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On Hilbert’s 17th problem in low degree
Olivier Benoist

Artin solved Hilbert’s 17th problem, proving that a real polynomial in n variables
that is positive semidefinite is a sum of squares of rational functions, and Pfister
showed that only 2n squares are needed.

In this paper, we investigate situations where Pfister’s theorem may be im-
proved. We show that a real polynomial of degree d in n variables that is positive
semidefinite is a sum of 2n

− 1 squares of rational functions if d ≤ 2n− 2. If n is
even or equal to 3 or 5, this result also holds for d = 2n.

Introduction

Hilbert’s 17th problem. Let R be a real closed field, for instance the field R of
real numbers, and let n ≥ 1. A polynomial f ∈ R[X1, . . . , Xn] is said to be
positive semidefinite if f (x1, . . . , xn)≥ 0 for all x1, . . . , xn ∈ R. As an odd degree
polynomial changes sign, such a polynomial has even degree.

Artin [1927] answered Hilbert’s 17th problem by proving that a positive semi-
definite polynomial f ∈ R[X1, . . . , Xn] is a sum of squares of rational functions.1

This theorem was later improved by Pfister [1967, Theorem 1], who showed that it
is actually the sum of 2n squares of rational functions. We refer to [Pfister 1995,
Chapter 6] for a nice account of these classical results.

In two variables, the situation is very well understood. Hilbert [1888] showed
that a positive semidefinite polynomial f ∈ R[X1, X2] of degree ≤ 4 is a sum of 3
squares of rational functions,2 and Cassels, Ellison and Pfister [Cassels et al. 1971]
gave an example of a positive semidefinite polynomial f ∈ R[X1, X2] of degree 6
that is not a sum of 3 squares of rational functions.

Our goal is to prove an analogue of Hilbert’s result — that in low degree, less
squares are needed — in more than two variables:

MSC2010: primary 11E25; secondary 14F20, 14P99.
Keywords: Hilbert’s 17th problem, sums of squares, real algebraic geometry, Bloch–Ogus theory.

1Hilbert himself [1888] had given examples of positive semidefinite polynomials that are not sums
of squares of polynomials.

2In fact, in this exceptional case, Hilbert actually showed that squares of polynomials suffice.
We will not consider this question in what follows, and refer the interested reader to [Pfister and
Scheiderer 2012].
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Theorem 0.1. Let f ∈ R[X1, . . . , Xn] be a positive semidefinite polynomial of
degree d. Suppose that one of the following holds:

(i) d ≤ 2n− 2.

(ii) d = 2n, and either n is even, n = 3, or n = 5.

Then f is a sum of 2n
− 1 squares in R(X1, . . . , Xn).

Of course, when d = 2, the classification of quadratic forms over R shows the
much stronger result that n+ 1 squares are enough. However, to the best of our
knowledge, our theorem is already new for d = 4 and n ≥ 3.

Dependence on the degree. The question whether the bound 2n in Pfister’s afore-
mentioned theorem is optimal is natural and well known [Pfister 1971, §4, Prob-
lem 1]. It is often formulated in the following equivalent way, where the Pythagoras
number p(K ) of a field K is the smallest number p such that every sum of squares
in K is a sum of p squares:

Question 0.2. Do we have p(R(X1, . . . , Xn))= 2n?

When n ≥ 2, the best known result is that n + 2 ≤ p(R(X1, . . . , Xn)) ≤ 2n

[Pfister 1995, p. 97], where the upper bound is Pfister’s theorem and the lower
bound is an easy consequence of the Cassels–Ellison–Pfister theorem.

Our main theorem does not address this question directly; it explores the opposite
direction, that is, the values of the degree for which Pfister’s bound may be improved.
However, Theorem 0.1 gives insights into Question 0.2. The bound d ≤ 2n has
a natural geometric origin (it reflects the rational connectedness of an associated
algebraic variety), and it would be natural to expect that Theorem 0.1 cannot be
extended to degrees d ≥ 2n+ 2.

In view of Theorem 0.1, it is natural to ask whether the bound d ≤ 2n− 2 may
be improved to d ≤ 2n for every odd value of n. When n = 1, this is not the case
because X2

1 + 1 is not a square. On the other hand, when n ≥ 3 is odd, we reduce
this question to a geometric coniveau estimate (Proposition 6.3). When n = 3, it is
very easy to check. We also verify it when n = 5, following an argument of Voisin.
This explains the hypotheses on the degree in Theorem 0.1.

Strategy of the proof. In two variables, the theorems of Hilbert and Cassels–Ellison–
Pfister quoted above have received geometric proofs by Colliot-Thélène [1992,
Remark 2; 1993]. His idea is to consider the homogenization F of f and to
introduce the algebraic surface Y := {Z2

+ F = 0}. Then, whether or not f may be
written as a sum of three squares in R(X1, X2) depends on the injectivity of the
map Br(R)→ Br(R(Y )), which may be studied by geometrical methods.

We follow the same strategy in more variables. Proposition 3.2 and Proposition 3.3
translate the property that f is a sum of 2n

− 1 squares in R(X1, . . . , Xn) into a
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cohomological property of (a resolution of singularities of) the variety Y . The group
that plays a role analogous to that of the Brauer group in two variables is a degree
n unramified cohomology group.

It remains to show that when the degree of f is small, some class in a degree n
unramified cohomology group vanishes. This is more difficult than the correspond-
ing result in two variables, as these groups are harder to control than Brauer groups.
Our main tool to achieve this is Bloch–Ogus theory.

Structure of the paper. The first two sections gather general cohomological results
for varieties over R, which are used throughout the text. It will be very important for
us to use cohomology with integral coefficients (as opposed to 2-torsion coefficients).
For this reason, Section 1 is devoted to general properties of the 2-adic cohomology3

of varieties over R.
In Section 2, we recall the basics of Bloch–Ogus theory, then focus on the specific

properties of it over real closed fields. In particular, we adapt to our needs a strategy
of Colliot-Thélène and Scheiderer [1996] to compare the Bloch–Ogus theory of a
variety over R and over the algebraic closure C of R, and explain in our context
consequences of the Bloch–Kato conjectures discovered by Bloch and Srinivas
[1983] and extended by Colliot-Thélène and Voisin [2012].

We study when a positive semidefinite polynomial f ∈ R[X1, . . . , Xn] is a sum
of 2n

− 1 squares of rational functions in Section 3. We successively relate this
property to the level of the function field R(Y ) of the variety Y := {Z2

+ F = 0} in
Proposition 3.2 (this is due to Pfister), to degree n unramified cohomology of Y
in Proposition 3.3 (an important tool is Voevodsky’s solution [2003] to the Milnor
conjecture) and to degree n + 1 cohomology of Y in Proposition 3.5 (this is the
crucial step, which uses Bloch–Ogus theory, and where the rational connectedness
of Y plays a role).

Section 4 contains the cohomological computations on the variety Y that are
relevant to apply the results of Section 3. Section 4D will only be useful when
n is odd and d = 2n, and is complemented by a geometric coniveau estimate in
Section 5. The reader who is not interested in our partial and conditional results
when n ≥ 3 is odd and d = 2n may skip them.

Section 6 completes the proof of Theorem 0.1. For a generic choice of f (that
is, when the degree of f is maximal among the values allowed in the statement
of Theorem 0.1, and Y is a smooth variety), this is an immediate consequence of
the results obtained so far. In general, we do not know how to apply this argument
directly, because we do not have a good control on the geometry of (a resolution of
singularities of) Y . Instead, we rely on a specialization argument. This argument

3It would also have been possible to work with equivariant Betti cohomology over the field R of
real numbers [Krasnov 1994], and with its semialgebraic counterpart over a general real closed field.
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reduces Theorem 0.1 to the generic case, but over a bigger real closed field. In
particular, even if one is only interested in proving Theorem 0.1 over R, one has to
work over real closed fields that are not necessarily archimedean.

1. Cohomology of real varieties

Let R be a real closed field and C be an algebraic closure of R. We denote the
Galois group by G := Gal(C/R)' Z/2Z. A variety over R is a separated scheme
of finite type over R.

1A. 2-adic cohomology. If X is a variety over R, we denote by H k(X,Z/2r Z( j))
its étale cohomology groups. These cohomology groups are finite; this follows
from the Hochschild–Serre spectral sequence

E p,q
2 = H p(G, Hq(XC ,Z/2r Z( j)))⇒ H p+q(X,Z/2r Z( j))

using the facts that XC has finite cohomological dimension [SGA 43 1973, X
Corollaire 4.3], that the groups Hq(XC ,Z/2r Z( j)) are finite [SGA 43 1973, XVI
Théorème 5.1] and that a finite G-module has finite cohomology.

Let us define H k(X,Z2( j)) := lim
←−−r H k(X,Z/2r Z( j)). Since the Galois coho-

mology of finite G-modules is finite, [Jannsen 1988, Remark 3.5(c)] shows that
these groups coincide with the continuous étale cohomology groups defined by
Jannsen. In particular, we have a Hochschild–Serre spectral sequence [Jannsen
1988, Remark 3.5(b)]:

E p,q
2 = H p(G, Hq(XC ,Z2( j)))⇒ H p+q(X,Z2( j)). (1-1)

We also freely use the cup-products, cohomology groups with support, cycle
class maps and Gysin morphisms defined by Jannsen [1988].

Note that since G = Z/2Z, the sheaves Z/2r Z( j) only depend on the parity of j ,
hence so do all the cohomology groups considered above.

Let ω be the generator of H 1(R,Z2(1)) ' Z/2Z. We denote also by ω its
reduction modulo 2: the generator of H 1(R,Z/2Z)' Z/2Z. If k ≥ 1, their powers
ωk generate H k(R,Z2(k))' Z/2Z and H k(R,Z/2Z)' Z/2Z, and we still denote
by ωk their pull-backs to any variety X over R.

1B. Comparison with geometric cohomology. Let π : Spec(C)→ Spec(R) be
the base-change morphism, and fix j ∈ Z. There is a natural short exact sequence
of étale sheaves on Spec(R): 0→ Z/2r Z( j)→ π∗Z/2r Z→ Z/2r Z( j + 1)→ 0,
as one checks at the level of G-modules. They fit together to form a short exact
sequence of 2-adic sheaves on Spec(R): 0→ Z2( j)→ π∗Z2→ Z2( j + 1)→ 0.

