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Abstract
A cohomology class of a smooth complex variety of dimension n has coniveau at
least c if it vanishes in the complement of a closed subvariety of codimension at least
c, and it has strong coniveau at least c if it comes by proper pushforward from the
cohomology of a smooth variety of dimension at most n� c. We show that these two
notions differ in general, both for integral classes on smooth projective varieties and
for rational classes on smooth open varieties.

1. Introduction
Let X be a smooth complex variety of dimension n. We say that a cohomology class
˛ 2H l.X;A/ with coefficients in an abelian group A has coniveau greater than or
equal to c if it vanishes outside a closed subset Z �X of codimension at least c. We
also say that the class ˛ has strong coniveau greater than or equal to c if it is the Gysin
pushforward of a class ˇ 2H�.Y;A/ on a smooth variety Y of dimension at most n�
c via some proper morphism f W Y !X . These two notions give two filtrations on the
cohomology group H l.X;A/, denoted N cH l.X;A/ and eN cH l.X;A/, respectively.
Clearly eN cH l.X;A/�N cH l.X;A/.

In [27, Section 9.7], Grothendieck asserted that these two filtrations coincide—
that is, eN cH l.X;A/ D N cH l.X;A/. (In [27, Section 9.7], X is assumed proper
and A finite, but these hypotheses are not used in the argument sketched there.) This
statement is indeed true if X is proper and A D Q, as a consequence of Deligne’s
mixed Hodge theory [24, Corollaire 8.2.8, Remarque 8.2.9]. However, a few years
later, Grothendieck retracted this statement in a footnote of [28, p. 300] (see also the
comments of Illusie in [33, p. 118]).

The goal of this article is to exhibit the first examples where the two filtrations
are indeed different. We give both examples with integral coefficients on smooth pro-
jective varieties and with rational coefficients on smooth open varieties (as well as
examples of an appropriate variant of this problem with rational coefficients on sin-
gular projective varieties). Here is our first main result.
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THEOREM 1.1 (see Theorem 4.3)
For all c � 1 and l � 2c C 1, there is a smooth projective complex variety X such
that the inclusion eN cH l.X;Z/�N cH l.X;Z/ is strict. One may choose X to have
torsion canonical bundle. If c � 2, then one may choose X to be rational.

Theorem 1.1 is optimal as eN cH l.X;Z/ D N cH l.X;Z/ for all l � 2c (see
Proposition 2.2); in fact, N cH l.X;Z/ D 0 for l < 2c. Moreover, eN 1H l.X;Z/ D

N 1H l.X;Z/ if X is rational (see Corollary 2.5). In most of our examples, H l.X;Z/

has torsion, but we also construct one for which H l.X;Z/ is torsion-free (see Propo-
sition 4.6). Our examples are mainly of large dimension, but we also construct some
low-dimensional examples.

THEOREM 1.2 (see Theorem 5.4)
For l 2 ¹3; 4º, there is a smooth projective complex variety X of dimension l C 1
with torsion canonical bundle such that the inclusion eN 1H l.X;Z/ � N 1H l.X;Z/

is strict.

The obstructions to the equality eN cH l.X;Z/ D N cH l.X;Z/ that we use to
prove Theorems 1.1 and 1.2 are of topological nature, based on Steenrod operations
or complex cobordism, and they are inspired by the famous examples of Atiyah–
Hirzebruch and Totaro of non-algebraic cohomology classes (see [6], [50]). In fact,
we show that, in the setting above, some classes in N cH l.X;Z/ are not even push-
forwards from a compact complex manifold of dimension at most dim.X/� c via a
proper C1-map. The dimensions of the varieties appearing in Theorem 1.2 are the
lowest possible that one can obtain with such topological arguments (see Theorem 5.9
and Remark 5.10).

Our second main theorem is the following.

THEOREM 1.3 (see Theorem 6.5)
For all c � 1 and l � 2c C 1, there is a smooth quasi-projective rational complex
varietyX of dimension l�cC1 such that the inclusion eN cH l.X;Q/�N cH l.X;Q/

is strict.

Theorem 1.3 is optimal as eN cH l.X;Q/DN cH l.X;Q/ for l � 2c (see Propo-
sition 2.2). Moreover, the dimensions of the varieties we consider are the smallest
possible as eN cH l.X;Q/ D N cH l.X;Q/ if dim.X/ � l � c (see Proposition 2.2).
The proof of Theorem 1.3 is based on the theory of perverse sheaves and relies in
an essential way on the decomposition theorem of Bernstein, Beilinson, Deligne, and
Gabber from [8] and on a refinement of the Hodge index theorem due to de Cataldo
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and Migliorini from [22] (see Section 6.2). The proof of Theorem 1.3 also yields
examples demonstrating that the natural coniveau and strong coniveau filtrations on
the rational homology of a singular projective variety may differ (see Theorem 6.6).

Our work here is organized as follows. Section 2 gathers generalities on the
coniveau and strong coniveau filtrations. In Section 3, we develop topological obstruc-
tions for integral cohomology classes to have high strong coniveau. In Sections 4
and 5, we then give explicit examples showing that these obstructions actually occur,
in particular, proving Theorems 1.1 and 1.2. Section 6 deals with cohomology classes
with rational coefficients on open or singular varieties and contains the proof of The-
orem 1.3. Finally, we collect several questions that we leave open in Section 7.

Conventions
A variety is a separated scheme of finite type over a field, which will always be
the field of complex numbers. All manifolds are Hausdorff and second countable.
All topological spaces have the homotopy type of CW complexes. We use the
Grothendieck notation for projective bundles, so that P.E / parameterizes quotient
line bundles of a vector bundle E .

2. Coniveau and strong coniveau

2.1. Two filtrations
Let X be a smooth complex algebraic variety of dimension n. Let us introduce the
following two filtrations on the cohomology of X with coefficients in an abelian
group A. The first is the classical coniveau filtration, defined by

N cH l.X;A/D
X
Z�X

ker
�
j � WH l.X;A/!H l.X �Z;A/

�
D
X
Z�X

im
�
H l
Z.X;A/!H l.X;A/

�
;

where Z �X runs through the closed subvarieties of codimension at least c of X and
j WX �Z!X is the complementary open immersion.

Similarly, we define the strong coniveau filtration

eN cH l.X;A/D
X

f WY!X

im
�
f� WH

l�2r.Y;A/!H l.X;A/
�
;

where the sum is over all proper morphisms f W Y ! X from a smooth complex
variety Y of dimension n � r with r � c. If X is proper, then one may equivalently
define
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eN cH l.X;A/D
X

�2CHk.Y�X/

im
�
�� WH

l�2r.Y;A/!H l.X;A/
�
; (2.1)

where Y runs over all smooth proper complex varieties of dimension k�r with r � c,
as may be seen by desingularizing the irreducible components of a cycle represent-
ing � .

We thus get for each l two descending filtrations N c and eN c on H l.X;A/. We
say that a class in N cH l.X;A/ has coniveau � c and that a class in eN cH l.X;A/ has
strong coniveau � c. Taking Z D f .Y / shows that eN cH l.X;A/�N cH l.X;A/.

Note that we may equivalently define eN cH l.X;A/ to be generated by the Gysin
pushforwards i�ˇ, where i W eZ!X is a composition of a desingularization eZ!Z

of a subvariety Z �X of codimension � c with the inclusion. (To see it, introduce a
desingularization eY ! Y admitting a compatible morphism eY ! eZ.) From this point
of view, that the inclusion eN cH l.X;A/�N cH l.X;A/may not be an equality stems
from the fact that eZ and Z can have quite different topologies.

We also note that we may restrict, in the above definition of eN cH l.X;A/, to
morphisms f W Y ! X where Y has dimension n � c. Indeed, if dim.Y / D n � r ,
then one may replace Y with Y �Pr�c and f W Y !X with f ıpr1 W Y �Pr�c!X .

One may still define coniveau and strong coniveau filtrations on the Borel–Moore
homology of possibly singular varieties. We prefer to stick to the cohomology of
smooth varieties for simplicity, except in Section 6.4, which is devoted to singular
varieties.

2.2. When coniveau and strong coniveau coincide
We first recall the following result by Deligne, whose proof is based on a weight
argument.

THEOREM 2.1 ([24, Corollaire 8.2.8])
Let X be a smooth proper complex variety. Then, for all l; c � 0, one has eN cH l.X;

Q/DN cH l.X;Q/.

We now gather general properties of the coniveau and strong coniveau filtration,
valid for any coefficient group A.

PROPOSITION 2.2
Let X be a smooth complex variety of dimension n, and let A be an abelian group. If
l � 2c or if n� l � c, then eN cH l.X;A/DN cH l.X;A/.

Proof
Arguing as in [40, VI, Lemma 9.1 and below], we see thatN cH l.X;A/D 0 if l < 2c
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and that it consists of algebraic classes if l D 2c. If ˛ 2 N cH 2c.X;A/ is the class
of a subvariety Z of codimension c in X and if � W eZ!Z is a desingularization of
Z, then ˛ is the image of 1 by the Gysin morphism H 0.eZ;A/!H 2c.X;A/. This
proves the first assertion.

To prove the second assertion, we may assume that X is quasi-projective by
Chow’s lemma. Let Z � X be the intersection of X with a general codimension c
linear space in some projective embedding. Then Z is smooth by the Bertini theo-
rem, and the Gysin morphism H l�2c.Z;A/! H l.X;A/ is surjective by Hamm’s
Lefschetz theorem [29, Theorem 2 and the remark below] applied c times.

LEMMA 2.3
The group N 1H l.X;A/=eN 1H l.X;A/ is invariant under replacing X with X � Pn

for all l � 0 and all abelian groups A.

