the bijective quasi-isometries of Z are within bounded

distance for the ‖ · ‖∞ norm from either identity or -identity.

Exercise 2.6 (Open question of G. Kozma (**)). Does there exist a bounded degree graph

which is quasi-isometric to (R2, ‖ · ‖2) where the multiplicative constant A in the quasi-isometry

Definition 2.1 is equal to 1?

2.3.2 Invariance with respect to quasi-isometries

Theorem 2.5 (recurrence is quasi-isometry invariant)

Let g and g′ two quasi isometric infinite graphs. Suppose that the vertex degrees and the

conductances of g and g′ are bounded away from 0 and ∞. Then (g, c) is recurrent if and

only if (g′, c′) is recurrent.

Proof. Suppose that (g, c) is transient and that φ : g→ g′ is a quasi-isometry. Up to replacing

parallel edges and removing loops we can suppose that g is a simple graph. By our assumption

and Theorem 2.2 there exists a unit flux flow j : ~E(g)→ R from xin →∞ whose energy is finite.

We will transform this flow into a flow on ~E(g′). More precisely for each edge ~e = (x, y) ∈ ~E(g)

we choose an oriented geodesic path in g′ from φ(x) to φ(y). We denote this path φ(~e). We

then change j into a flow j′ on g′ by putting:

j′(~e ′) =
∑

~e∈ ~E(g)

j(~e)1~e ′∈φ(~e).

It is straightforward to see that j′ is a unit flow from φ(xin) to ∞. Let us now compute its

31



energy:

Ec′(j′) 6 Cst
∑
~e ′

j′(~e ′)2

6 Cst
∑
~e ′

(∑
~e

j(~e)1~e ′∈φ(~e)

)2

6
Cauchy−Schwarz

Cst
∑
~e ′

∑
~e

j(~e)2

(∑
~e

1~e ′∈φ(~e)

)
6

see below
Cst

∑
~e

j(~e)2 <∞.

We have used the fact that there exists M a number (depending on the constants involved in the

quasi-isometry and the maximal degrees in the graphs) such that for any ~e ′ the total number of

oriented edges ~e whose “image”φ(~e) passes through ~e ′ is bounded by M . This fact is left as an

exercise for the reader.
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Part II:

One dimensional random walks
This part is devoted to the study of the following object:

Definition 2.2 (one-dimensional random walk). Let µ be a probability distribution on R
and consider X1, X2, . . . i.i.d. copies of law µ which we see as the increments of the process

(S) on R defined as follows : S0 = 0 and for n > 1

Sn = X1 + · · ·+Xn.

We say that (S) is a one-dimensional random walk with step distribution µ (or one-

dimensional random walk for short).

200 400 600 800 1000
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-2
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2000 4000 6000 8000 10000

-400

-300

-200

-100

100

Figure 2.2: Two samples of one-dimensional random walks with different step distri-

butions. The first one seems continuous at large scales whereas the second one displays

macroscopic jumps.

The behavior of one-dimensional random walks (recurrence, transience, oscillations...) de-

pends on the step distribution µ in a non-trivial way as we will see. We will develop the

fluctuation theory for such walks which studies the return times and entrance heights in

half-spaces. This will also enable us to define random walks conditioned to stay positive.

This knowledge (especially in the case of skip-free random walks) will later be very useful

when random walks appear in the study of random graphs and random trees.

33



Chapter III: Recurrence and oscillations

In this chapter we fix a law µ on R whose support is not included in R+ nor in R− and study

the one-dimensional random walk (S) with i.i.d. increments (Xi) following this step distribu-

tion. This chapter recalls the classic dichotomies recurrence/transience, drifting/oscillating and

provides the basic examples for the rest of this part.

3.1 Background and recurrence

Obviously a one-dimensional random walk is a very particular case of Markov chain in discrete

time with values in R. We will recall in our context the notion of irreducibility, aperiodicity and

(Harris) recurrence.

3.1.1 Lattice walks

Definition 3.1. We say that the walk is lattice if for some c > 0 we have P(X1 ∈ cZ) = 1.

Remark that when (S) is lattice we have Si ∈ cZ almost surely for every i > 0. We will usually

suppose that we have c = 1 and that gcd(Supp(µ)) = 1 so that (S) induces an irreducible

aperiodic Markov chain on Z. The prototype of such walk is the simple symmetric random walk

on Z where µ = 1
2(δ1 + δ−1). When the walk is non lattice (recall that µ is supported neither

R+ nor by R−) then any real is accessible:

Proposition 3.1. If the walk is non lattice then

∀x ∈ R, ∀ε > 0, ∃n > 0 P(Sn ∈ [x± ε]) > 0.

Proof. We consider the topological support of µ defined as Supp(µ) = {x ∈ R : ∀ε > 0, µ([x−
ε, x + ε]) > 0}. Our goal is to show that A =

⋃
n>0 n · Supp(µ) is dense in R where k · E is

the kth sum set E + E + · · ·+ E. Since µ is non lattice the group generated by Supp(µ) is not

discrete, hence it is dense in R. We conclude using the fact that if A 6⊂ R+ nor R− and that

the group generated by A is dense in R then the semi group generated by A is also dense in R
(exercise).

When the walk has a step distribution which has no atoms (it is diffuse) then almost surely

the values taken by the random walk are pairwise distinct and in particular Si 6= 0 except for

i = 0. To see this, fix 0 6 i < j and write

P(Si = Sj) = P(Xi+1 +Xi+2 + · · ·+Xj = 0) = P(−Xj = Xi+1 +Xi+2 + · · ·+Xj−1),
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but since Xj is independent of Xi+1 + Xi+2 + · · · + Xj−1 and has no atoms this probability is

equal to 0. One can then sum over all countable pairs of i 6= j > 0 to get the claim.

3.1.2 Markov property and 0/1 laws

Before starting with the main course of this chapter, let us recall the very useful Markov property

which takes a nice form in our setup: as usual Fn = σ(X1, . . . , Xn) is the natural filtration gener-

ated by the walk (S) up to time n and a stopping time is a random variable τ ∈ {0, 1, 2, . . . }∪{∞}
such that for each n > 0 the event {τ = n} is measurable with respect to Fn. In our context

the (strong) Markov property can be rephrased as:

Proposition 3.2. If τ is a stopping time such that τ < ∞ almost surely then the process

(S
(τ)
n )n>0 = (Sτ+n − Sτ )n>0 is independent of (Sn)06n6τ and is distributed as the initial walk

(Sn)n>0.

Proof. Let f, g be two positive measurable functions and let us compute

E
[
f ((Sn)06n6τ ) g

(
(S(τ)
n )n>0

)]
=

τ<∞

∞∑
k=0

E
[
1τ=kf ((Sn)06n6k) g

(
(S(k)
n )n>0

)]
=

indep.

∞∑
k=0

E [1τ=kf ((Sn)06n6k)]E
[
g
(

(S(k)
n )n>0

)]
=
stat.

∞∑
k=0

E [1τ=kf ((Sn)06n6k)]E [g ((Sn)n>0)]

= E [f ((Sn)06n6τ )]E [g ((Sn)n>0)] ,

and this proves the proposition.

In the study of random walks, one often uses 0−1 laws when dealing with asymptotic events

such as {Sn →∞}. The most well-known of such laws is Kolmogorov’s1 0− 1 law which states

that if (Xi)i>0 are independent random variables (not necessarily identically distributed), then

any event A measurable with respect to σ(Xi : i > 0) and which is independent of (X1, . . . , Xn0)

for any n0 has measure P(A) ∈ {0, 1}. We give here a stronger version of Kolmogorov 0 − 1

law in the case of i.i.d. increments due to Hewitt & Savage2 which has many applications in the

random walk setting:

1 Andrëı Nikoläıevitch Kolmogorov 1903–1987

2 Edwin Hewitt 1920–1999, Leonard Savage 1917–1971
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Theorem 3.3 (Hewitt–Savage exchangeable 0− 1 law)

Let (Xi)i>1 be a sequence of independent and identically distributed random variables. Sup-

pose that A is a measurable event with respect to σ(Xi : i > 1) which is invariant (up

to negligible events) by any permutation of the (Xi : i > 1) with finite support. Then

P(A) ∈ {0, 1}.

Proof. Let A ∈ σ(Xi : i > 1) be invariant by any permutations of the Xi with finite support

(i.e. only finitely many terms are permuted). By standard measure-theory arguments one can

approximate A by a sequence of events An ∈ σ(X1, . . . , Xn) in the sense that

P(A∆An) −−−→
n→∞

0.

Recall that any event E ∈ σ(Xi : i > 1) can be written E = 1(Xi:i>1)∈Ẽ where Ẽ is an event

of the Borel cylindric σ-field on RN. We can thus consider the function ψn acting on events

E ∈ σ(Xi : i > 1) by exchanging X1, . . . , Xn with Xn+1, . . . , X2n i.e.

ψn(E) = 1Xn+1,...,X2n,X1,...,Xn,X2n+1,···∈Ẽ ∈ σ(Xi : i > 1).

Since the Xi are i.i.d. we have P(ψn(E)) = P(E) for any event E and also ψn(An) is independent

of An. Using this we have

0←−−−
n→∞

P(A∆An) = P(ψn(A∆An)) = P(ψn(A)∆ψn(An)) = P(A∆ψn(An)).

We deduce that A is both very well approximated by An but also by ψn(An). Since the last two

events are independent we deduce that P(A) ∈ {0, 1} because

P(A) = lim
n→∞

P(An ∩ ψn(An)) =
indept.

lim
n→∞

P(An)P(ψn(An)) =
i.d.

lim
n→∞

P(An)2 = P(A)2.

Example 3.1. If A ∈ R is a measurable subset we write

IA :=

∞∑
n=0

1Sn∈A. (3.1)

Then the commutativity of R (sic) shows that the event {IA = ∞} is invariant under finite

permutations of the Xi’s (indeed any finite permutation leaves Sn invariant for large n): hence

it has probability 0 or 1. Notice that this cannot be deduced directly from Kolmogorov’s 0− 1

law. (This observation is valid in any Abelian group).

3.1.3 Recurrence

In the case of lattice random walks, or random walks on graphs (see Part III), or even irreducible

Markov chain on a countable state space, the concept of recurrence is clear: we say that (S) is

recurrent if it comes back infinitely often to 0 with probability one. Our first task is to extend

this notion in the context of general random walks on R where the random walk may not even

come back exactly at 0 once.
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Definition-Proposition 3.1. The random walk (S) is said to be recurrent if one of the following

equivalent conditions holds:

(i) For every ε > 0 we have P(∃n > 1 : |Sn| < ε) = 1,

(ii) P(|Sn| < 1 for infinitely many n) = 1,

(iii) P(|Sn| → ∞) = 0,

(iv) E
[∑∞

n=0 1|Sn|<1

]
=∞.

Otherwise the walk is said to be transient and the complementary events hold.

Notice that in the case of random walks on Z, or more generally the lattice case (even in the case

of any irreducible Markov chain on Z), the above conditions reduce to the well-know equivalences:

P(|Sn| → ∞) = 0 ⇐⇒ P(∃n > 1 : Sn = 0) = 1 ⇐⇒ E[#returns to 0] =∞.

Proof. We consider only the non-lattice case. Let us suppose (i) and prove (ii). Fix ε > 0

small and let τε = inf{k > 1 : |S0−Sk| 6 ε} be the first return of the walk inside [−ε, ε]. By (i)

we know that the stopping time τε is almost surely finite. If we define by induction

τ (i)
ε = inf{k > τ (i−1)

ε : |Sk − Sτ (i−1)
ε
| 6 ε}

then an application of the strong Markov property shows that τ
(i)
ε is finite almost surely for every

i > 1. Now if k < 1
ε it is clear that |S

τ
(k)
ε
| 6 kε < 1 and hence #{n > 0 : |Sn| < 1} is almost

surely larger than bε−1c. Since this holds for any ε > 0 we deduce that #{n > 0 : |Sn| < 1} =∞
almost surely as desired in (ii).

The implication (ii)⇒ (iii) is clear.

(iii)⇒ (i). We will prove first that for any non trivial interval (a, b) the event {I(a,b) =∞} is

equal to {I(−1,1) =∞} up to negligible events (recall the notation (3.1)). To see this denote the

successive returns times of S in (−1, 1) by τ(0) = 0 and τ(k) = inf{n > τ(k − 1) : Sn ∈ (−1, 1)}.
We then claim (Exercise!) that using Proposition 3.1 one can find n0 > 1 and ε > 0 such that

irrespectively of x ∈ (−1, 1) we have P(x+ Sn0 ∈ (a, b)) > ε. Using this and the strong Markov

property, it is easy to see by standard Markov chain arguments that the events {I(−1,1) = ∞},
{τ(k) <∞, ∀k > 0} and {I(a,b) =∞} coincide up to a null event. By the 0− 1 law established

in Example 3.1 we deduce that either

a.s. ∀a 6= b ∈ Q we have I(a,b) <∞ or ∀a 6= b ∈ Q we have I(a,b) =∞. (3.2)

Now suppose (iii). Since |Sn| does not diverge with probability 1, this means that there exists

a (random) value A such that Sn ∈ [−A,A] for infinitely many n. This clearly implies that we

are in the second option in the last display and in particular I(−ε,ε) =∞ almost surely for any

ε > 0.
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Since clearly (ii)⇒ (iv) it remains to prove (iv)⇒ (i). Suppose (iv) and assume non (i) by

contradiction. This means that for some ε > 0 we have P(∀n > 1 : |Sn| > ε) > ε. By considering

the successive return times to (−ε/2, ε/2), the strong Markov property shows that

P

(∑
i>0

1|Si|<ε/2 > k

)
= P(I(−ε/2,ε/2) > k) 6 (1− ε)k.

We deduce that E[I(−ε/2,ε/2)] <∞. Now if if (a, b) is any interval of length ε/2, by applying the

Markov property at the hitting time τ(a,b) of (a, b) we get that

E[I(a,b)] 6 P(τ(a,b) <∞)E[I(−ε/2,ε/2)].

Since I(−1,1) is less than the sum of roughly 2/ε terms I(ai,bi) where (−1, 1) ⊂ ∪i(ai, bi) and

|ai−bi| 6 ε/2 we reach a contradiction since this implies that I(−1,1) is of finite expectation.

The above proof shows in fact that (S) is recurrent if and only

∃a 6= b ∈ R, E[I(a,b)] =∞ ⇐⇒ a.s.∀a 6= b ∈ R, I(a,b) =∞.

Remark 3.1. We will furnish later a criterion for recurrence based on the Fourier transform of

the step distribution, see the Chung–Fuchs Theorem 7.5.

Exercise 3.1. Show that (Sn)n>0 is recurrent if and only if (S2n)n>0 is recurrent.

3.2 Oscillation and drift

In the last section we focused on the dichotomy between recurrence/transience. We now

further split transient walks into two finer categories: oscillating random walks and drifting

random walks.

3.2.1 Dichotomy

Definition-Proposition 3.2. A (non-trivial) one-dimensional random walk (S) falls into ex-

actly one of the three categories:

(i) Either Sn →∞ a.s. as n→∞ in which case (S) is said to drift towards ∞,

(ii) Or Sn → −∞ a.s. as n→∞ in which case (S) is said to drift towards −∞,

(iii) Or (S) oscillates i.e. lim supn→∞ Sn = +∞ and lim infn→∞ Sn = −∞ almost surely.

Proof. Note that our background assumption on µ forces µ 6= δ0 for which none of the above

cases apply. In the lattice case, this proposition is well known. Let us suppose that we are in

the non-lattice case. Each of the events defining points (i)− (ii)− (iii) are independent of the

values of the first few values of the increments. By Kolmogorov’s 0−1 law they thus appear with

probability 0 or 1. Let us suppose that we are in none of the above cases. With the notation
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of the proof Definition-Proposition 3.1 this means that ∪k>1{I(−k,k) =∞} is of full probability

and so we are in the second alternative of (3.2). This is clearly a contradiction because then the

range would be dense in R.

Example 3.2. • A recurrent walk automatically oscillates.

• However, a transient walk does not necessarily drifts towards +∞ or −∞ (see below).

• A random walk whose increments are symmetric necessarily oscillates.

3.2.2 Ladder variables

Definition 3.2 (Ladder heights and epochs). We define by induction T>0 = T<0 = T>
0 = T6

0 = 0

as well as H>
0 = H<

0 = H>
0 = H6

0 = 0 and for i > 1 we put

T>i = inf
{
k > T>i−1 : Sk > H>

i−1

}
and H>

i = ST>i
,

T>
i = inf

{
k > T>

i−1 : Sk > H>
i−1

}
and H>

i = S
T>
i
,

T<i = inf
{
k > T<i−1 : Sk < H<

i−1

}
and H<

i = ST<i
,

T6
i = inf

{
k > T6

i−1 : Sk 6 H6
i−1

}
and H6

i = S
T6
i
.

If T ∗i is not defined (i.e. we take the infimum over the empty set) then we put T ∗j = H∗j = ±∞
for all j > i. The variables (T>/T>) (resp. (T</T6)) are called the strict/weak ascending

(resp. descending) ladder epochs. The associated H process are called the (strict/weak ascend-

ing/descending) ladder heights.

Remark 3.2. When the walk (S) has continuous increments, since almost surely S does not take

twice the same value the weak and strict ladder variables are the same.

In the following we write H and T generically for one of the four couples

(T>, H>), (T>, H>), (T<, H<) or (T6, H6).

The ladder epochs are clearly stopping times for the natural filtration generated by the walk.

The strong Markov property then shows that N = inf{i > 0 : Ti = ∞} is a geometric random

variable with distribution

P(N = k) = P(T1 =∞)P(T1 <∞)k−1,

and that conditionally on N the random variables ((Ti−Ti−1), (Hi−Hi−1))16i6N−1 are i.i.d. with

law (T1, H1) conditioned on T1 <∞. Combining these observations with Definition-Proposition

3.2, we deduce a characterization of drift/oscillation in terms of the ladder epochs:

Proposition 3.4. The walk (S) drifts towards +∞ if and only if P(T<1 =∞) > 0 and P(T>1 =

∞) = 0. The walk (S) oscillates if and only if P(T<1 =∞) = P(T>1 =∞) = 0.
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Figure 3.1: Illustration of the definition of the ladder heights and epochs.

3.3 Walks with finite mean

In this section we examine the particular case when E[|X|] <∞ and show in particular that

the walk is recurrent whenever it is centered, otherwise it is transient and drifts. It will be a

good opportunity to wiggle around the (strong/weak) law of large numbers, see Exercises 3.2

and 3.3 (see also Exercise 4.9 for an enhanced version of the strong law of large numbers).

3.3.1 Recurrence/transience

Theorem 3.5

Suppose E[|X1|] <∞ then

(i) If E[X1] 6= 0 then (S) is transient and drifts,

(ii) otherwise if E[X1] = 0 then (S) is recurrent.

Proof. The first point (i) is easy since by the strong law of large numbers we have n−1Sn →
E[X1] almost surely: when E[X1] 6= 0 this automatically implies that |Sn| → ∞ and so (S) is

transient by Definition-Proposition 3.1 and drifts towards ±∞ depending on the sign of E[X].

In the second case we still use the law of large numbers to deduce that Sn/n → 0 almost

surely as n → ∞. This implies that for any ε > 0 we have |Sn| 6 εn eventually and so for n
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large enough

∞∑
i=0

1|Si|6εn > n so that E

[ ∞∑
i=0

1|Si|6εn

]
> n/2. (3.3)

We claim that this inequality is not compatible with transience. Indeed, according to Definition-

Proposition 3.1, if the walk (S) is transient then for some constant C > 0 we have

E

[ ∞∑
i=0

1|Si|<1

]
6 C.

If x ∈ R, applying the strong Markov property at the stopping time τ = inf{i > 0 : Si ∈ [x, x+1]}
we deduce that

E

[ ∞∑
i=0

1Si∈[x,x+1]

]
6 P(τ <∞)E

[ ∞∑
i=0

1|Si|<1

]
6 C.

Dividing the interval [−εn, εn] into at most 2εn + 2 interval of length at most 1 and applying

the above inequality we would deduce that E
[∑∞

i=0 1|Si|6εn
]
6 (2εn + 2)C which contradicts

(3.3) for ε > 0 small enough. Hence the walk cannot be transient.

Exercise 3.2. Let (Sn)n>0 be a one-dimensional random walk with step distribution µ on R.

1. Show that if n−1 · Sn
(P)−−−→
n→∞

0 then (S) is recurrent.

2. Using the Cauchy law (Section 3.4) show that the converse is false.

3.3.2 Wald’s equality

Theorem 3.6 (Wald equality)

Suppose E[|X1|] <∞. Let τ be a stopping time with finite expectation. Then we have

E[τ ] · E[X1] = E[Sτ ].

Proof with martingales. We present a first proof based on martingale techniques. If we

denote by m the mean of X1 then clearly the process (Sn − nm)n>0 is a martingale for the

canonical filtration Fn = σ(X1, . . . , Xn). By the optional sampling theorem we deduce that

E[Sn∧τ ] = mE[n ∧ τ ]. (3.4)

Since τ is almost surely finite by Corollary 4.2, we can let n → ∞ and get by monotone

convergence that the right hand side tends to E[τ ]. However, to deduce that the left hand side

also converges towards E[Sτ ] one would need a domination... To get this just remark that for

all n we have

|Sn∧τ | 6
τ∑
i=1

|Xi|,
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and the last variable has a finite expectation equal to E[τ ]E[|X|] < ∞ by a standard exercise.

On can then use this domination to prove convergence of the left-hand side in (3.4).

Proof with law of large numbers. We give a second proof based on the law of large numbers.

The idea is to iterate the stopping rule. Let τ = τ1 6 τ2 6 τ3 6 . . . be the successive stopping

times obtained formally as

τi+1 = τi+1 ((S)n>0) = τi((Sn)n>0) + τ((Sn+τi((Sn)n>0))n>0),

for i > 1. In particular (τi+1 − τi;Sτi+1 − Sτi)i>0 are i.i.d. of law (τ,Xτ ). By the law of large

numbers (we suppose here that τ 6= 0 otherwise the result is trivial) we get that

Sτi
τi

a.s.−−−→
i→∞

E[X1].

On the other hand since τ has finite expectation by assumption, applying once more the law of

large numbers we deduce that

Sτi
i

=
Sτi
τi
· τi
i

a.s.−−−→
i→∞

E[X1] · E[τ ].

We then use the reciprocal of the law of large numbers (see Exercise 3.3) to deduce that Sτ has

finite expectation and equal to E[τ ] · E[X1] as claimed by Wald3.

Exercise 3.3 (Converse to the strong law of large numbers). Let (Xi)i>0 be i.i.d. real variables

and suppose that for some constant c ∈ R we have

X1 + · · ·+Xn

n

a.s.−−−→
n→∞

c.

The goal is to show that Xi have a finite first moment and E[X1] = c. For this we argue by

contradiction and suppose that E[|X|] =∞.

(i) Show that
∑

n>1 P(|X| > n) =∞.

(ii) Deduce that |Xn| > n for infinitely many n’s.

(iii) Conclude.

(iv) By considering increments having law P(X = k) = P(X = −k) ∼ c/(k2 log k) for some

c > 0, show that the converse of the weak law of large numbers does not hold.

3.4 Examples

We illustrate in this section the concept of recurrence/transience and oscillation/drift in

the case when the step distribution has a stable law (either the Gaussian, Lévy or Cauchy

distribution) or when it is heavy-tailed (and regular varying).

3 Abraham Wald 1902–1950
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3.4.1 Stable laws

Gaussian law. First, let us suppose that µ(dx) = dx√
2π

e−x
2/2 is the standard Gaussian4 distribu-

tion on R. In this case, since µ has a first moment and is centered, one can apply Theorem 3.5

and deduce that the associated walk is recurrent (and thus oscillates). Let us deduce this via

another route. A well-know property of Gaussian distribution shows that

Sn = X1 + · · ·+Xn
(d)
=
√
nX1.

This is called the so-called stability property of the Gaussian law of index 2 (appearing in√
n = n1/2). In particular the last display shows that∑

n>1

P(|Sn| < 1) =
∑
n>1

P(|X1| 6
1√
n

)︸ ︷︷ ︸
∼ 1√

2πn

.

Hence the last series is infinite and so the walk is recurrent by Definition-Proposition 3.1. One

could of course have deduced the same result using the criterion 7.5 together with the well-known

fact that the Fourier transform of µ is equal to µ̂(t) = e−t
2/2 for all t ∈ R. Let us generalize

these approaches to other interesting laws.

Lévy law. We now consider µ(dx) = 1√
2πx3

e−
1
2xdx1x>0 called the standard Lévy5. This dis-

tribution appears as the first hitting time of −1 by a standard Brownian real motion (Bt)t>0

starting from 0 (reflexion principle). Using the strong Markov property of the Brownian motion,

if X1, . . . , Xn are i.i.d. of law µ then X1 + · · ·+Xn is equal in law to the first hitting time of −n
by (B). Combining this observation with the scaling property of B we deduce that

Sn = X1 + · · ·+Xn
(d)
= n2X1,

and we say that µ is a stable law with index 1/2 (the last display can also be seen by a direct

calculation). In particular the walk (S) is transient since∑
n>1

P(|Sn| < 1) =
∑
n>1

P(|X1| 6
1

n2
)︸ ︷︷ ︸

=O(n−2)

<∞.

This is not surprising since µ is supported on R+ and so summing positive increments yields (S)

to drift to infinity. But the last calculation is more surprising once we realized it is also valid if

we consider for µ the law of X + cX ′ where X and X ′ are independent copies of standard Lévy

law! In particular if c is negative then P(Sn > 0) = P(X1 > 0) ∈ (0, 1) and so the walk cannot

drift. This gives an example of a transient yet oscillating random walk.

Exercise 3.4. Compute the Laplace transform L(µ)(t) =
∫
µ(dx)e−tx for t > 0.

4 Johann Carl Friedrich Gauß 1777–1855

5 Paul Pierre Lévy 1886–1971
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Cauchy walk. Our last example is when µ(dx) = dx
π(1+x2)

is the standard Cauchy6 distribution

on R. This is again an instance of a stable random variable (here of index 1) since it is well

known that if X1, . . . , Xn are i.i.d. copies of law µ then

Sn = X1 + · · ·+Xn
(d)
= nX1.

One way to see this is to realize X1 as the x-value of a standard two dimensional Brownian

motion started from (0, 0) and stopped at the first hitting time of the line y = −1. Performing

the same calculation as above we realize that∑
n>1

P(|Sn| < 1) =
∑
n>1

P(|X1| 6
1

n
)︸ ︷︷ ︸

∼ 1
nπ

=∞,

and so (S) is an example of a recurrent random walk even though its increment does not admit a

first moment! It may also be surprising to the reader that the walk (Sn+cn)n>0 is also recurrent

for any value of c ∈ R by the same argument! Another way to prove recurrence for the last walk

is to apply the Fourier criterion of Theorem 7.5 provided the next exercise is solved:

Exercise 3.5. Show that the Fourier transform µ̂ of the standard Cauchy distribution is given

by µ̂(t) = e−|t| for t ∈ R.

As we said, the Gaussian, Lévy and Cauchy distributions are particular instances of stable

distributions. We just give the definition since their detailed study would need a full course

following the steps of Paul Lévy.

Definition 3.3. A stable distribution µ is a law on R such that for all n > 1 if X1, X2, . . . , Xn

are n independent copies of law µ then for some An, Bn ∈ R we have

X1 + · · ·+Xn
(d)
= An ·X +Bn.

It turns out that necessarily An = n1/α for some α ∈ (0, 2] which is called the index of stability

of the law. The only stable laws with “explicit” densities are the Gaussian laws (α = 2), the Lévy

laws (α = 1
2) and the Cauchy laws (α = 1).