Let X be a variety over R, and let us still denote by π : XC→ X the base-change
morphism. Notice that by the Leray spectral sequence, we have H k(X, π∗Z/2r Z)=
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H k(XC ,Z/2r Z). Now pull-back the exact sequence of 2-adic sheaves 0→Z2( j)→
π∗Z2→ Z2( j + 1)→ 0 on X and take continuous étale cohomology. We obtain a
long exact sequence

· · · → H k(X,Z2( j)) π∗
−→ H k(XC ,Z2)

π∗
−→ H k(X,Z2( j + 1)) ω

−→ H k+1(X,Z2( j))→ · · · (1-2)

in which the boundary map H k(X,Z2( j+1))→H k+1(X,Z2( j)) is the cup-product
by the class of the extension 0→ Z2( j)→ π∗Z2→ Z2( j + 1)→ 0, which is the
nonzero class ω ∈ H 1(G,Z2(1))' Z/2Z.

1C. Cohomological dimension. Recall first the following well-known statement,
which goes back to Artin.

Proposition 1.1. Let X be an integral variety over R. The following are equivalent:

(i) R(X) is formally real, that is, −1 is not a sum of squares in R(X).
(ii) X has a smooth R-point.

(iii) X (R) is Zariski-dense in X.

Proof. By the Artin–Lang homomorphism theorem [Bochnak et al. 1998, Theo-
rem 4.1.2], if (i) holds, every open affine subset of X contains an R-point, proving
(iii). Conversely, if X (R) were Zariski-dense in X , −1 could not be a sum of
squares in R(X), because we would get a contradiction by evaluating this identity
at an R-point outside of the poles of the rational functions that appear. That (ii)
implies (iii) is a consequence of the implicit function theorem [Bochnak et al. 1998,
Corollary 2.9.8], and the converse is trivial. �

From this proposition, it is possible to deduce estimates on the cohomological
dimension of varieties X over R without R-points. For the cohomological dimension
of R(X), this follows from a theorem of Serre [1965] and Artin–Schreier theory.
The cohomological dimension of an arbitrary variety X may then be controlled
using [SGA 43 1973, X Corollaire 4.2].

Here, we point out places in the literature where the statements we need are
explicitly formulated.

Proposition 1.2. Let X be an integral variety of dimension n over R such that
X (R)=∅.

(i) R(X) has cohomological dimension n.

(ii) X has étale cohomological dimension ≤ 2n.

(iii) If X is affine, X has étale cohomological dimension ≤ n.

Proof. The first statement is [Colliot-Thélène and Parimala 1990, Proposition 1.2.1],
where it is attributed to Ax.
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The second (resp. third) statement follows from [Scheiderer 1994, Corollary 7.21],
noticing that the real spectrum of X is empty by Proposition 1.1 and using that
XC has étale cohomological dimension ≤ 2d (resp. ≤ d) by [SGA 43 1973, X
Corollaire 4.3] (resp. [SGA 43 1973, XIV Corollaire 3.2]). �

2. Bloch–Ogus theory

2A. Gersten’s conjecture. In this subsection, let X be a smooth variety over R.
We want to apply Bloch–Ogus theory to the cohomology groups H k(X,Z2( j)).

For this purpose, one needs to check the validity of Gersten’s conjecture for this
cohomology theory. There are two ways to do so.

First, the formal properties of continuous étale cohomology proven by Jannsen
[1988] allow one to prove that associating to a variety X over R its continuous
étale cohomology groups H k(X,Z2( j)) is part of a Poincaré duality theory with
supports in the sense of Bloch and Ogus [1974, Definition 1.3], in the same way as
it is proven for étale cohomology with finite coefficients [Bloch and Ogus 1974,
§2]. Then it is possible to apply [Bloch and Ogus 1974, Theorem 4.2].

Another possibility is to use the axioms of [Colliot-Thélène et al. 1997], which
are easier to check. That these axioms hold for continuous étale cohomology is
explained for instance in [Kahn 2012, §3C], allowing us to apply [Colliot-Thélène
et al. 1997, Corollary 5.1.11].

Let us now explain the meaning of Gersten’s conjecture in our context. We define
Hk

X ( j) to be the Zariski sheaf on X that is the sheafification of U 7→ H k(U,Z2( j)).
Moreover, if z ∈ X is a point with closure Z ⊂ X , we define4

H k
→
(z,Z2( j)) := lim

−−→
U⊂Z

H k(U,Z2( j)), (2-1)

where U runs over all nonempty open subsets of Z . We define ιz : z → X to
be the inclusion, and we consider the skyscraper sheaves ιz∗H

k
→
(z,Z2( j)) on X .

Finally, we set X (c) to be the set of codimension c points in X . Then the sheaves
Hk

X ( j) admit Cousin resolutions (see either [Bloch and Ogus 1974, (4.2.2)] or
[Colliot-Thélène et al. 1997, Corollary 5.1.11] taking into account purity [Jannsen
1988, (3.21)] to obtain the precise form below):

0→Hk
X ( j)→

⊕
z∈X (0)

ιz∗H
k
→
(z,Z2( j))→

⊕
z∈X (1)

ιz∗H
k−1
→

(z,Z2( j − 1))

→ . . .→
⊕

z∈X (k)

ιz∗H
0
→
(z,Z2( j − k))→ 0. (2-2)

4Beware that since continuous étale cohomology does not commute with inverse limit of schemes,
this group does not coincide in general with the continuous Galois cohomology of the residue field
of z.
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The way this Cousin resolution is constructed, from a coniveau spectral sequence,
shows that the arrows in (2-2) are given by maps in long exact sequences of
cohomology with support, also called residue maps.

Since the sheaves in this resolution are flasque, the Cousin complex obtained by
taking its global sections computes the Zariski cohomology of Hk

X ( j). For instance,
this implies that H 0(X,Hk

X ( j)) coincides with the unramified cohomology group
H k

nr(X,Z2( j)), that is, the subgroup of H k
→
(η,Z2( j)) on which all residues at

codimension 1 points of X vanish.
The exactness of (2-2) allows us to compute the second page of the coniveau

spectral sequence for X mentioned above. As shown in [Bloch and Ogus 1974,
Corollary 6.3] or [Colliot-Thélène et al. 1997, Corollary 5.1.11], it reads

E p,q
2 = H p(X,Hq

X ( j))⇒ H p+q(X,Z2( j)). (2-3)

Recall that the filtration induced by this spectral sequence on H k(X,Z2( j)) is the
coniveau filtration, where a class α ∈ H k(X,Z2( j)) has coniveau ≥ c if it vanishes
in the complement of a closed subset of codimension c of X .

2B. Bloch–Ogus theory over R. If X is a variety over R, we still denote by
π : XC → X the natural morphism, and we naturally view XC as a variety over R.
The following proposition was proved in [Colliot-Thélène and Scheiderer 1996,
Lemma 2.2.1] over R and with 2-torsion coefficients, but the proof goes through,
and we include it for completeness.

Proposition 2.1. Let X be a smooth variety over R and fix j ∈ Z. Then there exists
a long exact sequence of Zariski sheaves on X :

· · · →Hk
X ( j)→ π∗Hk

XC
→Hk

X ( j + 1)→Hk+1
X ( j)→ · · · . (2-4)

Moreover, the sheaf π∗Hk
XC

coincides with the sheafification of U 7→ H k(UC ,Z2)

and its cohomology groups are Hq(X, π∗Hk
XC
)= Hq(XC ,Hk

XC
) for any k, q ≥ 0.

Proof. Let x ∈ X . If V is a neighborhood of π−1(x) in XC , the sheaf Hk
V has a

flasque Cousin resolution (2-2). Taking global sections and taking the limit over
all such neighborhoods V gives a complex that is exact in positive degree (the
argument for étale cohomology with finite coefficients is [Colliot-Thélène et al. 1997,
Proposition 2.1.2], and the corresponding effaceability condition for continuous
étale cohomology follows from [Colliot-Thélène et al. 1997, Theorem 5.1.10]). As
a consequence,

lim
−−→

V
H p(V,Hk

V )= 0 for p > 0. (2-5)

Considering the coniveau spectral sequences (2-3) for every V and taking (2-5) into
account shows that

lim
−−→

V
H k(V,Z2)= lim

−−→
V

H 0(V,Hk
V ). (2-6)
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Note that in both (2-5) and (2-6), it is possible to restrict to neighborhoods of the
form UC for U ⊂ X because they form a cofinal family.

Now, the exact sequences obtained by applying (1-2) to all open subsets of X fit
together to induce a long exact sequence of Zariski presheaves on X . By exactness
of sheafification, one obtains a long exact sequence of Zariski sheaves on X :

· · · →Hk
X ( j)→ Fk

→Hk
X ( j + 1)→Hk+1

X ( j)→ · · · ,

where Fk is the sheafification of U 7→ H k(UC ,Z2). The universal property of
sheafification gives a morphism Fk

→ π∗Hk
XC

. The map induced on stalks at x ∈ X
is precisely (2-6), hence an isomorphism. It follows that Fk

' π∗Hk
XC

, completing
the construction of (2-4).

If k ≥ 0 and p > 0, the stalk of R pπ∗Hk
XC
= 0 at x ∈ X is given by (2-5), hence

trivial. It follows that R pπ∗Hk
XC

vanishes, and the Leray spectral sequence for π
implies the last statement of the proposition. �

2C. Consequences of the Bloch–Kato conjecture. The following proposition is
due to Bloch and Srinivas [1983, proof of Theorem 1] for k ≤ 2 and to Colliot-
Thélène and Voisin [2012, Théorème 3.1] in general. Since both references work
over an algebraically closed field, and since the latter uses Betti cohomology, we
repeat the proof to emphasize that it works in our setting.

Proposition 2.2. Let X be a smooth variety over R. Then for every k ≥ 0, the sheaf
Hk+1

X (k) is torsion free.

