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Abstract. We show that any sum of squares in a field of transcendence de-
gree 1 over Q is a sum of 5 squares, answering a question of Pop and Pfister. We
deduce this result from a representation theorem, in k(C), for quadratic forms
of rank ≥ 5 with coefficients in k, where C is a curve over a number field k.

1. Introduction

1.1. Sums of squares and Pythagoras numbers. The Pythagoras number p(F )
of a field F is the smallest integer p such that any sum of squares in F is a sum
of p squares in F (or +∞ if no such integer exists). It measures the complexity
of sums of squares problems in the field F . We refer to [Pfi95, Chap. 7 §1] for a
general introduction to this invariant.

Euler proved in [Eul60] that a nonnegative rational number is a sum of 4 squares
of rational numbers (see [Pie93] for historical comments). Siegel [Sie21] extended
Euler’s theorem to an arbitrary number field: an element of a number field k that
is nonnegative in all its real embeddings is a sum of 4 squares in k. These results
imply that p(k) ≤ 4 (and in fact p(Q) = 4 as 7 is not a sum of 3 squares in Q).

In [Pou71], Pourchet considered the case of the field k(t) of rational functions
in one variable over a number field k. There, he proved that p(k(t)) ≤ 5 for any
number field k (and in fact p(Q(t)) = 5 as t2 + 7 is not a sum of 4 squares in Q(t)),
thereby improving on an earlier bound p(Q(t)) ≤ 8 due to Landau [Lan06].

The aim of the present article is to prove a similar result for general fields F
of transcendence degree 1 over Q. For such fields, the inequality p(F ) ≤ 7 was
shown by Colliot-Thélène in [CT86]. The stronger bound p(F ) ≤ 6 was obtained
by Pop in 1991 [Pop91] (his result was published only recently in [Pop23]). Whether
this is optimal or not remained open (see [Pfi95, Chap. 7 Conjecture 1.10 (1)] and
[Pop23, §3]). We prove that it is not optimal, and that Pourchet’s bound on the
Pythagoras number of k(t) can be extended to all these fields.

Theorem 1.1. Let F be a field of transcendence degree 1 over Q. Then p(F ) ≤ 5.

We refer to Corollary 5.11 for a reformulation of Theorem 1.1 that clarifies its
relation with Hilbert’s 17th problem.

If F is a field of transcendence degree d ≥ 2 over Q, then the bound p(F ) ≤ 2d+1

was obtained by Colliot-Thélène and Jannsen (see [CT86, CTJ91, Jan16]) as a con-
sequence of the Milnor conjectures proven by Voevodsky in [Voe03] and of a local-
global principle conjectured by Kato in [Kat86] and proven by Jannsen in [Jan16].
This bound is not known to be optimal (when d = 2, this problem is closely related
to the questions raised by Jannsen and Sujatha in [JS02, Remarks 8]).
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1.2. Quadratic forms over function fields of curves over number fields.
The Hasse–Minkowski theorem, proved by Minkowski over Q and by Hasse over a
general number field, implies the following far-reaching generalization of the theo-
rems of Euler and Siegel ([Has23, Satz 19], see also [Lam05, I.3.5 and VI.3.5]). Let q
be a nondegenerate quadratic form of rank ≥ 4 over a number field k. Then q rep-
resents an element of k if and only if this element is nonnegative (resp. nonpositive)
at the real places of k at which q is positive definite (resp. negative definite).

In [Pou71], Pourchet carried out a similar analysis over the field k(t) of rational
functions in one variable over a number field k. There, he gives necessary and suf-
ficient conditions for an element of k(t) to be represented by a given nondegenerate
quadratic form of rank ≥ 5 over k (see [Pou71, Corollaire 1 p. 98] or Corollary 5.6).

Let C be a geometrically connected smooth projective curve over a number field k.
Let q be a nondegenerate quadratic form of rank ≥ 5 over k. Following Pourchet’s
lead, we derive Theorem 1.1 from a general representation theorem for q over k(C),
which is our main technical result. To state it, we introduce some notation.

Let kv be the completion of k with respect to a place v. We let qv and Cv be the
quadratic form and the curve over kv obtained from q and C by extension of scalars.

Let v be a real place of k. A rational function f ∈ k(C) is said to be nonnegative
(resp. nonpositive) at v if f(x) ≥ 0 (resp. f(x) ≤ 0) for all x ∈ Cv(R) that is not a
pole of f . If D is a divisor on Cv, we let clv(D) ∈ H1(Cv(R),Z/2) = (Z/2)π0(Cv(R))

be the element associating with any connected component Γ of Cv(R) the parity of
the number of points of D lying on Γ (counted with multiplicity). The morphism
clv : Div(Cv) → H1(Cv(R),Z/2) factors through rational equivalence (as a rational
function changes sign an even number of times on each Γ) and induces a morphism
clv : Pic(Cv) → H1(Cv(R),Z/2) called the Borel–Haefliger cycle class map of Cv.
Theorem 1.2. Let C be a geometrically connected smooth projective curve over
a number field k. Let q be a nondegenerate quadratic form of rank r ≥ 5 over k.
Fix f ∈ k(C)∗. Write div(f) = E − 2D with E a reduced effective divisor.

Then q represents f in k(C) if and only if there exists M ∈ Pic(C) such that:
(i) if v is a real place of k and qv is positive definite (resp. negative definite),

then f is nonnegative (resp. nonpositive) at v and clv(M) = 0;
(ii) if v is a place of k with qv = q̃v ⊥ ⟨1, −1⟩ for some quadratic form q̃v

over kv, then there exist a line bundle P ∈ Pic(Cv) and a divisor ∆ on Cv

with M ⊗ P⊗2 ≃ OCv
(∆ − D), such that f is invertible at x and f(x) is

represented by q̃v for all closed points x in the support of ∆.
When C = P1

k, Theorem 1.2 can be used to recover Pourchet’s results [Pou71,
Corollaire 1 p. 98] (see Corollary 5.6). The main novelty of Theorem 1.2, however,
is that it applies to any curve C, possibly with more complicated geometry than P1

k

(with higher Picard rank, disconnected real loci, or finite places of bad reduction).
Being formulated in terms of the existence of a line bundle M on C, the repre-

sentation criterion given by Theorem 1.2 is influenced by arithmetic properties of
the curve C (e.g. by the Mordell–Weil group of it Jacobian).

Additional work leads to significant simplifications to the statement of Theo-
rem 1.2 in many particular instances. This includes the cases when C is a nonsplit
conic over k (see Corollary 5.4 (d)), or when q does not have hyperbolic signature
at any real place of k (see Corollary 5.4 (c); this is the consequence of Theorem 1.2
that leads to a proof of Theorem 1.1).
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1.3. Analyzing and applying Theorem 1.2. Together, conditions (i) and (ii)
in Theorem 1.2 constrain M at all places of k. Indeed, unless v is real and qv is
definite, the form qv is isotropic (see [Lam05, VI.2.12]).

However, these constraints are nontrivial only at finitely many places of k. To
see it, note that condition (ii) is not vacuous only if q̃v is anisotropic (as isotropic
quadratic forms are universal). This is the case exactly when v is a real place at
which qv has hyperbolic signature (r −1, 1) or (1, r −1), or if r = 5 and v is a p-adic
place at which the Hasse invariant of qv is nontrivial (use [Lam05, VI.2.12]).

In particular, if r ≥ 6, there are no constraints whatsoever at the p-adic places
of k. In retrospect, this explains why the bound p(k(C)) ≤ 6 due to Pop is easier
to prove than the bound p(k(C)) ≤ 5 provided by Theorem 1.1.

Let us further comment on condition (ii). If v is a real place of k and qv has
signature (r − 1, 1) (resp. (1, r − 1)), this condition is equivalent to the following
assertion: for any connected component Γ of Cv(R) on which f is nonpositive
(resp. nonnegative), the class clv(M(D))|Γ ∈ H1(Γ,Z/2) = Z/2 vanishes (see Re-
mark 5.2 (ii)). It is therefore not difficult to check in practice.

Condition (ii) is harder to analyze in general at a p-adic place v of k. In this case,
we prove that condition (ii) is always satisfied for M = OC (see Proposition 4.8).
This surprising and nontrivial fact is key to the proofs of Corollary 5.4 (c) and,
through it, of Theorem 1.1. Its proof is based on the geometric study of a projective
regular model π : Y → Spec(Okv ) of Cv, on the Lang–Weil estimates, and on global
class field theory applied to the function fields of the irreducible components of the
special fiber of Y . There is no counterpart to these arguments in Pourchet’s proof
of the inequality p(k(t)) ≤ 5.

1.4. Proving Theorem 1.2. Our proof of Theorem 1.2 is deeply inspired by
Pourchet’s work. We now outline the argument, assuming for simplicity that q
is the sum of 5 squares quadratic form ⟨1, 1, 1, 1, 1⟩ (the one that is used in the
application to Theorem 1.1).

A crucial input are two theorems of Kato (the local-global principle [Kat86,
Theorem 0.8 (2)] and the local criterion [Kat86, Proposition 5.2]). Combined with
the Merkurjev–Suslin theorem, they control sums of 4 squares in k(C) through the
following two statements. First, an element of k(C) is a sum of 4 squares if and
only if it is a sum of 4 squares in kv(Cv) for all places v of k (see Proposition 2.2).
Second, if v is a p-adic place of k for some prime number p, an element of kv(Cv)
is a sum of 4 squares if and only if it is a sum of 4 squares in the henselizations
of kv(Cv) with respect to all integral divisors (both horizontal and vertical) of a
proper regular model of Cv over Spec(Okv

) (see Proposition 2.3).
Kato’s local-global principle was applied in this precise way in the above-men-

tioned works [CT86, CTJ91, Pop91, Jan16], but our use of Kato’s local criterion
is new. When C = P1

k, these results are much easier to prove (for instance, one
may disregard the vertical divisors in the local criterion), and were already used by
Pourchet (see [Pou71, Propositions 3 et 4]).