Proof
Let � WX � Pn!X denote the first projection. Using the Künneth theorem, we see
that N 1H l.X � Pn;A/ D ��N 1H l.X;A/ mod eN 1H l.X � Pn;A/. So it suffices
to show that a class ˛ 2H l.X;A/ has strong coniveau � 1 if and only if ��˛ does.
The “only if” direction is clear. Conversely, suppose that ��˛ has strong coniveau
at least 1. We may assume that ��˛ D f�ˇ, where f W V ! X � Pn is a proper
morphism from a smooth variety of dimension dimX C n� 1, and ˇ 2H l�2.V;A/.
Let i W X ! X � Pn denote the inclusion of a general fiber X � ¹pº. Then W D
V �X�PnX is a smooth subvariety of V of dimension dimX�1, by Bertini’s theorem.
Let g WW !X be the induced map. Then g�.ˇjW /D i�f�ˇD i���˛D ˛, so ˛ has
strong coniveau � 1.

PROPOSITION 2.4
The group N 1H l.X;A/=eN 1H l.X;A/ is a stable birational invariant of smooth pro-
jective complex varieties for all l � 0 and all abelian groups A.

Proof
By Lemma 2.3, we only need to show the birational invariance of the group
N 1H l.X;A/=eN 1H l.X;A/. The action �� W H

l.Y;A/ ! H l.X;A/ of a corre-
spondence � 2 CHn.Y �X/ between smooth projective complex varieties of dimen-
sion n preserves the classes of coniveau � 1 and the classes of strong coniveau
� 1. The assertion concerning coniveau follows from the formula N 1H l.X;A/ D

ker.H l.X;A/!H 0.X;H l.A/// recalled in Section 2.3 below and from the fact that
the correspondence � induces a morphism �� W H

0.Y;H l.A//! H 0.X;H l.A//

(see [19, Proposition A.1]). The assertion for strong coniveau follows from the
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equality (2.1). In view of these facts and of Hironaka’s theorem on resolution of sin-
gularities, we may apply [52, Lemma 1.9] with I.X/DN 1H l.X;A/=eN 1H l.X;A/.
This lemma reduces us to proving the invariance of N 1H l.X;A/=eN 1H l.X;A/

under a blow-up � W Y ! X of a smooth projective complex variety in a smooth
center. (Alternatively, we could have used the weak factorization theorem [1, Theo-
rem 0.1.1].)

Computing the cohomology of a blow-up shows that H l.Y;A/ is generated by
the image of the injective morphism �� WH l.X;A/!H l.Y;A/ and by classes sup-
ported on the exceptional divisor E of � . The latter classes have strong coniveau � 1
since E is smooth. Moreover, since ˛ D ����˛, the functoriality of coniveau � 1
and strong coniveau � 1 classes under the action of correspondences shows that ˛
has coniveau � 1 if and only if ��˛ has coniveau � 1, and that ˛ has strong coniveau
� 1 if and only if ��˛ has strong coniveau� 1. These facts imply the desired equality
N 1H l.X;A/=eN 1H l.X;A/DN 1H l.Y;A/=eN 1H l.Y;A/.

COROLLARY 2.5
If X is a smooth projective complex variety which is stably rational, then eN 1H l.X;

A/DN 1H l.X;A/ for every l � 0 and every abelian group A.

Corollary 2.5 could also have been deduced from the following proposition.

PROPOSITION 2.6
If a smooth projective complex variety X admits an integral cohomological decom-
position of the diagonal, then eN 1H l.X;A/ D N 1H l.X;A/ D H l.X;A/ for every
l � 1 and every abelian group A.

Proof
Choose ˛ 2H l.X;A/. Let p;q W X �X ! X be the two projections, and let Œ��D
Œx � X C �� be the decomposition, where the support Z � X � X of � satisfies
q.Z/ � X . Let Y be a disjoint union of resolutions of singularities of the images
by q of the irreducible components of Z, with induced morphism f W Y ! X . LeteZ! Z be a resolution of singularities such that, by letting � W eZ! X �X denote
its composition with the inclusion, there exists a morphism g W eZ! Y with q ı � D
f ı g. Let e� be a cycle on eZ such that ��e� D � . Then

˛D q�
�
Œ��^ p�˛

�
D q�

�
Œ�� ^ p�˛

�
D q���

�
Œe��^ ��p�˛

�
D f�g�

�
Œe��^ ��p�˛

�
is in the image of f� and, hence, has strong coniveau� 1. This proves the proposition.
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Propositions 2.4 and 2.6 do not hold in general for higher coniveau; we will see
later that there are even rational varieties where eN 2H l.X;Z/ ¤ N 2H l.X;Z/ (see
Theorem 4.3(ii)).

Beyond the preceding general results, coniveau and strong coniveau may be
shown to coincide in particular geometric situations, as in the next example.

Example 2.7
LetX be a smooth projective complex threefold such that there exist a smooth projec-
tive surface F and a correspondence � 2 CH2.F �X/ for which Œ��� WH 3.F;Z/!

H 3.X;Z/ is surjective. Then eN 1H l.X;Z/D N 1H l.X;Z/ for all l � 0. For l ¤ 3,
this follows from Proposition 2.2. For l D 3, take a smooth ample divisor i W C ,! F

so that i� WH 1.C;Z/!H 3.F;Z/ is surjective by the weak Lefschetz theorem, rep-
resent .i; Id/�� 2 CH2.C � X/ by a codimension 2 cycle Z on C � F , and let
� W eZ! C �X be a resolution of singularities of the support of Z. Then .p2 ı �/� W
H 1.eZ;Z/!H 3.X;Z/ is surjective as wanted.

By taking F to be an appropriate Fano variety parameterizing curves on X and
by taking � to be the class of the universal curve, this argument applies to all smooth
cubic threefolds (see [18, Theorem 11.19]), general quartic threefolds (see [38, Propo-
sition 1]), general sextic double solids (see [17, Theorem 3.3]), and general Gushel–
Mukai threefolds (see [32, Theorem, p. 84]). In the last three examples, the argument
works for all X whose Fano variety F is a smooth surface (or even a surface with
isolated singularities, as its hyperplane section C may then be chosen to avoid its
singular locus).

Similarly, if X � P5 is a smooth cubic fourfold, then the variety of lines F is a
smooth fourfold, and the Abel–Jacobi map q�p� WH 6.F;Z/!H 4.X;Z/ is an iso-
morphism (as it is dual to the Beauville–Donagi isomorphism of [7, Proposition 4]).
Hence, eN 1H 4.X;Z/DN 1H 4.X;Z/.

2.3. Classes of coniveau at least 1 classes and torsion classes
The classes of coniveau � 1 are of particular interest. Letting Hq.A/ denote
the sheaf associated with the Zariski presheaf U 7! H q.U;A/ on X , Bloch and
Ogus in [11, Corollary 6.3] have shown the existence of a spectral sequence
E
pq
2 D Hp.X;Hq.A//) HpCq.X;A/ converging to the coniveau filtration on

HpCq.X;A/. In particular, the kernel of the natural map H l.X;A/ ! H 0.X;

H l.A// consists of the classes of coniveau � 1.
The following proposition, a consequence of the Bloch–Kato conjecture as

proved by Voevodsky and Rost, had been conjectured by Bloch in [10, end of Lec-
ture 5]. A proof may be found in [12, Proof of Theorem 1(ii)] for l D 3 and in [19,
Théorème 3.1] in general.
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PROPOSITION 2.8
If X is a smooth complex variety, then any torsion class ˛ 2H l.X;Z/ has coniveau
� 1.

Proof
The image of ˛ by the natural morphismH l.X;Z/!H 0.X;H l.Z// is zero because
H l.Z/ is torsion-free by [19, Théorème 3.1]. This concludes, since the kernel consists
of classes of coniveau � 1.

3. Topological obstructions
In this section, we describe two obstructions to integral cohomology classes of smooth
projective complex varieties having high strong coniveau (Propositions 3.5 and 3.8),
which rely, respectively, on Steenrod operations (studied in Section 3.1) and on com-
plex cobordism (considered in Section 3.2).

Our obstructions are of topological nature, reminiscent of Thom’s counterexam-
ples to the integral Steenrod problem [49, Théorèmes III.5, III.9]. We formulate them
in their natural generality (Propositions 3.4 and 3.7 and Section 3.3).

3.1. Steenrod operations
The obstruction described in Proposition 3.5 is based on carefully chosen elements
.Sj /j�1 of the Steenrod algebra, which behave particularly well with respect to push-
forward morphisms (see Proposition 3.3). Let A be the mod 2 Steenrod algebra (see
[47]). We recall that it is a graded Z=2-algebra generated by degree i elements Sqi

for i � 0, subject to the Adem relations

Sqi Sqj D
bj=2cX
kD0

 
j � k � 1

i � 2k

!
SqiCj�k Sqk : (3.1)

The algebra A acts functorially on the mod 2 cohomology of any topological spaceX .
For ˛;ˇ 2H�.X;Z=2/, this action satisfies Cartan’s formula

Sqi .˛ ^ ˇ/D

iX
jD0

Sqj ˛ ^ Sqi�j ˇ: (3.2)

Let A Sq1 be the left ideal of A generated by Sq1. For j � 1, we define

Sj WD Sq2
j�1 � � �Sq7 Sq3; (3.3)

which is an element of degree 2jC1�j �3 in A. (By convention, S1 is the unit of A.)
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LEMMA 3.1
One has Sq2i�1 Sj 2A Sq1 for j � 1 and 1� i � 2j � 1.

Proof
The proof is by induction on j . The statement is clear for j D 1. For j > 1, use the
Adem relation (3.1) to write

Sq2i�1 Sj D Sq2i�1 Sq2
j�1 Sj�1 D

2j�1�1X
kD0

 
2j � k � 2

2i � 2k � 1

!
Sq2

jC2i�k�2 Sqk Sj�1:

As 2i � 2k � 1 is odd,
�
2j�k�2
2i�2k�1

�
is even whenever 2j � k � 2 is even. It follows that

the only terms that contribute are those with k odd. Since Sqk Sj�1 2A Sq1 for those
k by the induction hypothesis, the lemma is proved.

