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Writing Positive Polynomials
as Sums of (Few) Squares
Olivier Benoist (Université de Strasbourg, IRMA, CNRS, France)

In 1927, Artin proved that a real polynomial that is positive
semidefinite is a sum of squares of rational functions, thus
solving Hilbert’s 17th problem. We review Artin’s Theorem
and its posterity, browsing through basic examples, classical
results and recent developments. We focus on a question first
considered by Pfister: can one write a positive semidefinite
polynomial as a sum of few squares?

1 Hilbert’s 17th problem

A real polynomial f ∈ R[X1, . . . , Xn] is said to be positive
semidefinite if f (x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ R.

Artin’s Theorem. Can one explain the positivity of such a
polynomial by writing it as a sum of squares? The question
(popularised by Hilbert as the 17th of his famous list of open
problems that he proposed on the occasion of the 1900 In-
ternational Congress of Mathematicians) was solved by Artin
[1]:

Theorem 1.1 (Artin, 1927). Let f ∈ R[X1, . . . , Xn] be posi-
tive semidefinite. Then, f is a sum of squares inR(X1, . . . , Xn).

Artin’s proof of Theorem 1.1 was influential, fostering the
development of real algebra. In collaboration with Schreier,
and with Hilbert’s 17th problem in mind, he had developed
the theory of ordered fields [2]. A consequence of their work
is that an element of a field K may be written as a sum of
squares in K if and only if it is nonnegative with respect to
all the orderings of K that are compatible with the field struc-
ture. It remains to show that if f is negative with respect to
some ordering of R(X1, . . . , Xn), its evaluation at some point
(x1, . . . , xn) ∈ Rn is also negative. This “specialisation argu-
ment” is at the heart of the proof.

Sums of squares of polynomials. It would seem more natural
to look for an expression of f as a sum of squares of poly-
nomials, but this is too much to ask! It was Minkowski who
convinced Hilbert, during his doctoral dissertation in 1885,
that such a statement would be too strong. Three years later,
in a seminal paper [14], Hilbert was able to show, by ab-
stract means, the existence of counterexamples. Surprisingly,
the first explicit counterexample appeared only much later, in
1967, and almost by chance. The polynomial
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2 , (1)

introduced by Motzkin [21] for other purposes, was recog-
nised by Taussky–Todd to be the first concrete example of a
positive semidefinite polynomial that is not a sum of squares
of polynomials. It is positive semidefinite as a consequence

of the arithmetic mean–geometric mean inequality and it sat-
isfies the conclusion of Theorem 1.1 since it coincides with

(X3
1 X2 + X3

2 X1 − 2X1X2)2(1 + X2
1 + X2

2) + (X2
1 − X2

2)2

(X2
1 + X2

2)2

but an elementary analysis of the low degree terms in a hypo-
thetical expression of (1) as a sum of squares of polynomials
quickly leads to a contradiction.

Sums of few squares. How many squares are needed in Theo-
rem 1.1? A beautiful answer, surprisingly dependent only on
the number of variables, was obtained by Pfister [22].

Theorem 1.2 (Pfister, 1967). Let f ∈ R[X1, . . . , Xn] be
positive semidefinite. Then, f is a sum of 2n squares in
R(X1, . . . , Xn).

Pfister’s work is completely independent of Artin’s. In-
deed, what Pfister really proves is that any sum of squares in
R(X1, . . . , Xn) is in fact a sum of 2n squares. It is only in com-
bination with Theorem 1.1 that Theorem 1.2 is obtained. His
result stemmed from important progress in the algebraic the-
ory of quadratic forms: the discovery of the so-called Pfister
forms (which enjoy marvellous algebraic properties).

In three variables, Theorem 1.2 had previously been ob-
tained by Ax. It is while reading Ax’s manuscript that Pfis-
ter realised one could replace the cohomological tools of Ax
by the use of Pfister forms, yielding a result in arbitrary di-
mension. It may not be a coincidence that Pfister forms later
turned out to be the key to a cohomological classification of
quadratic forms over fields, culminating in Voevodsky’s proof
of the Milnor conjecture [32].

We refer to [23] for a nice exposition of Theorems 1.1
and 1.2. Whether the 2n bound in Theorem 1.2 may be im-
proved or not (Question 2.6 below) is the main topic of this
survey.

2 Polynomials of low degree or in few variables

Let us illustrate the theorems of Artin and Pfister, starting
from basic cases. Let R[X1, . . . , Xn]d be the space of polyno-
mials of degree d. We consider a positive semidefinite poly-
nomial f ∈ R[X1, . . . , Xn]d. Of course, since an odd degree
polynomial changes sign, the degree d of f must be even.