Proof. Since it is a sheaf of Z2-modules, it suffices to prove that it has no 2-torsion.
Consider the exact sequence of 2-adic sheaves on X : 0→ Z2(k)

2
−→ Z2(k)→

µ⊗k
2 → 0. Taking long exact sequences of continuous cohomology over every open

subset U ⊂ X to get a long exact sequence of presheaves on X and sheafifying it
gives a long exact sequence of sheaves on X , part of which is

Hk
X (k)→Hk

X (µ
⊗k
2 )→Hk+1

X (k) 2
−→Hk+1

X (k),

where Hk
X (µ

⊗k
2 ) is the sheafification of U 7→ H k(U, µ⊗k

2 ). Consequently, it suffices
to prove the surjectivity of Hk

X (k)→Hk
X (µ

⊗k
2 ).

On an open set U ⊂ X , the Kummer exact sequence 0→µ2→Gm
2
−→Gm→ 0

induces a boundary map H 0(U,O∗U )→ H 1(U, µ2). These maps sheafify to O∗X→
H1

X (µ2), inducing via cup-products a morphism of sheaves (O∗X )
⊗k
→Hk

X (µ
⊗k
2 ).

It is explained in [Colliot-Thélène and Voisin 2012, end of section 2.2] how Ger-
sten’s conjecture for Milnor K-theory proven by Kerz [2009] and the Bloch–Kato
conjecture proven by Rost and Voevodsky (since we only need this conjecture at
the prime 2, Voevodsky’s work [2003, Corollary 7.4] on Milnor’s conjecture is
sufficient here) imply the surjectivity of this morphism.
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Over an open set U ⊂ X , the boundary maps H 0(U,O∗U )→ H 1(U, µ2r ) for the
Kummer exact sequences

0→ µ2r → Gm
2r
−→ Gm→ 0

fit together to induce a map H 0(U,O∗U )→lim
←−−r H 1(U, µ2r )=H 1(U,Z2(1)). Again,

this sheafifies to a morphism O∗X→H1
X (1), inducing via cup-products a morphism

of sheaves (O∗X )
⊗k
→ Hk

X (k) lifting (O∗X )
⊗k
→ Hk

X (µ
⊗k
2 ). The surjectivity of

Hk
X (k)→Hk

X (µ
⊗k
2 ) now follows from surjectivity of (O∗X )

⊗k
→Hk

X (µ
⊗k
2 ). �

In [Bloch and Srinivas 1983; Colliot-Thélène and Voisin 2012], the authors
worked over an algebraically closed field, and the Tate twist was not essential for
the result to hold. Here, it is very important; it is not true in general that the sheaf
Hk

X (k) has no torsion.
As in these references, the following are straightforward corollaries.

Corollary 2.3. Let X be a smooth variety over R and k ≥ 0. Then

H k+1
nr (X,Z2(k))= H 0(X,Hk+1

X (k))
is torsion free.

Corollary 2.4. Let X be an integral variety over R with generic point η and k ≥ 0.
Then H k+1

→
(η,Z2(k)) is torsion free.

Proof. If α ∈ H k+1(U,Z2(k)) is a torsion class on a smooth open subset U ⊂ X , it
vanishes in H k+1

nr (U,Z2(k)) by Corollary 2.3, hence on an open subset V ⊂U . �

Another application of Proposition 2.2 is as follows.

Proposition 2.5. Let X be a smooth variety over R. Then for every k ≥ 0, there is
an exact sequence

0→Hk−1
X (k)→ π∗Hk−1

XC
→Hk−1

X (k+1)→Hk
X (k)→ π∗Hk

XC
→Hk

X (k+1)→ 0.

Proof. Let us prove that the long exact sequence (2-4) splits into these shorter exact
sequences. It suffices to prove that, for k ≥ 0, the morphism Hk−1

X (k)→ π∗Hk−1
XC

is
injective. The composition

Hk−1
X (k)→ π∗Hk−1

XC
→Hk−1

X (k)

is multiplication by 2. Consequently, the kernel of Hk−1
X (k)→ π∗Hk−1

XC
is of 2-

torsion. Since Hk−1
X (k) is torsion free by Proposition 2.2, this kernel is trivial, as

required. �

Proposition 2.6. Let X be an integral variety over R with generic point η. Then
for every k ≥ 0, there is an exact sequence

0→ H k−1
→

(η,Z2(k))→ H k−1
→

(η, π∗Z2)→ H k−1
→

(η,Z2(k+ 1))

→ H k
→
(η,Z2(k))→ H k

→
(η, π∗Z2)→ H k

→
(η,Z2(k+ 1))→ 0.
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Proof. Take the direct limit of the long exact sequence (1-2) applied to all open
subsets of X ; it splits into exact sequences of length six by the same argument as
in the proof of Proposition 2.5, using Corollary 2.4 instead of Corollary 2.3. �

3. Sums of squares and unramified cohomology

3A. Sums of squares and level. Let n≥1, consider a nonzero positive semidefinite
polynomial f ∈ R[X1, . . . , Xn] and its homogenization F ∈ R[X0, . . . , Xn]. Notice
that since an odd degree polynomial over R changes sign, f and F must have
even degree. This allows us to consider the double cover Y of Pn

R ramified over
{F = 0} defined by the equation Y := {Z2

+ F = 0} in the weighted projective
space P(1, . . . , 1, deg(F)/2).

Lemma 3.1. The variety Y is integral, R(Y ) is not formally real, and if Ỹ → Y is
a resolution of singularities, then Ỹ (R)=∅.

Proof. To prove that Y is integral, one has to check that − f is not a square in
R(X1, . . . , Xn), or equivalently, that it is not a square in R[X1, . . . , Xn]. But if it
were, f would be negative on Rn , hence zero on Rn by positivity, hence zero by
Zariski-density of Rn in Cn . This is a contradiction.

The R-points of Ỹ necessarily lie above R-points of Y , hence, by positivity
of F , above zeroes of F . Consequently, Ỹ (R) is not Zariski-dense in Ỹ . Applying
Proposition 1.1 using the smoothness of Ỹ shows that Ỹ (R)=∅, and that R(Y ) is
not formally real. �

Recall that the level s(K ) ∈ N∗ ∪ {∞} of a field K is∞ if −1 is not a sum of
squares in K , and the smallest s such that −1 is a sum of s squares otherwise. In
the latter case, it has been shown by Pfister [1965, Satz 4] to be a power of 2.

Proposition 3.2. The polynomial f is a sum of 2n
− 1 squares in R(X1, . . . , Xn)

if and only if R(Y ) has level < 2n . Conversely, the polynomial f is not a sum of
2n
− 1 squares in R(X1, . . . , Xn) if and only if R(Y ) has level 2n .

Proof. Proposition 1.1 shows that R(X1, . . . , Xn) is formally real and Artin’s
solution [1927] to Hilbert’s 17th problem shows that f is a sum of squares in
R(X1, . . . , Xn).

Then [Lam 1980, Chapter 11, Theorem 2.7] applies and shows that f is a sum
of 2n

− 1 squares in R(X1, . . . , Xn) if and only if R(Y ) has level < 2n (this is
essentially due to Pfister; the statement we have used is very close and its proof is
identical to [Pfister 1965, Satz 5]).

Since R(Y ) is not formally real by Lemma 3.1, Pfister [1967, Theorem 2] has
shown that its level is ≤ 2n . This concludes the proof. �
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3B. Level and unramified cohomology. To apply Proposition 3.2, we need to
control the level of the function field of a variety over R. The following proposition
relates it to one of its unramified cohomology groups. The equivalence (i)⇔(ii)
is hinted at in [Colliot-Thélène 1993, bottom of p. 236], at least for n = 3. I am
grateful to Olivier Wittenberg for explaining to me that the implication (ii)⇒(iii)
holds.

Proposition 3.3. Let X be a smooth integral variety over R, and fix n ≥ 1. The
following assertions are equivalent:

(i) The function field R(X) has level < 2n .

(ii) The map H n(R,Z/2Z)→ H n(R(X),Z/2Z) vanishes.

(iii) The map H n(R,Z2(n))→ H n
nr(X,Z2(n)) vanishes.

Proof. Consider the property that the level of R(X) is < 2n . It is equivalent to
the fact that −1 is a sum of 2n

− 1 squares in R(X), hence to the fact that the
Pfister quadratic form q := 〈1, 1〉⊗n is isotropic over R(X). By a theorem of Elman
and Lam [1972, Corollary 3.3], this is equivalent to the vanishing of the symbol
{−1}n in the Milnor K-theory group K M

n (R(X))/2. By Voevodsky’s proof [2003,
Corollary 7.4] of the Milnor conjecture, the natural map

K M
n (R(X))/2→ H n(R(X),Z/2Z)

is an isomorphism, so our property is equivalent to the vanishing of H n(R,Z/2Z)→

H n(R(X),Z/2Z). We have proven that (i) and (ii) are equivalent.
Suppose that (iii) holds and let η be the generic point of X . The definition

of H n
nr(X,Z2(n)) as a subgroup of H n

→
(η,Z2(n)) shows that H n(R,Z2(n)) →

H n
→
(η,Z2(n)) vanishes. Then we have a commutative diagram

H n(R,Z2(n))

∼=

��

// H n
→
(η,Z2(n))

��
H n(R,Z/2Z) // H n

→
(η,Z/2Z)

where the groups on the right are defined as inductive limits on the open subsets
of X as in (2-1), showing that H n(R,Z/2Z)→ H n

→
(η,Z/2Z) vanishes. Since

étale cohomology commutes with such limits [SGA 42 1972, VII Corollaire 5.8],
H n
→
(η,Z/2Z) is nothing but the Galois cohomology group H n(R(X),Z/2Z), prov-

ing (ii).
Suppose conversely that (ii) holds, and let U ⊂ X be an open subset such that

ωn vanishes in H n(U,Z/2Z). Consider the following commutative exact diagram,
where the lines are (1-2):
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H n−1(U,Z2(n− 1)) ω //

2
��

H n(U,Z2(n))

2
��

// H n(UC ,Z2)

2
��

H n−1(U,Z2(n− 1)) ω // H n(U,Z2(n)) //

��

H n(UC ,Z2)

H n(U,Z/2Z)

Look at ωn
∈ H n(U,Z2(n)). By hypothesis, it vanishes in H n(U,Z/2Z), hence

may be written 2α for some α ∈ H n(U,Z2(n)). Since ωn
∈ H n(U,Z2(n)) is the

image of ωn−1
∈ H n−1(U,Z2(n− 1)), αC ∈ H n(UC ,Z2) is a 2-torsion class. By

Corollary 2.4, any torsion class in H n(UC ,Z2) vanishes on an open subset: up to
shrinking U , we may assume that αC=0, hence that there is β ∈H n−1(U,Z2(n−1))
such that β ·ω = α. Then ωn

= β · 2ω = 0 ∈ H n(U,Z2(n)), proving (iii). �

3C. From degree n to degree n+1 cohomology. Condition (iii) in Proposition 3.3
means that ωn has coniveau ≥ 1. Proposition 3.5 uses Bloch–Ogus theory to relate
this property to the coniveau of ωn+1.

