Computations of (φ, Γ)-modules for some non semisimple representations modulo p^{2}

Nataniel Marquis

April 4, 2024

This text aims to compute Fontaine's functor for specific representations. We consider several variations around the same example of a \mathbb{Z}_{p}-representation V whose underlying \mathbb{Z}_{p}-module is isomorphic to $\left(\mathbb{Z} / p^{2} \mathbb{Z} \oplus \mathbb{F}_{p}\right)$ but for which $V[p]$ isn't semi-simple as Galois representation.

In this text, the prime p is odd.

1 First univariable case

Consider $E=\mathbb{F}_{p}((X))$. Following the notations of [Fon91, §1.2], we fix $\mathcal{O}_{\mathcal{E}}$ a p-adically complete and separated \mathbb{Z}_{p}-algebra, discrete valuation ring with uniformiser p and residue field E, equipped with a lift of Frobenius. We also denote by $\mathcal{O}_{\widehat{\mathcal{E}}}$ its strict henselisation.

Fix a non trivial character

$$
\chi: \mathcal{G}_{E} \rightarrow \mathbb{F}_{p}
$$

and define $F \mid E$ to be the Galois extension of degree p corresponding to $\operatorname{Ker}(\chi)$. Consider V_{χ} the \mathbb{Z}_{p}-representation of \mathcal{G}_{E} whose underlying \mathbb{Z}_{p}-module is

$$
\left(\mathbb{Z} / p^{2} \mathbb{Z}\right) e_{1} \oplus \mathbb{F}_{p} e_{2}
$$

and whose action is given by

$$
\begin{aligned}
& \sigma \cdot e_{1}=e_{1} \\
& \sigma \cdot e_{2}=p \chi(\sigma) e_{1}+e_{2}
\end{aligned}
$$

One feature of this representation, is that $V_{\chi}[p]$ has $\left(p e_{1}, e_{2}\right)$ for basis and that the Galois action in this basis expresses as

$$
\left(\begin{array}{cc}
1 & \chi(\sigma) \\
0 & 1
\end{array}\right) .
$$

Thus $V_{\chi}[p]$ isn't semi-simple.
We compute the $\varphi^{\mathbb{N}}$-module over $\mathcal{O}_{\mathcal{E}}$

$$
\begin{aligned}
\mathbb{D}\left(V_{\chi}\right) & :=\left(\mathcal{O}_{\widehat{\mathcal{U u r}^{u}}} \otimes_{\mathcal{O}_{\mathcal{E}}} V_{\chi}\right)^{\mathcal{G}_{E}} \\
& \cong\left\{(x, y) \in\left(\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}} / p^{2} \mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}}\right) \times E^{\mathrm{sep}} \mid \forall \sigma \in \mathcal{G}_{E}, \begin{array}{c}
\sigma(x)+p \chi(\sigma) \sigma(y)=x \\
\sigma(y)=y
\end{array}\right\}
\end{aligned}
$$

These equalities imply that x is invariant by \mathcal{G}_{F} and y by \mathcal{G}_{E}. Thus, they respectively land in $\mathcal{O}_{\mathcal{F}} / p^{2} \mathcal{O}_{\mathcal{F}}$ and E. The group $\operatorname{Gal}(F \mid E)$ is cyclic ; call $\Sigma:=\chi^{-1}(1)_{\mid F}$ which is a generator . We obtain that

$$
\mathbb{D}\left(V_{\chi}\right) \cong\left\{(x, y) \in\left(\mathcal{O}_{\mathcal{F}} / p^{2} \mathcal{O}_{\mathcal{F}}\right) \times E \mid \Sigma(x)+p y=x\right\}
$$

We use property A.1 on $F \mid E$ to produce an element $Y_{\diamond} \in F$ such that $\Sigma\left(Y_{\diamond}\right)+1=Y_{\diamond}$. We then compute that

$$
\mathbb{D}\left(V_{\chi}\right)=\left(\mathcal{O}_{\mathcal{E}} / p^{2} \mathcal{O}_{\mathcal{E}}\right) d_{1} \oplus E d_{2}
$$

where $d_{1}=e_{1}$ and $d_{2}=p Y_{\diamond} e_{1}+e_{2}$.
Nonetheless, computing the Frobenius in this case requires an understanding of F in terms of Artin-Schreier theory (see [Neu99, Chapter IV, §3] for $\wp=\varphi$ - Id). Precisely, we use