· d = 2. A degree 2 polynomial f ∈ R[X1, . . . , Xn] may be
homogenised to a quadratic form F ∈ R[X0, X1, . . . , Xn] that
is positive semidefinite if f is. Diagonalising the quadratic
form F displays it as a sum of n + 1 squares of linear forms.
Dehomogenising, we see that f is a sum of n + 1 squares of
polynomials.
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As soon as n ≥ 2, this is a significant improvement on
the 2n bound of Theorem 1.2! Since it is not very impressive
to write a quadratic form as a sum of squares, this particular
case should not be viewed as representative of the general
situation.

· n = 1. A polynomial f ∈ R[X] in one variable may be fac-
tored as a product of irreducible real polynomials:

f = λ
∏

i

(X − ai)
∏

j

(X2 + 2b jX + c j).

If f is positive semidefinite, the multiplicity of ai as a root
of f has to be even, and letting X → ∞ implies that λ ≥ 0.
Completing the square X2 + 2b jX + c j = (X + b j)2 + (c j − b2

j )
shows that f may be written as a product of sums of two
squares of polynomials. The classical identity

(A2 + B2)(C2 + D2) = (AC + BD)2 + (AD − BC)2 (2)

then implies that f is the sum of two squares of polynomials.
We have recovered Theorems 1.1 and 1.2 in a stronger form:
it was enough to consider sums of squares of polynomials!

The use of identity (2) is not innocent. In some sense, the
contribution of Pfister in his proof of Theorem 1.2 was pre-
cisely to find a systematic way to produce identities analogous
to (2) in more variables.

· n = 2 and d = 4. Degree 4 polynomials in two variables, or,
as classical geometers say, ternary quartics, are particularly
interesting. They have been studied in detail by Hilbert [14],
who proved:

Theorem 2.1 (Hilbert, 1888). Let f ∈ R[X1, X2] be positive
semidefinite of degree 4. Then, f is a sum of 3 squares in
R[X1, X2].

Not only is f a sum of squares of polynomials (rather than
mere rational functions) but the 2n bound of Theorem 1.2 may
also be improved!

In contrast with the d = 2 and the n = 1 cases above,
Theorem 2.1 is a non-trivial result. Hilbert’s proof (one of the
first applications of topology to algebra) is beautiful. His idea
is to start with a ternary quartic that is obviously a sum of
three squares of polynomials, such as f0 = 1 + X4

1 + X4
2 , to

carefully choose a path from f0 to f in the space of positive
semidefinite ternary quartics and to deform the representation
of f0 as a sum of three squares to one for f .

We refer to [26] or [31] for modern accounts of Hilbert’s
proof and to [28] for recent developments.

· n = 2 and d ≥ 6. The behaviour of positive semidefinite
polynomials in two variables stabilises from degree 6 on-
ward. Hilbert proved in [15] that they are sums of squares in
R(X1, X2) and Landau [18, p. 282], analysing Hilbert’s proof,
noticed that only 4 squares are needed.

Theorem 2.2 (Hilbert, 1893). Let f ∈ R[X1, X2] be positive
semidefinite. Then, f is a sum of 4 squares in R(X1, X2).

Theorem 2.2 is a particular case of Theorem 1.2 in
two variables: Pfister’s theorem is nothing but a higher-
dimensional generalisation of Hilbert’s classical result. Hilbert’s

argument, an elaboration of his proof of Theorem 2.1, is more
difficult than Pfister’s. It is also more precise. For instance, it
allows one to control the denominators in an expression of f
as a sum of 4 squares: if f has degree d, the denominators
may be chosen to have degree ≤

⌊
(d−2)2

8

⌋
.

We have already seen that, even in degree 6, one can-
not expect to improve on Theorem 2.2 by requiring that f
is a sum of squares of polynomials: Motzkin’s polynomial (1)
is a counterexample. It is natural to ask whether one could
strengthen Theorem 2.2 by writing f as a sum of 3 squares.
Again, the answer is negative when d ≥ 6 and the first known
counterexample, discovered by Cassels, Ellison and Pfister
[7], was . . . Motzkin’s polynomial!

Theorem 2.3 (Cassels-Ellison-Pfister, 1971). Motzkin’s poly-
nomial (1) is not a sum of 3 squares in R(X1, X2).

Although it is elementary to verify that Motzkin’s poly-
nomial is not a sum of squares in R[X1, X2], showing that it
is not a sum of 3 squares in R(X1, X2) requires a little bit of
algebraic geometry. In [7], the authors use the precise form
of (1) to produce an elliptic surface whose properties control
the potential of writing Motzkin’s polynomial as a sum of 3
squares and they study it in detail.