Fix an integer n ≥ 1 and let X be a smooth variety over R. The coniveau
spectral sequence (2-3) induces two maps H n(X,Z2(n))

φ
−→H n

nr(X,Z2(n)) and K :=
Ker

[
H n+1(X,Z2(n+ 1))→ H n+1

nr (X,Z2(n+ 1))
] ψ
−→H 1(X,Hn

X (n+ 1)).
Cup-product with ω gives morphisms H n(X,Z2(n))

ω
−→ H n+1(X,Z2(n+1)) and

H n
nr(X,Z2(n))

ω
−→ H n+1

nr (X,Z2(n+ 1)). Let I := {α ∈ H n(X,Z2(n)) | α ·ω ∈ K }
and Inr := {α ∈ H n

nr(X,Z2(n)) | α ·ω = 0}.
Finally, Proposition 2.5 gives an exact sequence of sheaves on X :

0→Hn
X (n+ 1)→ π∗Hn

XC
→Hn

X (n)
ω
−→Hn+1

X (n+ 1)→ · · · . (3-1)

Taking cohomology, we obtain an exact sequence:

0→ H n
nr(X,Z2(n+ 1))→ H n

nr(XC ,Z2)→ Inr
δ
−→ H 1(X,Hn

X (n+ 1)). (3-2)

Lemma 3.4. Let X be a smooth variety over R. The diagram

I ω //

φ

��

K

ψ

��
Inr

δ // H 1(X,Hn
X (n+ 1))

constructed above commutes.

Proof. Let α ∈ I . By hypothesis, the class α ·ω ∈ H n+1(X,Z2(n+ 1)) vanishes on
an open subset U ⊂ X . Let D := X \U be endowed with its reduced structure.

The description of H 1(X,Hn
X (n + 1)) as a cohomology group of the Cousin

complex (2-2) shows that if X◦ ⊂ X is an open subset whose complement has
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codimension ≥ 2, then the restriction H 1(X,Hn
X (n+1))→ H 1(X◦,Hn

X◦(n+1)) is
injective. Consequently, to prove that ψ(α ·ω)= δ ◦φ(α), it is possible to remove
from X a closed subset of codimension ≥ 2. This allows us to suppose that D is
smooth of pure codimension 1.

Our next task is to concretely identify δ ◦ φ(α). The cohomology theory with
supports in the sense of [Colliot-Thélène et al. 1997, Definition 5.1.1], which to a
variety X over R and a closed subset Z ⊂ X associates the groups H k

Z (X, π∗Z2)=

H k
ZC
(XC ,Z2), satisfies axioms COH1 and COH3 by [Colliot-Thélène et al. 1997,

5.5(1)], hence COH2 by [Colliot-Thélène et al. 1997, Proposition 5.3.2]. It fol-
lows from [Colliot-Thélène et al. 1997, Corollary 5.1.11] that the sheafification of
U 7→ H n(UC ,Z2) (that is, π∗Hn

XC
by Proposition 2.1) admits a Cousin resolution

by flasque sheaves, and the same goes for π∗Hn+1
XC

. These resolutions fit together
with the Cousin resolutions (2-2) of Hn

X (n+1), Hn
X (n), H

n+1
X (n+1) and Hn+1

X (n),
giving rise to a diagram that is an exact sequence of flasque resolutions for the exact
sequence of sheaves (3-1) by Proposition 2.6. Let us only draw the relevant part of
the diagram containing the Cousin resolutions for Hn

X (n+1), π∗Hn+1
XC

and Hn
X (n):

⊕
z∈X (0)

ιz∗H
n
→
(z,Z2(n+ 1)) //

��

⊕
z∈X (1)

ιz∗H
n−1
→

(z,Z2(n)) //

��

· · ·

⊕
z∈X (0)

ιz∗H
n
→
(z, π∗Z2) //

��

⊕
z∈X (1)

ιz∗H
n−1
→

(z, π∗Z2) //

��

· · ·

⊕
z∈X (0)

ιz∗H
n
→
(z,Z2(n)) //

⊕
z∈X (1)

ιz∗H
n−1
→

(z,Z2(n− 1)) // · · ·

(3-3)

It is now possible to give a description of δ ◦ φ(α) by a diagram chase in the
diagram obtained by taking the global sections of (3-3). More precisely, α induces
a class

φ(α) ∈ Ker
[⊕

z∈X (0)

H n
→
(z,Z2(n))→

⊕
z∈X (1)

H n−1
→

(z,Z2(n− 1))
]
.

Lifting it in
⊕

z∈X (0) H n
→
(z, π∗Z2) by the hypothesis that α ∈ I , pushing it to⊕

z∈X (1) H n−1
→

(z, π∗Z2) and lifting it again to
⊕

z∈X (1) H n−1
→

(z,Z2(n)) gives a
cohomology class of degree one of the complex of global sections of the Cousin
resolution of Hn

X (n+ 1) representing δ ◦φ(α) ∈ H 1(X,Hn
X (n+ 1)).

At this point, consider the following commutative diagram, whose rows are exact
sequences of cohomology with support, whose columns are instances of (1-2), and
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where the coefficient ring Z2 has been omitted:

H n(U, n+ 1) //

��

H n−1(D, n)

π∗

��
H n(UC)

π∗

��

∂ // H n−1(DC)

��
H n−2(D, n− 1)

��

// H n(X, n)

ω

��

j∗ // H n(U, n)

��

// H n−1(D, n− 1)

H n−1(D, n)

��

i∗ // H n+1(X, n+ 1) // H n+1(U, n+ 1)

H n−1(DC)

Here we have denoted by i : D→ X and j :U → X the inclusions, and by ∂ the
residue map. By our choice of U , α∈H n(X,Z2(n)) vanishes in H n+1(U,Z2(n+1)).
Chasing the diagram, there are two ways to construct a (not well-defined) class
in H n−1(D,Z2(n)). First, we may consider a class β ∈ H n−1(D,Z2(n)) such that
i∗β = α ·ω. Second, we may lift j∗α along π∗, apply the residue map ∂ , and lift
the resulting class along π∗ to obtain γ ∈ H n−1(D,Z2(n)).

Our diagram has been constructed from the diagram of distinguished triangles in
the derived category of 2-adic sheaves on X :

i∗Ri !Z2(n+ 1)

��

// Z2(n+ 1)

��

// R j∗ j∗Z2(n+ 1)

��

//

i∗Ri !π∗Z2

��

// π∗Z2

��

// R j∗ j∗π∗Z2

��

//

i∗Ri !Z2(n)

��

// Z2(n)

��

// R j∗ j∗Z2(n)

��

//

A homological algebra lemma due to Jannsen [2000, lemma, p. 268], applied
exactly as in [Jannsen 2000, proof of Theorem 2], shows that the images of β and
γ in H n−1(DC ,Z2) that are well-defined up to the image of H n(U,Z2(n + 1))
coincide up to a sign. It follows that β and γ , well-defined up to the images of
H n(U,Z2(n + 1)) and H n−2(D,Z2(n − 1)) in H n−1(D,Z2(n)), coincide up to
a sign.
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Now notice that β and γ induce classes in
⊕

z∈X (1) H n−1
→

(z,Z2(n)). Our explicit
description of δ ◦φ(α) shows that β is a representative of it as a cohomology class
of degree one of the Cousin complex. On the other hand, γ has been constructed by
lifting α ·ω along the Gysin morphism H n−1(D,Z2(n))→ H n+1(X,Z2(n+ 1)).
By construction of the coniveau spectral sequence [Bloch and Ogus 1974, §3;
Colliot-Thélène et al. 1997, §1], γ is a representative of ψ(α ·ω) as a cohomology
class of degree one of the Cousin complex.

At this point, we have proven that ψ(α ·ω)= [γ ] =−[β] =−δ◦φ(α). Since this
element is 2-torsion because ω is, one has in fact ψ(α ·ω)= δ◦φ(α), as wanted. �

Proposition 3.5. Let X be a smooth projective variety over R, and fix n ≥ 1.
Consider the following assertions:

(i) The class ωn
∈ H n(X,Z2(n)) has coniveau ≥ 1.

(ii) The class ωn+1
∈ H n+1(X,Z2(n+ 1)) has coniveau ≥ 2.

Then (i) implies (ii). Moreover, if CH0(XC) is supported on a closed subvariety of
XC of dimension n− 1, then the converse holds.

Proof. Either (i) or (ii) implies that ωn+1 has coniveau ≥ 1, or equivalently that
it vanishes in H n+1

nr (X,Z2(n+ 1)). Let us suppose this is the case; in particular,
ωn
∈ I .
By the coniveau spectral sequence (2-3), ωn has coniveau ≥ 1 in X if and only

if its class in H n
nr(X,Z2(n)) vanishes, and ωn+1 has coniveau ≥ 2 if and only if its

class in H 1(X,Hn
X (n+ 1)) vanishes. Then consider the diagram

H n(R,Z2(n))
ω

∼=

//

��

H n+1(R,Z2(n+ 1))

��
Inr

δ // H 1(X,Hn
X (n+ 1))

which is commutative by Lemma 3.4. Contemplating it shows that (i) implies (ii).
Conversely, if CH0(XC) is supported on a closed subvariety of XC of dimension

n − 1, we have H n
nr(XC ,Z2) = 0 by [Colliot-Thélène and Voisin 2012, Proposi-

tion 3.3(ii)]. Indeed, the argument given there for Betti cohomology over C, which
relies on decomposition of the diagonal, works as well for 2-adic cohomology
over C. It then follows from the exact sequence (3-2) that δ is injective, proving
that (ii) implies (i). �

4. Cohomology of smooth double covers

Recall the notation of Section 3A. The polynomial F ∈ R[X0, . . . , Xn] is the
homogenization of a nonzero positive semidefinite polynomial f ∈ R[X1, . . . , Xn].
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Its degree d is even. We introduced the double cover Y of Pn
R ramified over {F = 0}

defined by the equation Y := {Z2
+ F = 0}.

