
Study of various categories gravitating
around (φ,Γ)-modules

by Nataniel Marquis

Abstract. — Functors involved in Fontaine equivalences decompose as extension of scalars and taking of invari-
ants between full subcategories of modules over a topological ring equipped with semi-linear continuous action
of a topological monoid. We give a general framework for these categories and the functors between them. We
define the categories of étale projective S-modules over R to englobe categories that will correspond by Fontaine-
type equivalences to finite free representations of a group. We study their preservation by base change, taking of
invariants by a normal submonoid of S and coinduction to a bigger monoid. We define and study categories corre-
sponding to finite type continuous representations over Zp through the notions of finite projective (r, µ)-dévissage
and of topological étale S-modules over R.
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1 Introduction

The starting point of this article is Fontaine equivalence of categories [Fon91, Theorem 3.4.3]. Let Qp be the
field of p-adic numbers, let Qp be a fixed Galois closure and let GQp

:= Gal
(
Qp|Qp

)
be its absolute Galois

group. Fontaine considers the Zp-algebra OE :=
(
ZpJXK[X−1]

)∧p
, with the weak topology for which a basis

of neighborhood of zero is given by (pnOE +XmZpJXK)n,m≥0, and with a continuous lift of Frobenius φ and
a continuous action of Γ := Z×p . He also constructs a Zp-algebra OÊur equiped with a topology also called the
weak topology and with commuting Frobenius φ and action of GQp

. The action of GQp
is continuous for the weak

topology and the action of its subgroupHQp
:= Gal (Qp(µp∞)|Qp) is continuous for the p-adic topology.

From these definitions, Fontaine constructs functors between three categories. First, the category RepZp
GQp

of finite type Zp-linear representations V of GQp which are continuous for the p-adic topology on V . Second, the
category M odét(φN × Γ,OE) of étale (φ,Γ)-modules. Its objects are the finite type OE -modules D equipped
with a φ-semilinear Frobenius φD and a semilinear Γ-action, commuting with each other and such that:

1. The image φD(D) generates the OE -module D, i.e. D is étale.

2. The Γ-action is continuous for the topology on D corresponding to the weak topology on OE .

Finally, Fontaine implicitly uses the category M odét(φN × GQp
, HQp

,OÊur) as an intermediate. Its objects
are the finite type OÊur -modules D equipped with a φ-semilinear Frobenius φD and a semilinear action of GQp

commuting with each other and such that:

1. The image φD(D) generates the OÊur -module D, i.e. D is étale.

2. The GQp
-action is continuous for the topology on D corresponding to the weak topology on OÊur .

3. TheHQp -action is continuous for the p-adic topology on D.

Fontaine’s article proves the following equivalences of categories

D : RepZp
GQp

O
Êur⊗Zp−
−−−−−−−→←−−−−−−−

D 7→Dφ=Id

M odét(φN × GQp , HQp ,OÊur)
D 7→D

HQp−−−−−−→←−−−−−−−
O

Êur⊗OE −
M odét(φN × Γ,OE) : V,
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which describe more explicitly the representations of GQp
.

The three categories involved are categories of semilinear representations of monoids (respectively the monoids
GQp

, (φN × Γ) and (φN × GQp
)). Moreover, the proof reduces to the case of p-torsion modules by dévissage. Re-

cent generalisations by [Záb18b] and [CKZ21] relate representations of a finite product of GK , where K is a
p-adic local field, to multivariable cyclotomic (φ,Γ)-modules. In these cases, the dévissage step contains hidden
algebraic and topological subtleties that are not always fully detailed. While trying to generalise [CKZ21] to a
Lubin-Tate setting, these difficulties subtleties became more precise and I wanted to produces an automatisation
of the dévissage step in a Fontaine-like equivalence that would take into account these subtleties. Therefore, this
article proposes a formalism that encapsulates the whole panel of categories that appear in such equivalences and
the functors between these categories. In this langage, we can rewrite Fontaine’s original equivalences, treat the
subtleties [CKZ21] and we use it in [Mar24b] to prove the Lubin-Tate and plectic generalisations I was looking
for in the first place. This formalism also allow to consider families of Galois representations : namely, we can
recover1 [Dee01, Theorem 2.2.1] when R is a complete regular unramified local ring of characteristic zero and
finite residue field and for representations V for which each pnV/pn+1V being finite projective over R/p.

The setting of this article is the following.

Definition 1.1. Let S be a monoid acting on a commutative ring R. We define the category of S-modules over R,
denoted by Mod (S, R). Its objects are the R-modules equipped with a semilinear action of S.

We study a number of full subcategories of Mod (S, R), for which the three categories of Fontaine are ex-
emples, as well as their preservation by various operations (scalar extension, taking invariants, coinduction). We
now introduce our finest full subcategory of Mod (S, R), which is suitable for both dévissage and topological
considerations.

Definition 1.2. Let R be a ring and r ∈ R. An R-module M is said to have projective (r, µ)-dévissage2 if each
subquotient rnM/rn+1M is a finite projective R/r-module of constant rank over Spec(R/r).

Definition 1.3. Let R be a topological ring. Let M be a finite type R-module and Rk ↠ M be a quotient map.
The quotient topology on M is called the initial topology. It does not depend on the chosen quotient map.

Definition 1.4. Let S be a topological monoid, let R be a ring equipped with a ring topology T and with an
S-action continuous for T . Let S ′ ◁ S be a normal submonoid and T ′ be a ring topology on R for which the
S ′-action is continuous.

Let r ∈ RS
′

be such that R is r-adically complete and separated, r-torsion-free, and such that

∀s ∈ S, φs(r)R = rR.

The category M odétr-dv(S,S ′, R) is the full subcategory of Mod (S, R) whose objects are the S-modules D
over R such that

1. For every s ∈ S, the image of D by the action of s generates D as an R-module, i.e. D is étale.

2. The R-module D is of finite presentation.

3. The module R has finite projective (r, µ)-dévissage.

4. The S-action is continuous for the initial topology on D corresponding to T , meaning that the action map
S ×D → D is continuous.

5. The S ′-action is continuous for the initial topology on D corresponding to T ′.

The category M odétprj (S,S ′,R/r) is defined in a similar way, replacing the third condition with "the
R/r-module D is projective of constant rank".

We may omit S ′ if T ′ is the trivial topology; in this case, the fifth condition is automatic no matter what the
other data are.

Our main results automate the dévissage steps while proving that a Fontaine type functor produces finitely
presented modules.

Proposition 1.5. [See Proposition 5.22] Let S be a topological monoid, let A and R be topological rings equipped
with continuous S-actions and let f : A→ R be an S-equivariant continuous ring morphism. Let a ∈ A be such
that:

1Note that the definition of [Dee01, p. 655] seems to miss a topological compatibility about the action of Γ and the topology induced by
the mR-topology on ΦΓ-modules.

2The letter µ stands for multiplicative. Another dévissage by torsion part will be used in the fourth chapter and called the (r, τ)-dévissage.
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• The ring A is a-adically complete, separated and a-torsion-free.

• The ring A verifies
∀s ∈ S, φs(a)A = aA.

• The ring R is f(a)-adically complete, separated and f(a)-torsion-free.

Then, the functor
D 7→ R⊗A D

sends M odéta-dv(S, A) to M odétf(a)-dv(S, R).

Theorem 1.6. [See Theorem 5.26] Fix the same setup as in Definition 1.4. Suppose that:

• The inclusion RS
′
/r ⊂ R/r is fully faithful.

• We have K0(R
S′
/r) = Z.

• The topology T ′ is coarser than the r-adic topology and for every R-module D with finite projective
(r, µ)-dévissage, the initial topology on D induces the initial topology on rD and D[r].

• We have H1
cont(S ′, R/r) = {0} for T ′.

• For every D in M odétprj (S, S ′,R/r), the comparison morphism

R ⊗
RS′

DS
′
→ D, t⊗ d 7→ td

is an isomorphism.

Then, the comparison morphism is an isomorphism for every object of M odétr-dv(S, S ′, R) and the functor
D 7→ DS

′
sends M odétr-dv(S, S ′, R) to M odétr-dv(S/S

′, RS
′
).

The K-theory condition is often verified in our context : if RS
′

is the p-completion of the localisation of an
unramified complete local Zp-algebra and r = p, the condition K0(R

S′/r) = Z is verified. The rings appearing
in multivariable Fontaine equivalences are of this form.

Note that applying these result to Fontaine’s equivalence introduces a condition on the (p, µ)-dévissage at the
level of (φ,Γ)-modules. These conditions are often automatic for a finitely presented étale module : in [Fon91],
Fontaine worked with discrete valuation rings and [Záb18b, Proposition 2.2] proves that the action of Γ∆ makes
the condition automatic3. They might not be automatic in a multivariable perfectoid setting4,which might suggest
that the (r, µ)-dévissage condition is a necessary condition on the image Fontaine type functors. This condition is
usually sufficient. For example, it gives the correct description of the essential image of an analogue of [CKZ21,
Theorem 4.30] for finite type representations and imperfect coefficient ring rather than finite free representations
and perfect coefficient ring.

Our study of the (r, µ)-dévissage is carried out through the following structure theorem:

Theorem 1.7. [See Theorem 4.3] Let R be a ring and r ∈ R be such that R is r-adically complete and separated,
r-torsion-free. For every R-module M , the following are equivalent:

i) M is r-adically complete and separated with finite projective (r, µ)-dévissage.

ii) M is finitely presented with finite projective (r, µ)-dévissage.

iii) There exists N ≥ 1, a finite projective R-module of constant rank M∞ and an rN -torsion R-module with
finite projective (r, µ)-dévissage Mtors such that

M ∼= M∞ ⊕Mtors.

Suppose in addition that K0(R/r) = Z, i.e. every finite projective R/r-module is stably free. Then the above
three conditions on an R-module M are also equivalent to

3In its notation, the φ∆-stable ideals of E∆ are trivial, which allows to drop the Γ∆-action in the proof.
4The proof of [Záb18b, Proposition 2.2] uses noetherianity.
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iv) There exists N ≥ 1 and an isomorphism

M ∼= M∞ ⊕
⊕

1≤n≤N

Mn

where M∞ is a finite projective R-module of constant rank and each Mn is a finite projective R/rn-module
of constant rank.

Condition (iv) is an extension of the structure theorem for finite type modules over a discrete valuation ring.
This is a powerful tool for studying these modules: for instance, we make extensive use of the equivalence (i)⇔
(ii) in a non topological version of Theorem 1.6 and we crucially use condition (iv) to simplify what "continuous"
means for modules with finite projective (r, µ)-dévissage.

We also obtain a structure theorem for the modules obtained by Fontaine equivalences. Recall that the structure
of OE -modules underlying univariable (φ,Γ)-modules does not come from the functor applied to representations
but from the fact thatOE is principal. It may happen that no decomposition of a considered Zp-representation V is
Galois invariant. In this case, the condition (iv) is not automatically preserved by descent and we need to descend
the (r, µ)-dévissage condition then use Theorem 1.7 in order to recover condition (iv).

In chapter 2 of this article, we define the category Mod (S, R), its full subcategories Modét (S, R) and
Modétprj (S, R) then endow them, when possible, with symmetric closed monoidal structures. In chapter 3, we
study three operations on these categories: scalar extension, taking invariants by a normal submonoid of S and
coinducting to a monoid containing S. In chapter 4, we introduce the notion of finite projective (r, µ)-dévissage
and carve the subcategory Modétr-dv(S, R) of modules with finite projective (r, µ)-dévissage. We prove that this
category is stable under tensor product, study when it is stable by internal Hom, and give results on its stability
by scalar extension and taking of invariants. In chapter 5, we consider topological rings and topological monoids
acting continuously on them. We first study the initial topology on finitely generated modules then recover the
results of previous chapters for the continuous versions M odét(S, R), M odétprj (S, R) and M odétr-dv(S, R) of
our subcategories. Finally, in chapter 6, we prove Fontaine equivalence for K = Qp in our language.

2 The category of S-modules over R and some subcategories

Our aim is to give a setup that captures both representations of Galois groups and the various (φ,Γ)-modules
discussed in the introduction. To allow a non invertible Frobenius, we consider monoid actions; to allow lifts to
representations over Zp, we consider coefficient rings rather than coefficient fields. Finally, we take into account
the potential semilinearity of the actions.

Definition 2.1. Let S be a monoid. An S-ring R is a pair formed by a ring, which we will also denote by R, and
a morphism of monoids from S to EndRing(R), denoted by s 7→ φs.

Example 2.2. For any monoid G and any ring R, the trivial action equips R with the structure of a G-ring.
Any ring R with p = 0 with action of the absolute Frobenius is a φN-ring.
The ring OE := (ZpJXK[X−1])∧p has a Zp-linear and (p,X)-adically continuous Frobenius verifying that

φ(X) = (1 +X)p − 1. It also has a Zp-linear and (p,X)-adically continuous action of Γ := Z×p verifying that
γ ·X = (1 +X)γ − 1. This equips OE with the structure of an (φN × Γ)-ring.

Without additional precision, S will always be a monoid and R will be an S-ring.

2.1 The S-modules over R

We define our most general category.
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Definition 2.3. Define the category Mod (S, R) of S-modules over R. Its objects are the pairs (D,φ-,D) where
D is an R-module and

φ-,D : S → EndAb(D), s 7→ φs,D

is a monoid morphism such that each φs,D is φs-semilinear, i.e.

∀r ∈ R, d ∈ D, φs,D(rd) = φs(r)φs,D(d).

Its morphisms are the R-linear morphisms f : D1 → D2 such that

∀s ∈ S, f ◦ φs,D1 = φs,D2 ◦ f.

Remark 2.4. We can give an equivalent definition using only linear algebra.
For any R-module D and any s ∈ S, define the φs-linearisation of D as

φ∗sD = R ⊗
φs,R

D

seen as an R-module via the left factor. For any R-linear morphism f , we write φ∗sf for its base change along
φs. For any φs-semilinear endomorphism of R-modules fs : D1 → D2, the following map is a correctly defined
morphisme of R-modules:

f∗s : φ∗sD1 7→ D2, r ⊗ d 7→ rfs(d).

Any such linear map f∗s is obtained this way from fs : d 7→ f∗s (1⊗ d).
Since s 7→ φs is a morphism of monoids,

∀(s, s′) ∈ S2,∀D ∈ R-Mod, ∃ φ∗s(φ
∗
s′D) ∼= φ∗ss′D

natural in D. We let the reader check that (D,φ-,D) 7→ (D,φ∗-,D) is an equivalence of categories between
Mod (S, R) and the category of pairs (D,φ∗-,D) where D is an R-module and φ∗-,D is a family of R-linear maps
φ∗s,D : φ∗sD → D such that

∀(s, s′) ∈ S2,
φ∗ss′D D

φ∗s(φ
∗
s′D) φ∗sD

φ∗
ss′,D

∼

φ∗
s(φ

∗
s′,D)

φ∗
s,D

commutes.

Example 2.5. The R-module R with φs,R := φs belongs to Mod (S, R).

Remark 2.6. For any group G and ring R, the category of R-linear representations of G is precisely Mod (G, R),
for G acting trivially on R.

In [Fon91], keeping the notations of the introduction, the category of étale (φ,Γ)-modules is a full subcategory
of Mod

(
φN × Γ,OE

)
.

Lemma 2.7. The category Mod (S, R) is abelian.

Proof. It is the category of left modules over the non-commutative R-algebra R[φs | s ∈ S], where

∀s ∈ S, r ∈ R, φs × r = φs(r)× φs.

Unfortunately, this well-behaved category usually has far too many objects to be equivalent to a category of
group representations. For example, it contains every module D endowed with the zero endomorphism.

2.2 Étale and étale projective modules

A Fontaine type functor is expressed as a scalar extension to a bigger ring followed by taking Galois invariants.
Let’s take a closer look at finite type GQp

-representations over Zp inside of Mod
(
GQp

,Zp

)
. Since GQp

is a group,
linearisations of the action are isomorphisms5. The underlying Zp-modules are also finitely presented. These
two conditions are preserved by base change and taking of invariants (see Propositions 3.3 and 3.7) for precise
statements) and cut a natural subcategory of Mod

(
φN × Γ,OE

)
in which the essential image of Fontaine type

functors must be contained. Fontaine call them étale (φ,Γ)-modules. We give a general définition.
5The fact that the linearisation of the action of an element is an isomorphism is true in Mod (G, R), even if the action of the group G on R

is not trivial. This would later be translated by saying that the category of (possibly semilinear) finite type representations of G over a G-ring
R is equivalent to Modét (G, R).
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Definition 2.8. The category of étale S-modules over R, denoted by Modét (S, R), is the full subcategory of
Mod (S, R) whose objects are the finitely presented R-modules D such that φ∗s,D is a R-linear isomorphism for
any s ∈ S.

Remark 2.9. Although Fontaine’s definition only requires the modules to be of finite type, he works with discrete
valuation rings. For these, finite type modules and finitely presented modules coincide. Our work suggest that the
right property is finite presentation, especially in cases where the base ring is not noetherian (cf. [CKZ21]).

Let’s mention that, with noetherian and flatness properties, the category Modét (S, R) is again abelian.

Proposition 2.10 (Propositions 1.1.5 and 1.1.6 in [Fon91]). Suppose that R is noetherian and that the endomor-
phisms φs are flat.

1. The category Modét (S, R) is abelian. More precisely, kernels and cokernels in Mod (S, R) of morphisms
between objects of Modét (S, R) are objects of Modét (S, R).

2. Suppose in addition that R is a domain of Krull dimension≤ 1 and that for every pair (s,m) ∈ S×Spm(R),
the ideal φs(m) is maximal. Then a finitely presented object of Mod (S, R) lies in Modét (S, R) if and only
if the linearisations are surjective, i.e. every image of φs,D generates D as an R-module.

Moreover, an extension of two S-modules over R is étale if and only if its defining subobject and quotient
are étales.