One is left to wonder how frequent the sums of 3 squares
are. What does the subset of R[X1, X2]d consisting of polyno-
mials that can be written as sums of 3 squares in R(X1, X2)
look like? The first result in this direction, due to Colliot-
Thélène [9, 4.3], indicates that they are quite scarce.

Theorem 2.4 (Colliot-Thélène, 1993). If d ≥ 6, the degree
d polynomials that are sums of 3 squares in R(X1, X2) form a
meagre subset of measure 0 of R[X1, X2]d.

Hence, sums of 3 squares are negligible both from the
topological (meagre means a countable union of nowhere
dense subsets) and measure theory points of view (cf. Section
4 for an account of the proof).

Despite Theorem 2.4, sums of 3 squares turn out to be
dense in the set of positive semidefinite polynomials [3].

Theorem 2.5 (2017). Any degree d positive semidefinite
polynomial f ∈ R[X1, X2] may be approximated by degree
d polynomials that are sums of 3 squares in R(X1, X2).

The picture to have in mind is the following. The set of
polynomials that may be written as sums of 3 squares of ra-
tional functions whose denominators have degree ≤ N is a
closed subset of R[X1, X2]d. Taking the union on all integers
N, we get a countable union of closed subsets and it is only
this union that one may hope to be dense. In other words,
when approximating a polynomial that is not itself a sum of
3 squares, the degrees of the denominators must grow to infi-
nity. The author is unaware of a constructive approach to The-
orem 2.5. In particular, can one write Motzkin’s polynomial
(1) explicitly as a limit of sums of 3 squares?

· n ≥ 3 and d ≥ 4.. In at least 3 variables (and degree ≥ 4),
no further general result expressing a positive semidefinite
polynomial as a sum of squares of polynomials holds true,
as discovered by Hilbert [14]. It is hard to resist writing down
a beautiful example, due to Lax and Lax [19], of a degree 4
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positive semidefinite polynomial in 3 variables that is not a
sum of squares of polynomials:

5∑
i=1

∏
j�i

(Xi − Xj).

Its five variables are a smokescreen: it only depends on the
four homogeneous variables X1 − X2, X2 − X3, X3 − X4 and
X4 − X5, giving rise, after dehomogenisation, to a polynomial
in three variables. A survey by Reznick [25] contains many
more examples.

In contrast, whether the bound 2n in Pfister’s Theorem 1.2
is optimal or not remains completely mysterious.

Question 2.6 (Pfister). Does there exist a positive semidefi-
nite polynomial f ∈ R[X1, . . . , Xn] that is not a sum of 2n − 1
squares in R(X1, . . . , Xn)?

This question was raised by Pfister immediately upon pro-
ving Theorem 1.2 and in general is still open today. It is ar-
guably the most important problem of the subject. Defining
the Pythagoras number p(K) of a field K to be the smallest
p ∈ N such that every sum of squares in K is actually a sum
of p squares (or +∞ if no such integer exists), Question 2.6
may be reformulated as follows.

Question 2.7. Is p(R(X1, . . . , Xn)) equal to 2n?

To see the equivalence, one can reduce to studying poly-
nomials by multiplying a rational function by the square of its
denominator and use Artin’s Theorem 1.1, according to which
the polynomials that are sums of squares in R(X1, . . . , Xn) are
exactly those that are positive semidefinite.

We have already seen that Questions 2.6 and 2.7 have pos-
itive answers when n = 1 (as 1 + X2

1 is not a square) and
when n = 2 (by Cassels-Ellison-Pfister’s Theorem 2.3). When
n ≥ 3, the state of the art is the inequality

n + 2 ≤ p
(
R(X1, . . . , Xn)

) ≤ 2n,

where the upper bound is Pfister’s Theorem 1.2 and the lower
bound is an easy consequence of the Cassels-Ellison-Pfister
Theorem [23, p.97].

By analogy with Hilbert’s Theorem 2.1, one may expect
to obtain better bounds if one restricts to low degree polyno-
mials. This point of view was taken in [4], yielding the fol-
lowing result.

Theorem 2.8 (2016). Let f ∈ R[X1, . . . , Xn]d be positive
semidefinite. If n ≥ 2 and d ≤ 2n, f is a sum of 2n − 1 squares
in R(X1, . . . , Xn), except maybe if n ≥ 7 is odd and d = 2n.

This improvement on Theorem 1.2 seems incremental but
is already new for degree 4 polynomials in three variables. In
this case, it shows that a positive semidefinite polynomial is a
sum of 7 squares. It is not known if this can be improved.