Throughout this section, we make the additional hypothesis that {F = 0} is
smooth so that Y is smooth. By Lemma 3.1, Y (R) = ∅. The main goal of this
section is to prove Propositions 4.8 and 4.12.

4A. Geometric cohomology. We first collect some needed results on the cohomol-
ogy of YC . They follow from general theorems on the cohomology of weighted
complete intersections due to Dimca [1985]. When n = 3, we could also have
applied [Clemens 1983, Corollary 1.19 and Lemma 1.23].

Proposition 4.1. Let HC ∈ H 2(YC ,Z2(1)) be the class of OPn
C
(1).

(i) The cohomology groups H k(YC ,Z2) have no torsion.

(ii) If k 6= n is odd, H k(YC ,Z2)= 0.

(iii) If 0≤ l < n
2 , H 2l(YC ,Z2)' Z2(l) as a G-module, and is generated by H l

C .

(iv) If n
2 < l ≤ n, H 2l(YC ,Z2)'Z2(l) as a G-module, and has a generator αl such

that 2αl = H l
C .

Proof. It suffices to prove the equalities as Z2-modules (this means that it is possible
to forget the twist indicating the action of G), because one recovers the correct
twist by noticing that the relevant cohomology groups are rationally generated by
algebraic cycles.

Using the fact that YC is defined over an algebraically closed subfield that may be
embedded in C together with the invariance of étale cohomology under an extension
of algebraically closed fields, it suffices to prove the lemma when C =C. Moreover,
by comparison with Betti cohomology, it suffices to prove it for Betti cohomology.

Since YC is a strongly smooth weighted complete intersection in the sense of
[Dimca 1985], its cohomology groups have no torsion by Proposition 6(ii) of that
paper. Moreover, its Betti numbers in degree k 6= n are computed in Dimca’s
Proposition 6(i).

If l < n
2 , the class H l

C ∈ H 2l(YC ,Z2) cannot be divisible by 2 because the
intersection product 1

2 H l
C ·

1
2 H l

C ·H
n−2l
C =

1
2 would not be an integer. It follows that

H l
C generates H 2l(YC ,Z2).
If l > n

2 , since H l
C · H

n−l
C = 2, it follows by Poincaré duality that H 2l(YC ,Z2) is

generated by a class αl such that 2αl = H l
C . �

4B. Preparation for a deformation argument. In the next subsections, we perform
some computations on the cohomology of Y . One of the arguments, in the proofs
of Lemma 4.7 and Proposition 4.12, is a reduction to the Fermat double cover
Y †
:= {Z2

+ F†
= 0}, where F†

:= Xd
0 + · · · + Xd

n is the Fermat equation. This
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deformation argument relies on a little bit of semialgebraic geometry, so it is
convenient to collect the relevant lemmas here.

Let V := R[X0, . . . , Xn]d be the space of degree d homogeneous polynomials
viewed as an algebraic variety over R. The discriminant 1⊂ V is the closed alge-
braic subvariety parametrizing equations that do not define smooth hypersurfaces
in Pn

R. It is irreducible, and a general point of 1 defines a hypersurface with only
one ordinary double point as singularities. Let 1′ ⊂ 1 be the closed algebraic
subvariety parametrizing singular hypersurfaces that do not have only one ordinary
double point as singularities; it has codimension ≥ 2 in V . We view the sets of
R-points V (R), 1(R) and 1′(R) as semialgebraic sets. Define

5 := {H ∈ V (R) | H(x0, . . . , xn) > 0 for every (x0, . . . , xn) ∈ Rn+1
\ (0, . . . , 0)}.

Lemma 4.2. The set 5⊂ V (R) is convex, open and semialgebraic. Moreover, the
polynomials F and F† belong to 5.

Proof. It is immediate that 5 is convex. We prove that the complement of 5 is a
closed semialgebraic set. By homogeneity of H , it coincides with the projection to
V (R) of

Q := {(H, x0, . . . , xn) ∈ V (R)×Sn
| H(x0, . . . , xn)≤ 0},

where Sn
:= {(x0, . . . , xn) ∈ Rn+1

| x2
0 + · · ·+ x2

n = 1} is the unit sphere.
That it is semialgebraic follows from the Tarski–Seidenberg theorem [Bochnak

et al. 1998, Theorem 2.2.1]. To check that it is closed, it suffices to check that its
intersection with every closed hypercube in V (R) is closed, which follows from
[Bochnak et al. 1998, Theorem 2.5.8].

That F†
∈5 is clear. We know that F ≥ 0 because it is positive semidefinite.

Moreover, it cannot vanish on Rn+1
\ (0, . . . , 0) because Y (R) 6=∅ by Lemma 3.1.

This shows that F ∈5. �

Now choose a general affine subspace W ⊂ V of dimension 2 that contains F
and F†.

Lemma 4.3. The set 5∩W (R)∩1(R) is finite.

Proof. Let H ∈5∩W (R)∩1(R). Since H ∈1(R), {H = 0} ⊂ Pn
R is a singular

hypersurface. Since H ∈ 5, {H = 0} has no real point. Consequently, {H = 0}
has (geometrically) at least two singular points: any singular point and its distinct
complex conjugate. This shows that 5∩W (R)∩1(R)⊂W (R)∩1′(R). But if
W has been chosen to properly intersect 1′, the variety W ∩1′ is already finite. �

Lemma 4.4. There exists a variety S over R, two points s, s†
∈ S(R) and a mor-

phism ρ : S→ W \1 such that S(R) is semialgebraically connected, ρ(s) = F ,
ρ(s†)= F† and ρ(S(R))⊂5.



946 Olivier Benoist

Proof. Choose a coordinate system on W for which F has coordinate (−1, 0) and
F† has coordinate (1, 0). By Lemma 4.2, the segment [F, F†

] is included in 5
and W (R) \5 is closed and semialgebraic. Consequently, combining Proposi-
tion 2.2.8(ii) and Theorem 2.5.8 of [Bochnak et al. 1998], we see that the distance
between [F, F†

] and W (R)\5 is positive. It follows that if ε ∈ R is small enough,
the ellipse {x2

+ y2/ε ≤ 1} ⊂W (R), which contains F and F†, is included in 5.
Now, consider the double cover ρ :W ′ := {x2

+ y2/ε+ z2
= 1}→W and define

S := ρ−1(W \1) ⊂ W ′. That ρ(S(R)) is included in 5 and contains F and F†

follows from our choice of the ellipse. The semialgebraic set W ′(R) is a sphere S2,
and S(R) is the complement of a finite number of points in it by Lemma 4.3.
This allows us to show by hand that it is semialgebraically path-connected, hence
semialgebraically connected by [Bochnak et al. 1998, Proposition 2.5.13]. �

Over the base S, there is a smooth projective family Y p
−→ S obtained by pulling

back by ρ the universal family of smooth double covers over W \1. In particular,
Ys ' Y and Ys† ' Y †. Since ρ(S(R))⊂5, we see that Y(R)=∅.

4C. Cohomology over R when d ≡ 0[4]. We start with a general lemma.

Lemma 4.5. Let X be a smooth projective geometrically integral variety of dimen-
sion n over R such that X (R)=∅. Then:

(i) H 2n(X,Z2(n))' Z2.

(ii) H 2n(X,Z2(n+ 1))' Z/2Z.

Proof. We use the exact sequence (1-2), as well as Proposition 1.2(ii).
Consider H 2n(X,Z2(n))→ H 2n(XC ,Z2)

π∗
−→ H 2n(X,Z2(n + 1))→ 0. The

cohomology class of a closed point in H 2n(X,Z2(n)) pulls back to twice the coho-
mology class of a closed point in H 2n(XC ,Z2). This shows that H 2n(X,Z2(n+1))
is torsion. From H 2n(X,Z2(n+ 1))→ H 2n(XC ,Z2)→ H 2n(X,Z2(n))→ 0, we
deduce that Z2 ' H 2n(XC ,Z2)→ H 2n(X,Z2(n)) is an isomorphism. The com-
position H 2n(X,Z2(n))

π∗
−→H 2n(XC ,Z2)

π∗
−→ H 2n(X,Z2(n)) being multiplication

by 2, we see that the image of H 2n(X,Z2(n))
π∗
−→H 2n(XC ,Z2) has index 2, so

that H 2n(X,Z2(n+ 1))= Z/2Z. �

We need information about ω2n
∈ H 2n(Y,Z2(2n)) provided by Lemma 4.7

below. As a first step towards this result, we deal with the Fermat double cover
Y †
:= {Z2

+ F†
= 0}, where F†

:= Xd
0 + · · ·+ Xd

n .

Lemma 4.6. Suppose n is odd and d ≡ 0[4]. Then ω2n
∈ H 2n(Y †,Z2(2n)) is zero.

Proof. The morphism µ : Y †
→ Qn to Qn

:= {Z2
+ T 2

0 + · · · + T 2
n = 0} ⊂ Pn+1

R
defined by Ti = Xd/2

i has even degree because d ≡ 0[4]. By Lemma 4.5 applied to
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Y † and Qn , there is a commutative diagram with surjective vertical arrows:

Z2 = H 2n(Qn
C ,Z2)

��

µ∗C
// H 2n(Y †

C ,Z2)= Z2

��

Z/2Z= H 2n(Qn,Z2(2n))
µ∗

// H 2n(Y †,Z2(2n))= Z/2Z

Since µ∗C is the multiplication by the even number deg(µ), µ∗ vanishes. Hence so
does the composite H 2n(R,Z2(2n))→H 2n(Qn,Z2(2n)) µ∗

−→H 2n(Y †,Z2(2n)). �

We deduce the same result for Y using a deformation argument:

Lemma 4.7. Suppose n is odd and d ≡ 0[4]. Then ω2n
∈ H 2n(Y,Z2(2n)) is zero.