Remark 2.11. To deal with modulo p representations, Fontaine only needs the coefficient rings Fp, E :=Fp((X))
and Esep, all of which happen to be fields. The theory of modules over these rings are thus greatly simplified.
Recent litterature, on the other hand, is packed with (φ,Γ)-modules variants: see [Bre+23], [Bre+23], [Záb18b],
[Záb18a], [PZ21] and [CKZ21] for multivariable variants, see [EG23] for families. Zábrádi’s multivariable (φ,Γ)-
modules in characteristic p have

E∆ := FpJX1, . . . , Xn−1K[X−11 , . . . , X−1n−1]

for underlying ring. It is not a field anymore, leading to a projectivity condition on the essential image of Fontaine
type functors (see [Záb18b, Proposition 2.2] and [CKZ21, Theorem 4.6]). The article [CKZ21] even consider
perfectoid rings which are neither noetherian, nor domains. Keep in mind that for these perfectoid coefficient
rings, the abelianity of Modét (S, R) does not hold a priori.

For finite dimensional Fp-representations of GQp
, the underlying modules are finite projective over Fp. This is

preserved by scalar extension and taking of invariants (see Propositions 3.3 and 3.7).

Definition 2.12. The category of étale projective S-modules over R, denoted by Modétprj (S, R), is the full subcat-
egory of Modét (S, R) whose objects have a finite projective R-module of constant rank as underlying R-module.

Example 2.13. The R-module R with φs,R is again an object of Modétprj (S, R). This is surprising as φs was
not required to be injective. However, even if φ∗sR seen as an R-algebra from the right is the R-algebra R with
structural morphism φs and can have torsion, the map φ∗s,R only sees its R-algebra structure from the left.

Remark 2.14. For a group G acting on a ring R, the category Modétprj (G, R) is the category of R-semilinear
representations of G on finite projective modules of constant rank.

If R is a field, then Modétprj (S, R) and Modét (S, R) coincide.

Unfortunately, there is no general reason for Modétprj (S, R) to be abelian before to some Fontaine equivalence.

2.3 Closed symmetric monoidal structure

Our categories can be endowed with a closed symmetric monoidal structure and the internal Hom defined allows
us to recover the usual Hom set by taking invariants.

Proposition 2.15. Let D1, D2 be two objets of Mod (S, R).

1. For each s ∈ S the application

φs,D1
× φs,D2

: D1 ×D2 → D1 ⊗
R
D2, (d1, d2) 7→ φs,D1

(d1)⊗ φs,D2
(d2)

factors through D1 ⊗D2 as a φs-semilinear morphism, which we call φs,(D1⊗RD2).
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2. The map [s 7→ φs,D1⊗RD2
] endow (D1 ⊗R D2) with a structure of an S-module over R. It represents the

functor

Mod (S, R)→ Set, D 7→
{
f : D1 ×D2 → D

∣∣∣∣ f is R-bilinear
∀s, f ◦ (φs,D1

×φs,D2)=φs,D ◦ f

}
.

3. If D1 and D2 are objects of Modét (S, R), then (D1 ⊗R D2) is also étale and represents the same functor
from Modét (S, R).

4. If D1 and D2 are objects of Modétprj (S, R), then (D1 ⊗R D2) is also étale projective and represents the
same functor from Modétprj (S, R).

In each of these cases −⊗R − is a bifunctor.

Proof. 1. We give a proof so as to highlight the back and forth between semilinear morphisms and their
linearisations. Since φ∗s,D1

and φ∗s,D2
are R-linear, their tensor product is well defined. So we can consider

the R-linear composition

f∗s : φ∗s

(
D1 ⊗

R
D2

)
∼−→ φ∗sD1 ⊗

R
φ∗sD2

φ∗
s,D1
⊗φ∗

s,D2−−−−−−−−→ D1 ⊗
R
D2,

where the first isomorphism is a tensor product identity. The image of d1 ⊗ d2 under its delinearisation can
be computed as

f∗s (1⊗ (d1 ⊗ d2)) =
[
φ∗s,D1

⊗ φ∗s,D2

]
((1⊗ d1)⊗ (1⊗ d2)) = φs,D1(d1)⊗ φs,D2(d2).

This proves that φs,D1 × φs,D2 factors as a φs-semilinear morphism.

2. It remains to check that [s 7→ φs,(D1⊗RD2)] is a morphism of monoid. For this, the delinearised setup is
convenient. It is obvious using the property for D1 and D2 for pure tensors, then true by semilinearity.

For the universal property, show first that the usual bijection between {f : D1×D2 → D | f is R-bilinear}
and HomR(D1⊗RD2, D), natural in D, naturally restricts-corestricts in a bijection between the functor we
want to represent at D and HomMod(S,R)(D1 ⊗R D2, D). Then the naturality commutating squares of the
usual bijection for morphisms in Mod (S, R) restrict-corestrict on the previous subsets, giving naturality of
our transformation (then at the end naturality of the tensor product in D1 and D2).

3. Being of finite presentation is preserved by tensor product. In the first point, we had an explicit description
of φ∗s,(D1⊗RD2)

, which exhibits that it is an isomorphism as soon as φ∗s,D1
and φ∗s,D2

are. It proves that
(D1 ⊗R D2) is étale as soon as D1 and D2 are.

The representability follows from the fact that Modét (S, R) is a full subcategory of Mod (S, R).

4. It remains to show that D1 ⊗R D2 is finite projective of constant rank if D1 and D2 are. This follows from
the fact that finite projectivity is equivalent to being finite free locally on Spec(R) (cf. [Stacks, Tag 00NX]).

The representability follows from the fact that Modétprj (S, R) is a full subcategory of Mod (S, R).

Now that the tensor product is constructed, we can move on to constructing the internal Hom. While the tensor
product was already defined on Mod (S, R), the internal Hom only exists at the level of étale projective modules,
occasionally for étale modules.

Lemma 2.16. Let A be a ring, let M1 and M2 be two A-modules. Let f : A→ B be a ring morphism.

1. There exists a morphism of B-modules natural in both M1 and M2

ιM1,M2,f : B ⊗
A
HomA(M1,M2)→ HomA

(
M1, B ⊗A M2)

b⊗ f 7→
[
m1 7→ b⊗ f(m1)

]
Moreover, the target is naturally isomorphic HomB(B ⊗A M1, B ⊗A M2) and ιM1,M2,f can be rewritten
(b⊗ f) 7→ (b IdB ⊗ f).

2. If M1 is finite projective, the previous morphism is an isomorphism.

3. If M1 is of finite presentation and f is flat, the previous morphism is an isomorphism.
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4. If M1 and M2 are finite projective, then so is HomA(M1,M2)

Proof. 1. Left to the reader.

2. Proof can be found in [Stacks, Tag 0DBV].

3. Let’s take a presentation of M1 by an exact sequence Ap → Ad → M1 → 0. By the left exactness of
HomA(−,M2), the left exactness of HomA(−, B ⊗A M2) and the flatness of f we get a commutative
diagram for which the second point and of this proposition and the five lemma concludes.

4. The second point applied to localisations proves that the-OSpec(A)-modules HomOSpec(A)
(M̃1, M̃2) and

˜HomA(M1,M2) are isomorphic. Since the modules M1 and M2 are locally finite free, we deduce through
OSpec(A)-modules that HomR(M1,M2) is locally finite free.

Corollary 2.17. Let D1, D2 be two objects of Modétprj (S, R), then we have an isomorphism of R-modules:

∀s ∈ S, ιD1,D2,φs
: φ∗sHomR(D1, D2)→ HomR(φ

∗
sD1, φ

∗
sD2), 1⊗ f 7→ IdR ⊗ f.

The same result holds if each φs is flat, for D1 in Modét (S, R) and D2 in Mod (S, R).

We are ready to properly define the internal Hom.

Definition / Proposition 2.18. Let D1 belong to Modét (S, R) and D2 to Mod (S, R).
The R-module HomR(D1, D2) endowed with the linearisations

φ∗s,HomR(D1,D2)
: φ∗s(HomR(D1, D2))

ιD1,D2,φs−−−−−−→ HomR(φ
∗
sD1, φ

∗
sD2)

φ∗
s,D2
◦ − ◦(φ∗

s,D1
)−1

−−−−−−−−−−−−−−→ HomR(D1, D2)

is an S-module over R. We call it the internal Hom and write it HomR(D1, D2).
If both D1 and D2 belong Modétprj (S, R), then so do HomR(D1, D2).
If the ring R is noetherian and each φs is flat, this holds in Modét (S, R).

Proof. For the correct definition, it only remains to prove for all (s, s′) ∈ S2 that:

φss′,HomR(D1,D2) = φs,HomR(D1,D2) ◦ φs′,HomR(D1,D2).

For f ∈ HomR(D1, D2), we compute φs,HomR(D1,D2)(f). By delinearisation and description of ιD1,D2,φs , it is
equal to φ∗s,D2

◦ (Id⊗ f) ◦ (φ∗s,D1
)−1. Explicitly we get

φs,HomR(D1,D2)(f)

(∑
ri φs,D1

(di)

)
=
(
φ∗s,D2

◦ (Id⊗ f)
)(∑

ri ⊗ di

)
= φ∗s,D2

(∑
ri ⊗ f(di)

)
=
∑

ri φs,D2

(
f(di)

)
Any element of D1 can be written as

∑
riφss′,D1(di) thanks to the étaleness of D1. Using the above equality,

we obtain that φss′,HomR(D1,D2)(f) and
[
φs,HomR(D1,D2) ◦ φs′,HomR(D1,D2)(f)

]
coincide on such expressions,

hence on D1.
Corollary 2.17 for étale projective modules shows that ιD1,D2,φs

is an isomorphism, implying that the lineari-
sations φ∗s,HomR(D1,D2)

also are. The fourht point of Lemma 2.16 shows that HomR(D1, D2) is finite projective.
Consider the second case. The étale case of the corollary 2.17 proves again that the φ∗s,HomR(D1,D2)

are
isomorphisms. Moreover, if we take an epimorphism Rk ↠ D1, the deduced map

HomR(D1, D2)→ Dk
2

is injective. Then, the noetherianity of R implies that HomR(D1, D2) is of finite presentation.

Remark 2.19. First note that we have crucially used the étaleness of D1 to define the structural endomorphisms.

We can express our construction and its properties in a more appropriate language.

8

https://stacks.math.columbia.edu/tag/0DVB


Proposition 2.20. 1. Consider the bifunctor −⊗R− on Mod (S, R), the object R, coherence and swap maps
coming from the tensor product on R-Mod. They endow Mod (S, R) with the structure of a symmetric
monoidal category. The same holds for the full subcategory Modét (S, R).

2. The full subcategory Modétprj (S, R) with the same structure is closed symmetric monoidal. The right adjoint
to −⊗R D is HomR(D,−).

3. The previous point holds for the full subcategory Modét (S, R) if R is noetherian and each φs is flat.

Proof. Tensor product is a symmetric monoidal structure on R-Mod. Most of the proposition is obtained from
previous results and checking three facts. First, for objects of Mod (S, R), associators, unitors, and swap maps for
the underlying modules live in Mod (S, R). Second, the bifunctoriality morphisms for internal Hom on R-Mod
produces morphisms in Mod (S, R) when applied to morphisms in Mod (S, R). Finally, the adjunction bijection
in R-Mod restricts-corestricts to morphisms in Mod (S, R).

We conclude this study of internal Hom by recovering morphisms in Mod (S, R).

Proposition 2.21. Let D1 belongs Modét (S, R) and D2 to Mod (S, R). The S-module HomR(D1, D2) verifies
that ⋂

s∈S
HomR(D1, D2)

φs=Id = HomMod(S,R)(D1, D2).

Proof. Let s ∈ S . We use the expression of φs,HomR(D1,D2)(f) that we got while proving Proposition 2.18.
Applied to φs,D1

(d), it proves that if φs,HomR(D1,D2)(f) = f then f ◦ φs,D1
= φs,D2

◦ f . Conversely, if the
second equality holds, for every d =

∑
riφs,D1

(di), we have

φs,HomR(D1,D2)(f)(d) =
∑

ri φs,D2
(f(di)) =

∑
ri f(φs,D1

(di)) = f(d).

3 Operations on S-modules over R

A Fontaine type functor is decomposed as an extension of scalars followed by a taking of invariants. This chapter
introduces such operations on S-modules over R and its full subcategories.

3.1 Extension of scalars

First, we study the change of base ring.

Definition 3.1. The category S-Ring has for objects the S-rings introduced in Definition 2.3 and for morphisms
the S-equivariant ring morphisms a : R→ T .

When considering two S-rings R and T , we will note s 7→ φs the structural monoid morphism for R and
s 7→ φ′s the structural monoid morphism for T to avoid ambiguity.

Definition / Proposition 3.2. Let a : R→ T be a morphism of S-rings. Let D belongs Mod (S, R). We define

∀s ∈ S, φ′∗s,Ex(D) : φ′∗s

(
T ⊗

R
D

)
∼−→ T ⊗

R
(φ∗sD)

IdT⊗φ∗
s,D−−−−−−→ T ⊗

R
D.

With these data, the module (T ⊗R D) belongs to Mod (S, T ).
We define the functor

Ex : Mod (S, R)→ Mod (S, T ) , D 7→ (T ⊗R D) , f 7→ IdT ⊗ f.

Proof. We let the reader check that our construction is correct. It is nice to remark that the delinearisations verify

φ′s,Ex(D)(t⊗ d) = φ′s(t)⊗ φs,D(d).
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Proposition 3.3. For any S-rings morphism a : R → T , the functor Ex has the following interactions with the
previous chapter.

1. The functor Ex restricts-corestricts to étale (resp. étale projective) S-modules as follows

Ex : Modét (S, R)→ Modét (S, T )

and

Ex : Modétprj (S, R)→ Modétprj (S, T ) .

2. The functor Ex is strong symmetric monoidal. Thus, its restrictions to étale (resp. étale projective) modules
is too.

3. For all objects D1 of Modét (S, R) and D2 of Mod (S, R), there is a morphism in Mod (S, T )

Ex(HomR(D1, D2))→ HomT (Ex(D1),Ex(D2)),

given by the setup of a lax monoidal functor between two closed monoidal categories. The underlying
T -modules morphism coincides with ιD1,D2,a from Lemma 2.16.

If D1 belongs to Modétprj (S, R), it is an isomorphism6.

4. It is also an isomorphism if a is flat.

Proof. 1. Base change preserves both the finite presentation property, the finite projectiveness and the constant
rank. Moreover, the definition of φ′∗s,Ex(D) makes it an isomorphism as soon as φ∗s,D is one.

2. The base change on categories of modules is strong symmetric monoidal. We only need to check that
coherence maps for the underlying modules live in Mod (S, R).

3. Recall how we get this morphism. By adjonction, we have a morphism in Mod (S, R)

h : HomR(D1, D2)⊗
R
D1 → D2.

The composition

Ex (HomR(D1, D2)) ⊗
R
Ex(D1)→ Ex

(
HomR(D1, D2) ⊗

R
D1

)
Ex(h)−−−−→ Ex(D2),

whose first term is the coherence map for Ex, gives us the desired morphism by adjunction. In our context,
we know that h is set-theoretically given by f ⊗ d1 7→ f(d1) so we can compute to identify the obtained
morphism with ιD1,D2,a.

If both modules are projective, the second point of Lemma 2.16 tells us that ιD1,D2,a is an isomorphism.

4. Identical to point 3 with the third point of Lemma 2.16.

Remark 3.4. The forgetful functor from Mod (S, T ) to Mod (S, R) is a right adjoint to Ex. In fact, let D belongs
to Mod (S, R) and ∆ to Mod (S, T ). The adjunction bijection on underlying modules

HomR(D,∆)
∼−→ HomT

(
T ⊗

R
D,∆

)
, f 7→ [t⊗ d 7→ t f(d)]

restricts-corestricts to the maps in Mod (S, R) and Mod (S, T ).
For ∆ = Ex(D), the identity gives rise to a morphism

D → Ex(D), d 7→ 1⊗ d

in Mod (S, R). The definition of φ′s,Ex allows to take invariants and obtain a map⋂
s∈S

Dφs=Id →
⋂
s∈S

Ex(D)φ
′
s=Id.

6In other terms, Ex is closed monoidal on Modétprj (S, R).
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Proposition 3.5. Let D1 be an object of Modét (S, R) and D2 of Mod (S, R). The previous remark applied to
internal Hom and the third point of Proposition 3.3 gives a morphism in Mod (S, R)

HomR(D1, D2)→ Ex(HomR(D1, D2))
ιD1,D2,a−−−−−→ HomT (Ex(D1),Ex(D2)).

After taking invariants, Proposition 2.21 identifies it with a map

HomMod(S,R)(D1, D2)→ HomMod(S,T )(Ex(D1),Ex(D2)).

1. This application is the one given by functoriality of Ex.

2. Suppose that a is injective. Then, the functor Ex is faithful from Modétprj (S, R).

Proof. 1. Follow the image of f . It goes to 1⊗ f , then to IdT ⊗ f which is exactly Ex(f).

2. From the identification of Ex on morphisms, as soon as D1 and D2 are étale projective, the second point
of Lemma 2.16 implies that ιD1,D2,a is an isomorphism. We already proved that HomR(D1, D2) is again
finite projective, hence flat. Together with injectivity of a, it proves that the composition’s first part is
injective. The composition itself is injective and remains injective after taking invariants. It is precisely the
faithfulness condition.

3.2 Invariants by a normal submonoid

In this section, we move towards the second step of Fontaine type functors: taking invariants. We stick with an
S-ring R and add the datum of a normal submonoid7 S ′ of S. The subring RS

′
is endowed with a structure of

S/S ′-ring via the restriction-corestriction of each φs. The inclusion RS
′ ⊆ R is a morphism of S-rings.

Definition / Proposition 3.6. Let D be an object of Mod (S, R). Each φs,D restricts-corestricts to DS
′

and these

restrictions endow it with the structure of object in Mod
(
S/S′, RS

′
)

.