Proposition 3.2 is a relative variant of Wu’s theorem [42, Theorem 11.4]
which was proved by Atiyah and Hirzebruch in [5, Satz 3.2]. We denote by
SqD Sq0CSq1C� � � the total Steenrod operation and by Sq�1 its inverse. If E �E 0

is a virtual real vector bundle, we let w.E � E 0/ D w.E/w.E 0/�1 be its total
Stiefel–Whitney class.

PROPOSITION 3.2
Let f W Y ! X be a proper C1-map between C1-manifolds with virtual normal
bundle Nf WD f �TX � TY . For all ˇ 2H�.Y;Z=2/, one has

Sq.f�ˇ/D f�
�
Sq.ˇ/^w.Nf /

�
in H�.X;Z=2/.

Proof
When X and Y are compact, this is exactly [5, Satz 3.2] applied with �D Sq�1. (In
[5, Satz 3.2], Wu.Sq;X/D Sq�1w.TX / by Thom’s definition of the Stiefel–Whitney
classes from [42, p. 91].) As noted in [9, Proof of Proposition 1.22], the standing
assumption that manifolds are compact in [5, Section 3] is superfluous. Indeed, one
may assume that Y is connected and choose an injective immersion i W Y ! Sm

thanks to Whitney’s theorem [31, Chapter 2, Theorem 2.14]. The proof of [5, Satz 3.2]
then goes through, using the embedding .f; i/ W Y !X � Sm.

We now apply the relative Wu theorem to the cohomology operation Sj . Let E
and E 0 be two real vector bundles of constant rank on a C1-manifold X . A stably
complex structure on the virtual bundle E �E 0 is a homotopy class of isomorphisms
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� WE ˚Rk 'E 0 ˚ F , where F is a complex vector bundle and where one identifies
� with .�; Id/ W E ˚ RkC2 ' E 0 ˚ F ˚ C. A complex orientation of a C1-map f W
Y ! X between C1-manifolds is a stably complex structure on the virtual normal
bundle Nf WD f �TX � TY of f .

PROPOSITION 3.3
Let f W Y !X be a complex oriented proper C1-map between C1-manifolds. For
all j � 1 and all ˇ 2H�.Y;Z=2/ such that Sq1.ˇ/D 0, one has

Sj .f�ˇ/D f�Sj .ˇ/

in H�.X;Z=2/.

Proof
The odd-degree Stiefel–Whitney classes of a complex vector bundle vanish by [42,
Problem 14-B]. In view of Whitney’s sum formula, the same holds for the odd-
degree Stiefel–Whitney classes of a stably complex virtual vector bundle such as
Nf D f

�TX � TY .
We prove the proposition by induction on j . The statement is clear for j D 1. So

assume that j > 1. We may assume that ˇ 2H k.Y;Z=2/. By the induction hypothe-
sis,

Sj .f�ˇ/D Sq2
j�1 Sj�1.f�ˇ/D Sq2

j�1
�
f�Sj�1.ˇ/

�
:

By Proposition 3.2, the class Sj .f�ˇ/ is the image by f� of the component of degree
2jC1�j �3Ck of SqSj�1.ˇ/^w.Nf /. Lemma 3.1, the hypothesis that Sq1.ˇ/D
0, and the fact that w.Nf / has no odd-degree component show at once that

Sj .f�ˇ/D f�
�
Sq2

j�1 Sj�1.ˇ/^w0.Nf /
�
D f�Sj .ˇ/:

We may now state the two main results of this section.

PROPOSITION 3.4
Let f W Y !X be a complex oriented proper C1-map between C1-manifolds, and
let ˇ 2H k.Y;Z=2/ be such that Sq1.ˇ/D 0. If j � k and j � 2, then Sj .f�ˇ/D 0
in H�.X;Z=2/.

Proof
By Proposition 3.3, one has Sj .f�ˇ/ D f�Sj .ˇ/ D f� Sq2

j�1 Sj�1.ˇ/. Since the

class Sj�1.ˇ/ has degree 2j � j � 2Ck < 2j � 1, one has Sq2
j�1 Sj�1.ˇ/D 0, and

it follows that Sj .f�ˇ/D 0.



TWO CONIVEAU FILTRATIONS 2729

Since a morphism of smooth complex varieties is canonically complex oriented,
we deduce at once the following proposition.

PROPOSITION 3.5
On a smooth complex variety X , choose ˛ 2H l.X;Z/; let ˛ 2H l.X;Z=2/ denote
the reduction modulo 2 of ˛, and let c and j be integers such that l � 2c C j and
j � 2. If Sj .˛/¤ 0, then ˛ has strong coniveau less than c.

3.2. Complex cobordism
We now use complex cobordism to obtain refinements of Proposition 3.4 when k � 2
and of Proposition 3.5 when l � 2c C 2. These improvements are not needed in the
proofs of our main theorems.

To every topological space X , one can associate its complex cobordism ring
MU �.X/, which is a graded ring. These rings form a generalized cohomology the-
ory, represented by the complex cobordism spectrum MU (see for instance [48, Chap-
ter 12] or [2]). In this article, we will be interested only in the complex cobordism of
C1-manifolds. In this setting, Quillen in [45, Section 1] gave a concrete description
of MU �.X/ which we briefly recall.

Let X be a C1-manifold. Two proper C1-maps g0 WZ0!X and g1 WZ1!X

that are complex oriented (in the sense recalled in Section 3.1) are said to be cobordant
if there exists a complex oriented proper C1-map eg W eZ ! X � R such that, for
i 2 ¹0; 1º, eg is transversal to the inclusion X � ¹iº ,!X �R, and gi identifies withegjeg�1.X�¹iº/ as a complex oriented C1-map. For r 2 Z, Quillen identifies MU r.X/

with the set of cobordism classes Œg� of complex oriented proper C1-maps g WZ!
X from a C1-manifold Z of dimension dim.X/� r , with disjoint union as a group
law (see [45, Proposition 1.2]).

The above definition makes it clear how to construct Gysin morphisms in com-
plex cobordism. If f W Y ! X is a proper complex oriented map between C1-
manifolds, one can define f� WMU r.Y /!MU rCdim.X/�dim.Y /.X/ by sending the
class Œg� represented by a complex oriented proper C1-map g W Z! Y to Œf ı g�
(see [45, Section 1.4]).

As complex cobordism is the universal complex oriented cohomology theory (see
[2, II, Lemma 4.6]), the complex orientation of cohomology with integral coefficients
(see [2, II, Example (2.2)]) yields a natural transformation (see [2, II, Example (4.7)])

� WMU �.�/!H�.�;Z/: (3.4)

When X is a C1-manifold, the image by � of a class in MU �.X/ represented by
a complex oriented proper C1-map g WZ!X is �.Œg�/D g�1 2H�.X;Z/, where
g� W H

�.Z;Z/! H�.X;Z/ is the Gysin morphism (the complex orientation of g
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induces an orientation of the virtual vector bundleNg and, hence, allows one to define
Gysin morphisms by [46, V, Definition 2.11(b)]) and 1 2H 0.Z;Z/ is the unit (see
[35, Section 9]). It is clear from this description that if f W Y !X is a proper complex
oriented map between C1-manifolds and if 	 2MU �.Y /, then

�.f�	/D f��.	/: (3.5)

The next proposition is well known (see, for instance, [50, p. 468]). In the
setting of oriented cobordism, the last assertion originates from Thom’s work [49,
Théorème II.20]. We let A Sq1A be the two-sided ideal of A generated by Sq1.

PROPOSITION 3.6
If X is a topological space and r � 0, then the image of the morphism

MU r.X/
�
�!H r.X;Z/ (3.6)

induced by (3.4) is killed by stable integral cohomological operations of positive
degree, and the reduction modulo 2 of a class in the image of (3.6) is annihilated
by A Sq1A.

Proof
Consider a stable integral cohomological operation of degree k > 0, induced by a
map of spectra 
 W HZ! †kHZ, where HZ is the Eilenberg–MacLane spectrum
representing cohomology with integral coefficients, and let � W MU! HZ be the
map of spectra inducing (3.4). The morphism H k.HZ;Z/! H k.MU;Z/ induced
by � sends the class represented by 
 to that represented by 
 ı�. Since H k.HZ;Z/

is torsion by [16, Section 6] and H k.MU;Z/ is torsion-free by [2, I, Section 3], we
deduce that 
 ı� is homotopically trivial, which proves the first assertion.

Let � and ˇZ denote reduction modulo 2 and the integral Bockstein. The second
assertion follows from the first since the stable integral cohomological operation ˇZ ı
a ı � is a lift of Sq1 ı a ı � for all a 2A.

We finally reach the goal of this section.

PROPOSITION 3.7
Let f W Y !X be a complex oriented proper C1-map between C1-manifolds, and
let ˇ 2H k.Y;Z/. If k � 2, then f�ˇ is in the image of the morphism � WMU �.X/!

H�.X;Z/ induced by (3.4) and its reduction modulo 2 is killed by A Sq1A.

Proof
By the easy half of [50, Theorem 2.2], whose proof is valid for any X , there exists a
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class 	 2MU �.Y / with �.	/D ˇ. By (3.5), one has f�ˇ D �.f�	/, which proves
the first assertion. The second now follows from Proposition 3.6.

As a morphism of smooth complex varieties is canonically complex oriented, we
deduce the following.

PROPOSITION 3.8
Let X be a smooth complex variety, choose ˛ 2H l.X;Z/, let ˛ 2H l.X;Z=2/ be the
reduction modulo 2 of ˛, and let c be such that l � 2c C 2. If ˛ is not in the image
of � WMU �.X/! H�.X;Z/ or if ˛ is not killed by A Sq1A, then ˛ has strong
coniveau less than c.

3.3. A remark on the topological obstructions
In the statements of Propositions 3.4 and 3.7, one could replace the hypothesis that
f is complex oriented by the weaker hypothesis that its virtual normal bundle Nf WD
f �TX � TY is MU -oriented in the sense of [46, Section V.1].