Proof. Lemma 4.6 and the diagram

H 2n(R,Z2(2n))
∼= //

��

H 2n(R,Z/2Z)

��
H 2n(Y †,Z2(2n)) // H 2n(Y †,Z/2Z)

show that H 2n(R,Z/2Z)→ H 2n(Y †,Z/2Z) vanishes.
Now consider the family Y p

−→ S constructed at the end of Section 4B. The vari-
eties Y and Y † are members of this family and S(R) is semialgebraically connected.
If we were working over the field R of real numbers, we would use topological
arguments (namely a G-equivariant version of Ehresmann’s theorem applied to
the fibration p−1

C
(S(R))→ S(R)) to show that H 2n(R,Z/2Z)→ H 2n(Y,Z/2Z)

vanishes as well. Over an arbitrary real closed field R, the corresponding tools
have been developed by Scheiderer [1994] and the topological arguments may be
replaced by [Scheiderer 1994, Corollary 17.21].

Let us explain more precisely how to apply this result. In doing so, we freely
use the notations of [Scheiderer 1994]. Consider the composition

H 2n(R,Z/2Z)→ H 2n(Y,Z/2Z)
∼
←− H 2n(Yb,Z/2Z)

→ H 0(Sb, R2n pb∗Z/2Z)→ H 0(Sr , i∗R2n pb∗Z/2Z),

where the isomorphism H 2n(Yb,Z/2Z)
∼
−→H 2n(Y,Z/2Z) follows from [Scheiderer

1994, Example 2.14], taking into account Proposition 1.1 and the fact that Y(R)=∅.
By proper base change [Scheiderer 1994, Theorem 16.2(b)] and comparing étale
and b-cohomology using [Scheiderer 1994, Example 2.14] once again, we see that
the stalk of i∗R2n pb∗Z/2Z is H 2n(Y,Z/2Z) at s and H 2n(Y †,Z/2Z) at s†. We
have proven above that H 2n(R,Z/2Z) vanishes in the stalk at s†. But we know
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that the sheaf i∗R2n pb∗Z/2Z is locally constant on Sr by [Scheiderer 1994, Corol-
lary 17.20(b)], and that Sr is connected by [Bochnak et al. 1998, Proposition 7.5.1(i)]
and because S(R) is semialgebraically connected. Consequently, H 2n(R,Z/2Z)

also vanishes in the stalk at s, so that H 2n(R,Z/2Z)→ H 2n(Y,Z/2Z) is zero.
To conclude that ω2n

∈ H 2n(Y,Z2(2n)) vanishes, consider the exact diagram

H 2n(R,Z2(2n))
∼= //

��

H 2n(R,Z/2Z)

��
H 2n(Y,Z2(2n)) 2 // H 2n(Y,Z2(2n)) // H 2n(Y,Z/2Z)

and notice that the multiplication by 2 map is zero by Lemma 4.5. �

Proposition 4.8. Suppose that d ≡ 0[4]. Then ωn+1
∈ H n+1(Y,Z2(n+ 1)) is zero.

Proof. Suppose not, and let k≥ n+1 be such that ωk
∈ H k(Y,Z2(k)) is nonzero and

ωk+1
∈ H k+1(Y,Z2(k+ 1)) vanishes. By Proposition 1.2(ii), k exists and k ≤ 2n.

Consider the short exact sequence (1-2) applied to Y :

H k(Y,Z2(k+ 1)) π∗
−→ H k(YC ,Z2)

π∗
−→ H k(Y,Z2(k))

ω
−→ H k+1(Y,Z2(k+ 1)).

By hypothesis, ωk
∈ Im(π∗). By Proposition 4.1(ii), since ωk

∈ H k(Y,Z2(k)) is
nonzero, k has to be even, say k = 2l.

If l were even, we would have H k(YC ,Z2(k+ 1))G = 0 by Proposition 4.1(iv),
and the Hochschild–Serre spectral sequence (1-1) would show that

π∗ : H k(Y,Z2(k+ 1))→ H k(YC ,Z2)

is zero. Consequently, Im(π∗) has no torsion by Proposition 4.1(iv). This is a
contradiction and shows that l is odd.

Let H ∈ H 2(Y,Z2(1)) be the class of OPn
R
(1). Since π∗H l

= H l
C , and taking

into account Proposition 4.1(iv), the only class in Im(π∗) that may be nonzero
is π∗αl . Consequently, we have ωk

= π∗αl .
Choose by the Bertini theorem an l-dimensional linear subspace Pl

R ⊂Pn
R that is

transverse to the smooth hypersurface {F=0}, and define i : Z ↪→Y to be the inverse
image of Pl

R in Y ; it is a smooth double cover of Pl
R ramified over {F = 0} ∩Pl

R.
Consider the following commutative diagram, where the left horizontal arrows are
restrictions, the right horizontal arrows are Gysin morphisms and the vertical ones
are those appearing in the exact sequence (1-2):

H k(YC ,Z2)
i∗C //

π∗
��

H k(ZC ,Z2) //iC∗ //

π∗
��

H 2n(YC ,Z2)

π∗
��

H k(Y,Z2(k))
i∗ // H k(Z ,Z2(k))

i∗ // H 2n(Y,Z2(n+ l))
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Look at αl ∈ H k(YC ,Z2). We have i∗i∗π∗αl = i∗i∗ωk
= i∗ωk

= 0 by Lemma 4.7
applied to Z . On the other hand, π∗iC∗i∗Cαl = π∗(αl · [ZC ]) = π∗(αl · H n−l

C ) =

π∗αn 6= 0 because it is the generator of H 2n(Y,Z2(n + l)) ' Z/2Z as seen in
Lemma 4.5. This is a contradiction. �

4D. Cohomology over R when n is odd. As in the previous paragraph, we reduce
the computations we need to the case of a quadric. To do this, we collect a few
results about the cohomology of quadrics. Analogues with 2-torsion coefficients of
some of these computations appear in [Kahn and Sujatha 2000, §4].

We denote by Qn
:= {Z2

+ T 2
0 + · · · + T 2

n = 0} ⊂ Pn+1
R the n-dimensional

projective anisotropic quadric, by U n
:= Qn

\ Qn−1 its affine counterpart and by
H ∈ H 2(Qn,Z2(1)) the class of OPn+1

R
(1).

Lemma 4.9. The cohomology groups of U n are as follows:

H k(U n,Z2( j))=


Z2 if k = 0 and j ≡ 0[2],
Z/2Z ·ωk if 1≤ k ≤ n and j ≡ k[2],
Z2 if k = n and j ≡ n+ 1[2],
0 otherwise.

Proof. The geometric cohomology groups of U n are easily computed as G-modules
from the description of the geometric cohomology groups of Qn and Qn−1 as
G-modules given in [SGA 7II 1973, XII Théorème 3.3], and from the long exact
sequence of cohomology with support associated with Qn−1

C ⊂ Qn
C :

· · · → H k−2(Qn−1
C ,Z2(−1))→ H k(Qn

C ,Z2)→ H k(U n
C ,Z2)→ · · · .

One gets

H k(U n
C ,Z2)=


Z2 if k = 0,
Z2(n+ 1) if k = n,
0 otherwise.

Consider the Hochschild–Serre spectral sequence (1-1) for U n . The only possibly
nonzero arrows in this spectral sequence are the dn : E

p,n
n+1→ E p+n+1,0

n+1 . These are
necessarily surjective as H k(U n,Z2( j))= 0 for k > n by Proposition 1.2(iii). This
allows us to compute the spectral sequence entirely, and to deduce the lemma. �

Lemma 4.10. Suppose that n is odd. Then H n(Qn,Z2(n)) ' (Z/2Z)dn/4e gen-
erated by ωn, ωn−4 H 2, . . . , ωn−4bn/4cH 2bn/4c. Moreover, the 2-torsion subgroup
of H n+1(Qn,Z2(n+ 1)) is H n+1(Qn,Z2(n+ 1))[2] ' (Z/2Z)dn/4e, generated by
ωn+1, ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c.

Proof. Fix r ≥ 0. The Gysin morphism H n−2r−2(Qn−r−1,Z2(n − r − 1)) →
H n−2r (Qn−r ,Z2(n − r)) is part of a long exact sequence of cohomology with
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supports. In this exact sequence, the morphisms

H n−2r−1(Qn−r ,Z2(n− r))→ H n−2r−1(U n−r ,Z2(n− r)),

H n−2r (Qn−r ,Z2(n− r))→ H n−2r (U n−r ,Z2(n− r))

are surjective. Indeed, in the degrees that come up, all the cohomology of U n−r

comes from the base field by Lemma 4.9, hence a fortiori from Qn−r .
It follows that this Gysin morphism is injective, with a cokernel naturally isomor-

phic to H n−2r (U n−r ,Z2(n−r))= H n−2r (R,Z2(n−r)). This allows us to compute
H n−2r (Qn−r ,Z2(n−r)) by decreasing induction on r and shows, since n is odd, that
H n(Qn,Z2(n))' (Z/2Z)dn/4e generated by ωn, ωn−4 H 2, . . . , ωn−4bn/4cH 2bn/4c.

Considering the long exact sequence (1-2), and using our knowledge of the
geometric cohomology of Qn to get

0→ H n(Qn,Z2(n))
ω,
−→ H n+1(Qn,Z2(n+ 1))→ H n+1(Qn

C ,Z2)' Z2, (4-1)

the lemma follows. �

In the remainder of this section, we continue to suppose that n is odd. We
consider the generator γ of H n+1(Qn

C ,Z2)' Z2 such that 2γ = H (n+1)/2
C [SGA 7II

1973, XII Théorème 3.3].
If n ≡ 1[4], define δ := π∗γ ∈ H n+1(Qn,Z2(n + 1)). If n ≡ 3[4], define

δ := π∗γ − H (n+1)/2
∈ H n+1(Qn,Z2(n+ 1)).

Lemma 4.11. Suppose that n is odd. Then δ ∈ H n+1(Qn,Z2(n + 1))[2]. More-
over, δ does not belong to the subgroup of H n+1(Qn,Z2(n+ 1))[2] generated by
ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c.

Proof. We suppose that n ≡ 1[4]. The arguments when n ≡ 3[4] are analogous.
Since G acts on H n+1(Qn

C ,Z2)' Z2 by multiplication by (−1)(n+1)/2 and since
n+1 6≡ 1

2(n+1)[2], the natural morphism H n+1(Qn,Z2(n+1))→ H n+1(Qn
C ,Z2)

is zero. From the exact sequence (4-1), this implies that H n+1(Qn,Z2(n+ 1)) is a
2-torsion group, so that δ is 2-torsion.