3.4.2 Heavy-tailed random walks

Here is an example of a random walk with “heavy tails” which is transient and yet oscillates:

Proposition 3.7. Let µ be a step distribution on Z such that µk = µ−k ∼ k−α as k → ∞
for α ∈ (1, 2). In particular µ has no first moment. Then the associated random walk (S) is

transient and yet oscillates.

6 Augustin Louis, baron Cauchy 1789–1857
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Remark 3.3. If α > 2, the walk (S) is centered and so by Theorem 3.5. The critical case α = 2

where the step distribution has Cauchy-type tail is more delicate: the walk is recurrent (see

Exercise 3.2).

Proof. Since (S) is a symmetric random walk, it cannot drift and must oscillate. We just need

to show that (S) is transient e.g. ∑
n>0

P(Sn = 0) <∞.

The idea is to use the randomness produced by a single big jump of the walk. More precisely,

let us introduce the event A = {∃1 6 i 6 n : |Xi| > n1+ε} where ε > 0 will be chosen small

enough later on. We can write

P(Sn = 0) 6 P(Ac) + P(Sn = 0 | A).

The first term of the right-hand side is easy to evaluate:

P(Ac) =
(
1− P(|X| > n1+ε)

)n ≈ exp(−c · n · n(1+ε)(1−α)) 6 exp(−nδ),

for some δ > 0 provided that ε > 0 is small enough (we used here the fact that 1 < α < 2). On

the other hand, conditionally on A, one can consider the first increment |Xi0 | of S of absolute

value larger than n1+ε. Clearly, the law µ of Xi0 is that of X conditioned on being of absolute

value larger than n1+ε and in particular

∀k ∈ Z, µ(k) = 1|k|>n1+ε

P(X = k)

P(|X| > n1+ε)
6 Cn−1−ε,

for some constant C > 0 and Xi0 is furthermore independent of all the other increments. Hence

we can write

P(Sn = 0 | A) = P(Xi0 = −(X1 + · · ·+ X̂i0 + · · ·+Xn) | A) 6 sup
k∈Z

µ(k) 6 Cn−1−ε.

Gathering-up the pieces, we deduced that P(Sn = 0) 6 exp(−nδ) + Cn−1−ε for δ > 0 provided

that ε > 0 is small enough. The implies summability of the series and ensures transience of the

walk.

Let us also state without proof a theorem of Shepp7 which shows the disturbing fact that

there exists recurrent one-dimensional random walk with arbitrary fat tails (but not regular

varying):

Theorem 3.8 (Shepp [38] )

For any position function ε(x) tending to 0 as x→∞, there exists a symmetric step distri-

bution µ such that µ(R\[−x, x]) > ε(x) for any x > 0 and such that the associated random

walk (S) is recurrent.

7 Lawrence Alan Shepp 1936–2013
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More exercises.

Exercise 3.6 (Sums of random walks). Let (Sn)n>0 and (S′n)n>0 be two independent one-dimensional

random walks with independent increments of law µ and µ′ on R.

1. Give an example where (S) and (S′) are transient and yet (S + S′) is recurrent.

2. We suppose that µ and µ′ are both symmetric. Show that as soon as (S) or (S′) is transient

then so is (S + S′).

3. Give an example where (S) is recurrent, (S′) transient and yet (S+S′) is recurrent. (Hint:

Use the Cauchy law of Section 3.4).

4. (*) Can we have both (S) and (S′) recurrent and (S + S′) transient ?

Exercise 3.7 (Subordinated random walks). Let (Sn)n>0 be a one-dimensional random walk

with step distribution µ. Let also (Yn)n>0 be another independent one-dimensional random

walk whose step distribution ν is supported on {1, 2, 3, . . . } and is aperiodic. We form the

process

Zn = SYn .

1. Show that (Z) is again a one-dimensional random walk with independent increments and

characterize its step distribution.

2. Show that if
∫
ν(dx)x < ∞ then Z and S have the same type (recurrent, transient,

oscillating, drifting towards ±∞).

3. Let ν be the return time to (0, 0) of the simple random walk on Z2. Using Theorem 7.7

show that for any µ the walk (Z) is transient.

4. (*) Can we find (µ, ν) so that (S) oscillates but (Z) drifts?

Bibliographical notes. The material in this chapter is standard and can be found in many

textbooks, see e.g. [39, Chapter II], [13, Chapter 8] or [19, 26]. Shepp’s Theorem 3.8 is

based on the Chung–Fuchs Fourier criterion for recurrence that we will see in Section 7.3.1.

A solution due to Edouard Maurel-Segala of the last question of Exercice 3.6 can be found

at https://mathoverflow.net/questions/314312/sum-of-independent-random-walks. The reader

eager to learn more about one-dimensional stable distributions is refereed to [42].
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Chapter IV: Fluctuations theory

In this chapter we still consider a one-dimensional random walk (S) based on i.i.d. increments

of law µ (whose support is not contained in R+ nor R−). The goal is to get information on the

distribution of the ladder processes and reciprocally get information on the walk from the ladder

processes.

4.1 Duality and applications

We begin with a simple but surprisingly important observation called duality.

Proposition 4.1 (Duality). For each fixed n > 0, we have the following equality in distribution

(0 = S0, S1, . . . , Sn)
(d)
= (Sn − Sn, Sn − Sn−1, Sn − Sn−2, . . . , Sn − S1, Sn − S0).

n

(S)

n

Figure 4.1: Geometric interpretation of the duality: the rotation by angle π of the first

n steps of the walk (S) leaves the distribution invariant.

Proof. It suffices to notice that the increments of the walk (Sn−Sn−1, Sn−Sn−2, . . . , Sn−S1, Sn−
S0) are just given by (Xn, Xn−1, . . . , X1) which obviously has the same law as (X1, . . . , Xn) since

the (Xi)i>1 are i.i.d. hence exchangeable.

Beware the duality is an equality in distribution valid for a fixed time n and not as a process.

Exercise 4.1. Let (S) be a one-dimensional random walk drifting towards −∞. Using duality

show that Sn − inf06k6n Sk converges in distribution as n→∞ towards supk>0 Sk.
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This innocent proposition enables us to connect the strict descending ladder variables to the

weak ascending ones. Indeed, notice (on a drawing) that for any n > 0

P(T<1 > n) = P(S0 = 0, S1 > 0, . . . , Sn > 0)

=
duality

P(Sn − Sn = 0, Sn − Sn−1 > 0, . . . , Sn > 0)

= P(Sn > Sn−1, Sn > Sn−2, . . . , Sn > S0) = P(n is a weak ladder epoch).

Summing over n > 0 we deduce that∑
n>0

P(T<1 > n) = E[T<1 ]

= E[number of weak ascending finite ladder epochs]

=
1

P(T>
1 =∞)

, (4.1)

because the total number of weak ascending finite ladder epochs follows a geometric distribution

with success parameter P(T>
1 =∞). We similarly establish that E[T6

1 ] = 1/P(T>1 =∞). From

these observations we conclude:

Corollary 4.2. We are in one of the three categories:

• Either (S) drifts towards +∞ in which case we have

P(T6
1 =∞) > 0, P(T<1 =∞) > 0, E[T>1 ] <∞, E[T>

1 ] <∞,

• Either (S) drifts towards −∞ in which case we have

P(T>
1 =∞) > 0, P(T>1 =∞) > 0, E[T<1 ] <∞, E[T6

1 ] <∞,

• Or (S) oscillates then the ladder epochs are finite but

E[T>1 ] = E[T>
1 ] = E[T<1 ] = E[T6

1 ] =∞.

Remark 4.1. The last corollary shows that for an oscillating random walk, although the walk

will visit R+ and R− infinitely many times, the time of the first visit to one of the half-spaces

is of infinite expectation. This is a well-known fact for the simple symmetric random walk on Z
(exercise!).

Proof. Let us suppose that (S) drifts towards +∞. Then clearly (S) has a positive probability

to stay positive for all positive times and so T< (as well as T6) has a positive probability to

be infinite. It follows from (4.1) (and its extension a few line below) that E[T>1 ] and E[T>
1 ] are

finite. The case when (S) drifts towards −∞ is symmetric. When (S) oscillates then the ladder

epoch are always finite and so their expectations are infinite by (4.1).
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Remark 4.2. Combining the last corollary with Wald’s equality (Theorem 3.6), we deduce that

for a random walk with finite mean and positive drift then we have

E[H>
1 ] = E[T>1 ] · E[X1].

Exercise 4.2. Let (S) be a one-dimensional random walk with i.i.d. increments Xi. Suppose that

H>
1 , H

<
1 are both finite and of finite expectation. Show that E[|X1|] <∞ and E[X] = 0.

Exercise 4.3. Show directly (without duality) that E[T>1 ] is finite if and only if E[T>
1 ] is finite.

4.2 Cyclic lemma and Wiener–Hopf

In this section we prove the main formula of this chapter (Theorem 4.5) which is based on a

particularly elegant combinatorial lemma due to Feller1.

4.2.1 Feller’s cyclic lemma

Let x1, x2, . . . , xn be real numbers which we consider as the increments of the walk (s) defined

by

s0 = 0, s1 = x1, s2 = x1 + x2, . . . , sn = x1 + · · ·+ xn.

Recall that i is a strict ascending ladder epoch for (s) if si > si−1, si > si−2, . . . , si > s0. If

` ∈ {0, 1, 2, . . . , n − 1} we consider (s(`)) the `-th cyclic shift of the walk obtained by cyclically

shifting its increments ` times, that is

s
(`)
0 = 0, s

(`)
1 = x`+1, . . . , s

(`)
n−` = x`+1 + · · ·+xn, . . . , s(`)

n = x`+1 + · · ·+xn+x1 + · · ·+x`.

Lemma 4.3 (Feller). Suppose that sn > 0. We denote by k ∈ {0, 1, 2, . . . , n} the number of

cyclic shifts (s(`)) with ` ∈ {0, 1, 2, . . . , n − 1} for which n is a strict ascending ladder epoch.

Then k > 1 and any of those cyclic shifts has exactly k strict ascending ladder epochs.

Proof. Let us first prove that k > 1. For this consider the first time ` ∈ {1, 2, . . . , n} such

that the walk (s) reaches its maximum. Then clearly (make a drawing) the time n is a strict

ascending ladder epoch for s(`). We can thus suppose without loss of generality that n is a

strict ascending ladder epoch for (s). It is now clear (see Fig. 4.2 below) that the only possible

cyclic shifts of the walk such that the resulting walk admits a strict ascending ladder epoch at

n correspond to the strict ascending ladder epochs of (s). Moreover these cyclic shifts do not

change the number of strict ascending ladder epochs.

1 William Feller 1906–1970, born Vilibald Srećko Feller
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Remark 4.3. Beware, Feller’s combinatorial lemma does not say that the cyclic shifts (s(`)) are

distinct. Indeed, in the action of Z/nZ on {(s(`) : ` ∈ {0, 1, . . . , n− 1}} by cyclic shift, the size

of the orbit is equal to n/j where j|n is the cardinal of the subgroup stabilizing (s(0)). In our

case, it is easy to see that j must also divide k and in this case there are only j/k distinct cyclic

shifts having n as the kth strict ascending ladder time.

Figure 4.2: Illustration of Feller’s combinatorial lemma. We show a walk such that n

is a strict ascending ladder epoch and the cyclic shift corresponding to the second strict

ascending ladder epoch.

The above lemma also holds if we replace strict ascending ladder epoch by weak/descending

ladder epoch provided that sn > 0 or sn 6 0 or sn < 0 depending on the cases. Here is an

exercise whose proof is similar to Feller’s combinatorial lemma:

Exercise 4.4. Let (S) be a one-dimensional random walk with diffuse step distribution. Show that

for every n > 1 the number of points of the walk lying strictly above the segment (0, 0)→ (n, Sn)

is uniformly distributed on {0, 1, 2, . . . , n− 1}.

Corollary 4.4. For every n > 1 and any measurable subset A ⊂ R∗+ we have

1

n
P(Sn ∈ A) =

∞∑
k=1

1

k
P(T>k = n,H>

k ∈ A).

Proof. Let us first re-write the last lemma in a single equation

1sn∈A =

n−1∑
i=0

∞∑
k=1

1

k
1T>k (s(i))=n1H>

k (s(i))∈A.

Indeed, if the walk (s) is such that sn ∈ A in particular sn > 0 and there exists a unique

k such that exactly k cyclic shifts do not annulate the indicator functions on the right-hand

side. Since we divide by k the total sum is one. We take expectation when (s) = (S) is a

one-dimensional random walk with i.i.d. increments. Using the fact that for all 0 6 i 6 n − 1

we have (S
(i)
j )06j6n = (Sj)06j6n in distribution, we deduce the statement of the corollary.

We can rewrite the last corollary in terms of measures:

1x>0
P(Sn ∈ dx)

n
=

∞∑
k=1

1

k
P(H>

k ∈ dx, T>k = n)1x>0.
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Exercise 4.5. For n > 0, let Gn = inf{0 6 k 6 n : Sk = sup06i6n Si} for the first time when the

walk achieves its maximum over [|0, n|]. Show that conditionally on Sn = 1, the variable Gn is

uniformly distributed over {1, 2, . . . , n}.

4.2.2 Wiener–Hopf factorization

The following result is an analytic translation of our findings. In many application however, we

shall come back to Feller’s combinatorial lemma which is easier to remember!

Theorem 4.5 (Spitzer–Baxter formula ; Wiener–Hopf factorization)

For r ∈ [0, 1) and µ ∈ C so that <(µ) > 0 we have

(
1− E

[
rT

>
1 e−µH

>
1

])
= exp

(
−
∞∑
n=1

rn

n
E
[
e−µSn1Sn>0

])
,

(
1− E

[
rT

6
1 eµH

6
1

])
= exp

(
−
∞∑
n=1

rn

n
E
[
eµSn1Sn60

])
.

Proof. First since r ∈ [0, 1) and <(µ) > 0 all the quantities in the last two displays are well

defined. We only prove the first display since the calculation is similar for the second one. Let

us start from the right hand side and write

exp

(
−
∞∑
n=1

rn

n
E
[
e−µSn1Sn>0

])
=

Cor.4.4
exp

(
−
∞∑
n=1

rn

n

∞∑
k=1

n

k
E
[
e−µH

>
k 1T>k =n

])

= exp
(
−
∞∑
k=1

1

k
E
[
e−µH

>
k rT

>
k

]
︸ ︷︷ ︸(
E
[
e−µH

>
1 rT

>
1

])k
)

= 1− E
[
e−µH

>
1 rT

>
1

]
,

where in the last line we used the equality
∑∞

k=1
xk

k = − log(1− x) valid for |x| < 1. Note that

we implicitly used the fact that r < 1 by putting rT
>
k = 0 when T>k =∞. This proves Spitzer’s2

formula

Remark 4.4 (Explanation of the terminology of Wiener–Hopf factorization). If we write

ω>r (µ) = exp

(
−
∞∑
n=1

rn

n
E
[
e−µSn1Sn>0

])
and ω6

r (µ) = exp

(
−
∞∑
n=1

rn

n
E
[
e−µSn1Sn60

])
,

then ω>r is analytic on the half-space Re(µ) > 0 whereas ω6
r is analytic on Re(µ) 6 0. On the

imaginary line where the two functions are well defined we have

ω>r (it)ω6
r (it) = 1− rE[e−itX1 ]. (4.2)

2 Frank Ludvig Spitzer 1926–1992
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Hence, the characteristic function of the increment of the walk (or a slight modification thereof)

has been writing as a product of two analytic functions, each defined on a different half-space.

The idea of writing a function on a line as a product of two functions defined on a half-space

goes back to Wiener & Hopf and is often useful since we can use the tools of complex analysis

for each of the factors.

Exercise 4.6. Show that for r ∈ (0, 1) we have∑
n>0

P(T6
1 > n)rn = exp

(∑
n>1

rn

n
P(Sn > 0)

)
.

4.3 Applications

4.3.1 Direct applications

A first application of Theorem 4.5 (or more clearly of (4.2)) is that the law of (T>1 , H
>
1 ) and

(T1
6, H6

1 ) are sufficient to recover the law of the increment (hence of the random walk), even

better : the knowledge of the law of H>
1 and that of H6

1 is sufficient to recover µ since by taking

r → 1 in Theorem 4.5 we have(
1− E

[
1H>

1 <∞
eitH>

1

])(
1− E

[
1
H6

1 <∞
eitH6

1

])
= 1− E[eitX1 ].

This is not at all clear from the beginning! Actually a very recent theorem shows that the law

of (T>1 , H
>
1 ) only, characterizes the step distribution of the walk:

Theorem 4.6 (Kwaśnicki [23])

The law of (T>1 , H
>
1 ) characterizes the law of the underlying random walk.

See Exercise 4.15 for a proof of this theorem under relatively mild assumptions. Let us give

another surprising corollary of the Wiener–Hopf formula:

Corollary 4.7. Let (S) be a one-dimensional random walk with symmetric and diffuse step

distribution. Hence the law of T>1 is given by

E[rT
>
1 ] = 1−

√
1− r, r ∈ [0, 1), or equivalently P(T>1 = n) =

(2n− 2)!

22n−1n!(n− 1)!
, n > 1.

Proof. It suffices to take the first display of Theorem 4.5 and to plug µ = 0. Since by symmetry

of the increments and the lack of atoms we have P(Sn > 0) = P(Sn > 0) = 1
2 it follows that

1− E[rT
>
1 ] = exp

(
−
∑
n>1

rn

n
P(Sn > 0)

)

= exp

(
−
∑
n>1

rn

n

1

2

)
= exp(−1/2 log(1− r)) =

√
1− r.

To get the exact values of P(T>1 = n) it suffices to develop 1 −
√

1− r in power series and to

identify the coefficients.
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Remark 4.5. It is useful to notice the asymptotic P(T>1 = n) ∼ n−3/2

2
√
π

as n→∞.

Corollary 4.8. The following conditions are equivalent

(i) the random walk (S) drifts towards −∞

(ii) we have
∑

n>1
P(Sn>0)

n <∞

(iii) we have
∑

n>1
P(Sn>0)

n <∞.

In this case we have

logE[T6
1 ] =

∑
n>1

P(Sn > 0)

n
.

Proof. From Theorem 4.5 with µ = 0 we get for r ∈ [0, 1)

1− E[rT
>
1 ] = exp

(
−
∑
n>1

rn

n
P(Sn > 0)

)
.

Letting r ↑ 1 the left-hand side converges towards 1 − E[1T>1 <∞
] = P(T>1 = ∞) whereas the

right-hand side converges towards exp(−∑n>1
P(Sn>0)

n ). But clearly (S) drifts towards −∞ if

and only if T>1 may be infinite. In this case, recall that by (4.1) we have E[T6
1 ] = 1/P(T>1 =∞)

which immediately implies the second claim. The equivalence with the large inequality is done

similarly by considering T>
1 .

Exercise 4.7. Show that we always have
∑
n>1

1

n
P(Sn = 0) <∞.

Exercise 4.8. Suppose (S) is a one-dimensional random walk with integrable increments that

drifts towards −∞. Verify directly that
∑

n>1
P(Sn>0)

n <∞. (Hint: use the truncated increments

X∗n = |X| ∧ n).

Exercise 4.9 (Law of large numbers enhanced). Let (Sn)n>0 be a one-dimensional random walk

with i.i.d. increments X1, X2, . . . . Show that the following propositions are equivalent:

(i) Sn
n → 0 almost surely,

(ii) E[|X|] <∞ and E[X] = 0,

(iii) for every ε > 0 we have
∑
n>1

1

n
P(|Sn| > εn) <∞.

4.3.2 Skip-free walks

Definition 4.1. Let (S) be a one-dimensional random walk whose step distribution µ is sup-

ported by Z. We say that (S) is skip-free ascending (resp. descending) when µ({1, 2, 3, . . . }) = µ1

(resp. µ({. . . ,−3,−2,−1}) = µ−1); or in words when the only positive (resp. negative) jumps

of S are jumps of +1 (resp. −1).
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The best examples of skip-free walks are simple random walks where the step distribution is

supported by ±1 (they are both skip-free ascending and descending). The nice thing with skip-

free ascending walk is the fact that the k-th ladder height H>
k must be equal to k when it is

finite. This simple observation turns out to have many implications. First, Lemma 4.4 reduces

to the well-known Kemperman’s (a.k.a. Otter-Dwass’ formula) 3 formula

Proposition 4.9 (Kemperman’s formula). Let (S) be a skip-free ascending walk. Then for every

n > 1 and every k > 1 we have

1

n
P(Sn = k) =

1

k
P(T>k = n).

Let us give a first application of this formula in the case of the symmetric simple random

walk whose step distribution is 1
2(δ1 + δ−1). Since this walk is both skip-free ascending and

descending we have for n > 1 (due to parity reason T<1 and T>1 have to be odd)

P(T<1 = 2n− 1) =
1

2n− 1
P(S2n−1 = −1) =

1

2n− 1
2−(2n−1)

(
2n− 1

n

)
= 2−2n+1 (2n− 2)!

n!(n− 1)!
.(4.3)

We recover the probability that a symmetric continuous random walk first hits R− at time n.

Surprising isn’t it ? Do you have a simple explanation of this phenomenon?

Exercise 4.10 (Borel distribution). Consider (S) the one-dimensional random walk with step

distribution given by the law of P1 − 1 where P1 is a Poisson random variable of parameter 1.

Compute the distribution of T<1 and deduce that

∞∑
n=1

nn−1

n!
e−n = 1.

(Do you have a elementary way to deduce the last display?)

Ballot theorem

Lemma 4.10. Let (S) be a skip-free ascending random walk. Then for every n > 1 and every

k > 1 we have

P(Si > 0, ∀1 6 i 6 n | Sn = k) =
k

n
.

Proof. By duality we have

P(Si > 0,∀1 6 i 6 n and Sn = k) =
duality

P(n is a strict ascending ladder epoch for S and Sn = k)

=
skip free

P(T>k = n)

=
Prop.4.9

k

n
P(Sn = k).

Let us give an immediate application which is useful during election days:

3 Johannes Henricus Bernardus Kemperman 1924–2011
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Theorem 4.11 (Ballot theorem)

During an election, candidates A and B respectively have a > b votes. Suppose that votes

are spread uniformly in the urn. What is the chance that during the counting of votes,

candidate A is always ahead?

answer:
a− b
a+ b

.

Proof. Let us model the scenario by a uniform path making only +1 or −1 steps which starts

at (0, 0) and ends at (a+ b, a− b). The +1 steps correspond to votes for candidate A and the −1

steps for votes for B. Hence we ask about the probability that such a path stay positive between

time 1 and a+ b. We just remark that such a walk has the same distribution as the first a+ b

steps of (Sk)06k6a+b a simple random walk (with ± steps with equal probability) conditioned

on Sa+b = a− b: indeed each ± path starting at (0, 0) and ending at (a+ b, a− b) has the same

probability under that distribution. The conclusion follows from Lemma 4.10.

Staying positive

If (S) is a one-dimensional random walk with integrable increments with positive mean then by

the law of large numbers, the probability that the walk stays positive after time 1 is strictly

positive. We compute below this probability in the case of skip-free ascending and skip-free

descending walks:

Corollary 4.12. If (S) is skip-free ascending such that E[S1] > 0 then we have

P(Si > 0 : ∀i > 1) = E[S1].

Proof. We have

P(Si > 0 : ∀i > 1) = lim
n→∞

P(Si > 0 : ∀1 6 i 6 n)

= lim
n→∞

E [P(Si > 0 : ∀1 6 i 6 n | Sn)]

=
Lem.4.10

lim
n→∞

E
[
Sn
n

1Sn>0

]
→ E[S1],

by the strong law of large numbers (since Sn/n→ E[S1] almost surely and in L1).

Proposition 4.13. If (S) is skip-free descending (with µ 6= δ0) then P(Sn > 0,∀n > 0) = 1− α
where α is the smallest solution in α ∈ [0, 1] to the equation:

α =
∞∑

k=−1

µkα
k+1. (4.4)

Proof. Since µ is supported by {−1, 0, 1, . . . } its mean m is well-defined and belongs to [−1,∞].

We already know from the previous chapter that P(Sn > 0,∀n > 0) > 0 if and only if m > 0

(we use here the fact that the walk is not constant since µ 6= δ0). We denote by τ<0 the hitting
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time of {. . . ,−3,−2,−1} by the walk (S). Notice that by our assumptions if τ<0 is finite then

necessarily Sτ<0 = −1. To get the equation of the proposition we perform one step of the random

walk S: if S1 = −1 then τ<0 <∞. Otherwise if S1 > 0 then consider the stopping times

θ0 = 0, θ1 = inf{k > 1 : Sk = S1 − 1}, θ2 = inf{k > θ1 : Sk = S1 − 2}, . . . .

By the strong Markov property we see that (θi+1 − θi)i>0 are i.i.d. of law τ<0. Furthermore on

the event S1 > 0 we have

{τ<0 <∞} =

S1⋂
n=0

{θn+1 − θn <∞}.

Taking expectation, we deduce that P(τ<0 < ∞) is indeed solution to (4.4). Now, notice that

F : α 7→ ∑∞
k=−1 µkα

k+1 is a convex function on [0, 1] which always admits 1 as a fixed point.

Since F ′(1) = m + 1 we deduce that F admits two fixed points in the case m > 0. But when

m > 0 we already know that α < 1 and so α must be equal to the smallest solution of (4.4).

Exercise 4.11. Let (S) be a skip-free descending random walk which drifts towards +∞. Com-

pute the law of inf{Sk : k > 0}.

4.3.3 Arcsine law

They are many different arcsine laws in the theory of random walk. We restrict to the usual one

in the simplest case only to illustrate another application of our preceding results.

Proposition 4.14 (1st Arcsine law). Let (S) be a one-dimensional random walk with a sym-

metric step distribution without atoms. We put Kn = inf{0 6 k 6 n : Sk = sup06i6n Si}
then

Kn

n

(d)−−−→
n→∞

dx

π
√
x(1− x)

1x∈(0,1).

The name arcsine comes from the cumulative distribution function of the right-hand side which

is 2
πarcsin(

√
x).

Remark 4.6. Quoting Feller “Contrary to intuition, the maximum accumulated gain is much

more likely to occur towards the very beginning or the very end of a coin-tossing game than

somewhere in the middle.”

Proof. Using duality we can compute exactly

P(Kn = k) = P(T>1 > n− k)P(T>
1 > k)

∼
Rek.4.5

1

π

1√
k(n− k)

,

where the last asymptotic holds uniformly in k >> 1 and n−k >> 1. If we add a little blur to Kn

and consider K̃n = Kn+Un where Un is independent of Kn and uniformly distributed over [0, 1].

Then clearly K̃n/n has a density with respect to Lebesgue measure which converges pointwise
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Figure 4.3: The arcsine distribution

towards the density of the arcsine law. It follows from Scheffé’s lemma that K̃n/n converges in

total variance towards the arcsine law and consequently Kn/n converges in distribution towards

the arcsine law since Un/n→ 0 in probability.

Exercise 4.12 (Scheffé’s lemma). Let Xn, X be random variables having densities fn, f with

respect to a background measure π. We suppose that fn → f pointwise π-almost everywhere.

Prove that

(i) fn → f in L1(π).

(ii) dTV (fndπ, fdπ)→ 0 where dTV is the total variation distance,

(iii) deduce that Xn → X in distribution.

Exercise 4.13. Prove the arcsine law in the case of symmetric simple random walk.