The functor Inv : Mod (S, R) → Mod
(
S/S′, RS

′
)

is defined by D 7→ DS
′

and by restriction-corestriction
of the maps.

In the same setup, we call comparison morphism for D the map

R⊗RS′ Inv(D)→ D,

where the first map is the base change of the inclusion, and the second one is r ⊗ d 7→ rd.

Proposition 3.7. Suppose that RS
′ ⊆ R is faithfully flat and that the comparison morphism for D

R ⊗
RS′

Inv(D)→ D

is an isomorphism.
If D belongs to Modét (S, R) (resp. to Modétprj (S, R)), then Inv(D) belongs to Modét

(
S/S′, RS

′
)

(resp. to

Modétprj

(
S/S′, RS

′
)

).

Proof. According to [Stacks, Tag 03C4] the fact that DS
′

is of finite presentation (resp. finite projective) can be
checked after base change to R, i.e. on D thanks to the comparison isomorphism. The étaleness condition can also
be checked after base change to R. Because RS

′ ⊆ R is S-equivariant, the base change of φsS′,DS′ is identified
to φs,D via the comparison morphism.

Corollary 3.8. Suppose that RS
′ ⊆ R is faithfully flat and that the comparison morphism is an isomorphism for

every (resp. étale, resp. étale projective) S-module over R. Then Inv is a strong symmetric monoidal functor from
Mod (S, R) (resp. Modét (S, R), resp. Modétprj (S, R)).

7We say that S′ is normal in S, noted S′ ◁ S, if ∀s ∈ S, sS′ = S′s. This condition allows to define a structure of monoid on the set of
left cosets and the obtained quotient satisfy the same universal property as group quotients. Beware that S might not be normal in itself, e.g.
M2(R), or more generally that the kernel of a monoid map might not be normal. Hence, the normal submonoids are not the only cases where
the universal property of quotients is easily understood.
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Proof. Let D1, D2 be S-modules over R (resp. and that they are étale, resp. and that they are étale projective).
There is a natural morphism of S/S ′-modules over RS

′
:

Inv(D1)⊗RS′ Inv(D2)→ Inv (D1 ⊗R D2) , d1 ⊗ d2 7→ (d1 ⊗ d2).

We check that it is an isomorphism after base change to R. The module D1 ⊗R D2 is still an (resp. étale, resp.
étale projective) S-module over R so its comparison morphism is an isomorphism. Moreover, naturally

R⊗RS′ (Inv(D1)⊗RS′ Inv(D2)) ∼= (R⊗RS′ Inv(D1))⊗R (R⊗RS′ Inv(D1)) .

We conclude by using the comparison morphisms for D1 and D2.

Proposition 3.9. Suppose that RS
′ ⊆ R is faithfully flat. For every étale D1 and D2 in Mod (S, R) for which

comparison morphisms are isomorphisms, there is a natural isomorphism of S/S ′-modules over RS
′

whose source
and target are correctly defined

HomRS′ (Inv(D1), Inv(D2))→ Inv (HomR(D1, D2)) .

In particular, if the comparison morphism is an isomorphism for every object in Modétprj (S, R), then the
functor Inv from this category is closed monoidal.

Proof. Thanks to Propositions 2.18 and 3.7, our objects are well defined. We also leave to the reader to check that
the scalar extension of the morphisms gives the predicted morphism.

Showing that it is an isomorphism can be checked after base change to R. Because the Inv(Di) are étale
projective, the fourth point of 3.3 applied to RS

′ ⊂ R identifies

R⊗RS′ HomRS′ (Inv(D1), Inv(D2)) to HomR (R⊗RS′ Inv(D1), R⊗RS′ Inv(D1))

and then to HomR(D1, D1) by the comparison isomorphisms.

I don’t see how to weaken the hypotheses of these Propositions. The invariant step of a Fontaine equivalence
behaves like descent (when it isn’t exactly descent). Hence, studying these comparison morphisms is the difficult
part8 (see [Záb18b] or [CKZ21] for the multivariable case). Even in the basic case, we recall in chapter 6 that it
relies on either Galois descent, or on counting points on an étale variety over an algebraically closed field, both of
which are rather deep results. Requiring this condition as a black box seems quite reasonable for a general setting.

We finish by a proposition that will be useful in chapter 4.

Proposition 3.10. Let D be a finite projective module over RS
′
. Suppose that

∀r ∈ RS
′
, ∃n ≥ 1, R[r∞] = R[rn]

Then, the map

c : D → Inv

(
R ⊗

RS′
D

)
is an isomorphism of RS

′
-modules. If D was an S/S ′-module over RS

′
, then c is an isomorphism of

S/S ′-modules over RS
′
.

Proof. If D is free, the isomorphism
R⊗RS′ D ∼= Rd

in Mod (S ′, R) concludes. In general, the module D is locally free. Choose r ∈ RS
′

such that D[r−1] is free over
RS

′
[r−1]. The S ′-ring structure on R extend to an S ′-ring structure on R[r−1]. According to the free case, the

map

D[r−1]→ Inv

(
R[r−1] ⊗

RS′ [r−1]
D[r−1]

)
is an isomorphism. Using that R has bounded r∞-torsion and that the RS

′
-module D is flat, we identify the

target of this isomorphism with Inv (R ⊗RS′ D) [r−1] and the isomorphism itself with c[r−1]. The map c is an
isomorphism locally on Spec(RS

′
), hence an isomorphim.

We let the reader check the equivariance when we have an S/S ′-action.

8Once the rings in play are constructed, which can be tricky.
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3.3 Coinduction to a bigger monoid

The previous section showed how to deal with taking of invariants and quotienting the considered monoid. This
section considers the adjoint construction: inflating the monoid. It is a construction I used in [Mar24b]. Coinduc-
tion for monoids mimics its analogue for groups. In the setting of groups, the reader might refer to [Wei94, §6.1
and §6.3].

Let S be a submonoid of a bigger monoid T . The forgetful functor from T -Set to S-Set has a right adjoint:
the coinduction denoted by CoindTS . Explicitely,

∀X ∈ S-Set, CoindTS (X) :=
{
f : T → X

∣∣ ∀s ∈ S, t ∈ T , f(st) = s · f(t)
}

with T -action given by t · f = [s 7→ f(st)]. The coinduction commutes to limits. Moreover, the evaluation at the
identity element of T induces a bijection [

CoindTS (X)
]T ∼−→ XS (*)

Proposition 3.11. 1) For any monoid S, the category of rings objects in S-Set is equivalent to S-Ring.
The coinduction induces a functor from S-Ring to T -Ring, whose ring structure on CoindTS (R) is the

termwise structure on functions from T to R.
2) For every S-ring R, the category of R-modules objects9 in S-Set is equivalent to Mod (S, R).

The coinduction induces a functor from Mod (S, R) to Mod
(
T ,CoindTS (R)

)
: if the map [λ : R×D → D]

is the external multiplication on D, the multiplication on CoindSS′(D) is given by

CoindTS (R)× CoindTS (D)
∼−→ CoindTS (R×D)

CoindT
S (λ)−−−−−−−→ CoindTS (D).

Proof. 1) A ring object in S-Set corresponds to an addition map, a neutral element, an opposite map and a
multiplication map which are S-equivariant and make the suitable diagrams commute. They give a ring structure,
and S acts by ring endomorphisms thanks to the equivariance of the diagrams.

Because coinduction naturally commutes with fiber products, the previous paragraph and [Mar23, Lemma
1.4] provide the desired promotion. The same lemma gives the description of the ring structure; for instance, the
multiplication is given by

CoindTS (R)× CoindTS (R)
∼−→ CoindTS (R×R)

CoindT
S (µR)−−−−−−−−→ CoindTS (R)

and we check that it corresponds to the pointwise multiplication on RT .
2) Similar.

Remark 3.12. The upgraded functor CoindTS from Mod (S,Z) to Mod (T ,Z) is a right adjoint to the forgetful
functor. The identity (*) and the fact that the coinduction is right adjoint to a left exact functor provides natural
isomorphism in D(Ab)

∀M ∈ Mod (S,Z) , R
(
MT

)
◦ RCoindTS ∼= R(MS).

After this rough setup, we give a certain number of useful results for groups then try to adapt them for monoids.

Lemma 3.13. LetH be subgroup of a group G.

1. For any G-ring R, the map
R→ CoindGH(R), r 7→ [g 7→ φg(r)]

is a morphism of G-rings.

2. Suppose that H is of finite index in G. Let R be a G-ring, T an H-ring and i : R → T a morphism of
H-rings. The first point produces a morphism of G-rings

j : R→ CoindGH(R)
CoindG

H(i)
−−−−−−→ CoindGH(T ).

For every D in Mod (G, R), the following map is an isomorphism in Mod
(
G,CoindGH(T )

)
:

CoindGH(T )⊗R D → CoindGH (T ⊗R D) , f ⊗ d 7→ [g 7→ f(g)⊗ φg,D(d)].

9See for instance [Mar23, Definition 1.3].
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Proof. 1) Left to the reader.
2) We leave it to the reader to check that it is a well-defined additive G-equivariant CoindGH(T )-linear mor-

phism and move on to the second morphism. Fix a system of distinct representativesR ofH\G. Left cosets form
a partition of G hence for anH-ring (resp. anH-abelian group) M , the map

evM : CoindGH(M) −−−−−−−−−→
f 7→(f(g))g∈R

∏
R

M

is an isomorphism of G-rings (resp. of G-abelian group). The action of g′ ∈ G on the right is defined by sending
(mg)g∈R to (φhg′,g (mkg′,g ))g∈R where kg′,g is the representative of g′−1g and g′−1g = hg′,gkg′,g .

For ourH-ring T , the R-algebra structure given by j identify to
∏

g∈R i ◦ φg .
Because [G : H] < +∞, the product overR is also a direct sum. It is possible to express the studied map for

D as the composition of the following bijections:

CoindGH(T )⊗R D

( ⊕
g∈R, R

T

) ⊗
⊕

g∈R
i◦φg, R

D
⊕
g∈R

(
T ⊗

i◦φg, R
D

)

CoindGH (T ⊗R D)
⊕
g∈R

(T ⊗R D)
⊕
g∈R

(
T ⊗R φ∗gD

)

evT⊗IdD (⊕tg)⊗d 7→⊕ (tg⊗d)

⊕(tg⊗dg) 7→⊕(tg⊗(1⊗dg))

ev−1
(T⊗RD)

⊕(IdT⊗φ∗
g,D)

This concludes.

Proposition 3.14. Let H be a finite index subgroup of a group G. Let R be an H-ring. The functor CoindGH from

Mod (H, R) to Mod
(
G,CoindGH(R)

)
satisfies the following properties:

1. It is essentially surjective.

2. It sends Modét (H, R) to Modét
(
G,CoindGH(R)

)
and its restriction-corestriction is essentially surjective.

3. It sends Modétprj (H, R) to Modétprj

(
G,CoindGH(R)

)
and its restriction-corestriction is essentially surjec-

tive.

Proof. 1. Apply the second point of the Lemma 3.13 to theH-ring morphism

i : CoindGH(R)→ R, f 7→ f(1G).

The corresponding morphism j is the identity on CoindGH(R) and thus exhibits D in Mod
(
G,CoindGH(R)

)
as the coinduction of R⊗i,CoindG

H(R) D.

2. Étalness is automatic for groups. In this setup with [G : H] < ∞, the coinduction coincide with the
induction, left adjoint to the forgetful functor. Hence, coinduction is right exact and commutes to finite
products. Applying coinduction on a finite presentation of D produces a finite presentation of CoindGH(R).

Moreover, any D is the coinduction of R⊗i,CoindG
H(R) D, which is finitely presentated as soon as D is.

3. It remains to show that being locally finite free of constant rank is preserved by coinduction. Let D be
an étale projective module. Let (ri)i∈I ∈ RI be a finite family such that each D[r−1i ] is free and whose
non-vanishing loci cover Spec(R). For all g ∈ R and i ∈ I , call ri,g the function in CoindGH(R) with
support on Hg such that ri,g(g) = ri. The localisation of CoindGH(R) at ri,g is isomorphic to R[r−1i ] and

CoindGH(D)[r−1i,g ] to D[r−1i ]. Moreover, the non-vanishing loci of the ri,g cover10 Spec
(
CoindGH(R)

)
.

Finally, any D is the coinduction of R⊗i,CoindG
H(R) D, which is finite projective as soon as D is.

Remark 3.15. We should be able to prove in this setup that the coinduction is strong symmetric monoidal and
commutes with internal Hom when it is defined. For monoids, finding the right setup seems really hard.

10The original covering hypothesis provides a family (r′i) such that
∑

i rir
′
i = 1. Thus,

∑
i,g ri,gr

′
i,g = 1.
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The finite index is crucial in Lemma 3.13 to allow the commutation of tensor product with the limit defining
the coinduction. We used that the induction, which has dual properties (left adjoint to the forgetful functor, defined
as a colimit, etc), coincides with coinduction.

To deal with submonoids S < T , we want tensor product and coinduction to commute again. Imposing the
finiteness of the index, defined as the cardinality of the set of the left cosets, is far too strong: the monoid N
doesn’t even have a finite index in itself, because the left cosets are contained in one another. As a first attempt,
replace it by the existence of a finite family of left cosets which is cofinal for the inclusion11. Something worse
happens since the left cosets can be neither disjoint nor included in one another; for example, if we take ∆ to be
the diagonal of N2, two maximal cosets of (2N)2+∆ in N2 are generated by (0, 1) and (1, 0) but contains (1, 2) in
their intersection. The coinduction is not the product over the maximal left cosets but a subobject. Choose Rmin

a system of distinct representatives12. For the maximal left cosets and define

L(Rmin) := {(s1, s2, t1, t2) ∈ S2 ×R2
min | s1t1 = s2t2}.

The set L(Rmin) becomes a poset by fixing that

∀s ∈ S, ∀(s1, s2, t1, t2) ∈ L(Rmin), (ss1, ss2, t1, t2) ≤ (s1, s2, t1, t2).

Then,

CoindTS (X) ∼=

{
(xt) ∈

∏
t∈Rmin

X

∣∣∣∣∀(s′1, s′2, s1, s2) ∈ L(Rmin), φs′1
(xs1) = φs′2

(xs2)

}
.

The condition φs′1
(xs1) = φs′2

(xs2) can be restricted to a cofinal family inL(Rmin). Note that the posetL(Rmin)
doesn’t depend on the chosen representatives up to isomorphism; we call it L. This leads to the following defini-
tion.

Definition 3.16. A submonoid S is of finite subtle index in another monoid T if there are finitely many maximal
left cosets for the inclusion, if these are cofinal, and if the maximal quadruples of L are finitely many and cofinal.

Remark 3.17. For Fontaine equivalences, monoids appear because of Frobenii on imperfect rings. In [CKZ21],
we encounter monoids like (fN)d < Nd, and I even stumbled upon (fN)d + ∆ < Nd myself. We could first
prove results for coinduction in a perfect setting then try to recover an imperfect version. However, this can be
more technical than introducing this monoidal setting.

Lemma 3.18. Let S < T .

1. Let R be a T -ring. The map
R→ CoindTS (R), r 7→ [t 7→ φt(r)]

is a morphism of T -rings.

2. Suppose that S is of finite subtle index inside T . Let R be a T -ring, let T be an S-ring and i : R → T an
S-ring morphism. As in Lemma 3.13, we obtain a morphism of T -rings R → CoindTS (T ). For any object

D of Modétprj (S, R), the following map is an isomorphism in Mod
(
T ,CoindTS (T )

)
CoindTS (T )⊗R D → CoindTS (T ⊗R D) , f ⊗ d 7→ [s 7→ f(s)⊗ φs,D(d)].

Proof. Similar to Lemma 3.13, with one little change: the finite subtle index implies that CoinduTS is a finite limit
and not anymore a direct sum, this we must use the flatness of D to ensure that the tensor product by D commutes
coinduction.

Proposition 3.19. Let S be a monoid of finite subtle index inside a monoid T . Let R be an S-ring. The essential
image of

CoinduTS : Modétprj (S, R)→ Mod
(
T ,CoindTS (R)

)
contains Modétprj

(
T ,CoindTS (R)

)
.

Proof. Similar to Proposition 3.14 using Lemma 3.18.
11This is equivalent to imposing that there are finitely many maximal elements and that they are cofinal.
12Be careful that for t ∈ S being a representative of t0S means that tS = t0S and not merely t ∈ t0S.
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Remark 3.20. It seems difficult to find a monoidal condition guaranteeing an analogous corollary for étale mod-
ules. The étalness of coinduced modules is hard to grasp; having non-empty intersections of cosets tends to make
the evaluation functions from the coinduction to the base module not surjective.

4 The category of S-modules over R with projective r-dévissage

This chapter introduces a subcategory of étale modules suitable for Zp-representations. Fontaine only considers
the rings Zp, OE and OÊur , which are discrete valuation rings. Thanks to the structure of finite type modules over
a discrete valuation ring, we have a lot of equivalent description (φ,Γ)-modules in the essential image of D.

We wonder which formulation of finite type Zp-representations’ properties are preserved by scalar extension
and taking of invariants with great generality. Each subquotient pnV/pn+1V is a finite Fp-vector space, hence
finite projective of constant rank. The same is true for the dévissage by V [pn+1]/V [pn]. It appears (see Theo-
rem 4.3) that for reasonable rings R, imposing finite presentation and the projectivity of the first dévissage have
many additional consequences. This allows to deal simultaneously with torsion-free representations, torsion rep-
resentations and their extensions. In addition, we can highlight that such condition suits dévissage strategies (see
Theorem 4.15).

We begin by a heavy theorem, which underlines that finite presentation and projectivity of the dévissage
impose a rigidity on modules.

Definition 4.1. A dévissage setup is a pair (R, r) where R is a ring and r ∈ R such that R is r-torsion-free,
r-adically complete and separated.