The hypothesis that n ≥ 2 cannot be dispensed with, as
attested by the polynomial 1 + X2

1 . It is, however, likely that
the result continues to hold when n ≥ 7 is odd and d = 2n.

It may be expected that the degree range d ≤ 2n appear-
ing in Theorem 2.8 is the correct one, in the sense that, from
degree d = 2n+2 onward, there would exist positive semidef-
inite polynomials that are not sums of 2n − 1 squares, hence

giving a positive answer to Question 2.6. We will give a geo-
metric interpretation for this value of the degree at the end of
Section 4.

3 A rich legacy

Hilbert’s 17th problem has triggered developments in many
other directions. A few will be listed here, without any attempt
to be exhaustive.

Arithmetic base fields. What if the coefficients of f belong to
a smaller field, say the field Q of rational numbers? Then, it
was already known to Artin [1] that f is a sum of squares in
Q(X1, . . . , Xn). On the other hand, obtaining a bound à la Pfis-
ter on the number of squares involved is much harder. The
best result to date is the following arithmetic geometry mas-
terpiece.

Theorem 3.1 (Jannsen, 2016). Let f ∈ Q[X1, . . . , Xn] be po-
sitive semidefinite. If n ≥ 2, f is a sum of 2n+1 squares in
Q(X1, . . . , Xn).

This theorem was found to follow from two outstanding
conjectures by Colliot-Thélène and Jannsen [10]: the Milnor
conjecture established by Voevodsky [32] and Kato’s coho-
mological local-global principle eventually settled by Jannsen
in [16].

The hypothesis n ≥ 2 is necessary. When n = 0, the
optimal statement is Euler’s precursor of Lagrange’s Theo-
rem, according to which a non-negative rational number is
a sum of 4 squares of rational numbers [12]. When n = 1,
Pourchet [24] has proved that a positive semidefinite polyno-
mial f ∈ Q[X] is a sum of 5 squares and his result is the
best possible. When n ≥ 2, it is not known whether Jannsen’s
bound is optimal. In the terminology introduced in Section 2,
is the Pythagoras number p(Q(X1, . . . , Xn)) equal to 2n+1 for
n ≥ 2?

Effectivity. Artin’s proof of Theorem 1.1, relying on Zorn’s
lemma, is not constructive. The search for effective proofs
was initiated by Kreisel, allowing one to derive bounds on
the degrees of the rational functions involved. The history of
this line of thought is explained in Delzell’s survey [11]. Lom-
bardi, Perrucci and Roy [20] have recently obtained the fol-
lowing theorem.

Theorem 3.2 (Lombardi, Perrucci, Roy, 2014). A positive
semidefinite polynomial f ∈ R[X1, . . . , Xn] may be written

as a sum of squares of rational functions of degree ≤ 222d4n

.

The reader should not be intimidated by the formidable
bound: it is a tremendous improvement on previous results!

Positivstellensätze. What can be said if the polynomial f is
only known to be nonnegative on some domain Ω ⊂ Rn? The
following theorem, due to Stengle [30] but close to indepen-
dent earlier work of Krivine [17], is the prototype of such a
result: a Positivstellensatz.

Theorem 3.3 (Krivine, Stengle, 1974). Let f ∈ R[X1, . . . , Xn]
be positive on Ω := {x ∈ Rn | g1(x) ≥ 0, . . . , gk(x) ≥ 0},



Feature

EMS Newsletter September 2017 11

where g1, . . . , gk ∈ R[X1, . . . , Xn]. Then, f belongs to the sub-
semiring of R(X1, . . . , Xn) generated by the gi and the squares.

Given the many counterexamples to the variant of Hilbert’s
17th problem involving polynomials instead of rational func-
tions, it came as a surprise when Schmüdgen [29] obtained a
Positivstellensatz without denominators, at the expense of a
compactness hypothesis.

Theorem 3.4 (Schmüdgen, 1991). Under the assumptions of
Theorem 3.3, if Ω is compact, f belongs to the sub-semiring
of R[X1, . . . , Xn] generated by the gi and the squares.

The reader will find these statements and many more in a
survey by Scheiderer [27].

The cone of sums of squares. What positive semidefinite
polynomials f ∈ R[X1, . . . , Xn] are sums of squares of poly-
nomials? We have already seen in Section 2 that some posi-
tive semidefinite polynomials are not (unless n = 1 or d = 2
or n = 2 and d = 4) but which ones? More precisely, can one
describe a set of linear inequalities defining the closed convex
cone Σn,d ⊂ R[X1, . . . , Xn]d consisting of polynomials that are
sums of squares of polynomials?