4.3.4 Parking on the line

More exercises

Exercise 4.14 (Another approach to Wiener–Hopf factorization). Let (Sn)n>0 be a one-dimensional

oscillating random walk. On the event T6
1 > 2, we put Y = inf{Si : 1 6 i 6 T6

1 − 1} and define

the random instant θ = sup{i 6 T6
1 : Sθ = Y }. We put

←−
S and

−→
S for the processes defined by

←−
S i = Sθ − Sθ−i, for 0 6 i 6 θ,

−→
S i = Sθ+i − Sθ, for 0 6 i 6 T6

1 − θ.

Otherwise if T6
1 = 1 we put

←−
S =

−→
S = † a cemetery point.
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T≤
1

θ

←−
S

−→
S

1. Let (S′i)06i6τ ′ and (S′′i )06i6τ ′′ two independent random walks of law S stopped respectively

at T<1 and T6
1 . Show that for any function φ so that φ(†, †) = 0 we have

E
[
φ(
←−
S ,
−→
S )
]

= E
[
φ(S′, S′′)1S′

T>1

+S′′T1
60

]
,

and in particular that for any t ∈ R we have

E[eitH
6
1 ]− E[eitH

6
1 eitH

>
1 1

H>
1 6−H6

1
] = E[eitX1X60],

where X is a step of the random walk and H>
1 = ST>1

and H6
1 are two independent versions

of its ascending and descending ladder heights.

2. By adapting the argument with T>1 recover the Wiener–Hopf factorization:(
1− E[eitH

6
1 ]
)(

1− E[eitH
>
1 ]
)

= 1− E[eitX ].

Exercise 4.15 (From [12]). Let (Sn)n>0 be a one-dimensional random walk with iid increments

of law µ not supported by R− and with compact support. For t ∈ R we write

φ(t) =

∫
R

dµ(x) etx

which is well-defined and analytic on R in our case. The goal is to prove that µ is characterized

by the law of (H>, T>) ≡ (H>
1 , T

>
1 ), the ascending space-time first ladder variables.

1. Show that the law of (H>, T>) give access to P(Sn > 0) and to µ∗n restricted to R∗+.

2. Deduce that the law of (H>, T>) enables us to decide oscillation, drift, recurrence or

transience of (S).

3. In this question we suppose that µ has positive mean.

(a) Using large deviations, show that there exists α > 0 such that for n > 1 we have

P(Sn 6 0) 6 e−αn.
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(b) Show that for t > 0 small enough we have

lim
n→∞

(
E[etSn1Sn>0]

)1/n
= φ(t).

(c) Deduce that the law of (H>, T>) characterizes µ.

4. Back to the general case where µ has compact support.

(a) Show that there exists λ > 0 with φ(λ) <∞ and φ′(λ) > 0.

(b) By considering µλ(dx) = eλx

φ(λ)µ(dx) and the associated random walk (S(λ)) show that

P(S(λ)
n > 0) =

E[eλSn1Sn>0]

(φ(λ))n
.

(c) Prove that (S(λ)) drift towards +∞ and conclude.

Biliographical notes. The Wiener–Hopf factorisation can have several meanings and inter-

pretations in the literature on random walks. We chose to focus on the most combinatorial one

using Feller’s cyclic lemma (see [24] for a more trajectorial approach). This chapter is adapted

from [17, Chapter XII] and [13, Section 8.4] (in particular Exercise 4.4 is [17, Theorem 3, p423]).

See [4] for much more about Ballot theorems. Exercise 4.14 is adapted from [28, 20] and Exercise

4.15 from [12]. Path transformation are very useful tools in fluctuation theory for random walk.

In particular, we mention the Sparre-Andersen identity relating the position of the maximum

and the time spent on the positive half-line for a random walk of length n, see [17, Chapter XII]

for more details. More recent applications of fluctuation theory for random walks can be found

e.g. in [?, ?].
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Chapter V: Conditioning random walks to stay positive

In this chapter we use the information gathered previously about the ladder processes to define

and study the “random walk (S) conditioned to stay positive” (in fact non-negative). Unless in

the case when (S) drifts towards +∞, the previous conditioning is degenerate and one needs to

work to make sense of it. We will see that even conditioned to stay non-negative for ever, the

random walk remains a Markov process whose transitions probabilities are intimately connected

to harmonic functions. This will also be a good opportunity to approach the general theory of

Doob h-transformation.

5.1 h-transform of Markov chains

Let us first present the idea of Doob1 to transform a Markov chain using harmonic functions.

We restrict ourselves to the homogeneous case (no temporal parameter) and in the case of discrete

time/space Markov chains.

5.1.1 h-transformation

Let p(·, ·) be a Markov kernel, i.e. probability transitions of a discrete Markov chain (Xi : i > 0)

on a countable state space Ω. Suppose that h : Ω → R+ is a non-negative function which is

harmonic and positive on A ⊂ Ω i.e.

h(x) > 0, and h(x) =
∑
y∈Ω

p(x, y)h(y), ∀x ∈ A.

Under these circumstances, one can define a new transition kernel q on A by the formula:

q(x, y) =
h(y)

h(x)
p(x, y), x ∈ A, y ∈ Ω.

It is plain from the harmonicity of h on A that q indeed defines a transition kernel on A, that

is
∑

y q(x, y) = 1 for any x ∈ A. For any x0 ∈ A we can thus consider the Markov process

(Yi : i > 0) governed by the kernel q until (Y ) possibly enters Ω\A where it is stopped. This

process is called the the Doob h-transform of p. The law of the q-Markov chain is equivalently

1 Joseph Leo Doob (1910-2004)
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characterized as follows: for any given path x0, x1, . . . , xn−1 in A and xn ∈ Ω we have

n−1∏
i=0

q(xi, xi+1) =
h(xn)

h(x0)

n−1∏
i=0

p(xi, xi+1). (5.1)

In particular if y ∈ Ω is such that h(y) = 0 then the process (Y ) never hits y. In the case

when h is zero on Ω\A, the q-Markov chain never escapes A and so can be interpreted as a way

to condition the p-chain to stay in A (see below for a justification of this name in the case of

random walks).

Remark 5.1. The h-transformation is equivalent to the change of measure operated by the

martingale biasing via the positive martingale (h(Xn∧τΩ\A) : n > 0). We shall not enter the

details and refer to [6].

5.1.2 Examples

Exiting through a particular state. A convenient way to build harmonic functions is via Dirichlet

problem (see Section 1.1.2). For example, let us fix x′ /∈ A, a neighbor of some point in A, and

consider the harmonic function on A defined by

h(x) = Px(τΩ\A <∞ and XτΩ\A = x′), x ∈ A

where as usual τΩ\A is the hitting time of Ω\A by the p-chain (Xi : i > 0). As in the case when

A is finite, one easily check that h is indeed harmonic on A and let us suppose it is positive on

A (this is true if for any starting point in A the p-chain can exit A through x′ with positive

probability). Then one can consider the h-transform (Y ) of A.

Proposition 5.1. Under the above hypotheses, the q-chain starting from x0 ∈ A has the same

law as the p-chain started from x0, stopped when touching x′ and conditioned to exit A through

x′ in finite time (an event of positive probability).

Proof. For any finite path x0, x1, . . . , xn = x′ in A exiting at x′, by (5.1) the probability to see

this entire path for the q-chain is equal to

n−1∏
i=0

q(xi, xi+1) =
h(xn)

h(x0)

n−1∏
i=0

p(xi, xi+1) =

∏n−1
i=0 p(xi, xi+1)

Px0(τΩ\A <∞ and XτΩ\A = x′)
.

The statement of the proposition is then clear on the last display.

Not touching a set in the transient case. Suppose now that from any x ∈ A there is positive

probability that starting from x, the chain (X) never escapes from A. We can thus form the

harmonic function on A

h(x) = Px(τΩ\A =∞),

and again consider the associated h-transform. In this case, since h ≡ 0 on Ω\A, the q-chain

(Y ) will never escapes from A and we have:
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Proposition 5.2. Under the above hypotheses, the q-chain starting from x0 ∈ A has the same

law as the p-chain started from x0 and conditioned to never escape from A (an event of positive

probability).

Proof. For any path x0, x1, . . . , xn staying in A, by the Markov property applied at time n we

have

Px0(X0 = x0, . . . , Xn = xn | τΩ\A =∞) =
Markov

∏n−1
i=0 p(xi, xi+1)

Px0(τΩ\A =∞)
Pxn(τΩ\A =∞)

=
h(xn)

h(x0)

n−1∏
i=0

p(xi, xi+1) =
(5.1)

n−1∏
i=0

q(xi, xi+1).

Not touching a set in the recurrent case. The last two examples reinterpret Markov chains

conditioned on some event of positive probability as h-transform chains. Let us show an example

where the q-chain is singular with respect to the initial one. For the simple symmetric random

walk on Z, consider A = Z>0 = {1, 2, 3, . . . } and let h be the harmonic function

h(i) = i, for i > 1.

The h-transform (Y ) is thus a Markov chain on Z>0, with ±1 steps which never touches 0 (and

is even transient, see Proposition 5.5). The law of (Yi : i > 0) is thus singular with respect to

the law of simple symmetric random walk. As we will see below, this chain can be interpreted

as the random walk (X) conditioned to stay non-negative (an event of probability 0). For the

connoisseurs, it is also a discrete version of the Bessel process of dimension 3.

5.2 Renewal function

We now come back to our one-dimensional random walk setting. We suppose that µ is a step

distribution on Z (whose supported is not included in Z>0 nor Z60) and consider the random

walk (Si : i > 0) which under Px starts from x ∈ Z and has i.i.d. increments of law µ. We write P
for P0 to lighten notation. Using the ladder processes, we shall construct two (super) harmonic

functions on Z>0 and Z>0 for S which we will then use to h-transform it. In this section, in

order to lighten notation, for i > 0 we write Hi = H<
i and T<i = Ti for the strict descending

ladder height and epoch processes.

5.2.1 Pre-renewal and renewal functions

Recalling the definition of the ladder processes (Section 3.2.2) we define two functions for ` > 0

h↓(`) =
∑
i>0

P(Hi = −`) = P(τZ6−` = τ−` <∞),

h↑(`) = h↓(0) + · · ·+ h↓(`) = E

[∑
i>0

1Hi>−`

]
.
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The function h↓ is called the pre-renewal function and h↑ is called the renewal function of the

walk S. Using (4.1), it is easy to see that h↑ is bounded if and only if (S) drifts towards +∞.

Actually, the functions h↓ and h↑ have harmonic properties with respect to the walk (S):

Proposition 5.3. The functions h↓ and h↑ are respectively harmonic on Z>0 and super-harmonic

on Z>0 for the walk (S). Moreover the function h↑ is harmonic on Z>0 (not only super-harmonic)

if and only if (S) does not drift towards −∞.

Proof. By writing the Markov property at time 1 under Px for x ∈ {1, 2, . . . } we have h↓(x) =∑
k∈Z µ(k)h↓(x + k) which is the required harmonicity of h↓ on Z>0. By summing-up these

equations for x = 1, 2, . . . , y we get that

h↑(y)− 1 =
∑
k>0

µ(k)h↑(y + k)−
∑
k>0

h↑(k)µ(k).

Hence the (super-)harmonicity of h↑ is tied to the value of
∑

k>0 h
↑(k)µ(k). To evaluate the

latter, we use duality:

∑
k>0

h↑(k)µ(k) =
∑
k>0

µ(k)E

[∑
i>0

1 {Hi > −k}
]

=
∑
k>0

µ(k)
∑
i>0

∑
n>0

P (Hi > −k and Ti = n)

=
duality

∑
k>0

µ(k)
∑
n>0

P (S1, . . . , Sn < 0 and Sn ∈ [0,−k])

=
∑
n>0

∑
k>0

µ(k)P (S1, . . . , Sn < 0 and Sn ∈ [0,−k])

=
∑
n>0

P(T>
1 = n+ 1) = P(T>

1 <∞).

The last probability is equal to 1 if and only if (S) does not drift towards −∞.

Remark 5.2. In the case of a skip-free descending random walk, the pre-renewal and the renewal

functions take a particularly simple form. Indeed, since Hi = −i on the event when Ti <∞ we

deduce that, as soon as the walk (S) oscillates or drifts to −∞ (i.e. if the mean of the increment

is less than or equal to zero), we have

∀i > 0, h↓(i) = 1, and h↑(i) = i+ 1.

When (S) drifts to +∞ (i.e. if the mean of the increment is negative), as in Proposition 4.13 we

let α = P0(T1 <∞) and we check that h↓(i) = αi and so h↑(i) = 1 + α+ · · ·+ αi.

Exercise 5.1. Suppose that the walk S drifts towards −∞. Prove that in this case we have for

x > 0

h↑(x) =
Ex[τZ< ]

E0[τZ< ]
.
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5.2.2 h↓-transform

By Proposition 5.3 the function h↓ is harmonic on Z>0 and so one can consider the h↓-transform

of the random walk (S) started from x > 1 which we denote by (S↓i : i > 0). This is actually a

particular instance of our example “exiting through a particular state” of Section 5.1.2. Indeed,

in the previous notation we have A = Z>0, x′ = 0 and (X) = (S). The harmonic function

h(x) = Px(τΩ\A < ∞ and XτΩ\A = x′) reduces to Px(τZ60
= τ{0} < ∞) = h↓(x) for x > 1.

We deduce from Proposition 5.1 that the h↓-transform of S has the law of the random walk

S conditioned on the event of positive probability to hit the negative integers exactly at 0 (an

event of positive probability). This is sometimes called the random walk conditioned to die

“continuously” when touching Z60.

5.2.3 h↑-transform when drifting to +∞

Suppose next that (S) drifts to +∞ so that h↑ is harmonic on Z>0 and denote by S↑ the h↑-

transform of S. Here also, this is a special case of our general example “not touching a set in

the transient case”. Indeed, fixing A = Z>0, the function h(x) = Px(τΩ\A = ∞) coincides with

a scaled version of h↑:

Proposition 5.4. When (S) drift to +∞ we have

h↑(x) =
Px(τZ<0 =∞)

P0(τZ<0 =∞)
, x > 0

where τZ<0 is the first hitting time of Z<0 by the walk.

Proof. Start from x > and denote by 0 = T0, T1, . . . , Tk, . . . and x = H0 > H1 > . . . the strict

minimal record times and heights of the walk (S). Since (S) drifts towards +∞, notice that

there is a finite number of those record times. It is easy to see (Figure 5.1) that under Px we

have

1τZ<0
=∞ =

∑
k>0

1Tk<∞1Hk>01τZ<0
(S(Tk))=∞,

where S(Tk) = (STk+i − STk : i > 0) is the shifted walk. Taking expectations and using the

strong Markov property at time Tk we deduce that

Px(τZ<0 =∞) = P0(τZ<0 =∞)Ex

∑
k>0

1Hk>0

 = P0(τZ<0 =∞)h↑(x).

We deduce from Proposition 5.2 that when S drifts to +∞, the process S↑ has the law of S

conditioned on {τZ<0 =∞}, an event of positive probability.
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x

T1 T2 T3T0

∞

0

Figure 5.1: Illustration of the proof. If the walk does not touch the negative half-line,

then at least one of the excursions above the minima should escape to ∞ before the

current minimal record drops below 0.

5.3 The h↑-transform when (S) does not drift to −∞
In this section, we suppose that S does not drift towards −∞ so that h↑ is harmonic and we

denote by (S↑i : i > 0) its h↑-transform which is a well-defined Markov chain. In particular, this

covers the case when (S) oscillates. We first prove that this chain is transient:

Proposition 5.5 (Transience of the h↑-transform). Suppose that S does not drift towards −∞.

Then the Markov chain (S↑i )i>0 is transient.

Proof. Let us consider the Markov chain S↑ started from ` > 1 and consider the first time τ<`

it reaches a value strictly lower than `. By (5.1) we can write

P`(τ<`(S↑) <∞) =
1

h↑(`)
E`[h↑

(
Sτ<`

)
1τ`<∞] 6

sup`′<` h
↑(`′)

h↑(`)
,

unless the walk has non-negative increments (in which case the statement of the proposition is

plain), the function h↑ is strictly increasing so that the last fraction is < 1. This implies that

S↑ is transient.

5.3.1 Limit of large conditionings

We shall now see that the process S↑ arises as a limit in distribution of the random walk S

conditioned on staying non-negative for large time, hence justifying the terminology “random

walk conditioned to stay non-negative for ever”. Specifically, we consider the event

Λn = {Sk > 0 for all 0 6 k 6 n}.
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Theorem 5.6 (Bertoin & Doney)

Suppose that S does not drift towards −∞. The process (S↑) appears as the limit in distribu-

tion of the random walk S conditioned on Λn as n→∞, specifically for 0 = s0, s1, . . . , sk > 0

we have

P0 (S0 = s0, . . . , Sk = sk | Λn) −−−→
n→∞

P0(S↑0 = s0, . . . , S
↑
k = sk).

Proof. The technical key is:

Lemma 5.7. We have

lim inf
n→∞

Px(Λn)

P0(Λn)
>
h↑(x)

h↑(0)
,

Given the lemma, the proof of the theorem is rather easy: by the Markov property applied

at time k we have

P0 (S0 = s0, . . . , Sk = sk | Λn) = P0(S0 = s0, . . . , Sk = sk1si>0,∀06i6k)
Psk(Λn−k)

P0(Λn)

> 1si>0,∀06i6k

k−1∏
i=0

µ(si+1 − si)
Psk(Λn)

P0(Λn)

lim inf >
Lem.5.7

1si>0,∀06i6k

k−1∏
i=0

µ(si+1 − si)
h↑(sk)

h↑(s0)

= P0(S↑0 = s0, . . . , S
↑
k = sk).

To get the converse inequality we use the fact that the last expression is a probability measure

on positive paths, and Fatou’s lemma:

lim sup
n→∞

P0 (S0 = s0, . . . , Sk = sk | Λn)

= lim sup
n→∞

1−
∑

(s̃i:06i6k)6=(si:06i6k)

P0 (S0 = s̃0, . . . , Sk = s̃k | Λn)


6

Fatou
1−

∑
(s̃i:06i6k) 6=(si:06i6k)

lim inf
n→∞

P0 (S0 = s̃0, . . . , Sk = s̃k | Λn)

= 1−
∑

(s̃i:06i6k) 6=(si:06i6k)

P0

(
S↑0 = s̃0, . . . , S

↑
k = s̃k

)
= P0(S↑0 = s0, . . . , S

↑
k = sk).

This completes the proof, given Lemma 5.7.

Let us now prove Lemma 5.7. The idea is similar to the proof of Proposition 5.4. Start

from x > 0, denote by 0 = T0, T1, . . . and x = H0 > H1 . . . the strict minimal record times and

heights of the walk (S) and by Exck = (STk , STk+1 . . . , STk+1−1) the associated excursions above

the running minimum. Denote by K > 0 the index of the first excursion such that ExcK ∈ Λn.
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Then it is easy to see that if HK > 0 then the event Λn happens for the walk (S). Hence by the

Markov property applied at time TK we have

Px(Λn) > P0(Λn)
∑
k>0

Px(Excj /∈ Λn, for j < k and Hk > 0).

By monotone convergence the last sum converges to
∑

k>0 P0(Hk > −x) = h↑(x).

Exercise 5.2. Show that Theorem 5.6 holds true if we replace the event Λn = {Sk > 0 : 0 6 k 6

n} by the event Λ̃n = {τ[n,∞) < τZ<0}.

5.3.2 Tanaka’s construction

In this section, we give a direct and very neat construction of the random walk (S↑) conditioned

to stay non-negative due to Tanaka. To start with, let Exc be the time and space reversal of a

negative excursion of S

Exc = (0, ST> − ST>−1, ST> − ST>−2, . . . , ST> − S1, ST>)

where we recall that T> = inf{k > 0 : Sk > 0}. One then considers independent copies

Exc1,Exc2, . . . of Exc obtained by running the walk S and looking at its strict ascending ladder

process, which we glue together in the most natural way to get an infinite walk. Tanaka proved

that the process obtained has the law of S↑.

Figure 5.2: Illustration of Tanaka’s construction of the process S↑.

Proposition 5.8 (Tanaka). Suppose that (S) does not drift towards −∞. Then the process

obtained by concatenating i.i.d. time and space reversals of negative excursions of S has the

same law as S↑.

Proof. Denote by (Sn : n > 0) the process obtained by Tanaka’s construction. Under our

hypothesis, S → +∞ and stays non-negative for all times. Fix s0 and s1, s2, . . . , sk ∈ Z>0 and

let us try to compute directly

P(S1 = s1, . . . ,Sk = sk).
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The problem is that if we are only given the path of the process up to time k, we do not know

to which excursions it corresponds within the walk S. However, if we assume that the walk

after time k never drops below Sk (large inequality), then we can reverse Tanaka’s construction,

in the sense that time k is a large ascending ladder height for S and S1 = s̃1, . . . , Sk = s̃k

are obtained by reversing the excursion of the s1, . . . , sk when read backwards in time and

space. Hence decomposing according to the future infimum Ik = min{Si : i > k} and denoting

θk = inf{i > k : Si = Ik} we have

P(S1 = s1, . . . ,Sk = sk) =

sk∑
i=0

∞∑
t=k

∑
sk+1,...,st=i∈Z>0

P(S1 = s1, . . . ,St = i and θk = t and Ik = i)︸ ︷︷ ︸
product of the increments over the path

=
k−1∏
i=0

µ(si+1 − si)
sk∑
i=0

∑
γ

P(γ),

where the sum runs over all paths γ : sk → i reaching i for the first time at its endpoint. After

summing over 0 6 i 6 sk this is nothing else but h↑(sk). This proves the desired result.

In the case of the simple symmetric random walk, Tanaka’s construction yields the construc-

tion that Pitman used to prove his famous theorem on Brownian motion and Bessel(3) process

[?]:

Exercise 5.3 (Pitman’s theorem in the discrete). Let (S) be the simple symmetric random on Z
and denote by In = inf{Si : 0 6 i 6 n}, the running infimum process. Show that the process

Sn − 2In, n > 0,

has the same law as (S↑n : n > 0).

Exercise 5.4. Suppose that (S) drifts to +∞ and denote by J = min{n > 0 : Sn = mini>0 Si}.
Show that the process (SJ+n − SJ : n > 0) has the same law as S↑ started from 0.

Exercise 5.5. Let (Sn : n > 0) be a random walk with finite mean. We suppose that S is

centered, in particular it is recurrent and thus oscillates. Show that (S↑n : n > 0) satisfies the

law of large numbers:

S↑n
n

a.s.−−−→
n→∞

0.

5.4 Drift to −∞ and Cramér’s condition

Let us now suppose that we are in the annoying case when S drifts towards −∞. In full

generality it might be impossible to define a good notion of walk conditioned to stay non-negative

since it might not exist any harmonic functions on Z>0 and null on Z<0, see Doney [14]. However,

in the so-called Cramér2 case, things are under control:

2Harald Cramér (Swedish 1893 – 1985) not to confuse with Gabriel Cramer (Swiss 1704 – 1752)
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Definition 5.1 (Cramér’s condition). Suppose that S drifts towards −∞. We say that µ satisfies

Cramér’s condition if there exists ω > 1 so that∑
k∈Z

ωkµ(k) = 1.

It is easy to check that if such an ω exists, it must be unique by convexity. When Cramér’s

condition holds, one can define a step distribution µ̃(k) = ωkµ(k) and the associated random

walk S̃. It is easy to establish the following Radon-Nikodym derivative

E[f(S0, . . . , Sn)ωSn ] = E[f(S̃0, . . . , S̃n)].

This walk S̃ can be seen as a first h-transformation of the walk (S) by the harmonic function

h(x) = ωx. Since µ̃ has an integrable left tail, its expectation is well defined and it is easy to

check that E[S̃1] > 0 so that S̃ drifts towards +∞. It thus admits a renewal function h̃↑ and a

version S̃↑ conditioned to stay non-negative. By the previous display and the results of Section

5.2 we can write

h̃↑(`) =
∑̀
i=0

h̃↓(i) =
∑̀
i=0

ω−ih↓(i).

In total, the process (S̃↑) can be seen as the h-transformation of the walk (S) by the function

h(x) = ωxh̃↑(x) which is indeed harmonic on Z>0. This process can be seen as the walk (S)

conditioned to stay non-negative, see the next proposition (whose proof is omitted in these

lecture notes, see [9]):

Proposition 5.9. Assume that Cramér’s condition holds and that
∑

k∈Z µ̃(k)|k| < ∞. Then

we have

P
(
S0 = s0, . . . , Sk = sk | τ[n,∞) < τZ<0

)
−−−→
n→∞

P(S̃↑0 = s0, . . . , S̃
↑
k = sk).

Bibliographical notes. As in the preceding chapter, the role of path transformation is ubiquitous

when studying random walk conditioned to stay positive. Most of this chapter is adapted from

the beautiful paper [9] of Bertoin & Doney. See [9] for a solution to Exercise 5.2. Tanaka’s

construction was first explained in [40]. The reference [6] is very nice survey of the applications

of size-biasing. Doob’s h-transformation via positive harmonic functions is also connected to the

topic of Martin boundary, we refer the interested reader to [41, Chapter IV]. For applications of

fluctuation theory to Lévy processes, we refer to the Saint-Flour course of Ron Doney [15].

69



Chapter VI: Renewal theory (Exercices de style)

Disclaimer: As usual in these notes and even more in this section, the main goal is rather to

present a couple of ideas and techniques which are common in probability theory (generating

function method, coupling, recursive distributional equations, harmonic functions...) rather than

the shortest proof to well-known and useful results (see e.g. [25]). We will present 4 different

proofs of Theorem 6.1 (in its simplest version).

In this chapter we study the behavior of a one-dimensional random walk (S) with step

distribution µ supported by R+ and whose mean we denote by m ∈ [0,∞]. Unless in the trivial

case µ = δ0 the walk drifts to ∞ and our goal is this chapter is to understand the asymptotic

density of the random set

R = {S0, S1, . . . , Sn, . . . }.

Such a process is often used to model the breakdown of different machines, then the random

times Xi represent the time between one machine breaking down before another one does. The

random set R then correspond to the times when a machine needs to be replaced. We first

suppose that that µ is supported by {1, 2, · · · } and that gcd(supp(µ)) = 1. Hence R is a random

set of points of Z+ so that P(n ∈ R) is positive for n large enough. The main result of this

chapter is the following:

Theorem 6.1 (Erdös–Feller–Pollard)

Under the above hypotheses we have

lim
n→∞

P(n ∈ R) =
1

m
.

Notice that even if m =
∫
µ(dx)x =∞ the above statement has a well-defined meaning. Remark

also that by the strong law of large numbers we have n−1Sn → m almost surely as n → ∞. It

follows that Nn = sup{k > 0 : Sk 6 n} satisfies n−1Nn → 1
m almost surely. This easily implies

a weaker “integrated” version of the last result:

1

n

n∑
i=0

P(i ∈ R) =
1

n
E[#(R∩ [[0, n]])] =

1

n
E[Nn] −−−→

n→∞

1

m
,

where in the last convergence we used dominated convergence.
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6.1 Proof via analytic combinatorics

In this section we give a proof of Theorem 6.1 when m <∞ using analytical method based

on generating series. We start with the case when µ has bounded support as a training.

6.1.1 Bounded support

We suppose here that µ is supported by {1, 2, . . . , n0} for some n0 > 1. Hence µ can be encoded

by the polynomial

P (z) = zµ1 + z2µ2 + · · ·+ zn0µn0 ∈ R[X].