Definition 4.2. Let M be an R-module. We say that M has finite projective (r, µ)-dévissage if each rnM/rn+1M
is finite projective of constant rank as an R/r-module.

We say that M has finite projective (r, τ)-dévissage if each M [rn+1]/M [rn] is finite projective of constant
rank as an R/r-module.

Theorem 4.3. Let (R, r) be a dévissage setup. For every M ∈ R-Mod, the following are equivalent:

i) M is r-adically complete and separated with finite projective (r, µ)-dévissage.

ii) M is finitely presented with finite projective (r, µ)-dévissage.

iii) There exists N ≥ 1, a finite projective R-module of constant rank M∞ and an rN -torsion R-module with
finite projective (r, µ)-dévissage Mtors such that

M ∼= M∞ ⊕Mtors.

We also have that:

1. Any M satisfying the previous properties verifies

∀P ∈ R-Mod, P [r] = {0} =⇒ TorR1 (M,P ) = {0}.

2. Any M satisfying the previous properties has finite projective (r, τ)-dévissage.

3. Suppose in addition that K0(R/r) = Z, i.e. every finite projective R/r-module is stably free. Then the
three above conditions on an R-module M are also equivalent to

i) There exists N ≥ 1 and an isomorphism

M ∼= M∞ ⊕
⊕

1≤n≤N

Mn

where M∞ is a finite projective R-module of constant rank and each Mn is a finite projective R/rn-
module of constant rank.

Proof. The proof is spread in the appendix among thoerem A.2, Proposition A.4 and Theorem A.7.
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Remark 4.4. This fourth condition is not a priori preserved by a Fontaine type functor. Even if finite type Zp-
representations have such decomposition as Zp-modules as well as their base change to OÊur , preserving this
decomposition through taking of invariants (i.e. by Galois descent) would require such decomposition to be GQp

-
invariant.

Fix a non trivial character χ : GQp → Fp. Define

V :=
(Z/p2Z) e1 ⊕ Fpe2

with Zp-linear Galois action given by

σ · e1 = e1 + χ(σ)e2

σ · e2 = pχ(σ)e1 + e2

The only stable submodule of V [p] is V [p] ∩ pV which forbids a GQp
-invariant decomposition. Worst, no sub-

module isomorphic to Z/p2Z is stable by the Galois action. To see more similar examples (even for multivariable
variants) and computation of the associated (multivariable) (φ,Γ)-modules, see [Mar24a].

We add monoid action. We fix a monoid S for the rest of this chapter.

Definition 4.5. An S-dévissage setup is a pair (R, r) where R is an S-ring, where r ∈ R, such that (R, r) is a
dévissage setup and that the element r verifies

∀s ∈ S, φs(r)R = rR.

For an S-dévissage setup (R, r), the morphisms (φs)s∈S restrict-corestrict to an S-ring structure on R/r. The
quotient map R→ R/r is a morphism of S-rings.

Definition 4.6. Let (R, r) be an S-dévissage setup. The category Modétr-dv(S, R), called the étale S-modules
over R with projective r-dévissage, is the full subcategory of Modét (S, R) whose objects have an underlying
R-module with finite projective (r, µ)-dévissage.

Remark 4.7. The condition φs(R) ∈ rR alone would be sufficient to define a structure of S-ring on R/r. Here,
we impose that φs(R)R = rR to transmit the S-action from D to its two dévissages. Without this hypothesis,
φs,D sends D[r] to D[φs(r)] which might be a lot bigger. For similar reasons, even if φs(R) ∈ rR alone implies
that φs,D restricts to rnD, it might be zero modulo rn+1D and lose étaleness of the action.

Remark 4.8. We will use the modules with projective r-dévissage to find the necessary conditions on the essential
image of a Fontaine type functor for representations over OK with for K a local p-adic field. In every case I can
think of, the ring R will be a OK-algebra, r will be a uniformiser of OK and the φs will be at best OK-algebra
morphisms, at worst semilinear algebra morphisms with respect to Galois action on K. In any case, the condition
rR = φs(r)R is verified.

Our introduction of such dévissage setting aims to automate the "dévissage and passage to limit" steps of
Fontaine equivalences. The r-adic separation and completeness of R are thus essential conditions on a dévissage
setting for such strategy to make sense.

Lemma 4.9. Let (R, r) be an S-dévissage setup and D be an object of Modétr-dv(S, R).

1. For each r-torsion-free module P we have TorR1 (D,P ) = {0}.
2. For each n ≥ 0, the morphisms (φs,D)s∈S restrict-corestrict to rnD. With this S-action, rnD belongs to

Modétr-dv(S, R). Quotienting gives a structure of object of Modétprj (S,R/r) on each rnD/rn+1D.

3. For each n ≥ 0, the morphisms (φs,D)s∈S restrict-corestrict to D[rn]. With this S-action, D[rn] belongs
to Modétr-dv(S, R). Quotienting gives a structure of object of Modétprj (S,R/r) on each D[rn+1]/D[rn].

Proof. The vanishing of TorR1 only restates a part of Theorem 4.3.
Let n ≥ 0. By Theorem 4.3, the R-module D is r-adically complete and separated, thus rnD is also. Finite

projectivity for (r, µ)-dévissage of rnD comes from the dévissage of D. The Theorem 4.3 then proves that rnD
is finitely presented. In addition, the condition φs(r)R = rR allows to identify φ∗s,rnD to

φ∗s(r
nD) ∼= φs(r)

nφ∗sD = rn (φ∗sD)
∼−−−→

φ∗
s,D

rnD.

Hence rnD is étale.
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At the level of abelian groups, applying φ∗s is tensoring with R viewed as R-module via φs. As R is
φs(r)-torsion-free, Lemma A.3 proves the vanishing of TorR1 (Rφs

, r
nD/rn+1D); the exact sequence defining the

quotient rnD/rn+1D stays exact after passing to φ∗s . The five lemma concludes that rnD/rn+1D is étale (we
already knew it was finite projective).

For the (r, τ)-dévissage, use that rnD is still étale with finite projective dévissages. Hence, we can apply the
TorR1 -vanishing to rnD; the exact sequence

0→ D[rn]→ D
rn×−−−→ rnD → 0,

it is still exact after passing to φ∗s . Hence, the map φ∗s,D sends φ∗s(D[rn]) = (φ∗sD)[rn] to D[rn]. and the five
lemma concludes to the étaleness of D[rn]. As above, we can transmit étaleness to the quotient.

There is a reciprocal.

Lemma 4.10. Let (R, r) be an S-dévissage setup. Let D be an object of Mod (S, R) such that the underly-
ing R module is of finite presentation with finite projective (r, µ)-dévissage. If each rnD/rn+1D belongs to
Modétprj (S,R/r), then D belongs to Modétr-dv(S, R).

Proof. The first point of Theorem 4.3 makes φ∗s- and the formation of (r, µ)-dévissage commute. It implies that
the R-module φ∗sD is finitely presented with finite projective (r, µ)-dévissage. So the source and target of φ∗s,D
are both r-adically complete and separated; the fact that φ∗s,D is an isomorphisme will be deduced from the fact
that it is an isomorphism on each term of the (r, µ)-dévissage by dévissage and limit.

Proposition 4.11. Let (R, r) be an S-dévissage setup. The closed symmetric monoidal structure on Modét (S, R)
verifies that

1. The full subcategory Modétr-dv(S, R) of Mod (S, R) is closed under the symmetric monoidal structure.

2. If K0(R/r) = Z, this full subcategory is also closed under internal Hom.

1. Let D1 and D2 be objects of Modétr-dv(S, R). Let’s analyse the (r, µ)-dévissage of D1 ⊗R D2. Tensoring
the exact sequence corresponding to rD2 ⊂ D2 by D1, we obtain an exact sequence

TorR1 (D1/rD1, D2)→ rD1 ⊗R D2 → D1 ⊗R D2 (**)

where the image of the last morphism is r(D1⊗D2). As D1/rD1 is a finite projective R/r-module, pushing
further the analysis of Tor at the beginning of Lemma A.3 gives a identification

TorR1
(
D1/rD1, D

) ∼= D1/rD1 ⊗R/r D[r]

natural in D1 and D.

We will compute the connecting morphism at the left of (**). Consider the exact sequence

0→ R
r×−−→ R→ R/r → 0

and enhance it to an exact sequence of R-projective resolutions as follows

0 0 0 0 0

0 0 R R 0

0 R R⊕R R 0

0 R R R/r 0

Id

(−Id, r×) r×

i1

Id

p2

(r×)+Id

r×

To compute the connecting morphism, we tensor with D2, then apply the snake lemma from the kernel of
the right middle-height map (which is D2[r]) to the second-from-the-bottom left term (which is D2). This
morphism is merely the inclusion. Now fix d1 ∈ D1 and use the following morphism of exact sequences
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0 R R R/r 0

0 rD1 D1 D1/rD1 0

r×

×rd1 ×d1 ×d1

which gives us a commutative square with horizontal maps being connecting morphisms:

D2[r] ∼= TorR1
(
R/r,D2

)
D2

D1/rD1 ⊗R/r D2[r] ∼= TorR1
(
D1/rD1, D2

)
rD1 ⊗R D2

d1⊗− (rd1)⊗−

Because the upper horizontal map always identifies with the inclusion, the connecting morphism we look
for is

D1/rD1 ⊗R/r D2[r]→ rD1 ⊗R D2, d1 ⊗ d2 7→ rd1 ⊗ d2.

Hence, we obtain that
r(D1 ⊗R D2) ∼= rD1 ⊗R D2/D2[r].

As we only used the (r, µ)-dévissage of D1, we can apply the result to rD1 and D2/D2[r] to obtain

r2(D1 ⊗R D2) ∼= r2D2 ⊗R D2/D2[r
2].

Applying recursivement and taking quotients shows that

∀n ≥ 0, rn(D1 ⊗R D2)/rn+1(D1 ⊗R D2)
∼= (rnD1 ⊗R

D2/D2[r
n])/

(
rn+1D1 ⊗R

D2/D2[r
n+1]
)

∼=
(
rnD1/rn+1D1

)
⊗R/r

(
D2/(rD2 +D2[r

n])
)

The first term of this tensor product is finite projective over R/r because D1 ∈ Modétr-dv(S, R). The second
term is isomorphic to rnD2/r

n+1D2 as ()D2[r
n] + rD2)/rD2 is the kernel of

D2/rD2
rn×−−−→→ rnD2/rn+1D2.

Their tensor product is still finite projective.

2. Let D1 and D2 be objects of Modétr-dv(S, R). Theorem A.7 allows to fix two decompositions

D1 = D1,∞ ⊕
⊕

1≤n≤N

D1,n and D2 = D2,∞ ⊕
⊕

1≤n≤N

D2,n

where the Di,∞ are finite projective R-modules and the Di,n are finite projective R/rn-modules. We obtain
that

HomR(D1, D2) = HomR(D1,∞, D2,∞)⊕
⊕

1≤n≤N

HomR (D1,∞, D2,n)⊕
⊕

1≤i,j≤N

HomR (D1,i, D2,j)

= HomR(D1,∞, D2,∞)⊕
⊕

1≤n≤N

HomR/rn

(
D1,∞/rnD1,∞, D2,n

)
⊕

⊕
1≤i,j≤N

HomR/rmin(i,j)

(
D1,i/rmin(i,j)D1,j , D2,j [r

min(i,j)]
)

∼= HomR(D1,∞, D2,∞)⊕
⊕

1≤n≤N

HomR/rn

(
D1,∞/rnD1,∞, D2,n

)
⊕

⊕
1≤i,j≤N

HomR/rmin(i,j)

(
D1,i/rmin(i,j)D1,j , D2,j/rmin(i,j)D2,j ]

)
where the last isomorphism uses the two first points of Lemma A.5. Each module in the Hom sets is finite
projective over the corresponding ring. First, this implies that HomR(D1, D2) is finitely presented with

19



finite projective (r, µ)-dévissage (apply the fourth point of Lemma 2.16 multiple times then Theorem A.7).
Then, we remark that the previous isomorphism upgrades to an isomorphism of S-modules for Hom. Each
term on the right is étale (use the first point of Proposition 3.3 on each R→ R/rn) then the second point of
Proposition 2.20 applied for all the rings R/rn concludes that HomR(D1, D2) is étale.

We now study the preservation of such conditions by base change. Let (R, r) be an S-dévissage setup. Let a
be a morphism of S-rings a : R → T such that the pair (T, a(r)) is a dévissage setup. For all s, the condition
φs(r)R = rR implies that we have φs(a(r))T = a(r)T . This way, both S-rings R and T are suitable for the
dévissage strategy.

Proposition 4.12. In the setup above, the functor Ex sends Modétr-dv(S, R) to Modéta(r)-dv(S, T ).

Proof. The second point of Proposition 3.3 already tells that Ex(D) belongs to Modét (S, T ).
Let n ≥ 0. The R-module D/rnD is of rn-torsion with finite projective (r, µ)-dévissage and the ring T is

a(r)-torsion-free; Lemma A.3 implies that TorR1 (D/rnD, T ) = {0}, which translates into the injectivity of

T ⊗R rnD → T ⊗R D

deduced from the inclusion. Its image is a(r)n (T ⊗R D). The obtained isomorphism

T ⊗R rnD
∼−→ a(r)n (T ⊗R D)

being compatible with inclusions as n varies, we deduce that

a(r)n (T ⊗R D)/a(r)n+1 (T ⊗R D) ∼= T ⊗R rnD/rn+1D = T/a(r)⊗R/r r
nD/rn+1D.

By propositon 3.3, we conclude that Ex(D) has finite projective (a(r), µ)-dévissage.

Proposition 4.13. In the previous setup, suppose that K0(R/r) = Z. Then, the functor Ex is closed monoidal
from M odétr-dv(S, R).

Proof. By mimicking the proof of the third point of Proposition 3.3, we only need to prove that iD,D′,a from
Lemma 2.16 is an isomorphism as soon as D is of finite projective (r, µ)-dévissage. As usual, we decompose

D ∼= D∞ ⊕
⊕

1≤i≤n

Di.

Hence, we obtain that

HomR(D,D′) = HomR(D∞, D′)⊕
⊕

1≤i≤n

HomR/rn(Di, D
′[rn]).

Applying Lemma 2.16 for each term varying the ring gives the desired isomorphism.

We move towards the preservation through invariants. Let (R, r) be an S-dévissage setup. As in section
3.2, we fix a normal submonoid S ′ ◁ S and impose that r belongs to RS

′
. The pair (RS

′
, r) is automatically an

S/S ′-dévissage setup.

Proposition 4.14. In this setup suppose that:

• The inclusion RS
′ ⊂ R is faithfully flat.

• We have13

∀t ∈
(
RS

′
/r

)
, ∃n ≥ 1,

(
RS

′
/r

)
[t∞] =

(
RS

′
/r

)
[tn].

• The map RS
′
/r → (R/r)

S′
is an isomorphism14.

13This happens as soon as RS′
/r is reduced. All applications will satisfy this stronger condition.

14Because R is r-torsion-free, this is equivalent to H1(S′, R) being r-torsion-free.
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Let D be in Modétr-dv(S, R) such that the comparison morphism

R ⊗
RS′

Inv(D)→ D

is an isomorphism. Then Inv(D) belongs to Modétr-dv(S/S
′, RS

′
).

Proof. The Proposition 3.7 already tells us that Inv(D) belongs to Modét
(
S/S′, RS

′
)

.
Let n ≥ 0. Consider the commutative diagram:

rn (R ⊗RS′ Inv(D)) rnD

R ⊗RS′ rnInv(D)

∼

where the horizontal morphism is obtained by multiplying by rn the isomorphism of comparison. The diagonal
morphism is an isomorphism. Compatibility with inclusions as n varies gives an isomorphism in Mod (S, R) as
follows:

R ⊗
RS′

rnInv(D)/rn+1Inv(D)
∼−→ rnD/rn+1D

which identifies to an isomorphism in Mod (S,R/r):

j : R/r ⊗
RS′/r

rnInv(D)/rn+1Inv(D)
∼−→ rnD/rn+1D.

The comparison morphism for rnD/rn+1D and R/r appears horizontally in the commutative diagram:

R/r ⊗RS′/r Inv
(
rnD/rn+1D

)
rnD/rn+1D

R/r ⊗RS′/(r)) Inv
(
R/r ⊗RS′/r

rnInv(D)/rn+1Inv(D)

)

R/r ⊗RS′/r
rnInv(D)/rn+1Inv(D)

IdR⊗Inv(j)∼

j

∼IdR⊗c

where c is the morphism given at Proposition 3.10. We will apply this proposition after quick remarks.
The morphism RS

′
/r ↪→ R/r is faithfully flat because RS

′ ⊂ R is also. Hence, the condition on RS
′
/r

can be lifted to R/r. Finally, the isomorphism RS
′
/r → (R/r)

S′
finishes to prove that the ring R/r verifies the

conditions of Proposition 3.10.
Thanks to faithful flatness, the isomorphism j underlines that rnInv(D)/rn+1Inv(D) is finite projective over

RS
′
/r. We apply Proposition 3.10 to rnInv(D)/rn+1Inv(D) and R/r, obtaining that the morphism c is an

isomorphism. Now, the comparison morphism for rnD/rn+1D is an isomorphism and we use Proposition 3.7
with R/r and rnD/rn+1D to conclude that Inv(D) is of finite projective (r, µ)-dévissage.

This proposition uses the comparison isomorphism for R-modules to deduce them for all terms of the dévis-
sage. The following corollary explains how to lift the comparison isomorphisms.

Theorem 4.15. In the invariant dévissage setup, suppose that:

• The inclusion15 RS
′
/r ⊂ R/r is faithfully flat.

• We have H1(S ′,R/r) = {0}.
• For every object D of Modétprj (S,R/r) the comparison morphism

R ⊗
RS′

Inv(D)→ D

is an isomorphism.

