
Séminaire BOURBAKI Novembre 2024
77e année, 2024–2025, no 1228

SMOOTHING LOW-DIMENSIONAL ALGEBRAIC CYCLES
[after Kollár and Voisin]

by Olivier Benoist

1. Introduction

1.1. The smoothing problem for algebraic cycles

Let k be a field of characteristic 0 (which the reader may choose to be the field C
of complex numbers). Let X be a smooth projective algebraic variety of dimension n

over k. A central theme in algebraic geometry is the study of algebraic cycles on X,
that is of the collection of all the algebraic subvarieties of X. We will always denote
by d the dimension of the subvarieties we consider.

The main players of this line of research are the Chow groups CHd(X) = CHn−d(X)
of X. Their elements are cycles: linear combinations with integral coefficients of (closed,
integral) d-dimensional algebraic subvarieties of X, considered up to rational equiva-
lence. Here, two cycles are said to be rationally equivalent if both belong to the same
algebraic family of cycles on X parametrized by the projective line P1

k. We refer to [8]
for precise definitions of Chow groups [8, §1.3], for their functorial properties [8, §1.4,
§1.7 and Chap. 6] and for the construction of the intersection product on them [8, §8.3].

One should think of these groups as algebro-geometric analogues of singular homology
groups, where both the generators and the relations are constrained to have an alge-
braic (as opposed to topological) origin. No conditions are imposed on the algebraic
subvarieties of X that generate its Chow groups; in particular, they may carry arbi-
trary singularities. The next question, first asked by Borel and Haefliger in [4, §5.17],
is therefore of interest.

Question 1.1. — Let X be a smooth projective algebraic variety over k. Are the Chow
groups CH∗(X) of X generated by classes of smooth subvarieties of X?

In other words, is it possible to smooth algebraic cycles up to rational equivalence?
To be precise, the original question of Borel and Haefliger was slightly weaker. They
considered, over the field k = C, the coarser homological equivalence relation, where
two algebraic cycles are identified if they have the same image by the cycle class
map CHd(X) → H2d(X,Z).
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One of the goals of this introduction is to review the state of the art concerning
Question 1.1 (see §1.4 for positive results and §1.5 for negative results).

1.2. Smoothing algebraic cycles in the Whitney range
Let us state right away the main theorem presented in this survey, which has been

recently proved by Kollár and Voisin [15, Theorem 1.2].

Theorem 1.2. — Let X be a smooth projective algebraic variety of dimension n over k.
If d < n

2 , then CHd(X) is generated by classes of smooth subvarieties of X.

At the time when Borel and Haefliger asked Question 1.1, resolution of singularities
was not available. A positive answer to this question could therefore have been used as
a substitute to resolution of singularities in the study of algebraic cycles. This original
motivation has nowadays disappeared. On the contrary, the proof of Theorem 1.2 does
use Hironaka’s theorem [10] on resolution of singularities (exactly once, in the proof of
Theorem 1.7 given at the end of §1.3).

It is verified in [14, Theorem 39] that the proof of Theorem 1.2 can be extended
to base fields k of characteristic p ≥ n − d, at least if k is assumed to be infinite
and perfect. In this argument, resolution of singularities is replaced with Gabber’s
improvement [11, Theorem 2.1] of de Jong’s alteration theorem.

Let us explain the significance and the importance of the restrictive hypothesis d < n
2

in the statement of Theorem 1.2. It plays the exact same role as in Whitney’s weak
embedding theorem [20] in differential topology (according to which any compact C∞

manifold of dimension d embeds in Rn if d < n
2 ). The heuristic in our algebraic situation

is that a morphism f : Y → X of smooth projective varieties over k which is sufficiently
generic is an embedding if dim(Y ) < n

2 . Its image f(Y ) is then a smooth subvariety of X.
This suggests that, under the hypothesis d < n

2 , the variety X should contain many
smooth subvarieties constructed by general projection arguments, therefore increasing
the likelihood that CHd(X) is generated by classes of smooth subvarieties of X. Of
course, the difficulty is to enforce this genericity condition on f by algebraic means.

A Whitney-type hypothesis had already appeared in two earlier works on Ques-
tion 1.1. On the one hand, Hironaka had given a proof of Theorem 1.2 under the
additional assumption that d ≤ 3 (see [10, Theorem p. 50]). On the other hand, I had
constructed counterexamples to Question 1.1 on the boundary d = n

2 of the Whitney
range, for infinitely many values of d (see [1, Theorem 0.3]), thereby showing that the
hypothesis d < n

2 in Theorem 1.2 is optimal (for these values of d). These works will
be discussed in more details in §1.4.1 and §1.5.2 respectively.

1.3. Flat pushforwards of complete intersections
The approach of Kollár and Voisin relies chiefly on the following definition. Recall

that a morphism f : Y → X of connected smooth projective varieties over k is flat if
and only if it is equidimensional, i.e. if all its fibers have dimension dim(Y ) − dim(X)
(in this survey, this can be taken as a definition; see also [7, Theorem 18.16 b]).
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Definition 1.3. — Let X be a smooth projective variety over k. Define CHd(X)KV
to be the subgroup of CHd(X) generated by cycles of the form f∗(λ1 . . . λc) for some
flat morphism f : Y → X of smooth projective varieties over k and some codimension 1
classes λ1, . . . , λc ∈ CH1(Y ), where c + d = dim(Y ).

In short, the subgroup CHd(X)KV ⊂ CHd(X) is generated by those cycles that may
be written as flat pushforwards of intersections of divisor classes. Theorem 1.2 results
from the combination of the following two theorems.

Theorem 1.4 ([15, Proposition 1.5]). — Let X be a smooth projective variety of di-
mension n over k. If d < n

2 , then any element of CHd(X)KV may be written as a linear
combination with integral coefficients of classes of smooth subvarieties of X.

Theorem 1.5 ([15, Theorem 1.6]). — If X is a smooth projective variety over k, then

CH∗(X)KV = CH∗(X).

Theorem 1.4 is the part of the proof of Theorem 1.2 where the smoothing actually
takes place. It is also the part in which the Whitney-type hypothesis d < n

2 is used. It
is directly inspired by Hironaka’s work [10] on the topic. We discuss it more in §1.4.1,
and present its proof in Section 2.

In contrast, Theorem 1.5 holds with no restriction on the dimension of the cycles.
It constitutes a fundamentally new structural result on the Chow groups of arbitrary
smooth projective varieties. Its formulation and its proof are the main achievements of
the article [15]. It is not known whether Theorem 1.5 would still hold if one required the
morphisms f in Definition 1.3 to be smooth instead of only flat (see [15, Question 1.11]).
The flexibility gained by allowing flat morphisms that are possibly not smooth is used
exactly once in the proof of Theorem 1.5 (in the proof of Proposition 3.1).