Theorem 1.1 (Artin-Schreier). Let E be a field of characteristic p and $\wp=\varphi$ - Id. The map

$$
E / \wp(E) \rightarrow \operatorname{Hom}_{\text {TopGp }}\left(\mathcal{G}_{E}, \mathbb{F}_{p}\right), x+\wp(E) \mapsto[\sigma \mapsto \sigma(y)-y],
$$

for any y such that $\wp(y)=x$ is well defined. It is an linear isomorphism.
Using that $Y_{\diamond} \in F$ and $\Sigma\left(Y_{\diamond}\right)-Y_{\diamond}=-1$, we know that

$$
\chi=\left[\sigma \mapsto Y_{\diamond}-\sigma\left(Y_{\diamond}\right)\right]
$$

The Artin-Shreier theory says that $X_{\diamond}:=Y_{\diamond}^{p}-Y_{\diamond} \in E$, that χ is associated $-X_{\diamond}+\wp(E)$ and F is the decomposition field of $T^{p}-T+X_{\diamond}$. With these notations, we obtain

$$
\begin{aligned}
& \varphi\left(d_{1}\right)=d_{1} \\
& \varphi\left(d_{2}\right)=p X_{\diamond} d_{1}+d_{2}
\end{aligned}
$$

Note that the character χ (i.e. the extension $F \mid E$ with generator of its Galois group) entirely determines $X_{\diamond}+\wp(E)$. Changing the representative only modify the given base $\mathbb{D}\left(V_{\chi}\right)$.

2 Second univariable case

In the previous setup, consider W_{χ} the \mathbb{Z}_{p}-representation of \mathcal{G}_{E} whose underlying \mathbb{Z}_{p}-module is

$$
\left(\mathbb{Z} / p^{2} \mathbb{Z}\right) e_{1} \oplus \mathbb{F}_{p} e_{2}
$$

and whose action is given by

$$
\begin{aligned}
& \sigma \cdot e_{1}=e_{1}+\chi(\sigma) e_{2} \\
& \sigma \cdot e_{2}=p \chi(\sigma) e_{1}+e_{2}
\end{aligned}
$$

Like $V_{\chi}[p]$, the representation $W_{\chi}[p]$ isn't semi-simple. It is even funnier : where V_{χ} had a \mathcal{G}_{E}-stable submodule isomorphic to ${ }^{Z} / p^{2} \mathbb{Z}$, the representation W_{χ} has none. Indeed,

$$
\forall \lambda \in \mathbb{F}_{p}, \quad \sigma\left(e_{1}+\lambda e_{2}\right)=(1+p \lambda \chi(\sigma))\left(e_{1}+(\lambda+\chi(\sigma)) e_{2}\right) .
$$

We compute the $\varphi^{\mathbb{N}}$-module over $\mathcal{O}_{\mathcal{E}}$

$$
\begin{aligned}
\mathbb{D}\left(W_{\chi}\right) & :=\left(\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}} \otimes_{\mathcal{O}_{\mathcal{E}}} W_{\chi}\right)^{\mathcal{G}_{E}} \\
& \cong\left\{(x, y) \in\left(\mathcal{O}_{\widehat{\mathcal{E u r}^{u r}}} / p^{2} \mathcal{O}_{\widehat{\mathcal{E}^{\text {ur }}}}\right) \times E^{\mathrm{sep}} \mid \forall \sigma \in \mathcal{G}_{E}, \begin{array}{c}
\sigma(x)+p \chi(\sigma) \sigma(y)=x \\
\sigma(y)+\chi(\sigma) \sigma(x \bmod p)=y
\end{array}\right\}
\end{aligned}
$$

These equalities for σ in the absolute Galois group of F give that both x and y are invariant by \mathcal{G}_{F}. Thus, they respectively land in $\mathcal{O}_{\mathcal{F}} / p^{2} \mathcal{O}_{\mathcal{F}}$ and F. The group $\operatorname{Gal}(F \mid E)$ is cyclic ; call $\Sigma:=\chi^{-1}(1)_{\mid F}$ which is a generator. We obtain that
$\mathbb{D}\left(W_{\chi}\right) \cong\left\{(x, y) \in\left(\mathcal{O}_{\mathcal{F}} / p^{2} \mathcal{O}_{\mathcal{F}}\right) \times F \mid \Sigma(x)+p \Sigma(y)=x\right.$ and $\left.\Sigma(y)+\Sigma(x \bmod p)=y\right\}$.
We use property A.1 on $F \mid E$ to produce a sequence $\left(1, Y_{\diamond}, Y_{\diamond}\right)$ in F such that $\Sigma\left(Y_{\diamond}\right)+1=Y_{\diamond}$ and $\Sigma\left(Y_{\star}\right)+\Sigma\left(Y_{\diamond}\right)=Y_{\star}$. Then, we compute that