15It is an injection because R is r-torsion-free.
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Then, the comparison morphism is an isomorphism for every object of Modétr-dv(S, R) and the functor Inv sends
Modétr-dv(S, R) to Modétr-dv(S/S

′, RS
′
) and is closed strong symmetric monoidal.

Proof. Our first reflex is to say roughly "by dévissage". If Theorem A.2 proved that objects in Modétr-dv(S, R)
are r-adically complete and separated, nothing garantee that the left term of their comparison morphism is. We
walk a tight path to prove that comparison morphisms are isomorphisms for every term of the (r, µ)-dévissage
then concludes for D itself.

Remark that we have dropped two hypothesis compared to Propositon 5.25. The fact that RS
′
/r → (R/r)

S′

is an isomorphism is proved on the way. The hypothesis on the torsion only aimed to recover the isomorphism

rnInv(D)/rn+1Inv(D)
∼−→ Inv

(
rnD/rn+1D

)
from the comparison isomorphism for D. Here it is first recovered differently.

Step 1: we prove that for an r-adically complete and separated S ′-module D over R, we have

H1(S ′, D) ∼= lim
←−

H1
(
S ′, D/rnD

)
.

Monoid cohomology is computed by cochain complexes; so we have exact sequences

0→ D/{d | ∀s, φs,D(d)− d ∈ r
n
D} ∼= (D/rn)/(D/rnD)

S′ d0

−→ Z1
(
S ′, D/rnD

)
→ H1

(
S ′, D/rnD

)
→ 0.

Passing to the limit, we obtain an exact sequence

0→ D/DS
′ d0

−→ Z1(S ′, D)→ lim←−
n

H1
(
S ′, D/rnD

)
→ R1 lim←−

n

D/{d | ∀s, φs,D(d)− d ∈ rnD}

The transition maps for the rightside system are surjective: it is Mittag-Leffler and the R1 lim vanishes.
Step 2: we prove that every finite projective étale S-module over R/r is S ′-acyclic.
There is a dévissage of each R/rn with subquotients isomorphic to R/r as S ′-abelian groups. With the coho-

mological hypothesis, dévissage tells that each H1(S ′,R/rn) vanishes. Thanks to step 1, we deduce that H1(S ′, R)
vanishes.

At this point, remark at this point that the hypothesis "R is r-torsion-free" and the cohomological one give that
RS

′
/r ∼= (R/r)

S′
. Hence, the inclusion (R/r)

S′
⊂ R/r is faithfully flat.

Now take a finite projective étale S-module D over R/r. Via the comparison morphism, it is isomorphic to

R/r ⊗(R/r)S′ Inv(D)

and Proposition 3.7 shows that Inv(D) is finite projective over (R/r)S
′
. Fix a presentation

Inv(D)⊕ P = (R
S′
/r)

k

giving a presentation

D ⊕
(
R/r ⊗RS′/r P

)
∼=
(
R/r ⊗RS′/r Inv(D)

)
⊕
(
R/r ⊗RS′/r P

)
∼=
(
R/r

)k
as S ′-module over R/r. Monoid cohomology commutes to direct sums, hence the vanishing of H1(S ′, R) implies
the vanishing of H1(S ′, D).

Step 3: go back to D belonging to Modétr-dv(S, R). Recall that by Lemma 4.9, the terms of the two dévis-
sages belong to Modétprj (S,R/r), so their comparison morphisms are isomorphisms. Step 2 proves that every
rnD/rn+1D is S ′-acyclic. Moreover D is of finite presentation hence complete and separated by Theorem 4.3.
Dévissage and step 1 implies the vanishing of H1(S ′, D). Using Lemma 4.9, we obtain this vanishing for each
rnD and each D[rn].

Step 4: the S ′-acyclicity of D[rn] used on the exact sequence

0→ D[rn]→ D
r×−−→ rnD → 0

implies that rnInv(D)→ Inv(rnD) is an isomorphism. The S ′-acyclicity of rn+1D, used on the exact sequence

0→ rn+1D → rnD → rnD/rn+1D → 0
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implies that Inv(rnD)/Inv(rn+1D) → Inv(rnD/rn+1D) is an isomorphism. Combined, this exhibits an iso-
morphism of S ′-modules over RS

′
/r between rnInv(D)/rn+1Inv(D) and Inv(rnD/rn+1D).

The comparison isomorphism for rnD/rn+1D descends finite projectivity to the (R/r)
S′

-module
Inv(rnD/rn+1D). The isomorphism with rnInv(D)/rn+1Inv(D) concludes that Inv(D) has finite projective
(r, µ)-dévissage. Moreover, D being r-adically complete and separated implies that Inv(D) is too. We can apply
Theorem 4.3 to show that Inv(D) is finitely presented. Hence, R ⊗RS′ Inv(D) is finitely presented, therefore
complete and separated by Theorem 4.3.

Step 5: generalising the previous step, we could obtain isomorphisms

∀n, k ≥ 0, rn(R⊗RS′ Inv(D))/rn+k(R⊗RS′ Inv(D)) ∼= R⊗RS′ Inv
(
rnD/rn+kD

)
compatible with reduction and multiplication. We can therefore use dévissage from the comparison isomorphisms
for each rnD/rn+1D to obtain the comparison morphism for D is an isomorphism modulo rn for each n ≥ 1.
Step 4 proved that the left side of the comparison morphism for D is r-adically complete and separated, and we
already new that the right side D, is complete and separated. Thus, it is an isomorphism.

Thanks to Proposition 3.7, we know that each Inv(rnD/rn+1D) belongs to Modétprj (S/S
′,RS′/r), hence Step

4 implies that each rnInv(D)/rn+1Inv(D) belongs to the same subcategory. Then Lemma 4.10 concludes that
Inv(D) belongs to Modétr-dv(S/S

′,RS′/r).
Step 6: it remains to show that the functor is closed strong symmetric monoidal. The isomorphisms between

RS
′
-modules that we must prove are between complete and separated ones. Hence, it suffices to proves that

the induced morphisms between their (r, µ)-dévissages are isomorphisms. For this, use the identifications of the
devissage of invariants proved above, the strategy of Corollary 3.8 and Proposition 3.9 and the fully faithfulness
of RS

′
/r ⊂ R/r.

Proposition 4.16. In the same setup, suppose that:

• We have H1(S ′,R/r) = {0}.
• We have

∀x ∈ RS
′
/r, ∃n ≥ 1, (R/r) [x∞] = (R/r) [xn].

Let D be a finitely presented RS
′
-module with finite projective (r, µ)-dévissage. Then, the map

c : D → Inv

(
R ⊗

RS′
D

)
is an isomorphism of RS

′
-modules. If D was an S/S ′-module over RS

′
, then c is an isomorphism of

S/S ′-modules over RS
′
.

Proof. As R is without r-torsion, the same arguments than in Lemma 4.10 shows that R⊗RS′ − commutes with
the formation of the (r, µ)-dévissage; hence (R⊗RS′ D) is a finitely presented R-module with finite projective
(r, µ)-dévissage. By Theorem 4.3, it is r-adically complete and separated and so is Inv (R⊗RS′ D). We obtained
that the source and target of c are r-adically complete and separated hence it is an isomorphism as soon as it is on
each term of the (r, µ)-dévissage.

Like in the proof of Theorem 5.26, we can show that for every finitely presented RS
′
-module with finite pro-

jective (r, µ)-dévissage (R⊗RS′ D) is S ′-acyclic. Hence, the functor Inv (R⊗RS′ −) commutes to the formation
of (r, µ)-dévissage. The isomorphisms for the (r, µ)-dévissage then follow from Proposition 3.10.

5 Adding topology

As mentionned in the introduction, number theory considers continuous Galois representations. For finite dimen-
sional Fp-linear representations of GQp continuity traditionally means smoothness, for finite type Zp-representations
this means continuity for the p-adic topology. These properties should impose topological conditions on Fontaine
type functors’ essential image. In the literature, P. Schneider’s book [Sch17] put aside, topological issues are
treated quickly (e.g. in [Fon91]), elusively (e.g. in [Záb18b] where it does not show up in proofs) or incorrectly.
An idea already existing in part of the literature is the equip finite type modules with a canonical topology we call
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the initial topology. This way, for a topological monoid S acting continuously on a topological ring R, continuity
of the action on an object of Mod (S, R) becomes a property. Therefore, this chapter aims to input topological
data in our categories of S-modules over R.

In this chapter, we fix S a topological monoid.

Definition 5.1. We define the category S-Ring of topological S-rings. Its objects are the S-rings R endowed
with a topological ring structure such that the underlying map

S ×R→ R, (s, r) 7→ φs(r)

is continuous. Its morphisms are the continuous morphisms of S-rings.

For this chapter we fix a topological S-ring R. Our first idea might be to define a general category of topo-
logical R-modules and even go to the condensed world, but looking back to representations we notice that finite
dimensional Fp-linear (resp. Zp-linear) representations are always endowed with a specific topology: the discrete
(resp. the p-adic) one. There is indeed an intrinsic topological structure on finite type modules (see [Sch17,
Section 2.2]).

Lemma 5.2. Let M be a finite type R-module and fix a quotient map π : Rk ↠ M . The quotient topology makes
M a topological R-module. Moreover, every R-linear map f from M to a topological R-module N is continuous
for this topology.

Proof. Quotient topology from a topological R-module is a topological R-module structure; we will give a bit of
the argument to familiarise the reader. We check that the external multiplication is continuous. Quotient topology
allows to check this after pre-composition by IdR × π. The following diagram is commutative, where the lower
map is the multiplication on Rk:

R×M M

R×Rk Rk

IdR×π π

The composition via the down-right corner is continuous and commutativity of the diagram concludes.
Now, let f be a R-linear map from M to a topological R-module N . Universal property of quotient topology

allows to check continuity on (f ◦ π). let (ei) be the canonical basis of Rk and ni = (f ◦ π)(ei).The following
diagram is commutative:

M N

Rk Nk

f

π

(ri)7→(rini)

∑

Seing (f ◦ π) as a composition via down-right corner highlights its continuity.

Definition / Proposition 5.3. For any finite type R-module M , the quotient topology given by a quotient map
doesn’t depend on the chosen quotient map; we call it the initial topology.

The functor from finite type R-modules to topological R-modules endowing them with initial topology is fully
faithful.

Proof. Applying Lemma 5.2 to IdN with two quotient topologies proves that IdN is an homeomorphism: the
topology doesn’t depend on the quotient map. The same lemma shows that any R-linear map between two finite
type R-modules is continuous if we see them with their weak topology. This is exactly the fully faithfulness
assertion.

This topology also behaves very well with respect to quotients.

Lemma 5.4. For any surjection p : M ↠ N of finite type R-modules, the quotient topology on N coming from
the initial topology on M is the initial topology on N .

Proof. Consider that for any quotient map π : Rk ↠ M , we have that (p◦π) is a quotient map for N and endows
it with initial topology. But as it factorises by π, the map (p ◦ π) induces the quotient topology associated to p.
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Definition 5.5. The category of topological étale S-modules over R, denoted by M odét(S, R), is the full sub-
category of Modét (S, R) whose objects have a continuous action map

S ×D → D, (s, d) 7→ φs,D(d)

for the initial topology on D.
The category of topological étale projective S-modules over R, denoted by M odétprj (S, R), is the full subcat-

egory of Modétprj (S, R) whose objects have a continuous action map

S ×D → D, (s, d) 7→ φs,D(d)

for the initial topology on D.

Example 5.6. If S has discrete topology, the continuity condition is automatic. It is equivalent to saying that all
φs,D are continuous endomorphisms. Then, for s ∈ S and (di)1≤i≤k a generating family of D, this is tested on
the map

Rk → D, (ri) 7→
∑
i

φs(ri)φs,D(di)

which is continuous.

Remark 5.7. The previous continuity condition is often implicitly used16 to treat continuity in literature.

It seems difficult to give a simple condition for continuity in general because the initial topology allows to test
the continuity after replacement of the module by a free one only at the source. It happens that the initial topology
behaves even better on finite projective modules. We illustrates both phenomena.

Lemma 5.8. Let D be an object of Modét (S, R) and π : Rk → D a quotient map. The module D belongs to
M odét(S, R) if and only if each

S → D, s 7→ φs,D(π(ei))

is continuous.

Proof. Assume each stated composition is continuous. We check continuity of the action map on the composition

S ×Rk IdS×π−−−−→ S ×D → D,

which happens to also decompose as

S ×Rk ∆S×IdRk−−−−−−→ S × (S ×R)
k IdS×((s,r)7→φs(r))

k

−−−−−−−−−−−−−→ S ×Rk (s,ri)7→
∑

riφs,D(π(ei))−−−−−−−−−−−−−−−→ D

hence is continuous.

Lemma 5.9. Let D be a finite projective R-module. Take a presentation of D as D ⊕D′ = Rk.

1. The topology induced as subset of Rk is the initial topology. In particular, it doesn’t depend on the chosen
presentation.

2. Suppose that D belongs to Modétprj (S, R). For each s ∈ S, the semilinear map

Rk π−→ D
φs,D−−−→ D ↪→ Rk

produces a matrix Ms,D. The module D belongs to M odétprj (S, R) if and only if the map s 7→ Ms,D is
continuous for the product topology on matrices.

Proof. 1. The Lemma 5.2 already establishes that the initial topology is the finest. The projection π : Rk→D
coming from the presentation induces the initial topology. An open for the initial topolgy is U ⊆ D such
that π−1(U) = U ⊕D′ is open in Rk. For such open, we have (U ⊕D′) ∩D = U hence U is open for the
induced topology.

16Or explicitely stated in [Sch17].

25



2. Because the initial topology on D is simultaneously the quotient topology from π and the induced topolgy
from the inclusion, the continuity of S ×D → D on the composition:

S ×Rk IdS×π−−−−→ S ×D → D
i−→ Rk.

If s 7→ Ms,D is continuous, this composition also decomposes as

S ×Rk ∆S×IdRk−−−−−−→ S × (S ×R)
k IdS×

[
(s,r)7→φs(r)

]k
−−−−−−−−−−−−−→ S ×Rk (s,v)7→Ms,D(v)−−−−−−−−−−→ Rk

hence is continuous.

Conversely, fix di = π(ei). The map sending s to the (i, j)-th coefficient of Ms,D is the composition

S IdS×di−−−−−→ S ×D → D
ι−→ Rk pj−→ R

which is continuous.

Proposition 5.10. The full subcategory M odét(S, R) of Modét (S, R) is a monoidal subcategory.
The same is true for M odétprj (S, R).

Proof. We check the stability by tensor product. Let D1 and D2 be objects of M odét(S, R). The third point of
Proposition 2.15 already proves that their tensor product is étale. It remains to check continuity. Fix two quotient
maps πl : Rkl ↠ Dl. Because (π1(ei) ⊗ π2(ej))(i,j)∈J1,k1K×J1,k2K generates D1 ⊗R D2, Lemma 5.8 allows to
check continuity on each

S → D1 ⊗R D2, s 7→ φs,D1
(π1(ei))⊗ φs,D2

(π2(ej)).

They decompose as

S
s7→(φs,D1

(π1(ei)),φs,D2
(π2(ej))−−−−−−−−−−−−−−−−−−−−−→ D1 ×D2

(d1,d2)7→d1⊗d2−−−−−−−−−−→ D1 ⊗R D2.

The first morphism is continuous because D1 and D2 both belong to M odét(S, R). Continuity of the second one
can be checked after pre-composition by each πl’s; in the following commutative diagram

Rk1 ×Rk2 Rk1k2

D1 ×D2 D1 ⊗R D2

(ri,rj) 7→(rirj)

π1×π2 π1⊗π2

the composition via the up-right corner emphasises continuity.
The ring R is an object of M odét(S, R) precisely because it is a topological S-ring.
The projective version uses the fourth point of Proposition 2.15 rather than the third.

Finding an adjoint is harder and require additional conditions on the topological ring. We begin by a general
technical lemma.

Lemma 5.11. Let A be a topological ring. Let M be a finite projective A-module with its initial topology. Let
(m1, . . . ,mk) be a generating family of M .

1. For every neighbourhood U of 0 in Ak, there exists a neighbourhood V of 0 in M such that

∀m ∈ V, ∃(ai) ∈ U, m =

k∑
i=1

aimi.

2. Supppose that A× is open in A. There exists a neighbourhood of (m1, . . . ,mk) in Mk such that every
family of in this neighbourhood is generating.

3. Suppose that one of the following is verified

a) The subset A× is open in A and the inverse map is continuous on A×.

26



b) The topological ring A is a Huber ring17.

We can improve the first result. For every neighbourhood U of 0 in Ak, there exists a neighbourhood W of
(m1, . . . ,mk) in Mk and a neighbourhood V of 0 in D such that

∀d ∈ V,∀(m′i) ∈W s.t. (m′i) is generating, ∃(ai) ∈ U, d =
∑

aim
′
i.

In the first case, we can drop the condition "(m′i) is generating".

These results can be rephrased as "small neighbourhoods of 0 in M have elements expressed uniformly with
small coordinates in the family (mi) (resp. in all close enough families)".

Proof. 1. We can reformulate the result by saying that

p : Ak →M, (ai) 7→
k∑

i=1

aimi

is open. This quotient map is indeed open because the initial topology on M is the associated quotient
topology.

2. The group GLk(A) is open in Mk(A) with product topology on coefficients as the inverse image of A× by
the determinant. Let (U1, . . . , Uk) be neighbourhoods of the canonical basis of Ak such that the open

∏
Ui

of Ak2

= Mk(A) is contained in GLk(A). Because p is open, there exist opens (V1, . . . , Vk) of M such
that

∀j, ∀v ∈ Vj , ∃(ai,j)i ∈ Uj , m =
∑

ai,jmi.

The open
∏

Vj is suitable: all its families are image by p of families in
∏

Uj which are all basis of Ak.