As noted in [14], the proof of Theorem 1.5 given in [15] yields a slightly stronger
result, valid at the level of subvarieties (as opposed to Chow groups). To state it, we
rely on the next geometric definition. Recall that a subvariety of codimension c in a
smooth projective variety X over k is said to be a complete intersection if it can be
written as the intersection of c hypersurfaces in X.

Definition 1.6. — Let X be a smooth projective variety over k. An integral subvari-
ety Z ⊂ X is said to be a smooth complete intersection image (or sci-image for short)
if there exist a flat morphism f : Y → X of smooth projective varieties over k and a
smooth complete intersection V ⊂ Y such that f(V ) = Z and f |V : V → Z is birational.

Theorem 1.7 ([14, Theorem 2]). — Let X be a smooth projective variety over k. Any
integral subvariety Z ⊂ X is an sci-image.

Theorem 1.5 is an immediate consequence of Theorem 1.7. In turn, the proof of
Theorem 1.7 has two steps. In the first step, one studies functorial properties of sci-
images. The culmination of this analysis is the next proposition. In its statement,
one makes use of the following terminology: a subvariety of codimension c in a smooth
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projective variety X over k is said to be a complete bundle section (or cbs for short) if
it can be written as the zero locus of a section of a vector bundle of rank c on X.

Proposition 1.8 ([15, Proposition 3.11], [14, Lemma 16]). — Let π : X ′ → X be the
blow-up of a smooth cbs in a smooth projective variety over k. Let Z ′ ⊂ X ′ be an
sci-image such that π|Z′ : Z ′ → Z := π(Z ′) is birational. Then Z ⊂ X is an sci-image.

To conclude the proof of Theorem 1.7, one would like to show that any integral
subvariety of X can be turned into a smooth complete intersection after repeatedly
blowing up smooth cbs. This is not known to hold (see e.g. [15, Question 4.1]) and the
second step is a weaker statement, which is sufficient for our purposes.

Proposition 1.9 ([15, Theorem 1.9]). — Let X be a smooth projective variety of di-
mension n over k. Let Z ⊂ X be a smooth subvariety of dimension < n

4 . Then there
exist a composition π+ : X+ → X of blow-ups of smooth cbs and a smooth complete
intersection V ⊂ X+ such that π+(V ) = Z and π+|V : V → Z is birational.

Proposition 1.9 is the technical heart of [15]. Propositions 1.8 and 1.9 will be proved
in Sections 3 and 4 respectively. Together, they imply Theorem 1.7, as we now explain.

Proof of Theorem 1.7. — Let Z̃ → Z be a resolution of singularities (see [10]). Em-
bed Z̃ in PN

k for some N ≥ 0. View Z̃ as a subvariety of Y := X ×PN
k using the natural

diagonal embedding. After possibly increasing N , one can apply Proposition 1.9 to the
subvariety Z̃ of Y . In this way, we obtain a composition π+ : Y + → Y of blow-ups
of smooth cbs and a smooth complete intersection V ⊂ Y + such that π+(V ) = Z̃

and π+|V : V → Z̃ is birational. Using Proposition 1.8, we deduce that the subvari-
ety Z̃ ⊂ Y is an sci-image. It follows that Z ⊂ X is also an sci-image, by flatness of
the first projection morphism Y = X × PN

k → X.

1.4. Smoothing techniques

We now focus on the various techniques that have been used to smooth algebraic
cycles up to rational equivalence, both in the early positive results about Question 1.1
and in the recent work of Kollár and Voisin. These techniques fall into two categories,
depending on whether the algebraic cycles under consideration have small dimension,
or small codimension. In the first case, they are best thought of homologically and
presented as pushforwards (see §1.4.1). In the second case they are best thought of co-
homologically and presented as pullbacks (see §1.4.2). Combining the results presented
in §1.4.1 and §1.4.2 shows that Question 1.1 has a positive answer when n ≤ 5.
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1.4.1. Cycles of small dimension. — The first progress on Question 1.1 was due to
Hironaka [10, Theorem p. 50] who answered it positively when d < n

2 (the Whitney-
type condition discussed in §1.2) and d ≤ 3. Let us sketch his proof.

Let Z ⊂ X be an integral subvariety of dimension d, and let Z̃ → Z be a resolution
of singularities. Choosing an embedding of Z̃ in PN

k for some N ≥ 0 allows one to
view Z̃ as a subvariety of Y := X ×PN

k . (That Hironaka’s argument inspired the proof
of Theorem 1.7 given at the end of §1.3 should be obvious.) At that point, the idea is
to find a cycle Z̃ ′ in Y , which is rationally equivalent to Z̃, and whose components are
smooth and in general position. The image Z ′ of Z̃ ′ in X is then rationally equivalent
to Z, and has smooth components precisely because of the Whitney-type hypothesis.

To construct Z̃ ′ from Z̃, one needs some kind of moving lemma. To this effect,
Hironaka devises a moving by linkage technique. Let L be a sufficiently ample line
bundle on Y , and let c be the codimension of Z̃ in Y . Let D1, . . . , Dc be general elements
of the linear system |L|, and let E1, . . . , Ec be general elements of |L| containing Z̃. One
can write E1 ∩ · · · ∩ Ec = Z̃ ∪ W for some subvariety W ⊂ Y of codimension c. One
says that the subvarieties Z̃ and W of Y are linked. Our choices ensure that the
cycle Z̃ ′ := (D1 ∩ · · · ∩ Dc) − W is rationally equivalent to Z̃. The subvariety W is in
general singular in codimension 4, so it is smooth when d ≤ 3. To complete the proof,
repeat the linkage procedure a few times to enforce the general position hypothesis.

For cycles of dimension ≥ 4, Hironaka’s method fails because of the singularities that
linkage inevitably creates. However, combined with additional arguments to control
these singularities, these ideas may still be useful (see [1, Theorems 0.4 and 0.6] for
applications to real algebraic cycles).

The perspective of Kollár and Voisin is very different. They do not attempt to control
the singularities that appear. Neither do they try to develop another moving technique
applicable to general cycles. Instead, they prove the structural result that all cycles
come by flat pushforward from complete intersections (Theorem 1.5) and they use that
complete intersections can be moved around very easily. A small price to pay is that they
need to apply the Whitney-type general projection argument to a morphism f : Y → X

that is only assumed to be flat, and not smooth as is the first projection X × PN
k → X

in Hironaka’s proof. This is the content of Theorem 1.4.

1.4.2. Cycles of small codimension. — The case d = n of Question 1.1 is trivial (as
the n-dimensional subvarieties of X are its connected components, which are smooth).

It is also true that Question 1.1 has a positive answer for d = n−1. Indeed, if D ⊂ X

is an irreducible divisor, one can write OX(D) = L1 ⊗L−1
2 , where the Li are very ample

line bundles on X. General divisors Di in the linear systems |Li| are then smooth by
Bertini’s theorem. To conclude, write [D] = [D1] − [D2] in CHn−1(X) = Pic(X).