Clearly the generating function of the law of Sk = X1+· · ·+Xk is given by (P (z))k. Summing-up

for all k > 0 we deduce the following equality of formal series

1

1− P (z)
=
∑
k>0

(P (z))k

=
∑
k>0

∑
n>0

znP(Sk = n)

=
∑
n>0

E[#{k > 0 : Sk = n}]zn

=
∑
n>0

P(n ∈ R)zn, (6.1)

where we have used the fact that X > 1 to argue that if n is visited by the walk S, then it is

visited once. The last equality actuality makes perfect sense for all z ∈ C such that |z| < 1. We

know use partial fraction decomposition on (1− P (z))−1:

• Notice first that z = 1 is a trivial pole of this function. It is of order 1 since P ′(1) = m > 0.

• All the zeros of 1− P (·) must have modulus larger than 1 since otherwise

|zµ1 + z2µ2 + · · ·+ zn0µn0 | 6 |z|µ1 + |z|2µ2 + · · ·+ |z|n0µn0 < 1

(this can also directly be see from (6.1) since the equality makes sense for all |z| < 1).

• We also claim that the aperiodicity condition on µ ensures that z = 1 is the only root

of 1 − P on S1. Indeed, if z = eiθ with θ ∈ (0, 2π) was another root of 1 − P , by the

equality case of the triangle inequality it would follow that µkz
k = µke

ikθ must be real and

positive and in fact the same is true for each k ∈ ∪i>1Supp(µ∗i). Since gcd(Supp(µ)) = 1

we can find two consecutive such k in ∪i>1Supp(µ∗i) and so θ = 0 mod 2π which is a

contradiction.

Hence the partial fraction decomposition of 1/(1− P ) reads as follows

1

1− P (z)
=

(P ′(1))−1

z − 1
+
∑
i

αi
(z − βi)`i

,
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where `i > 1, αi ∈ C and βi are the other roots of 1 − P in particular |βi| > 1. If we now

expand each of these terms in series, we see that the expansion of the first term gives 1
m

∑
n>0 z

n

whereas the expansion of the other terms contribute with a series of the form∑
n>0

znζn,i,

where ζn,i = o(1) as n → ∞ (more precisely |ζn,i| = O(|βi|−nn`i)). Taking the coefficient in

front of zn in both sides of (6.1) we indeed deduce the desired result i.e.

[zn]
1

1− P (z)
= P(n ∈ R) =

1

m
+ o(1).

6.1.2 Unbounded support with m <∞

We now suppose that µ has a possibly unbounded support on {1, 2, . . . } but thatm =
∑

k>0 kµk <

∞. Our surrogate to the explicit partial fraction decomposition will be a theorem of Wiener on

power series whose proof can be found in [?, Theorem 18.21]:

Lemma 6.2 (Wiener). If g(z) =
∑

n>0 anz
n is a power series with

∑
n>0 |an| < ∞ which has

no zeros inside D then 1/g(z) has a power series expansion

1

g(z)
=
∑
n>0

bnz
n with

∑
n>0

|bn| <∞.

Following the last section, if P (z) =
∑

k>1 z
kµk is the generating function of µ (which is not

necessarily a polynomial function) then

1− z
1− P (z)

= (1− z)
∑
n>0

znP(n ∈ R) =
∑
n>0

zn (P(n ∈ R)− P(n− 1 ∈ R)) .

It is easy then to check that 1−P (z)
1−z =

∑
n>0 z

n
∑∞

k=n+1 µk and so this function satisfies the

requirements of the lemma because ∑
n>0

∑
k>n+1

µk = m <∞.

Applying the above lemma we deduce that
∑ |P(n ∈ R)− P(n− 1 ∈ R)| <∞ and consequently

by Abel’s theorem that P(n ∈ R) converges as n→∞ towards

lim
n→∞

P(n ∈ R) = lim
z→1

1− z
1− P (z)

=
1

P ′(1)
=

1

m
.

Remark 6.1. In passing we have proved a slightly stronger version of Theorem 6.1 since when

m <∞ we have ∑
n>0

|P(n ∈ R)− P(n+ 1 ∈ R)| <∞.
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6.2 Finite mean case via stationarity and coupling

The probabilistic reader may be disappointed by the last proofs based on analytical methods.

In this section, we provide an alternative proof of Theorem 6.1 in the case when m <∞ based

on the probabilistic concepts of coupling and stationarity.

6.2.1 Point processes and stationarity

Definition 6.1. A renewal set S is a set of points {s0 < s1 < . . . } in Z+. Such a set is

naturally associated with its inter-times x0 = s0 − 0, x1 = s1 − s0, x2 = s2 − s1 etc. We can

define a translation operation θ on the set of all renewal sets by setting θS = S ′ where S ′ is

described by its inter-times (x′i)i>0 where

if x0 = 0 then

{
x′0 = x1 − 1

x′i = xi+1 for i > 1
otherwise if x0 > 0 then

{
x′0 = x0 − 1

x′i = xi for i > 1

x0 = 3, x1 = 2, x3 = 1, x4 = x5 = 2

S θS

Figure 6.1: Illustration of the definition of a renewal set and its translate.

In words, θS is just obtained by erasing the first point 0 of Z+ (and possibly the point of S at

this position) and translating all other values and points by 1. Our strategy to prove Theorem

6.1 is to show the following stronger convergence

θnR (d)−−−→
n→∞

R̃, (6.2)

where R̃ is a renewal set whose law will be described later on and satisfies P(0 ∈ R̃) = 1
m (recall

that we focused first on the case m <∞). The convergence in distribution of renewal set in the

last display simply means finite-dimensional convergence of its associated inter-times. If (6.2)

is granted, we have in particular

P(n ∈ R) = P(0 ∈ θnR) −−−→
n→∞

P(0 ∈ R̃) =
1

m
,

as desired.

A stationary renewal set

We first describe explicitly the law of θnR.

Proposition 6.3. The law of the renewal set θnR is described by its inter-times (X
(n)
i )i>0 whose

law is characterized as follows:
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• (X
(n)
i )i>1 are i.i.d. random variables of law µ independent of X

(n)
0 ,

• the law of X
(n)
0 is prescribed by the following recursive distributional equation: X

(0)
0 = 0

almost surely and for n > 1 we have

X
(n+1)
0

(d)
= (X

(n)
0 − 1)1

X
(n)
0 >0

+ (X − 1)1
X

(n)
0 =0

, (6.3)

where X is of law µ and independent of X
(n)
0 .

Proof. This is merely a writing exercise. The case n = 1 is granted by definition of the renewal

set R. Consider now f0, f1, f2, . . . , fk bounded measurable functions. Then by definition of θ

we have

E

[
k∏
i=0

fi(X
(n+1)
i )

]
= E

[
1
X

(n)
0 >0

f0(X
(n)
0 − 1)

k∏
i=1

fi(X
(n)
i )

]
+ E

[
1
X

(n)
0 =0

f0(X
(n)
1 − 1)

k∏
i=1

fi(X
(n)
i+1)

]

=
ind. hyp

E[1
X

(n)
0 >0

f0(X
(n)
0 − 1)]

k∏
i=1

E[fi(X)] + E[1
X

(n)
0 =0

f0(X
(n)
1 − 1)]

k∏
i=1

E[fi(X)]

= E[1
X

(n)
0 >0

f0(X
(n)
0 − 1) + 1

X
(n)
0 =0

f0(X
(n)
1 − 1)]

k∏
i=1

E[fi(X)].

This exactly tells us that (X
(n+1)
i )i>0 has the desired law.

Equation (6.3) is an example of a recursive distributional equation. Indeed, if µn is the law

of X
(n)
0 then this equation states that

µn+1 = φ(µn), (6.4)

where the function φ maps a law ν supported by Z+ to the law φ(ν) of (Y −1)1Y >0+(X−1)1Y=0

where Y has law ν and is independent of X which has law µ. If we interpret the last display

as a classical iteration scheme (but in the space of measures) we are naturally yield to consider

fixed point (and contraction property) for the mapping φ. This is simple in our case:

Lemma 6.4. Suppose m <∞ then Equation (6.4) has a unique fixed point ν whose law is given

by

νk =
1

m
µ((k,∞)), for k > 0.

Proof. We can rewrite the equation ν = φ(ν) equivalently as

νk = νk+1 + ν0µk+1, for k > 0.

Summing these equation for k = n, n+ 1, . . . we find that νk = ν0µ((k,∞)) for all k > 0. Since

ν has to be a probability this forces ν0 to be the inverse of
∑

k>0 µ((k,∞)) = m. In this case

the last calculation is reversible and this proves the lemma.
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Remark 6.2. One can interpret the law ν of the last lemma from a probabilistic point of view:

Let µ denote the size biased distribution of µ given by

µk =
kµk
m

for k > 1.

If we first sample Z according to µ and next conditionally on Z sample Y ∈ {0, 1, 2, . . . , Z}
uniformly at random then the law of Y follows ν. This has the following interpretation: when

n is very large the point n lies in an interval between two points of the renewal set whose law is

that of X1 biaised by its length. Furthermore, conditionally on the length of this interval, the

point n is asymptotically uniformly distributed in it.

Definition 6.2. Suppose that the mean m of µ is finite. Then we let R̃ be the renewal set whose

inter-times are independent and given by X0 ∼ ν and Xi ∼ µ for i > 1.

Proposition 6.5. The renewal set R̃ is stationary in the sense that θR̃ = R̃ in distribution.

Proof. This is a consequence of the proof of Proposition 6.3 as well as the fact that ν is a fixed

point for Equation (6.4).

One way to finish the proof of Theorem 6.1 (more precisely (6.2)) would be to use Proposition

6.3 and doing the following exercise:

Exercise 6.1 (Contraction for the recursive distributional equation (6.4)). If ν0 is an arbitrary

law on Z+, define the sequence of probability measures (νn)n>0 recursively by νn+1 = φ(νn) as

in (6.4) for n > 0.

1. Show that if
∫
µ(dx)x <∞ then νn → ν weakly (ν defined in Proposition 6.4).

2. Otherwise show that if m =∞ then for all k > 0 we have νn(k)→ 0 as n→∞.

Exercise 6.2. Adapt the last section in the case when we define a renewal set to be a two-sided

set of points {· · · < s−2 < s−1 < s0 < s1 < s2 < . . . } of Z. The translation θ consists then in

moving the underlying points of Z by +1.

6.2.2 Coupling argument

If we were working with the stationary renewal set R̃ instead of R then the proof of Theorem

6.1 would be a piece of cake since for n > 0 we have

P(n ∈ R̃) = P(0 ∈ θnR̃) =
stat.

P(0 ∈ R̃) = ν0 =
1

m
. (6.5)

The idea to prove Eq. (6.2) is to couple R and R̃ (i.e. to construct both of them on the same

probability space) in such a way that for n large enough (this large enough being random) we

have θnR̃ = θnR. Let us proceed. We start with (Yi)i>0 and (Y ′i )i>0 be independent variables
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so that Y0 = 0 almost surely, Y ′0 ∼ ν and for i > 1 we have Yi ∼ Y ′i ∼ µ. We associate with

these variables the random walk

∆n = (Y0 + · · ·+ Yn)− (Y ′0 + · · ·+ Y ′n).

Hence (∆) is a centered random walk and so is recurrent by Theorem 3.5. We denote τ =

inf{k > 0 : ∆k = 0}. We then construct two renewal sets S and S̃ whose inter-times (Xi) and

(X̃i) are described as follows:

for 0 6 i 6 τ we put Xi = Yi and X̃i = Y ′i ,

whereas for i > τ + 1 we put Xi = X̃i = Yi.

Proposition 6.6. The above construction (S, S̃) is indeed a coupling of R and R̃, in other

words we do have R = S and R̃ = S̃ in law.

Proof. It is clear that R = S in distribution since the inter-times of R are given by the Xi no

matter τ . In the case of R̃ we have to show that (X̃i)i>0 are i.i.d. random variables of law ν for

i = 0 and µ for i > 1. Let f0, . . . , fk be bounded measurable functions and let us compute

E

[
k∏
i=0

fi(X̃i)

]
= E

[
k−1∏
i=0

fi(X̃i)1τ<kfk(Yk)

]
+ E

[
k−1∏
i=0

fi(X̃i)1τ>kfk(Y
′
k)

]
.

Noticing that {τ > k} is measurable with respect to Y0, . . . , Yk−1, Y
′

0 , . . . , Y
′
k−1 we get by inde-

pendence that

E

[
k∏
i=0

fi(X̃i)

]
= E

[
k−1∏
i=0

fi(X̃i)1τ<k

]
E[fk(Yk)] + E

[
k−1∏
i=0

fi(X̃i)1τ>k

]
E[fk(Y

′
k)]

=

(
E

[
k−1∏
i=0

fi(X̃i)1τ<k

]
+ E

[
k−1∏
i=0

fi(X̃i)1τ>k

])
· E[fk(Y1)]

= E

[
k−1∏
i=0

fi(X̃i)

]
E[fk(Y1)].

Iterating the argument until we reach k = 0 we have proved the proposition.

Proof of Eq. (6.2). We consider the last coupling (S, S̃) of R and R̃. If f is a bounded

measurable function we can write

E[f(θnR)] = E[f(θnS)]

= E[f(θnS)1τ>n] + E[f(θnS̃)1τ<n]

= E[f(θnS)1τ>n]− E[f(θnS̃)1τ>n] + E[f(θnS̃)].

Since f is bounded and because P(τ > n)→ 0 the first two terms in the last display tend to 0 as

n → ∞. As for the third term, arguing as in (6.5) we see that it is equal to E[f(S̃)] no matter

the value of n. Hence the whole thing tends to E[f(S̃)] as wanted.
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6.3 A deceptively simple, analytic and tricky proof in the general case

In this section we finally give an elementary proof of Theorem 6.1 which is also valid in the

case m =∞. To simplify notation we write

un = P(n ∈ R) for n > 0, (6.6)

with u0 = 1 and un = 0 for n < 0. By the Markov property applied after the first step of the

random walk we naturally get the following equation for n > 1

un =

∞∑
k=1

µkun−k for n > 1. (6.7)

Let λ 6 Λ respectively be the lim inf and lim sup of the sequence un. Suppose that ψ(n) is a

subsequence such that uψ(n) → Λ, then we claim that for all i > 1 we have uψ(n)−i → Λ as well

when n → ∞. This is clearly implied by (6.7) for all values of i such that µi > 0 and is later

extended to all i > 1 by aperiodicity (Exercise). Summing (6.7) for n = ψ(N), ψ(N − 1), . . .

and re-arranging the terms we get that

uψ(N)µ((0,∞)) + uψ(N)−1µ((1,∞)) + · · ·+ u0µ((ψ(N),∞)) = 1.

Sending N → ∞ we get by the above remark that Λ ·∑∞k=0 µ((k,∞)) 6 1. This proves that

Λ 6 1
m and this makes sense even if m = ∞. Repeating the argument with the lim inf we get

similarly that λ > 1
m and this completes the proof of the theorem in the general case.

6.4 Extensions

6.4.1 Non increasing case

In this section we use a few results of the last chapter in order to investigate the case when µ

is not necessary supported by positive integers. We suppose now that µ is supported by Z (and

not Z>0 anymore), that its support generates Z and furthermore that µ admits a (finite and)

strictly positive expectation 0 < m < ∞. As above we consider the random walk (S) whose

increments are i.i.d. of law µ (which may not be strictly increasing anymore).

Proposition 6.7. Under the above hypotheses we have

E

[ ∞∑
i=0

1Si=n

]
−−−→
n→∞

1

m
.

Proof. The idea is to decompose the walk along the strict ascending ladder variables. Remember

that (H+
i )i>0 and (T+

i ) are the strict ascending ladder heights and epochs. Then by the result

of the preceding chapter (H+) is a random walk with i.i.d. strictly positive increments of law

H+
1 and since (S) drifts towards ∞ we deduce that E[H+

1 ] <∞. If we denote by H the renewal
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set {0 = H+
0 < H+

1 < H+
2 < · · · } then we can apply the result of the last section and deduce

that

lim
n→∞

P(n ∈ H) =
1

E[H+
1 ]
.

On the other hand, we can write

E

[ ∞∑
i=0

1Si=n

]
=
∞∑
j=0

∞∑
k=0

E

1H+
k =j

T+
k+1−1∑
i=T+

k

1Si=n

 .
By the strong Markov property and translation invariance the last expectation which we now

denote by ϕ(j − n) only depends on j − n and equal 0 as long as n > j. By resuming over k,

the last display is also equal to

E

[ ∞∑
i=0

1Si=n

]
=

∞∑
j=n

P(j ∈ H)ϕ(n− j).

Now notice that
∑

k>0 ϕ(k) = E[T+
1 ] which is equal to E[H+

1 ]/m by Wald’s identity. Letting

n → ∞, we have from Theorem 6.1 that P(j ∈ H) → 1
E[H+

1 ]
. Hence we can use dominate

convergence to finally get

E

[ ∞∑
i=0

1Si=n

]
−−−→
n→∞

1

E[H+
1 ]
× E[H+

1 ]

m
=

1

m
.

6.4.2 Continuous case

In this section we state the analog of Theorem 6.1 in the continuous case and only sketch the

main difference in the proof. Let µ be a distribution over R∗+ which is non-lattice. We denote by

m the mean of µ. As usual let (Si)i>0 be a random walk with i.i.d. increments of law µ started

from 0 and set R = {S0, S1, S2, · · · }.
Theorem 6.8 (Blackwell)

For any h > 0 we have

lim
t→∞

E
[
# (R∩ [t, t+ h))

]
=

h

m
.

The strategy of the proof of the above theorem in the case m < ∞ can be modeled on Section

6.2. We first build a renewal set R̃ whose inter-times as i.i.d. of law µ except for the first time

X0 whose distribution is characterized as follows:

E[f(X0)] =
1

m

∫
µ(dx)x

∫ x

0
dsf(s).

One can then check that the law of R̃ is invariant under translation by any fixed time t > 0.

Using this stationarity we deduce that

E
[
#
(
R̃ ∩ [t, t+ h)

)]
= C · h,
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for some constant C > 0. A argument similar to the one presented just after Theorem 6.1 using

the law of large numbers shows that C = 1
m . One then use a similar coupling argument to

transfer the result from R̃ to R. In this case by Theorem 3.5 the random walk (∆) of the last

section is again recurrent. However it does not come back exactly to 0 (because the walk is

non-lattice) but it approaches 0 arbitrarily close. Hence, for any ε > 0 one can couple R and R̃
so that for t large enough their t-translates are the same up to a small shift of length smaller

than ε > 0. Provided that ε > 0 is small enough in front of h this is sufficient to deduce Theorem

6.8.

Bibliographical notes. The first proof based on analytic combinatorics is close to the original

proof of Erdös–Feller and Pollard [?] named ”A property of power series with positive coef-

ficients”. This theorem was later revisited in [?] using the coupling method (a must-have in

nowadays probability toolbox) and highlights the importance of the stationary distribution ob-

tained by size-biaising the first inter-time.
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Part III:

d-dimensional random walks
In this chapter we fix a distribution µ on Zd for d > 1 and as usual put

Sn = X1 + · · ·+Xn,

where X1, X2, . . . are i.i.d. copies of distribution µ. This random walk (S) can thus be

seen as a Markov chain (with homogeneous and translation invariant transitions) on Zd.
We will usually assume that this is a “true” random walk on Zd in the following sense:

Definition 6.3. We say that the walk is aperiodic if the Markov chain (S) is irreducible

and aperiodic on Zd.

Figure 6.2: A random walk in three dimensions (the color varies from blue to red as

time passes) and its projections onto the three planes.
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Chapter VII: Applications of the Fourier transform

Recall that µ is the step distribution of an aperiodic random walk (S) on Zd. This chapter is

devoted to the use of the Fourier1 transform of the measure µ in order to study the walk (S).

Recall that this is defined by

µ̂(ξ) = E[eiξ·X1 ], for ξ ∈ Rd.

The main idea being of course Cauchy’s formula relating probability estimation on the random

walk to estimating integrals of powers of the Fourier transform. Namely we have

∀x ∈ Zd, P(Sn = x) =
∑
k∈Zd

1

(2π)d

∫
(−π,π)d

dξ e−iξ·xeiξ·kP(Sn = k) (7.1)

=
1

(2π)d

∫
(−π,π)d

dξ e−iξ·xE[eiξ·Sn ] =
1

(2π)d

∫
(−π,π)d

dξ e−iξ·x (µ̂(ξ))n ,

where we used the fact that E[eiξSn ] = (µ̂(ξ))n by independence of the increments and where the

interversion of series and integral is easily justified by dominated convergence. Before drawing

important consequences of this formula, let us first recall a few basic properties of µ̂.

7.1 Estimates on Fourier transform

First µ̂ is continuous and 2π periodic in each coordinate and it characterizes the distribution µ

(Lévy’s theorem). Clearly its modulus is less than or equal to 1. Actually, under our aperiodicity

assumption we even have

Lemma 7.1. When µ is aperiodic we have

|µ̂(ξ)| < 1, for ξ ∈ [0, 2π)d\0Zd .

Proof. Indeed, if we have |µ̂(ξ)| = |E[eiξ·X1 ]| = 1 we have also |
(
µ̂(ξ)

)n| = |E[eiξ·Sn ]| = 1.

This implies by the equality case in the triangle inequality that all eiξ·x for x ∈ Supp(L(Sn))

are (positively) aligned. Using the aperiodicity assumption, one can choose n large enough so

that the support of the law of Sn contains 0 and the basis vectors (1, 0, 0, . . . ) (0, 1, . . . ) up to

(0, 0, . . . , 1). This shows that ξ must have all its coordinates equal to 0 modulo 2π.

1 Jean Baptiste Joseph Fourier 1768–1830
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Also recall that when µ has a finite first moment m ∈ Rd then we have µ̂(ξ) = 1+im ·ξ+o(ξ)

as ξ → 0. If in addition µ admits a second moment (i.e.
∫
µ(dx)|x|2 < ∞) we can define the

covariance matrix Q = (E[(X)i(X)j ])16i,j6d where (X)i represents the i-th coordinate of the

vector X which follows the law µ. Then we have

µ̂(ξ) = 1 + im · ξ −
tξ ·Q · ξ

2
+ o(|ξ|2). (7.2)

Exercise 7.1. We work in the one-dimensional case to simplify:

1. Prove that if the kth moment mk of µ exists then µ̂(k)(0) exists and is equal to ikmk.

2. Prove that if µ̂ admits a second derivative then m2 is finite.

3. Prove that µ̂ may admit a derivative at 0 without m1 being finite (take µk = c/(k2 ln(k))

for k > 2 and an appropriate c > 0).

Lemma 7.2. Under the aperiodicity assumption there exists λ > 0 such that

|µ̂(ξ)| 6 1− λ|ξ|2, ∀ξ ∈ [−π/2, π/2]d.

Proof. Let us suppose first that µ has finite support. Then from (7.2) we deduce that

|µ̂(ξ)|2 =

(
1−

tξ ·Q · ξ
2

)2

+ |m · ξ|2 + o(|ξ|2) = 1− tξ ·Q · ξ + |m · ξ|2 + o(|ξ|2).

By the aperiodicity condition, there is no ξ ∈ [−π/2, π/2]d so that ξ ·X is constant, hence by

the Cauchy–Schwarz we have the strict inequality between the two quadratic forms tξ ·Q · ξ >
|m · ξ|2. By compactness we deduce that tξ ·Q · ξ−|m · ξ|2 > λ|ξ|2 for some λ > 0 for all ξ ∈ Rd.
The statement of the lemma follows from this local estimate around 0 combined with Lemma

7.1. To deduce the general case, pick a finite subset A ⊂ Zd so that {x ∈ A : µx > 0} is already

aperiodic and generates Rd as a vector space. We then bound

|µ̂(ξ)| = |µ(A) · µ̂A(ξ) + (1− µ(A))µ̂Ac(ξ)| 6 µ(A) · |µ̂A(ξ)|+ (1− µ(A)),

where µA and µAc are the conditional probabilities on A and Ac respectively. Using the statement

of the lemma on µA we deduce the general form for arbitrary aperiodic measures µ.

7.2 Anti-concentration inequalities

The concentration function of a real random variable X ∈ R is a convenient way to encode

how much the distribution of X is spread out it has been introduced by Paul Lévy as

Q(X;λ) = sup
x∈R

P(X ∈ [x, x+ λ]), λ > 0.

In our case of discrete random variables, we shall be interested in supk∈Z P(X = k). The

following theorem roughly shows that the distribution of a n step random walk is always more

spread out than in the simple random walk case:
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Theorem 7.3 (Anti-concentration)

If (Sn)n>0 is an aperiodic d-dimensional random walk then there exists some constant C > 0

so that for every n > 1 we have

sup
x∈Z

P(Sn = x) 6 Cn−d/2.

Proof. Using Cauchy Formula (7.1) and a trivial bound we have

P(Sn = x) =
1

(2π)d

∫
(−π,π)d

dξ e−iξ·x (µ̂(ξ))n 6
1

(2π)d

∫
(−π,π)d

dξ |µ̂(ξ)|n .

Since |µ̂(ξ)| < 1 outside of ξ = 0, the main contribution of the previous integral is located around

0 and so we may use Lemma 7.2 to upper-bound it (up to neglecting an exponentially small

factor) by ∫
(−π/2;π/2)d

dξ |µ̂(ξ)|n 6
∫

(−π/2;π/2)d
dξ
(
1− λ|ξ|2

)n
.

Performing the change of variable
√
λξ = z/

√
n and passing to polar coordinates, the previous

integral is upper bounded by

C

nd/2

∫ ∞
0

dr rd−1(1− r2

n
)n 6

C

nd/2

∫ ∞
0

dr rd−1e−r
2

=
C ′

nd/2
,

for some constants C,C ′ > 0 depending on λ (hence on µ) but not on n. This proves the

theorem

Remark 7.1. The previous result gives an anti-concentration result in the sense that the distri-

bution of Sn cannot put too much mass on a single point. Anti-concentrations results such as

Littlewood–Offord theorem, or Kolmogorov-Rogozin inequality are very useful e.g. in additive

combinatorics or in the theory of random matrices and random polynomials.

The upper-bounds on the previous theorem are attained for random walk with first and

second moments, see the forthcoming local central limit theorem. Here is a (non-trivial) corollary

whose proof is immediate from the previous theorem:

Corollary 7.4. Any aperiodic random walk in Zd with d > 3 is transient.

Proof. Using the previous theorem, the expected number of return to 0Zd by such a walk is

upper-bounded by C
∑

n>1 n
−d/2 <∞ if d > 3. It follows that the walk must be recurrent.

Exercise 7.2. Let Xi, i > 1 be i.i.d. random variables with P(X = ±1) = 1
2 . Prove that we have

P(X1 + 2X2 + · · ·+ nXn = 0) ∼
n→∞

√
6

π
· n−3/2,

when we restrict to n divisible by 4.
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7.3 Recurrence criterion

In this section, we give criterion for recurrence of a d-dimensional random walk based on its

Fourier transform. We also present the proof in the case of random walks with values in Rd to

demonstrate the power of the Fourier point of view.

7.3.1 Chung-Fuchs

Theorem 7.5 (Easy version of Chung–Fuchs)

The d-dimensional walk (S) is recurrent if and only if we have

lim
r↑1

∫
[−π,π]d

dξ Re

(
1

1− rµ̂(ξ)

)
=∞.

For clarity, we will prove the theorem in the case of one-dimensional random walk, the multi-

dimensional case being mutadis mutandis the same.

Proof when d = 1. We suppose that µ is supported by Z. In this setup, (S) is recurrent if and

only if the series
∑

n>0 P(Sn = 0) diverges. Recall from (7.1) that

P(Sn = 0) =
1

2π

∫ π

−π
dtE[eitSn ] =

1

2π

∫ π

−π
dt (µ̂(t))n .

We are lead to sum the last equality for n > 0, but before that we first multiply by rn for some

r ∈ [0, 1) in order to be sure that we can exchange series, expectation and integral. One gets∑
n>0

rnP(Sn = 0) =
1

2π

∫ π

−π
dt
∑
n>0

rn (µ̂(t))n =
1

2π

∫ π

−π

dt

1− rµ̂(t)
.

