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Failure of the integral Hodge conjecture
for threefolds of Kodaira dimension zero

Olivier Benoist and John Christian Ottem

Abstract. We prove that the product of an Enriques surface and a very general curve of genus
at least 1 does not satisfy the integral Hodge conjecture for 1-cycles. This provides the first
examples of smooth projective complex threefolds of Kodaira dimension zero for which the
integral Hodge conjecture fails, and the first examples of non-algebraic torsion cohomology
classes of degree 4 on smooth projective complex threefolds.
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Introduction

The integral Hodge conjecture for codimension k cycles on a smooth complex
projective varietyX asserts that the image of the cycle class map in Betti cohomology
clWCHk.X/ ! H 2k.X;Z/ coincides with the subgroup of integral Hodge classes:
those integral cohomology classes that are of type .k; k/ in the Hodge decomposition.
This statement always holds if k D 0 or k D dim.X/ for trivial reasons, and for k D 1
by the Lefschetz .1; 1/ theorem.

The first counterexamples to this statement, i.e. the first examples of integral
Hodge classes that are not algebraic, were discovered by Atiyah and Hirzeburch [1].
Much simpler examples, relying on a degeneration argument, were found later by
Kollár [2], showing that the integral Hodge conjecture may already fail for 1-cycles
on threefolds.

Voisin showed that, despite these counterexamples, the integral Hodge conjecture
may hold in interesting special cases if one imposes restrictions on the geometry of
the variety X . For instance, she proved in [16, Theorem 2] that it holds for 1-cycles
on threefoldsX that are either uniruled, or satisfyKX D 0 andH 2.X;OX / D 0, and
Totaro announced a proof that, in the latter case, the hypothesis thatH 2.X;OX / D 0

may be removed. Voisin also conjectured that it should hold for 1-cycles on rationally
connected varieties of arbitrary dimensions [17, Question 16] (see [8, 11] for partial
results in this direction).
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These positive or conjectural statements are close to be optimal. The integral
Hodge conjecture can fail for codimension 2 cycles on rationally connected varieties
[7, Théorème 1.3], even for fourfolds [13, Corollary 1.6]. It is also known to fail for
1-cycles on some threefolds of Kodaira dimension 1 [15, Theorem 3.1], as well as
on some threefolds such thatH i .X;OX / D 0 for all i > 0 [7, Proposition 5.7]. The
case of 1-cycles on threefolds of Kodaira dimension 0, raised in [15, §3], remained
open. In this paper, we provide counterexamples in this situation:

Theorem 0.1. Let S be an Enriques surface over C, and let g � 1 be an integer.
Then, if B is a very general smooth projective curve of genus g over C, the integral
Hodge conjecture for 1-cycles on B � S does not hold.

In Section 3, we show that the integral Hodge conjecture may nevertheless still
hold for some particular products of an Enriques surface and an elliptic curve.

Corollary 0.2. There exists a smooth projective threefold of Kodaira dimension 0
over C that does not satisfy the integral Hodge conjecture for 1-cycles.

Corollary 0.2 is deduced fromTheorem 0.1 by taking gD1. Thus, the threefoldX
that we consider is the product of an Enriques surface and an elliptic curve. It
satisfies 2KX D 0, but KX ¤ 0, illustrating the sharpness of Voisin’s theorem
[16, Theorem 2], and of its aforementioned improvement by Totaro. In Corollary 2.3,
we explain how to deduce counterexamples to the integral Hodge conjecture in
essentially all possible degrees, dimensions and Kodaira dimensions from this result.

Corollary 0.3. There exists a smooth projective threefold X over C carrying a
non-algebraic torsion cohomology class of degree 4.

By Remark 1.2 below, any variety as in Theorem 0.1 satisfies the condition
of Corollary 0.3. Examples of non-algebraic torsion cohomology classes of even
degree were constructed by Atiyah and Hirzebruch [1] in dimension 7 and by Soulé
and Voisin [14, Theorem 3] in dimension 5. As far as we know, and as indicated
in [15, p. 2], no 3-dimensional example was previously known.

Let us briefly outline the construction of the counterexamples. Section 1 is
devoted to understanding what it means for the product X D S � B of an Enriques
surface S and a smooth projective curve B to satisfy the integral Hodge conjecture
for 1-cycles. In Proposition 1.1, we show that it is equivalent to every finite étale
cover of degree 2 of B being induced, by means of an algebraic correspondence, by
the K3 cover of S .