Let f ∈ k(C)∗ be nonnegative at all real places of k. We wish to show that f
is a sum of 5 squares. Write f = σ

τ2 , where σ ∈ H0(C, L⊗2) has reduced zero
locus, and τ is a rational section of L, for some L ∈ Pic(C). (In the notation of
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Theorem 1.2, one has D = {τ = 0} and E = {σ = 0}.) We consider the equation

(1.1) σα2 =
5∑

i=1
β2

i ,

where α ∈ H0(C, M) and βi ∈ H0(C, L ⊗ M), for some line bundle M on C (also
requiring that α ̸= 0 and that the βi have no common zero). Manipulating sections
of line bundles instead of rational functions is a new and essential feature of our
approach. Shadows of it appear in Pourchet’s work in the guise of conditions on
the degree of polynomials (see e.g. conditions (2) in [Pou71, Théorèmes 1 et 2]).

We first solve (1.1) locally. If M is sufficiently ample, it turns out that (1.1)
has a local solution at a place v of k if and only if (i) is satisfied (if v is real
and qv is definite), or (ii) is satisfied (otherwise). In the first case, the assertion
is a consequence of theorems of Witt [Wit34] (see Proposition 3.3). The second
case hinges on a purely geometric analysis of the birational geometry of the quadric
bundle {σT 2

0 =
∑5

i=1 T 2
i } over Cv (see Proposition 3.2).

Suppose now that local solutions (αv, (βi,v)1≤i≤5) of (1.1) have been found.
Choose α and β5 approximating the αv and the β5,v at the real and 2-adic places v

of k (this choice of places depends on q). Set gv := β5,v

ταv
and g := β5

τα . We claim
that f − g2 is a sum of 4 squares everywhere locally. To prove the claim at a real
or 2-adic place v, we use that f − g2 is close to f − g2

v , which is a sum of 4 squares
by (1.1). If v is real, the key point is to verify that the nonnegativity of f−g2

v implies
that of f − g2. If v is 2-adic, we rely on an openness result, in the 2-adic topology,
for sums of 4 squares in kv(Cv), which we deduce from Kato’s local criterion (see
Proposition 2.9). At the other places of k, the claim is trivial.

It now follows from Kato’s local-global principle that f −g2 is a sum of 4 squares
in k(C), hence that f is a sum of 5 squares in k(C).

1.5. Organization of the text. Section 2 gathers the consequences of Kato’s
theorems that we use. The geometric studies leading to conditions (i) and (ii) in
Theorem 1.2 are carried out in Section 3. The more arithmetic results of Section 4
will allow us to verify condition (ii) at p-adic places when deducing Theorem 1.1
from Theorem 1.2. Finally, Section 5 presents our global theorems. Theorem 1.2
is proven in §5.1 following the strategy sketched in §1.4. More concrete corollaries
are derived in §5.2. Applications to Pythagoras numbers, including a proof of
Theorem 1.1, are given in §5.3.
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and Jean-Louis Colliot-Thélène and David Leep for helpful comments on the article.

This work was completed during a research stay at Leibniz University Hannover
in May 2025, funded by a Mercator Fellowship of the German Research Foundation,
within the RTG 2965 – Project number 512730679. I thank Stefan Schreieder for
his hospitality on this occasion.

1.7. Notation and conventions. An algebraic variety over a field k is a separated
k-scheme of finite type over k. A curve is an algebraic variety of pure dimension 1.

If X is a scheme and x ∈ X, we let κ(x) denote the residue field of x.
Let k be a field with 2 ∈ k∗. If a1, . . . , an ∈ k∗, we let ⟨⟨a1, . . . , an⟩⟩ denote the

Pfister quadratic form ⟨1, −a1⟩ ⊗ · · · ⊗ ⟨1, −an⟩. Beware that this quadratic form is
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rather denoted by ⟨⟨−a1, . . . , −an⟩⟩ in [Lam05] (see [Lam05, X.1.1]). We also denote
by {a} ∈ H1(k,Z/2) the image of a ∈ k∗ by the boundary map k∗ → H1(k,Z/2)
of the Kummer exact sequence.

Let q be a nondegenerate quadratic form of rank r over R. The signature of q
is the pair of integers (s+, s−) such that whenever q ≃ ⟨a1, . . . , ar⟩ with ai ∈ R∗,
exactly s+ (resp. s−) of the ai are positive (resp. negative). The form q is definite
if it is positive definite (of signature (r, 0)) or negative definite (of signature (0, r)).
It has hyperbolic signature if r ≥ 1 and it is of signature (r − 1, 1) or (1, r − 1).

Let q be a quadratic form over a field k. Let E be a k-vector space of dimension 1.
An element of E⊗2 is said to be a represented by q if it is of the form a · (e ⊗ e) for
some a ∈ k represented by q and some e ∈ E. Observe that this notion depends on
the presentation of the vector space E⊗2 as a tensor square. If X is an algebraic
variety over k and L is a line bundle on X, we say that a section σ ∈ H0(X, L⊗2)
is represented by q at x ∈ X if σ|x ∈ (L|x)⊗2 is represented by q. In particular,
it makes sense to say that σ is a square, a sum of 2 squares, etc., at x. If more-
over k = R, we will say that σ ∈ H0(X, L⊗2) is nonnegative (resp. positive) if σ is
a square (resp. a nonzero square) at all points x ∈ X(R).

Let p be a prime number. A p-adic field is a finite extension of Qp. We let Ok

denote the ring of integers of a p-adic field k.
We let kv denote the completion of a number field k with respect to a place v

(real, complex, or p-adic for some prime number p). If v is real, there is a canonical
identification kv ≃ R. If X is an algebraic variety over k, we set Xv := X ×k kv.
If q is a quadratic form over k, we let qv denote its extension of scalars from k to kv.

2. Consequences of Kato’s theorems

In this section, we draw consequences from [Kat86]. Our main new result is
Proposition 2.9.

2.1. The local-global principle and the local criterion. Recall the following
consequence of the Merkurjev–Suslin theorem (see [MS83, Theorem 12.1 a)⇔c)]).
Proposition 2.1. Let k be a field with 2 ∈ k∗. Fix a, b, f ∈ k∗. Then ⟨⟨a, b⟩⟩
represents f in k if and only if {a} · {b} · {f} ∈ H3(k,Z/2) vanishes.

The next proposition appears in [Kat86, top of p. 146].
Proposition 2.2. Let C be a geometrically connected smooth projective curve over
a number field k. Fix a, b ∈ k∗ and f ∈ k(C)∗. Then ⟨⟨a, b⟩⟩ represents f in k(C)
if and only if it represents f in kv(Cv) for all places v of k.
Proof. In [Kat86, Theorem 0.8 (2)], Kato proved that the restriction map

H3(k(C),Z/2) →
∏

v

H3(kv(Cv),Z/2),

where v runs over all places of k, is injective. To conclude, combine this fact with
Proposition 2.1. □

Here is another proposition which follows at once from Kato’s work.
Proposition 2.3. Let C be a geometrically connected smooth projective curve over
a p-adic field k. Let π : X → Spec(Ok) be a proper regular model of C. Fix a, b ∈ k∗

and f ∈ k(C)∗. Then ⟨⟨a, b⟩⟩ represents f in k(C) if and only if it represents f in
the henselization k(C)h

x of k(C) at all codimension 1 points x of X.
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Proof. Let x ∈ X be a point of codimension 1. Kato defines a residue map
∂x : H3(k(C),Z/2) → Br(κ(x))[2] (see [Kat86, (i) p. 149] if κ(x) has characteris-
tic not 2 and [Kat86, (ii) p. 150] otherwise, both applied with q = 2 and i = 1,
noting that H2(κ(x),Z/2(1)) = Br(κ(x))[2] in Kato’s notation).

Kato proves in [Kat86, Proposition 5.2] that residue maps induce a quasi-isomor-
phism between two complexes associated with the general and the special fiber of X.
Evaluated in degree 1, this assertion exactly means that

⋂
x Ker(∂x) = 0, where x

runs over all codimension 1 points of X. As ∂x factors through H3(k(C)h
x,Z/2), by

its very construction, we deduce the injectivity of the restriction map

(2.1) H3(k(C),Z/2) →
∏

x

H3(k(C)h
x,Z/2),

where x runs over all codimension 1 points of X.
The proposition follows from the injectivity of (2.1) and Proposition 2.1. □

2.2. An openness result. The next statement is an application of Hensel’s lemma.
Lemma 2.4. Let (A,m) be a henselian discrete valuation ring. Fix polynomials
f1, . . . , fm ∈ A[X1, . . . , Xn] for some integers 0 ≤ m ≤ n. Let x ∈ An be such
that fj(x) = 0 for 1 ≤ j ≤ m and

( ∂fj

∂Xi
(x)

)
∈ Mn×m(Frac(A)) has rank m.

For any integer r ≥ 0, there exists an integer s ≥ 0 with the following property. If
g1, . . . gm ∈ A[X1, . . . , Xn] are such that gj −fj ∈ ms ·A[X1, . . . , Xn] for 1 ≤ j ≤ m,
there exists y ∈ An such that gj(y) = 0 for 1 ≤ j ≤ m and y − x ∈ (mr)n.

Proof. Let δ ∈ A be a nonzero minor of size m of
( ∂fj

∂Xi
(x)

)
. Let t ≥ 0 be such

that δ ∈ mt \ mt+1. Choose s := max(2t, t + r, t + 1).
As s ≥ t + 1, the matrix

( ∂gj

∂Xi
(x)

)
also has a minor of size m in mt \ mt+1.

In addition, one has gj(x) = (gj − fj)(x) ∈ (ms)n for 1 ≤ j ≤ m. By [Art69,
Lemma 5.10] applied with a = ms−2t, there exists y ∈ An such that gj(y) = 0
for 1 ≤ j ≤ m and y − x ∈ (ms−t)n. As s − t ≥ r, this concludes the proof. □

Lemmas 2.7 and 2.8 below are geometric versions of Krasner’s lemma. The only
purpose of Lemma 2.5 is to remove an unnecessary characteristic 0 assumption
from their statements; this is not used in our applications. Recall that a field
extension l/k is said to be simple if l is generated over k by a single element.
Lemma 2.5. A finite field extension l/k is simple if and only if diml Ω1

l/k ≤ 1.