$$
\mathbb{D}\left(V_{\chi}\right)=\left(\mathcal{O}_{\mathcal{E}} / p^{2} \mathcal{O}_{\mathcal{E}}\right) d_{1} \oplus E d_{2}
$$

where $d_{1}=\left(1+p Y_{\diamond}\right) e_{1}+Y_{\diamond} e_{2}$ and $d_{2}=p Y_{\diamond} e_{1}+e_{2}$.
Again, the Artin-Shreier theory says that $X_{\diamond}:=Y_{\diamond}^{p}-Y_{\diamond} \in E$, that χ is associated $-X_{\diamond}+$ $\wp(E)$ and F is the decomposition field of $T^{p}-T+X_{\diamond}$. We also compute

$$
\begin{aligned}
\Sigma\left(Y_{\bullet}^{p}-Y_{\diamond}\right)-\left(Y_{\bullet}^{p}-Y_{\bullet}\right) & =\Sigma\left(Y_{\diamond}\right)^{p}-\Sigma\left(Y_{\bullet}\right)-\left(Y_{\bullet}^{p}-Y_{\bullet}\right) \\
& =\left(Y_{\bullet}-Y_{\diamond}+1\right)^{p}-\left(Y_{\bullet}-Y_{\diamond}+1\right)-\left(Y_{\bullet}^{p}-Y_{\bullet}\right) \\
& =-\left(Y_{\diamond}^{p}-Y_{\diamond}\right) \\
& =-X_{\diamond}
\end{aligned}
$$

Our analysis of $(\Sigma-\mathrm{Id})$ implies that

$$
\exists X_{\bullet} \in E, \quad Y_{\bullet}^{p}-Y_{\star}=X_{\diamond} Y_{\diamond}+X_{\star}
$$

With these notations, we obtain

$$
\begin{aligned}
& \varphi\left(d_{1}\right)=\left(1+p X_{\diamond}\right) d_{1}+X_{\diamond} d_{2} \\
& \varphi\left(d_{2}\right)=p X_{\diamond} d_{1}+d_{2}
\end{aligned}
$$

Note that the character χ (i.e. the extension $F \mid E$ with generator of its Galois group) entierely determines $X_{\diamond}+\wp(E)$ and $X_{\diamond}+E^{p} X_{\diamond}+\wp(E)$. Any compatible choice of representatives only change the given base $\mathbb{D}\left(W_{\chi}\right)$.

3 First multivariable case

We place in the setting of [CKZ21], once again for $E=\mathbb{F}_{p}((X))$. This article fixes a finite set Δ and construct a multivariable version of Fontaine's equivalence. All indexes α on objects stand for a labelled copy of the corresponding object in the univariable case. The three authors construct rings

$$
E_{\Delta}:=\mathbb{F}_{p} \llbracket X_{\alpha} \mid \alpha \in \Delta \rrbracket\left[X_{\Delta}^{-} 1\right]
$$

where $X_{\Delta}=\prod X_{\alpha}$,

$$
\mathcal{O}_{\mathcal{E}_{\Delta}}:=\left(\mathbb{Z}_{p} \llbracket X_{\alpha} \mid \alpha \in \Delta \rrbracket\left[X_{\Delta}^{-} 1\right]\right)^{\wedge p}
$$

and a ring $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\text {ur }}}}$.
Each E_{α} (resp. each $\mathcal{O}_{\mathcal{E}_{\alpha}}$, resp. each $\mathcal{O}_{\widehat{\mathcal{E}^{\text {ur }} \alpha}}$) embeds into E_{Δ} (resp. $\mathcal{O}_{\mathcal{E}_{\Delta}}$, resp. $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\text {ur }}}}$). The three rings are equiped with a linear action of the monoid $\Phi_{\Delta, p}:=\prod \varphi_{\alpha, p}^{\mathbb{N}}$ satisfying

$$
\varphi_{\alpha, p}\left(X_{\alpha}\right)=\left(1+X_{\alpha}\right)^{p}-1 \text { and } \forall \beta \neq \alpha, \varphi_{\beta, p}\left(X_{\alpha}\right)=X_{\alpha} .
$$