The article [13] of Kleiman can be thought of as extending this argument to higher-
codimensional cycles. This led him, in particular, to give positive answers to Ques-
tion 1.1 when n = 4 and d = 2, and when n = 5 and d = 3.
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For the sake of completeness, let us briefly explain Kleiman’s argument. Let Z ⊂ X

be a subvariety of codimension c. The Grothendieck–Riemann–Roch theorem without
denominators provides us with the formula

(1.10) cc(OZ) = (−1)c−1(c − 1)! [Z]

for the c-th Chern class of the structure sheaf of Z (see e.g. [12]). Applying (1.10)
with c = 2, and using a resolution of the coherent sheaf OZ by locally free sheaves,
one can see that CH2(X) is generated (integrally) by second Chern classes of vector
bundles. Tensoring these vector bundles with high enough powers of a fixed ample line
bundle, one may even assume that these vector bundles are globally generated.

In other words, the Chow group CH2(X) is generated by classes of the form f ∗c2(E),
where f : X → G is a morphism to a Grassmannian, and E is the tautological vector
bundle on G. The class c2(E) ∈ CH2(G) is represented by a Schubert cell S ⊂ G, whose
singularities are in codimension 4. Assuming that f is in general position with respect
to S, which can be ensured by postcomposing f with a generic automorphism of G, the
class f ∗c2(E) is represented by the subvariety f−1(S) of X, which is smooth if d ≤ 3.

We also note, following [15, Lemma 2.5], that this circle of ideas yields an easy proof
of Theorem 1.5 with rational coefficients. Indeed, if α ∈ CHc(X), then (1.10) shows
that (c − 1)! α belongs to the subring of CH∗(X) generated by Chern classes of vector
bundles, and hence to the subring of CH∗(X) generated by Segre classes of vector
bundles (since the total Chern class c(E) and the total Segre class s(E) of a vector
bundle E on X are related by the identity c(E) · s(E) = 1). It is however obvious, from
their definition given in [8, §3.1], that (products of) Segre classes belong to CH∗(X)KV.

1.5. Nonsmoothable algebraic cycles

At last, we discuss the existing counterexamples to Question 1.1.

1.5.1. A topological variant. — Even before the work of Borel and Haefliger, an ana-
logue of Question 1.1 in differential topology was considered by Thom in his influential
article [19].

Question 1.11. — Let M be an oriented compact C∞ manifold. Are the homology
groups H∗(M,Z) generated by fundamental classes of oriented C∞ submanifolds of M?

One of Thom’s results is that a class in Hd(M,Z) can be realized as the fundamental
class of an oriented C∞ submanifold of dimension d of M if and only if its Poincaré
dual cohomology class is induced by pullback from some universal cohomology class:
the Thom class of the universal oriented real vector bundle of rank dim(M) − d

(see [19, Théorème II.5]). The vanishing of certain cohomological operations applied
to this Thom class then gives rise to restrictions on the fundamental classes of
d-dimensional oriented compact C∞ submanifolds of M . Thom used these restrictions
in [19, Théorème III.9] to settle Question 1.11 in the negative in general.
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Let us point out that one can use Thom’s criterion to verify that Question 1.11 has a
positive answer in the Whitney range (that is, for classes in Hd(M,Z) with d < dim(M)

2 ).
The counterpart of Theorem 1.2 in differential topology is therefore true.

1.5.2. Counterexamples to Question 1.1. — By applying Thom’s ideas to complex
algebraic varieties, Hartshorne, Rees and Thomas [9, Theorem 1] found the first coun-
terexample to Question 1.1. Their precise result is as follows. Let X := G(3, 6) be the
Grassmannian parametrizing the 3-dimensional subspaces of C6, and let E be the tau-
tological rank 3 vector bundle on X. Then c2(E) ∈ CH2(X) is not a linear combination
with integral coefficients of classes of smooth subvarieties of X.

Since then, many other counterexamples to Question 1.1 have been discovered, by
combining topological obstructions as above with Hodge-theoretic arguments (exploit-
ing that the image of the cycle class map CHd(X) → H2d(X,Z) consists of Hodge
classes). Debarre [5] constructed counterexamples on abelian varieties, and these exam-
ples were expanded by him and myself in [2]. In particular, we show in [2, Corollary 1.3]
that Question 1.1 may have a negative answer for codimension 2 cycles on abelian va-
rieties of dimension 6 (as we explained in §1.4, this is the lowest possible dimension for
the ambient variety X).

In addition, I have found counterexamples to Question 1.1 with d = n
2 , for infinitely

many values of d (the smallest one being d = 6). For all these values of d, Theorem 1.2
is therefore optimal. In the statement of this result, we let α(m) denote the number of
ones in the binary expansion of the integer m.

Theorem 1.12 ([1, Theorem 0.3]). — Let d ≥ 0 be such that α(d+1) ≥ 3. Then there
exists a smooth projective variety X of dimension 2d over C such that CHd(X) is not
generated by classes of smooth subvarieties of X.

The proof of Theorem 1.12 is discussed in Section 5. For now, let us only explain
in what way its principle relies on the Whitney heuristic discussed in §1.2. Let X

be a smooth projective variety of dimension 2d over C. Fix β ∈ CHd(X). As a first
step towards proving Theorem 1.12, one might want to check that, if β is the class
of an integral subvariety Z ⊂ X, then Z cannot be smooth. To do so, imagine first
that Z has been constructed by some kind of generic projection argument. In the range
of dimensions we consider, the subvariety Z would then have finitely many singular
points at which it self-intersects in X. To show that Z cannot be smooth, compute this
number of singularities using a double point formula, and prove (only relying on the
knowledge of β and not of Z itself) that this number must be nonzero. If Z has more
complicated singularities, the double point formula still computes a virtual number of
double points, allowing one to proceed in a similar way.

For what values of d (besides those found in Theorem 1.12) is Theorem 1.2 optimal?
A full answer to this question is not known. The first case that is open is d = 3.

Question 1.13. — Let X be a smooth projective variety of dimension 6 over k. Is the
Chow group CH3(X) generated by classes of smooth subvarieties of X?
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1.5.3. Mildly singular cycles. — It is also interesting to consider weakenings of Ques-
tion 1.1, in which one allows subvarieties with controlled singularities.

Maggesi and Vezzosi put forward in [17] the case of subvarieties with locally complete
intersection (lci) singularities. (The article [17] works with Chow groups with rational
coefficients, but we defer until §1.6 the consideration of rational Chow groups.) It
turns out that this variant of Question 1.1 still has a negative answer. In fact, in the
counterexamples given by Theorem 1.12, the group CHd(X) is not even generated by
classes of lci subvarieties of X (as we will prove in Section 5, see Theorem 5.1).