Indeed, only two properties of a complex oriented map f are used in the proofs
of Propositions 3.4 and 3.7: the existence of a Gysin morphism f� WMU �.Y /!

MU �.X/ if f is proper, and the fact that all the odd Stiefel–Whitney classes of
Nf vanish. Under the sole hypothesis that Nf is MU -oriented, the first property
is provided by [46, V, Definition 2.11(b)]. As for the second, every MU -oriented
vector bundle E has vanishing odd Stiefel–Whitney classes. To see it, write Thom’s
definition of Stiefel–Whitney classes based on Steenrod operations and on the Thom
class of E in mod 2 cohomology (see [42, p. 91]), notice that this Thom class lifts to
complex cobordism as E is MU -oriented, and apply Proposition 3.6.

We refer to [56] for an example of a real vector bundle which is MU -oriented
but has no stably complex structure, which shows that this is a genuine generalization
of Propositions 3.4 and 3.7. We will not use this generalization in what follows.

4. Algebraic approximations of classifying spaces
The most direct way of producing X and ˛, where the obstructions of the previous
section take place, comes from algebraic approximations to a classifying space BG.
This was the construction used in the original counterexamples to the integral Hodge
conjecture due to Atiyah and Hirzebruch in [6].

4.1. Torsion examples
We first use this technique with G D .Z=2/s to prove Theorem 1.1.
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LEMMA 4.1
For all 1� j � s, there exists � 2H s..Z=2/s;Z=2/ with Sj Sq1.�/¤ 0.

Proof
The Künneth formula yields an algebra isomorphism

H�
�
.Z=2/s;Z=2

�
D Z=2Œx1; : : : ; xs�

with generators xi in degree 1. Take � D x1 � � �xs . Combining [54, Definition 2.4.9
and Proposition 5.8.4] shows that Sj Sq1.�/¤ 0. Alternatively, developing

Sj Sq1.�/D Sq2
j�1 � � �Sq3 Sq1.x1 � � �xs/

using Cartan’s formula, we get a polynomial in which the monomial

x2
j

1 x
2j�1

2 � � �x2jxjC1 � � �xs�1xs

appears non-trivially. It follows that Sj Sq1.�/¤ 0.

LEMMA 4.2
For all 1 � j � s, there exist a smooth projective complex variety V with torsion
canonical bundle and a class  2H s.V;Z=2/ with Sj Sq1./¤ 0.

Proof
We use the Godeaux–Serre construction. Define m WD 2jC1 � j � 1C s, and let Z=2
act on P2mC1 by the involution

� W .X0; : : : ;Xm;XmC1; : : : ;X2mC1/ 7! .X0; : : : ;Xm;�XmC1; : : : ;�X2mC1/:

The fixed locus of this action has dimension m. Let Z � P2mC1 be a general com-
plete intersection of m C 1 �-invariant quadrics. The smooth projective variety Z
has trivial canonical bundle. Since � acts freely on Z, the quotient Y WD Z=� is a
smooth projective variety with torsion canonical bundle. (When m D 2, this is the
classical construction of Enriques surfaces.) We choose V WD Y s . By [6, Proposi-
tion 6.6 and its proof], there exist maps a W Y !BZ=2 and b W Y ! P1.C/ such that
.a; b/ W Y ! BZ=2 � P1.C/ is an .m � 1/-homotopy equivalence. Consequently,
a� WH�.Z=2;Z=2/!H�.Y;Z=2/ is injective in degree at most m� 1. By the Kün-
neth formula, .as/� W H�..Z=2/s;Z=2/! H�.V;Z=2/ is also injective in degree
at most m � 1. Applying Lemma 4.1 yields a class � 2H s..Z=2/s;Z=2/ such that
Sj Sq1.�/¤ 0. Setting  WD .as/��, one has Sj Sq1./D .as/�Sj Sq1.�/¤ 0 by our
choice of m.
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Now comes the proof of Theorem 1.1. The crucial case is the c D 1 case, where
one can use that torsion classes always have coniveau � 1. The statement for higher
values of c follows using product and blow-up constructions.

THEOREM 4.3
For all c � 1 and l � 2cC 1, there exists a smooth projective complex variety X such
that the inclusion eN cH l.X;Z/�N cH l.X;Z/ is strict. Moreover,
(i) one can choose X with torsion canonical bundle;
(ii) if c � 2 and l � 2cC 1, one can choose X to be rational.

Proof
Let V and  be as in Lemma 4.2 applied with j D s D l � 2c C 1. Let T be a
smooth projective complex variety of dimension c � 1, which we choose to have
torsion canonical bundle if we want to ensure (i). Let � 2H 2c�2.T;Z/ be the class
of a point t 2 T . We define X WD V � T with projections p WX! V and q WX! T ,
and we set ˛ WD p�ˇZ./^ q��, where ˇZ is the integral Bockstein.

Let ˛ and � be the reductions modulo 2 of ˛ and �. Since � is killed by all
positive-degree elements of A for degree reasons and since the reduction modulo 2
of ˇZ./ is Sq1./, Cartan’s formula (3.2) shows at once that Sj .˛/D p�Sj Sq1  ^
q��. This class being non-zero, Proposition 3.5 implies that ˛ has strong coniveau
less than c.

The class ˛ is the pushforward of ˇZ./ by the codimension c� 1 closed immer-
sion V � ¹tº ! V � T . As ˇZ./ is torsion, it has coniveau � 1 by Proposition 2.8,
and it follows that ˛ has coniveau � c. This finishes the proof of (i).

For (ii), we let W be as in part (i), admitting a class in � 2N c�1H l�2.W;Z/ so
that Sj . N�/¤ 0 for j D l � 2c C 1. Let nD dimW . Let W ! PnC2 be the compo-
sition of a projective embedding of W and a generic projection to PnC2. Performing
an embedded resolution of the image W0 of W in PnC2, we find a smooth ratio-
nal variety Y of dimension n C 2, which contains a smooth subvariety eW , which
admits a birational morphism eW !W . By construction, eW then also carries a class
	 2 N c�1H l�2.eW ;Z/ for which Sj . N	/¤ 0. Now let X be the blow-up of Y alongeW with exceptional divisorE , and take the class ˛ 2H l.X;Z/ to be i���	 , where i W
E!X is the inclusion and � WE! eW is the projective bundle. Then by Lemma 3.3,
Sj . N̨ /D i��

�.Sj N	/¤ 0, and we conclude that ˛ has strong coniveau less than c by
Proposition 3.5. On the other hand, ˛ is the pushforward of a coniveau � c � 1 class
from a codimension 1 closed immersion i WE!X ; hence, it has coniveau � c. This
completes the proof.
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Remark 4.4
One does not need to appeal to Proposition 2.8 and, hence, to the Bloch–Kato con-
jecture to prove that ˇZ./ has coniveau � 1 in the proof of Theorem 4.3. Indeed, it
follows from the construction of  2H s.V;Z=2/ given in Lemmas 4.1 and 4.2 that
 D x1 � � �xs for some xi 2H 1.V;Z=2/. Since ˇZ.xi / 2H 2.V;Z/ is 2-torsion, the
Lefschetz .1; 1/ theorem shows that it is an algebraic class and, hence, has coniveau
� 1. It follows that xi lifts to an integral class in restriction to a dense open subset
of V . Hence, so does  D x1 � � �xs , showing that ˇZ./ has coniveau � 1.

Remark 4.5
It was pointed out to us by Yagita that one can obtain p-torsion examples for all
odd prime numbers p, using analogous arguments which we now briefly sketch. Let
A.p/ be the mod p Steenrod algebra, and let Q1 2A.p/ be the element introduced
by Milnor in [41, Section 6]. There exists a p-torsion class in H 3..Z=p/2;Z/ whose
reduction modulo p is not annihilated by Q1 (for instance, the element ˇZ.u1u2/ in
the notation of [6, Proof of (6.7)]). As in [6, Proof of (6.6)], we deduce the existence of
a smooth projective complex variety X and of a p-torsion class ˛ 2H 3.X;Z/ whose
reduction modulo p is not killed by Q1. The class ˛ has coniveau � 1 by Proposi-
tion 2.8. It cannot have strong coniveau � 1 because the cohomological operationQ1
commutes with pushforwards by C1-maps of oriented compact C1-manifolds (use
[5, Satz 2.12 and Satz 3.2] and the fact that the mod p Bockstein commutes with such
pushforwards), yet vanishes on reductions modulo p of degree 1 integral cohomology
classes (see [47, Section VI.1]).

4.2. Torsion-free examples
Since the cohomology of a finite group is torsion in positive degree, the examples
of integral cohomology classes for which coniveau and strong coniveau differ that
can be obtained using classifying spaces of finite groups live in cohomology groups
that have torsion. To produce torsion-free examples, we resort to classifying spaces
of linear algebraic groups—namely, of the exceptional group G2, as in [44].

PROPOSITION 4.6
There exists a smooth projective complex varietyX such thatH 4.X;Z/ is torsion-free
and the inclusion eN 1H 4.X;Z/�N 1H 4.X;Z/ is strict.

Proof
It follows from the work of Borel (notably [13, Proposition 19.2] and [14, Théorème
17.3(c)]) that H 4.BG2;Z/ is torsion-free and contains a class whose reduction mod-
ulo 2 is not killed by Sq3 (see [3, Section 2.4, Theorem 2.19] for a proof of this
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precise statement). The same property holds for the classifying space B.G2 �Gm/D
BG2 �BGm DBG2 � P

1.C/.
By Ekedahl’s construction of algebraic approximations to classifying spaces of

reductive groups [26, Theorem 1.3], there exist a smooth projective complex variety
X and a map a WX!B.G2�Gm/ such that the pullback morphism a� WH�.B.G2�

Gm/;Z/! H�.X;Z/ is an isomorphism in degree at most 8. It follows from the
five lemma that a� W H�.B.G2 � Gm/;Z=2/! H�.X;Z=2/ is an isomorphism in
degree at most 7. We deduce that H 4.X;Z/ is torsion-free and that there exists a
class ˛ 2 H 4.X;Z/ in the image of a� whose reduction modulo 2 is not killed by
Sq3.