Since the left-hand side is real, one can take the real part in the integral. Letting r ↑ 1, the first

series diverges if and only if
∑

n>0 P(Sn = 0) =∞. This completes the proof of the theorem in

the lattice case.

Actually, the Chung-Fuchs criterion is also valid for general step distribution over Rd (thus

outside of the general setup of this chapter). Let us provide the proof so that the reader may

compare them:

Proof for non-lattice step distribution (d = 1). When the walk in not lattice we may have

P(Sn = 0) = 0 for n > 1 but thanks to Definition-Proposition 3.1 one rather needs to express

P(|Sn| < 1) in terms of the Fourier transform. This is done thanks to this lemma:

Lemma 7.6. Consider the function f(x) = (1− |x|)+ for x ∈ R then we have

f̂(t) =

∫
R

dx f(x)eitx =
2

t2
(1− cos(t)) =

1

2

(
sin(t/2)

t/2

)2

,

ˆ̂
f(t) =

∫
R

dx
2

x2
(1− cos(x))eitx = 2πf(t).
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Proof of the lemma. The first display is an easy calculation. The second one can be seen as

a particular case of the inversion formula for Fourier transform2.
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Figure 7.1: The functions f and f̂ .

Back to the proof of the theorem, we will use these non-negative functions as surrogates for

the indicator function 1|x|<1. More precisely, for some constant c > 0 we can write:

P(|Sn| < 1) 6 cE
[
f̂(Sn)

]
= c

∫
R

dtE[eitSn ]f(t)

= c

∫
R

dt f(t) (µ̂(t))n .

We proceed as in the last proof and multiply by rn before summing and taking the real part to

get that ∑
n>0

rnP(|Sn| < 1) 6 c

∫
R

dt Re

(
f(t)

1− rµ̂(t)

)
6 c

∫ 1

−1
dt Re

(
1

1− rµ̂(t)

)
.

If the limit as r ↑ 1 of the integral in the theorem is finite, then so is the limit of the integral

of the last display and consequently the limit of the series in the left-hand side is finite. This

proves transience of the walk thanks to Definition-Proposition 3.1. For the other direction we

use f̂ instead of f and write

P(|Sn| < 1) > E [f(Sn)] =
1

2π
E
[

ˆ̂
f(Sn)

]
=

1

2π

∫
R

dtE[eitSn ]f̂(t)

=
1

2π

∫
R

dt f̂(t) (µ̂(t))n ,

2Here it is as an exercise: Let γσ = 1√
2πσ2

exp
(
−x2
2σ2

)
be the standard Gaussian density with variance σ2. We

recall that γ̂1(t) =
√

2πγ1(t). Let f ∈ L1(R) and suppose that f̂ ∈ L1(R). By convoluting f with γσ as σ → 0

show that for almost every x we have

2πf(x) =

∫
R

dt e−itxf̂(t).
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so that in the end of the day we get for r ∈ [0, 1)

∑
n>0

rnP(|Sn| < 1) >
1

2π

∫
R

dt Re

(
f̂(t)

1− rµ̂(t)

)
> c′

∫ π

−π
dt Re

(
1

1− rµ̂(t)

)
,

for some c′ > 0. It is now easy to see that if the limit as r → 1 of the integral in the statement

of the theorem is infinite then so is the series
∑

n>0 P(|Sn| < 1) implying recurrence of the walk.

This completes the proof.

In fact, there is a stronger version of Theorem 7.5 which is obtained by formally interchanging

the limit and the integral in the last theorem: the random walk (S) is transient or recurrent

according as to whether the real part of (1− µ̂(t))−1 is integrable or not near 0 (we do not give

the proof). Notice that in the case when the law µ is symmetric (i.e. X ∼ −X when X ∼ µ)

then µ̂ is real valued and the monotone convergence theorem shows that the recurrence criterion

of Theorem 7.5 indeed reduces to ∫
0∈Rd

dξ

1− µ̂(ξ)
=∞.

Exercise 7.3. Let (Sn)n>0 be the simple random walk on Z3, i.e. the increments are uniform

among the 6 directions (±1, 0, 0), (0,±1, 0) and (0, 0,±1). Show that the probability p that S

never returns to the origin is equal to 1
m where

m =
3

(2π)3

∫
[0,2π]3

dξ1dξ2dξ3
1

3− (cos(ξ1) + cos(ξ2) + cos(ξ3))
.

In particular p ≈ 0.659463 . . . .

Let us finish this section with two exercises using Fourier techniques to compute probabilities:

Exercise 7.4. If (Sn)n>0 is a one-dimensional random walk, its symmetrized version is the random

walk (S̃n)n>0 = (Sn− S′n)n>0 where (S) and (S′) are independent copies of the walk (S). Using

Exercise 3.1 show that if (S) is recurrent then so is its symmetrized version (S̃) (is that an

equivalence?).

7.3.2 Applications

Let us now give a few applications of the Chung-Fuchs theorem 7.5.

Recurrence and transience in various dimensions

Corollary 7.7. An aperiodic random walk on Zd is

(i) recurrent if d = 1 and µ has finite first moment and is centered,

(ii) recurrent if d = 2 and µ is centered with finite variance,

86



(iii) always transient if d > 3.

Proof. We have already given a proof of point (i) in Chapter 3, and a proof of point (iii) in the

last section. But let us give other proofs based on the Fourier criterion which generalize easily

to random walks on Rd. In this case since µ is centered, it is classical that we have

µ̂(t) = 1 + o(t) as t→ 0. (7.3)

Writing µ̂(t) = a(t) + ib(t) we have

Re

(
1

1− rµ̂(t)

)
=

1− r a(t)

(1− r a(t))2 + (r b(t))2
>

1− r
(1− r a(t))2 + (r b(t))2

.

Fix ε > 0, using (7.3) we can find δ > 0 such that for t ∈ [0, δ] we have |b(t)| 6 εt and

|1 − a(t)| 6 εt. Hence for these values of t we have (r b(t))2 6 ε2r2t2 and (1 − r a(t))2 =

((1− r) + r(1− a(t)))2 6 2(1− r)2 + 2ε2r2t2 (we used (x+ y)2 6 2x2 + 2y2). Finally, using the

positivity of the integrand we deduce that∫ π

−π

dt

1− rµ̂(t)
>
∫ δ

0
dt

1− r
2(1− r)2 + 3t2ε2r2

=

∫ δ

0

dt

1− r
1

2 + 3
(
tεr
1−r

)2 .

Performing the change of variable y = tεr
1−r the previous integral is easily computed and seen to

be of order ε−1 as r ↑ 1. Since ε > 0 was arbitrary, the initial integral diverges as desired.

The proof of point (ii) is similar. First notice that Re
(

1
1−rµ̂(ξ)

)
is always positive so that

Fatou’s lemma implies that∫
[−π,π]d

dξ Re

(
1

1− µ̂(ξ)

)
=

∫
[−π,π]d

dξ lim inf
r↑1

Re

(
1

1− rµ̂(ξ)

)
6 lim inf

r↑1

∫
[−π,π]d

dξ Re

(
1

1− rµ̂(ξ)

)
.

But because of (7.2) the integrand in the left-hand size is equivalent to (tξQξ/2)−1 which after

an orthogonal change of variable is just equal to ‖ξ‖22. Using the polar coordinates we have∫
around 0∈R2

dξ

‖ξ‖22
=

∫
0+

2πrdr

r2
=∞,

and so the limit of the integral in the Chung–Fuchs criterion is indeed infinite as desired.

For point (iii) we can write for 0 < r < 1 and ξ close to 0:

Re

(
1

1− rµ̂(ξ)

)
=

Re(1− rµ̂(ξ))

(Re(1− rµ̂(ξ)))2 + (Im(1− rµ̂(ξ)))2

6
1

Re(1− rµ̂(ξ))

6
1

Re(1− µ̂(ξ))

6
1

λ|ξ|2 ,

where we used Lemma 7.2 for the last inequality and the fact that Re(µ̂(ξ)) > 0 when ξ is close

to 0 in the third line. It remains to notice using polar coordinates that |x|−2 is always integrable

in the neighborhood of 0 in Rd for d > 3.
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Heavy-tailed random walks. The Chung–Fuchs criterion can also be used to give an alternative

proof of the transience of the heavy-tailed random walks considered in Theorem 3.7 and is central

in the proof of Theorem 3.8.

Exercise 7.5. Reprove Theorem 3.7 using the Chung–Fuchs criterion.

7.4 The local central limit theorem

The central limit theorem is one of the most important theorems in probability theory and

says in our context that the rescaled random walk Sn/
√
n converges in distribution towards a

normal law provided that µ is centered and has finite variance. There are many proofs of this

result, the most standard being through the use of Fourier transform and Lévy’s criterion for

convergence in law3. We will see below that the central limit theorem can be “desintegrated” to

get a more powerful “local” version of it. The proof is again based on (7.1).

7.4.1 Local CLT

When a one-dimensional random walk with mean m and variance σ2 satisfies a central limit

theorem we mean that for any a < b we have

P
(
Sn − nm√

n
∈ [a, b]

)
−−−→
n→∞

∫ b

a

dx√
2πσ2

e−x
2/(2σ2).

We say that we have a local central limit theorem if we can diminish the interval [a, b] as a

function of n until it contains just one point of the lattice, that is if for x ∈ Z we have

P(Sn = x) = P
(
Sn − nm√

n
∈
[
x− nm√

n
,
x− nm+ 1√

n

))
≈ 1√

2πσ2
e−

(x−nm)2

2nσ2
1√
n
.

It turns out that the necessary conditions for the central limit theorem are already sufficient to

get the local central limit theorem:

Theorem 7.8 (Local central limit theorem, Gnedenko)

Let µ be a distribution supported on Z, aperiodic, with mean m ∈ R and with a finite

variance σ2 > 0. Then if we denote by γσ(x) = 1√
2πσ

e−x
2/(2σ2) the density distribution of

the centered normal law of variance σ2 then we have

lim
n→∞

sup
x∈Z

n1/2

∣∣∣∣P(Sn = x)− n−1/2γσ

(
x− nm√

n

)∣∣∣∣ = 0.

The usual central limit theorem follows from its local version. Indeed, if we consider the random

variable S̃n = Sn + n−1/2Un where Un is uniform over [0, 1] and independent of Sn. Then the

3Here are a couple of other proofs: Lindeberg swapping trick, method of moments, Stein method,

contraction method and Zolotarev metric. See the beautiful page by Terence Tao on this subject:

https://terrytao.wordpress.com/2010/01/05/254a-notes-2-the-central-limit-theorem/

88



local central limit theorem shows that the law of (S̃n − nm)/
√
n is absolutely continuous with

respect to the Lebesgue measure on R whose density fn converges pointwise towards the density

of γσ. Scheffe’s lemma (see Exercise 4.12) then implies that (S̃n − nm)/
√
n converges in law

towards γσ(dx) and similarly after removing the tilde.

Proof. The starting point is again Cauchy formula’s relating probabilities to Fourier transform:

P(Sn = x) =
1

2π

∫ π

−π
dt e−ixtE[eiSnt] =

1

2π

∫ π

−π
dt e−ixt(µ̂(t))n.

Since |µ̂(t)| < 1 when t 6= 0 the main contribution of the integral comes from the integration near

0, it is then an application of Laplace’s method. Since we want to use the series expansion of the

Fourier transform near 0 it is natural to introduce ν the image measure of µ after translation

of −m so that ν is centered and has finite variance: we can write ν̂(t) = 1 − σ2

2 t
2 + o(t2) for t

small. The last display then becomes

P(Sn = x) =
1

2π

∫ π

−π
dt e−ixteinm(ν̂(t))n

=
1

2π

∫ π

−π
dt e−ixteinmt(1− σ2

2
t2 + o(t2))n

=
1√
n

1

2π

∫ π
√
n

−π
√
n

du e−iux/
√
nei
√
nmu (1− σ2

2n
u2 + o(u2/n))n︸ ︷︷ ︸
≈γ1/σ(u)

.

We can then approximate the last integral by

1√
n

1

2π

∫ ∞
−∞

du e−iux/
√
nei
√
nmuγ1/σ(u) =

1√
2πn

E
[
exp

(
i

(√
nm− x√

n

) N
σ

)]
,

where N denote a standard normal variable. Using the identity E[eitN ] = e−t
2/2 the last display

is indeed equal to γσ

(
x−nm√

n

)
/
√
n as desired. It remains to quantify the last approximation.

The error made in the approximation is clearly bounded above by the sum of the two terms:

A =
1√
n

1

2π

∫
|u|>π

√
n

du γ1/σ(u),

B =
1√
n

1

2π

∫
|u|<π

√
n

du

∣∣∣∣γ1/σ(u)−
(
ν̂(

u√
n

)

)n∣∣∣∣ .
The first term A causes no problem since it is exponentially small (of the order of e−n) hence

negligible in front of 1/
√
n. The second term may be further bounded above by the sum of three

terms

B 6
1√
n

∫
|u|<n1/4

du

∣∣∣∣γ1/σ(u)−
(
ν̂(

u√
n

)

)n∣∣∣∣+∫
n1/4<|u|<π

√
n

du γ1/σ(u)+

∫
n1/4<|u|<π

√
n

du

∣∣∣∣ν̂(
u√
n

)

∣∣∣∣n .
The first of this term is shown to be o(n−1/2) using dominated convergence: in the region

considered for u, the integrand converges pointwise to 0; for the domination we may use the
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fact for |u| < ε
√
n we have by the expansion of ν̂ that

∣∣∣ν̂( u√
n

)
∣∣∣n 6 (1− σ2u2

4n )n 6 e−σ
2u2/4. The

second term of the sum is handle as above and seen to be of order e−
√
n. For the third term,

we bound the integrand by
∣∣∣ν̂( u√

n
)
∣∣∣n 6 e−σ

2u2/4 for |u| < ε
√
n, as for ε

√
n < |u| < π

√
n we

use Lemma 7.1 to bound the integrand by some c < 1. The sum of the three terms is then of

negligible order compared to n−1/2 as desired.

The result extends to higher dimension (and to the case of random walks converging towards

stable Lévy process) with mutatis mutandis the same proof. We only give the multidimensional

statement in the finite variance case:

Theorem 7.9 (Local central limit theorem, Gnedenko)

Let µ be distribution supported on Zd, aperiodic, of mean m ∈ Rd and with covariance

matrix Q. If we write

γQ(x) =
1

√
2π

d√
det(Q)

exp(−
txQ−1x

2
)

for the density of the centered Gaussian distribution with covariance Q on Rd then we have

lim
n→∞

sup
x∈Zd

nd/2
∣∣∣∣P(Sn = x)− n−d/2γQ

(
x− nm√

n

)∣∣∣∣ = 0.

A closer look at the proof of the local central limit theorem shows that the main term which

causes the the largest discrepancy between P(Sn = x) and its ideal version n−d/2γQ

(
x−nm√

n

)
is

caused by the term “B” in the last proof (and we can even replace n1/4 by nε with no harm). If

we assume further regularity on µ we can have a better control on this term.

7.4.2 Applications

As an application of the local central limit theorem we can prove straight away that an aperiodic

random walk on Z2 with zero mean and finite variance is recurrent since the return probability

P(Sn = (0, 0)) decays as 1/n and so its series diverges. We can also use the local central limit

theorem to get a precise asymptotic for the tail of the size of Galton–Watson trees in the critical

case:

Proposition 7.10. Let µ be an offspring distribution law which is aperiodic, of mean 1 and

with a finite variance σ2 ∈ (0,∞). If T is a µ-Galton–Watson tree then we have

P(|T | = n) ∼
n→∞

1√
2πσ2

· 1

n3/2
.
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Proof. Taking the same notation as in Proposition 9.1 we have

P(|T | = n) =
Prop.9.1

P(θ−1 = n)

=
Prop.4.9

1

n
P(Sn = −1)

=
Thm.7.8

1√
2πσ2

· 1

n3/2
+ o(n−3/2).

Exercise 7.6 (One-dimensional of the Brownian bridge). Suppose S is a one-dimensional cen-

tered random walk with finite non-zero variance σ2. Prove that for x ∈ (0, 1) that S[nx]/
√
n,

conditioned on Sn = 0 converges in law towards N (0, σ2x(1− x)).

Bibliographical notes. The Fourier transform is a remarkable tool (whose efficiency is sometimes

a bit mysterious) to study random walk with independent increments. The results of this chapter

are mostly based on [39, Chapter II]. Exercise 7.2 is taken from [?]. The local central limit

theorem is valid is the much broader context of random walks converging towards stable Lévy

processes, see Gnedenko’s local limit theorem in [?, Theorem 4.2.1], and can be sharpened when

we have further moment assumptions, see [27]. There are other proofs of the local central limit

theorem for example using the ”Bernoulli part” of a random variable (see [?]) which are easier

to adapt in a context with less independance.
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Chapter VIII: Ranges and Intersections of random walks

As before we suppose that we are given an aperiodic random walk (S) on Zd.

8.1 Range and recurrence

Definition 8.1. The range of the random walk (S) up to time n > 0 is

Rn = #{S0, S1, . . . , Sn}.

8.1.1 The Kesten–Spitzer–Whitman theorem

Theorem 8.1 (Kesten–Spitzer–Whitman)

We have the following convergence in probability

Rn
n

(P)−−−→
n→∞

P(S does not come back to its starting point).

In particular the range grows linearly (in probability) if and only if (S) is transient.

Proof. We write c = P(Si 6= 0Zd : ∀i > 1) to simplify notation. Let us first compute the

expectation of the range. To do this we count each last visit to a given vertex between time 0

and time n:

E[Rn] = E

[
n∑
i=0

1Sj 6=Si:∀i<j6n

]

=
n∑
i=0

P(Sj 6= S0 : ∀0 < j 6 n− i)

∼ n · P(Si 6= S0 : ∀i > 1) = c · n,

by Cesàro1 summation. If c = 0, i.e. when the walk is recurrent, we directly deduce that

Rn/n → 0 in probability by Markov’s inequality. Let us suppose now that c > 0 (i.e. that the

walk is transient) and let us estimate the variance of the range. To simplify notation we write

γi,n = 1Sj 6=Si:∀i<j6n so that we can write

E
[
(Rn)2

]
=

∑
06i,j6n

E[γi,nγj,n] = 2
∑

06i<j6n

E[γi,nγj,n] +O(n).

1 Ernesto Cesàro (1859-1906)
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Furthermore,

E[γi,nγj,n] = P (Sk 6= S0,∀0 < k 6 n− i and Sk 6= Sj−i, ∀j − i < k 6 n− i)
6 P (Sk 6= S0,∀0 < k 6 j − i and Sk 6= Sj−i,∀j − i < k 6 n− i)
=

Markov
P (Sk 6= S0,∀0 < k 6 j − i)P (Sk 6= S0,∀0 < k 6 n− j) (8.1)

−→ c2,

when both j − i and n− j tend to ∞. By Cesàro summation again we deduce that E[(Rn)2] is

asymptotically smaller than (cn)2 and since it is anyway larger than E[Rn]2 ∼ (cn)2 (by Cauchy–

Schwarz) we deduce that Var(Rn) = E[(Rn)2] − E[Rn]2 = o(n2). The desired convergence in

probability then follows from a classical application of Markov’s inequality: for all ε > 0 we have

P
(∣∣∣∣Rnn − c

∣∣∣∣ > ε

)
6

Var(Rn)

ε2n2
−−−→
n→∞

0.

Remark 8.1. There exist a sharper version of the last theorem where the convergence is improved

to an almost sure convergence. One way to prove it is to use ergodic theory and more precisely

Kingman’s subadditive ergodic theorem (which is an useful extension of the well-known theorem

of Birkhoff). The key observation is to notice that the range is subadditive in the sense that

#{S0, . . . , Sn+m} 6 #{S0, . . . , Sn}+ #{Sn, . . . , Sn+m}

and that {Sn, . . . , Sn+m} is exactly the function Rm applied on the walk after shifting by the

first n steps.

8.1.2 Back on recurrence in d = 1 and d = 2

We can use Theorem 8.1 in order to give new proofs (or to re-interpret those already given) of

the recurrence of centered random walk in dimension 1 and centered random walk on Z2 with

finite variance. Indeed, in the first case we have by the strong law of large numbers (or more

precisely its functional version) that (
S[nt]

n

)
t>0

p.s.−−−→
n→∞

0,

for the topology of uniform convergence on every compact of R+. It follows that the range

of the random walk is sublinear and hence the walk must be recurrent by Theorem 8.1. The

second case is a bit more subtle. Suppose (Sn)n>0 is a centered random walk on Z2 with finite

covariance matrix Σ2. By Donsker’s invariance principle we have(
S[nt]√
n

)
t∈[0,1]

(d)−−−→
n→∞

(B
(2)
t )t∈[0,1]
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where B(2) is a two-dimensional Brownian motion with covariance matrix Σ2. Since the range

Rn during the first n steps is at most the number of points in the smallest disk centered at the

origin containing all S0, . . . , Sn we deduce that

Rn 6 π · (max{‖Sk‖2 : 0 6 k 6 n}+ 2)2.

But the convergence towards B(2) implies that max{‖Sk‖2 : 0 6 k 6 n}/√n converges in

distribution towards χ, the maximal L2 norm of B(2) over the time interval [0, 1]. Whatever this

random variable is, it is easy to see that for every ε > 0 we have P(χ < ε) > 0. By Portmanteau

theorem we deduce that

lim inf
n→∞

P
(
Rn
n

< πε2

)
> lim inf

n→∞
P
(

max{‖Sk‖2 : 0 6 k 6 n}√
n

< ε

)
> P(χ < ε) > 0.

The only way the last inequality is compatible with Theorem 8.1 is if P(S0 6= Si : ∀i > 1) = 0

i.e. if the walk is recurrent as desired.

8.1.3 The critical case d = 2

Let us study in more details the range in the case of a simple symmetric random walk S(2) on Z2,

i.e. when the step distribution µ is the uniform measure over the 4 basis vectors {(±1, 0), (0,±1)}.
Remark 8.2 (The rotation trick when d = 2). Let (S(2)

n )n>0 be the random walk on Z2 such that

its coordinates are independent and distributed as simple symmetric random walks on Z. Then

this walk is not aperiodic since it lives on the lattice L2 = {(x1, . . . , xd) ∈ Zd : x1+· · ·+xd ≡ 0[2]}.
But this lattice is easily seen to be equivalent to the initial Z2 after a dilation by 1/

√
2 and a

π/4-rotation. We deduce that

P(S
(2)
2n = (0, 0))︸ ︷︷ ︸ = P(S(2)

2n = (0, 0))︸ ︷︷ ︸

= =︷ ︸︸ ︷
4−2n

n∑
k=0

(
2n

2k

)(
2k

k

)(
2(n− k)

n− k

)
=

︷ ︸︸ ︷
4−2n

(
2n

n

)(
2n

n

) ,

because for the random walk (S) to come back to the origin after 2n steps, it must operate

exactly 2k steps along the x-direction among which k are in the positive direction and similarly

2(n − k) steps along the y-direction among which n − k in the positive direction, for some

k ∈ {0, 1, 2, . . . , n}.

Exercise 8.1. Give a direct proof of the equality
n∑
k=0

(
2n

2k

)(
2k

k

)(
2(n− k)

n− k

)
=

(
2n

n

)(
2n

n

)
.

Theorem 8.2 (Dvoretzky & Erdös)

If (Sn)n>0 is the simple symmetric random walk on Z2 we have

log n

n
·Rn

(P)−−−→
n→∞

π.
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Proof. The proof is similar to that of Theorem 8.1 and goes through first and second moments

calculation done with more care. First when estimating E[Rn], the expectation of the range, we

need to compute

P(Sj 6= S0 : ∀0 < j 6 n)

hence the probability that the two-dimensional simple random walk does not come back to its

starting point in the first n steps. This probability tends to 0 but how slow? To simplify

the exposition we write τ for the first return time to the origin by the simple symmetric two-

dimensional random walk.

Lemma 8.3. We have P(τ > n) ∼ π
logn as n→∞

Proof of the lemma. By the calculation done in Remark 8.2 we have

P (S2n = (0, 0)) = 4−2n

(
2n

n

)(
2n

n

)
∼

n→∞

1

πn
.

The asymptotic can also directly be derived from the local central limit theorem (after a reduction

to the aperiodic case, exercise!). Hence its generating series satisfies

G(x) =
∑
n>0

xnP (S2n = (0, 0)) ∼ − 1

π
log(1− x) as x→ 1−.

Easy calculus exercises with formal series show that if we introduce the two other generating

series

F (x) =
∑
n>1

xnP(τ = 2n) and H(x) =
∑
n>0

P(τ > 2n)xn

then we have the relations

H(x)(1− x) = (1− F (x)) and G(x) = 1 + F (x) + F (x)2 + · · · = 1

1− F (x)
.

Combining the last displays we deduce that

H(x) ∼ −π
(1− x) log(1− x)

as x→ 1−.

Since the coefficient of H are all positive and non-increasing, we are in the setup to apply

Tauberian theorems to transfer estimates on H into estimates on its coefficients, specifically,

applying Theorem VI.13 in [18] (more precisely its easy extension in the case of non-increasing

coefficients) we deduce the desired estimate

P(τ > n) ∼ π

log(n)
, as n→∞.

Coming back to the proof of the theorem we deduce by adapting (8.1) that

E[Rn] =

n∑
i=0

P(τ > i)

∼
n∑
i=2

π

log(i)
= π

n

log n
.
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Hence it remains to estimate the variance of the range and show that E[(Rn)2] ∼ E[Rn]2 to

conclude similarly as in the case d > 3. Since we always have E[(Rn)2] > E[Rn]2 we focus on

the other inequality. We again proceed as above and write

E
[
(Rn)2

]
=

∑
06i,j6n

E[γi,nγj,n] = 2
∑

06i<j6n

E[γi,nγj,n] +O(n)

6 2
∑

06i<j6n

P(τ > j − i)P(τ > n− j) +O(n).

We now exclude the terms i, j such that either |j − i| < n1−ε or |n − j| 6 n1−ε. They are at

most n2−ε/2 such couples (for large n’s) and so using Lemma 8.3 we get that

E
[
(Rn)2

]
6 O(n2−ε/2) + n2

(
π

(1− ε) log(n)

)2

.

Hence we deduce that asymptotically we have E[(Rn)2]/E[Rn]2 6 1 and this suffices to complete

the proof.

Remark 8.3. The convergence in probability in the last theorem can also be improved into an

almost sure convergence.

We see that dimension 2 is critical for simple random walks in the sense that the behavior

of the range is in-between being linear (as in the transient case when d > 3) and really sublinear

as in the case d = 1 (with finite variance say). This is usually referred to by saying that “d = 2

is the critical dimension for recurrence of the simple random walk”. In other words, although

the walk in recurrent in dimension 2 it is only barely recurrent.

8.2 Intersection of random walks

In this section we consider that the step distribution µ is aperiodic on Zd, is centered, and

has bounded support. We then consider independent random walks trace S(d)(i) = (S
(d)
n (i))n>0

on Zd with step distribution µ which we see as random subsets of Zd and ask whether these

subsets intersect (i.e. whether the random walk paths intersect). For k > 1 and d > 1 we write

I(d)(k) =
∑
x∈Zd

k∏
i=1

1x∈S(d)(i),

for the number of points in the intersection of the ranges. Notice that the event {I(d)(k) =∞} is

invariant by any finite permutation of the increments of each of these walks, hence by Theorem

3.3 this event is independent of each σ-field generated by a fixed walk. Consequently, this event

is independent of the total σ-field generated by the k walks and is thus of probability 0 or 1.