In contrast, we do not know the answer to the next question.

Question 1.14. — Let X be a smooth projective variety over k. Are the Chow
groups CH∗(X) of X generated by classes of normal subvarieties of X?

In this direction, the arguments of Kleiman described in §1.6 imply that CH∗(X)Q is
generated by classes of normal subvarieties, whereas the Kollár–Voisin method shows
that CH∗(X) is generated by classes of subvarieties whose normalization is smooth.

1.6. Algebraic cycles with rational coefficients
We conclude this introduction by discussing a fascinating smoothing problem for

algebraic cycles: the case of Chow groups with rational coefficients.

Question 1.15. — Let X be a smooth projective variety over k. Are the rational Chow
groups CH∗(X)Q of X generated by classes of smooth subvarieties of X?

Let us first indicate that the analogue of Question 1.15 in differential topology does
have a positive answer. Namely, Thom has proved that, for any oriented compact C∞

manifold M , the Q-vector space H∗(M,Q) is generated by fundamental classes of ori-
ented C∞ submanifolds of M (see [19, Théorème II.29]). This contrasts sharply with
Thom’s negative answer to Question 1.11. In [3, Theorem 0.4], Voisin and I obtained
a symplectic extension of Thom’s result. More precisely, we showed that if M is a
symplectic compact C∞ manifold, then the Q-vector space H2d(M,Q) is generated by
fundamental classes of d-dimensional symplectic C∞ submanifolds of M . We believe
that this result dashes any hope of finding topological obstructions to Question 1.15.

Question 1.15 was first investigated by Kleiman [13], using the techniques presented
in §1.4.2. Thanks to the Grothendieck–Riemann–Roch theorem without denominators
(see (1.10)), he reduces first to the case of Chern classes, and then to the case of cycles
that are in the image of f ∗ for some algebraic morphism f : X → G to a Grassmannian.
He further notes that f may be chosen to be in generic position (with respect to any
subvariety of G) by composing it with a generic automorphism of G.

On the one hand, this line of reasoning shows that it suffices to solve Question 1.15
when X is a Grassmannian. This case is by no means easy: it is not even known if the
second Chern class of the tautological bundle on G(3, 6) (the Hartshorne–Rees–Thomas
counterexample to the original question of Borel and Haefliger, see §1.5.2) is a linear
combination with rational coefficients of classes of smooth subvarieties of G(3, 6).
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On the other hand, combining the above arguments with a study of the singularities
of Schubert cells, Kleiman answered positively Question 1.15 for cycles of dimension
d < n

2 + 1 (see [13, Theorem 5.8]). In particular, the rationalized version of Theorem 1.2
has been known for a long time, with slightly better bounds on the dimension of the
cycles. It is striking that Kleiman’s result has not been improved in the past fifty years.

In [3, Theorem 0.3], Voisin and I have put forward a curious connection between
Question 1.15 and Hartshorne’s famous conjecture on complete intersections in projec-
tive space (according to which any smooth subvariety of codimension 2 in PN

C with N

large enough is a complete intersection; Hartshorne suggests the bound N ≥ 7 but the
assertion might hold for N ≥ 5). Namely, we prove that if Hartshorne’s conjecture holds
for some N ≥ 5, then Question 1.15 has a negative answer for codimension 2 cycles
on the Grassmannian G(N, 2N). We leave it to the readers to decide for themselves if
they believe more in Hartshorne’s conjecture or in a positive answer to Question 1.15.

1.7. Notation and conventions
We work over a a field k of characteristic 0. A variety over k is an equidimensional

separated scheme of finite type over k. By subvariety, we always mean equidimensional
closed subvariety.

1.8. Acknowledgements
I thank János Kollár and Claire Voisin for useful suggestions.

2. Smoothing elements of CH∗(X)KV

The aim of this section is to prove Theorem 1.4 by establishing the next proposition
(see [15, Proposition 2.1]).

Proposition 2.1. — Let f : Y → X be a flat morphism of smooth projective varieties
over k. Fix c > dim(Y )− dim(X)

2 . For 1 ≤ i ≤ c, let Li be a very ample line bundle on Y .
There is a dense open subset Ω ⊂ |L1| × · · · × |Lc| such that if (D1, . . . , Dc) ∈ Ω and
Z := D1 ∩ · · · ∩ Dc, then f |Z : Z → X is an embedding of smooth projective varieties.

To deduce Theorem 1.4 from Proposition 2.1, note that any class in CH1(Y ) = Pic(Y )
is a difference of very ample line bundles. As a consequence, under the hypotheses of
Theorem 1.4, any element of CHd(X)KV can be represented by a linear combination
with integral coefficients of smooth subvarieties of X constructed as in Proposition 2.1.

Proof. — We must show that for (D1, . . . , Dc) ∈ |L1| × · · · × |Lc| general, the mor-
phism f |Z is an embedding of smooth projective varieties. That Z is smooth follows
from the Bertini theorem.

Let us prove that f |Z is injective. The set of pairs (y1, y2) ∈ Y 2 such that y1 ̸= y2
and f(y1) = f(y2) is algebraic of dimension 2 dim(Y ) − dim(X). Once such a
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pair (y1, y2) is fixed, the codimension in |L1| × · · · × |Lc| of the set of (D1, . . . , Dc) such
that y1, y2 ∈ Z is equal to 2c. The codimension, in this parameter space, of the locus
where f |Z is not injective is therefore ≥ 2c − (2 dim(Y ) − dim(X)) > 0.

The proof that f |Z is immersive is similar, and based on the stratification

Yr := {y ∈ Y | rk(dfy) ≤ r}

of Y by the rank of the differential of f . Fix r ≥ 0. The set of pairs (y, v) with y ∈ Yr

and v ∈ TyY such that dfy(v) = 0 is algebraic of dimension

≤ dim(Yr) + (dim(Y ) − r) ≤ dim
(
f(Yr)

)
+ (dim(Y ) − dim(X)) + (dim(Y ) − r).

The rank at any smooth point of Yr of the differential of f |Yr : Yr → f(Yr) is ≤ r. By
generic smoothness of f |Yr , we deduce that dim

(
f(Yr)

)
≤ r. It follows that the set of

pairs (y, v) we were considering has dimension ≤ 2 dim(Y ) − dim(X).
Once such a pair (y, v) is fixed, the codimension in |L1| × · · · × |Lc| of the set

of (D1, . . . , Dc) such that v ∈ TyZ is equal to 2c. We deduce that the codimension,
in this parameter space, of the locus where f |Z is not immersive at some point of Yr

is ≥ 2c − (2 dim(Y ) − dim(X)) > 0.

3. Functorial properties of sci-images

Sci-images were introduced in Definition 1.6. In this section, we show that this class
of subvarieties is stable under taking images by various classes of morphisms. We follow
[15, Propositions 3.7, 3.9 and 3.11] and [14, Lemmas 13, 15 and 16].