Proof. If x ∈ l generates l over k, then dx generates the l-vector space Ω1
l/k. To

prove the converse, we may assume that l is purely inseparable over k (write l/k as
the composition of a separable and of a purely inseparable extension and apply the
primitive element theorem in its form [vdW70, §6.10]). In particular, the field k
has positive characteristic p. Then, if diml Ω1

l/k ≤ 1, one has [l : klp] | p by [SP,
Lemma 07P2], and l/k is simple by [BM40, Theorem 6]. □

Lemma 2.6. Let C be a smooth curve over a field k. Let x ∈ C be a closed
point. There exists a morphism f : C → P1

k that is étale at x and that induces an
isomorphism between κ(f(x)) and κ(x).
Proof. We may assume that C is connected. Let I be the ideal sheaf of x in C.
As C is smooth, the coherent sheaf Ω1

C/k is a line bundle on C. The exact sequence

(2.2) I/I2 g 7→dg−−−−→ Ω1
C/k|x → Ω1

κ(x)/k → 0

https://stacks.math.columbia.edu/tag/07P2
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of κ(x)-vector spaces therefore shows that Ω1
κ(x)/k has dimension ≤ 1 over κ(x).

By Lemma 2.5, the field κ(x) is generated over k by an element t ∈ κ(x) (so dt
generates Ω1

κ(x)/k). Let f ∈ OC,x be a lift of t. In view of (2.2), after possibly
replacing f with f +g for some g ∈ Ix, we may assume that df is nonzero at x. Our
choices now imply that the morphism f : C → P1

k has the required properties. □

We call valued field a field endowed with a nontrivial rank 1 valuation (as in
[BGR84, 1.5.1]). If k is a complete valued field, we let Xan be the rigid analytifica-
tion of an algebraic variety X over k (see [BGR84, 9.3.4/2]). Recall from loc. cit.
that the set underlying Xan can be identified with the set of closed points of X.

Lemma 2.7. Let C be a smooth curve over a complete valued field k. Fix x ∈ Can.
There exists an open affinoid subvariety x ∈ Ω ⊂ Can (in the sense of [BGR84,
9.3.1]) such that for any y ∈ Ω, there is a k-embedding of κ(x) into κ(y).

Proof. Let f : C → P1
k be as in Lemma 2.6. By [BGR84, 7.3.3/5], there exist open

affinoid subvarieties x ∈ Ω ⊂ Can and f(x) ∈ Ω′ ⊂ (P1
k)an such that f induces

an isomorphism f |Ω : Ω ∼−→ Ω′. By Krasner’s lemma [BGR84, 3.4.2/2] applied in
an appropriate affine chart of P1

k, we may shrink Ω and Ω′ so that there exists a
k-embedding of κ(f(x)) into κ(x′), for any x′ ∈ Ω′. This concludes the proof. □

Lemma 2.8. Let C be a connected smooth projective curve over a complete valued
field k. Let L be a line bundle on C. Let σ ∈ H0(C, L) be a nonzero section. There
exists a neighborhood U of σ in H0(C, L) (for the topology induced by that of k)
such that for any σ′ ∈ U and any x′ ∈ C with σ′(x′) = 0, there exists x ∈ C
with σ(x) = 0 and a k-embedding of κ(x) into κ(x′).

Proof. Let (xi)1≤i≤n be the zeros of σ on C. Use Lemma 2.7 to find an open affinoid
subvariety xi ∈ Ωi ⊂ Can such that for any yi ∈ Ωi, there is a k-embedding of κ(xi)
into κ(yi). As Can is proper (in the sense of [BGR84, 9.6.2]), one can find open
affinoid subvarieties (Ω′

j)1≤j≤m of Can not containing any of the xi, such that Can

is covered by the Ωi and the Ω′
j . After replacing each Ω′

j by an affinoid covering,
we may assume that Lan|Ω′

j
is trivial. Fix trivializations φj : Lan|Ω′

j

∼−→ OΩ′
j
.

We claim that, for all 1 ≤ j ≤ m, there exists a neighborhood Uj of σ in H0(C, L)
such that no σ′ ∈ U vanishes on Ω′

j . Setting U := ∩m
j=1Uj then concludes the proof.

We now fix 1 ≤ j ≤ m and prove the claim. Choose a basis (σ1, . . . , σN )
of H0(C, L). Let s, s1, . . . , sN ∈ O(Ω′

j) be the images of σ, σ1, . . . , σN by φj .
Let | . |sup be the supremum norm on the affinoid algebra O(Ω′

j) (see [BGR84,
6.2.1]). Set Ml := |sl|sup for 1 ≤ l ≤ N and M := | 1

s |sup. These choices ensure
that if a1, . . . , aN ∈ k are such that |al| < 1

MMl
, then s +

∑N
l=1 alsl does not vanish

anywhere on Ω′
j , and hence neither does σ +

∑N
l=1 alσl. Define Uj ⊂ H0(C, L) to

be the set of σ +
∑N

l=1 alσl with a1, . . . , aN ∈ k as above. □

We now reach the main goal of this section.

Proposition 2.9. Let C be a connected smooth projective curve over a p-adic
field k. Let L be a line bundle on C. Fix a, b ∈ k∗. Let Σ ⊂ H0(C, L⊗2) be the set of
sections represented by ⟨⟨a, b⟩⟩ at the generic point of C. Fix σ ∈ Σ \ {0}. If ⟨⟨a, b⟩⟩
is isotropic in the residue fields of all the zeros of σ of even multiplicity ≥ 2, then Σ
contains a p-adic neighborhood of σ in H0(C, L⊗2).
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Proof. Fix a nonzero rational section α of L. It follows from the definitions that
a section τ ∈ H0(C, L⊗2) is represented by ⟨⟨a, b⟩⟩ at the generic point of C if
and only if τ

α2 ∈ k(C) is represented by ⟨⟨a, b⟩⟩ in k(C). This remark allows us to
transfer facts about representations of functions by ⟨⟨a, b⟩⟩ into statements about
representations of sections by ⟨⟨a, b⟩⟩; we use it below without further comments.

Let x ∈ C be a zero of odd multiplicity of σ. As ⟨⟨a, b⟩⟩ represents σ at the
generic point of C, we deduce that ⟨⟨a, b⟩⟩ represents an element of odd valuation
in OC,x. It follows that ⟨⟨a, b⟩⟩ is isotropic in κ(x) (see e.g. [EKM08, Lemma 19.5]).
By hypothesis, the same holds for any zero of σ. Lemma 2.8 therefore produces
a neighborhood U ⊂ H0(C, L⊗2) of σ such that for any τ ∈ U and any x′ ∈ C
with τ(x′) = 0, the form ⟨⟨a, b⟩⟩ is isotropic in κ(x′).

We claim that for any τ ∈ U and any x ∈ C, the form ⟨⟨a, b⟩⟩ represents τ
in the henselization k(C)h

x of k(C) at x. If x is not a zero of τ , then ⟨⟨a, b⟩⟩
represents τ(x) in κ(x) (see [Lam05, I.3.5 and VI.2.12]), and hence represents τ
in k(C)h

x by henselianity (use [SP, Lemma 0H74]). If x is a zero of τ , then ⟨⟨a, b⟩⟩ is
isotropic in κ(x) by choice of U , hence is isotropic in k(C)h

x by another application of
[SP, Lemma 0H74]. It follows that ⟨⟨a, b⟩⟩ represents τ in k(C)h

x (see [Lam05, I.3.4]).
Let π : X → Spec(Ok) be a proper regular model of C. Let x be the generic

point of an irreducible component of the special fiber of X. Since the form ⟨⟨a, b⟩⟩
represents σ in k(C), the form ⟨⟨a, b⟩⟩ ⊥ ⟨− σ

α2 ⟩ is isotropic over k(C), hence also over
the henselization k(C)h

x of k(C) at x. Let c ∈ (k(C)h
x)∗ be such that c · σ

α2 ∈ Oh
X,x.

By Lemma 2.4 (applied over A = Oh
X,x with m = 1 and f1 equal to the quadratic

form c ·
(
⟨⟨a, b⟩⟩ ⊥ ⟨− σ

α2 ⟩
)
), there exists a neighborhood Vx ⊂ H0(C, L⊗2) of σ such

that c ·
(
⟨⟨a, b⟩⟩ ⊥ ⟨− τ

α2 ⟩
)

is isotropic in k(C)h
x for all τ ∈ Vx. In view of [Lam05,

I.3.4], the form ⟨⟨a, b⟩⟩ represents τ in k(C)h
x for all τ ∈ Vx.

To conclude, define W := U ∩
⋂

x Vx (where x runs over all the generic points
of the irreducible components of the special fiber of X). It is a neighborhood of σ
in H0(C, L⊗2). Our choices imply that for all τ ∈ W , the form ⟨⟨a, b⟩⟩ repre-
sents τ in k(C)h

x (for all points x ∈ X of codimension 1). By Proposition 2.3, the
form ⟨⟨a, b⟩⟩ also represents σ in k(C). □

Remarks 2.10. (i) The hypothesis on the zeros of σ in Proposition 2.9 cannot be
removed. To see it, set a = b = −1, take k := Q2 and C := P1

Q2
with homogeneous

coordinates [X : Y ], and choose L := OC(1). Then X2 is represented by ⟨⟨−1, −1⟩⟩
in k(C), but X2 − a2Y 2 is not represented by ⟨⟨−1, −1⟩⟩ in k(C), for any a ∈ Q∗

2
(by [Lam05, IX.2.3] and since −1 is not a sum of 3 squares in Q2).

(ii) Proposition 2.9 applies, in particular, when the zero locus of σ is reduced.

3. Representing sections of line bundles by quadratic forms

Let C be a connected smooth projective curve over a field k and let q be a non-
degenerate quadratic form over k. In this section, we find necessary and sufficient
conditions for a section of the square of a line bundle over C to be be represented
by q over k(C), when the quadratic form is either isotropic (see Proposition 3.2),
or definite over the field of real numbers (see Proposition 3.3).