A full answer has been obtained by Blekherman [5] in the
first two cases where Σn,d does not coincide with the set of
positive semidefinite polynomials: ternary sextics (n = 2 and
d = 6) and quaternary quartics (n = 3 and d = 4). Surpri-
singly, the required linear inequalities are precisely those that
were introduced by Hilbert [14] to show the existence of po-
sitive semidefinite polynomials that are not sums of squares
of polynomials.

4 Sums of fewer squares

The theorems that express positive semidefinite polynomials
as a sum of fewer squares than predicted by Pfister’s Theo-
rem 1.2, as well as those that show that it is impossible, use
tools from algebraic geometry. More precisely, they rely on
the study of algebraic cycles, that is, of the algebraic subvarie-
ties of a fixed algebraic variety.

The first indication of such a link was Cassels, Ellison
and Pfister’s proof of Theorem 2.3. Its main step is the com-
putation of the Mordell-Weil group of an elliptic curve over
a function field [7, §7], a problem essentially equivalent to
the determination of all algebraic curves lying on an elliptic
surface.

The relation between sums of squares and algebraic cy-
cles is much more transparent in Colliot-Thélène’s proof of
Theorem 2.4 [9]. We devote the greater part of this section to
explaining its principle. The way algebraic cycles enter The-
orems 2.5 and 2.8 is similar and we will comment on these
proofs too. Our main goal is to understand how algebraic geo-
metry governs the dependence of the properties of a positive
semidefinite polynomial on its degree.

Sums of 3 squares in R[X1, X2]. Fix a degree d positive
semidefinite polynomial f ∈ R[X1, X2]d. We want to un-
derstand under which conditions f is a sum of 3 squares in
R(X1, X2) and to deduce, following Colliot-Thélène [9], that
this is a rare phenomenon when d ≥ 6.

We reformulate this property. Let Y be a square root of − f
and consider the quadratic field extension K := R(X1, X2)[Y]
of R(X1, X2).

Lemma 4.1. That f is a sum of 3 squares in R(X1, X2) is
equivalent to −1 being a sum of 2 squares in K.

Proof. This is elementary and we only verify the direct im-
plication, which is the one we actually use. If f = a2 + b2 + c2

in R(X1, X2), dividing out by − f = Y2 yields an identity of the
form −1 = r2 + s2 + t2 in K. Applying (2) cleverly, one gets

−1 =
� rs + t
1 + r2

�2
+

� s − rt
1 + r2

�2
. �

We are reduced to understanding when −1 is a sum of 2
squares in K. To do so, we introduce the geometric incarna-
tion of K, that is, the algebraic surface S defined as a set by

�
(x1, x2, y) ∈ C3 | y2 + f (x1, x2) = 0

�
. (3)

To be more precise, what we will really denote by S is the 
compactification of (3) obtained by adding “points at infi-
nity”. We will also assume that f has been chosen so that 
S has no singularities. Elements of K may be viewed as func-
tions on S (which may not be defined everywhere: there may 
be poles). For this reason, K is called the function field of S .

The proof of Theorem 2.4 depends on the knowledge of 
algebraic curves on S , that is, of the subsets C ⊂ S of com-
plex dimension 1 that are defined by polynomial equations. 
There are obvious algebraic curves on S, defined by a single 
polynomial equation g ∈ C[X1, X2, Y]:

C =
�
(x1, x2, y) ∈ S | g(x1, x2, y) = 0

�
. (4)

There may, however, be more! This happens, for instance, if
the restriction of f to some complex line in C2 is the square of
a polynomial. Indeed, suppose that the line is defined, say, by
the equation X2 = 0 and that f (X1, 0) = h(X1)2 for some h ∈
C[X1]. Then, the algebraic curve C = {(x1, x2, y) ∈ S | x2 = 0}
splits into two algebraic curves in S :
⎧⎪⎪⎨⎪⎪⎩

C+ =
�
(x1, x2, y) ∈ S | x2 = 0 and y = +ih(x1)

�
,

C− =
�
(x1, x2, y) ∈ S | x2 = 0 and y = −ih(x1)

�
,

which are not individually of the form (4). Moreover, one can
check that, if d ≤ 4, there always exist such lines in C2, so
that not all curves in S are of the form (4). When d ≥ 6, the
situation is completely different.

Theorem 4.2 (Noether–Lefschetz). If d ≥ 6 and f is very
general, all algebraic curves C ⊂ S are of the form (4).