The main result is then:

Theorem 8.4 (Erdös & Taylor)

We have the following scenario according to the dimension of the ambient space:
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(i) If d > 5 we have I(d)(2) <∞ almost surely,

(ii) If d = 4 we have I(4)(2) =∞ but I(4)(3) <∞ almost surely,

(iii) If d = 3 we have I(3)(3) =∞ but I(3)(4) <∞ almost surely,

(iv) If d 6 2 for any i > 2 we have I(d)(i) =∞ almost surely.

1 2 3 5 64

dimension

# walks

1

2

3

4

5 finite intersection

infinite intersection

Figure 8.1: Illustration of the theorem.

8.2.1 Estimate on Green’s function

For x ∈ Zd we denote by q(x) the probability that the random walk S ever visits x and G(x)

the expected number of such visits. Clearly we have q(x) 6 G(x) but in dimension d > 3 by

transience of the walk and the Markov property we have

G(x) 6 q(x)G(0),

where G(0) <∞. Hence q(x) and G(x) are comparable up to multiplicative constants.

Lemma 8.5 (Green’s function). Let x ∈ Zd for d > 3 and denote by G(x) the expected number

of visits to x by S(d). Then there exist two constants 0 < c1 < c2 < ∞ such that for all x ∈ Zd

we have

c1|x|2−d 6 G(x) 6 c2|x|2−d.

Sketch of proof. Our main tool in this proof will be the local limit theorem (notice that since
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µ has finite support it automatically has finite variance). First write

G(x) =

∞∑
n=0

P(S(d)
n = x)

=

|x|2∑
n=0

P(S(d)
n = x) +

∞∑
n>|x|2

f

( |x2|
n

)
n−d/2 + o(n−d/2),

where f : R+ → R+ is bounded and roughly of the form f(x) ≈ e−x by the local limit theorem.

This already suffices for the lower bound: Considering the sum
∑
|x|2<n<2|x|2 f( |x

2|
n )n−d/2 +

o(n−d/2) yields to roughly |x|2 values of order n−d/2 ≈ |x|−d hence a total larger than c1|x|2−d.
For the upper bound, we need to combine an improved version of the local limit theorem (notice

that since µ has bounded support, it has all its moments) together with large deviation estimates.

We do not give the details and refer to [27, Theorem 4.3.4] for details.

8.2.2 Proof of the Erdös–Taylor theorem

Proof of the theorem. There is no problem for dimension d 6 2 since the walks are recurrent

and so each S(d)(i) is the whole Zd. The next easy case is dimension d > 5 for two walks, d > 4

for three walks and dimension 3 for four walks, since a first moment calculation does the job.

Indeed we have

E[I(d)(k)] =
∑
x∈Zd

(q(x))k ≈
∑
x∈Zd

(G(x))k

≈
∑
x∈Zd

(|x|2−d)k

≈
∑
n>1

nk(2−d)nd−1,

and the series is finite if k = 2 and d > 5, if k = 3 and d > 4 or if k = 4 and d > 3. It is

just barely diverging for (k, d) ∈ {(2, 4), (3, 3)}. But to prove points (ii) and (iii) the fact that

E[I(d)(k)] = ∞ does not imply that I(d)(k) = ∞, if we want to provide a lower bound on a

non-negative random variable (saying that it must stay close to its expectation) one needs to

use the second moment method (Definition 11.3). Here, we use the second moment method,

more precisely the fact that if X > 0 be a non-negative random variable and if C > 0 is such

that E[X]2 6 E[X2] 6 CE[X]2 then2

P
(
X >

E[X]

2

)
>

1

4C

We use this method with

I(d)
n (k) =

∑
x∈Zd

k∏
j=1

1
S

(d)
i (j)=x, for some i6n

.

2this is just a simple Cauchy–Schwarz: E[X] = E[X1X>E[X]/2]+E[X1X<E[X]/2] 6 E[X2]1/2P(X > E[X]/2)1/2+

E[X]/2.

98



Recall that qn(x) is the probability that the point x has been visited by the walk by time n. We

have E[I(d)
n (k)] =

∑
x∈Zd qn(x)k. Using the fact that (a+ b)k 6 2k(ak + bk) we can also write

E
[(
I(d)
n (k)

)2
]

=
∑

x,y∈Zd
P(x and y visited by all S

(d)
i by time n)

=
∑

x,y∈Zd
P(x and y visited by S

(d)
1 by time n)k

6
Markov

∑
x,y∈Zd

(qn(x)qn(y − x) + qn(y)qn(x− y))k

6 2k+1
∑

x,y∈Zd
qn(x)kqn(y − x)k

= 2k+1

∑
x∈Zd

qn(x)k

2

= 2k+1E[I(d)
n (k)]2.

We now focus on the case (k, d) ∈ {(2, 4), (3, 3)}. Since E[I(d)(k)] =∞ we get that E[I(d)
n (k)]→

∞ as n→∞ and thanks the the above calculation and the second moment method we deduce

that P(I(d)
n (k) > E[I(d)

n (k)]/2) > 1
4·2k for all n and so P(I(d)(k) = ∞) > 1

2k+2 . Since the latter

probability is equal to 0 or 1 by the Hewitt-Savage law, it must be 1!

Remark 8.4. As in the case of dimension 2 for recurrence, the dimension 4 is critical of ∞
intersection of two independent random walk paths as dimension 3 is for the intersection of

3 independent random walk paths. With little more work one can for example show that

the number of common intersection points within distance n is of order log(n). Similarly, in

dimension 2 the number of returns of the walk by time n is also logarithmic.

Remark 8.5. Although two random walks in dimension 2, 3 and 4 almost surely intersect, one

can ask what is the probability they actually do not intersect within the first n steps. In

dimension 2 and 3 this probability decays as a polynomial n−αd for some αd > 0. In dimension

3 the value α3 is not explicitly known and is not expected to be an especially nice number

whereas in dimension 2 we have α2 = 5
8 . Although simple looking, the derivation of this so-

called intersection exponent has required Lawler, Schramm and Werner to use a deep mixture

of complex analysis and probability theory. This was celebrated by Werner’s Fields medal in

2006 !

8.2.3 Point of increase

We now turn to a problem for which dimension one is already “critical”: existence of point of

increase for the simple random walk. In the rest of this section (Si : i > 0) is a simple symmetric

random walk on Z.

Definition 8.2. A time k ∈ {0, 1, . . . , n} is a point of increase for S0, S1, . . . , Sn

∀0 6 i 6 k, Si 6 Sk and ∀k 6 i 6 n, Sk 6 Si.
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Theorem 8.6 (Peres)

There exists C > 0 such that for all n > 1 we have

P (S0, . . . , Sn has a point of increase) 6
C

log n
.

Proof. Let us denote In the total number of point of increase of S0, . . . , Sn. If we denote by

Pn the event {S0 > 0, . . . , Sn > 0} and pn its probability, then the probability that time k is a

time of increase for S0, . . . , Sn is equal to pkpn−k. Using the asymptotic pk ∼ ck−1/2 deduced

from (4.3) we see that for some constants c′, c′′ > 0 for all n > 1 we have

E[In] 6 c′
n−1∑
k=1

1√
k(n− k)

6 c′′.

Hence, the number of point of increase is bounded is expectation. To show that it is actually

unlikely to have a single point of increase, we need to show that point of increase “come in pack”.

More precisely, we use the simple observation:

P(In > 0) =
E[In]

E[In | In > 0]
, (8.2)

since the event In = 0 does not contribute to the expectation of In. Let Ak be the event

that k ∈ {0, 1, . . . , n} is the first point of increase of S0, . . . , Sn. On the event Ak notice that

Sk−Sk, Sk+1−Sk, . . . , Sn−Sk is path of length n− k that stays non-negative. Notice also that

we could change this path for any other path that stays non-negative and we would still belong

to Ak. This shows that conditionally on Ak, the law of (Sk+i − Sk : 0 6 i 6 n − k) is that of

the simple random walk S conditioned on Pn−k. Given the last display, we write

E[In | In > 0] =
1

P(In > 0)

n∑
k=0

E[In | Ak] · P(Ak).

Given (8.2) and since
∑

k P(Ak) = P(In > 0) it suffices to prove that there exists c > 0 such

that for all 0 6 k 6 n we have E(In | Ak) > c · log n to complete the proof of the theorem. By

time-reversal we may even restrict to 0 6 k 6 n/2. Writing m = n − k > n/2 by the above

remark we can compute

E[In | Ak] = E[In−k | Pn−k] = E[Im | Pm]

=
1

pm

m∑
i=0

P(i is a p.o.i. for S0, . . . , Sm and Sj > 0, ∀0 6 j 6 m)

=
1

pm

m∑
i=0

P(0 6 Sj 6 Si, ∀0 6 j 6 i) · pm−i. (8.3)

Lemma 8.7. There exist constant c1, c2 > 0 such that for all n > 1 we have

c1

n
6 P(S0 6 Si 6 Sn : ∀0 6 i 6 n) 6

c2

n
.
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Given the last lemma we can finish the proof of the theorem. Indeed, using again pk ∼ ck−1/2

and the last lemma, we easily see that (8.3) is bounded from below by c′ · logm > c · log n
2 for

some constant c > 0 which imply the desired estimate.

Proof of Lemma 8.7. The upper bound (which has not been used in our application) follows

easily from the fact that

P(S0 6 Si 6 Sn : ∀0 6 i 6 n) 6 P(Si > 0 : ∀0 6 i < n/2) · P(Si 6 Sn : ∀n/2 < i 6 n)

=
duality

P(Si > 0 : ∀0 6 i < n/2)2 =
(
p[n/2]

)2 ∼
(4.3)

2c

n
,

for some c > 0. For the lower bound, notice that the events A = {Si > 0 : ∀0 6 i 6 n} and

B = {Si 6 Sn : ∀0 6 i 6 n} are positively correlated. Indeed, they are increasing events in the

sense that if A or B is realized for a path s then it realized for all the paths we can get from

s by changing a minus step into a plus step. An application of the FKG inequality then shows

that P(A ∩B) > P(A) · P(B) which in our case yields

P(S0 6 Si 6 Sn : ∀0 6 i 6 n) > P(Si > 0 : ∀0 6 i 6 n) ·P(Si 6 Sn : ∀0 6 i 6 n) =
duality

p2
n ∼

(4.3)

c

n
.

Bibliographical notes. Ranges and intersection of (simple) random walks is a classic subject

in the study of random walks, see [27]. After the initial works of Erdös and collaborators, the

two-dimensional case became very active in the 80 in connection with the Brownian intersection

local time (Dynkin, Geman–Horowitz–Rosen, Le Gall...). Brownian intersection exponentswere

famously computed by Lawler–Schramm–Werner using the SLE processes [?]. The proof of

Theorem 8.6 is due to Y. Peres and the presentation here is adapted from [35, Chapter 5.2].

Increasing points of stable Lévy processes have been studied by Bertoin in the 90’s, see [?].
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Part IV:

Random trees and graphs

Figure 8.2: A large random plane tree with vertices of high degrees.
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Chapter IX: Galton-Watson trees

In this chapter we use our knowledge on one-dimensional random walk to study random trees

coding for the genealogy of a population where individuals reproduce independently of each

other according to the same offspring distribution. These are the famous Galton–Watson trees.

0 2n

Figure 9.1: A large Galton–Watson tree and its contour function

9.1 Plane trees and Galton–Watson processes

9.1.1 Plane trees

Throughout this work we will use the standard formalism for plane trees as found in [37]. Let

U =
∞⋃
n=0

(N∗)n

where N∗ = {1, 2, . . .} and (N∗)0 = {∅} by convention. An element u of U is thus a finite

sequence of positive integers. We let |u| be the length of the word u. If u, v ∈ U , uv denotes the

concatenation of u and v. If v is of the form uj with j ∈ N, we say that u is the parent of v or

that v is a child of u. More generally, if v is of the form uw, for u,w ∈ U , we say that u is an

ancestor of v or that v is a descendant of u.
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Definition 9.1. A plane tree τ is a (finite or infinite) subset of U such that

1. ∅ ∈ τ (∅ is called the root of τ),

2. if v ∈ τ and v 6= ∅, the parent of v belongs to τ

3. for every u ∈ U there exists ku(τ) ∈ {0, 1, 2, . . . } ∪ {∞} such that uj ∈ τ if and only if

j 6 ku(τ).

11

1 2
3

31 32 33 34

321

∅

3211 3212

Figure 9.2: A finite plane tree.

A plane tree can be seen as a graph, in which an edge links two vertices u, v such that u is the

parent of v or vice-versa. Notice that with our definition, vertices of infinite degree are allowed

since ku may be infinite. When all degrees are finite, the tree is said to be locally finite. In this

case, this graph is of course a tree in the graph-theoretic sense, and has a natural embedding

in the plane, in which the edges from a vertex u to its children u1, . . . , uku(τ) are drawn from

left to right. All the trees considered in these pages are plane trees. The integer |τ | denotes the

number of vertices of τ and is called the size of τ . For any vertex u ∈ τ , we denote the shifted

tree at u by σu(τ) := {v ∈ τ : uv ∈ τ}. If a and b are two vertices of τ , we denote the set of

vertices along the unique geodesic path going from a to b in τ by [[a, b]].

Definition 9.2. The set U is a plane tree where ku =∞,∀u ∈ U . It is called Ulam’s tree.

9.1.2 Galton–Watson trees

Let µ be a distribution on {0, 1, 2, . . . } which we usually suppose to be different from δ1. In-

formally speaking, a Galton–Watson1 tree with offspring distribution µ is a random (plane)

tree coding the genealogy of a population starting with one individual and where all individu-

als reproduce independently of each other according to the distribution µ. Here is the proper

definition:

1 Francis Galton (1822-1911) and Henry William Watson (1827-1903)
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Definition 9.3. Let Ku for u ∈ U be independent and identically distributed random variables

of law µ. We let T be the random plane tree made of all u = u1u2 . . . un ∈ U such that

ui 6 Ku1...ui−1 for all 1 6 i 6 n. Then the law of T is the µ-Galton–Watson distribution.

Notice that the random tree defined above may very well be infinite.

Exercise 9.1. Show that the the random tree T constructed above has the following branching

property: Conditionally on k∅(T ) = ` > 0 then the ` random trees σi(T ) for 1 6 i 6 ` are

independent and distributed as T .

Exercise 9.2. If τ0 is a finite plane tree and if T is a µ-Galton–Watson tree then

P(T = τ0) =
∏
u∈τ0

µku(τ0).

We now link the Galton–Watson tree to the well-known Galton–Watson process. We first

recall its construction. Let (ξi,j : i > 0, j > 1) be i.i.d. random variables of law µ. The

µ-Galton–Walton process is defined by setting Z0 = 1 and for i > 0

Zi+1 =

Zi∑
j=1

ξi,j .

It is then clear from our constructions that if T is a µ-Galton–Watson tree, then the process

Xn = #{u ∈ T : |u| = n} has the law of a µ-Galton–Watson process.

9.2  Lukasiewicz walk and direct applications

In this section we will encode (finite) trees via one-dimensional walks. This will enable us

to get information on random Galton–Watson trees from our previous study of one-dimensional

random walks.

9.2.1  Lukasiewicz walk

The lexicographical order < on U is defined as the reader may imagine: if u = i1i2 . . . ik and

v = j1j2 . . . jk are two words of the same length then u < v if i` < j` where ` is the first index

where i` 6= j`. The breadth first order on U is defined by u ≺ v if |u| < |v| and if the two words

are of the same length then we require u < v (for the lexicographical order).

Definition 9.4. Let τ be a locally finite tree (i.e. ku(τ) <∞ for every u ∈ τ). Write u0, u1, . . .

for its vertices listed in in the breadth first order. The  Lukasiewicz walk W(τ) = (Wn(τ), 0 6

n 6 |τ |) associated to τ is given by W0(τ) = 0 and for 0 6 n 6 |τ | − 1:

Wn+1(τ) =Wn(τ) + kun(τ)− 1.

In words, the  Lukasiewicz walk consists in listing the vertices in breadth first order and

making a stack by adding the number of children of each vertex and subtracting one (for the
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Figure 9.3: Left: a finite plane tree and its vertices listed in breadth-first order. Right:

its associated  Lukasiewicz walk.

current vertex). In the case of a finite plane tree, the total number of children is equal to the

number of vertices minus one, it should be clear that the  Lukasiewicz walk which starts at 0 stays

non-negative until it finishes at the first time it touches the value −1. Note also that this walk

(or more precise its opposite) is skip-free in the sense of Chapter 4 since Wi+1(τ)−Wi(τ) > −1

for any 0 6 i 6 |τ | − 1. When the tree is infinite but locally finite, every vertex of the tree will

appear in the breadth first ordering2 and the  Lukasiewicz path stays non-negative for ever. We

leave the following exercise to the reader:

Exercise 9.3. Let Tlf the set of all finite and infinite locally finite plane trees. Let Wlf the set

of all finite and infinite paths (w0, w1, . . . , wn) with n ∈ {1, 2, . . . }∪ {∞} which starts at w0 = 0

and ends at wn = −1 and such that wi+1 − wi > −1 as well as wi > 0 for any 0 6 i 6 n − 1.

Then taking the  Lukasiewicz walk creates a bijection between Tlf and Wlf .

9.2.2  Lukasiewicz walk of a Galton–Watson tree

As it turns out the  Lukasiewicz walk associated to a µ-Galton–Watson tree is roughly speaking

a random walk. Recall that the offspring distribution µ is supported by {0, 1, 2, . . . } so a µ-

Galton–Watson tree is locally finite a.s.

Proposition 9.1. Let T be a µ-Galton–Watson tree, and let (Sn)n>0 be a random walk with

i.i.d. increments of law P(S1 = k) = µ(k + 1) for k > −1. If T< is the first hitting time of −1

by the walk S then we have(
W0(T ),W1(T ), . . . ,W|T |(T )

) (d)
= (S0, S1, . . . , ST<)

Proof. Let (ω0
i : 0 6 i 6 n) be the first n steps of a skip-free random walk so that n is less than

or equal than the hitting time of −1 by this walk. By reversing the  Lukasiewicz construction

2this is not true if we had chosen to explore the tree in the lexicographical order.
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we see that in order that the first n steps of the  Lukasiewicz walk of the tree T matches with

(ω0
i : 0 6 i 6 n) the first n vertices of the trees in breadth first order as well as their number of

children are fixed by (ω0
i : 0 6 i 6 n), see Figure 9.4.

1

2

5

3 4

6 7

10

8 9

Figure 9.4: Fixing the first n vertices explored (in red) during the breadth first explo-

ration of a Galton–Watson tree. The black vertices and their subtrees (in gray) have

not been explored yet.

The probability under the µ-Galton–Watson to see this event is seen to be

∏
u∈τ0

µku(T ) =

n−1∏
i=0

µω0
i+1−ω0

i+1 = P
(
(Si)06i6n = (ω0

i )06i6n
)
,

where τ0 is the tree made by the first n vertices in breadth first order in T . The proposition

easily follows.

Extinction probability. Here is a direct application of the last result: a random walk proof of the

following well-known criterion for survival of a Galton–Watson process.

Theorem 9.2 (Extinction probability)

Let µ be an offspring distribution of mean m > 0 such that µ 6= δ1. Recall that T denotes a

µ-Galton–Watson tree and (Zn)n>0 a µ-Galton–Watson process. Then the probability that

the tree is finite is equal to the smallest solution α ∈ [0, 1] to the equation

α =
∑
k>0

µkα
k, (9.1)

in particular it is equal to 1 if m 6 1.

Proof. The equivalence between the first two assertions is obvious by the discussion at the end

of Section 9.1.2. We then use Proposition 9.1 to deduce that P(|T | =∞) = P(T< =∞). Since

the walk S is non trivial (i.e. not constant), we know from Chapter 3 that the last probability is

positive if and only if its drift is strictly positive i.e. if m > 1. The computation of the probability

that the walks stays positive has been carried out in Proposition 4.13 and its translation in our

context yields the statement.
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Exercise 9.4. The standard proof of the last theorem is usually done as follows: Let g(z) =∑
k>0 µkz

k be the generating function of the offspring distribution µ.

1. Show that the generating function of Zn is given by g ◦ g ◦ · · · ◦ g (n-fold composition).

2. Deduce that un = P(Zn = 0) follows the recurrence relation u0 = 0 and un+1 = g(un).

3. Re-deduce Theorem 9.2.

Remark 9.1 (A historical remark). We usually attribute to Galton and Watson the introduction

and study of the so-called Galton–Watson trees in 1873 in order to study the survival of family

names among British lords. However, in their initial paper devoted to the calculation of the

extinction probability they conclude hastily that the latter is a fixed point of Equation 9.1

and since 1 is always a fixed point, then the extinction is almost sure whatever the offspring

distribution. Too bad. This is even more surprising since almost thirty years before, in 1845

Irénée-Jules Bienaymé3 considered the very same model and derived correctly the extinction

probability. This is yet just another illustration of Stigler’s law of eponymy!

9.2.3 Lagrange inversion formula

The Lagrange inversion is a close formula for the coefficients of the inverse of a power series. More

precisely, imagine that f(z) =
∑

i>0 fiz
i ∈ C[[z]] is a formal power series in the indeterminate z

(no convergence conditions are assumed) so that f0 = 0 and f1 6= 0. One then would like to invert

f i.e. finding a power series φ ∈ C[[z]] such that z = φ(f(z)) = f(φ(z)). In combinatorics the

above equation is usually written in the “Lagrange formulation” by supposing that f(z) = z
R(z)

with R(z) ∈ C[[z]] with R(0) 6= 0 so that the equation becomes

φ(z) = z ·R(φ(z)). (9.2)

Theorem 9.3 (Lagrange inversion formula)

Let R ∈ C[[z]] be a formal power series in z such that [z0]R 6= 0. Then there exists a unique

formal power series φ satisfying (9.2) and we have for all k > 0 and all n > 1

[zn]
(
φ(z)

)k
=
k

n
[zn−1]

(
zk−1R(z)n

)
,

where [zn]f(z) in the coefficient in front of zn in the formal power series f ∈ C[[z]].

Proof. The idea is to interpret combinatorially the weights in the formal expansion z ·R(φ(z)),

where R(z) =
∑

i>0 riz
i. Indeed, by expanding recursively the equation (9.2), it can be seen

that the coefficient in front of zn in φ can be interpreted as a sum over all plane trees with n

3 Irénée-Jules Bienaymé (1796-1878)
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vertices where the weight of a tree τ is given by

w(τ) =
∏
u∈τ

rku(τ).

Similarly for k > 1, the coefficient of zn in φk is the weight of forest of k trees having n vertices

in total. Now, using the  Lukasiewicz encoding, a forest can be encoded by a skip-free descending

path with n steps and reaching −k for the first time at time n and the weight of such paths

become w(S) =
∏n−1
i>0 rSi+1−Si+1. By Feller’s combinatorial lemma, for a skip-free descending

walk (S) of length n such that Sn = −k there are exactly k cyclic shifts so that n is the k-th

strict descending ladder time. So if we partition the set of all walks of length n so that Sn = −k
using the cyclic shift as an equivalence relation, we know that in each equivalence classes, the

proportion of walks so that T<k = n is k
n (most of the classes actually have n elements in it, but

it could be the case that the subgroup of cyclic shifts fixing the walk is non-trivial and has order

`|k, in which case there are n/` elements in the orbit and k/` are such that T<k = n). Since the

weight w(·) is constant over all equivalence classes we deduce that:

∑
(S) walks of length n

Sn=−k

w(S) =
n

k

∑
(S) walks of length n
Sn=−k and T<k =n

w(S).

It remains to notice that

[zn−1]
(
zk−1R(z)n

)
,

is exactly the weight of all paths (S) of length n such that Sn = −k.

Here are two recreative (but surprising) applications of Lagrange inversion formula:

Exercise 9.5. Let F (x) be the be the unique power series with rational and positive coefficients

such that for all n > 0 the coefficient of xn in Fn+1(x) is equal to 1. Show that F (x) = x
1−e−x .

Exercise 9.6. For a ∈ (0, 1) shows that the only positive solution x = x(a) of x5− x− a = 0 can

be written as

x = −
∑
k>0

(
5k

k

)
a4k+1

4k + 1
.

9.3 Probabilistic counting of trees

In this section we illustrate how to enumerate certain classes of trees using our knowledge on

random walks. One underlying idea is to design a random variable which is uniformly distributed

on the set we wish to count.

9.3.1 Prescribed degrees

Theorem 9.4 (Harary & Prins & Tutte (1964))

The number of plane trees with di vertices with i > 0 children, and with n = 1+
∑
idi =

∑
di
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vertices is equal to
(n− 1)!

d0!d1! · · · di! · · ·
.

Proof. Fix di, k and n as in the theorem. Notice that we must have n = 1 +
∑
idi =

∑
di. By

the encoding of plane trees into their  Lukaciewicz path it suffices to enumerate the number of

paths starting from 0, ending at −1 at n and with di steps of i− 1 and which stay non-negative

until time n− 1. Clearly, if one removes the last assumption there are(
n

d0, . . . , di, . . .

)
=

n!

d0!d1! · · ·

such paths. If we partition those paths according to the cyclic shift equivalence relation, then

by Lemma 4.3 (see Remark 4.3) we know that each equivalence class has cardinal n and has a

unique element which stays non-negative until time n − 1. Hence the quantity we wanted to

enumerate is equal to
1

n

(
n

d0, . . . , di, . . .

)
= (n− 1)!

∏
i

1

di!
.

Corollary 9.5 (Catalan’s counting). We have

#{plane trees with n+ 1 vertices} =
1

n+ 1

(
2n

n

)
.

Proof. With the same notation as in the preceding theorem, the number of trees with n > 1

vertices is equal to∑
d0,d1,d2,...

1+
∑
idi=n=

∑
di

(n− 1)!

d0!d1! · · · =
1

n

∑
d0,d1,d2,...

1+
∑
idi=n=

∑
di

(
n

d0, d1, . . .

)
=

1

n
[zn−1]

(
1 + z + z2 + z3 + · · ·

)n
.

Using Lagrange inversion formula (Theorem 9.3) the last quantity can be expressed as [zn]φ(z)

where φ(z) is the formal series solution to φ(z) = z
1−φ(z) . Solving we get φ(z) = 1

2(1−
√

1− 4z)

and a coefficient extraction yields the desired formula.

9.3.2 Uniform trees

We denote by Tn the set of all plane trees with n edges and by Tn a uniform plane tree taken

in Tn. As we shall see Tn can be seen as a conditioned version of a Galton–Watson tree:

Proposition 9.6. Let T be the Galton–Watson tree with geometric offspring distribution of

parameter 1/2, i.e. µk =
(

1
2

)k+1
for k > 0. Then Tn has the law of T conditioned on having n

edges.
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Proof. Let τ0 be a tree with n edges. Then by Exercise 9.2 we have

P(T = τ0) =
∏
u∈τ0

2−ku(τ)−1.

However, it is easy to see that in a plane tree with n edges we have
∑

u∈τ0 ku(τ0) = |τ0| − 1 = n

so that the last display is equal to 1
24−n. The point is that this probability does not depend on

τ0 as long as it has n edges. Hence, the conditional law of T on Tn is the uniform law.