3.1. Geometry of a quadric bundle. Let k be a field with 2 ∈ k∗. Choose
elements b1, . . . , br−2 ∈ k∗ for some r ≥ 3. Let C be a connected smooth projective
curve over k. Let L be a line bundle on C. Fix a nonzero section σ ∈ H0(C, L⊗2)
with reduced zero locus.

https://stacks.math.columbia.edu/tag/0H74
https://stacks.math.columbia.edu/tag/0H74
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Define P := PC(L ⊕ O⊕r
C ), where the projectivization is taken in Grothendieck’s

sense (so P parametrizes rank 1 quotients of L ⊕ O⊕r
C ). Let f : P → C be the struc-

tural morphism. One then computes that H0(P, OP(1)) = H0(C, L) ⊕ H0(C, OC)⊕r

(define T1, . . . , Tr ∈ H0(P, OP(1)) to be generators of the last r factors) and that
H0(P, OP(1)⊗f∗L−1) = H0(C, OC)⊕H0(C, L−1)⊕r (let T0 ∈ H0(P, OP(1)⊗f∗L−1)
be a generator of the first factor). Define

(3.1) X := {σ T 2
0 =

r−2∑
i=1

biT
2
i + Tr−1Tr} ⊂ P.

Then f |X : X → C endows X with the structure of a quadric bundle. Its fibers are
rank r +1 quadrics, except over the zero locus of σ, where they are rank r quadrics.
That σ has reduced zero locus implies that X is smooth.

We also consider P′ := PC(L ⊕ O⊕(r−1)
C ) and let g : P′ → C be the structural

morphism. As above, introduce the coordinate system on P′ given by the canonical
sections U0 ∈ H0(P′, OP′(1) ⊗ g∗L−1) and U1, . . . , Ur−1 ∈ H0(P′, OP′(1)).

Let ι : C → P be the section of f associated with the projection L ⊕ O⊕r
C → OC

onto the last factor. Let P̃ → P be the blow-up of P along the image ι(C) of ι.
Projection from ι(C) yields a birational map P 99K P′ which is resolved by blowing
up ι(C), and hence gives rise to a morphism P̃ → P′ (these facts are easily checked
locally, over open subsets of C where L can be trivialized).

As the image of ι is included in X, the strict transform X̃ of X in P̃ is the
blow-up of X along the image of ι. Let p : X̃ → X be the blow-up morphism. Set

Y := {Ur−1 = σ U2
0 −

r−2∑
i=1

biU
2
i = 0} ⊂ P′.

Then the projection morphism q : X̃ → P′ identifies with the blow-up of Y (again,
this can be checked locally on C). The following diagram summarizes the situation.

P̃
��

⊃
zz

X̃

pyy q %%
P

f ..

⊃ X

%%

P′

gyy
C

Let E and F be the exceptional divisors of p and q respectively.

Lemma 3.1. One has p∗(OP(1)|X) ≃ O
X̃

(2E + F ) and q∗OP′(1) ≃ O
X̃

(E + F ).

Proof. The divisor F ⊂ X̃ is the strict transform in X̃ of Z := {Tr−1 = 0} ⊂ X.
The very definition of Z shows that OX(Z) ≃ OP(1)|X . In addition, as the multi-
plicity of Z along the image of ι is equal to 2, the inverse image by p of the Cartier
divisor Z ⊂ X is equal to 2E + F . The first equality follows.

The divisor E ⊂ X̃ is the strict transform in X̃ of W := {Ur−1 = 0} ⊂ P′, so
that OP′(W ) ≃ OP′(1). As W is smooth along Y , the inverse image of W ⊂ P′ by q
is the Cartier divisor E + F . This completes the proof of the lemma. □

3.2. The isotropic case. The next proposition is the main result of this section.

Proposition 3.2. Let k be an infinite field with 2 ∈ k∗. Choose a1, . . . , ar ∈ k∗ for
some r ≥ 3. Assume that ⟨a1, . . . ar⟩ ≃ ⟨b1, . . . , br−2⟩ ⊥ h, where b1, . . . , br−2 ∈ k∗
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and h is the hyperbolic plane (x, y) 7→ xy. Let C be a connected smooth projective
curve over k. Fix L, M and A in Pic(C), with A ample. For σ ∈ H0(C, L⊗2)
nonzero with reduced zero locus, the following assertions are equivalent.

(i) For some N ∈ Pic(C), there exist a nonzero section α ∈ H0(C, M ⊗ N ⊗2),
and sections βi ∈ H0(C, L ⊗ M ⊗ N ⊗2) no two of which have a common
zero, such that σα2 =

∑r
i=1 aiβ

2
i .

(ii) Assertion (i) holds with N = A⊗l for all large enough integers l.
(iii) There exist P ∈ Pic(C) and a divisor ∆ on C with OC(∆) ≃ L⊗M⊗P⊗2,

such that σ is nonzero and represented by ⟨b1, . . . , br−2⟩ at all points of the
support of ∆.

Proof. We use the notation of §3.1. Solutions to

(3.2) σα2 =
r∑

i=1
aiβ

2
i

with α ∈ H0(C, M ⊗ N ⊗2) and βi ∈ H0(C, L ⊗ M ⊗ N ⊗2) without common zero
are in bijection with solutions to

(3.3) σα2 =
r−2∑
i=1

biγ
2
i + γr−1γr

with α ∈ H0(C, M ⊗ N ⊗2) and γi ∈ H0(C, L ⊗ M ⊗ N ⊗2) without common zero
(making use of an isomorphism ⟨a1, . . . ar⟩ ≃ ⟨b1, . . . , br−2⟩ ⊥ h). In turn, they are
in bijection with sections s : C → X of f |X : X → C with s∗OP(1) ≃ L⊗M⊗N ⊗2.

That (ii) implies (i) is clear. Assume that (i) holds. Let α and βi be as in (i)
for some N ∈ Pic(C). Consider the associated α and γi as in (3.3). As the βi

do not have a common zero, neither do the γi. Consequently, after applying a
general element of the special orthogonal group of ⟨b1, . . . , br−2⟩ ⊥ h (using that
this group is k-unirational, see [Bor91, V, Theorem 18.2], and that k is infinite), one
can assume that γr does not vanish on any zero of σ or of α. Then ∆ := {γr = 0}
satisfies (iii) with P = N , as equation (3.3) shows.

To conclude, we show that (iii) implies (ii). Let P and ∆ be as in (iii). After
modifying ∆ by a multiple of 2 (and P by a square), we may assume that ∆ is
effective and reduced. Then (iii) shows the existence of a section s′

∆ : ∆ → Y
of q : P′ → C over ∆. This section corresponds to a surjection

(3.4) (L ⊕ O⊕r
C )|∆ → O∆ ≃ (L ⊗ M ⊗ P ⊗ A⊗l)|∆,

where we chose a trivialization of L ⊗ M ⊗ P ⊗ A⊗l on ∆. The ampleness of A
implies that, for l large enough, one can lift (3.4) to a surjection

(3.5) L ⊕ O⊕r
C → L ⊗ M ⊗ P ⊗ A⊗l,

corresponding to a section s′ : C → P′ of g with (s′)∗OP′(1) ≃ L⊗M⊗P⊗A⊗l. For l
large enough, choosing the lift (3.5) general ensures that s′(C) meets Y transversally
along s′(∆) (and at no other point), and that s′(C) ̸⊂ {U0 = 0} ∪ {Ur−1 = 0}.

Let s̃ : C → X̃ be the strict transform of s′, and define s := s̃ ◦ p : C → X,
so s is a section of f |X . As s′(C) meets Y transversally along s′(∆) and at no
other point, we see that s̃(C) meets F transversally along s̃(∆) and at no other
point, and hence that s̃∗O

X̃
(F ) = OC(∆) ≃ L ⊗ M ⊗ P⊗2. It then follows from

the second equality of Lemma 3.1 (also using (s′)∗OP′(1) ≃ L ⊗ M ⊗ P ⊗ A⊗l),
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that s̃∗O
X̃

(E) ≃ P⊗−1 ⊗ A⊗l. The second equality of Lemma 3.1 now implies
that s∗(OP(1)|X) ≃ L⊗M⊗A⊗2l. As was explained as the beginning of the proof,
the section s corresponds to a solution (α, (βi)1≤i≤r) to (3.2) with N = A⊗l.

As we ensured that s′(C) ̸⊂ {U0 = 0} ∪ {Ur−1 = 0}, one has α ̸= 0. The βi do
not have a common zero (as α cannot vanish on such a common zero, equation (3.2)
shows that it would be a multiple zero of σ). Consequently, after applying a general
element of the special orthogonal group of ⟨a1, . . . , ar⟩ (using that this group is
k-unirational, see [Bor91, V, Theorem 18.2], and that k is infinite), one can assume
that no two of the βi have a common zero. This completes the proof of (ii). □

3.3. The definite case. The next proposition will serve as a substitute to Propo-
sition 3.2 for definite quadratic forms over the reals. For a connected smooth
projective curve C over R, we let clR : Pic(C) → H1(C(R),Z/2) denote the Borel–
Haefliger cycle class map defined as in §1.2.

Proposition 3.3. Fix r ≥ 2. Let C be a connected smooth projective curve over R.
Fix L, M and A in Pic(C), with A ample. For σ ∈ H0(C, L⊗2) nonzero with
reduced zero locus, the following assertions are equivalent.

(i) For some N ∈ Pic(C), there exist a nonzero section α ∈ H0(C, M ⊗ N ⊗2),
and sections βi ∈ H0(C, L ⊗ M ⊗ N ⊗2) without a common real zero, such
that σα2 =

∑r
i=1 β2

i .
(ii) Assertion (i) holds with N = A⊗l for all large enough integers l.

(iii) The section σ is nonnegative and clR(M) = 0.

Proof. It is obvious that (ii) implies (i). Assume that (i) holds. The nonnegativity
of σ is clear from the equation σα2 =

∑r
i=1 β2

i , as α ̸= 0. Suppose for contradiction
that clR(M) = clR(M ⊗ N ⊗2) ̸= 0. Then α ∈ H0(C, M ⊗ N ⊗2) has at least one
real zero. At such a real zero, the equation σα2 =

∑r
i=1 β2

i shows that all the βi

must vanish. This contradicts our hypothesis and proves (iii).
Assume now that (iii) holds. Let τ be a nonzero rational section of L. The

rational function f := σ
τ2 ∈ R(C) is nonnegative. By a theorem of Witt (see [Wit34,

I p. 4]), one can therefore write f = g2 + h2 with g, h ∈ R(C). By another theorem
of Witt (see [Wit34, III p. 4]), the hypothesis that clR(M) = 0 implies that M has
a nonzero rational section δ with no real zero and no real pole.