We let X denote a smooth projective variety of dimension n over k.

Proposition 3.1. — Let i : H ↪→ X be the inclusion of a smooth hypersurface.
Let Z ⊂ H be an sci-image. Then i(Z) ⊂ X is an sci-image.

Proof. — Let Γ ⊂ H × X be the graph of i. Let ν : B → H × X be the blow-up of Γ.
The proof of the proposition relies on the commutative diagram

B

ν��
qH

��

qX

��

H × X

pHzz pX $$

H X,

in which pH and pX are the two projections. We claim that qH is smooth and that qX is
flat. To prove it, note that all the fibers of qH are smooth of pure dimension n, and that
all the fibers of qX are of pure dimension n−1. More precisely, the fiber of qH over x ∈ H

is the blow-up of X at i(x). If x ∈ H, the fiber of qX over i(x) has two irreducible
components: one is the blow-up of H at x, and the other is the (n − 1)-dimensional
projective space ν−1(x, i(x)). The other fibers of qX are isomorphic to H.
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Since Z ⊂ H is an sci-image, there exist a flat morphism f : Y → H of smooth pro-
jective varieties over k and a smooth complete intersection V ⊂ Y such that f(V ) = Z

and f |V : V → Z is birational. Let fB : YB → B and VB ⊂ YB be constructed from f

and V by base change by qH : B → H.
Let E ⊂ B be the exceptional divisor of ν. Fix an ample line bundle L on H × X.

For l large enough, the line bundle ν∗L⊗l(−E) on B is very ample. Pick general
elements D1, . . . , Dn−1 in the linear system |ν∗L⊗l(−E)|. These choices imply that the
morphism f̂ := qX ◦ fB : YB → X is flat (as a composition of flat morphisms), and that
the smooth complete intersection

V̂ := VB ∩ f−1
B (E) ∩ f−1

B (D1) ∩ · · · ∩ f−1
B (Dn−1) ⊂ YB

is such that f̂(V̂ ) = i(Z) and f̂ |
V̂

: V̂ → i(Z) is birational. It follows that the subvari-
ety i(Z) ⊂ X is an sci-image.

Recall that a cbs in a smooth projective variety X over k is a subvariety of codimen-
sion c of X that is the zero locus of a section of a vector bundle of rank c on X.

Proposition 3.2. — Let i : C ↪→ X be the inclusion of a smooth cbs. Let Z ⊂ C be
an sci-image. Then i(Z) ⊂ X is an sci-image.

Proof. — Let c be the codimension of C in X. We argue by induction on c. We have
already dealt with the case c = 1 in Proposition 3.1, so we may assume that c ≥ 2.

Write C = {s = 0}, where s ∈ H0(X, E) for some vector bundle E of rank c on X.
Let π : P(E) → X be the projective bundle parametrizing lines in E . Consider the short
exact sequence

0 → L → π∗E → F → 0
of vector bundles on P(E), where L is the tautological line subbundle of π∗E . The
section π∗s induces a section s′ ∈ H0(P(E), F). Its zero locus X ′ := {s′ = 0} ⊂ P(E)
identifies with the blowup ν : X ′ → X of X along C and hence is a smooth cbs in P(E).
In turn, the zero locus of s|X′ ∈ H0(X ′, L|X′) is precisely π−1(C). We summarize the
situation in the commutative diagram

(3.3)
π−1(C) a

//

π|π−1(C)
��

X ′ b
//

ν
##

P(E)
π
��

C
i

// X

in which the morphisms a and b are the inclusions.
Since Z ⊂ C is an sci-image, so is π−1(Z) ⊂ π−1(C) (to see it, base change the

flat morphism and the smooth complete intersection appearing in the definition of an
sci-image by the smooth morphism π|π−1(C)). By the induction hypothesis (applied
first to a and then to b), the subvariety b ◦ a(π−1(Z)) = π−1(i(Z)) of P(E) is an
sci-image. Consequently, there exist a flat morphism f : Y → P(E) of smooth projective
varieties over k and a smooth complete intersection V ⊂ Y such that f(V ) = π−1(i(Z))
and f |V : V → π−1(i(Z)) is birational.
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Now let L be an ample line bundle on X. For l large enough, the line bundle
π∗L⊗l ⊗ OP(E)(1) on P(E) is very ample. Pick general elements D1, . . . , Dc−1 in the
associated linear system |π∗L⊗l ⊗ OP(E)(1)|. These choices imply that the morphism
f̂ := π ◦ f : Y → X is flat, and that the smooth complete intersection

V̂ := V ∩ f−1(D1) ∩ · · · ∩ f−1(Dc−1) ⊂ Y

is such that f̂(V̂ ) = i(Z) and f̂ |
V̂

: V̂ → i(Z) is birational. We conclude that the
subvariety i(Z) ⊂ X is an sci-image.

We finally reach the goal of this section, which was stated as Proposition 1.8 in the
introduction.

Proposition 3.4. — Let ν : X ′ → X be the blow-up of a smooth cbs. Let Z ′ ⊂ X ′ be
an sci-image. If ν|Z′ : Z ′ → ν(Z ′) is birational, then ν(Z ′) ⊂ X is an sci-image.

Proof. — Denote by i : C ↪→ X the inclusion of the blown up cbs and keep the notation
of (3.3). Since Z ′ ⊂ X ′ is an sci-image, Proposition 3.2 implies that so is b(Z ′) ⊂
P(E). Consequently, there exist a flat morphism f : Y → P(E) of smooth projective
varieties over k and a smooth complete intersection V ⊂ Y such that f(V ) = b(Z ′)
and f |V : V → b(Z ′) is birational. Since π is flat and since π|b(Z′) : b(Z ′) → ν(Z ′) is
birational, the flat morphism π◦f : Y → X and the smooth complete intersection V ⊂ Y

certify that the subvariety π ◦ b(Z ′) = ν(Z ′) of X is an sci-image.

4. Turning smooth subvarieties into smooth complete intersections

The goal of this section is to prove the next proposition (see [15, Theorem 4.2]).

Proposition 4.1. — Let X be a smooth projective variety of dimension n over k.
Let Z ⊂ X be a smooth subvariety of dimension d < n

4 . Then there exists a compo-
sition π : X ′ → X of blow-ups of smooth cbs of dimension < d such that the strict
transform Z ′ ⊂ X ′ of Z is a union of connected components of a smooth cbs C ⊂ X ′.

Note that Proposition 4.1 seems slightly weaker than what was promised in the
introduction (see Proposition 1.9), in that C is only required to be a union of connected
components of a smooth cbs, and not a smooth complete intersection. This issue can
be resolved by a very simple blow-up trick.

