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We prove that a normal variety contains finitely many maximal quasi-projective open

subvarieties. As a corollary, we obtain the following generalization of the Chevalley–

Kleiman projectivity criterion: a normal variety is quasi-projective if and only if every

finite subset is contained in an affine open subvariety. The proof builds on a strategy of

Włodarczyk, using results of Boissière, Gabber, and Serman.

Let k be an algebraically closed field. A variety is a separated and integral k-

scheme of finite type. The goal of this text is to prove the following:

Theorem 1. A normal variety X contains finitely many maximal quasi-projective open

subvarieties. �

The hypothesis that k is algebraically closed is mainly for convenience. We will

explain later how to remove it (see Theorem 9).

Theorem 1 was proved by Włodarczyk [15] when X has a normal compactification

X̄ such that dimQ(Cl(X̄)/Pic(X̄)) ⊗ Q < ∞. In particular, this settled the case where X is

complete and Q-factorial, or smooth of characteristic 0.

As Włodarczyk points out, these statements imply generalizations of the

Chevalley–Kleiman projectivity criterion (proved by Kleiman [11] for complete and

Q-factorial normal varieties, see also [9, Theorem I 9.1]). Accordingly, we obtain:
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Corollary 2. A normal variety X is quasi-projective if and only if every finite subset of

X is contained in an affine open subvariety of X. �

As explained in [15, Theorem D], it is possible to apply this quasi-projectivity

criterion to prove the following corollary. It is very close to results of Raynaud

([4] V Corollaire 3.14) and Brion ([13] Theorem 1) and could also have been proved by

their methods.

Corollary 3. Let G be a connected algebraic group acting on a normal variety X, and let

U be a quasi-projective open subvariety of X. Then G · U is quasi-projective. �

That Theorem 1 holds for any normal variety was conjectured by Białynicki-

Birula [1]. The reason for Białynicki-Birula’s interest in this conjecture was that, using

the results of Białynicki-Birula [1], it implies the following corollary:

Corollary 4. In characteristic 0, a normal variety on which a reductive group G acts

contains finitely many open subvarieties that admit a quasi-projective good quotient

and that are maximal with respect to G-saturated inclusion. �

Note that, by examples of Serre described in [6, 6.2, 6.3] (see also [5]), those state-

ments are not true in general for nonnormal varieties.

Let us explain why those statements are more difficult in the normal case than

in the smooth case. If X is a complete normal surface such that every finite subset of X

is contained in an affine open subvariety of X, it should be projective by Corollary 2. In

particular, we should have Pic(X) �= 0. When X is smooth, this is not a surprise because

any nonzero effective Weil divisor is Cartier and has a nontrivial class in the Picard

group. However, there exist complete normal surfaces with trivial Picard group (see [14]).

This shows that the hypothesis about finite subsets of X is needed even to prove that

Pic(X) �= 0.

For this reason, we need techniques to construct Cartier divisors on normal vari-

eties. This is the role of the technical hypothesis in Włodarczyk’s theorem. For this pur-

pose, we will use the work of Boissière et al. [3], and a theorem of Pépin [12].

Let us turn to the proof of Theorem 1. The following proposition removes the

hypothesis dimQ(Cl(X)/Pic(X)) ⊗ Q < ∞ in [15, Lemma 4].

Proposition 5. Let X be a complete normal variety. Then there exists a positive inte-

ger r such that the following holds. Let U1, . . . ,Us be quasi-projective open subvarieties
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of X with s > r such that for any 1 ≤ i, j ≤ s, Ui \ (Ui ∩ U j) is of codimension ≥ 2 in Ui.

Then there exist distinct indices i1, . . . , im, j1, . . . , jn ∈ {1, . . . , s} with m, n≥ 1 such that

U = (Ui1 ∩ · · · ∩ Uim) ∪ (U j1 ∩ · · · ∩ U jn) is quasi-projective. �

Using this proposition, Włodarczyk’s proof goes through:

Proof of Theorem 1. Compactifying X by Nagata’s theorem, and normalizing this com-

pactification, we may suppose that X is complete. We may then follow the proof of

Theorem A of [15] using our Proposition 5 instead of [15, Lemma 4]. �

We are now reduced to proving Proposition 5. There are two steps where

Włodarczyk’s arguments break down under our more general hypotheses. The first is

to construct a suitable Weil divisor on X that is Cartier on U . The second is to show that

this divisor is ample on U via a numerical criterion, although it may not be Cartier on

all of X. Both of these difficulties will be overcome using results of Boissière et al. [3].