Then σδ2 = (gδτ)2 + (hδτ)2. As the rational section σδ2 of L⊗2 ⊗ M⊗2 has
no real poles, neither gδτ nor hδτ have real poles. One can therefore choose an
effective divisor D on C, whose support has no real points, with D + div(gδτ)
and D + div(hδτ) effective. Choose l large enough, so A⊗l(−D) is globally gener-
ated. Let (εi)1≤i≤n be a basis of H0(C, A⊗l(−D)). Then ε :=

∑n
i=1 ε2

i , viewed as
an element of H0(C, A⊗2l) vanishing on D, has no real zero. After maybe chang-
ing ε1, we may assume that ε ̸= 0.

Set α := δε, and (β1, . . . , βr) := (gδετ, hδετ, 0, . . . , 0). These choices ensure that

(3.6) σα2 =
r∑

i=1
β2

i

and that α ̸= 0. As neither δ nor ε have a real zero, a common real zero of β1
and β2 would have to be a multiple zero of σ (by (3.6)), which is impossible. So β1
and β2 have no common real zero, which proves (ii). □
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4. Curves over finite and p-adic fields

The aim of this section is to prove Proposition 4.8, which plays a crucial role in
our results on Pythagoras numbers.

In §4.1, we use global class field theory to describe the subgroup of the Picard
group of a reduced projective curve over a finite field that is generated by classes
of smooth closed points of degree divisible by d (see Proposition 4.3). In §4.2,
we deduce an analogous result for smooth projective curves over p-adic fields (see
Proposition 4.4). We use it in §4.3 to control the values of a section of the square
of line bundle on a p-adic curve, and in particular to prove Proposition 4.8.

4.1. Line bundles on curves over finite fields. In this paragraph, we fix a
finite field Fq of cardinality q and an algebraic closure Fq of Fq. For r ≥ 1, we
let Fq ⊂ Fqr ⊂ Fq be the subextension that is of degree r over Fq. We first recall a
standard consequence of the Lang–Weil estimates.

Lemma 4.1. Let X be a geometrically integral variety of dimension n ≥ 1 over Fq.
For r ≥ 1, let MX(r) be the number of closed points of X that are of degree r
over Fq. Then there exists K ≥ 0 such that

(4.1) |MX(r) − qnr

r
| ≤ K

q(n− 1
2 )r

r
for all r ≥ 1.

In particular, one has MX(r) > 0 for all large enough integers r ≥ 1.

Proof. Let NX(r) be the cardinality of X(Fqr ). One has NX(r) =
∑

s|r sMX(s).
The Möbius inversion formula (for which see e.g. [Apo76, Theorem 2.9]) shows that

(4.2) MX(r) = 1
r

∑
s|r

µ(r

s
)NX(s),

where µ is the Möbius function. On the other hand, it follows from the Lang–Weil
estimates [LW54, Theorem 1] that there exists a constant K ′ ≥ 0 such that

(4.3) |NX(r) − qnr| ≤ K ′ q(n− 1
2 )r

for all r ≥ 1. We deduce from (4.2) and (4.3) that

(4.4) |MX(r) − qnr

r
| ≤ K ′ q(n− 1

2 )r

r
+ 1

r

∑
s≤⌊ r

2 ⌋

NX(s).

In view of (4.3), one has NX(r) ≤ (1 + K ′) qnr for all r ≥ 1. We deduce at once
that

∑
s≤⌊ r

2 ⌋ NX(s) ≤ (1 + K ′) qn( r
2 +1). Combining this fact with (4.4) yields the

estimate (4.1) for an appropriate constant K. □

Let X be a connected smooth projective curve over a finite field Fq. Let D ⊂ X
be an effective divisor. We define Pic(X, D) to be the set of isomorphism classes
of pairs (L, φ), where L is a line bundle on X and φ : OD

∼−→ L|D is a trivializa-
tion of L on D. We endow Pic(X, D) with the group structure induced by tensor
product. With any closed point x ∈ X \ D, we associate the class [x] ∈ Pic(X, D)
of the line bundle OX(x) equipped with the restriction to D of its canonical trivial-
ization on X \ {x}. For any d ≥ 0, we let Pic(X, D)d be the subgroup of Pic(X, D)
consisting of those (L, φ) such that the degree of L over Fq is a multiple of d. As
there are only finitely many isomorphism classes of degree 0 line bundles on X, the
group Pic(X, D)0 is finite.
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Let πab
1 (X\D) be the abelianization of the étale fundamental group of X\D, and

let πab
1 (X, D) be its quotient classifying those abelian coverings whose ramification

is bounded by D in the sense of [BKS23, (8.6)]. The pushforward by the structural
morphism X\D → Spec(Fq) yields a morphism deg : πab

1 (X, D) → Gal(Fq/Fq) ≃ Ẑ
with kernel πab

1 (X, D)0. There is a commutative diagram with exact rows

0 // Pic(X, D)0 //

∼��

Pic(X, D) deg //

ρ(X,D)��

Z

��
0 // πab

1 (X, D)0 // πab
1 (X, D) deg // Ẑ

whose middle vertical arrow is the reciprocity map defined by ρ(X,D)([x]) = Frobx

(where Frobx is the Frobenius of the closed point x ∈ X \ D), whose left vertical
arrow is an isomorphism, and whose right vertical arrow is the canonical inclusion.
The above assertion combines the main theorems of global class field theory for
function fields, first proven by Hasse and Witt [Wit35]; it appears exactly in the
above form e.g. in [BKS23, (8.8), Lemma 8.4, Theorem 8.5].

Lemma 4.2. Let X be a connected smooth projective curve over Fq. Let D ⊂ X
be an effective divisor. For any d ≥ 1, the group Pic(X, D)d is generated by the
classes of those closed points of X \ D whose degree over Fq is a multiple of d.

Proof. After replacing Fq with its algebraic closure in X, we may assume that X
is geometrically connected. Let Gd ⊂ Pic(X, D)d be the subgroup generated by
the classes of those closed points of X \ D whose degree over Fq is a multiple of d.
Consider the finite group G0

d := Gd ∩ Pic(X, D)0. It follows from Lemma 4.1
that deg(Gd) = dZ, so there is a short exact sequence 0 → G0

d → Gd
deg−−→ dZ → 0.

Define H0
d := ρ(X,D)(G0

d) and let Hd ⊂ πab
1 (X, D) be the closure of ρ(X,D)(Gd).

One then has a short exact sequence 0 → H0
d → Hd

deg−−→ dẐ → 0. As Hd is a closed
subgroup of finite index in πab

1 (X, D), it corresponds to an abelian connected finite
étale cover µd : X̂d → X. The degree δd of µd equals the index of Hd in πab

1 (X, D).
Since deg(Hd) = dẐ, the algebraic closure of Fq in X̂d is isomorphic to Fqd . It
follows that µd factors as a composition X̂d → XF

qd
→ X.

By Lemma 4.1, the number of closed points of X of degree rd over Fq grows
as qrd

rd when r goes to infinity. For any such point x ∈ X, one has Frobx ∈ Hd by
definition of Hd. This means that x splits completely in X̂d, i.e., that the preimage
of x in X̂d consists of δd points of degree rd over Fq. Consequently, the number of
points of X̂d of degree rd over Fq grows at least as δd

qrd

rd when r goes to infinity.
On the other hand, it follows from Lemma 4.1 (applied to the variety X̂d over Fqd)
that this number grows as qrd

r when r goes to infinity. We deduce that δd ≤ d.
The morphism X̂d → XF

qd
must therefore be an isomorphism (as the degrees of

the connected finite étale covers X̂d and XF
qd

of X are δd and d). They are thus
associated with the same finite index subgroup of πab

1 (X, D). Taking the inverse
image of these subgroups by ρ(X,D) yields the desired equality Gd = Pic(X, D)d. □

Let X be a reduced projective curve over Fq. Let (Xi)1≤i≤m be the irreducible
components of X. We define Pic(X)d ⊂ Pic(X) to be the subgroup of line bundles L
on X such that the degree of L|Xi

over Fq is divisible by d for 1 ≤ i ≤ m.
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Proposition 4.3. Let X be a reduced projective curve over Fq. Let Ξ ⊂ X be a
finite subset of closed points. Fix d ≥ 1. Then Pic(X)d is generated by the classes
of those smooth closed points of X \ Ξ whose degree over Fq is a multiple of d.

Proof. Let (Xi)1≤i≤m be the irreducible components of X. For 1 ≤ i ≤ m, we
define X ′

i := X1 ∪ · · · ∪ Xi ⊂ X and we endow it with its reduced structure.
Fix L ∈ Pic(X)d and let 1 ≤ i ≤ m + 1 be maximal such that L|X′

i−1
is trivial.

To show that L belongs to the subgroup generated by those smooth closed points
of X \ Ξ whose degree over Fq is a multiple of d, we argue by decreasing induction
on i (the case i = m + 1 being trivial).

Consider the scheme-theoretic intersection Zi := Xi∩X ′
i−1 and the normalization

morphism νi : X̃i → Xi. Let Ii ⊂ OXi
be the coherent ideal sheaf defined as the

annihilator of the cokernel of OXi
→ (νi)∗O

X̃i
(the conductor of νi). Let Ji ⊂ Ii

be the ideal sheaf of a finite closed subscheme of Xi containing Zi and Ξ ∩ Xi.
Since Ji kills the cokernel of OXi

→ (νi)∗O
X̃i

, it is also an ideal in the sheaf of
rings (νi)∗O

X̃i
. Let Di ⊂ Xi and D̃i ⊂ X̃i be the subschemes defined by Ji. We

get a commutative diagram:

(4.5)

0 // Ji
// OXi

//

��

ODi

��

// 0

0 // Ji
// (νi)∗O

X̃i

// (νi)∗O
D̃i

// 0.