Proof of Proposition 1.9. — Let the morphism π : X ′ → X and the subvarieties Z ′

and C of X ′ be as in Proposition 4.1. Let ν : X+ → X ′ be the blow-up of C and
let E ⊂ X+ be the union of the exceptional divisors of ν that lie above Z ′. Fix an
ample line bundle L on X ′. For l large enough, the line bundle ν∗L⊗l(−E) on X+ is glob-
ally generated. Pick general elements D1, . . . , Dc−1 in the linear system |ν∗L⊗l(−E)|,
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where c is the codimension of Z in X (and hence of Z ′ in X ′). The morphism
π+ := π ◦ ν : X+ → X and the smooth complete intersection

V := E ∩ D1 ∩ · · · ∩ Dc−1 ⊂ X+

then have the properties requested in the statement of Proposition 1.9.

In §4.1, we describe a strategy to prove Proposition 4.1. This outline will turn out to
be insufficient, and we will explain in §4.2 and §4.3 how this strategy must be modified
to give rise to a rigorous proof. The hypothesis that Z has dimension < n

4 will only
play a role in §4.2 and §4.3. The proofs of a few lemmas are postponed to §4.4.

4.1. A simplified sketch of the proof of Proposition 4.1
Step 1 (Induction on d). — We argue by induction on d. The case when d = 0 is
obvious: it is not even necessary to blow up X. From now on, fix d ≥ 1.

During the whole proof we will repeatedly blow up X along smooth cbs of dimen-
sion < d and replace Z with its strict transform in these blow-ups. To avoid creating
singularities on Z, we always assume that the connected components of the blown-up
cbs are either included in Z or disjoint from Z. The arguments given in this paragraph
are not strong enough to ensure that. This is one of the reasons why they will need to
be modified as described in §4.2 and §4.3.

Step 2 (Induction on e). — Fix d ≤ e ≤ n. We claim that, after maybe having
repeatedly blown up X along smooth cbs and replaced Z by its strict transform, there
exists a smooth cbs Ye ⊂ X of dimension e that contains Z. This claim is proved by
decreasing induction on e. The case e = n is obvious: just take Yn = X. The case e = d

is exactly the conclusion of Proposition 4.1 that we are trying to reach.

Step 3 (A hyperplane section). — To perform the induction step of the proof of the
claim, we assume that Z ⊂ Ye+1 ⊂ X has been constructed for some d ≤ e < n.
Choose a sufficiently ample line bundle L on X. Let s ∈ H0(X, L) be a general section
vanishing on Z and set H := {s = 0}. Then H ⊂ X is a hypersurface containing Z.
Define Ye := Ye+1 ∩ H.

The proof is not yet complete because the subvariety Ye may have singularities.
Local computations (more precisely: Lemma 4.4 applied to the variety Ye+1) allow one
to describe them precisely. Let Σ ⊂ Ye denote the singular locus of Ye. Note that Σ ⊂ Z

by the Bertini theorem. If e ≥ 2d, then Σ = ∅ and the proof is finished. Otherwise,
the variety Σ is smooth of dimension 2d−e−1 (in particular, of dimension < d) and Ye

has ordinary quadratic singularities along Σ.

Step 4 (Making use of the induction hypothesis). — This description of the singularities
of Ye shows that, to render Ye smooth, it would suffice to blow up Σ. However, we are
only allowed to blow up smooth cbs and not arbitrary smooth subvarieties.

To overcome this obstacle, we apply the induction hypothesis on d. After repeatedly
blowing up smooth cbs of dimension < dim(Σ) (whose components we assume, for the
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purpose of this simplified sketch of proof, to be either included in Σ or disjoint from Ye+1)
and replacing all the varieties in sight with their strict transforms in these blow-ups,
we may assume that Σ ⊂ X is a union of connected components of a smooth cbs.

It is easy to check that, after this sequence of blow-ups, the equality Ye = Ye+1∩H still
holds. One further verifies that the subvariety Ye+1 ⊂ X is still a cbs (see Lemma 4.6 (i))
and hence that so is Ye = Ye+1 ∩H, and that Ye still has ordinary quadratic singularities
along Σ (see Lemma 4.5).

Step 5 (Blowing up the singular locus). — Let C ⊂ X be the smooth cbs of which Σ is
a union of connected components. Again, we assume for the purpose of this simplified
sketch of proof that C only intersects Ye along Σ. Blowing up C in X and replac-
ing Ye with its strict transform in this blow-up then completes the proof. Indeed, our
choice of blow-up center implies that the subvariety Ye ⊂ X is now a smooth cbs (see
Lemma 4.6 (ii)).

4.2. Controlling the blown-up loci
At several points in the sketch of proof described in §4.1, we took for granted that our

blow-up centers were in good position with respect to various other subvarieties Vi ⊂ X

of importance in the proof. It is for this reason, and for this reason alone, that this
sketch is incomplete.

Following [15, Definition 4.3], we say that a subvariety C ⊂ X has full intersection
with another subvariety V ⊂ X if all the connected components of C are either included
in V or disjoint from V . The key to fixing the proof will be to ensure that our blow-up
centers have full intersection with the relevant subvarieties Vi ⊂ X. One could hope that
if the choices made in §4.1 are generic, then the blown up loci satisfy the required full
intersection conditions. Unfortunately, as noted in [15, Remark 4.7], this is not clear.

The solution of Kollár and Voisin to this difficulty is radical. Instead of making
generic choices and hoping for the best, they make particular choices. To be precise,
they constrain the blown up loci inside auxiliary smooth subvarieties of X that are as
disjoint as possible from the subvarieties Vi of X that are relevant to the proof. This
forces the blow-up centers to have full intersection with the Vi.

This strategy can only be made to work if the Vi and the auxiliary varieties all have
dimension < n

2 (they will then be as disjoint as possible from each other for purely
dimensional reasons). Since the auxiliary varieties will be constructed as general com-
plete intersections containing Σ (which is smooth of dimension < d), their smoothness
is ensured if d < n

4 (by Lemma 4.4). This explains why this hypothesis appears in the
statement of Proposition 4.1.

4.3. The inductive statements
In practice, the resulting enhancement of Proposition 4.1 is stated as the combination

of two twin propositions (see [15, Properties 4.6 and 4.8]), which are proved simultane-
ously by induction on d. Their statements are complicated by the necessity of keeping
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track of all the auxiliary varieties that have been introduced at various stages of the
induction process.

As before, we let X be a smooth projective variety of dimension n over k.

Proposition 4.2. — Let Z ⊂ Y ⊂ X and Z ⊂ Wj ⊂ X be subvarieties. Suppose
that Z is smooth of dimension d < n

4 , that the Wj are smooth of dimension < n
2 and

that Y is a smooth cbs of dimension < n
2 .