The class ˛ has strong coniveau 0 by Proposition 3.5 or by Proposition 3.8. Edidin
and Graham in [25, Theorem 1(c)] (see also [51, Theorem 2.14]) have shown the
surjectivity of the cycle class map CH2.B.G2�Gm//˝ZQ!H 4.B.G2�Gm/;Q/.
It follows that a multiple of ˛ is algebraic. As a consequence, ˛ restricts to a torsion
class on a dense open subset U �X and, hence, has coniveau � 1 by Proposition 2.8
applied to U . This completes the proof of the proposition.

Remark 4.7
The class ˛ 2H 4.X;Z/ considered in the proof of Proposition 4.6 is Hodge since a
multiple of it is algebraic, but it is not algebraic since it has strong coniveau 0. This
counterexample to the integral Hodge conjecture in a torsion-free cohomology group
is parallel to the counterexamples to the integral Tate conjecture described by Pirutka
and Yagita in [44, Theorem 1.1].

5. Low-dimensional examples
The examples of Section 4 are relatively simple and work for any coniveau c � 1
and any degree l � 2c C 1. On the other hand, the resulting varieties have quite high
dimension. We now construct examples of dimension as low as 4 and show that their
dimensions are the lowest possible that may be attained using purely topological argu-
ments.

5.1. Construction of the examples
Our first goal is to prove Theorem 1.2.

5.1.1. A special bielliptic surface
Let E1 D C=.Z C Z�/ and E2 D C=.Z C Zi/ be two elliptic curves, the second
having complex multiplication by i . The group G D Z=4 acts freely on E1 �E2 by
translation by a 4-torsion point .u 7! uC 1

4
/ on the first factor and by multiplication

by i (v 7! iv) on the second. Let S D .E1 �E2/=G be the quotient.
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The morphism .u; v/ 7! .u; .1C i/v/ on C�C induces a morphism f W S ! S

which is finite étale of degree 2. Let ˛ 2H 1.S;Z=2/ be the corresponding class.

LEMMA 5.1
There is a class ˇ 2H 1.S;Z=2/ such that ˛3ˇ¤ 0 and ˇ2 D 0.

Proof
There is a natural diffeomorphism S ' S1 �M , where M is the quotient of S1 �E2
by the diagonal action of Z=4, by translation by 1

4
on S1 DR=Z, and by multiplication

by i on E2. Moreover, ˛ is the pullback by the second projection of the class (which
we still denote by ˛ 2 H 1.M;Z=2/) associated to the double cover f WM !M

defined by .u; v/ 7! .u; .1 C i/v/. Let ˇ be the pullback to S of the generator of
H 1.S1;Z=2/. It is clear that ˇ2 D 0. To conclude, it suffices to show that ˛3 ¤ 0 in
H 3.M;Z=2/; then also ˛3ˇ¤ 0 by the Künneth theorem.

Using the first projection, we may view M as the total space of a fibration
p WM ! S1=G D S1 with fibers E2 (and the monodromy on the fiber is given by
multiplication by i ). We let x and y be the real coordinates on the universal cover
C ' R2 of E2. Let H � M (resp., K � M ) be the immersed C1-hypersurface
which intersects p�1.0/ along ¹xy D 0º (resp., ¹.x � 1=2/.y � 1=2/ D 0º) and is
obtained by transporting the latter flatly in all fibers of p. (Note that ¹xy D 0º and
¹.x � 1=2/.y � 1=2/D 0º are invariant by the monodromy.)

The immersed submanifolds H and K intersect transversally along a 1-
dimensional submanifold C � M which intersects p�1.0/ along the two points
.0; 1=2/ and .1=2; 0/ and is obtained by transporting flatly these two points in all
fibers of p. (It is a circle in M with degree 2 over the base of p.)

Let us introduce the following deformation C 0 of C . Start with the point .�; 1=2/
in p�1.0/ for some small � > 0, and transport it flatly in the fibers of p. After going
twice around the base S1 of p, one arrives at the point .��; 1=2/ of p�1.0/, which
can be connected by a very small arc to .�; 1=2/. The resulting loop C 0 intersects H
transversally in one point. Letting ŒH �, ŒK�, ŒC �, and ŒC 0� denote the mod 2 coho-
mology classes of H , K , C , and C 0 in M , we deduce that the intersection number
ŒC 0� ^ ŒH�D ŒC � ^ ŒH�D ŒK�^ ŒH�2 is non-zero.

The Leray spectral sequence for p yields an exact sequence

0!H 1.S1;Z=2/!H 1.M;Z=2/!H 0.S1;R1p�Z=2/D Z=2: (5.1)

The classes ŒH � and ŒK� are non-trivial in restriction to the fibers of p; hence, both
project to the non-zero class in H 0.S1;R1p�Z=2/ D Z=2. It follows from (5.1)
that we may write ŒH �D ŒK�C p�! for some ! 2H 1.S1;Z=2/. We now compute
ŒK�3 D ŒK�^ .ŒK�C p�!/2 D ŒK�^ ŒH�2 ¤ 0, since !2 D 0.
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We finally remark that ŒK�D ˛. Indeed, the pullback of K by the double cover
f WM !M is an immersed hypersurface in M obtained by transporting flatly in
the fibers of p the boundary of the square with vertices .1=2; 0/, .0; 1=2/, .1=2; 1/,
.1; 1=2/. It is clearly a boundary inM , as it bounds the domain obtained by transport-
ing flatly in the fibers of p the interior of the same square. Hence, f �ŒK� vanishes
in H 1.M;Z=2/. Since ŒK�¤ 0, this shows that ŒK�D ˛. In particular, ˛3 D ŒK�3 ¤
0.

5.1.2. A diagonal quotient construction
Let M be a connected C1-manifold, and choose a non-trivial class " 2H 1.M;Z=2/

with associated double cover M 0!M . We will consider the quotient N of M 0 � S1

by the diagonal action of Z=2 (by the natural action on the left, by � Id on S1 DR=Z

on the right).
Using the first projection, we view N as the total space of a fibration q WN !M

whose fibers are isomorphic to S1. The two fixed points of the action of Z=2 on S1

give rise to two sections of q whose images are C1-hypersurfaces of N denoted
by D and D0. Let ı WD ŒD� 2 H 1.N;Z=2/ and ı0 WD ŒD0� 2 H 1.N;Z=2/ denote
the cohomology classes of D and D0. As D and D0 do not meet, ı ^ ı0 D 0 in
H 2.N;Z=2/. On the one hand, N � .D [ D0/ is connected (being the image of
M 0 � .0; 1

2
/ �M 0 � R=Z), so that ı C ı0 ¤ 0 in H 1.N;Z=2/. On the other hand,

the inverse image of D [D0 in M 0 � S1 is a boundary, showing that ıC ı0 is killed
by the double cover M 0 � S1 ! N . It follows that ı C ı0 D q�" in H 1.N;Z=2/;
hence,

ı2 D q�"^ ı (5.2)

in H 2.N;Z=2/.

LEMMA 5.2
The formula �C�ı 7! q��C q��^ ı induces a ring isomorphism

H�.M;Z=2/Œı�=.ı2 � "ı/
�
�!H�.N;Z=2/:

Proof
This ring morphism is well defined by (5.2). To show that it is injective, choose
�;� 2H�.M;Z=2/ with q��C q��^ ı D 0, and note that �D q�.q��C q��^
ı/D 0 and �C �^ "D q�..q

��C q��^ ı/^ ı/D 0 by the projection formula.
To show surjectivity, take ˛ 2H l.N;Z=2/. Then q�.˛ � .q�q�˛/ ^ ı/D 0 by the
projection formula, and the Leray spectral sequence for q shows the existence of
� 2H l.M;Z=2/ such that ˛D q��C .q�q�˛/^ ı.
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5.1.3. A fourfold
Combining the constructions of Sections 5.1.1 and 5.1.2, we obtain a remarkable
smooth projective fourfold.

PROPOSITION 5.3
There exist a smooth projective complex fourfold Z and a 2-torsion class � 2
H 3.Z;Z/ such that the reduction modulo 2 of �2 is non-zero.

Proof
Let E be an elliptic curve, and let S and ˛;ˇ 2H 1.S;Z=2/ be as in Section 5.1.1.
Consider the double cover S 0! S associated with ˛, and let Y be the smooth pro-
jective complex threefold obtained as the quotient of S 0�E by the diagonal action of
Z=2 (by the natural action on the left, by � Id on E ' .S1/2 ' .R=Z/2 on the right).

Let � W Y ! S be the morphism induced by the first projection, and let Y 0! Y

be the double cover associated with ��ˇ. We define Z to be the smooth projective
complex fourfold obtained as the quotient of Y 0 � E by the diagonal action of Z=2
(by the natural action on the left, by � Id on E ' .S1/2 ' .R=Z/2 on the right).

The varietyZ may be constructed from S by applying four times the construction
of Section 5.1.2. As a consequence, its cohomology ring with Z=2-coefficients may
be computed by four successive applications of Lemma 5.2:

H�.Z;Z=2/DH�.S;Z=2/Œı; ı0; 	; 	 0�=.ı2 � ˛ı; ı02 � ˛ı0; 	2 � ˇ	; 	 02 � ˇ0	 0/:

Define � WD ˇZ.	ı/ 2H 3.Z;Z/, where ˇZ is the integral Bockstein. It is a 2-
torsion class. Then the reduction of �2 modulo 2 is equal to�

Sq1.	ı/
�2
D .	2ıC 	ı2/2 D 	4ı2C 	2ı4 D 	ˇ3ı2C 	ˇı˛3 D ˛3ˇ	ı¤ 0;

where we used that ˇ2 D 0 and that ˛3ˇ¤ 0 (see Lemma 5.1).