3. First treat the case where A× is open with continuous inverse map. There, invertible matrices form an open
of Mk(A) with continuous inverse map. Let U be a neighbourhood of 0 in Ak. By continuity of

GLk(A)×Ak → Ak, (M,v) 7→M−1v,

there exists a neighbourhood of identity Wmat ⊂ GLk(A) and a neighbourhood U ′ of 0 in Ak contained in
the inverse image of U . Looking closer the previous paragraph, we already established that there exists a
neighbourhood W of (m1, . . . ,mk) in Mk such that

∀(m′i) ∈W, ∃M ∈Wmat, m′i =
∑

Mi,jmj .

Moreover, there exists a neighbourhood V of 0 in M such that every element of V can be expressed on the
family (mi) with coordinates in U ′. For d ∈ V , choose ai ∈ U ′ such that d =

∑
i aimi. We have

d =
∑
j

(∑
i

ai(M
−1)i,j

)
mj =

∑
j

(M−1(ai)i)jmj

and the coordinates belong to U by construction.

Move on to the case where A is a Huber ring. Fix a ring of definition A0 and an ideal of definition I . It is
sufficient to prove the result for U = (In)k. Let V be a neighbourhood of 0 in M that the first point of this
lemma furnishes for (In)k and (mi). Set W =

∏
i(mi +V ) which is a neighbourhood of (mi) in Mk. For

(m′i) ∈W and d ∈ V , we begin by finding (ai) ∈ (In)k such that

d =
∑
i

aimi =
∑
i

aim
′
i +
∑
i

ai(mi −m′i).

Because each (mi −m′i) belongs to V , we find (aj,i) ∈ (In)
k2

such that

d =
∑
i

aim
′
i +
∑
i

∑
j

ajaj,i

mi =
∑
i

ai +
∑
j

ajaj,i

m′i +
∑
i

∑
j

ajaj,i

 (mi −m′i).

17A weaker condition, but less pleasant to state is sufficient. For a subset X in a ring A, call Xn× the subgroup generated by
{x1 . . . xn | (xi) ∈ Xn}. We only need a basis of neighbourhoods of 0 which are individually stable by sum, product, and whose fam-
ily of multiplications Xn× is final among neighbourhoods of 0. Also note that if A is a complete Huber ring, it verifies the first condition.
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By repeating the operation, one finds two families (ai,l) ∈ (In)k and (si,l) ∈ (Inl)k satsifying

d =
∑
i

ai,lm
′
i +
∑
i

si,l(mi −m′i).

The sequel [
∑

i si,l(mi −m′i)] converges to zero; then the first point of this lemma for (m′i) tells that for l
big enough, there exists (ai,∞) ∈ (In)k such that∑

i

si,l(mi −m′i) =
∑
i

ai,∞m′i.

This concludes.

Remark 5.12. Conditions of the third point are both verified by almost all the rings we use for (φ,Γ)-modules.
Even if the proof using the first condition is less convoluted, the second condition seems easier to obtain because
our rings are systematically constructed as Huber pairs even if they are not domains, nor complete (e.g. the ring
Esep

∆ in [Záb18b]).

We come back to the setup of a topological S-ring R.

Proposition 5.13. When the condition of Proposition 5.13’s third point is satisfied by R, the full subcategory
M odétprj (S, R) of Modétprj (S, R) is stable by internal Hom.

Thus, the symmetric monoidal structure of Proposition 5.10 is closed.

Proof. To prove that HomR(D1, D2) is topological étale projective (étale projective is already established), we
begin18 by proving that the initial topology on HomR(D1, D2) is the pointwise convergence topology for the
initial topology on D2 (i.e. induced by the product topology on map from D1 to D2). Let Di ⊕ D′i = Rki be
presentations of the Di’s. The R-module HomR(D1, D2) is direct summand of the free module HomR(R

k1 , Rk2)
as

HomR(D1, D2) = {f ∈ HomR(R
k1 , Rk2) |D′1 ⊂ Ker(f) and Im(f) ⊂ D2}.

The initial topology on HomR(D1, D2) is henceforth obtained from this presentation. It happens that the topology
on the free module HomR(R

k1 , Rk2) ∼= Rk1k2 is the pointwise convergence; in addition, the initial topology on
D2 is induced from Rk2 so the initial topology on HomR(D1, D2) is the pointwise convergence topology. To
show that HomR(D1, D2) is topological, it remains to show that

∀d ∈ D1, S ×HomR(D1, D2)→ D2, (s, f) 7→ φs,HomR(D1,D2)(f)(d) is continous.

Denote by (di) the components in D1 of the canonical basis of Rk1 . Fixing an expression d =
∑

i riφs,D1
(di),

we already computed that

φs,HomR(D1,D2)(f)

(∑
i

riφs,D1
(di)

)
=
∑
i

riφs,D2
(f(di)).

Let (s, f) be a pair and U2 an open neighbourhood of (s, f)’s image in D2. Let U be a neighbourhood of 0 in
Rk1 and (W1 ×W2) a open neighbourhood (s, f) such that

∀(ti, s′, g) ∈ U ×W ×W2,
∑
i

(ri + ti)φs′,D2(g(di)) ∈ U2.

This is possible because D2 belongs to M odétprj (S, R) and the initial topology on the internal Hom is the point-
wise topology. Thanks to D2’s étaleness, the family (φs,D1

(di))i is generating and the third point of Lemma
5.11 constructs special neighbourhood V of 0 in D2 and an neighbourhood W of (φs,D1

(di))i in Dk. Finally, fix
W ′1 ⊆ W1 such that

∀s ∈ W ′1,
∑
i

ri [φs,D1
(di)− φs′,D1

(di)] ∈ V and (φs′,D1
(di))i ∈W,

18It seems possible to explicitely determine Ms,HomR(D1,D2) but the subtleties would stay the same, however hidden under proliferation
of indexes.
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thanks to the continuity of S-action. For every (s′, g) ∈ W ′1 ×W2, we have

d =
∑
i

riφs′,D1
(di) +

∑
i

ri [φs,D1
(di)− φs′,D1

(di)]

whose second half can be re-expressed as (
∑

i tiφs′,D1
(di)) for some (ti)i ∈ U . Thus,

φs′,HomR(D1,D2)(g)(d) =
∑
i

(ri + ti)φs′,D2(g(di))

which belongs to U2.

This chapter will end by studying how these topological constructions interact with our previous operations
and variations.

Let a : R→ T be a morphism of topological S-rings.

Proposition 5.14. The functor Ex defined in section 3.1 sends M odét(S, R) to M odét(S, T ). It also sends
M odétprj (S, R) to M odétprj (S, T ) and is strong symmetric monoidal.

When the condition of Proposition 5.13’s third point is satisfied by R, the image of Ex is closed under internal
Hom and Ex naturally commutes to internal Hom.

Proof. The first point of Proposition 3.3 already establishes that Ex sends M odét(S, R) to Modét (S, T ) and
M odétprj (S, R) to Modétprj (S, T ). Only topological conditions remain.

Fix D ∈ M odét(S, R) and a quotient map π : Rk → D. The familiy (1 ⊗ π(ei)) is generatin in T ⊗R D,
hence Lemma 5.8 reduces continuity to checking that each

S → T ⊗R D, s 7→ 1⊗ φs,D(π(ei))

is continuous. These maps decompose as

S s7→φs,D(π(ei))−−−−−−−−−→ D
d 7→1⊗d−−−−−→ T ⊗R D

where the first map is continuous because D is topological. Continuity of the second can be checked after pre-
composition by π; we look at the following commutative diagram:

Rk T k

D T ⊗R D

∏
a

π IdT⊗π

whose path via the upper-right corner emphasises the continuity.
Results on the (closed) symmetric monoidal structure are deduced from the results on Modétproj.

Add the datum of a normal submonoid S ′ of S and endow the quotient monoid SS ′ with the quotient topology.
It becomes a topological monoid. The ring RS

′
endowed with the induced topology from R belongs to S/S ′-Ring.

The inclusion RS
′ ⊂ R is a morphism of topological S-rings.

Proposition 5.15. Let D belongs to M odétprj (S, R). Suppose that RS
′ ⊂ R is faithfully flat and that the compar-

ison morphism
R⊗RS′ Inv(D)→ D

is an isomorphism. Then Inv(D) is an object of M odétprj

(
S/S′, RS

′
)

.

Proof. Thanks to Proposition 3.7, we already know that Inv(D) belongs to Modétprj

(
S/S′, RS

′
)

. Fix a presen-

tation of Inv(D) as direct summand of a finite free RS
′
-module. If we base change this presentation to R, the

comparison isomorphism identifies it as a presentation of D as direct summand of a finite free R-module. There-
fore, the induced topology on Inv(D) from the initial topology on D is the initial topology. The continuity
condition follows directly from the continuity on D.
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Remark 5.16. It seems difficult to obtain such proposition in general for M odét(S, R) because, for a finitely pre-
sented RS

′
-module D, nothing garantuee that the initial topology on Inv(D) coincides with the induced topology

from the initial topology on D. Hence checking continuity after base change fails.
It could be true if RS

′
and R were both noetherian Tate ring with zero converging sequence of units (see

[Hen14, Theorem 2.12]). Unfortunately, comparison rings like Esep
∆ in [Záb18b] are not.

Studying the interaction between topology and coinduction seems wild19. To keep things easy, we impose
conditions that are verified in some concrete setup, though I don’t claim that they are optimal. Suppose that S is a
submonoid of a bigger topological monoid T , with induced topology. The coinduction of a ring will be endowed
with the limit topology seeing coinduction as a big equaliser.

Lemma 5.17. 1. The limit topology on the coinduction CoindTS (R) is the pointwise convergence on functions.

2. Suppose that for every t ∈ T and U open in S, the set (Ut) is open20 (in particular S is open in T ), then
CoindTS (R) with limit topology is a topological T -ring.

Proof. 1. The limit is indexed by a poset with minimal vertices indexed by T . Because the transition maps are
expressed a some of the continuous maps φs, the limit topology is the induced topology from the product
over T . It is the pointwise convergence of functions.

2. Thanks to the first point, we only need to prove that for every t0 ∈ T , the map

T × CoindTS (R)→ R, (t, f) 7→ (t · f)(t0) = f(t0t)

is continous. Let (t1, f1) belongs to the source and W be a neighbourhood of f1(t0t1) in R. By continuity
of the S-action on R, there exists an neighbourhood (U ×V ) of (eS , f1(t0t1)) in (S ×R) whose image lies
in W . Thanks to hypothesis Ut0t1 is a neighbourdhood of t0t1 in T , thus continuity of T ’s law produces a
neighbourhood V of t1 in T such that t0V ⊂ Ut0t1. Then,

∀(t, f) ∈ V × {f | f(t0t1) ∈ V }, ∃s ∈ S, f(t0t
′) = φs(f(t0t1))

hence belongs to W .

Proposition 5.18. Suppose that for every t ∈ T and U open in S, the set (Ut) is open and that S is of finite subtle
index in T . Then, the essential image of

CoinduTS : M odétprj (S, R)→ Mod
(
T ,CoindTS (R)

)
contains M odétprj

(
T ,CoindTS (R)

)
.

Proof. The topology on CoindTS (R) being the pointwise convergence topology, the evaluation at the identity of
T is a continuous S-ring morphism. Then the proof is the same as in 3.19, using the isomorphism of Lemma 3.18
and the fact that Ex preserves continuity which is Proposition 5.14.

We move on to dévissage setups. Preserving continuity happens to be subtle. In Fontaine’s original setup, the
exact sequences of OÊur -modules or OE -modules like

0→ pD → D → D/pD → 0

used to apply dévissage on (φ,Γ)-modules are strict for the p-adic topology and for both the initial topology
coming from the weak topoogy. However for this second topology, it relies on the structure theorem for finite
type modules over a discret valuation ring. The strategy in the general case is less obvious. Worst, as we said in
remark 5.16, taking invariants doesn’t respect the initial topology if we don’t have a strucure theorem on modules
(or specific noetherian Tate rings).

Fix a dévissage setup (R, r) and a structure of S-ring on R such that ∀s ∈ S, φs(r)R = rR. The restrictions-
corestrictions of φs make R/r belong to S-Ring.

19We could define a continous version of coinduction, which would only contain continuous function from T to the topological space (resp.
ring, resp. module). This would have the desired adjunction property and need the space (resp. the ring) to have a continous action of S so
as to have a chance to get more elements that Z-valued functions. In suitable settings, we could endow the coinduction with compact-open
topology and unravel our propositions. However, such a general setting didn’t occur in my work.

20This is not implied by S being open: it is wrong for Mn(R) seen as a submonoid of itself.
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Definition 5.19. The category M odétr-dv(S, R) is the intersection of the full subcategories M odét(S, R) and
Modétr-dv(S, R).

Proposition 5.20. Suppose that the condition of Proposition 5.13’s third point is verified by R. Suppose in
addition that K0(R/r) = Z. Then, the subcategory M odétr-dv(S, R) is stable by internal Hom.

Proof. First consider that both R× being open with continuous inverse map and R being Huber imply the analo-
gous condition on each R/rn. Then use Proposition 5.13 on each term of HomR(D1, D2)’s decomposition in the
proof of Proposition 4.11’s second point.

Remark 5.21. As R is r-adically complete, R× is automatically open with continuous inverse map for the r-adic
topology. Even for coarser topologies, completeness greately simplifies the proof of such condition.

Fix a morphism a : R→ T of topological S-rings and suppose that (T, a(r)) is a dévissage setup.

Proposition 5.22. The functor Ex sends M odétr-dv(S, R) to the full subcategory M odéta(r)-dv(S, T ), it strong
symmetric monoidal.

If the conditions of Proposition 5.20 are verified by R, its image is stable by internal Hom and naturally
commutes the formation of internal Hom.

Proof. Combine Propositions 4.12 and 5.14.

We add the datum of a normal submonoid S ′ and suppose that r ∈ RS
′
. If we are willing to adapt corollary

5.26 to our topological setting, it turns out that we need to be a little more subtle about the categories we consider21.
Precisely, we want to allow the action of the normal submonoid S ′ to be continuous for another better behaved
topology, so as to analyse the comparison morphism with respect to this topology, then transfer continuity with
respect to another. In addition, as we did not obtain a preservation of continuity for étale modules by Inv, we put
ourselves in a setup where we can use Theorem A.7.

Definition 5.23. Let (R, r) be a dévissage setup and T ′ be a ring topology on R. We say that T ′ has good
r-dévissages properties if for all finitely presented R-module D with finite projective (r, µ)-dévissage, the initial
topology on the R-module D induces the initial topology on the R-module rD and on the R/r-module D[r].

Definition 5.24. Let (R, r) be a dévissage setup. Let S be a topological monoid and add a structure of S-ring
on R. Fix a topology T on R making the S-ring structure a topological S-ring structure. Let S ′ be a normal
submonoid (with induced topology) and T ′ be a topology on R enhancing it to a topological S ′-ring. We suppose
that r ∈ RS

′
as before Theorem 5.25.

We define M odétr-dv(S, S ′, R) as the full subcategory of M odétr-dv(S, R) for the topology T on R formed by
objects D such that the forgetful functor to Mod (S ′, R) sends D into M odét(S ′, R) for the topology T ′ on R.

Proposition 5.25. In the setup above, suppose in addition that:

• The map RS
′
/r → R/r is faithfully flat

• The map RS
′
/r ↪→ (R/r)

S′
is an isomorphism22.

• We have K0(RS′/r) = Z.

let D be an object of M odétr-dv(S, S ′, R). If the comparison morphism

R⊗RS′ Inv(D)→ D

is an isomorphism, then Inv(D) belongs to M odétr-dv(S/S
′, RS

′
).

Proof. Proposition 4.14 tells that Inv(D) belongs to Modétr-dv(S/S
′, RS

′
). Continuity remains to prove.

Suppose proved that the initial topology on Inv(D) is induced by the inclusion into D with initial topology.
Take (di) a generating family of Inv(D). Combining Lemma 5.8 and this assumption, continuity of the action can
be checked on each

S/S ′
sS′ 7→φs(di)−−−−−−−−→ Inv(D)→ D,

21see remark 6.1 to understand how H1
cont(S′,R/r) might not vanish for the only reasonable topology making the S-action continuous.

22This is true for instance as soon as H1
cont(S′, R) is r-torsion-free for any topology coarser than the r-adic. Here we already see that the

properties for the topology T comes without any cost.
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which are continuous thanks to continuity on D.
It happens that K0(RS′/r) = Z allows to prove the topological assumption. Thanks to Theorem A.7, we have

a decomposition
Inv(D) = D′∞ ⊕

⊕
1≤n≤N

D′n

which translates thanks to the isomorphism of comparison into the identification of Inv(D) ⊂ D as the direct
sum of D′∞ ⊂ R ⊗RS′ D′∞ and each D′n ⊂ (R/rn)⊗RS′/rn D′n. The inclusion RS

′ ⊆ R induces by definition
the topology on RS

′
. Moreover, on D′n (resp. R ⊗RS′ D′n) the initial topology as finite type RS

′
-module (resp

R-module) and finite type RS
′
/rn-module (resp R/rn-module) coincide23. This show that the induced topology

on Inv(D) is the initial one.

Theorem 5.26. In the setup of Definition 5.24, suppose that:

• The map RS
′
/r → R/r is faithfully flat.

• We have K0(RS′/r) = Z.

• The topology T ′ is coarser that the r-adic topology and has good r-dévissages properties.

• We have H1
cont(S ′,R/r) = {0}.

• For every D in M odétprj (S, S ′,R/r) the comparison morphism

R ⊗
RS′

Inv(D)→ D

is an isomorphism.

Then, the comparison morphism is an isomorphism for every object of M odétr-dv(S, S ′, R) and the functor Inv
sends M odétr-dv(S, S ′, R) to M odétr-dv(S/S

′, RS
′
) and is strong symmetric monoidal. It is closed monoidal as

soon as R× is open with continuous inverse map or if R is a Huber ring with ideal of definition generated by
elements of RS

′
.