To deal with the first one, we will use [3, 6.7], which is stated in [3] as a corollary

of the proof of their Théorème 6.1. Since it is crucial for our needs, we recall the

statement below (Theorem 8) and develop its proof a bit. This result had already been

obtained by Bingener and Flenner in characteristic 0 [2, Corollary 3.6].

The second one will be solved using Proposition 7, which replaces here [15,

Lemma 1], and whose proof uses [3] again, via our Lemma 6.

Let us first recall some material from [3].

If X is a normal variety, the set of linear equivalence classes of Weil divisors on

X is in bijection with the set of isomorphism classes of rank 1 reflexive sheaves on X. It

is an abelian group: the class group Cl(X) of X.

If X is a projective normal variety with a marked smooth point a, Alb(X) is the

Albanese variety of X: it is endowed with a rational map αX : X → Alb(X) that is universal

among rational maps from X to an abelian variety sending a to 0. Let P (X) be the dual

abelian variety of Alb(X). The Poincaré bundle on Alb(X) × P (X) identifies P (X)(k) with

the set of rank 1 reflexive sheaves on X algebraically equivalent to 0 or, equivalently,

with the set of linear equivalence classes of Weil divisors on X that are algebraically

equivalent to 0 [3, Proposition 3.2]. We obtain an exact sequence:

0 → P (X)(k) → Cl(X) → NS(X) → 0,

where NS(X) is the abelian group of algebraic equivalence classes of Weil divisors on X:

the Néron–Severi group of X. The group NS(X) is of finite type by Kahn [10, Théorème 3].
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We see from this construction that P (X) is a birational invariant of X. More-

over, if p : X0 → X is a birational morphism between projective normal varieties, and if

D ≡alg 0 is a Weil divisor on X0, then the linear equivalence classes of D and p∗D are

represented by the same element of P (X0)(k) = P (X)(k).

The proof of [3, Théorème 6.1] shows that, if x ∈ X, the subset of P (X)(k) consist-

ing of classes that are Cartier at x is the set of k-points of a closed subgroup Ax of P (X).

If U is an open subset of X, we will denote by P (X)U the set-theoretical intersection
⋂

x∈U Ax: it is a closed subgroup of P (X) whose k-points represent the classes that are

Cartier on U . Of course, if p : X′ → X is a birational morphism that is an isomorphism

over U , P (X′)U = P (X)U . Let us denote by P (X)0
U the connected component of 0 in P (X)U .

The following lemma will be used in the proof of Proposition 7. We recall that a

U-admissible blow-up is a blow-up whose center is disjoint from U .

Lemma 6. Let X be a projective normal variety, and let U be an open subvariety. Then

there exists a U-admissible blow-up X′ → X such that every class in P (X)0
U (k) is Cartier

on the normalization X̃′. �

Proof. Let Xsm be the smooth locus of X, and let j : Xsm → X be the inclusion. Following

the proof of [3, Théorème 4.2] closely, we will construct a universal line bundle on

(Xsm ∪ U ) × P (X)0
U . To do so, let EU be the universal line bundle on Xsm × P (X)0

U (it is

the restriction of the universal line bundle E on Xsm × P (X)), and let LU = ( j × Id)∗EU .

By Boissière et al. [3, Lemme 2.4], LU is a coherent sheaf on X × P (X)0
U . The first step

of the proof of [3, Théorème 4.2] (i.e., applying Ramanujam–Samuel’s theorem to the

projection X × P (X)0
U → X) shows that the locus where LU is invertible is of the form

W0,U × P (X)0
U . The second step of this same proof explains how to construct an open

subset ΩU of P (X)0
U such that if D ≡alg 0 is a Weil divisor on X whose class [D] belongs

to ΩU (k), LU |X×[D] �OX(D). Hence, if x ∈ ΩU (k), LU |X×{x} is invertible on Xsm ∪ U , so that

LU is invertible on (Xsm ∪ U ) × ΩU by Boissière et al. [3, Lemme 2.6]. Combining these

two steps shows that LU is invertible on (Xsm ∪ U ) × P (X)0
U .