Let Pic(Xi, Di) (resp. Pic(X̃i, D̃i)) be the groups of isomorphism classes of line
bundles on Xi (resp. X̃i) endowed with a trivialization on Di (resp. D̃i). Let Ai

(resp. Ãi) be the étale sheaf of invertible functions on Xi (resp. X̃i) that are equal
to 1 on Di (resp. D̃i). One computes that

(4.6)
Pic(Xi, Di) = H1

Zar(Xi, Ai) = H1
ét(Xi, Ai) = H1

ét(Xi, (νi)∗Ãi)

= H1
ét(X̃i, Ãi) = H1

Zar(X̃i, Ãi) = Pic(X̃i, D̃i),

where the first and sixth equalities are the cocycle descriptions of Picard groups,
the second and fifth equality stem from étale descent, the third equality holds
since Ai

∼−→ (νi)∗Ãi by (4.5), and the fourth follows from [SP, Proposition 03QP]
by the Leray spectral sequence for νi.

Fix a trivialization of L on X ′
i−1 (there exists one by our choice of i). Ex-

tend the induced trivialization of L|Xi
on Zi to a trivialization φi of L|Xi

on Di.
Define (L̃i, φ̃i) := (νi)∗(L|Xi

, φi) ∈ Pic(X̃i, D̃i). By Lemma 4.2, there exists a divi-
sor Ẽi on X̃i \D̃i whose support only consists of closed points whose degree over Fq

is a multiple of d, such that (L̃i, φ̃i) ≃ O
X̃i

(Ẽi) in Pic(X̃i, D̃i). Consider the divi-
sor Ei := (νi)∗Ẽi on Xi. As νi is an isomorphism above Xi\Di and Ξ∩Xi ⊂ Di, the
support of Ei consists of smooth closed points of Xi \(Ξ∩Xi) whose degree over Fq

is a multiple of d. Using (4.6), we see that (L|Xi , φi) ≃ OXi(Ei) in Pic(Xi, Di).
The last equality implies that L(−Ei) ∈ Pic(X)d admits trivializations in re-

striction to X ′
i−1 and Xi that are compatible on Zi = Xi ∩ X ′

i−1 (as Zi ⊂ Di).
This shows that the line bundle L(−Ei)|X′

i
is trivial. To conclude, one applies the

induction hypothesis to the line bundle L(−Ei). □

https://stacks.math.columbia.edu/tag/03QP
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4.2. Line bundles on curves over p-adic fields. The following proposition is
an analogue of Proposition 4.3 over p-adic fields.

Proposition 4.4. Let k be a p-adic field with residue field κ. Let π : Y → Spec(Ok)
be a flat projective morphism of relative dimension 1 with Y regular. Let (Xi)i∈I be
the reduced irreducible components, with multiplicities (mi)i∈I , of the special fiber X
of π. Let Z ⊂ Y be an effective divisor. Fix d ≥ 1 and N ∈ Pic(Y ). Let δi ∈ Z be
the degree of N |Xi

over κ. Assume that d | miδi for all i ∈ I. Then N ≃ OY (D)
for some divisor D on Y whose support is a union of integral divisors that are flat
of degree divisible by d over Spec(Ok), and that are not included in Z.

Proof. Let Xred be the reduction of X. Define Ξ := Z ∩ Xred.
Fix i ∈ I. Let Ui ⊂ Xi be the dense open subset consisting of those smooth

points that do not belong to Ξ or to any of the Xj with j ̸= i. Let κi be the
algebraic closure of κ in Ui, so Ui is a geometrically integral variety over κi. By
definition of δi, the variety Ui carries a divisor of degree δi over κ. By Lemma 4.1
applied to the variety Ui over κi, one can therefore find a closed point xi ∈ Ui

whose degree [κ(xi) : κ] over κ is congruent to δi modulo d. Choose an integral
divisor Di ⊂ Y meeting Xred transversally at xi (and hence only at xi by henselian-
ity of Ok, see [SP, Lemma 04GH (1)]). The degree of Di over Spec(Ok) is equal to
the intersection number of Di with X. As this number is equal to mi · [κ(xi) : κ],
it is divisible by d by hypothesis. After replacing N with N (−

∑
i∈I Di), we may

therefore assume that N |Xi
has degree over κ divisible by d for all i ∈ I.

For each i ∈ I, use Lemma 4.1 to find a closed point yi ∈ Ui whose degree over κ
is divisible by d. By Proposition 4.3, there exists a divisor E on Xred, whose support
consists of smooth closed points of Xred \ Ξ with degree over κ divisible by d, with
the property that N |Xred ≃ OXred(E). Write E = F − G as the difference of two
effective divisors F and G with disjoint supports. Set G :=

∑
j∈J njzj . For i ∈ I,

choose an integral divisor D′
i ⊂ Y intersecting Xred transversally at yi (hence only

at yi by henselianity of Ok, see [SP, Lemma 04GH (1)]). Similarly, for j ∈ J , choose
an integral divisor D′′

j ⊂ Y intersecting Xred transversally at zj , and only at zj .
As OY (

∑
i∈I D′

i)|Xred = OXred(
∑

i∈I yi) is ample, so is OY (
∑

i∈I D′
i)|X by [SP,

Lemma 09MW], and hence so is OY (
∑

i∈I D′
i) by [SP, Lemma 0D2S]. We deduce

that the group H1(Y, N ⊗ IXred(N
∑

i∈I D′
i +

∑
j∈J njD′′

j )) (where IXred ⊂ OY is
the ideal sheaf of Xred in Y ) vanishes for N ≥ 0 large enough, and hence that the
restriction map

H0(Y, N (N
∑
i∈I

D′
i +

∑
j∈J

njD′′
j )) → H0(Xred, N |Xred(N

∑
i∈I

yi +
∑
j∈J

njzj))

is surjective. Lift an equation of F + N
∑

i∈I yi in Xred (which is an element of
H0(Xred, N |Xred(N

∑
i∈I yi+

∑
j∈J njzj))) to H0(Y, N (N

∑
i∈I D′

i+
∑

j∈J njD′′
j )).

By construction, the zero locus of this lift is a divisor D′′′ ⊂ Y whose restriction
to Xred is equal to F + N

∑
i∈I yi. To conclude, set

D := D′′′ − N
∑
i∈I

D′
i −

∑
j∈J

njD′′
j . □

4.3. Values of sections of line bundles over p-adic curves. The next propo-
sition controls the closed points of a p-adic curve at which a given section of the
square of a line bundle is a nonzero square.

https://stacks.math.columbia.edu/tag/04GH
https://stacks.math.columbia.edu/tag/04GH
https://stacks.math.columbia.edu/tag/09MW
https://stacks.math.columbia.edu/tag/0D2S
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Proposition 4.5. Let C be a connected smooth projective curve over a p-adic
field k. Let L be a line bundle on C. Choose σ ∈ H0(C, L⊗2) nonzero with reduced
zero locus. Then there exists a divisor ∆ on C with L ≃ OC(∆) such that the
section σ is nonzero and not a square at x, for all those closed points x in the
support of ∆ that have odd degree over k.

Proof. Let κ he the residue field of Ok. Let π : Y → Spec(Ok) be a flat projective
morphism with Y regular whose generic fiber is isomorphic to C. Extend L to a
line bundle N on Y in such a way that σ extends to a section τ ∈ H0(Y, N ⊗2).
Let X be the special fiber of π. After replacing Y with a modification, we may
assume that X ∪ {τ = 0} is a simple normal crossings divisor in Y . Replacing N
with N (−E) for some well-chosen divisor E on Y supported on X, and dividing τ
by the square of an equation of E, we may assume that τ has reduced zero locus.

Let (Xi)i∈I be the reduced irreducible components of X. We view them as
varieties over κ. Let (mi)i∈I be their multiplicities in X. Define

J := {i ∈ I | N |Xi
has odd degree over κ and mi is odd}.

For j ∈ J , let κj be the algebraic closure of κ in Xj . As Xj carries a line bundle
of odd degree over κ (by definition of J), we see that κj is an odd degree extension
of κ. Moreover, since Xj is smooth, it is geometrically integral over κj . We claim
that for all j ∈ J , there exists an integral divisor Dj ⊂ Y that is flat over Spec(Ok),
such that OY (Dj)|Xj has odd degree over κ, such that Dj ∩ Xi = ∅ if i ̸= j, and
such that σ is nonzero and not a square at the generic point of Dj .

To prove the claim, we first assume that τ vanishes identically on Xj . Choose
a closed point x ∈ Xj that does not belong to any other irreducible component
of X ∪ {τ = 0} and that has odd degree over κj , hence over κ (such a point exists
by the Lang–Weil estimates [LW54, Corollary 3]). Let Dj ⊂ Y be an integral divisor
that meets Xj transversally at x. By henselianity of Ok, the divisor Dj meets X
only at the point x (use [SP, Lemma 04GH (1)]). It follows that OY (Dj)|Xj

has
odd degree over κ. In addition, since τ vanishes at order exactly one along Xj , its
restriction to Dj vanishes at order exactly one along x. Consequently, the section τ
cannot be a square at the generic point of Dj .

Assume now that τ does not vanish identically on Xj . The zero locus of τ
on Xj is reduced (because X ∪ {τ = 0} is simple normal crossings and {τ = 0} is
reduced) and nonempty (otherwise τ would trivialize (N ⊗2)|Xj

and N |Xj
could not

have odd degree over κ). The double cover µ : X̂j → Xj with equation {z2 = aτ}
(where a ∈ κ∗ represents the nontrivial square class) is therefore geometrically
integral over κj . Let Uj ⊂ X̂j be the dense open subset consisting of those points
whose images by µ do not belong to any irreducible component of X ∪{τ = 0} other
than Xj . By the Lang–Weil estimates [LW54, Corollary 3], one can find a closed
point y ∈ Uj that has odd degree over κj , hence also over κ. By construction,
the section τ is nonzero and not a square at x := µ(y). As above, any integral
divisor Dj ⊂ Y that meets Xj transversally at x is such that OY (Dj)|Xj has odd
degree over κ. In addition, the section τ is nonzero and not a square at the generic
point of Dj because such is the case at x (this can be deduced from [EKM08,
Lemma 19.5]). This completes the proof of the claim.

https://stacks.math.columbia.edu/tag/04GH
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Note that N (−
∑

j∈J Dj)|Xi
has even degree over κ for all i ∈ I such that mi is

odd. By Proposition 4.4 applied with d = 2 and Z := {τ = 0}, one can write

N (−
∑
j∈J

Dj) ≃ OY (D),

where all the irreducible components of the support of D are flat of even degree
over Spec(Ok), and none of them are included in {τ = 0}. To conclude, define ∆
to be the restriction of D +

∑
j∈J Dj to C. □

Remark 4.6. In the setting of Proposition 4.5, it is in general not true that all
line bundles L′ ∈ Pic(C) are of the form OC(∆) with ∆ as above (i.e., such that
for all odd degree closed points x in the support of ∆, the section σ is nonzero
and not a square at x). An example is provided by C = P1

k, with L = OP1
k

and σ = 1 ∈ H0(P1
k, OP1

k
). Then L′ = OP1

k
(1) is not of the required form.