Let us check that δ is nonzero. From the exact sequence

H n+1(Qn,Z2(n))
π∗
−→ H n+1(Qn

C ,Z2)
π∗
−→ H n+1(Qn,Z2(n+ 1)),

we see that it suffices to prove that there does not exist a cohomology class ζ ∈
H n+1(Qn,Z2(n)) such that π∗ζ = γ . If such a class existed, π∗(ζ · H (n−1)/2)

would be a generator of H 2n(Qn
C ,Z2). This would contradict the fact, proven in

Lemma 4.5, that the cokernel of

H 2n(Qn,Z2(n))→ H 2n(Qn
C ,Z2)

is H 2n(Qn,Z2(n+ 1))' Z/2Z.
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Consider now the commutative diagram below, whose horizontal arrows are
Gysin morphisms:

H n−3(Qn−2,Z2(n− 1)) //

ω
��

H n−1(Qn−1,Z2(n)) //

ω
��

H n+1(Qn,Z2(n+ 1))

ω
��

H n−2(Qn−2,Z2(n)) // H n(Qn−1,Z2(n+ 1)) // H n+2(Qn,Z2(n+ 2))

(4-2)

Let us show that the lower horizontal arrows of (4-2) are injective. Considering
ωn−1

∈ H n−1(Qn−1,Z2(n+ 1)) and using Lemma 4.9 shows that

H n−1(Qn−1,Z2(n+ 1))→ H n−1(U n−1,Z2(n+ 1))

is surjective, so that the map

H n−2(Qn−2,Z2(n))→ H n(Qn−1,Z2(n+ 1))

is injective. Since H n+1(U n,Z2(n+ 2))= 0 by Lemma 4.9,

H n(Qn−1,Z2(n+ 1))→ H n+2(Qn,Z2(n+ 2))

is also injective.
Suppose for contradiction that δ may be written as a linear combination of

the classes ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c. Then it is the image by the Gysin
morphism H n−3(Qn−2,Z2(n − 1)) → H n+1(Qn,Z2(n + 1)) of a class ε that
is a linear combination of ωn−3, . . . , ωn+1−4bn/4cH 2bn/4c−2. The image of ε in
H n+2(Qn,Z2(n+ 2)) is δ ·ω = π∗γ ·ω = 0. By the injectivity result just proved,
ε ·ω = 0. It follows that ωn−2, . . . , ωn+2−4bn/4cH 2bn/4c−2 are not independent in
H n−2(Qn−2,Z2(n)), contradicting Lemma 4.10. �

We return to our double cover Y → Pn
R. We recall from Proposition 4.1 that

H n+1(YC ,Z2)= Z2(n+1) with a generator α := α(n+1)/2 such that 2α = H (n+1)/2
C .

If n ≡ 1[4], define β := π∗α ∈ H n+1(Y,Z2(n+ 1)). If n ≡ 3[4], define instead
β := π∗α− H (n+1)/2

∈ H n+1(Y,Z2(n+ 1)), where H ∈ H 2(Y,Z2(1)) is the class
of OPn

R
(1).

Proposition 4.12. Suppose that n is odd. Then ωn+1 is a linear combination of
ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c and β in H n+1(Y,Z2(n+ 1)).

Proof. Using a deformation argument as in the proof of Lemma 4.7, one reduces to
the case of the Fermat double cover Y †

:= {Z2
+F†
=0}, where F†

:= Xd
0+· · ·+Xd

n .
As in Lemma 4.6, we consider the morphism µ : Y †

→ Qn to the quadric
Qn
:= {Z2

+ T 2
0 + · · · + T 2

n = 0} ⊂ Pn+1
R , defined by Ti = Xd/2

i . Note that
µ∗H =

( d
2

)
H , so that µ∗Cγ =

( d
2

)(n+1)/2
α and µ∗δ =

( d
2

)(n+1)/2
β.

By Lemma 4.10, the group H n+1(Qn,Z2(n + 1))[2] is freely generated by
ωn+1, ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c. By Lemma 4.11, δ does not belong to the
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subgroup generated by ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c. Thus, ωn+1 is a linear
combination of δ, ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c in H n+1(Qn,Z2(n+ 1))[2].

Pulling back this relation by µ, it follows that ωn+1 is a linear combination of
β, ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c in H n+1(Y †,Z2(n+ 1)), as wanted. �

Corollary 4.13. Suppose that n is odd. If α ∈ H n+1(YC ,Z2) has coniveau ≥ 2,
then ωn+1

∈ H n+1(Y,Z2(n+ 1)) has coniveau ≥ 2.

Proof. The statement follows from Proposition 4.12, because the cohomology classes
ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c, as well as H (n+1)/2 when n 6= 1, obviously have
coniveau ≥ 2 as multiples of H 2. �

5. A geometric coniveau computation

In this section, we fix an odd integer n ≥ 3 and take d := 2n.
We work over an algebraically closed field C of characteristic 0. We consider

F ∈ C[X0, . . . , Xn]d a homogeneous degree d polynomial such that {F = 0} is
smooth. Let Y be the double cover of Pn

C ramified over {F = 0} defined by the
equation Y := {Z2

+ F = 0}, and H :=OPn
C
(1).

By Proposition 4.1, H n+1(Y,Z2) has a generator α such that 2α = H (n+1)/2. In
order to apply Corollary 4.13, we need to answer positively the following:

Question 5.1. Does α have coniveau ≥ 2?

When n = 3, Y is a sextic double solid, and this is very easy:

Lemma 5.2. If n = 3, α has coniveau ≥ 2.

Proof. A dimension count (see for instance Lemma 5.6 below) shows that Y contains
a line, that is, a curve of degree 1 against H . The cohomology class of such a curve
is α, so that α is algebraic, hence of coniveau 2. �

In what follows, we answer Question 5.1 positively when n = 5, following an
argument of Voisin. We comment on the n ≥ 7 case in Section 5D.

Proposition 5.3. If n = 5, α has coniveau ≥ 2.

5A. Reductions. The following reductions are standard. We include them because
we do not know a convenient reference.

Lemma 5.4. Let C ⊂ C ′ be an extension of algebraically closed fields. Then the
answer to Question 5.1 is positive for Y over C if and only if it is for YC ′ over C ′.

Proof. It is clear that if α has coniveau ≥ 2 over C, it has coniveau ≥ 2 over C ′.
Suppose conversely that there is a closed subset Z ⊂ YC ′ of codimension ≥ 2

such that αC ′ vanishes in YC ′ \ Z . Taking an extension of finite type of C over
which Z is defined, spreading out and shrinking the base gives a smooth integral
variety B over C, and a subvariety Z B ⊂ Y × B of codimension ≥ 2 in the fibers
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of p2 : Y × B → B such that p∗1α vanishes in the generic geometric fiber of
p2 : (Y × B \ Z B)→ B. The existence of cospecialization maps for smooth mor-
phisms [SGA 41/2 1977, Arcata V (1.6)] implies that α vanishes in every geometric
fiber of p2 : (Y × B \ Z B)→ B. Taking the fiber over a C-point of B shows that α
has coniveau ≥ 2. �

Lemma 5.5. In order to answer Question 5.1 positively in general, it suffices to
answer it over the field C of complex numbers, for a general choice of F.

Proof. Let U ⊂ C[X0, . . . , Xn]d be a Zariski-open subset of degree d polynomials
F as in the hypothesis: for F ∈U (C), {F = 0} is smooth and α is of coniveau ≥ 2.

Let K be an algebraic closure of the function field C(U ), let FK be the generic
polynomial and let YK be the associated universal double cover. Choosing an
isomorphism K ' C such that the induced polynomial FC belongs to U shows that
the answer to Question 5.1 is positive for YK .

Let us now deal with the case C = C. It is possible to find the spectrum T of
a strictly henselian discrete valuation ring and a morphism T → C[X0, . . . , Xn]d

sending the closed point of T to the polynomial associated to Y and its generic
point to the generic point of U . Let YT be the induced family of double covers. Up
to replacing T by a finite extension, there exists a codimension 2 subset Z ⊂ YT

flat over T such that α vanishes in the complement of Z in the generic geometric
fiber. Using cospecialization maps again shows that α vanishes in the complement
of Z in the special fiber, so that the answer to Question 5.1 is positive for Y .

In general, choose an algebraically closed subfield of finite transcendence degree
of C over which Y is defined, embed it in C, and apply Lemma 5.4. �

5B. The variety of lines. We define F(Y ) to be the Fano variety of lines of Y , that
is, the Hilbert scheme of Y parametrizing degree 1 curves in Y . We also introduce
the universal family I ⊂ Y × F(Y ) and denote by q : I → Y and p : I → F(Y ) the
natural projections.

The following lemma is well known for hypersurfaces [Barth and Van de Ven
1978/79, §3] or complete intersections [Debarre and Manivel 1998, Théorème 2.1],
and the proof in our situation is similar.

Lemma 5.6. If Y is general, F(Y ) is smooth, nonempty and of dimension n− 2.

Proof. First, an easy dimension count shows that if F is general, {F = 0} contains
no line [Barth and Van de Ven 1978/79, §3]. It follows that for such a general Y ,
F(Y ) is a double étale cover of the variety G(Y ) of lines in Pn

C on which the
restriction of F is a square.

One introduces the space V ⊂ C[X0, . . . , Xn]d of degree d polynomials F such
that {F = 0} is smooth. We consider the universal double cover YV → V , and the
universal Fano variety of lines F(Y )V → V , viewed as a double cover of G(Y )V
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that is étale generically over V . Looking at the natural projection from G(Y )V
to the grassmannian of lines in Pn

C , one sees that G(Y )V is smooth of dimension
dim(V )+n−2. Since we are in characteristic 0, the general fiber of G(Y )V → V is
smooth, and it remains to show that this morphism is dominant, or that F(Y )V → V
is dominant. We do it by finding one point at which it is smooth.