The ring $\mathcal{O}_{\widehat{\mathcal{E}^{\text {ur }}}}$ is also equiped with an action of $\mathcal{G}_{E, \Delta}:=\prod \mathcal{G}_{E_{\alpha}}$, acting via the quotient $\mathcal{G}_{E_{\alpha}}$ on $\mathcal{O}_{\widehat{\mathcal{E}_{\alpha}^{\text {ur }}}}$ as predicted. The two actions commutes and

Now, we consider the functor

$$
\mathbb{D}_{\Delta}: \operatorname{Rep}_{\mathbb{Z}_{p}} \mathcal{G}_{E, \Delta} \rightarrow \operatorname{Mod}\left(\Phi_{\Delta, p}, \mathcal{O}_{\mathcal{E}_{\Delta}}\right), \quad V \mapsto\left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\text {ur }}}} \otimes_{\mathbb{Z}_{p}} V\right)^{\mathcal{G}_{E, \Delta}}
$$

from finite type continuous \mathbb{Z}_{p}-representations of $\mathcal{G}_{E, \Delta}$ to $\mathcal{O}_{\mathcal{E}}$-modules with a semilinear action of $\Phi_{\Delta, p}$. Our goal is to compute this functor in one case.

Take $\Delta=\{\alpha, \beta\}$. Choose a pair of continuous characters

$$
\underline{\chi}=\left(\chi_{\alpha}: \mathcal{G}_{E_{\alpha}} \rightarrow \mathbb{F}_{p}, \chi_{\beta}: \mathcal{G}_{E_{\beta}} \rightarrow \mathbb{F}_{p}\right)
$$

Call F_{α} and F_{β}^{\prime} their kernels, which are extensions of degree p of E_{α} and E_{β}. Consider $V_{\underline{\chi}}$ the \mathbb{Z}_{p}-representation of $\mathcal{G}_{E, \Delta}$ whose underlying \mathbb{Z}_{p}-module is

$$
\left(\mathbb{Z} / p^{2} \mathbb{Z}\right) e_{1} \oplus \mathbb{F}_{p} e_{2}
$$

and whose action is given by

$$
\begin{gathered}
\sigma_{\alpha} \cdot e_{1}=\left(1+p \chi_{\alpha}\left(\sigma_{\alpha}\right)\right) e_{1} \quad \sigma_{\beta} \cdot e_{1}=e_{1}+\chi_{\beta}\left(\sigma_{\beta}\right) e_{2} \\
\left(\sigma_{\alpha}, \sigma_{\beta}\right) \cdot e_{2}=e_{2}
\end{gathered}
$$

Like $V_{\chi}[p]$, the representation $V_{\underline{\chi}}[p]$ isn't semi-simple and $V_{\underline{\chi}}$ has no $\mathcal{G}_{\mathbb{Q}_{p}}$-stable submodule isomorphic to $Z / p^{2} Z$. Indeed,

$$
\forall \lambda \in \mathbb{F}_{p}, \quad \sigma_{\beta}\left(e_{1}+\lambda e_{2}\right)=e_{1}+\left(\lambda+\chi_{\beta}\left(\sigma_{\beta}\right)\right) e_{2}
$$

We compute the $\Phi_{\Delta, p}$-module over $\mathcal{O}_{\mathcal{E}_{\Delta}}$

$$
\begin{aligned}
\mathbb{D}_{\Delta}\left(V_{\underline{\chi}}\right) & :=\left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\text {ur }}}} \otimes \mathcal{O}_{\mathcal{E}_{\Delta}} V_{\underline{\chi}}\right)^{\mathcal{G}_{E, \Delta}} \\
& \cong\left\{\begin{array}{cc}
(x, y) \in\left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\mathrm{ur}}}} / p^{2} \mathcal{O}_{\widehat{\mathcal{E}_{\Delta r}^{\mathrm{ur}}}}\right) \times E_{\Delta}^{\text {sep }} \mid \forall \sigma \in \mathcal{G}_{E, \Delta}, & \left(1+p \chi_{\alpha}\left(\sigma_{\alpha}\right)\right) \sigma_{\alpha}(x)=x \\
& \sigma_{\alpha}(y)=y \\
\sigma_{\beta}(x)=x
\end{array}\right\}
\end{aligned}
$$