Proof. Follow closely Theorem 4.15 to prove that for every D in M odétr-dv(S, S ′, R), the comparison morphism
is an isomorphism. Remark that the step 1 works for continous cohomology: because T ′ is a ring topology,
coarser than the r-adic topology, each r-adically complete and separated finite type module D satisfy

D ∼= lim
←

D/rnD

in the category of topological groups, equipping D with the initial topology and each term of the limit with
quotient topology. Also remark that only continuous S ′-cohomology is needed for step 2, and that the good r-
dévissages properties implies that all considered exact sequences in steps 3 and 4 are strict exact sequence of
topological abelian groups. Then use Proposition 5.25 for the topological S-ring R with T . The fact that it is
strong symmetric monoidal, closed in some case, doesn’t require any new idea.

Example 5.27. Although we stated things for an abstract topology T ′, one major example is to use the r-adic
topology as T ′ for which the initial topology on any finitely generated module is the r-adic one. For this topology,
any finitely generated R-module D induces the r-adic topology on rD. For this topology, for any R-module D
with bounded r-torsion, the p-adic topology induces the discrete topology on D[r]. Thus, the r-adic topology has
good r-dévissages properties thanks to Theorem 4.3.

Another setting would make T ′ have good r-dévissages properties: if K0(R/r) = Z and if the induced
topology on rR from R is the one given by the isomorphism R

r×−−→ rR. Even though this sometimes shows that
T also has good r-dévissages properties, considering T ′ could still be crucial to guarantee the cohomological
condition.

23Topology on R/rn is the quotient topology and a generating family as an R/rn-module is also generating as an R-module.
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6 Fontaine’s equivalence for Qp revisited

In this chapter, we aim to obtain develop the occurences of "Le cas des représentations de p-torsion s’en déduit
par dévissage et le cas général par passage a la limite" in [Fon91] using our vocabulary. This becomes quite a long
list of overall easy properties pour verified, but more serious applications are to be found in [Mar24b].

We introduce our tool rings. Consider the valued field Cp := Q̂p with continuous action of GQp for the

valuation topology. On the perfectoid field ̂Qp(µp∞), this action factorises by HQp
:= Gal(Qp|Qp(µp∞)) and

the quotient GQp/HQp = Gal(Qp(µp∞)|Qp) is topologically isomorphic to Z×p . The tilt ̂Qp(µp∞)
♭

has absolute
Galois group24 isomorphic to HQp

and C♭
p is the completion of its algebraic closure. The action of GQp

on C♭
p is

continuous for the valuation topology and its restriction to HQp
identifies with the action of the absolute Galois

group of ̂Qp(µp∞)
♭
.

Define E+ := FpJXK, E := Fp((X)) and call X-adic topology on E the ring topology for which XnE+ is a
fundamental system of neighbourhoods of 0. Let (ζpn)n≥0 be a compatible sequence of (pn)-th roots of unity in
Qp. The Fp-algebra morphism

ι : E → ̂Qp(µp∞)
♭
, X 7→ (ζpn − 1)n≥0,

continuous for X-adic topology on E, is injective and an homeomorphism on its image. Fix an extension

ι : Esep → C♭
p

of this injection. Its image is stable by the GQp -action; we can equip Esep with its subspace topology from C♭
p and

transfer a GQp
-action continuous for the X-adic topology. The deduced HQp

-action is continuous for the discrete
topology and identifiesHQp

to the absolute Galois group of E. The image of Esep is also stable by the p-th-power
Frobenius φ which is continous for both X-adic and discrete topologies and stabilises E.

In order to lift to characteristic zero, consider the Witt vector ring W(C♭
p) equipped with the product topology

of the valuation topology on tilts, and with Zp-linear continous action of GQp . It is p-adically complete and
separated, strict henselian. Define O+

E := ZpJXK, OE := (O+
E [X

−1])∧p and call natural topology the ring
topology having {

pnOE +XmO+
E

∣∣∣∣n,m ≥ 0

}
as basis of neighbourhoods of 0. The Zp-algebra morphism

j : OE →W(C♭
p), X 7→ [(ζpn)]− 1

continuous for the natural topology, is injective and an homeomorphism on its image. DefineOÊur to be the p-adic
completion of a strict henselization of OE and extend the previous morphism to OÊur . Its image is stable under φ
and the GQp

action on the Witt vectors; we call natural topology on OÊur its subspace topology from W(C♭
p) and

transfer a continuous GQp
-action, and a continous Frobenius. TheHQp

-action and φ are continuous for the p-adic
topology. Both φ and the GQp

-action stabilise OE and the second one even factorises throughHQp
.

To summarise, these heavy constructions produce three rings.

• The ring Zp with p-adic topology and trivial action of GQp . It can also be seen as a topological (φN×GQp)-
ring with trivial action.

• The ring OE with natural topology and structure of topological (φN × GQp
)-ring. As the action of HQp

is
trivial, the action factorises through the quotient (φN × Z×p ) giving a topological (φN × Z×p )-ring.

• The ringOÊur with induced topology from W(C♭
p) and structure of topological (φN×GQp

)-ring. The p-adic
topology also equips it with a structure of topological (φN ×HQp)-ring.

First, we construct Fontaine’s functor in [Fon91, §1.2.2] in our own langage. It goes from continuous
finite type Zp-representations of GQp

to Mod
(
φN × Z×p ,OE

)
. The category of GQp

-representations over Zp is
Mod

(
GQp ,Zp

)
with GQp acting trivially. First, consider the following facts where all S-ring structures are the

one constructed above:

1. The inclusion Zp ⊂ OÊur is a morphism of (φN × GQp
)-rings.

24See [Sch12, Theorem 2.3].
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2. The monoidHQp
is a normal submonoid of (φN × GQp

) and the quotient is isomorphic to (φN × Z×p ).

3. The inclusion OE ⊆ O
HQp

Êur
is an equality.

These properties suffice to apply our formalism and define following composition of functors:

D : Mod
(
GQp ,Zp

) triv−−→ Mod
(
φN × GQp ,Zp

) Ex−−→ Mod
(
φN × GQp ,OÊur

) Inv−−→ Mod
(
φN × Z×p ,OE

)
,

where triv extend the action by seing GQp
as quotient of (φN × GQp

).
However, Fontaine considers only continous finite type representations. Because GQp

is a group and Zp

is noetherian, these automatically lie in Modét
(
GQp

,Zp

)
. Because pZp is maximal, the dévissage subquo-

tients of such representations are automatically projective over Fp so the considered representations25 lie in
Modétp-dv(GQp

,Zp); Fontaine’s category of representations is equivalent to M odétp-dv(GQp
,Zp). We have the fol-

lowing list of properties:

1. All three rings are p-torsion-free and p-adically complete and separated.

2. The element p is invariant for all considered S-ring structures.

3. The functor triv send M odétp-dv(GQp
,Zp) to M odétp-dv(φ

N × GQp
,Zp).

4. The inclusion Zp ⊂ OÊur is continuous for induced topology on OÊur and (φN × GQp
)-equivariant.

5. The inclusion Zp ⊂ OÊur is continuous for the p-adic topology on OÊur andHQp
-equivariant.

6. The induced topology on OE from OÊur is the one we constructed.

7. The inclusion OE ⊂ OÊur is faithfully flat and p is irreducible in OE .

8. We have K0(E) = Z.

9. The p-adic topology on OÊur is a linear topology (coarser thant the p-adic one), and has good p-dévissages
property.

10. The group H1
cont(HQp

, Esep) vanishes for the discrete topology on Esep, which is the quotient topology on
OÊur/pOÊur coming from p-adic topology.

11. For every D in M odétprj
(
φN × GQp

, HQp
, Esep

)
, the comparison morphism

Esep ⊗E Inv(D)→ D

is an isomorphism.

All of them are consequences of the constructions of the rings, except for the two last ones that are implied by
Hilbert 90. With these properties, the Proposition 5.22 for both topologies on OÊur (thanks to points 4 and 5) and
corollary 5.26 for the submonoidHQp acting on OÊur allows to restrict D as

D : M odétp-dv(GQp
,Zp) M odétp-dv(φ

N × GQp
,Zp)

M odétp-dv(φ
N × Z×p ,OE) M odétp-dv(φ

N × GQp
, HQp

,OÊur)

triv

Ex

Inv

where the topology T ′ is always the p-adic topology.

In the other direction, we first use example 5.6 to see that the full subcategories M odétp-dv(φ
N × Z×p ,OE) and

M odétp-dv(φ
N × Z×p , φN,OE) coincide. We have the following list of properties

1. The inclusion OE ⊂ OÊur is a continuous morphism of (φN × GQp)-rings for the induced topology on both
rings.

2. The inclusion OE ⊂ OÊur is a continuous morphism of φN-rings for the p-adic topology on both rings.

3. The monoid φN is a normal submonoid of (φN × GQp) and the quotient identifies to GQp .

4. The inclusion Zp ⊆ Oφ=Id

Êur
is an equality.

25For this paragraph to make sense, we first need the two first of the upcoming conditions to be proved.
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5. The functor triv send M odétp-dv(φ
N × Z×p , φN,OE) to M odétp-dv(φ

N × GQp
, φN,OE).

6. The inclusion OE ⊂ OÊur is continuous for induced topology on OÊur and (φN × GQp
)-equivariant.

7. The induced topology on Zp from OÊur is the p-adic.

8. The inclusion Zp ⊂ OÊur is faithfully flat and p is irreducible in Zp.

9. We have K0(Fp) = Z.

10. The group H1
cont(φ

N, Esep) vanishes for the discrete topology on Esep which is the quotient topology
OÊur/pOÊur coming from the p-adic topology.

11. For every D in M odétprj
(
φN × GQp

, φN, Esep
)
, the comparison morphism

Esep ⊗Fp
Inv(D)→ D

is an isomorphism.

Again, all but the last two properties are derived from the rings’ constructions : they are the case Fontaine calls
"M est tué par p" in [Fon91, Proposition 1.2.6] that we cannot bypass. The Proposition 5.22 for both topologies
on OE and OÊur (thanks to points 1 and 2) and corollary 5.26 for the submonoid φN acting on OÊur allows to
define and restrict

V : M odétp-dv(φ
N × Z×p ,OE) M odétp-dv(φ

N × GQp , φ
N,OE)

M odétp-dv(GQp
,Zp) M odétp-dv(φ

N × GQp
, φN,OÊur)

triv

Ex

Inv

On the way, we gathered enough properties to highlight that the functors D and V are quasi-inverse.
Remember that corollary 5.26 does not only imply properties of Inv(D) but also that for any considered module
with finite projective (p, µ)-dévissage, the comparison morphism is an isomorphism. For any representation V
in M odétp-dv(GQp ,Zp), we use the natural comparison isomorphism for OÊur ⊗OE D(V ) then for OÊur ⊗Zp

V to
obtain a natural isomorphism

OÊur ⊗Zp
V(D(V )) ∼= OÊur ⊗OE D(V ) ∼= OÊur ⊗Zp

V.

A similar use of such isomorphisms establishes that D and V are quasi-inverse. We obtain Fontaine equivalence.

Remark 6.1. Using the p-adic topology is crucial. Indeed, the cohomological condition H1
cont(HQp

, Esep) = {0}
is not verified for the X-adic topology on Esep. The Artin-Schreier theory applied to the operator ℘(x) = xp − x
on Esep produces26 an abelian extension F |E of exponent p and an isomorphism

E/℘(E)→ Homcont (Gal (F |E) ,Fp) .

One can check that the inclusion
Fp ⊕

⊕
n≥1, p ∤n

FpX
−n ⊆ E

is a section of the projection E → E/℘(E). Fix ℓ a prime different from p and fix

χn : HQp
∼= GE → Gal (F |E)→ Fp

the continous morphism corresponding to X−ℓ
n

. The map

HQp → E, σ 7→
∑
n≥0

χn(σ)X
n

is a group morphism, continuous for the X-adic topology. It furnishes a HQp
-continuous cocycle in Esep, which

is not a coboundary because it doesn’t factor through a finite quotient.

26Look at [Neu99, Exercices 2 and 3, Chapter IV, §3].
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A Study of modules with finite projective dévissage

This appendix is devoted to establish two strong theorems about the structure of R-modules with finite projective
(r, µ)-dévissage, prior to the additional monoid actions this article study. As proofs are well-ordered successions
of commutative algebra arguments, we chose to encapsulate them into this appendix so that only a wishful reader
might look into them.

Definition A.1. Let M be an R-module and r ∈ R. We say that M has finite projective (r, µ)-dévissage if each
subquotient rnM/rn+1M is finite projective of constant rank as an R/r-module.

We say that M has finite projective (r, τ)-dévissage if each M [rn+1]/M [rn] is finite projective of constant
rank as an R/r-module.

Theorem A.2. Let (R, r) be a dévissage setup. Then for every R-module M the following are equivalent:

i) M is r-adically complete and separated with finite projective (r, µ)-dévissage.

ii) M is finitely presented with finite projective (r, µ)-dévissage.

iii) There exists N ≥ 1, a finite projective R-module of constant rank M∞ and an rN -torsion R-module with
finite projective (r, µ)-dévissage Mtors such that

M ∼= M∞ ⊕Mtors.

Proof. (iii) =⇒ (ii): any finitely presented R/r-module is finitely presented as an R-module. Any extension
of finitely presented R-modules is finitely presented. Because each rnMtors/r

n+1Mtors is finite projective over
R/r, hence finitely presented, this implies that Mtors is finitely presented. Both terms are finitely presented, so
M is also.

The (r, µ)-dévissage commutes with direct sum so it only remains to prove that M∞ has finite projective
(r, µ)-dévissage. The first term M∞/rM∞ is isomorphic to R/r ⊗R M∞ hence finite projective. Because M∞
is flat and R is r-torsion-free, the module M∞ is also r-torsion-free. We obtain that each rnM∞ is isomorphic to
M∞ and conclude for the other terms of the (r, µ)-dévissage.

(ii) =⇒ (i): suppose that M is of finite presentation and fix such presentation

Rb → Ra f−→M → 0.

For each integer n, we obtain an exact sequence by tensoring with R/rn. Passing to the projective limit leads
to an exact sequence

lim
←−

(
R/rn

)b → lim
←−

(
R/rn

)a → lim
←−

M/rnM → R1 lim
←−

Ker(f mod rn)

As f is surjective,

Ker(f mod rn) = Ker(f) + rnRa
/rnRa ∼= Ker(f)/Ker(f) ∩ rnRa

and the transition maps between these kernels identify to the quotient maps. The projective system of kernels is
therefore Mittag-Leffler, which implies the vanishing of R1 lim. Because R is r-adically complete and separated,
this exact sequence provides an isomorphism

lim
←−

M/rnM ∼= Coker(Rb → Ra) = M.

(i) =⇒ (iii): because all maps rnM/rn+1M
r×−−→ rn+1M/rn+2M are surjective, the rank of rnM/rn+1M

is decreasing thus stabilises for n≫ 0. Take N such that it stabilises. First, suppose it has been proven that rNM
is finite projective of constant rank over R. The exact sequence

0→M [rN ]→M
rN×−−−→ rNM →

splits, which first proves that M [rN ] has finite projective dévissage, then the required decomposition.
We only need to prove that rNM is finite projective of constant rank. It verifies the hypothesis of (i) with

dévissage subquotients being of the same rank. To lighten the notations, we denote by M such module and prove
that it is finite projective of constant rank in the end of the proof.
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We first prove by induction that M/rnM is finite projective of constant rank over R/rn. Because our dévis-
sage subquotients are finite projective with same rank functions, every surjective arrow

rnM/rn+1M
r×−−→ rn+1M/rn+2M

is an isomorphism. We obtain the following exact sequence:

0→M/rM
fn:=(r×) mod rn−−−−−−−−−−−−→M/rn+1M →M/rnM → 0.

Suppose it is proved that M/rnM is finite projective as an R/rn-module. Take t ∈ R/rn+1 such that the localisa-
tion of M/rnM at (t mod rn) is free over (R/rn)(t mod rn). Fix (ei)1≤i≤b such basis and (ẽi)1≤i≤b any lifting
to M/rn+1M . Because M is finitely generated, we can apply Nakayama lemma to the ring (R/rn)t, the module(
M/rn+1M

)
t

and the element r in the Jacobson radical to prove that (ẽi) is a generating family. Take a relation∑
tiẽi = 0. By reducing modulo rn, we can proves that each ti is a multiple of rn; write ti = rnt′i. The map(

M/rM
)
t

(fn)t−−−→
(
M/rn+1M

)
t
, [m] 7→ [rnm]

is an injection onto
(
rnM/rn+1

)
t
. Hence, we obtain that

(fn)
−1
t

([∑
i

rnt′iẽi

])
=

[∑
i

t′iẽi

]

is zero thanks to injectivity. Each (t′i mod r) is zero, hence so are the ti’s. We proved that M/rn+1M is locally
free with same local rank than M/rnM , hence of constant rank.

Now, fix a an expression as direct summand ι1 : (R/r)q
∼−→ M/rM ⊕M ′1. We construct by induction a se-

quence of R/rn-modules M ′n and of isomorphisms ιn : (R/rn)q
∼−→M/rnM ⊕M ′n such that each composition

M/rn+1M ⊕M ′n+1

ι−1
n+1−−−→

(
R/rn+1

)q → (
R/rn

)q ιn−→M/rnM ⊕M ′n

is the reduction modulo rnM restricted to M/rn+1M and sends M ′n+1 to M ′n.
Suppose that ιn is constructed. Fix a lift pn+1 : (R/rn+1)q −→M/rn+1M of the projection

pn :
(
R/rn

)q ιn−→M/rnM ⊕M ′n ↠ M/rnM,

which is still surjective by Nakayama. By splitting this surjection thanks to the projectivity of
(
M/rn+1M

)
, we

obtain an isomophism j : (R/rn+1)q ∼= (M/rn+1M)⊕M ′n+1 where M ′n+1 = Ker(pn+1). The module M ′n+1

is sent to M ′n by construction, and is even sent unto. Take (m,m′) ∈ (M/rn+1M) ⊕ M ′n+1 sent to a fixed
m′0 ∈M ′n. Because pn+1 lifts pn, the element m belongs to rnM/rn+1M . Hence, its image in (M/rnM)⊕M ′n
is zero and m′ is also sent to m′0.