To prove Theorem 0.1, we need to contradict this statement for some curves B .
We use a degeneration argument: if all finite étale covers of degree 2 of all smooth
projective curves of genusgwere induced, through a correspondence, by the universal
cover of S , then the same would be true for degenerations of such covers. But some
of these degenerations are ramified (for instance, some of Beauville’s admissible
covers [4]), giving a contradiction.
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The idea of using degeneration techniques to contradict the integral Hodge
conjecture was initiated by Kollár [2] and further developed by Totaro [15]. Our
argument differs from theirs in the sense that it does not rely on the analysis of
algebraic cycles on the limit variety. Colliot-Thélène pointed out to us that our
degeneration argument is similar to one used by Gabber in [5, Appendix] to construct
unramified Brauer classes on smooth projective varieties whose period and index
differ, and that it is possible to give an alternative proof of Theorem 0.1 using the
specialization arguments of loc. cit. and the reformulation of the integral Hodge
conjecture in terms of unramified cohomology (see [6]).

Acknowledgements. We would like to thank Jørgen Vold Rennemo, Burt Totaro,
Claire Voisin and Olivier Wittenberg for useful discussions. We are also grateful to
Jean-Louis Colliot-Thélène for drawing our attention to the reference [5].

1. The product of a curve and an Enriques surface

We fix an Enriques surface S over C and denote by ˛ 2 H 1.S;Z=2/ the class
corresponding to its degree 2 finite étale cover by a K3 surface. Let B be a smooth
projective curve over C. We consider the threefold X D B � S , with projections
p1WX ! B and p2WX ! S .

Proposition 1.1. The integral Hodge conjecture holds for 1-cycles on X if and only
if for every ˇ 2 H 1.B;Z=2/, there exists a correspondence Z 2 CH1.B � S/ such
that Z�˛ D ˇ.

Proof. Since H 1.S;OS / D H 2.S;OS / D 0, the group H 2.X;OX / vanishes, so
that the integral Hodge conjecture for 1-cycles on X is the statement that the cycle
class map clWCH1.X/ ! H 4.X;Z/ is surjective. The Betti cohomology of B
is torsion free, so using the Künneth formula [10, Theorem 3.16], we obtain an
isomorphism:

2M
iD0

H i .B;Z/˝H 4�i .S;Z/
�
�! H 4.X;Z/; (1.1)

given by the formula

.ai ˝ b4�i /0�i�2 7!

2X
iD0

p�1ai ^ p�2b4�i :

Since the groups H 0.B;Z/, H 2.B;Z/, H 4.S;Z/, and H 2.S;Z/ are generated by
classes of algebraic cycles (the last one by the Lefschetz .1; 1/ theorem for S ), the
factorsH 0.B;Z/˝H 4.S;Z/ andH 2.B;Z/˝H 2.S;Z/ in the decomposition (1.1)
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consist of algebraic classes. Consequently, the validity of the integral Hodge
conjecture for 1-cycles on X is equivalent to the surjectivity of the composition

�WCH1.X/! H 1.B;Z/˝H 3.S;Z/

of clWCH1.X/ ! H 4.X;Z/ and of the projection on the second factor of
the decomposition (1.1). Since the reduction modulo 2 gives an isomorphism
H 3.S;Z/

�
�! H 3.S;Z=2/, the morphism � identifies with the composition

CH1.X/! H 4.X;Z=2/! H 1.B;Z=2/˝H 3.S;Z=2/

of the cycle class map cl2WCH1.X/! H 4.X;Z=2/ modulo 2 and of the projection
� WH 4.X;Z=2/! H 1.B;Z=2/˝H 3.S;Z=2/ given by the Künneth formula with
Z=2 coefficients.

The map H 4.X;Z/ ! H 1.B;Z/, given by the formula 
 7! p1�.
 ^ p�2˛/,
vanishes on the first and the third factor of the decomposition (1.1). On the second
factor, it coincides with the isomorphism

�WH 1.B;Z=2/˝H 3.S;Z=2/
�
�! H 1.B;Z=2/

induced by the identification H 3.S;Z=2/ D Z=2, since the cup-product with the
generator ˛ 2 H 1.S;Z=2/ D Z=2 yields an isomorphism

H 3.S;Z=2/
^˛
��! H 4.S;Z=2/ D Z=2

by Poincaré duality. One computes, for Z 2 CH1.X/:

Z�˛ D p1�.cl2.Z/ ^ p�2˛/

D p1�.�.cl2.Z// ^ p�2˛/ D �.�.Z// 2 H
1.B;Z=2/:

The morphism � is then surjective if and only if �ı� is surjective, if and only if every
ˇ 2 H 1.B;Z=2/ is of the form Z�˛ for some Z 2 CH1.X/, as wanted.

Remark 1.2. It follows from the proof of Proposition 1.1 that if the integral Hodge
conjecture for 1-cycles onX fails, thenH 4.X;Z/ contains a 2-torsion class which is
non-algebraic. Indeed, the first and third factors of (1.1) are algebraic and the second
is 2-torsion becauseH 3.S;Z/ D Z=2.