Then there exist a composition π : X ′ → X of blow-ups of smooth cbs of dimen-
sion < d that have full intersection with the strict transforms of Z, of Y and of the Wj,
and a smooth cbs C ⊂ X ′, such that Z ′ ⊂ C ⊂ Y ′ and Z ′ is a union of connected
components of C (where Z ′ and Y ′ denote the strict transforms of Z and Y in X ′).

Proposition 4.3. — Let Z ⊂ Y ⊂ X and Z ⊂ Wj ⊂ X be subvarieties. Suppose
that Z is smooth of dimension d < n

4 , that the Wj are smooth of dimension < n
2 and

that Y is a smooth cbs of dimension < n
2 . Suppose moreover that Y has dimension > d.

Then there exist a composition π : X ′ → X of blow-ups of smooth cbs of dimen-
sion < d that have full intersection with the strict transforms of Z, of Y and of the Wj,
and a smooth cbs C ⊂ X ′, such that Z ′ ⊂ C ⊂ Y ′ and dim(C) = dim(Y ′)−1 (where Z ′

and Y ′ denote the strict transforms of Z and Y in X ′).

Proposition 4.1 follows from Proposition 4.2 applied with no Wj and with Y a general
complete intersection containing Z (which may be chosen smooth thanks to Lemma 4.4).

Proposition 4.2 (for a fixed d) is an immediate consequence of Proposition 4.3 (for
the same d). To see it, apply Proposition 4.3 and replace X with X ′, the Wj and Z

with their strict transforms in X ′, and Y with C. In this way the dimension of Y drops.
Repeat this process until dim(Y ) = d and the conclusion of Proposition 4.2 is reached.

We finally explain how Proposition 4.3 (for a fixed d) can be deduced from Proposi-
tion 4.2 (for lower values of d). The argument is (a rigorous variant of) the induction
step on the parameter e that was presented in Steps 3, 4 and 5 of §4.1. Let H ⊂ X be
a general hypersurface containing Z and set C := Y ∩ H. The singular locus Σ of C

is a smooth subvariety of dimension < d of Z (see Lemma 4.4). Our plan is to turn Σ
into a union of components of a smooth cbs and then to blow up this smooth cbs.

As we explained in §4.2, the difficulty is to control the location in X of the other
components of this smooth cbs. To this effect, we introduce an auxiliary variety: a
general complete intersection Y ⊂ X containing Σ, chosen smooth of dimension < n

2
(this is possible by Lemma 4.4). A simple dimension count shows that Y ∩ Y = Σ
and Y ∩ Wj = Σ scheme-theoretically.

We now apply Proposition 4.2 to Σ ⊂ Y ⊂ X, with Z and Y added to the collection of
the Wj. In this manner, after repeatedly blowing up smooth cbs (with full intersection
with the relevant subvarieties) and replacing all the varieties in sight by their strict
transforms, we can arrange that Σ is a union of connected components of a smooth
cbs CΣ ⊂ X which is included in Y .
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The equality C = Y ∩ H still holds after this sequence of blow-ups. The subvari-
ety Y ⊂ X is still a cbs (by Lemma 4.6 (i)), and hence so is C = Y ∩H ⊂ X. Moreover,
the variety C still has ordinary quadratic singularities along Σ (by Lemma 4.5).

Local computations show that the scheme-theoretic equalities Y ∩ Y = Σ and
Y ∩ Wj = Σ are preserved during the blow-up process. The cbs CΣ can therefore only
intersect Z, Y and the Wj along Σ and hence has full intersection with them. It is
therefore legitimate to blow it up. The strict transform of C in this blow-up is a
smooth cbs (by Lemma 4.6 (ii)) which has the properties required in the statement of
Proposition 4.3.

4.4. Useful lemmas
We gather here a few lemmas that were used in the proof of Proposition 4.1. We

continue to let X denote a smooth projective variety of dimension n over k.

4.4.1. Ordinary quadratic singularities. — The next two lemmas are standard, and
we omit their proofs. The first is a Bertini-type theorem appearing in [6, Theorem 2.1,
Corollary 2.5] (see also [15, Lemma 3.13]). The second is a simple local computation
for which we refer to [15, Lemma 4.4].

Lemma 4.4. — Let Z ⊂ X be a smooth subvariety of dimension d < n. Let L be a
sufficiently ample line bundle on X. Let H ∈ |L| be a general hypersurface containing Z.

If d < n
2 , then H is smooth. If d ≥ n

2 , then H is singular along a smooth subvariety
of dimension 2d−n of Z and has ordinary quadratic singularities along this subvariety.

Lemma 4.5. — Let Y ⊂ X be a subvariety with smooth singular locus Σ ⊂ Y , which has
ordinary quadratic singularities along Σ. Let Z ⊂ Σ be a smooth subvariety of dimen-
sion < dim(Σ). Let π : X ′ → X be the blow-up of Z. Then the strict transform Y ′ ⊂ X ′

of Y has ordinary quadratic singularities along the strict transform Σ′ ⊂ X ′ of Σ.

4.4.2. Blowups of complete bundle sections. — The following lemma (for which see
[15, Lemmas 4.4 and 4.5]) is crucial to the mechanism of proof of Proposition 4.1. In
particular, Lemma 4.6 (ii) is the reason why it is necessary to blow up smooth cbs
and not only smooth complete intersections in Proposition 4.1 (and hence in Proposi-
tion 1.9).

Lemma 4.6. — Let C ⊂ X be a cbs. Let π : X ′ → X be the blow-up of a smooth
subvariety Z ⊂ C of dimension < dim(C). Let C ′ ⊂ X ′ be the strict transform of C.

(i) If C is smooth, then C ′ ⊂ X ′ is a smooth cbs.
(ii) If Z is the singular locus of C and C has ordinary quadratic singularities along Z,

then C ′ ⊂ X ′ is a smooth cbs.

Proof. — In both cases, it is clear that C ′ is smooth and we must check that it is a cbs.
Let c be the codimension of C in X. Write C = {s = 0}, where s ∈ H0(X, E) for some

vector bundle E of rank c on X. Let E be the exceptional divisor of π. As the section
π∗s ∈ H0(X ′, π∗E) vanishes on E, it gives rise to a section s′ ∈ H0(X ′, π∗E(−E)).
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In case (i), a local computation shows that C ′ = {s′ = 0}, which concludes the proof.
In case (ii), the inclusion C ′ ⊂ {s′ = 0} is strict and one must modify π∗E(−E)

to reach the desired conclusion. Differentiating the section s along Z gives rise to a
morphism ds : NZ/X → E|Z of vector bundles of rank c on Z. Since C has hypersurface
singularities along Z, the kernel of the linear map (ds)x has dimension 1 for all x ∈ Z.
We deduce that the cokernel of (ds)x also has dimension 1 for all x ∈ Z, and hence that
the cokernel of ds is a line bundle L on Z. Let F be the kernel of the composition

π∗E(−E) → (π∗E(−E))|E = (π|E)∗E|Z(−E) → (π|E)∗L(−E)
of the restriction map and the quotient map. Computations based on the shape of local
equations for subvarieties with ordinary quadratic singularities then show that F is a
vector bundle on X ′, that the image of s′ ∈ H0(X ′, π∗E(−E)) in H0(X ′, (π|E)∗L(−E))
vanishes (so s′ lifts to a section t ∈ H0(X ′, F)), and that C ′ = {t = 0}.