We may then apply [12, Théorème 2.1] (we use it in a situation very similar to

the one Pépin designed it for): there exists a (Xsm ∪ U )-admissible blow-up X′ → X and

a line bundle M on X′ × P (X)0
U such that M coincides with LU over (Xsm ∪ U ) × P (X)0

U .

Let M0 =M|X′×{0}: it is a line bundle on X′ that is trivial on Xsm ∪ U . We set M′ =M ⊗
p∗

1M−1
0 , and denote by M̃′ its pull-back to the normalization X̃′ × P (X)0

U .

We are ready to show that the construction works. Let x ∈ P (X)0
U (k). Consider

the invertible sheaf M̃′|X̃′×{x} on X̃′. It is algebraically equivalent to M̃′|X̃′×{0} �OX̃′
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because P (X)0
U is connected: it corresponds to a point y∈ P (X)(k). Its restriction to Xsm

is precisely LU |Xsm×{x} � EU |Xsm×{x}. Hence y is represented on X by the reflexive sheaf

j∗(EU |Xsm×{x}). This shows that y= x: in particular, x is represented by an invertible sheaf

on X̃′, which is what we wanted. �

We may now prove:

Proposition 7. Let X be a complete normal variety, let U be an open subvariety of X,

and let D1 and D2 be Weil divisors on X. Suppose that D1 ≡alg D2 and that D1 and D2 are

Cartier on U . Then D1 is ample on U if and only if D2 is ample on U . �

Proof. Since P (X)U (k)/P (X)0
U (k) is a finite group, we may suppose, up to replacing D1

and D2 by nD1 and nD2 for some positive integer n, that D1 − D2 represents a class in

P (X)0
U (k).

Let π : X̃′ → X be a normalized blow-up as in Lemma 6. It is then possible to

find a Cartier divisor Δ on X̃′ that is algebraically equivalent to 0 and such that π∗Δ =
D2 − D1.

Choose any Weil divisor D′
1 on X̃′ such that π∗D′

1 = D1, and set D′
2 = D′

1 + Δ. By

Włodarczyk [15, Lemma 1], we see that D′
1|U is ample if and only if D′

2|U is ample. Since

D1|U = D′
1|U and D2|U = D′

2|U , the result follows. �

To state the last result of Boissière et al. [3] that we will need, we will use the

following notation. If Z is a subset of a normal variety X, we say that Z has property (∗)

(resp. (∗0)) if for any x, y∈ Z , a Weil divisor on X (resp. that is algebraically equivalent

to 0) is Cartier at x if and only if it is Cartier at y.

Theorem 8 ([3, 6.7]). Let X be a normal variety. Then there exists a finite partition X =
⊔N

k=1 Zk by irreducible locally closed subsets with property (∗). �

Proof. The existence of such a partition is local on X. We may thus suppose that X is

affine. Taking its closure in projective space, and normalizing this compactification, we

may suppose X is projective.

The proof of Théorème 6.1 of [3] shows the existence of a partition X = ⊔M
l=1 Yl

by irreducible locally closed subsets with property (∗0). We will refine this partition

to obtain one as we want. To do this, it suffices, by noetherian induction, to prove the

following: for any l, there exists an open subset Zl of Yl with property (∗).
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Let η be the generic point of Yl and let Γ be the subgroup of NS(X) consisting of

elements that have representatives that are Cartier at η. Since NS(X) is of finite type, Γ

is of finite type, and we may find Weil divisors D1, . . . , Dt on X that are Cartier at η and

whose images in NS(X) generate Γ . Let Zl be the open subset of Yl where D1, . . . , Dt are

Cartier. Let us show that Zl has property (∗). Let x, y∈ Zl and let D be a Weil divisor on X

Cartier at x. It is then also Cartier at η and we may write D = ∑
i λi Di + D′ with D′ ≡alg 0

and λi ∈ Z. By choice of Zl ,
∑

i λi Di is Cartier on Zl . Then D′ is Cartier at x, hence at y by

the property (∗0) of Yl . This shows, as wanted, that D is Cartier at y. �

We may now prove Proposition 5.