2. Degeneration to a nodal curve

As in the previous section, we consider an Enriques surface S over C and let
˛ 2 H 1.S;Z=2/ denote the class corresponding to its K3 cover.
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In the proof of Theorem 0.1, we will use a degeneration of finite étale double
covers of elliptic curves. We construct this degeneration as follows. Let T D A1 nf1g
and E � P2 �T be the Legendre family of elliptic curves defined by the equation

Y 2Z D X.X �Z/.X � tZ/;

where X; Y;Z are homogenous coordinates in P2 and t is the coordinate of A1.
The fibers of the second projection f WE ! T are smooth elliptic curves except
for the one above 0 2 T , that is a nodal rational curve, with one singular point
x D Œ0 W 0 W 1� 2 E0.

The two constant sections of f given by Œ0 W 1 W 0� and Œ1 W 0 W 1� are the
identity and a 2-torsion point for the group law on the T -group scheme E nfxg ! T .
Since E is regular and f -minimal, the translation by this 2-torsion section extends
to an involution i of E (see [12, Chapter 9, Proposition 3.13]). Let qWE ! F be the
quotient by i , and let gWF ! T be the induced morphism. Since x is the only fixed
point of i , the quotient map q is étale outside of x. If t ¤ 0, the curve Ft is elliptic
as a fixed point free quotient of the elliptic curve Et . Being dominated by a rational
curve, the special fiber F0 is itself a (singular) rational curve.
Proposition 2.1. There exists an elliptic curveE over C such that the integral Hodge
conjecture for 1-cycles on E � S does not hold.

Proof. Let t 2 T be a very general point and suppose for contradiction that the
integral Hodge conjecture for 1-cycles on Ft �S holds. Applying Proposition 1.1 to
the class ˇ 2 H 1.Ft ;Z=2/ of the finite étale double cover qt WEt ! Ft shows that
there exists Z 2 CH1.Ft � S/ such that Z�˛ D ˇ 2 H 1.Ft ;Z=2/.

Since t is very general, all the irreducible components of the relative Hilbert
scheme of g ı pr1WF � S ! T whose images contain t dominate T . This applies
to the components of this relative Hilbert scheme parametrizing the components of
the support of Z. Since the components of the relative Hilbert scheme are moreover
proper over T , it follows that there exists a finite surjective morphism �WT 0 ! T

of smooth integral curves with the following property. Let t 0 2 T 0 be a preimage
of t 2 T by �, and let g0WF 0 ! T 0 and q0WE 0 ! F 0 be the morphisms obtained
from g and q by base change by �. Then there exists a cycle Z 2 CH2.F 0 � S/ all
of whose components dominate T 0 such that ZjF 0

t0�S
D Z.

Let U D ��1.T n f0g/ � T 0. We consider the two following finite étale double
covers of the smooth variety F 0U D g0�1.U /. The first is the restriction E 0U ! F 0U
of q0. The second, that we will denote by G 0U ! F 0U , is the one associated to the
class

.ZjF 0
U
�S /
�˛ 2 H 1.F 0U ;Z=2/:

The classes of these two double covers coincide inH 1.F 0t 0 ;Z=2/ because

.ZjF 0
U
�S /
�˛jF 0

t0
D Z�˛ D ˇ:
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Since U is connected and R1g0�Z=2 is locally constant on U , the exact sequence

0! H 1.U;Z=2/! H 1.F 0U ;Z=2/! H 0.U;R1g0�Z=2/

induced by the Leray spectral sequence of g0 shows that ŒE 0U � � ŒG
0
U � belongs to the

subgroupH 1.U;Z=2/ ofH 1.F 0U ;Z=2/. Consequently, up to replacing T
0 by a finite

double cover (maybe ramified outside of U ), we may assume that E 0U and G 0U are
isomorphic as finite étale double covers of F 0U .

Pick a preimage of 0 2 T under �WT 0 ! T , and denote it, for simplicity, also
by 0 2 T 0. Let zF ! F 0 be a resolution of singularities which is an isomorphism
over F 0U , and let zZ 2 CH2. zF � S/ denote the strict transform of Z. Let zqW zE ! zF

be the base change of q0, and let zG ! zF be the finite étale double cover of zF
corresponding to the class zZ�˛ 2 H 1. zF ;Z=2Z/. We have shown above that the two
finite covers zE and zG of zF are isomorphic over F 0U . By [9, Exp. I, Corollaire 10.3], it
follows that they coincide over the locus where zq is étale. In particular, they coincide
at the generic point � of the strict transform of F 00 in zF . However, the cover zG ! zF

splits at � since it is finite étale and the normalization of F 00 is isomorphic to P1,
whereas zqW zE ! zF does not split at � because the fiber E 00 D E0 is irreducible. This
is the required contradiction.