Here, very general is the algebraic geometers’ way to in-
dicate a generic behaviour: it means that the statement holds
for all f except maybe for those that belong to a count-
able union of algebraic subvarieties of the parameter space
C[X1, X2]d. It implies that the set of those f for which the
statement fails is meagre and of measure 0.

We may now conclude the proof of Theorem 2.4. Suppose
that −1 = u2 + v2 is a sum of two squares in K. Then, it can
be claimed that the algebraic curve

Γ = {(x1, x2, y) ∈ S | u = 0 and v = i} ⊂ S
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is not of the form (4). By the Noether–Lefschetz Theorem 4.2,
this can only happen for very particular choices of f , and The-
orem 2.4 is proven.

Let us give a hint for the purely topological argument pro-
ving the above claim. Remember that our polynomial f has
real coefficients. Consequently, the complex conjugation

σ : (x1, x2, y) �→ (x1, x2, y)

induces an involution of S . Triangulating the curve Γ yields
a class [Γ] ∈ H2(S ,Z) in the homology of S that is called
the fundamental class of Γ (indeed, as a complex curve, Γ
is topologically a surface). One can verify that this homology
class cannot be realised by a 2-cycle that is invariant under the
action of the complex conjugation, whereas the fundamental
classes of all the algebraic curves of the form (4) can!

Why degree 6? The above proof indicates a reason why pos-
itive semidefinite polynomials in two variables exhibit differ-
ent behaviours when d ≤ 4 (Theorem 2.1) and d ≥ 6 (The-
orem 2.4). This is due to the Noether–Lefschetz Theorem!
When d ≤ 4, the associated surface S has a rich geometry
and contains plenty of algebraic curves but when d ≥ 6, a
typical S contains only obvious algebraic curves.

Still, our understanding is not yet complete: why is the
Noether–Lefschetz Theorem only valid in degree ≥ 6? Since
it will also be important in our discussion of Theorem 2.5, we
explain this now. The main tool is Hodge theory.

We need to understand when the surface S contains un-
expected algebraic curves that are not of the form (4). To do
so, we fix a homology class γ ∈ H2(S ,Z) and we consider
the question: when is γ the fundamental class of an algebraic
curve Γ ⊂ S or, rather, a linear combination with integral co-
efficients of such classes?

A necessary condition is that if ω is a holomorphic 2-form
on S (for every s ∈ S , ωs is an alternating C-bilinear form on
the tangent space of S at s varying holomorphically with s),
the integral

∫
γ
ω needs to vanish. This is a simple dimension

argument: ω vanishes in restriction to algebraic curves on S
because there are no non-zero alternating C-bilinear forms on
a one-dimensional C-vector space. This condition also turns
out to be sufficient. Denoting by Ω2(S ) the space of holomor-
phic 2-forms on S , this is the famous Lefschetz (1, 1) Theo-
rem.

Theorem 4.3 (Lefschetz (1, 1)). A class γ ∈ H2(S ,Z) is a
linear combination of classes of algebraic curves on S if and
only if

∫
γ
ω = 0 for every ω ∈ Ω2(S ).

If d ≤ 4, one can compute that Ω2(S ) = 0. Consequently,
Theorem 4.3 predicts the existence of many algebraic curves
on S , in particular of curves not of the shape (4).

On the other hand, if d ≥ 6, one can check thatΩ2(S ) � 0.
The Lefschetz (1, 1) Theorem then gives non-trivial obstruc-
tions to the existence of algebraic curves on S and one can
verify that, for most values of f , these obstructions prevent
the existence of any curve not of the form (4). This proves
Theorem 4.2.

This completely explains why the properties of positive
semidefinite polynomials f ∈ R[X1, X2]d change when d ≥ 6.

It is the influence of the geometry of the associated surface
S that carries non-zero holomorphic 2-forms if and only if
d ≥ 6.

Density. Now that we have understood why there are few
semidefinite polynomials that are sums of 3 squares (in de-
gree ≥ 6), let us explain why these are dense in the set of
positive semidefinite polynomials (Theorem 2.5). Recall that
we have associated to a degree d polynomial f ∈ C[X1, X2]d

an algebraic surface S defined by (3):

y2 + f (x1, x2) = 0,

and explained that if f is a sum of 3 squares in R(X1, X2), the
surface S carries more algebraic curves than expected. The
archetype of the density result we need has essentially been
obtained by Ciliberto, Harris, Miranda and Green [8].

Theorem 4.4 (Ciliberto, Harris, Miranda, Green). The set of
f ∈ C[X1, X2]d such that the associated surface S contains
algebraic curves not of the form (4) is dense in C[X1, X2]d.