Considering $\sigma_{\alpha} \in \mathcal{G}_{E_{\alpha}}$ or $\mathcal{G}_{F_{\alpha}}$ and $\sigma_{\beta} \in \mathcal{G}_{E_{\beta}}$ or $\mathcal{G}_{F_{\beta}^{\prime}}$ and using [Záb18, Lemma 3.2 and Proposition 3.3] we found that

$$
x \in\left(\mathcal{O}_{\mathcal{F}_{\alpha}} \otimes_{\mathcal{O}_{\mathcal{E}_{\alpha}}} \mathcal{O}_{\mathcal{E}_{\Delta}}\right) / p^{2} \text { and } y \in E_{\Delta} \otimes_{E_{\beta}} F_{\beta}^{\prime}
$$

As in the first univariable case, we call Σ_{α} the generator of $\operatorname{Gal}\left(F_{\alpha} \mid E_{\alpha}\right)$ pinned down by χ_{α}. Take $Y_{\diamond, \alpha} \in F_{\alpha}$ such that $\Sigma_{\alpha}\left(Y_{\diamond, \alpha}\right)+1=Y_{\diamond, \alpha}$ and $X_{\diamond, \alpha}:=Y_{\diamond, \alpha}^{p}-Y_{\diamond, \alpha} \in E_{\alpha}$. Likewise, define $\Sigma_{\beta}, Y_{\diamond, \beta}^{\prime} \in F_{\beta}^{\prime}$ and $X_{\diamond, \beta} \in E_{\beta}$. We obtain

$$
\mathbb{D}_{\Delta}\left(V_{\underline{\chi}}\right)=\left(\mathcal{O}_{\mathcal{E}_{\Delta}} / p^{2} \mathcal{O}_{\mathcal{E}_{\Delta}}\right) d_{1} \oplus E_{\Delta} d_{2}
$$

where $d_{1}=\left(1+p Y_{\diamond, \alpha}\right) e_{1}+Y_{\diamond, \beta}^{\prime} e_{2}$ and $d_{2}=e_{2}$. Remark that $p e_{1}$ belongs to this module and is equal to $p d_{1}$. We also have

$$
\begin{aligned}
\varphi_{\alpha, p}\left(d_{1}\right) & =\left(1+p X_{\diamond, \alpha}\right) d_{1} \\
\varphi_{\beta, p}\left(d_{1}\right) & =d_{1}+X_{\diamond, \beta} d_{2} \\
\varphi_{\alpha, p}\left(d_{2}\right)=\varphi_{\beta, p}\left(d_{2}\right) & =d_{2}
\end{aligned}
$$

A One useful proposition

We prove the proposition about cyclic p-prime extension of characteristic p fields.
Proposition A.1. Let p be a prime and Let E be a field of characteristic p and $F \mid E$ be a cyclic Galois extension of order p^{n} for some $n \geq 1$. Let τ be a generator of $\operatorname{Gal}(F \mid E)$. If $k \leq p^{n}$ and $x_{1} \in E$, there exists a sequence $\left(x_{2}, \ldots, x_{k}\right) \in F^{k}$ such that

$$
\forall 1 \leq i<k, \tau\left(x_{i+1}\right)-x_{i+1}=x_{i} .
$$

Proof. Considerer the map

$$
\mathrm{T}: F \rightarrow F, x \mapsto \tau(x)-x .
$$

It is an E-linear endomorphism of a p^{n}-dimensional E-vector space. Because the group $\operatorname{Gal}(F \mid E)$ is cyclic generated by τ, the kernel of T equals E (hence one dimensional). Moreover,

$$
\mathrm{T}^{\circ p^{n}}=(X-1)^{p^{n}}(\tau)=\tau^{\circ p^{n}}-\operatorname{Id}_{F}=0
$$

The endomorphism T is nilpotent of order precisely p^{n} thanks to the decreasing of the dimensional gaps in the iterated kernel sequence. Jordan decomposition concludes.

References

[Fon91] Jean-Marc Fontaine. "Représentations p-adiques des corps locaux, 1 ére partie". In: The Grotendieck Festschrift II (1991), pp. 249-309.
[Neu99] Jürgen Neukirch. Algebraic Number Theory. Vol. 322. Grundlehren der mathematischen Wissenschaften. Springer Link, 1999.
[Záb18] Gergely Zábrádi. "Multivariable (φ, Γ)-modules and products of Galois groups". In: Maths Research Letter 25(2) (2018), pp. 687-721.
[CKZ21] Annie Carter, Kiran Kedlaya, and Gergely Zábrádi. "Drinfeld’s lemma for perfectoid spaces and overconvergence of multivariate (φ, Γ)-modules". In: Documenta Mathematica (2021), pp. 1329-1393.