5. Half-dimensional cycles that are not smoothable

In this last section, we illustrate the sharpness of the Kollár–Voisin technique by
explaining the ideas of the proof of the following theorem. Recall that α(m) denotes
the number of ones in the binary expansion of the integer m.

Theorem 5.1. — Let d ≥ 0 be such that α(d + 1) ≥ 3. Then there exists a smooth
projective variety X of dimension 2d over C such that CHd(X) is not generated by
classes of lci subvarieties of pure dimension d in X.

The varieties used in the proof of Theorem 5.1 are provided by the next proposition
(see [1, Proposition 4.13]).

Proposition 5.2. — For all d ≥ 1, there exist a connected smooth projective variety X

of dimension 2d over C and a class β ∈ CHd(X) such that:
(i) If γ, γ′ ∈ H2d(X(C),Z) are Hodge classes, then deg(γ · γ′) is even.

(ii) One has deg(β2) ≡ 2 (mod 4).
(iii) All the higher Chern classes of X are torsion, that is c(TX) = 1 in CH∗(X) ⊗Z Q.

Proof. — Let (A, λ) be a very general principally polarized abelian variety of dimen-
sion d over C and let τ ∈ A(C) be a 2-torsion point. Let Z/4 act on A × A by means
of the order 4 automorphism ϕ : (x, y) 7→ (y + τ, x). Set X := (A × A)/(Z/4) and
let p : A × A → X be the quotient morphism. In addition choose β ∈ CHd(X) to be
the class of p(A × {0}) in CHd(X).

Since Z/4 acts freely on A × A, the quotient morphism p is étale. As the tangent
bundle of A is trivial, one computes that p∗c(TX) = c(p∗TX) = c(TA×A) = 1. Apply p∗
to that identity to show (iii).

The class p∗β is represented by the Z/4-orbit of A × {0}. A direct computation
therefore shows that deg(p∗β2) = 8. Since deg(p) = 4, one gets deg(β2) = 2, proving (ii).
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It remains to prove (i). The detailed argument being quite lengthy, we only explain its
principle and refer to [1, §4.2] for more details. Since the principally polarized abelian
variety (A, λ) is very general, a Mumford–Tate group argument (see [1, Lemma 4.6])
shows that the algebra Hdg2∗(A(C)×A(C),Q) of Q-Hodge classes on A×A is generated
by the principal polarizations of both factors and by the class of the Poincaré bundle
(where we identify the second factor to the dual of A by means of λ). Using this piece
of information, one can compute a Z-basis of the group Ξ := Hdg2d(A(C) × A(C),Z)Z/2

of Z-Hodge classes of degree 2d on A × A that are fixed by the involution exchanging
the two factors (see [1, Lemma 4.7 (ii)]). A direct computation on these basis elements
shows that deg(δ · δ′) ≡ 0 (mod 2) for all δ, δ′ ∈ Ξ (see [1, Lemma 4.9]). Now, if γ, γ′

are elements of Hdg2d(X(C),Z), one verifies that the elements p∗γ and p∗γ′ of Ξ are
divisible by 2 in Ξ (see [1, Lemma 4.7 (iii)]). Applying the above congruence to δ := p∗γ

2
and δ′ := p∗γ′

2 yields deg(p∗γ · p∗γ′) ≡ 0 (mod 8). Using that deg(p) = 4, we get
deg(γ · γ′) ≡ 0 (mod 2).

Proof of Theorem 5.1. — Let X and β be as in Proposition 5.2. We assume that

β =
∑

i

ni[Zi] in CHd(X),

where ni ∈ Z and the Zi are lci subvarieties of X of dimension d, and we seek a
contradiction. Suppose first that the Zi are smooth. Then

(5.3) deg(β2) =
∑

i

n2
i deg([Zi]2) + 2

∑
i<j

ninj deg([Zi] · [Zj]).

The double point formula [8, Corollary 6.3] shows that deg([Zi]2) = deg(cd(NZi/X)).
As c(TX) = 1 in CH∗(X) ⊗Z Q by Proposition 5.2 (iii), we see that

c(NZi/X) = c(TZi
)−1 = s(TZi

)

in CH∗(X) ⊗Z Q, where s(TZi
) denotes the total Segre class of TZi

. A topological
computation due to Rees and Thomas (see [18, Theorem 3]) shows that, under the
hypothesis that α(d + 1) ≥ 3, the number deg(sd(TZi

)) is divisible by 4. This implies
that the term ∑

i n2
i deg([Zi]2) = ∑

i n2
i deg(cd(NZi/X)) = ∑

i n2
i deg(sd(TZi

)) in (5.3) is
divisible by 4.

On the other hand, the numbers deg([Zi] · [Zj]) are even by Proposition 5.2 (i)
because the image of the cycle class map consists of Hodge classes. So the term
2 ∑

i<j ninj deg([Zi] · [Zj]) in (5.3) is also divisible by 4. We deduce that the left-hand
side deg(β2) of (5.3) must be divisible by 4, which contradicts Proposition 5.2 (ii).

The above proof can be adapted to the case where the Zi are only assumed to be lci.
We now explain the required modifications. We let NZi/X and TZi

denote the normal
bundle of the regular imbedding Zi ↪→ X (see [8, B.7.1]) and the virtual tangent bundle
of Zi (see [16, §7.4.2]) respectively. Fulton’s double point formula [8, Corollary 6.3] is
stated in the required generality. To justify that deg(sd(TZi

)) is divisible by 4 when Zi

is possibly not smooth, we make use of the algebraic cobordism group Ωd(k) defined
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in [16, Definition 2.4.10] (see also [16, §4.3]). Every lci projective variety Z of di-
mension d over C has a class [Z] ∈ Ωd(k) (see [16, §7.4.4]). By [16, Proposition 7.4.5]
(applied to the polynomial xd), there exists a group morphism sd : Ωd(k) → Z with
the property that sd([Z]) = deg(sd(TZ)) for any Z as above. As the classes [Z] for Z

smooth generate Ωd(k) (see [16, Lemma 2.5.15]) and as sd([Z]) is divisible by 4 when Z

is smooth by the Rees–Thomas theorem [18, Theorem 3] (under the hypothesis that
α(d + 1) ≥ 3), we deduce, as desired, that sd([Z]) is divisible by 4 when Z is lci.
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