By construction, the composition

g : M/rn+1M ⊂M/rn+1M ⊕M ′n+1
j−1

−−→
(
R/(rn+1)

)q → (
R/(rn)

)q ιn−→
∼

M/rnM ⊕M ′n

equals (− mod rn, h). By projectivity of M/rn+1M , we lift h to an H : M/rn+1M →M ′n+1. The morphism

ιn+1 :
(
R/rn+1

)q j−→M/rn+1M ⊕M ′n+1

(
Id 0
−H Id

)
−−−−−−→M/rn+1M ⊕M ′n+1

is a lift we looked for.
Taking the limit of the isomorphisms ιn, we obtain an isomorphism(

lim
←−

R/rnR

)q ∼−→ (
lim
←−

M/rnM

)
⊕
(
lim
←−

M ′n

)
which is an expression of M as direct summand of a free R-module because R and M are both r-adically complete
and separated. Thanks to r-adic completion of R, we have r ∈ Jac(R). For each closed point x ∈ Spec(R), we
have x(r) = 0 and thus

κ(x)⊗R M ∼= κ(x)⊗R/r M/rM.

We knew that M/rM is of constant rank and now that we know M is locally free, it is also of constant rank.
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These finitely presented modules with finite projective (r, µ)-dévissage also have nice behavior with respect
to Tor functor and nice (r, τ)-dévissage.

Lemma A.3. Let (R, r) be a dévissage setup. Let N ≥ 1 and M be a R-module of rN -torsion with finite
projective (r, µ)-dévissage. Let P a r-torsion-free R-module, we have

TorR1 (M,P ) = {0}.

Proof. The r-torsion case: in this case, M is in particular a flat R/r-module. Use the Tor spectral sequence (cf.
[Stacks, Tag 068F]) to obtain a convergent spectral sequence whose second page is

Tor
R/r
i

(
M,TorRj

(
R/r, P

))
⇒ TorRi+j(M,P ).

Because M is flat, it degenerates with non zero terms lying at i = 0, which means that

TorR• (M,P ) = H•
(
M ⊗R/r Tor

R
• (R/r, P )

)
.

Use the projective resolution of R/r

· · · → 0 → R
r×−−→ R

to compute that TorR1 (R/r, P ) = P [r], which is zero because P is r-torsion-free.
General case: it is obtained by induction on N , making a dévissage with rM .

Proposition A.4. Let (R, r) be a dévissage setup.

1. For any finitely presented R-module M with with finite projective (r, µ)-dévissage and any r-torsion-free
R-module P , the group TorR1 (M,P ) vanishes.

2. Any finitely presented R-module with finite projective (r, µ)-dévissage has finite projective (r, τ)-dévissage.

Proof. 1. Fix an expression M = M∞ ⊕Mtors such that M∞ is finite projective of constant rank over R and
Mtors is of rN -torsion with finite projective (r, µ)-dévissage. Let P be a r-torsion-free R-module. Thanks
to Lemma A.3, we have that TorR1 (Mtors, P ) vanishes. Moreover TorR1 (M∞, P ) vanishes thanks to M∞’s
flatness.

2. We first prove that for any R-module Q such that Q/rQ is finite projective as an R/r-module and any
R/r-module L, we have

Ext2R(Q,L) = Ext1R/r(Q[r], L).

Remark that HomR(−, L) = HomR/r(R/r ⊗R −, L) and that the tensor product sends projective modules
to projective modules. The Grothendieck spectral sequence (see [Stacks, Tag 015N]) produces a spectral
sequence converging to Ext•R(Q,L) whose second page is

Ei,j
2 := ExtiR/r

(
TorRj

(
R/r,Q

)
, L
)
.

Because R is r-torsion-free,
(
· · · → 0→ R

r×−−→ R
)

is a projective resolution of R/r; it implies that

TorRj (R/r, Q) = 0 for j ≥ 2 and that

TorR0
(
R/r,Q

)
= Q/rQ and TorR1

(
R/r,Q

)
= Q[r].

At this point, we use that Q/rQ is finite projective to deduce that Ei,j
2 is concentrated in degrees (0, 0) and

Z× {1}. Thus, the spectral sequence degenerates on the second page and we get our result.

Applying this with Q ranging over all subquotients in the (r, µ)-dévissage of M , we obtain

∀n ≥ 1, ∀L ∈ R/r -Mod, Ext2R(r
n
M/rn+1

M, L) = Ext1R/r(r
n
M/rn+1

M, L),

which vanishes thanks to the projectivity of the (r, µ)-dévissage. By long exact sequences of Ext•R, we
obtain

∀n ≥ 1, ∀L ∈ R/r -Mod, Ext2R(M/rnM, L) = {0}.

Using again our result for Q = M/rnM , we obtain

∀L ∈ R/r -Mod, Ext1R/r

((
M/rnM

)
[r], L

)
= {0},
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i.e that (M/rnM)[r] is a projective R/r-module. Thanks to the exact sequence

0→
(
M/rnM

)
[r]→M/rnM

r×−−→ rM/rnM → 0

where the last two terms are finitely presented R-modules, we deduce that (M/rnM)[r] is a finite type
R-module, then finite projective over R/r.

Pick N such that rNM is finite projective over R as in (i) =⇒ (iii). Because rNM is torsion-free, we
obtain an injection M [r] ↪→

(
M/rN+1M

)
[r], for which rNM/rN+1M is a complement of the image. We

showed that M [r] is direct summand of a finite projective R/r-module of constant rank, with a complement
of constant rank. Hence M [r] is also finite projective of constant rank. Because M is complete and separated
with finite projective (r, µ)-dévissage, so is rnM . Consider that the map

M [rn+1]
rn×−−−→ rnM [rn+1] = (rnM)[r]

has M [rn] for kernel: the projectivity of the other terms of the (r, τ)-dévissage are obtained with the
previous result used on rnM .

Our second theorem concerns only certain rings. For a discrete valuation ring A with uniformiser a, the
structure theorem for finitely generated modules over principal ideal domains decomposes such modules as a
finite sum of a free module over A/a, a free module over A/a2, etc, and a free module over A. Fontaine’s rings
for classical (φ,Γ)-modules are indeed discrete valuation rings, but not their multivariable variants. As evoked
in [Záb18b, Lemma 2.3], for his ring OE∆ with residual ring E∆ at p, it is not clear wether all finite projective
module over E∆ are free27. However, the zeroth algebraic K-group of E∆ vanishes and I found out that it is
sufficient to garantuee a similar decomposition for our modules with finite projective dévissage.

Lemma A.5. Let (R, r) be a dévissage setup.

1. Let n ∈ J1,∞K and M be a projective R/rn-module28. For each integer k < n, the epimorphism

M/rM
rk×−−→→ rkM/rk+1M

is an isomorphism.

2. Let n ∈ J1,∞K and M be a projective R/rn-module. For each integer k < n, we have

M [rk] = rn−kM.

3. For every stably free finite projective R/r-module M and n ∈ J1,∞K, there exists a unique up to isomor-
phism finite projective R/rn-module M(n) such that M(n)/rM(n)

∼= M . If M is of constant rank, then so
is M(n).

Proof. 1. Because R is r-torsion-free, this is true for M = R, hence for any free R/rnR-module. More-
over, each functor M 7→ rkM/rk+1M commutes to direct sums, which concludes for general projective
modules.

2. Same reasoning using that both functors M 7→M [rk] and M 7→ rn−kM commute to direct sums.

3. Let M be a finite projective R/r-module, which is stably free. Fix a presentation M ⊕ (R/r)k = (R/r)d.
The module M can be expressed as the kernel of the projection π : (R/r)d ↠ (R/r)k, which can easily be
lifted. Choose a lift π(n) : (R/rn)d ↠ (R/rn)k. The restriction-corestriction of π(n) fits in the following
commutative diagram with exact rows:

0
(
rR/rnR

)d (
R/rn

)d (
R/r

)d
0

0
(
rR/rnR

)k (
R/rn

)k (
R/r

)k
0

restriction of π(n)

mod r

π(n) π

mod r

27Browse [Čes22], [BR] and [Rao85] for more details about these problems. I thank K. Česnavičius for these references.
28by convention R/r∞ := R.
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The snake lemma then proves that M(n) := Ker(π(n)) surjects on M by reduction modulo r. Moreover it
is finite projective as the kernel of an epimorphism between finite projective modules. For any n ∈ J1,∞K,
the rank of finite projective R/rn can be checked on closed points in V(r), i.e. on the reduction modulo r.
Hence, we obtain that M(n) is of constant rank if M is also.

Take M(n) and M ′(n) two lifts of M . By projectivity of M(n) applied to

M(n) →M(n)/rM(n)
∼−→
ι

M ′(n)/rM
′
(n),

we lift it to a morphism f : M(n) → M ′(n) such that (f mod r) = ι. For each k < n, let fk be the
restriction-coretriction to rkM(n) and rkM ′(n). Consider the diagram

M(n) M ′(n)

M(n)/rM(n)
M ′(n)/rM ′(n)

rkM(n)/rk+1M(n)
rkM ′(n)/rk+1M ′(n)

rkM(n) rkM ′(n)

f

rk× rk×

ι
∼

rk×∼ rk×∼

fk

where the envelopping square commutes (check it, this is not by definition), and the three trapezes commute.
Consider the remaining component. We invert its vertical arrows and want to check that it commutes; this
can be done after precomposition by left vertical arrow (labelled as epimorphism) and then it’s diagram
chase using the commutations highlighted juste before.

It proves that (fk mod r) identifies to ι. All (fk mod r) are isomorphisms so f is an isomorphism.

Lemma A.6. Let (R, r) be a dévissage setup. Let n ≥ k ≥ 1 be integers, let N be a finite projective R/rn-module
and M a finite projective R/rk-module. The group Ext1R/rn(M,N) vanishes.

Proof. We note that

HomR/rn(M,−) = HomR/rk(M,−[rk]) = HomR/rk
(
M,HomR/rn

(
R/rk,−

))
.

Morover, the functor HomR/rn(R/rk,−) sends injectives to injectives: we have bijections

HomR/rk
(
−,HomR/rn

(
R/rk, I

))
= HomR/rn

(
R/rk ⊗R/rn −, I

)
and the second expression underlines the vanishing on rk-torsion complexes.

By Grothendieck spectral sequence, we obtain a converging spectral sequence whose second term is

Ei,j
2 = ExtiR/rk

(
M, ExtjR/rn

(
R/rk, N

))
⇒ Exti+j

R/rn(M,N).

Using that R is r-torsion-free, we obtain a suitable projective résolution of R/rk expressed as

· · · rk×−−→ R/rn
rn−k×−−−−→ R/rn

rk×−−→ R/rn

which computes that

ExtjR/rn

(
R/rk, N

)
=


N [rk] if j = 0
N [rn−k]/rkN if j = 2l + 1
N [rk]/rn−kN if j = 2l + 2.

The second point of Lemma A.5 says that these groups vanish for N projective and j > 1. The spectral sequence
degenerates and we obtain that

Ext1R/rn(M,N) = Ext1R/rk(M,N [rk])

which vanishes thanks to the projectivity of M .
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Theorem A.7. Let (R, r) be a dévissage setup such that K0(R/r) = Z. Then the three conditions of Theorem A.2
on a R-module M are also equivalent to

iv) There exists N ≥ 1 and an isomorphism

M ∼= M∞ ⊕
⊕

1≤n≤N

Mn

where M∞ is a finite projective R-module of constant rank and each Mn is a finite projective R/rn-module
of constant rank.

Proof. (iv)→ (iii): fix a decomposition given by (iv). Because (
⊕

Mn) is rN -torsion and the (r, µ)-dévissage
is computed term by term, we only need to prove that each Mn has finite projective (r, µ)-dévissage. Because Mn

is finite projective of constant rank over R/rn, so is Mn/rMn of R/r . Moreover, the second point of Lemma A.5

tells that Mn/rMn
rn×−−−→ rkMn/r

k+1Mn are isomorphisms which concludes for the whole (r,mu)-dévissage.
(iii) =⇒ (iv): as this direction is more difficult, we begin by an example. Consider the dévissage setting

(Zp, p) and the Zp-module M = Zp/p
2Zp ⊕ Fp. It has finite projective p-dévissage with

M/pM = Zp/pZp ⊕ Fp
∼= F2

p and pM/p2M = pZp/p2Zp
∼= Fp.

Moreover, the second term of M/pM is naturally seen as the kernel of M/pM
p×−−→ pM/p2M or as

(M [p] + pM)/pM . Nonetheless, there is no natural lift of (M [p] + pM)/pM ⊂ M/pM to M , nor is there
a natural embedding of Zp/p

2Zp into M . In our case R = Zp, such lift and embedding always exist thanks to
the structure of finite type Zp-modules. In general, we must work harder as the lifts we look for won’t be given
naturally from the (r, µ)-dévissages.

This example gives a direction: in general each

rnM/rn+1M
r×−−→ rn+1M/rn+2M

splits, giving us a (non canonical) decomposition of M/rM that we might want to lift. Moreover, if M is exactly
rN+1-torsion, the splitting of rNM/rN+1M should lift to the finite projective R/rN+1M -module (this can also
be obtained by analysis of the desired result).

Let’s begin the proof. First reduce to decompose the torsion part and only prove that the predicted decompo-
sition exists for rN -torsion modules M with finite projective (r, µ)-dévissage by induction on N . For N = 1, the
module M is its first dévissage subquotient hence is finite projective of constant rank. Supoose that we have the
result for some N and fix M of rN+1-torsion. The last (possibly) non zero term of the (r, µ)-dévissage is rNM
which is finite projective of constant rank over R/r. We fix MN+1 to be (rNM)(N+1) given by the third point of
Lemma A.5. We also fix splittings of each arrow in

M/rM
r×−−→→ rM/r2M

r×−−→→ · · · r×−−→→ rNM.

By the first point of Lemma A.5, we have rNMN+1
∼= MN+1/r

NMN+1
∼= rNM . By projectivity we can

complete the following diagram with an arrow f

MN+1

M

rNMN+1
∼= rNM M/rM

rN×

f

chosen splitting

Because the kernel of rN × - on MN+1 is exactly rMN+1 (see the second point of Lemma A.5), the map
(f mod r) identifies to the chosen splitting, hence is injective. Moreover, let k ≤ N . The restriction-corestriction
of f to rkMN+1 and rkM , denoted by fk, fits into the following diagram.
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MN+1

rkMN+1

rkM M

rNMN+1 rkM/rk+1M M/rM

rN×

rk×
f

fk

rN−k×
rk×

chosen splitting

rk×

where the small bended arrow is the composition making the bottom triangle commutes; it is therefore a splitting
of rkM/rk+1M → rNM . The square, the left and the bottom triangles commute for obvious reasons, the upper
quadrilateral commutes (check it) and the envelop of the diagram commutes by construction of f . Determining
whether the central quadrilateral commutes can be checked after precomposition by the two-headed arrow. Then,
use carefully the previous commutations. The restriction-corestriction fk is therefore obtained using the same
construction as f , but for rkM rather than M . For the similar reasons, the map (fk mod r) identifies to the
chosen splitting of rkM/rk+1M → rNM and is injective. All these injectivity properties imply that f is injective.
We have obtained an exact sequence

0→MN+1 →M → Coker(f)→ 0

which invites to look closer to this cokernel. First, the snake lemma applied to

0 MN+1 M Coker(f) 0

0 MN+1 M Coker(f) 0

r×

f

r× r×

f

illustrates that Coker(f)/rCoker(f) is isomorphic to Coker(f mod r) which is the cokernel of the chosen
splitting. Hence this quotient is finite projective of constant rank over R/r. Similarly for k ≥ 1, the quotient
rkCoker(f)/rk+1Coker(f) identifies to Coker(fk)/rCoker(fk), then to the cokernel of the chosen splitting of

rkM/rk+1M
rN−k×−−−−−→ rNM . It is also finite projective of constant rank and the module Coker(f) is of rN -torsion

with finite projective (r, µ)-dévissage. We apply the heredity hypothesis to obtain an isomorphism

Coker(f) ∼=
⊕

1≤n≤N

Mn

with each Mn being finite projective of constant rank over R/rn. Finally, the exact sequence

0→MN+1 →M →
⊕

1≤n≤N

Mn → 0

splits because

Ext1R/(rN+1)

 ⊕
1≤n≤N

Mn,MN+1

 =
⊕

1≤n≤N

Ext1R/(rN+1)
(Mn,MN+1)

which vanishes thanks to Lemma A.6.

Corollary A.8. Let ∆ be a finite set. Consider the ringOE∆ as in [Záb18b] for K = Qp with action of the monoid
ΦΓ∆ :=

∏
α∈∆

(
φN
α × Γα

)
. For every object of Modét (ΦΓ∆,OE∆), the underlying OE∆ -module is isomorphic

to some

D∞ ⊕
⊕

1≤n≤N

Dn
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where D∞ is a finite projective OE∆ -module and each Mn is a finite projective OE∆/pn-module.

Proof. Zàbràdi defines
OE∆ = lim←

h

(
Zp/phZp

)
JXα |α ∈ ∆K[X−1∆ ]

where X∆ =
∏

Xα. From this description,OE∆ is p-adically separated complete and a domain with p ̸= 0. From
[Záb18b, Proposition 2.2] andOE∆ being a domain, we deduce that Modét (ΦΓ∆,OE∆) and Modétp-dv(ΦΓ∆,OE∆)
coincide. Finally, the hypothesis on K-theory is verified thanks to [Záb18b, Lemma 2.3]. Apply Theorem A.7.
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