We may now prove Theorem 1.2.

THEOREM 5.4
For l 2 ¹3; 4º, there is a smooth projective complex variety X of dimension l C 1
with torsion canonical bundle such that the inclusion eN 1H l.X;Z/ � N 1H l.X;Z/

is strict.

Proof
LetZ and � be as in Proposition 5.3. If l D 3, we defineX WDZ and ˛ WD � . If l D 4,
we choose an elliptic curve E and a class � 2H 1.E;Z/ whose reduction modulo 2
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is non-zero, and we define X WD Z �E and ˛ WD p�1� ^ p�2� 2H
4.X;Z/. In both

cases, ˛ is 2-torsion; hence, it has coniveau � 1 by Proposition 2.8.
Let ˛, � , and � denote the reductions modulo 2 of ˛, � , and � . If l D 3, then

Sq3.˛/D �2 ¤ 0. If l D 4, then Sq3.˛/D p�1 Sq3.�/^ p�2� D p
�
1�

2^p�2� ¤ 0 by
Cartan’s formula (3.2) since Sq1.�/D Sq1.�/D Sq3.�/D 0. In both cases, Proposi-
tion 3.5 applied with j D 2 or Proposition 3.8 show that ˛ has strong coniveau 0.

Remark 5.5
For X as in the above theorem, any class in Hk.X;Z/ is realizable as the class of a
real submanifold of X (see [49, Corollaire II.28]). Thus, the obstructions we use are
really of “complex” nature.

5.2. Optimality
In this section, we prove Theorem 5.9, thus showing that the examples of Theorem 5.4
are optimal in the following sense: their dimensions are the lowest possible for which
there are topological obstructions to the equality of coniveau and strong coniveau in
cohomological degrees 3 and 4 (see Remark 5.10).

5.2.1. A vanishing result
The following proposition will be used crucially in the proof of Theorem 5.9.

PROPOSITION 5.6
Let X be a compact complex fourfold, and let ˛ 2H 4.X;Z/. If ˛ denotes the reduc-
tion modulo 2 of ˛ and ˇZ is the integral Bockstein, then

ˇZ Sq2.˛/D 0

in H 7.X;Z/.

Proof
Let � W Z=2! Q=Z be the natural injection, and let @ denote the boundary maps
associated with the short exact sequence 0! Z! Q! Q=Z! 0. In view of the
commutative exact diagram

0 Z
2

o

Z Z=2

�

0

0 Z Q Q=Z 0

one has ˇZ Sq2.˛/D @.�� Sq2.˛// in H 7.X;Z/. It follows that
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ˇZ Sq2.˛/^ ˇD @
�
�� Sq2.˛/

�
^ˇD �� Sq2.˛/^ @.ˇ/ in H 8.X;Q=Z/

for all ˇ 2H 1.X;Q=Z/, where the last equality follows from [20, Lemma 2.6].
Defining 	 to be the reduction modulo 2 of @.ˇ/, we deduce that

ˇZ Sq2.˛/^ ˇD ��
�
Sq2.˛/^ 	

�
in H 8.X;Q=Z/: (5.3)

Cartan’s formula (3.2) and the vanishing of Sq1.˛/ imply that

Sq2.˛/^ 	 D Sq2.˛ ^ 	/C ˛ ^ 	2 (5.4)

in H 8.X;Z=2/. Finally, letting u2.X/ 2H 2.X;Z=2/ denote the second Wu class of
X defined in [42, Section 11, pp. 131–132], we have

Sq2.˛ ^ 	/D ˛ ^ 	 ^u2.X/ (5.5)

in H 8.X;Z=2/. Notice that the classes ˛, 	 , and u2.X/ are the reductions modulo 2
of the integral cohomology classes ˛, @.ˇ/, and c1.X/. (For the latter assertion, com-
bine Wu’s theorem [42, Theorem 11.4] and [42, Problem 14-B].) Since @.ˇ/ is torsion
and H 8.X;Z/D Z has no torsion, we deduce that ˛ ^ 	2 D ˛ ^ 	 ^ u2.X/D 0.
Combining (5.3), (5.4), and (5.5) now shows that ˇZ Sq2.˛/ ^ ˇ D 0. Since ˇ was
arbitrary, Poincaré duality (see Proposition 5.7 below) implies the required vanishing
ˇZ Sq2.˛/D 0.

For lack of an explicit reference to the literature, we include a proof of the fol-
lowing instance of Poincaré duality.

PROPOSITION 5.7
If M is a compact oriented C1-manifold of dimension d , then the cup product pair-
ings

H k.M;Z=n/�Hd�k.M;Z=n/!Hd .M;Z=n/D Z=n

and H k.M;Z/�Hd�k.M;Q=Z/!Hd .M;Q=Z/DQ=Z

are non-degenerate on both sides for all k � 0 and n� 1.

Proof
To prove the assertion with Z=n coefficients, run the proof of [30, Proposition 3.38]
with R D Z=n, noting that the morphism h in [30, Proposition 3.38] is an isomor-
phism by the universal coefficient theorem [30, Theorem 3.2] and since Z=n is an
injective Z=n-module. (This argument appears in [4, Section 3.2.6].)

To prove that the second pairing is non-degenerate on the left, take a non-zero
˛ 2 H k.M;Z/. Since H k.M;Z/ is finitely generated, there exists n � 1 such that
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˛ is not divisible by n and, hence, such that its image ˛ in H k.M;Z=n/ does not
vanish. By the assertion with Z=n-coefficients, we may find ˇ 2Hd�k.M;Z=n/with
˛ ^ ˇ¤ 0. The cup product of ˛ with the image of ˇ inHd�k.M;Q=Z/ is then non-
zero.

To prove that the second pairing is non-degenerate on the right, take a non-zero
class ˇ 2Hd�k.M;Q=Z/. It is the image of a class ˇn 2Hd�k.M;Z=n/ for some n.
Let ˇmn 2Hd�k.M;Z=mn/ be the class induced by ˇn for m � 1. For all m � 1,
there exists a class ˛mn 2H k.M;Z=mn/ with ˛mn^ˇmn ¤ 0 by the assertion with
Z=mn-coefficients. Since the H k.M;Z=mn/’s are finite, one may use Tychonoff’s
theorem to choose the ˛mn’s compatible with each other. The image of ˛n by the

boundary map of 0! Z
n
�! Z! Z=nZ! 0 is divisible bym for all m� 1 as ˛n lifts

to H k.M;Z=mn/. This image vanishes since H kC1.M;Z/ is finitely generated, so
that ˛n lifts to a class ˛ 2H k.M;Z/. Since ˛ ^ˇ¤ 0, the proof is complete.

5.2.2. Lifting cohomology classes to complex cobordism
By [50, Theorem 2.2], the morphism � WMU l.X/!H l.X;Z/ induced by (3.4) is
surjective for all topological spaces X and all l � 2. Proposition 5.8 describes other
cases where surjectivity holds.

PROPOSITION 5.8
If X is a compact complex manifold of dimension n, then the map

� WMU l.X/!H l.X;Z/

induced by (3.4) is surjective if l C 3� 2n or if .l; n/D .4; 4/.

Proof
The Atiyah–Hirzebruch spectral sequence Hp.X;MU q.pt//)MU pCq.X/ (for
which apply [37, Proposition 4.2.9] with E DMU) and Milnor’s computation of the
cobordism ring of the point [2, II, Theorem 8.1] give an exact sequence

MU l.X/
�
�!H l.X;Z/

d3
�!H lC3.X;Z/: (5.6)

The right-hand arrow d3 of (5.6) makes sense for all finite-dimensional CW com-
plexes X and all l , and it may be extended to all CW complexes by restriction to their
.l C 4/-skeleta. The resulting cohomology operation commutes with suspension: it
is a stable integral cohomology operation of degree 3. It follows from [36, Theo-
rem 5.4(b)] that there are exactly two such operations: the trivial one and ˇZ Sq2. (As
in [6, Proposition 7.2], one may actually check that d3 D ˇZ Sq2.) Both vanish on
H l.X;Z/ (because H lC3.X;Z/ is torsion-free if l C 3� 2n, and by Proposition 5.6
if .l; n/D .4; 4/). The proposition now follows from the exactness of (5.6).
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5.2.3. Vanishing of topological obstructions
We finally reach the goal of Section 5.2.

THEOREM 5.9
Let X be a compact complex manifold of dimension n, and let ˛ 2H l.X;Z/. If either
.l; n/ D .3; 3/ or .l; n/ D .4; 4/, then there exist a compact almost complex C1-
manifold Y of complex dimension n � 1, a C1-map f W Y ! X , and a class ˇ 2
H l�2.Y;Z/ with f�ˇD ˛.

Proof
In both cases, the map MU l.X/!H l.X;Z/ is surjective by Proposition 5.8. This
means that there exist a compact stably almost complex C1-manifold M of dimen-
sion 2n� l and a C1-map h WM !X so that h�1D ˛ (see Section 3.2).

Consider first the case n D l D 3. In this case we take Y D M � S1, f D
h ı pr1 W Y ! X , and ˇ D pr�2u, where u 2 H 1.S1;Z/ is the oriented generator.
We claim that Y admits an almost complex structure. Wu in [57] showed that an
oriented real 4-manifold Y admits an almost complex structure if and only if there
is an integral class c 2H 2.Y;Z/ which lifts to the mod 2 Stiefel–Whitney class of
the tangent bundle w2.Y / 2H 2.Y;Z=2/ and such that c2 D 3�.Y /C 2�.Y /, where
� is the signature and � is the Euler characteristic. In our case, we compute that
�.Y /D �.Y /D w2.Y /D 0 (to show that w2.Y /D 0, apply [42, Problem 12-B] to
the orientable 3-manifold M ), so we can simply take c D 0.