Of course, this cannot imply Theorem 2.5 because it says
nothing about density in R[X1, X2]d. Proving Theorem 2.5 re-
quires an adaption over R, carried out in [3], of the techniques
of [8].

Let us explain what enters the proof of Theorem 4.4
and of its real variant yielding Theorem 2.5. One has to
analyse how the obstructions to the existence of algebraic
curves on S that are provided by Theorem 4.3 vary with
f ∈ C[X1, X2]d. This amounts to understanding the varia-
tion with f of the integrals

∫
γ
ω = 0, called the periods of

the surface S . Since the work of Griffiths, this very classical
topic has been known as the study of infinitesimal variations
of Hodge structures. Both [8] and [3] rely on these modern
tools.

More variables. To study a positive semidefinite polynomial
f ∈ R[X1, . . . , Xn] in n ≥ 3 variables, it is still useful to intro-
duce the algebraic variety X defined by the equation

y2 + f (x1, . . . , xn) = 0 (5)

and its function field K = R(X1, . . . , Xn)[Y], where Y =
√− f .

An analogue of Lemma 4.1 holds: f is a sum of 2n−1 squares
in R(X1, . . . , Xn) if and only if −1 is a sum of 2n−1 squares in
K. When n ≥ 3, this is not as elementary as Lemma 4.1 and
relies on Pfister’s work on quadratic forms.

Relating the latter property to algebraic cycles on X de-
pends on the far-reaching enhancement of Pfister’s work pro-
vided by Voevodsky’s proof of the Milnor conjecture [32].
This allows a cohomological reformulation: letting the group
G := Z /2Z act on X by the complex conjugation

σ : (x1, . . . , xn, y) �→ (x1, . . . , xn, y),

there exists a class α ∈ Hn
G(X,Z /2Z) in G-equivariant coho-

mology such that −1 is a sum of 2n−1 squares in K if and only
if α vanishes in the complement of an algebraic subvariety of
X. Intuitively, this will happen if and only if X contains many
algebraic subvarieties.
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Proving Theorem 2.8 requires one to show that if d ≤ 2n,
the variety X contains many algebraic subvarieties in this
sense. The Hodge theory arguments are of no use now and
[4] relies on other methods, such as Bloch-Ogus theory. Let
us explain the origin of the hypothesis d ≤ 2n on the degree.
As before, it reflects a geometric property of the algebraic va-
riety X. Namely, it ensures that X is rationally connected: that
there exist enough algebraic maps P1 → X to connect any two
points p, q ∈ X. It has been known since Bloch and Srinivas
[6] that this geometric information gives strong control on the
cohomology of X, which is exactly what is needed.

In contrast, when trying to answer Question 2.6, one has
to show that the algebraic variety X may contain only few
algebraic subvarieties if the degree d is high enough (maybe
if d ≥ 2n + 2?). When n = 3, which is the smallest value
for which Question 2.6 is open, the required statement is a
variant of a classical question asked by Griffiths and Harris in
[13]. To give a flavour of what is needed, we state a slightly
different question, closer to the one raised in [13]. Recall that
the degree of an algebraic curve C ⊂ X is the cardinality,
taking multiplicities into account, of the set

{
(x1, . . . , xn, y) ∈ C | x1 = 0

}
.

Question 4.5. Let f ∈ C[X1, X2, X3]d and X be defined by
(5). If f is very general and d ≥ 10, are all algebraic curves in
X of even degree?

References

[1] E. Artin. Über die Zerlegung definiter Funktionen in Quadrate.
Abh. Math. Sem. Univ. Hamburg, 5(1):100–115, 1927.

[2] E. Artin and O. Schreier. Algebraische Konstruktion reeller
Körper. Abh. Math. Sem. Univ. Hamburg, 5(1):85–99, 1927.

[3] O. Benoist. Sums of 3 squares and Noether-Lefschetz loci.
arXiv:1706.02053.

[4] O. Benoist. On Hilbert’s 17th problem in low degree. Algebra
Number Theory, 11(4):929–959, 2017.

[5] G. Blekherman. Nonnegative polynomials and sums of
squares. J. Amer. Math. Soc., 25(3):617–635, 2012.

[6] S. Bloch and V. Srinivas. Remarks on correspondences and
algebraic cycles. Amer. J. Math., 105(5):1235–1253, 1983.

[7] J. W. S. Cassels, W. J. Ellison and A. Pfister. On sums of
squares and on elliptic curves over function fields. J. Number
Theory, 3:125–149, 1971.

[8] C. Ciliberto, J. Harris and R. Miranda. General components
of the Noether-Lefschetz locus and their density in the space
of all surfaces. Math. Ann., 282(4):667–680, 1988.