Notice that the above proposition and its proof hold for any non trivial parameter of the

geometric offspring distribution. However, we chose 1/2 because in this case the offspring dis-

tribution is critical, i.e. it has mean 1. We can give another proof of Corollary 9.5:

Proof. Combining by the last proposition with Proposition 9.1 and Kemperman formula yields

P(|T | = n+ 1) = P(T< = n+ 1) =
Prop.4.9

1

n+ 1
P(Sn+1 = −1),

where (S) is the random walk whose increments are distributed as P(S1 = k) = 2−k−2 for

k > −1 or equivalently as G − 1 where G is the geometric offspring distribution of parameter

1/2. Recall that G is also the number of failures before the first success in a series of independent

coin flips: this is the negative Binomial distribution with parameter (1, 1/2). Hence P(Sn+1 =

−1) = P(Binneg(n+ 1, 1/2) = n) where Binneg(n, p) is the negative Binomial distribution with

parameter (n, p). This distribution is explicit and we have P(Binneg(n, p) = k) =
(
n+k−1
n−1

)
pn(1−

p)k which is our case reduces to

1

n+ 1
P(Sn+1 = −1) =

1

n+ 1
P(Binneg(n+ 1, 1/2) = n) =

1

2
4−n

1

n+ 1

(
2n

n

)
.

By the previous proposition (and its proof) we have on the other hand

P(|T | = n+ 1) = #{plane trees with n+ 1 vertices} · 1

2
4−n.

The result follows by comparing the last two displays.

Exercise 9.7. Extend the above proof to show that the number of forest of f > 1 trees whose

total number of edges is n is equal to

f

2n+ f

(
2n+ f

n

)
.

Exercise 9.8. Give another proof of the last display using Theorem 9.3.

Theorem 9.7 (Height of a uniform point)

Let Tn be a uniform plane tree with n edges. Conditionally on Tn let δn be a uniformly

chosen vertex of Tn and denote Hn its height (the distance to the ancestor of Tn) then we

have

P(Hn = h) =
2h+ 1

2n+ 1

(
2n+1
n−h

)(
2n
n

) .
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In particularHn/
√
n converges towards the Rayleigh distribution with density 2x exp(−x2)1x>0.

Proof. We compute exactly the probability that the point δn is located at height h > 0.

τ1

τ2

τ0 τ̃0

τ̃1

τ̃2

τh−1 τ̃h−1

∅

δn

If so, the tree Tn is obtained from the line joining ∅ to δn by grafting

2h + 1 plane trees on its left and on its right. Obviously, the total

number of edges of these trees must be equal to n−h. Using Exercise

9.7 we deduce that

P(Hn = h) =
2h+1
2n+1

(
2n+1
n−h

)(
2n
n

) .

The second item of the theorem follows after applying Stirling formula

and using Exercise 4.12.

9.3.3 Poisson Galton–Watson trees and Cayley trees

In this section we focus on a different type of trees first studied by Cayley 4

Definition 9.5. A Cayley tree is a labeled tree with n vertices without any orientation nor

distinguished point. In other words it is a spanning tree on Kn, the complete graph over n

vertices. See Fig. 9.5.
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3
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4

68

10

11

Figure 9.5: A Cayley tree over {1, 2, 3, 4, . . . , 11}.

Let T be a Galton-Watson (plane) tree with Poisson offspring distribution of parameter 1 (in

particular, the mean number of children is 1 and we are in the critical case). As above we denote

by Tn the random tree T conditioned on having n vertices.

Proposition 9.8. Consider Tn and assign the labels {1, . . . , n} uniformly at random to the

vertices of Tn. After forgetting the plane ordering Tn this produces a Cayley tree which we

denote by Tn. Then Tn is uniformly distributed over all Cayley trees.

Proof. Let us first compute the probability that T has n vertices. Using the  Lukasiewicz walk

and the cyclic lemma we get that P(|T | = n) = 1
nP(Sn = −1), where S is the random walk

4 Arthur Cayley (1821-1895) receiving a phone call

112



whose increments are centered distributed according to Poisson(1)− 1 variable. It follows that

P(|T | = n) =
1

n
P(Poisson(n) = n− 1) = e−n

nn−2

(n− 1)!
.

Fix a Cayley tree t and let us study the possible ways to obtain t by the above process. We

first choose the root of the tree among the n possibles vertices. Once the origin is distinguished,

there are
∏
u∈t ku! possible ways to give a planar orientation to the tree, where ku is the number

of children of the vertex u (for this we needed to distinguish the ancestor vertex). After these

operations, each of the labeled, rooted, plane trees obtained appears with a probability (under

the Galton–Watson measure) equal to

1

n!
e−n

∏
u∈t

1

ku!
.

Performing the summation, the symmetry factors involving the ku! conveniently disappear and

we get

P(Tn → t) = n× e−n

n!

(
e−n

nn−2

(n− 1)!

)−1

=
1

nn−2
.

Since the result of the last display does not depend on the shape of t, the induced law is indeed

uniform over all Cayley trees and we have even proved:

Corollary 9.9 (Cayley’s formula). The total number of Cayley trees on n vertices is nn−2.

Exercise 9.9. For any p > 2 a p-tree is a plane tree such that the number of children of each

vertex is either 0 or p. When p = 2 we speak of binary trees. In particular the number of edges

of a p-tree must be a multiple of p. Show that for any k > 1 we have

#{p− trees with kp edges } =
1

kp+ 1

(
kp+ 1

k

)
,

in three ways: using a direct application of Theorem 9.4, using a probabilistic approach via a

certain class of random Galton–Watson trees, or via Lagrange inversion’s formula Theorem 9.3.

9.4 Contour function

We finish this chapter by mentioning another more geometrical encoding of plane trees which

is less convenient in the general case but very useful in the case of geometric Galton–Watson

trees.

Let τ be a finite plane tree. The contour function Cτ associated with τ is heuristically

obtained by recording the height of a particle that climbs the tree and makes its contour at

unit speed. More formally, to define it properly one needs the definition of a corner: We view

τ as embedded in the plane then a corner of a vertex in τ is an angular sector formed by two

consecutive edges in clockwise order around this vertex. Note that a vertex of degree k in τ has

exactly k corners. If c is a corner of τ , Ver(c) denotes the vertex incident to c.
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The corners are ordered clockwise cyclically around the tree in the so-called contour order.

If τ has n > 2 vertices we index the corners by letting (c0, c1, c2, . . . , c2n−3) be the sequence of

corners visited during the contour process of τ , starting from the corner c0 incident to ∅ that is

located to the left of the oriented edge going from ∅ to 1 in τ .

Definition 9.6. Let τ be a finite plane tree with n > 2 vertices and let (c0, c1, c2, . . . , c2n−3) be

the sequence of corners visited during the contour process of τ . We put c2n−2 = c0 for notational

convenience. The contour function of τ is the walk defined by

Cτ (i) = |Ver(ci)|, for 0 6 i 6 2n− 2.

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

c17

c18

c19

c20

c21

Figure 9.6: The contour function associated with a plane tree.

Clearly, the contour function of a finite plane tree is a finite non-negative walk of length

2|τ | − 1 which only makes ±1 jumps. Here as well, the encoding of a tree into its contour

function is invertible:

Exercise 9.10. Show that taking the contour function creates a bijection between the set of all

finite plane trees and the set of all non-negative finite walks with ±1 steps which start and end

at 0.

Now, we give a probabilistic description of the law of the contour function of T when T is

distributed as a geometric(1/2)-Galton–Watson tree (i.e. has the same law as in Section 9.3.2).

Proposition 9.10. Let T as above. Then its contour function CT has the same law as

(S0, S1, . . . , ST<−1),

where (S) is a simple symmetric random walk and T< is the first hitting time of −1.

Proof. Notice first that T is almost surely finite by Theorem 9.2 and so all the objects considered

above are well defined. Let τ0 be a plane tree with n edges. We have seen in the previous

proposition that P(T = τ0) = 1
24−n. On the other hand, the contour function of τ0 has length 2n

and the probability that the first 2n steps of (S) coincide with this function and that T< = 2n+1

is equal to 2−2n · 1
2 = 1

24−n. This concludes the proof.
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Exercise 9.11. Give a new proof of Corollary 9.5 using the contour function.

Exercise 9.12. Let T be a Galton–Watson tree with geometric(1/2) offspring distribution. The

height of T is the maximal length of one of its vertices. Prove that

P(Height(T ) > n) =
1

n+ 1
.

Additional exercises.

Exercise 9.13. Let T be a Galton–Watson tree with offspring distribution µ such that µ(0) = 0

and µ(1) 6= 1. In particular the mean of µ is strictly larger than 1 and T is almost surely infinite.

The tree T induces an infinite network (that we still denote by T ) by putting conductance 1

on every edge. The goal of the exercise is to show that this tree is almost surely transient. For

this we build a unit flux on this graph entering at the origin vertex (the image of the ancestor

vertex) and escaping at infinity, the flux being split equally likely at each branching point. Let

θn be the expected energy of that flux over the first n generations of the tree.

1. Show that if supn>0 E[θn] <∞ then T is transient.

2. Using the branching property of T show that

E[θn] =
∞∑
k=1

µkk

(
1

k2
(E[θn−1] + 1)

)
.

3. Conclude.

4. How would you extend the result to the case when µ(0) > 0 but E[µ] > 1 and T is

conditioned to be infinite (this is an event of positive probability) ?

Bibliographical notes. The material about Galton–Watson tree is rather classical. The coding of

trees and the formalism for plane trees (the so-called Neveu’s notation [37]) can be found in [29].

The lecture notes of Igor Kortchemski [22] is a very good introduction accessible to the first years

of undergraduate studies in math. Beware some authors prefer to take the lexicographical order

rather than the breadth first order to define the  Lukasiewicz walk (in the finite case this causes

no problem but this is not a bijection if the trees can be infinite). The two exercices illustrating

Lagrange inversion formula are taken from the MathOverFlow post ”What is Lagrange inversion

good for?”.
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Chapter X: Galton-Watson trees conditioned to survive

In this chapter we study the infinite random trees arising by conditioning a µ-Galton-Watson

tree to survive forever. Thanks to the coding of Galton–Watson trees via their  Lukasiewicz path,

this is equivalently obtained by conditioning the path to stay non-negative. We shall however

give an equivalent description of the Galton–Watson trees conditioned to survive via the so-called

spine decomposition which is now ubiquitous in probability theory. In this chapter the offspring

distribution µ supported by {0, 1, 2, . . . } is fixed and its mean is denoted by m =
∑∞

k=0 kµk.

10.1 Construction of the Galton–Watson trees conditioned to survive

In this section we define the infinite µ-Galton–Watson T ↑ conditioned to survive. After

giving an “abstract” construction based on the the results of Chapter 5, we give an alternative

description of the random tree due to Kesten in the critical case m = 1.

10.1.1 The abstract construction by h↑-transform

Recall from Proposition 9.1 that any locally finite plane tree can be bijectively associated with

a non-negative excursion of a skip-free walk. In the case of a µ-Galton–Watson plane tree, this

path is nothing but a random walk with i.i.d. increments of law (µ(k + 1) : k > −1) stopped at

T<, the first instant when it touches −1. When the mean offspring m is larger than or equal

to 1, the above random walk drifts to +∞ or oscillates and by the results of Chapter 5 (see

Remark 5.2) the renewal function h↑ of this walk is equal to

h↑(i) = 1 + α+ · · ·+ αi, for i > 0,

where α is the probability that our Galton–Watson process becomes extinct, which is the smallest

solution in [0, 1] to α =
∑∞

k>0 µkα
k by Proposition 9.2. An abstract way to build the µ-Galton–

Watson tree conditioned to survive is to consider the locally finite plane tree T ↑ such that

W(T ↑) = (S↑i : i > 0), the version of (S) conditioned to survive by h↑-transformation. In

particular, the law of such a random infinite plane tree is characterized as follows. For any plane

tree τ we write by [τ ]n = {u ∈ τ : |u| 6 n} the tree made by the first n generations.

Proposition 10.1. For any n > 0 and for any plane tree τ0 of height exactly n with ` vertices
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at maximal height, we have

P([T ↑]n = τ0) = h↑(`) ·
∏
u∈τ0
|u|6=n

µku(τ0).

Proof. Fix a tree τ0 of height exactly n and with ` vertices at maximal height. Denote by

(ω0
i : 0 6 i 6 m) the  Lukasiewicz path obtained by exploring all the vertices of the tree in

breadth first order except for the vertices at maximal height. By the  Lukasiewicz endcoding, the

event {[T ↑]n = τ0} occurs if and only if the first m steps ofW(T ↑) are equal to (ω0
i : 0 6 i 6 m).

However, by construction of the path, the height ω0
m is the number of vertices in the stack to be

further explored, that is `. We conclude using the properties of the h↑-transform that

P([T ↑]n = τ0) = P(Wi(T ↑) = ω0
i , ∀0 6 i 6 m)

=
(5.1)

h↑(`)

h↑(0)
P(Si = ω0

i ,∀0 6 i 6 m)

= h↑(`) ·
∏
u∈τ0
|u|6=n

µku(τ0).

It is easy to see that the previous proposition indeed characterizes the law of T ↑.

10.1.2 Kesten’s tree and spine decomposition

We now construct Kesten’s1 tree, an infinite random plane tree denoted by K using two types

of reproduction laws. We denote by µ the size biased distribution of µ obtained by putting for

k > 0

µk = kµk
1

m
,

which is indeed a probability distribution thanks to our normalization. Notice that µ is sup-

ported by (strictly) positive integers. We construct a random infinite plane tree K which is the

genealogical tree made of two sorts of particles: standard and mutant particles. Initially there

is only one mutant particle. All particles reproduce independently of each other, and standard

particles produce a random number of standard particles distributed as µ. Mutant particles

however, reproduce according to µ. Among the descendant of a mutant particle, a uniform child

is picked (independently of the past) and is declared “mutant” whereas the other children are

standard particles. In particular, there is exactly one mutant at each generation. We do not

give the formal definition of this random plane tree and refer to Figure 10.1 for intuition.

Clearly, in the above construction, the tree K comes with a distinguished infinite ray corre-

sponding to the genealogical line of the mutant particles. This spine can be recovered from K
only in the critical case m = 1 as the only infinite line of descent. Let us now describe the law

of K:

1 Harry Kesten 1931-2019
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Figure 10.1: The construction of the tree K from a spine of mutant particles (in red)

and µ-Galton–Watson trees produced by the standard children of the mutants.

Proposition 10.2. For any n > 0 and for any plane tree τ0 of height exactly n with ` vertices

at maximal height, we have

P([K]n = τ0) =
`

mn
·
∏
u∈τ0
|u|6=n

µku(τ0).

Proof. Let us split the cases according to which x ∈ τ0 is the head of the spine of K at height

n. Once it is fixed, we can compute

P([K]n = τ0 and Spine ends at x) =
∏
u∈τ0
|u|6=n

u/∈[[∅,x]]

µku(τ0)

∏
u∈[[∅,x]]\{x}

µku(τ0)

1

ku(τ0)
=

1

mn

∏
u∈τ0
|u|6=n

µku(τ0),

where [[∅, x]] is the geodesic line in the tree τ0 between vertices ∅ and x. Summing over all

possible x at height n yields the result.

Combining the previous proposition with Proposition 10.1, we see that T ↑ = K in the critical

case m = 1. In the supercritical case m > 1 however, those laws are not identical, but under

mild assumptions the random trees K and T ↑ are actually mutually absolutely continuous (see

next section).

10.1.3 More in the supercritical case

X Log X criterion Tree of descendants. Case of the geometric distribution
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10.2 Local limit of critical Galton–Watson trees

In this section we restrict ourselves to the critical case m = 1 and study various conditionings

of the µ-Galton–Watson tree which give rise to the infinite random tree T ↑ = K in the limit.

Before stating the results, we shall need a little background on local convergence for plane trees.

10.2.1 Trees with one spine

On the set of all locally finite plane trees Tlc we shall consider the following distance (called the

local distance):

dloc(τ, τ
′) =

(
1 + sup{n > 0 : [τ ]n = [τ ′]n}

)−1
,

where we recall that [τ ]n is the tree made of the first n generations of τ . It is easy to see that

dloc is a distance and moreover the set of locally finite plane trees becomes Polish:

Proposition 10.3. The metric space (Tlc, dloc) is Polish, that is, separable and complete.

Proof. As we said, it is easy to see that dloc is a distance. Consider (τn)n>0 a Cauchy sequence

for dloc. By definition of the local distance for any m > 1, the subtree [τn]m is eventually

constant, denote by θm its limit. By coherence we have [θn+1]n = θn and θn can be seen of

the first n generations of a unique locally finite (possibly infinite) plane tree θ. It is plain that

τn → θ as n → ∞ for the local distance. Separability in Tlc is easy since finite trees are dense

in Tlc.

Exercise 10.1. Find the compact subsets in (Tlc, dloc).

The above setup enables us to speak about convergence in distribution of random plane

trees as random variables taking values in the Polish space (Tlc, dloc). For our purpose we shall

restrict to Tf , the set of all finite plane trees, and to T1 the set of all infinite plane trees with

only one end (i.e. a unique infinite path starting from the origin of the tree). Note that when

m = 1 we have K ∈ T1 almost surely (hence T ↑ ∈ T1 a.s.) since all the trees grafted to the spine

are a.s. finite. This remark is important since it restricts our state space a lot and thus to check

convergence in distribution it is sufficient to check convergence on a much smaller set of events.

If t, s are plane trees and x is a leaf of t (that is a vertex with no child), we denote by t~(s, x)

the tree obtained by grafting s on the vertex x of t, or formally the set {u ∈ t} ∪ {xv : v ∈ s}.
We also introduce the set

T(t, x) = {t ~ (s, x) : s plane tree}.

These sets are nice since they generate the Borel σ-field on Tf ∪ T1.

Proposition 10.4. Let θn for n > 1 and θ be random variables taking values in Tf ∪T1 almost

surely. For θn to converge in distribution for the local distance towards θ, it is sufficient to prove

that for any t ∈ Tf and any leaf x of t we have

lim
n→∞

P(θn ∈ T(t, x)) = P(θ ∈ T(t, x)) and lim
n→∞

P(θn = t) = P(θ = t).
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Proof. The family of all events of the form {θ ∈ T(t, x)} or {θ = t} is a π-system and generate

the Borel σ-field for the local topology on Tf ∪ T1. Hence by the monotone class theorem, the

knowledge of a probability distribution on this class determines it completely. To see that these

events form a convergence determining class, it is sufficient to check that every open set for the

local topology on Tf ∪ T1 is obtained as a finite or countable union of those elements (see [10,

Theorem 2.2]). This is easily seen.

10.2.2 Conditioning a tree to be large

There are different ways to say that a tree is large : either by considering its number of vertices,

its height, its number of leaves, or more exotic thoughts. Abraham & Delmas [1] unified these

notions as follows. Let A be an integer-valued function which is finite on the set of all finite

plane trees and which satisfies an “asymptotic additive property”: for any finite tree t with a

leaf x, as soon as A(t ~ (s, x)) is large enough we have

A(t ~ (s, x)) = A(s) +D(t, x), (10.1)

where D(t, x) is some function of t and x. Let us right away give examples of such functions:

• A(t) is the size (number of vertices) of t, in this case D(t, x) = #t− 1,

• A(t) is the height of t, in this case D(t, x) = Height(x),

• A(t) is the number of leaves of t, in this case D(t, x) = #Leaves(t)− 1.

We also denote An the set of all trees in Tf ∪ T1 such that A(t) ∈ [n, n + n0) where n0 ∈
{1, 2, 3, . . . } ∪ {∞} is fixed. Usually we think of n0 = 1 or n0 =∞.

Theorem 10.5 (Limit of large conditionings, critical case m = 1)

Let Tn be a µ-Galton–Watson tree T conditioned on the event T ∈ An (we restrict our

attention to the values of n such that the latter event has positive probability) then as soon

as

lim
n→∞

P(T ∈ An+1)

P(T ∈ An)
= 1,

we have Tn → K in distribution for the local distance as n→∞.

Proof. Since K is almost surely infinite and P(Tn = t) → 0 for any finite plane tree t, using

Proposition 10.4 it is sufficient to check that for any finite tree t with a leaf x we have

P(Tn ∈ T(t, x)) −−−→
n→∞

P(K ∈ T(t, x)) =
∏

u∈t\{x}

µku(t),

where the last equality has been shown in the proof of Proposition 10.2. On the event T ∈ T(t, x)

we denote by s the tree grafted on x. Using the assumption (10.1) we made on the“size” function
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A we can write for all n large enough

P(Tn ∈ T(t, x)) =
1

P(T ∈ An)
P(T ∈ T(t, x) and A(T ) ∈ [n, n+ n0))

=
for large n

1

P(T ∈ An)
P(T ∈ T(t, x) and s ∈ An−D(t,x))

=
branching

P(T ∈ An−D(t,x))

P(T ∈ An)
P(T ∈ T(t, x)).

Since D(t, x) is a fixed number, by our assumption on P(T ∈ An) the fraction in the last display

tends to 1 as n→∞. The second term is easily seen to be equal to
∏
u∈t\{x} µku(t) as desired.

10.2.3 Applications

Conditioning at large heights We consider the size function A(t) to be the height, i.e. the maximal

generation attained by the tree t. Clearly this function satisfies (10.1). So in order to apply the

last result, one needs to verify that P(T ∈ An+1)/P(T ∈ An)→ 1. We first treat the case when

n0 = ∞. In this case T ∈ An if and only if T is not extinct at generation n. However, the

extinction probability for a Galton–Watson tree is known to obey (see Exercise 9.4)

P(T is extinct after n generations) = g(n)(0),

where g(z) =
∑

k>0 z
kµk is the generating function of the offspring distribution and g(n) is its

n-fold composition. Recall that when m = 1 (and µ1 6= 1) we have g(n)(0) → 1 (the Galton–

Watson tree almost surely dies out). Since g(n)(0) is a sequence defined by iterations of g we

have
P(An+1)

P(An)
=

(
1− g(n+1)(0)

)(
1− g(n)(0)

) → g′(1) = 1.

Now let us treat the case n0 = 1 meaning that T ∈ An is the height of T is exactly n. Using

the last arguments in this case we have

P(T ∈ An+1)

P(T ∈ An)
=

P(Height(T ) > n+ 1)− P(Height(T ) > n+ 2)

P(Height(T ) > n)− P(Height(T ) > n+ 1)

=

(
1− g(n+1)(0)

)
−
(
1− g(n+2)(0)

)(
1− g(n)(0)

)
−
(
1− g(n+1)(0)

) → 1.

We can thus apply Theorem 10.5 in both cases n0 = 1 or n0 =∞ and get that Galton–Watson

tree conditioned on having an extinction after a large height or at an exact large height converge

towards the infinite Galton–Watson tree conditioned to survive.

Conditioning at large size and the strong ratio limit theorem If the function A(t) is the number

of vertices it is a little more difficult to prove the required condition on P(T ∈ An) demanded

by Theorem 10.5 especially when n0 = 1. This is essentially equivalent to the so-called strong

ratio limit theorem (see below) since by Kemperman’s formula we have

P(T ∈ An+1)

P(T ∈ An)
=

Lukasiewicz

P(T< = n+ 1)

P(T< = n)
=

Kemperman

n

n+ 1

P(Sn+1 = −1)

P(Sn = −1)

strong ratio−−−−−−−→
n→∞

1,
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when µ is aperiodic. To enjoy the strong ratio limit theorem, recall the classical ratio limit

theorem for an aperiodic recurrent Markov chain (X) on a countable state space∑n
k=1 P(Xn = x)∑n
k=1 P(Xn = y)

−−−→
n→∞

π(x)

π(y)
,

where π is the invariant measure of the chain (unique up to multiplicative constant). The

following theorem is a considerable reinforcement of the previous convergence which holds for

random walks on Zd (not necessarily recurrent). As the reader will see, the proof is short and

elegant:

Theorem 10.6 (Strong ratio limit theorem)

Let µ be an aperiodic distribution on Zd. Let (Xi)i>0 be i.id. random variables with law µ

and form the random walk Sn =
∑n

k=1Xi ∈ Zd. Then for all m > 0 and b ∈ Zd we have

lim
n→∞

P(Sn−m = sn − b)
P(Sn = sn)

= 1, as soon as P(Sn = sn)1/n → 1.

Remark 10.1. Notice that P(Sn = 0) is a super-multiplicative function i.e. P(Sn+m = 0) >

P(Sn = 0)P(Sm = 0). By the subadditive theorem (Fekete’s lemma) we deduce that P(Sn = 0)1/n

always has a limit which must of course be 1 in the case of a recurrent random walk.

Proof. Using the aperiodicity of µ it is easy to see that it is sufficient to restrict our attention

to m = 1 and b ∈ Zd such that P(X1 = b) > 0. For such m, b let us introduce Nn = #{1 6 i 6

n : Xi = b} and notice that by symmetry of the increments of the walk we have

E
[
Nn

n

∣∣∣∣Sn = sn

]
=

symmetry
P(X1 = b | Sn = sn) =

Markov
P(X1 = b) · P(Sn−1 = sn − b)

P(Sn = sn)
.

On the other hand, Nn has binomial Bin(P(X1 = b), n) distribution and in particular an easy

large deviation estimate shows that for any ε > 0 we have P(|Nnn − P(X1 = b)| > ε) 6 e−cεn for

some cε > 0. Writing∣∣∣∣E [Nn

n
| Sn = sn

]
− µ(b)

∣∣∣∣ 6 ε+ P
(∣∣Nn

n
− µ(b)

∣∣ > ε
∣∣∣ Sn = sn

)
6 ε+

P(|Nn/n− µ(b)| > ε)

P(Sn = sn)

6 ε+
e−cεn

e−o(n)
6 2ε,

as n → ∞. In other words, E
[
Nn
n | Sn = sn

]
→ P(X1 = b) as n → ∞ and thanks to the first

display of the proof the theorem is proved.

One can give a sufficient condition on the sequence sn so that P(Sn = sn)1/n → 1. Let us

recall the classical definition of the log-Laplace function and its Legendre transform, for x, θ ∈ Rd

put

φ(θ) = log

∫
dµ(x) exp(θ · x) ∈ R ∪ {∞} and ψ(x) =

(
sup
θ∈Rd

θ · x− φ(θ)

)
∈ R+.
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In [3, Section 4] it is shown that as soon as

sup |sn/n| <∞ and lim
n→∞

ψ(sn/n) = 0 then P(Sn = sn)1/n → 1. (10.2)

We shall not reproduce the argument here but invite the reader to connect this with the classical

large deviations Cramér theory for sums of independent random variables in Rd. The proof of

the strong ratio limit theorem can be adapted to many situation when a ”large deviation effect”

competes with a subexponential conditioning, e.g:

Exercise 10.2. Let µ be a non-trivial aperiodic offspring distribution with mean 1. Denote by

Tn a µ-Galton–Watson tree conditioned to have n vertices (for all n large enough so that the

conditioning is non-degenerate). As usual we denote by (S) the associated random walk with

i.i.d. increments of law µ(k + 1) for k > −1.

1. Recall why 1
n logP(T<1 = n)→ 0 as n→∞.

2. For all n > 0 we denote by Dn = #{0 6 i 6 n − 1 : Si+1 = Si − 1} the number of

down-steps of the walk S up to time n. Show that for all ε > 0, there exists some constant

cε > 0 such that for all n large enough we have

P(|Dn − µ(0)n| > εn) 6 e−cεn.

3. Conclude that we have
#Leaves(Tn)

n

(P)−−−→
n→∞

µ(0),

where a vertex u of Tn is a leaf if it has no descendant.