The case for nD l D 4 follows in a similar way, letting Y DM � P1.C/, f D
hıpr1, and ˇD pr�2 v, whereM is as above and v 2H 2.P1.C/;Z/ is the first Chern
class of O.1/. The real bundle TY ˚Rk admits an almost complex structure for some
k > 0, showing thatw2.TY ˚Rk/Dw2.TY / is the mod 2 restriction of c1.TY ˚Rk/;
hence, ˇZw2.TY /D 0 in H 3.Y;Z/. This concludes since this characteristic class is
the only obstruction to an orientable 6-manifold carrying an almost complex structure
(see [39, pp. 559–560, especially Remark 1]).

Remark 5.10
When X is projective, Theorem 5.9 demonstrates that there is no topological obstruc-
tion to ˛ having strong coniveau � 1 for .l; n/D .3; 3/ or .l; n/D .4; 4/. There are,
however, obstructions to ˛ having strong coniveau � 1 coming from Hodge theory: it
is necessary that ˛ has Hodge coniveau � 1, in the sense that its image in H l.X;C/

has no component of type .l; 0/ or .0; l/ in the Hodge decomposition. Of course, this
Hodge-theoretic obstruction is also an obstruction to ˛ having coniveau � 1. We do
not know of any obstructions to a coniveau � 1 class having strong coniveau � 1 for
these values of .l; n/.
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6. Rational coefficients
We now provide examples of complex varieties for which the coniveau and strong
coniveau filtrations for rational cohomology classes differ. By Deligne (see Theo-
rem 2.1), this cannot occur for smooth proper varieties. We recall that a morphism
f W X ! Y of equidimensional complex varieties is semismall if dim.X �Y X/ �
dim.X/.

6.1. A geometric construction
Our examples are based on the following lemma.

LEMMA 6.1
Fix l � 2, and write l D 2r C k � 1 with r 2N and k 2 ¹0; 1º. There exist a rational
smooth projective complex variety S of dimension l , a smooth codimension r subva-
riety � W D ,! S , a morphism of normal projective varieties g W S ! S , a finite set
� W D ,! S such that g�1.D/ D D and g is an isomorphism above S �D, and a
non-zero class � 2H k.D;Q/ such that ���D 0 in H lC1.S;Q/.

Proof
We first consider the case k D 0. Let P D P.E /, where E is the vector bundle
O2 ˚ O.1/r over Pr�1. Then P is of dimension 2r , and the tautological bundle
M D OP .1/ gives a morphism G W P ! Pn which contracts exactly the subvariety
P.O2/' P1 �Pr�1 to a P1. Then let S be a generic divisor in j2M j which is smooth
by the Bertini theorem. The morphism GjS W S ! Pn now contracts two disjoint
copies L1, L2 of Pr�1 to two points. Let S be the normalization of the image of GjS
with induced morphism g W S ! S , and define D D L1 [L2 and �D ŒL1�� ŒL2� 2
H 0.D;Q/. The variety S is a quadric bundle over Pr�1 of dimension 2r �1, and it is
rational as it contains a section (L1 for instance). Note that the morphism G induced
byM is semismall. By the semismall version of the weak Lefschetz theorem (see [21,
Proposition 2.1.5]), the restriction map H 2r�2.P;Q/!H 2r�2.S;Q/ is an isomor-
phism. By Poincaré duality, so is the pushforward map H 2r.S;Q/!H 2rC2.P;Q/.
Clearly, the class i�� maps to 0 by this map, so we conclude that i��D 0, as we want.

For the k D 1 case, we use a similar construction. Let V D P2�Pr�1, and letH1
andH2 denote the two pullbacks from the hyperplane bundles on each factor. LetP D
P.O ˚O.H1 CH2/

r/ over V , and let M D OP .1/ denote the tautological bundle.
Note that P has dimension 2rC 1. The morphism G W P ! Pn given by M contracts
exactly the codimension r subvariety W D P.O/ ' P2 � Pr�1 to a point. Now let
S be a generic divisor in jM C 3H1j, which is smooth by the Bertini theorem. Note
that S is rational, since the projection S ! V is generically a Pr�1-bundle over V .
Let S be the normalization of the image of GjS . The induced morphism g W S ! S
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is birational and contracts exactly the locus D D S \W to a point. The latter is a
divisor of type 3H1 on P2�Pr�1, thus isomorphic toE�Pr�1, whereE is an elliptic
curve. Hence, there is a non-zero class � 2H 1.D;Q/. Since the morphism induced by
M C3H1 is semismall (it contractsW ' P2�Pr�1 to a P2), the semismall version of
the weak Lefschetz theorem [21, Proposition 2.1.5] shows that S has no odd-degree
cohomology. It follows that i��D 0, as we wanted to show.

6.2. The kernel of local intersection forms
Lemma 6.2 below is an application of the decomposition theorem of Beilinson, Bern-
stein, Deligne, and Gabber [8, Théorème 6.2.5] as well as of a closely related theorem
of de Cataldo and Migliorini [22, Theorem 2.1.10] which studies intersection forms
on the homology of the fibers of a projective morphism with smooth total space. For
an overview of these topics, we refer to [22] or Williamson’s survey [55].

We use freely the theory of perverse sheaves from [8] (see also the survey [23]).
If X is a complex variety, we let Db.X/ be the bounded derived category of sheaves
of Q-vector spaces on X , and we let Db

c .X/ be the full subcategory of objects with
constructible cohomology (see [23, Sections 1.5 and 5.3]). The triangulated category
Db
c .X/ may be endowed with the perverse t -structure (see [23, Section 2.3]). The

heart of this t -structure is the abelian category Perv.X/ of perverse sheaves on X .
We keep the notation of Lemma 6.1.

LEMMA 6.2
Let T be a smooth projective variety of dimension n WD l � 1, let f W T ! S be a
morphism, and define E WD f �1.D/ with inclusion j W E ,! T . Consider the com-
position

 WHn.E;Q/
j�
�!Hn.T;Q/'H

n.T;Q/
j�

�!Hn.E;Q/; (6.1)

where the middle isomorphism stems from Poincaré duality. Then

ker
�
 WHn.E;Q/!Hn.E;Q/

�
� ker

�
.f jE /� WHn.E;Q/!Hn.D;Q/

�
:

Proof
Let " 2 Hn.E;Q/ be such that  ."/ D 0. We will show that .f jE /�"D 0. To do
so, we use the computation of ker. / by de Cataldo and Migliorini from [22, Theo-
rem 2.1.10] in terms of an induced perverse filtration on Hn.E;Q/. The decomposi-
tion theorem [8, Théorème 6.2.5] will then allow us to control this filtration.

Let !S DQS Œ2l�, !T DQT Œ2n�, !D , and !E be the dualizing complexes of S ,
T , D, and E . There are natural isomorphisms (as in [22, Section 3.4]; see also [23,
Section 5.8] for a formulary in constructible bounded derived categories):
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Hn.E;Q/DH
�n.E;!E /DH

�n.E; j Š!T /DH
0
�
E;j ŠQT Œn�

�
DH 0

�
D;R

�
.g ı f /jE

�
�
j ŠQT Œn�

�
DH 0

�
D; �ŠR.g ı f /�QT Œn�

�
;

and similarly

Hn.D;Q/DH
�n.D;!D/DH

�n.D; �Š!S /DH
1
�
D; �ŠQS Œl �

�
DH 1

�
D;R.gjD/��

ŠQS Œl �
�
DH 1

�
D; �ŠRg�QS Œl �

�
:

As in [22, Sections 4.2–4.3], endow Hn.E;Q/ with the increasing filtration
induced by the perverse filtration of the complex R.g ı f /�QT Œn� in the following
way:

Hn;�s.E;Q/D im
�
H 0

�
D; �Š p��sR.g ı f /�QT Œn�

�
!H 0

�
D; �ŠR.g ı f /�QT Œn�

��
;

where the p��s’s are the perverse truncation functors (see [23, Section 2.3]).
One has Hn;�0.E;Q/DHn.E;Q/ by [22, Lemma 4.3.6]. Applying [22, Theo-

rem 2.1.10] to g ı f with aD b D 0 shows that ker. /DHn;��1.E;Q/ and, hence,
that " lifts to a classe" 2H 0.D; �Š p���1R.g ı f /�QT Œn�/.

The morphism Rf�!T ! !S obtained by adjunction from the isomorphisms
f Š!S ' !T and Rf� ' RfŠ yields a morphism 
 W R.g ı f /�QT Œn�! .Rg� �

QS Œl �/Œ1� which induces the pushforward .f jE /� WHn.E;Q/!Hn.D;Q/ (see [22,
Section 3.4]). We deduce a commutative diagram whose vertical arrows are induced
by 
:

H 0.D; �Š p���1R.g ı f /�QT Œn�/ Hn.E;Q/

.f jE/�

H 1.D; �Š p��0Rg�QS Œl �/ Hn.D;Q/:

(6.2)

The decomposition theorem [8, Théorème 6.2.5] applied to g ı f shows that
p���1R.gıf /�QT Œn�D

L
s��1PsŒ�s�, where Ps is a direct sum of simple perverse

sheaves.
The morphism g W S! S is semismall in the sense that dim.S �S S/� dim.S/,

because 2dim.D/ D 2r C 2k � 2 � 2r C k � 1 D dim.S/. The particular shape
taken by the decomposition theorem for semismall morphisms from [15, Section 1.7]
(see also [55, Theorem 2.4]) shows that Rg�QS Œl � is a perverse sheaf (hence, that
p��0Rg�QS Œl �/ D Rg�QS Œl �) and that there exists an isomorphism Rg�QS Œl � D

IC.S/ if k D 0 (resp., Rg�QS Œl �D IC.S/˚ ��QD if k D 1). Here, we have denoted
by IC.S/ the intersection complex of S , which is a simple perverse sheaf (see [22,
Section 3.8]).
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The morphism p���1
 W
L
s��1PsŒ�s�! .Rg�QS Œl �/Œ1� vanishes on the direct

summand
L
s��2PsŒ�s� by [8, Définition 1.3.1(i)] since perverse sheaves form the

heart of a t -structure. The induced morphism P�1Œ1�! IC.S/Œ1� also vanishes since
a morphism of simple perverse sheaves is either zero or an isomorphism (as in any
abelian category) and since the support of IC.S/ is equal to S whereas the supports
of the simple factors of P�1 cannot be equal to S as g ı f is not dominant.