Proof of Proposition 5. Let X = ⊔N
k=1 Zk be a partition as in Theorem 8, and let ρ be

the rank of the Néron–Severi group NS(X) of X. Let us show that r = 2Nρ works. By the

pigeonhole principle, up to reordering the Ui, it is possible to suppose that U1, . . . ,Uρ+1

meet exactly the same strata Zk of the partition.

For 1 ≤ i ≤ ρ + 1, let Di be an effective ample Cartier divisor on Ui. We still denote

by Di the effective Weil divisor that is its closure in X. Since NS(X) is of rank ρ, it is

possible to find a nontrivial relation of the form

m∑

u=1

αiu Diu ≡alg

n∑

v=1

β jv Djv ,

where i1, . . . , im, j1, . . . , jn ∈ {1, . . . , ρ + 1} are distinct indices and αiu and β jv are positive

integers. Note that since a nonzero effective divisor cannot be algebraically equivalent

to 0, we have m, n≥ 1.

We set U = (Ui1 ∩ · · · ∩ Uim) ∪ (U j1 ∩ · · · ∩ U jn), D = ∑m
u=1 αiu Diu, and D′ =

∑n
v=1 β jv Djv . The Weil divisor Diu is Cartier on Uiu, hence on all Zk that meet Uiu by

the property (∗) of the strata. By the choice of U1, . . . ,Uρ+1, this shows that Diu is Cartier

on Ui for 1 ≤ i ≤ ρ + 1. In particular, it is Cartier on U . Consequently, D is Cartier on U .

The same argument shows that D′ is Cartier on U .

Now D is ample on Ui1 ∩ · · · ∩ Uim and D′ is ample on U j1 ∩ · · · ∩ U jn. By

Proposition 7, D is ample on both Ui1 ∩ · · · ∩ Uim and U j1 ∩ · · · ∩ U jn. By Włodarczyk [15,

Lemma 2], it is then ample on U : this shows that U is quasi-projective. �

Let us finally explain how to remove the hypothesis that the base field is alge-

braically closed in Theorem 1.
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Theorem 9. Let K be a field and let X be a separated and normal K-scheme of finite

type. Then X contains finitely many maximal quasi-projective open subschemes. �

Proof. Suppose that (Un)n∈N are distinct maximal quasi-projective open subschemes of

X. Let K̄ be an algebraic closure of K, let X̃K̄ be the normalization of XK̄ and let Ũn,K̄

be the inverse image of Un in X̃K̄ . Since the pull-back of an ample line bundle by a finite

morphism is ample, the (Ũn)n∈N are distinct quasi-projective open subschemes of X̃K̄ .

Applying Theorem 1 to the connected components of X̃K̄ , we see that X̃K̄ contains

only finitely many maximal quasi-projective open subschemes. Hence, we may suppose

that Ũ1,K̄ and Ũ2,K̄ are contained in the same maximal quasi-projective open subscheme,

so that Ũ1,K̄ ∪ Ũ2,K̄ is quasi-projective.

We then use limit arguments. By [8, Théorème 8.8.2 (ii)], there exist a finite exten-

sion L of K and a scheme Y of finite type over L such that Y ×L K̄ � X̃K̄ . Moreover, by [8,

Théorème 8.8.2 (i) and Théorème 8.10.5 (x)], up to replacing L by a finite extension, there

exists a finite morphism Y → XL inducing the normalization X̃K̄ → XK̄ . Let V denote the

inverse image of U1 ∪ U2 in Y. By [8, Théorème 8.10.5 (xiv)], up to enlarging L again, we

may suppose that V is quasi-projective.

The finite and surjective morphism V → U1 ∪ U2 has normal target, so that the

hypotheses of [7, Corollaire 6.6.2] are satisfied, showing that U1 ∪ U2 is quasi-projective.

By maximality of U1 and U2, we must have U1 = U2: this is a contradiction. �
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[13] Raynaud, M. Faisceaux amples sur les schémas en groupes et les espaces homogènes. Lec-
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