We may now prove our main result:

Proof of Theorem 0.1. LetE be an elliptic curve as in Proposition 1.1, and let g � 1
be an integer. Choose a smooth projective curveB of genus g that admits a morphism
�WB ! E of odd degree ı. By Remark 1.2, there exists a 2-torsion cohomology class
! 2 H 4.E �S;Z/ which is not algebraic. The pullback .�; Id/�! 2 H 4.B �S;Z/
is also 2-torsion and not algebraic; if it were, then the same would be true for
.�; Id/�.�; Id/�! D ı! D !, a contradiction. Consequently, the integral Hodge
conjecture for 1-cycles on B � S does not hold.

To prove the statement for the very general curve, we use a specialization argument
similar to that in [2] and [18, §6.1.2]. To give some details, let T be a connected
component of the moduli space of smooth genus g curves over C with level 4
structure, and let � WB ! T be its universal family. As the moduli space of smooth
curves of genus g is connected, every smooth curve of genus g appears as a fiber
of � . We say that a point t 2 T is very general if every irreducible component of the
relative Hilbert scheme of B � S ! T whose image in T contains t dominates T .
Arguing as in the proof of Proposition 2.1 shows that if the integral Hodge conjecture
holds for some Bt �S with t 2 T very general, then it holds for Bt �S for all t 2 T ,
which contradicts the conclusion of the above paragraph.

Remark 2.2. Combining our argument with the idea of Hassett and Tschinkel to use
specializations in characteristic p (see [7, Remarque 5.9] and [15]) yields explicit
examples of varieties as in Theorem 0.1 or Corollary 0.2, that are moreover defined
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over Q. More precisely, if S is a complex Enriques surface that is defined over Q,
one may choose the elliptic curve in Proposition 2.1 to have equation

Y 2Z D X.X �Z/.X � pZ/

for any odd prime number p of good reduction of S .

Corollary 2.3. For any n � 3, any � 2 f�1; 0; 1; : : : ; ng (with � � 0 if n D 3), and
any k 2 f2; : : : ; n � 1g, there is a smooth projective variety X of dimension n and
Kodaira dimension � such that the integral Hodge conjecture fails for codimension k
cycles on X .

Proof. Let S , E and B be as in the proof of Theorem 0.1, with B of genus g � 2.
Let † be a smooth projective surface of general type admitting an odd degree
morphism to S . Arguing as above, we see that the threefolds E � S , B � S , E �†
and B � † carry 2-torsion non-algebraic cohomology classes of degree 4. Their
Kodaira dimensions are respectively 0, 1, 2 and 3.

Let Y be one of the above threefolds and let ! 2 H 4.Y;Z/ be a non-algebraic
2-torsion class. Let C1; : : : ; Cn�3 be smooth projective connected curves, and let
!i 2 H

2.Ci ;Z/ be the class of a point. Define X D Y �
Q
i Ci with projections

qWX ! Y and pi WX ! Ci . The 2-torsion class 
 D q�! ^ [k�2iD1p
�
i !i is not

algebraic because so would be ! D q�.
 ^ [
n�3
iDk�1

p�i !i /. Choosing Y and the
genera of the Ci appropriately produces all the required counterexamples.

3. Products for which the integral Hodge conjecture holds

In light of Theorem 0.1, it is natural to ask whether the integral Hodge conjecture
in fact fails on every product of an Enriques surface and an elliptic curve. In this
section, we show that this is not the case, by constructing explicit examples of S
andE such that every class ofH 1.E;Z=2/ satisfies the condition in Proposition 1.1.

We consider an Enriques surface S admitting an elliptic fibration with a double
fiber whose reduction is an elliptic curve E. In this case, E does not split in
the K3 cover of S (see [3, Chapter VIII.17]), and so there exists a non-zero class
ˇ 2 H 1.E;Z=2Z/ satisfying the hypothesis of Proposition 1.1. If we choose S so
that E is the elliptic curve fY 2Z D X3 C Z3g � P2, the automorphisms of E
act transitively on the non-zero elements of H 1.E;Z=2/. It follows that all of these
classes satisfy the hypothesis of Proposition 1.1, and consequently the integral Hodge
conjecture holds for 1-cycles on E � S .

We can construct such S and E explicitly using the construction described in [3,
Chapter V.23]. There, Enriques surfaces are constructed as quotients by a fixed point
free involution of the minimal resolution of a double cover of P1 �P1 branched
along an invariant .4; 4/-curve. The projection on one of the factors induces an
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elliptic fibration on the Enriques surface. It is easily seen from the equations of loc.
cit. that any elliptic curve may appear as the reduction of a double fiber of an elliptic
fibration arising from this construction.

From the construction, we see that the integral Hodge conjecture for 1-cycles
actually holds onE 0�S for all elliptic curvesE 0 admitting an odd degree morphism
to E, hence for infinitely many elliptic curves E 0.
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