The following lemma is well-known.

Lemma 4.7. Let k be a p-adic field. Let q be a nondegenerate quadratic form of
rank ≥ 3 over k. Then q is isotropic over all finite extensions l/k of even degree.

Proof. We may assume that q has rank 3. Let d ∈ k∗ be (a representative of)
the determinant of q. Then ⟨1⟩ ⊥ dq is the norm form of a quaternion algebra
over k (see [Lam05, III.2]), which splits over l (see [Ser68, XIII.3, Proposition 7]).
So ⟨1⟩ ⊥ dq is hyperbolic over l (see [Lam05, III.2.7]), and q is isotropic over l. □

We may now prove the main result of this section.

Proposition 4.8. Let C be a connected smooth projective curve over a p-adic
field k. Let L be a line bundle on C. Choose σ ∈ H0(C, L⊗2) nonzero with reduced
zero locus. Let q be a nondegenerate quadratic form of rank ≥ 3 over k. There
exists a divisor ∆ on C with L ≃ OC(∆) such that σ is nonzero and represented
by q at all points of the support of ∆.

Proof. We may assume that q has rank 3. As isotropic forms are universal (see
[Lam05, I.3.4]), we may also assume that q is anisotropic.

By [Lam05, VI.2.15 (2)], the form q is not universal. Fix a ∈ k∗ not represented
by q. After replacing σ and q with aσ and aq, we may assume that a = 1. Then 1
is not represented by q on any odd degree extension of k, by Springer’s theorem
[Lam05, VII.2.9]. We deduce from [Lam05, VI.2.15 (2)] that over any odd degree
extension of k, an element is represented by q if and only if it is not a square. In
addition, the form q is isotropic, hence universal, over all even degree extensions
of k, by Lemma 4.7. The proposition now follows from Proposition 4.5. □

5. Curves over number fields

We finally present the proofs of our main results.

5.1. The representation theorem. We start with Theorem 1.2.

Theorem 5.1. Let C be a geometrically connected smooth projective curve over
a number field k. Let q be a nondegenerate quadratic form of rank r ≥ 5 over k.
Fix f ∈ k(C)∗. Write div(f) = E − 2D with E a reduced effective divisor.

Then q represents f in k(C) if and only if there exists M ∈ Pic(C) such that:
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(i) if v is a real place of k and qv is positive definite (resp. negative definite),
then f is nonnegative (resp. nonpositive) at v and clv(M) = 0;

(ii) if v is a place of k with qv = q̃v ⊥ ⟨1, −1⟩ for some quadratic form q̃v

over kv, then there exist a line bundle P ∈ Pic(Cv) and a divisor ∆ on Cv

with M ⊗ P⊗2 ≃ OCv
(∆ − D), such that f is invertible at x and f(x) is

represented by q̃v for all closed points x in the support of ∆.

Proof. Set L := OC(D) and let τ be a rational section of L with div(τ) = D.
Define σ := fτ2, so that σ ∈ H0(C, L⊗2) is such that div(σ) = E.

Write q = ⟨a1, . . . , ar⟩ for some ai ∈ k∗.

Step 1. Conditions (i) and (ii) are necessary.

Assume that f =
∑r

i=1 aig
2
i for some gi ∈ k(C). Then σ =

∑r
i=1 ai(giτ)2.

Let F be the smallest effective divisor on C such that F + div(giτ) is effective for
all 1 ≤ i ≤ r with gi ̸= 0. Define M := O(F ). Let α ∈ H0(C, M) be a nonzero
section such that div(α) = F . Set βi := giατ ∈ H0(C, L ⊗ M). Then

(5.1) σα2 =
r∑

i=1
aiβ

2
i .

As σ only has simple zeros, the (giτ)1≤i≤r have no common zero. It follows from
our choice of α that the (βi)1≤i≤r have no common zero either. Condition (i) now
follows from Proposition 3.3 (applied to σ if qv is positive definite and to −σ if qv

is negative definite) and condition (ii) from Proposition 3.2.

Step 2. Conditions (i) and (ii) are sufficient.

Assume that M ∈ Pic(C) satisfies conditions (i) and (ii). Fix A ∈ Pic(C) ample.
We may freely multiply q = ⟨a1, . . . , ar⟩ and f by the same element of k∗.

An appropriate choice of scalar (and a coordinate change) allow us to assume that
(a1, a2, a3, a4) = (1, a, b, ab) for some a, b ∈ k∗ (i.e., that q = ⟨⟨a, b⟩⟩ ⊥ ⟨a5, · · · , ar⟩).
It suffices to verify this claim when q has rank r = 5, in which case it is proven in
[Pou71, Proposition 8].

Let V be the finite set of places of k at which the Pfister form ⟨⟨a, b⟩⟩ is anisotropic
(i.e., at which the quaternion algebra (a, b) does not split, see [Lam05, III.2.7]).

Fix v ∈ V . Unless v is real and qv is definite, the quadratic form qv is isotropic
(see [Lam05, VI.2.12]). It follows from Proposition 3.3 (if v is a real and qv is
definite) or from Proposition 3.2 (otherwise) that for all l large enough, there exist
sections αv ∈ H0(Cv, M ⊗ A⊗2l) and βi,v ∈ H0(Cv, L ⊗ M ⊗ A⊗2l) such that

(5.2) σα2
v =

r∑
i=1

aiβ
2
i,v

with αv ̸= 0. In addition, the quoted propositions allow us to ensure that no two of
the (βi,v) have a common real zero (if v is real and qv is definite) or a common zero
(otherwise). Finally, as V is finite, one can choose l to be independent of v ∈ V .

Use the Artin–Whaples approximation theorem [AW45, Theorem 1], to find
sections α ∈ H0(C, M ⊗ A⊗2l) and βi ∈ H0(C, L ⊗ M ⊗ A⊗2l) that are close
to the αv and the βi,v for the topology induced by v, for all v ∈ V .

We claim that f−
∑r

i=5 ai

(
βi

ατ

)2 = 1
α2τ2 (σα2−

∑r
i=5 aiβ

2
i ) is represented by ⟨⟨a, b⟩⟩

in kv(Cv) for all places v of k.
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(a) If v /∈ V , then ⟨⟨a, b⟩⟩ is isotropic, hence universal (see [Lam05, I.3.4]), and
the claim is trivial.

(b) If v ∈ V is real then the form ⟨⟨a, b⟩⟩ is definite, hence positive definite, at
the place v. As the (βi,v)1≤i≤4 have no common real zero, we deduce that
the section σα2

v −
∑r

i=5 aiβ
2
i,v =

∑4
i=1 aiβ

2
i,v ∈ H0(Cv, (L ⊗ M ⊗ A⊗2l)⊗2)

is positive on Cv(kv). If α and the βi have been chosen close enough
to αv and the βi,v, then so is the section σα2 −

∑r
i=5 aiβ

2
i . It follows

that f −
∑r

i=5 ai

(
βi

ατ

)2 is nonnegative. By a theorem of Witt (see [Wit34,
I p. 4]), we deduce that f −

∑r
i=5 ai

(
βi

ατ

)2 is a sum of two squares in kv(Cv),
hence that it is represented by ⟨⟨a, b⟩⟩ in this field.

(c) Suppose that v ∈ V is p-adic for some prime number p. Let x ∈ Cv be a
zero of σα2

v −
∑r

i=5 aiβ
2
i,v =

∑4
i=1 aiβ

2
i,v ∈ H0(Cv, (L ⊗ M ⊗ A⊗2l)⊗2). As

the (βi,v)1≤i≤4 do not all vanish at x, the form ⟨⟨a, b⟩⟩ = ⟨a1, a2, a3, a4⟩ is
isotropic in the residue field of x. It therefore follows from Proposition 2.9
that, if α and the βi have been chosen close enough to αv and the βi,v, the
section σα2 −

∑r
i=5 aiβ

2
i is represented by ⟨⟨a, b⟩⟩ at the generic point of Cv.

It follows that f −
∑r

i=5 ai

(
βi

ατ

)2 is represented by ⟨⟨a, b⟩⟩ in kv(Cv).

We deduce from Proposition 2.2 that f −
∑r

i=5 ai

(
βi

ατ

)2 is represented by ⟨⟨a, b⟩⟩
in k(C), hence that f is represented by q in k(C). □

Let us list a few cases in which condition (ii) can be verified.

Remarks 5.2. (i) Condition (ii) in Theorem 5.1 is always satisfied, for any choice
of M ∈ Pic(C), if q̃v is isotropic (as isotropic forms are universal [Lam05, I.3.4]).

(ii) Assume that v is real and that q̃v is positive definite (resp. negative definite).
Then condition (ii) in Theorem 5.1 holds for a given M ∈ Pic(C) if and only if, for
any connected component Γ of Cv(R) on which f is nonpositive (resp. nonnegative),
the class clv(M(D))|Γ ∈ H1(Γ,Z/2) = Z/2 vanishes (see Lemma 5.3 below).

(iii) If v is a p-adic place, then condition (ii) in Theorem 5.1 is always satisfied
for M = OC , by Proposition 4.8 (one can take P = OCv ).