Bibliographical notes. Most of the material of this chapter is adapted from the nice lecture

notes [2] of Abraham & Delmas, see also [1]. See also [21] for the original work of Kesten on

conditioning Galton–Watson trees to survive. The spine decomposition techniques have been

popularized by Lyons, Pemantle & Peres in [32] where they give a conceptual proof of the L logL

criterion of Kesten and Stigum, see also [33, Chapter 17]. The proof of the strong ratio limit

theorem follows the argument of Neveu [36, 1], whereas the result is initially due to Kesten.
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Chapter XI: Erdös-Rényi random graph

The goal of this chapter is to use the tools on random walks and Galton–Watson trees in order

to study the phase transition for the component sizes in the famous model of random graph due

to Erdös1 and Rényi2:

Definition 11.1 (G(n, p) model). The Erdös–Rényi random graph G(n, p) with parameters n > 1

and p ∈ [0, 1] is the (distribution of a) random graph whose vertex set is V = {1, 2, . . . , n} and

where for each pair i 6= j ∈ V the edge i ↔ j is present with probability p independently of all

the other pairs.

Notice that contrary to the setup of Part III, the random graph G(n, p) may be disconnected.

We will see that the geometry of G(n, p) undergoes various phase transitions depending on the

parameters n, p.

11.1 Sharp threshold transitions

11.1.1 History

The “random graph” model was introduced by Erdös and Rényi in 1959 who wanted to probe

randomly a graph with n (labeled) vertices. Actually Definition 11.1 is not really due to Erdös

and Rényi who consider a fixed number m 6
(
n
2

)
of edges but rather to Edgar Gilbert. This

random graph model has since then become ubiquitous in probability and commonly referred to

as the “mean field model”. This means that the initial geometry of the model is trivial: one could

permute all the vertices and get the same model. This is due to the fact that the isometry group

of the underlying graph, the complete graph on n vertices Kn is the full permutation group Σn.

For the connoisseurs, the G(n, p) model can also be seen as a Bernoulli bond percolation model

on Kn.

Exercise 11.1 (Infinite Erdös–Rényi random graph, Rado graph). (∗) Consider the random graph

G whose vertex set is N and where independently for each i, j ∈ N the edge i↔ j is present in

the graph with probability 1/2. Show that almost surely two samples of this random graph are

homomorphic.

1 Paul Erdös 1913-1996

2 Alfréd Rényi 1921-1970

124



Figure 11.1: A sample of G(n, p) when n = 500 and p = 2
n , in the so-called supercritical

regime. The dot representing the vertices have radii proportional to their degrees. We

clearly see that there is a unique “giant” component in the graph and all the other

components are very tiny.

Beyond its apparent simplicity the G(n, p) model is connected to many interesting and

present-day topics in probability theory: the Brownian tree of Aldous, mixing time for trans-

positions dynamics, expander graphs... The rough structure of the graph G(n, p) is quite well

understood. When p = 0 obviously the graph is totally disconnected. As far as vertex degrees

are concerned, the situation is quite trivial by the Binomial-Poisson approximation theorem:

Proposition 11.1. If n · p(n) → λ ∈ [0,∞] then the vertex degree of the node 1 converges in

distribution towards a Poisson random variable with mean λ.

In the following, if (An) is an event referring to G(n, pn) we write An w.h.p. “with high

probability” if P(G(n, pn) ∈ An)→ 1 as n→∞. When we are in presence of events An for which

their apparition in G(n, p) depends on p in a drastic way we speak of sharp threshold phenomena:

Definition 11.2 (Sharp thresholds for graph properties). Let An be an increasing graph property

(i.e. adding edges to a graph only helps verifying An) for graphs on n vertices. We say that An

has a sharp threshold at p ≡ pn if for every ε > 0 we have

P(G(n, (1− ε)pn) ∈ An)→ 0 whereas P(G(n, (1 + ε)pn) ∈ An)→ 1 as n→∞.
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11.1.2 Sharp threshold for connectivity at logn
n

The first natural question is about the overall connectedness of the graph, and this property

turns out has a sharp threshold ruled by the presence or not of isolated vertices.

Theorem 11.2 (Erdös–Rényi)

Connectedness and existence of isolated vertices have both a sharp threshold at pn = logn
n .

Proof. We start by studying isolated vertices using the method of first and second moment.

Since the degree of any single vertex in G(n, pn) follows a Bin(n − 1, pn) distribution, the first

moment method shows that

P(G(n, pn) has an isolated vertex) 6 E[# isolated vertices] = nP(Bin(n−1, pn) = 0) = n(1−pn)n−1.

If pn > (1 + ε) logn
n then the right-hand size clearly tends to 0 as n → ∞ and this shows

that G(n, pn) has no isolated vertices in this regime. If now pn 6 (1 − ε) logn
n we deduce from

the last display that E[# isolated vertices] → ∞ but this is not sufficient to guarantee that

P(G(n, pn) has an isolated vertex)→ 1. To do this, we use the second moment method:

Lemma 11.3 (Second moment method). Let X ∈ {0, 1, 2, . . . } be an non-negative integer valued

random variable. Then we have

P(X > 1) >
E[X]2

E[X2]
.

One-line proof: Use Cauchy-Schwarz E[X]2 = E[X1X>0]2 6 E[X2]P(X > 0).

Using this method with X = # isolated vertices, we have E[X] = n(1− pn)n−1 and

E[X2] =
∑

16i,j6n

E[i and j are isolated]

= nP(1 is isolated) + n(n− 1)P(1 and 2 are isolated)

= n(1− pn)n−1 + n(n− 1)(1− pn)2n−3.

In the regime pn 6 (1 − ε) logn
n it is easy to see that E[X]2 ∼ E[X2] and so there are isolated

vertices with high probability. To complete the proof of the theorem, one has to show that

as long as there are no isolated vertices the graph is actually connected with high probability.

Indeed, if there are no isolated vertices, but if the graph is not connected, that means that there

is a connected component in G(n, pn) whose size is between 2 and n/2. The number of ways to

cut the graph into two disconnected parts is then

[n/2]∑
k=1

(
n

k

)(
(1− pn)n−k

)k
.

Taking pn = (1 + ε) logn
n with ε ∈ (0, 1), it is then an easy but tedious exercise to prove that the

above series is asymptotically dominated by its first term and so converges to 0 as n→∞.This

finishes the proof of the theorem.
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A much more refined analysis show that the number of isolated vertices in G(n, logn+c
n ) for

c ∈ R converges in distribution towards a Poisson variable of parameter e−c and similarly as

above the presence of isolated vertices is the main obstacle to connectedness so that we have the

nice formula

P
(
G
(
n,

log n+ c

n

)
is connected

)
−−−→
n→∞

e−e−c .

Exercise 11.2. How would you attack such a result?

Exercise 11.3. Show a sharp threshold phenomenon for the event {having diameter 6 2} at

pn =

√
2 log n

n
.

As seen in the previous theorem, the global property of connectedness is actually ruled by

a local property, namely the existence of isolated vertices. One can also focus on other “local

observables” such existence of triangles (i.e. triplets {i, j, k} connected to each other and not

to other vertices of the graph) or more generally of a given graph K as a subgraph. These

properties does not necessarily exhibit sharp thresholds:

Exercise 11.4 (threshold function of existence of subgraph). Find the (sharp?) threshold func-

tions for existence of a fixed subgraph K inside G(n, p) for K ranging in :

11.1.3 Sharp threshold for the giant

Actually, if one does not demand that the graph is fully connected but only requires that a

large connected component exists then one obtains another sharp threshold transition at a

much smaller parameter. More precisely we will denote by |C1(n)|, |C2(n)|, . . . the sizes of the

connected components of G(n, pn) in decreasing order. The main theorem is the following:

Theorem 11.4 (Double phase transition, Erdös & Rényi, Aldous)

There is a sharp threshold transition for the existence of a giant connected component at

pn = 1
n . More precisely, if p = pn = c

n then we have

• Subcritical: If c < 1 then there exists A > 0 depending on c > 0 such that w.h.p.

we have |C1(n)| 6 A log n.

• Supercritical: If c > 1 then there exists A > 0 such that w.h.p. we have

|C2(n)| 6 A log n whereas |C1(n)| ∼ (1− α(c)) · n where α(c) is the solution in (0, 1)

of the equation

α(c) = e−c(1−α(c)).
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• Critical: If c = 1 then the vector (n−2/3|Ci(n)|)i>1 converges in law in the finite

dimensional sense towards a positive infinite vector.

The goal of the next sections is to prove the above result. We will actually only prove points

(i) and (ii) and just indicate how to recover the scaling in point (iii).

Figure 11.2: Illustration of the structure of components in G(n, p) for n = 500 in

the subcritical regime, critical and supercritical regimes from left to right. Notice in

particular that in the supercritical regime there is a unique giant component whereas in

the other regime the first and second largest components are “comparable”.

11.2 Exploration process and large deviation inequality

In this section we explain the main idea below Theorem 11.4 which consists in remarking

that “locally” the G(n, c/n) model resembles a Poisson(c)-Galton–Watson trees and can thus be

analyzed via random walk with Poisson(c)-1 increments.

11.2.1 Exploration process

Fix a given vertex, say 1, of G(n, p). We will explore the connected component of 1 using the fol-

lowing algorithm. At any given time t > 0 there are three type of vertices: the untouched vertices

Ut, the vertices totally explored Et and the vertices in the current stack St whose neighborhoods

remain to be explored. The algorithm evolves as follows:

• at time t = 0 we have E = ∅, the untouched vertices are U0 = {2, 3, . . . } and the only

vertex in the stack is 1.

• suppose t > 0 is given and such that St 6= ∅. We then select the vertex x ∈ St with

minimal label and reveal all the neighbors y1, . . . , yk of x among Ut (this could be an

empty set!). We then put

Ut+1 = Ut\{y1, . . . , yk}, St+1 =
(
St\{x}

)
∪ {y1, . . . , yk}, Et+1 = Et ∪ {x}.
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• if at time t > 0 we have St = ∅ then the algorithm stops and outputs E∞ := Et and

U∞ = Ut.

It should be clear from the above exploration that deterministically the set E∞ is precisely the

connected component of 1 in G(n, p). In the following we write St = #St − 1, we also denote by

τ = τ(S) = inf{t > 0 : St = ∅} = inf{t > 0 : St = −1} and notice that #E∞ = τ . When this

exploration is performed on G(n, p) the process

(#Ut,#St,#Et)t>0

is actually a Markov chain whose transition probabilities are described by the following propo-

sition.

Proposition 11.5. Let Ft be the σ-field generated by the first t > 0 steps of the exploration

process of 1 in G(n, p). Conditionally on Ft and on St 6= ∅ the edges between vertices of St and

Ut or between two vertices of Ut are all independent and present with probability p. In particular,

conditionally on Ft the increment ∆St = St+1 − St is distributed as

∆St
(d)
= Bin(#Ut, p)− 1.

Proof. Notice that given the status of the edges and vertices revealed by time t, one could

deterministically change the status of all the edges between St and Ut or in-between vertices

of Ut and this would not have affected the exploration up to time t (because these edges have

not been explored by the algorithm). It is easy to see from this that those edges are indeed

i.i.d. present with probability p. The last point of the theorem follows easily. An alternative,

and more “algorithmic” way to see this is to imagine that all the edges of the graph G(n, p) carry

a question mark “?” which means that its status is currently unknown, present with probability

p and absent with probability 1−p. When performing the exploration of the cluster of the vertex

1 we reveal the status of certain edges. The key point is to notice that since we are not allowed

to use the randomness of unrevealed edges, at any (stopping) time t, conditionally on the past

exploration, the edges which still carry “?” are independent and open/closed with probability

p/1− p.

The key idea is then the following: When n is large we can approximate the increments of St
by independent Poisson(c)−1 random variables, at least at the beginning of the exploration when

#Ut ≈ n. When c < 1 the mean increment of the exploration process is negative and so it finishes

quickly. However, when c > 1, there is a positive probability α(c), computed via Proposition

4.13, such that the “ideal” exploration process continues forever. In the finite world of G(n, c/n)

this translates into the fact that the vertex from which we started the exploration belongs to

the infinite giant component. To turn these heuristics into real proofs the main technical tool is

a large deviations inequality for the walk associate to the ideal model: Let (S(n)) be a random

walk (S
(n)
t : t > 0) starting from 0 with i.i.d. increments of law Bin(n, c/n) − 1. Notice that

(S(n)) is skip-free descending.
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Lemma 11.6 (Large deviations). Fix c > 0 and consider the random walk S(n) having Bin(n, c/n) − 1

increments. For any ε > 0 there exists η > 0 such that for all n > 1 and all k > 0

P(|S(n)
k − (c− 1)k| > εk) 6 exp(−η · k).

Proof. Notice that c − 1 is the mean of the increment of S(n): This is an example of a large

deviation inequality where we show that the probability that a sum of i.i.d. random variables

deviates linearly from its mean decays exponentially fast. A subtlety here, however, is that we

seek for an estimate which is uniform in n (involved in the law of the increments). We proceed

as usual with an exponential Markov inequality. We start with the upper bound

P(S
(n)
k − (c− 1)k > εk) = P(eθ(S

(n)
k −k(c−1)) > eθεk) 6

(
E
[
eθ(S

(n)
1 −(c−1))

]
e−θε

)k
,

for any θ > 0. The Laplace transform of S
(n)
1 − (c− 1) can be evaluated explicitly and we have

E
[
eθ(S

(n)
1 −(c−1))

]
=e−θc

n∑
k=0

ekθ
(
n

k

)( c
n

)k (
1− c

n

)n−k
= e−θc

(
1 + (eθ − 1)

c

n

)n
6 exp(c(eθ − 1− θ)) 6 exp(cθ2),

for all θ ∈ (0, 1). Multiplying by e−θε, we can thus choose θ0 ∈ (0, 1) small enough so that

E
[
eθ0(S

(n)
1 −(c−1))

]
e−θ0ε < 1

for all n > 1 and then the above exponential Markov inequality for θ = θ0 yields that P(S
(n)
k −

(c−1)k > εk) decays exponentially (uniformly in n > 1) as k →∞ as desired. The lower bound

is similar except that we should use negative θ’s.

11.2.2 Upper bounds: subcritical and critical cases

Subcritical case. Suppose first that c < 1. We start the exploration of a given vertex in G(n, c/n)

and use the above notation. Since we always have #Ut 6 n we deduce that the increments of

St are stochastically dominated by independent Bin(n, c/n) variables and so that the size of the

connected component of any given vertex is stochastically dominated by τ (n) − 1 where τ (n) is

the hitting time of −1 by the random walk (S
(n)
t : t > 0) starting from 0 with i.i.d. increments

of law Bin(n, c/n)− 1. Since c < 1 using the above lemma we have for all A > 1

P(τ (n) > A) 6 P(S
(n)
A > 0) 6

Lem. 11.6
exp(−ηA),

for some η > 0. Taking A = 2
η log n we deduce using the union bound that

P(|C1(n)| > 2

η
log n) 6 nP(τ (n) >

2

η
log n) 6 n exp(−2 log n)→ 0.
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Critical case. The same strategy can be used in the critical case c = 1 (together with a little

size-biasing trick). In this case the hitting time of 0 by S(n) can be evaluate via Kemperman’s

formula Proposition 4.9 and an explicit computation:

P(τ (n) = k) =
1

k
P(Bin(k · n, c/n) = k − 1)

=
1

k

(
nk

k − 1

)(
1

n

)k−1(
1− 1

n

)nk−(k−1)

6
1

k

kk−1

(k − 1)!
e−(k−1) 6 Ck−3/2,

for some universal constant C > 0 as long as n is large enough. In particular P(τ (n) > k) decays

at least as k−1/2 for k large. Now pick (independently of G(n, 1/n)) a vertex Un uniformly in

{1, 2, . . . , n}. Since the size of the cluster of Un is stochastically dominated by τ (n) we have

P(τ (n) > A) > P(#Cluster(Un) > A) > P(|C1(n)| > A and Un ∈ C1(n)) >
A

n
P(|C1(n)| > A).

Now taking A = λn2/3 and using the above asymptotic for P(τ > A) yields

P(|C1(n)| > λn2/3) = O(λ−1/3),

which already gives the good order of magnitude of the largest cluster in G(n, 1/n). Getting the

full distributional convergence of (n−2/3|Ci(n)|)i>1 requires to understand in much more details

the exploration process and this exits the scope of these lecture notes.

11.3 Supercritical case

We suppose now that c > 1. The random walk (S(n)) starting from 0 and whose increments

are given by independent Bin(n, c/n) − 1 variables then drifts towards +∞. According to

Proposition 4.13, the probability 1− αn(c) that S(n) stays non-negative for all time is solution

to

αn(c) =
∞∑

k=−1

(αn(c))k+1P(Bin(n, c/n)− 1 = k).

Since Bin(n, c/n)→ Poi(c) it is easy to check that αn(c) converges towards α(c) which is solution

to

α(c) =

∞∑
k=−1

(α(c))k+1P(Poi(c) = k + 1) = e−c(1−α(c)),

so that 1 − α(c) is the probability that a random walk starting from 0 with i.i.d. Poisson(c)-1

increments stays non-negative for ever. We recover here the value α(c) appearing in Theorem

11.4. Notice in passing that α(c) is continuous in c. For the supercritical case, the fact that

we have explored vertices decreases the “super criticality” along the exploration and so we need

some care. However, since c > 1, as long as #Ut > n−m the increments of #Et are stochastically

dominated by Bin(n − m, cn) whose mean is larger than 1, at least when m = o(n). We will
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thus explore the cluster of a given vertex in G(n, c/n) but we freeze the exploration either at its

death time θ(n) or after n2/3 exploration steps (which we assume to be integer to simplify our

notation).

Lemma 11.7. For any ε > 0, for all n large enough we can couple (i.e. realizing on the same

probability space)

• the exploration process (St)06t6τ ,

• a random walk (S
(n)
t )t>0 starting from 0 with i.i.d. increments of law Bin(n, c/n)− 1,

• a random walk (S̃
(n)
t )t>0 starting from 0 with i.i.d. increments of law Bin(n(1−ε), c/n)−1,

such that with probability at least 1− o(1/n) we have

S̃
(n)
t 6 St 6 S

(n)
t , for every 0 6 t 6 τ ∧ n2/3.

St

S
(n)
t

S̃
(n)
t

Figure 11.3: Illustration of the sandwich coupling of the exploration in-between two

random walks.

Proof. The upper coupling of S and S(n) is already used in the last section and follows from the

fact that the increments of S are always stochastically dominated by those of S(n). In passing, we

can use the large deviations inequalities of Lemma 11.6 to deduce that the probability that S(n),

and a fortiori S, exceeds the level εn before time n2/3 is of probability exp(−δn2/3) = o(1/n).

On this event, we can use the remark made before the lemma and deduce that the increments

of S dominates stochastically those of S̃(n). This yields the desired coupling.

Corollary 11.8. Fix c > 1. There exist A, η > 0, such that during the exploration of the cluster

of a given vertex in G(n, c/n), with a probability 1 − o(1/n) we are in one of the following two

alternatives:
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• Either the exploration process stops before time A log n, and thus the size of the cluster is

less than A log n,

• Or the exploration process runs for at least n2/3 steps and the current stack contains at

least ηn2/3 vertices to be explored.

Asymptotically, the probability of the second alternative is 1− α(c).

Proof. We use the coupling of the preceding lemma with ε > 0 small enough so that (1− ε)c >
1 + c−1

2 > 1. On the event on which the size of the cluster τ , which is equal to the death time

of the exploration, is equal to k 6 n2/3 we must have S̃
(n)
k 6 −1 6 0 and so

P(A log n 6 τ 6 n2/3) 6
n2/3∑

k=A logn

P(S̃
(n)
k 6 0).

Since we assume that the mean drift (1 − ε)c − 1 of S̃(n) is positive, we can then apply the

large deviation estimate of Lemma 11.6 to see that the right-hand side of the last display is

bounded above by n2/3e−δA logn for some δ > 0. Picking A > 0 large enough we can make

the last probability o(1/n) establishing the desired dichotomy. The fact that on the second

case Sn2/3 > S̃
(n)

n2/3 > c−1
2 n2/3 with probability 1 − o(1/n) again follows from large deviations

inequalities on S̃
(n)

n2/3 and by our choice of ε.

Using the coupling of S, S(n) and S̃(n) we see that the probability to be in the second case of

the exploration implies that S(n) is non-negative until time n2/3 and is implied by the fact that

S̃(n) is non-negative until time n2/3. It is easy to see that both these probabilities are very close

when n→∞ to the probabilities that the respective walks with increments Bin(n, c/n)− 1 and

Bin((1− ε)n, c/n) are non-negative for all time. Those probabilities converge towards 1− α(c)

and 1−α((1− ε)c). By continuity of c 7→ α(c) for c > 1 we conclude that the probability of the

last event is indeed asymptotic to 1− α(c).

We can now complete the proof of Theorem 11.4 (iii):

Using the last corollary and the union bound we deduce that, w.h.p., for any x ∈ {1, 2, . . . , n}
the cluster of x in G(n, c/n) either contains less than A log n vertices, or its exploration using the

algorithm can be run for n2/3 yielding to at least c−1
2 n2/3 vertices in the stack to be explored.

We will show that all the vertices in the second case actually belong to the same cluster in the

graph, that is

|C1(n)| > c− 1

2
n2/3 and |C2(n)| < c− 1

2
n2/3 w.h.p. (11.1)

Indeed, take two vertices x1, x2 and assume that both exploration processes reach a stack of at

least c−1
2 n2/3 vertices. Either during the first steps of these explorations we discovered a vertex

in common to the cluster of x1 and x2 and so they belong to the same cluster, otherwise the

stacks S1 and S2 of ≈ n2/3 vertices related to x1 and x2 are disjoint. In this case, the Markovian

property of the exploration shows that any edge between any pair of vertices in S1 and S2 is

133



present with probability c/n. The probability that there are no edge between S1 and S2 is then

at most

(1− c/n)(
c−1

2 )
2
n4/3

= o(n−2).

Performing a union bound over the n2 choices for x1 and x2, we get the desired claim (11.1).

It remains to show that the size of |C1(n)| or alternatively of the essentially unique cluster

of size larger than n2/3 is of order (1 − α(c)) · n with high probability. We already know from

the second point Lemma 11.7 that a typical point x ∈ {1, 2, . . . , n} has a cluster of size larger

than n2/3 with probability tending to 1− α(c) which implies that

E

[
n∑
i=1

1#Cluster(i)>n2/3

]
∼ (1− α(c)) · n, as n→∞.

To get concentration around the mean value, by Markov’s inequality (it is again a second moment

method) it suffices to show that

E

( n∑
i=1

1#Cluster(i)>n2/3

)2
 ∼ (E[ n∑

i=1

1#Cluster(i)>n2/3

])2

,

or equivalently that the probability that two points i, j ∈ {1, 2, . . . , n} both have a cluster of

size > n2/3 tends to (1 − α(c))2 as n → ∞. To see this, first perform the exploration of the

cluster of i. As above, there is a chance of order α(c) that the exploration stops at τ 6 A log n

steps. Then either the vertex j is in the explored component, which has a probability less than
A logn
n or it belongs to the remaining graph with conditionally on the first exploration has law

G(n − τ, cn). In the last case, conditionally on τ 6 A log n it is easy to see that j belongs to a

cluster of size > n2/3 with probability asymptotic to 1−α(c). This proves the claim and finishes

the proof of the theorem. Of course, some details are left to the reader at that point.

Bibliographical notes. The Erdös–Rényi model is probably the simplest and the most studied

random graph. It is a wonderful playground for combinatorics and probability. It has many

variations and descendants such as the stochastic block model, the rank 1 model, the configu-

ration model which are more realistic models for real-life networks. The literature on this topic

is vast and we simply refer to the beautiful monograph [?] for a detailed account and to [?] for

very recent results on the scaling limit of components at criticality.

134



Figure 11.4: A list of the 1044 simple graph on 7 vertices.
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(1986), pp. 199–207.

[38] L. Shepp, Recurrent random walks with arbitrarily large steps, Bulletin of the American

Mathematical Society, 70 (1964), pp. 540–542.

[39] F. Spitzer, Principles of random walk, Springer-Verlag, New York-Heidelberg, second ed.,

1976. Graduate Texts in Mathematics, Vol. 34.

[40] H. Tanaka, Time reversal of random walks in one-dimension, Tokyo J. Math., 12 (1989),

pp. 159–174.

[41] W. Woess, Random walks on infinite graphs and groups, vol. 138 of Cambridge Tracts in

Mathematics, Cambridge University Press, Cambridge, 2000.

[42] V. M. Zolotarev, One-dimensional Stable Distributions, vol. 65, American Mathematical

Society, translations of mathematical monographs ed., 1986.

138


	I Random walks on graphs
	Finite electrical networks
	Random walks and Dirichlet problem
	Random walk
	Harmonic functions and the Dirichlet problem

	Electrical networks
	Back to high school : reminder of physics laws
	Probabilistic interpretations
	Equivalent networks

	Energy and variational principles
	Energy
	Variational principles

	Discrete Gaussian Free Field
	The ``physics'' definition
	The 2-definition
	Expression of the covariance
	The statistical definition


	Infinite graphs and recurrence/transience
	Recurrence and resistance
	Criterions for recurrence/transience
	Nash-Williams cutsets
	Variational principles

	Perturbations
	Quasi-isometries
	Invariance with respect to quasi-isometries



	II One dimensional random walks
	Recurrence and oscillations
	Background and recurrence
	Lattice walks
	Markov property and 0/1 laws
	Recurrence

	Oscillation and drift
	Dichotomy
	Ladder variables

	Walks with finite mean
	Recurrence/transience
	Wald's equality

	Examples
	Stable laws
	Heavy-tailed random walks


	Fluctuations theory
	Duality and applications
	Cyclic lemma and Wiener–Hopf
	Feller's cyclic lemma
	Wiener–Hopf factorization

	Applications
	Direct applications
	Skip-free walks
	Arcsine law


	Conditioning random walks to stay positive
	 h-transform of Markov chains
	h-transformation
	Examples

	Renewal function
	Pre-renewal and renewal functions
	h"3223379 -transform
	h"3222378 -transform when drifting to +

	The h"3222378 -transform when (S) does not drift to -
	Limit of large conditionings
	Tanaka's construction

	Drift to - and Cramér's condition

	Renewal theory (Exercices de style)
	Proof via analytic combinatorics
	Bounded support
	Unbounded support with m < 

	Finite mean case via stationarity and coupling
	Point processes and stationarity
	Coupling argument

	A deceptively simple, analytic and tricky proof in the general case
	Extensions
	Non increasing case
	Continuous case



	III Random walks on  Zd
	Applications of the Fourier transform
	Estimates on Fourier transform
	Anti-concentration inequalities
	Recurrence criterion
	Chung-Fuchs
	Applications

	The local central limit theorem
	Local CLT
	Applications


	Ranges and Intersections of random walks
	Range and recurrence
	The Kesten–Spitzer–Whitman theorem
	Back on recurrence in d=1 and d=2
	The critical case d=2

	Intersection of random walks
	Estimate on Green's function
	Proof of the Erdös–Taylor theorem
	Point of increase



	IV Random trees and graphs
	Galton-Watson trees
	Plane trees and Galton–Watson processes
	Plane trees
	Galton–Watson trees

	Łukasiewicz walk and direct applications
	Łukasiewicz walk
	Łukasiewicz walk of a Galton–Watson tree
	Lagrange inversion formula

	Probabilistic counting of trees
	Prescribed degrees
	Uniform trees
	Poisson Galton–Watson trees and Cayley trees

	Contour function

	Galton-Watson trees conditioned to survive
	Construction of the Galton–Watson trees conditioned to survive
	The abstract construction by h"3222378 -transform
	Kesten's tree and spine decomposition
	More in the supercritical case

	Local limit of critical Galton–Watson trees
	Trees with one spine
	Conditioning a tree to be large
	Applications


	Erdös-Rényi random graph
	Sharp threshold transitions
	History
	Sharp threshold for connectivity at  lognn
	Sharp threshold for the giant

	Exploration process and large deviation inequality
	Exploration process
	Upper bounds: subcritical and critical cases

	Supercritical case