To do so, we fix a line L with equations X2 = · · · = Xn = 0, and a degree d
polynomial F such that the restriction of F to L is the square of H ∈ C[X0, X1]n .
The double cover Y may be viewed naturally as the zero-locus of a section of O(d)
in the total space E→ Pn

C of the line bundle OPn
C
(n). The inverse image of L in Y

splits into the union of two lines. Let 3 be one of them. The normal exact sequence
0→ N3/Y → N3/E → NY/E |3→ 0 reads

0→ N3/Y →O(1)⊕n−1
⊕O(n)→O(2n)→ 0.

The same computation as the one carried out in [Barth and Van de Ven 1978/79, §2]
for hypersurfaces shows that the last arrow is given by (∂F/∂X2, . . . , ∂F/∂Xn, H).
Consequently, if H 0(3,O(2n)) is generated by multiples of ∂F/∂X2, . . . , ∂F/∂Xn

and H , then H 1(3, N3/Y )= 0 and 3 corresponds to a smooth point of the relative
Hilbert scheme F(Y )V → V , as wanted. It is easy to find a polynomial F satisfying
this condition. �

Lemma 5.7. If there exists a smooth Y over C such that F(Y ) is smooth of dimen-
sion n−2, and a cohomology class ζ ∈ H n−1(F(Y ),Z2) such that q∗ p∗ζ is an odd
multiple of α, then Question 5.1 has a positive answer.

Proof. By Lemma 5.5 and Lemma 5.6, it suffices to consider a double cover over
the complex numbers whose variety of lines is smooth of dimension n − 2. By
Ehresmann’s theorem, the existence of a cohomology class ζ as in our hypothesis
does not depend on Y (as long as Y and F(Y ) are smooth). Consequently, it suffices
to answer Question 5.1 for a double cover Y for which such a ζ exists.

On the one hand 2α= H (n+1)/2 is algebraic, hence of coniveau ≥ 2. On the other
hand ζ has coniveau ≥ 1 because it vanishes on any affine open subset of F(Y ).
It follows that q∗ p∗ζ has coniveau ≥ 2 because q : I → Y is not dominant by
dimension. Combining these two assertions, we see that α has coniveau ≥ 2. �

5C. A degeneration argument. In this subsection, we set n = 5 and d = 10, and
we prove Proposition 5.3 by checking the hypothesis of Lemma 5.7.

To do so, we choose four homogeneous polynomials P ∈ C[X0, . . . , X5]5,
G ∈ C[X1, X2, X3]5, and Q1, Q2 ∈ C[X0, . . . , X5]9, and we set

F0 := X10
0 + PG+ Q1 X4+ Q2 X5 ∈ C[X0, . . . , X5]10.

The reason for this choice is that F0 restricts to a square on the cone 0 := {G= X4=

X5 = 0}, so that the inverse image of 0 in Y0 := {Z2
+ F0 = 0} has two irreducible
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components, giving rise to two 1-dimensional families of lines in Y0. We denote
by 80 ⊂ F(Y0) the curve corresponding to one of these families; it is naturally
isomorphic to {G = 0} ⊂ P2

C
.

Lemma 5.8. If P,G, Q1, Q2 have been chosen general, then Y0 is smooth, 80 is
smooth and F(Y0) is smooth of dimension 3 along 80.

Proof. To check that the general zero-locus of such an F0 is smooth, it suffices to
deal with equations of the form λX10

0 +µX10
1 +Q1 X4+Q2 X5 ∈C[X0, . . . , X5]10.

These form a linear system, so a general one among these is smooth outside of the
base locus {X0 = X1 = X4 = X5 = 0} by the Bertini theorem. But there exists a
particular one that is smooth on the base locus: take Q1 = X9

2 and Q2 = X9
3. It

follows that the general one is smooth everywhere.
To conclude, fix G such that 80 ' {G = 0} ⊂ P2

C
is smooth. It suffices to

prove that for every 3 ∈80, F(Y0) is smooth of dimension 3 at 3, with possible
exceptions on a codimension 2 subset of the parameter space for P , Q1 and Q2. By
the computations in the proof of Lemma 5.6, we need to show that, outside such a
subset, H 0(3,O(10)) is generated by multiples of ∂F0/∂X2, . . . , ∂F0/∂X5 and X5

0 .
This amounts to showing that, outside of a codimension 2 subset of the parameter

space for P ∈ C[X0, X1]5 and Q1, Q2 ∈ C[X0, X1]9, H 0(P1,O(10)) is generated
by multiples of X5

0, PX4
1, Q1 and Q2. This is easy to see, by exhibiting a complete

curve in the projectivized parameter space avoiding the bad locus. �

Now, let 1 be a small enough disk in C[X0, . . . , X5]10 centered around the
polynomial F0 given by Lemma 5.8. Let Y1 be the family of double covers over it,
and F(Y )1 the corresponding family of varieties of lines.

Recall that 80 is a smooth proper subvariety of the smooth locus of the special
fiber F(Y0). Using the flow of a vector field as in the proof of Ehresmann’s theorem,
one sees that80 deforms (as a differentiable submanifold) to nearby fibers for which
F(Yt) is smooth, giving rise to a cohomology class ζt = [8t ] ∈ H n−1(F(Yt),Z2).
We compute q∗ p∗ζt = q∗[p−1(8t)] = q∗[p−1(80)]; it is the cycle class of the
cone 0 that is equal to 5α.

5D. Remarks. When n ≥ 7, an argument analogous to that of Section 5C fails,
because one gets a double cover Y0 whose variety of lines is singular along a
codimension 2 subset of the subvariety 80 that we would like to deform to nearby
fibers F(Yt).

It might still be possible to show, by another argument, the existence of a
cohomology class ζ allowing application of Lemma 5.7. To do so, one would need
to compute part of the integral cohomology of F(Y ). The rational cohomology of
F(Y ) in the required degree is well understood thanks to [Debarre and Manivel
1998, Théorème 3.4] (where the computations are carried out in the analogous
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setting of hypersurfaces or complete intersections). However, Debarre and Manivel’s
approach, relying on the Hodge decomposition, does not allow control of the integral
cohomology groups of F(Y ).

6. Proof of the main theorem

We now come back to our main goal: the proof of Theorem 0.1.

6A. The generic case. Let us first put together what we have obtained so far. Fix
n ≥ 2. Define d(n) by setting d(n) := 2n if n is even or equal to 3 or 5 and
d(n) := 2n− 2 if n ≥ 7 is odd.

Proposition 6.1. Let f ∈ R[X1, . . . , Xn] be a positive semidefinite polynomial of
degree d(n) whose homogenization F defines a smooth hypersurface in Pn

R. Then
f is a sum of 2n

− 1 squares in R(X1, . . . , Xn).

Proof. We consider the double cover Y of Pn
R ramified over {F = 0} defined by the

equation Y := {Z2
+ F = 0}. The variety Y is smooth, Y (R)=∅ by Lemma 3.1,

and computing that the anticanonical bundle −KY =OPn
R
(n+ 1− d(n)/2) of Y is

ample, one sees that YC is Fano, hence rationally connected.
By Proposition 3.2, we need to show that the level of R(Y ) is < 2n . Applying

Proposition 3.3 (iii)⇒(i), we have to prove that ωn
∈H n(Y,Z2(n)) has coniveau≥1.

Finally, since YC is rationally connected, the converse Proposition 3.5 (ii)⇒(i) holds:
we only have to check that ωn+1

∈ H n+1(Y,Z2(n+ 1)) has coniveau ≥ 2.
When n 6= 3 or 5, d(n)≡ 0[4] so that ωn+1

∈ H n+1(Y,Z2(n+ 1)) vanishes by
Proposition 4.8.

When n = 3 or 5, ωn+1
∈ H n+1(Y,Z2(n+ 1)) is seen to be of coniveau ≥ 2 by

combining Corollary 4.13 and either Lemma 5.2 when n = 3 or Proposition 5.3
when n = 5. �

6B. A specialization argument. We do not know how to deal with singular equa-
tions using the same arguments because one has too little control on the geometry of
(a resolution of singularities of) the variety Y . Instead, we rely on a specialization
argument, that will also take care of the lower values of the degree.

Theorem 6.2 (Theorem 0.1). Let f ∈ R[X1, . . . , Xn] be a positive semidefinite
polynomial of degree ≤ d(n). Then f is a sum of 2n

− 1 squares in R(X1, . . . , Xn).

Proof. Consider g := f + t
(
1+

∑n
i=1 Xd(n)

i

)
∈ R(t)[X1, . . . , Xn]. It is a degree

d(n) polynomial whose homogenization defines a smooth hypersurface in Pn
R,

because so does its specialization 1+
∑n

i=1 Xd(n)
i . Let S :=

⋃
r R((t1/r )) be a real

closed extension of R(t). By Artin’s solution [1927] to Hilbert’s 17th problem, f
is a sum of squares in R(X1, . . . , Xn), hence still a positive semidefinite polyno-
mial viewed in S[X1, . . . , Xn]. Consequently, since t = (t1/2)2 is a square in S,
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g ∈ S[X1, . . . , Xn] is a positive semidefinite polynomial. Applying Proposition 6.1
over the real closed field S, we see that g is a sum of 2n

−1 squares in S(X1, . . . , Xn):
one has g =

∑2n
−1

i=1 h2
i .

Consider the t-adic valuation on S. Applying n times successively [Bourbaki
1985, Chapitre VI §10, Proposition 2], we can extend it to a valuation v on
S(X1, . . . , Xn) that is trivial on R(X1, . . . , Xn), and whose residue field is iso-
morphic to R(X1, . . . , Xn). Note that these choices imply that v(g)= 0 and that
the reduction of g modulo v is f ∈ R(X1, . . . , Xn).

Define m := infi v(hi ) and notice that m ≤ 0 because v(g) = 0. Suppose for
contradiction that m < 0 and let j be such that v(h j )= m. Then it is possible to
reduce the equality gh−2

j =
∑2n

−1
i=1 (hi h−1

j )
2 modulo v. This is absurd because we

get a nontrivial sum of squares that is zero in R(X1, . . . , Xn). This shows that
m = 0. Consequently, it is possible to reduce the equality g =

∑2n
−1

i=1 h2
i modulo v,

showing that f is a sum of 2n
− 1 squares in R(X1, . . . , Xn) as wanted. �

We conclude by stating explicitly the following consequence of our proof.

Proposition 6.3. If n ≥ 3 is odd and if Question 5.1 has a positive answer, then
Theorem 0.1 also holds in n variables and degree d = 2n.
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