Lemma 5.3. Let C be a connected smooth projective curve over R. Fix f ∈ R(C)∗.
Write div(f) = E − 2D with E a reduced effective divisor. For all M ∈ Pic(C),
the following assertions are equivalent.

(i) There exist P ∈ Pic(C) and a divisor ∆ on C with M ⊗ P⊗2 ≃ OC(∆ − D)
such that f is invertible and a square at x, for all x in the support of ∆.

(ii) For any connected component Γ of C(R) on which f is nonpositive, the
Borel–Haefliger class clR(M(D))|Γ ∈ H1(Γ,Z/2) = Z/2 vanishes.

Proof. Assume that (i) holds. If clR(M(D))|Γ ̸= 0, then clR(∆)|Γ ̸= 0, and the
support of ∆ must meet Γ at some point. At such a point, the rational function f
is invertible and a square, hence positive. This proves (ii).

Conversely, suppose that (ii) holds. Then there exists a divisor ∆ on C such
that f is invertible and positive at all real points of the support of ∆, and such
that clR(M(D − ∆)) = 0. By a theorem of Witt (see [Wit34, III p. 4]), one can
modify ∆ by a divisor whose support has no real points to ensure that more-
over M(D − ∆) ≃ OC . Write ∆ =

∑
i nixi +

∑
j mjyj , where the xi (resp. the yj)

are closed points of C with complex (resp. real) residue fields. Choose N ≥ 0 such
that OC(Nxi) is very ample for all i. Let σi ∈ H0(C, OC(xi)) be an equation of xi.
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Let τi ∈ H0(C, OC(Nxi)) be a small perturbation of σN
i , chosen not to vanish

on any real point of C or on any point of C at which f is not invertible. After
replacing ∆ with ∆ + div(

∏
i

τi

σN
i

), we may assume that f is invertible at all points
of the support of ∆. This proves (i). □

5.2. Consequences of Theorem 5.1. We now derive more concrete corollaries
of Theorem 5.1 under various additional assumptions (on the function f , on the
quadratic form q, or on the curve C).
Corollary 5.4. Let C be a geometrically connected smooth projective curve over
a number field k. Let q be a nondegenerate quadratic form of rank r ≥ 5 over k.
Fix f ∈ k(C)∗. Write div(f) = E − 2D with E a reduced effective divisor. Assume
that at least one of the following assertions holds.

(a) clv(D) = 0 for all real places v of k at which qv is definite.
(b) clv(D) = 0 for all real places v of k at which qv has hyperbolic signature.
(c) The form q does not have hyperbolic signature at any real place of k.
(d) The curve C is a nonsplit conic over k.
(e) One can write div(f) = 4F + G in such a way that the residue fields of all

points in the support of G have no real embeddings.
Then q represents f in k(C) if and only if f is nonnegative (resp. nonpositive) at
all real places of k at which q is positive definite (resp. negative definite).
Proof. In case (a), we apply Theorem 5.1 with M = OC(−D). Condition (i) is
satisfied by our hypotheses on the real places at which q is definite. Condition (ii)
is automatically satisfied (with P = OCv and ∆ = 0) by our choice of M.

In case (b), we apply Theorem 5.1 with M = OC . Condition (i) is satisfied by
our hypothesis on definite real places v of k, as clv(OC) = 0. Condition (ii) holds
at a real place by Remarks 5.2 (i) and (ii) and at a p-adic place by Remark 5.2 (iii).

Case (c) is a particular case of (b).
Case (d) follows from either (a) or (b). Indeed, let v be a real place of k. The

set of real points Cv(R) is empty or connected (because C is a conic). In addition,
the group Pic(C) is generated by a degree 2 line bundle (as C is a nonsplit conic).
It follows from these two facts that clv vanishes identically on Pic(C).

Finally, case (e) also follows from either (a) or (b), as it implies that clv(D) = 0
for all real places v of k. □

Remarks 5.5. (i) Condition (e) in Corollary 5.4 is exactly the one appearing in Pop’s
[Pop23, Theorem 2.5 (1)] (in the particular case where q = ⟨1, 1, 1, 1, 1⟩). One can
therefore think of Corollary 5.4 (e) as generalizing this result of Pop.

(ii) If q is not definite at any real place of k, it follows from Corollary 5.4 (a) that
any f ∈ k(C) is represented by q. However, this statement is trivial because this
assumption implies that q is isotropic (see [Lam05, VI.3.5]) hence universal over
any extension of k (see [Lam05, I.3.4]).

(iii) The argument in (ii) also shows that Theorem 5.1 remains true, and is
trivial, over global fields of positive characteristic (in characteristic 2, see [Pol70,
Proposition 3.1]).

In the case C = P1
k, we recover the results of Pourchet [Pou71, Corollaire 1 p. 98].

Corollary 5.6. Let k be a number field. Let q be a nondegenerate quadratic form
of rank r ≥ 5 over k. Let f ∈ k[t] be a separable polynomial. Then q represents f
over k[t] (equivalently, over k(t)) if and only if one of the following assertions hold.
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(i) For all real places v of k, the form qv is not definite.
(ii) For all real places v of k such that qv is positive definite (resp. negative

definite), the function f is nonnegative (resp. nonpositive) at v, and either
(a) the degree of f is divisible by 4; or
(b) if v is a real place of k and qv has signature (r −1, 1) (resp. (1, r −1)),

then f is not nonpositive (resp. not nonnegative) at v.
Proof. That q represents f over k[t] if and only if it represents it over k(t) fol-
lows from the Cassels–Pfister theorem (see [Lam05, IX.1.3]). To analyze when q
represents f over k(t), we apply Theorem 5.1 with C = P1

k.
If q is indefinite at all real places of k, then q represents f in k(t) (see Re-

mark 5.5 (ii)). Assume otherwise. Then the necessary condition that f be non-
negative (resp. nonpositive) at positive definite (resp. negative definite) real places
can only be satisfied if f has even degree (otherwise it changes sign). Writ-
ing deg(f) = 2n, one has OC(D) = OP1

k
(n) in the notation of Theorem 5.1.

Condition (i) of Theorem 5.1 can only be satisfied with M = OP1
k
(l) for l even.

For such a choice of M, condition (ii) of Theorem 5.1 is satisfied at all real places if
and only if either (a) or (b) holds (apply Remarks 5.2 (i) and (ii)). When this is the
case, one can choose M = OP1

k
, as condition (ii) of Theorem 5.1 is then satisfied at

all p-adic places (see Remark 5.2 (iii)). This completes the proof. □

Remark 5.7. In [Pou71, Corollaire 1 p. 98], Pourchet only formulates a sufficient
condition for f to be represented by q. He does not explicitly consider the (much
easier) cases when q is indefinite at all real places of k, or when f has odd degree.
He also restricts his statement to the (most interesting) case where q has rank 5.
5.3. The Pythagoras number. Here is an application to the Pythagoras number.
Theorem 5.8. Let C be a connected smooth curve over a number field k. Then
p(k(C)) ≤ 5.
Proof. We may replace C with its smooth projective compactification. After re-
placing k with its algebraic closure in k(C), we may assume that C is geometrically
connected over k. Let f ∈ k(C) be a sum of squares, which we may assume to be
nonzero. It is nonnegative at all real places of k. It is therefore a sum of 5 squares
in k(C) by Corollary 5.4 (c) applied with q := ⟨1, 1, 1, 1, 1⟩. □

Theorem 1.1 is a simple consequence of Theorem 5.8.
Corollary 5.9. If F is a field of transcendence degree 1 over Q, then p(F ) ≤ 5.
Proof. Let f ∈ F be a sum of squares. We wish to show that f is a sum of 5 squares
in F . Replacing F by a finitely generated subfield of transcendence degree 1 over Q
that contains f and in which f is a sum of squares, we may assume that F is finitely
generated over Q, and hence the function field of a connected smooth curve over a
number field. One can then apply Theorem 5.8. □

Our last goal is to explain the relation between Theorem 5.8 and Hilbert’s 17th
problem. The next proposition is a version of the solution to this problem given by
Artin in [Art27] and of its subsequent extension by Lang [Lan53, Theorem 9]. We
could not find it in this precise form in the literature.
Proposition 5.10. Let X be a connected smooth variety over a field k with 2 ∈ k∗.
Fix an element f ∈ O(X). The following assertions are equivalent:
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(i) for all field orderings ⪰ of k(X), one has f ⪰ 0;
(ii) for all real closures k ⊂ R of k and all x ∈ X(R), one has f(x) ≥ 0;

(iii) for all real closed extensions k ⊂ R and all x ∈ X(R), one has f(x) ≥ 0;
(iv) f is a sum of squares in k(X).

If k is a number field, they are also equivalent to:
(v) for all real places v of k and all x ∈ Xv(R), one has f(x) ≥ 0.

Proof. The equivalence (ii)⇔(iii) follows from the Tarski–Seidenberg transfer prin-
ciple [BCR98, Proposition 5.2.3]. The equivalence (i)⇔(iv) is a theorem of Artin
[Art27, Satz 1]. That (iv) implies (ii) follows from [BCR98, Theorem 6.1.9 (i)⇒(iii)].

Assume that (i) fails. Fix a field ordering ⪰ of k(X) with f ≺ 0. The real clo-
sure S of K(X) with respect to ⪰ contains the real closure R of k with respect to ⪰.
As the compositum of R and k(X) in S is isomorphic to R(XR), the field R(XR)
admits an ordering ⪰ with f ≺ 0. It follows from [BCR98, Theorem 6.1.9 (iii)⇒(i)]
that there exists x ∈ X(R) such that f(x) < 0. This disproves (ii).

If k is a number field, then (iii)⇒(v)⇒(ii) because the orderings of k are in
bijection with its real places (see e.g. [AS26, Satz 10]). □

Corollary 5.11. Let C be a connected smooth curve over a number field k and
fix f ∈ k(C). The following assertions are equivalent.

(i) for all field orderings ⪰ of k(C), one has f ⪰ 0;
(ii) for all real places v of k and all x ∈ Cv(R) that is not a pole of f , one

has f(x) ≥ 0;
(iii) f is a sum of squares in k(C);
(iv) f is a sum of 5 squares in k(C).

Proof. It suffices to combine Theorem 5.8 and Proposition 5.10. □
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