The left vertical arrow of (6.2) is obtained by applying the functor H 0.D; �Š.�//

to p���1
. The above shows that it vanishes if k D 0 and that it is induced by
a morphism H 0.D; �ŠP�1Œ1�/ ! H 0.D; �Š��QDŒ1�/ if k D 1. The computation
H 0.D; �Š��QDŒ1�/ D H

1.D; �Š��QD/ D H
1.D;QD/ D 0 shows that it vanishes in

all cases. In particular, the image ofe" by the left vertical arrow of (6.2) is zero, and
the commutativity of (6.2) shows that .f jE /�"D 0.

Remark 6.3
When l D 3, Lemma 6.2 follows from Mumford’s theorem that the intersection matrix
of the irreducible components of a contractible curve in a smooth projective surface
is negative definite (see [43, p. 6]). Indeed, this theorem, applied to the 1-dimensional
components of E , shows that  WH2.E;Q/!H 2.E;Q/ is an isomorphism (unless
E D T , in which case Lemma 6.2 is obvious because  is an isomorphism). This
particular case of Lemma 6.2 would be sufficient to prove Theorem 6.5 for l D 2cC1.

6.3. Open varieties
We still keep the notation of Lemma 6.1. Define S0 WD S �D, and let 	 2H l.S0;Q/

be a lift of � in the long exact sequence of the pair .S;D/:

� � � !H l.S0;Q/!H k.D;Q/
��
�!H lC1.S;Q/! � � � : (6.3)

LEMMA 6.4
If l � 3, then 	 2H l.S0;Q/ has coniveau � 1 and strong coniveau 0.

Proof
Lete	 be the image of 	 inH 0.S0;H l.Q// (see Section 2.3). Since l � 3,D has codi-
mension r � 2 in S . Gersten’s conjecture for Betti cohomology, proved by Bloch and
Ogus, thus shows that H 0.S0;H l.Q// D H 0.S;H l.Q// (see [11, Theorem 6.1]),
and this group vanishes because S is rational (see [19, Proposition 3.3(i)]). It follows
that e	 D 0 and, hence, that 	 has coniveau � 1.

Assume for contradiction that the class 	 has strong coniveau at least 1. Then
there exist a smooth complex variety T 0 of dimension l � 1, a proper morphism
f 0 W T 0! S0 which we may assume to be projective by Chow’s lemma, and a class
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ı 2H l�2.T 0;Q/ such that f 0� ıD 	 . (That we may choose T 0 of dimension l � 1 is
explained in Section 2.1.)

Let T be a smooth projective compactification of T 0 such that f 0 extends to a
morphism f W T ! S . Define E WD T � T 0 D f �1.D/, and let j W E ,! T be the
inclusion. The long exact sequences of .S;D/ and .T;E/ in Borel–Moore homology
fit into a commutative exact diagram (see [34, IX.2.1])

� � � HBM
l
.T 0;Q/

f 0
�

Hl�1.E;Q/

.f jE/�

j�

Hl�1.T;Q/

f�

� � �

� � � HBM
l
.S0;Q/ Hl�1.D;Q/

��
Hl�1.S;Q/ � � �

(6.4)

whose bottom row identifies with (6.3) via Poincaré duality. Lemma 6.2 shows that
ker.j�/ � ker..f jE /�/ as subspaces of Hl�1.E;Q/. Let " 2 Hl�1.E;Q/ be the
image by the upper left horizontal arrow of (6.4) of the class ı_ 2 HBM

l
.T 0;Q/,

Poincaré-dual to ı. The exactness of (6.4) shows that j�"D 0. The commutativity of
(6.4) shows that .f jE /�" is the class �_ 2Hl�1.D;Q/, Poincaré-dual to �, which is
non-zero. This contradicts the inclusion ker.j�/� ker..f jE /�/.

It is easy to deduce analogous examples for higher values of the coniveau.

THEOREM 6.5
For all c � 1 and l � 2cC 1, there exists a smooth quasi-projective rational complex
varietyX of dimension l�cC1 such that the inclusion eN cH l.X;Q/�N cH l.X;Q/

is strict.

Proof
By Lemma 6.4, we may find a smooth complex variety S0 of dimension l�2cC2 and
a class 	 2H l�2cC2.S0;Q/ which has coniveau � 1 and strong coniveau 0. Define
X WD S0 � Pc�1 with projections p W X ! S0 and q W X ! Pc�1, and consider the
class ˛ WD p�	 ^ q��, where � 2H 2c�2.Pc�1;Q/ is the class of a point t 2 Pc�1.
Since ˛ is the pushforward of 	 , which has coniveau � 1, by the closed immersion
S0�¹tº! S0�Pc�1, it has coniveau� c. Since p�˛D 	 and 	 has strong coniveau
0, we see that ˛ has strong coniveau less than c.

6.4. Singular varieties
There is no strong coniveau filtration on the cohomology of a singular variety, as there
do not exist pushforward morphisms associated with arbitrary proper morphisms of
singular varieties. However, there exist variants of both the coniveau filtration and the
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strong coniveau filtration on the Borel–Moore homology of an arbitrary variety (in
particular, on the homology of a proper variety).

Based on the examples of Sections 6.1–6.3, we show that these variants do not
allow us to extend Deligne’s Theorem 2.1 to arbitrary, not necessarily smooth, proper
varieties.

THEOREM 6.6
For all c � 1 and l � 3 there exist a normal projective varietyX of dimension lCc�1
and a class � 2Hl.X;Q/ with the following properties:
(i) One has �jX�Z D 0 in HBM

l
.X � Z;Q/ for some closed subset Z � X of

codimension � c in X .
(ii) There do not exist a smooth proper variety Y of dimension at most l � 1, a

morphism f W Y !X , and a class  2Hl.Y;Q/ such that f� D �.

Proof
We use the notation of Lemmas 6.1 and 6.4. The exact sequence of the pair .S;D/ in
Borel–Moore homology from [34, IX.2.1] reads:

� � � Hl.S;Q/ HBM
l
.S0;Q/ Hl�1.D;Q/D 0: (6.5)

Let 	_ 2 HBM
l
.S0;Q/ be Poincaré-dual to the class 	 2 H l.S0;Q/, and choose a

lift � 2Hl.S;Q/ of 	_ in (6.5). We define X WD S � Pc�1. Let � 2Hl.X;Q/ be the
pushforward of � by the natural morphism S � ¹tº! S � Pc�1, where t 2 Pc�1 is a
point.

Since 	 has coniveau � 1 by Lemma 6.4, one has �jS�F D 0 in HBM
l
.S �F;Q/

for some proper closed subset F � S . Taking Z WD F � ¹tº proves assertion (i).
Assume for contradiction that there exist a variety Y , a morphism f , and a class

 as in (ii). Define g WD pr1 ı f W Y ! S , let Y 0 WD g�1.S0/, and let g0 WD gjY 0 W
Y 0! S0. Define _ 2H�.Y;Q/ to be the class Poincaré-dual to  . Then the class
g0�.

_jY 0/ is Poincaré-dual to g0�.jY 0/ D .g�/jS0 D ..pr1/��/jS0 D �jS0 D 	
_

and, hence, equal to 	 . This contradicts that 	 has coniveau 0 by Lemma 6.4 and
concludes the proof.

7. Further questions

7.1. 3-dimensional examples
Does there exist a smooth projective complex threefold X such that the inclusioneN 1H 3.X;Z/ � N 1H 3.X;Z/ is strict? In view of Remark 5.10, this would require
an obstruction to having high strong coniveau which is not topological.
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7.2. Rationally connected examples
For a smooth projective rationally connected variety, it follows from [19, Proposi-
tion 3.3(i)] that N 1H l.X;Z/DH l.X;Z/ for any l > 0. Are there examples of such
varieties such that the inclusion eN 1H l.X;Z/ �H l.X;Z/ is strict? What about the
case l D 3? Such a variety could not be rational by Corollary 2.5. This question was
suggested to us by Claire Voisin.

7.3. Positive results for threefolds
Does eN 1H 3.X;Z/ D N 1H 3.X;Z/ hold for some particular classes of threefolds,
beyond Example 2.7? Voisin in [53, Theorem 0.2] has very recently proved this
equality modulo torsion when X is a rationally connected threefold. Desingulariza-
tions of nodal quartic threefolds and the Artin–Mumford threefold give natural test
cases. (Some of these rationally connected threefolds are known to have torsion in
H 3.X;Z/.)

7.4. Further discrepancy between coniveau and strong coniveau
Can one find a smooth projective complex variety X and a class ˛ 2H l.X;Z/ that
has coniveau � c but strong coniveau at most c � 2? What about c D 2 and l D 5?

7.5. Specialization of strong coniveau
Suppose that f W X ! T is a smooth projective family over a smooth connected
curve T . If ˛ 2 H l.X;Z/ and if ˛t 2 H l.Xt ;Z/ has strong coniveau � c for all
t ¤ 0, does ˛0 2H l.X0;Z/ have strong coniveau � c? If this question had a posi-
tive answer, one could hope to construct cohomology classes for which coniveau and
strong coniveau differ by degeneration arguments.

7.6. Finite coefficients
For a prime number p and integers c � 1 and l � 2c C 1, does there exist a
smooth projective complex variety X such that the inclusion eN cH l.X;Z=p/ �

N cH l.X;Z=p/ is strict? What about pD 2, c D 1, and l D 3?
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