[9] J.-L. Colliot-Thélène. The Noether-Lefschetz theorem and
sums of 4 squares in the rational function field R(x, y). Com-
positio Math., 86(2):235–243, 1993.

[10] J.-L. Colliot-Thélène and U. Jannsen. Sommes de carrés dans
les corps de fonctions. C. R. Acad. Sci. Paris Sér. I Math.,
312(11):759–762, 1991.

[11] C. N. Delzell. Kreisel’s unwinding of Artin’s proof. In
Kreiseliana, pages 113–246. A K Peters, Wellesley, MA,
1996.

[12] L. Euler. Demonstratio theorematis Fermatiani omnem nu-
merum sive integrum sive fractum esse summam quatuor pau-
ciorumve quadratorum. Novi Commentarii academiae scien-
tiarum Petropolitanae, 5:13–58, 1760.

[13] P. Griffiths and J. Harris. On the Noether-Lefschetz theorem
and some remarks on codimension-two cycles. Math. Ann.,
271(1):31–51, 1985.

[14] D. Hilbert. Ueber die Darstellung definiter Formen als Summe
von Formenquadraten. Math. Ann., 32(3):342–350, 1888.

[15] D. Hilbert. Über ternäre definite Formen. Acta Math.,
17(1):169–197, 1893.

[16] U. Jannsen. Hasse principles for higher-dimensional fields.
Ann. of Math. (2), 183(1):1–71, 2016.

[17] J.-L. Krivine. Anneaux préordonnés. J. Analyse Math.,
12:307–326, 1964.

[18] E. Landau. Über die Darstellung definiter binärer Formen
durch Quadrate. Math. Ann., 57(1):53–64, 1903.

[19] A. Lax and P. D. Lax. On sums of squares. Linear Algebra
and Appl., 20(1):71–75, 1978.

[20] H. Lombardi, D. Perrucci and M.-F. Roy. An elementary re-
cursive bound for effective Positivstellensatz and Hilbert 17th

problem, 2014, to appear in Mem. Amer. Math. Soc.
[21] T. S. Motzkin. The arithmetic-geometric inequality. In In-

equalities (Proc. Sympos. Wright-Patterson Air Force Base,
Ohio, 1965), pages 205–224. Academic Press, New York,
1967.

[22] A. Pfister. Zur Darstellung definiter Funktionen als Summe
von Quadraten. Invent. Math., 4:229–237, 1967.

[23] A. Pfister. Quadratic forms with applications to algebraic
geometry and topology, Volume 217 of London Mathemati-
cal Society Lecture Note Series. Cambridge University Press,
Cambridge, 1995.

[24] Y. Pourchet. Sur la représentation en somme de carrés des
polynômes à une indéterminée sur un corps de nombres al-
gébriques. Acta Arith., 19:89–104, 1971.

[25] B. Reznick. Some concrete aspects of Hilbert’s 17th Prob-
lem. In Real algebraic geometry and ordered structures (Ba-
ton Rouge, LA, 1996), Volume 253 of Contemp. Math., pages
251–272. Amer. Math. Soc., Providence, RI, 2000.

[26] W. Rudin. Sums of squares of polynomials. Amer. Math.
Monthly, 107(9):813–821, 2000.

[27] C. Scheiderer. Positivity and sums of squares: a guide to recent
results. In Emerging applications of algebraic geometry, Vol-
ume 149 of IMA Vol. Math. Appl., pages 271–324. Springer,
New York, 2009.

[28] C. Scheiderer. Hilbert’s theorem on positive ternary quartics:
a refined analysis. J. Algebraic Geom., 19(2):285–333, 2010.

[29] K. Schmüdgen. The K-moment problem for compact semi-
algebraic sets. Math. Ann., 289(2):203–206, 1991.

[30] G. Stengle. A Nullstellensatz and a Positivstellensatz in semi-
algebraic geometry. Math. Ann., 207:87–97, 1974.

[31] R. G. Swan. Hilbert’s theorem on positive ternary quartics. In
Quadratic forms and their applications (Dublin, 1999), Vol-
ume 272 of Contemp. Math., pages 287–292. Amer. Math.
Soc., Providence, RI, 2000.

[32] V. Voevodsky. Motivic cohomology with Z/2-coefficients.
Publ. Math. IHES, (98):59–104, 2003.

Olivier Benoist [olivier.benoist@unistra.
fr] received his PhD in Paris in 2012. He
is now a CNRS researcher at IRMA, Stras-
bourg. His field of interest is algebraic ge-
ometry, with a focus on algebraic cycles
and real algebraic geometry.


