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Abstract. We prove that the category of Stein spaces and holomorphic maps
is anti-equivalent to the category of Stein algebras and C-algebra morphisms.
This removes a finite dimensionality hypothesis from a theorem of Forster.

Introduction

Complex spaces are a generalization of complex manifolds allowing singularities,
and as such are the basic objects of study in complex-analytic geometry. Formally,
they are defined to be C-ringed spaces that are locally isomorphic to model spaces
defined by the vanishing of finitely many holomorphic functions in a domain of CN

for some N ≥ 0 (see [GR84, 1, §1.5]). We assume that they are second-countable,
but not necessarily reduced or finite-dimensional.

A complex space S is said to be Stein if Hk(S, F) = 0 for all coherent sheaves F
on S and all k > 0 (see [GR79]). Stein spaces are the complex-analytic analogues
of affine algebraic varieties. For instance, the Stein spaces of finite embedding
dimension are exactly those complex spaces that may be realized as closed complex
subspaces of CN for some N ≥ 0 (see [Nar60, Theorem 6]).

If S is a complex space, the C-algebra O(S) of holomorphic functions on S carries
a canonical Fréchet topology (see [GR79, V, §6]). A topological C-algebra of the
form O(S) for some Stein space S is called a Stein algebra.

In algebraic geometry, the anti-equivalence of categories between affine varieties
over C and C-algebras of finite type is a basic tool to study affine algebraic varieties.
Our main theorem is a counterpart of this result in complex-analytic geometry.
Theorem 0.1 (Theorem 3.3). The contravariant functor

(0.1)
{

Stein spaces
and holomorphic maps

}
→

{
Stein algebras

and C-algebra morphisms

}
given by S 7→ O(S) is an anti-equivalence of categories.

Very significant particular cases of Theorem 0.1 were previously known. First,
Forster has shown in [For67, Satz 1] that Theorem 0.1 holds if one replaces the
right-hand side of (3.1) by the category of Stein algebras and continuous C-algebra
morphisms. From this point of view, our contribution is an automatic continuity
result for morphisms of Stein algebras (see Theorem 3.2 below).

Second, Forster has proven this automatic continuity result in restriction to
finite-dimensional Stein spaces (see [For66, Theorem 5]). In particular, Theorem 0.1
was already known in restriction to finite-dimensional Stein spaces and their asso-
ciated Stein algebras. Forster’s theorem was later generalized by Markoe [Mar73]
and Ephraim [Eph78, Theorem 2.3] who made weaker finite dimensionality as-
sumptions. Our contribution is to remove these finite dimensionality hypotheses
altogether. This problem was raised by Forster in [For66, Remark p.162].
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Our strategy to prove Theorem 0.1 is to reduce to the finite-dimensional case
treated by Forster by means of the next theorem.

Theorem 0.2 (Theorem 2.1). Let S be a Stein space. Then there exists a holo-
morphic map f : S → C2 all of whose fibers are finite-dimensional.

Our proof of Theorem 0.2 is an application of Oka theory. It uses in a crucial
way new examples of Oka manifolds constructed by Forstnerič and Wold [FW24]
(based on and extending earlier work of Kusakabe [Kus21, Kus24]), as well as an
extension theorem for holomorphic maps from Stein spaces to Oka manifolds due
to Forstnerič [For05, For17].

We note that Theorem 0.2 is optimal in the sense that there may not exist a
holomorphic map f : S → C with finite-dimensional fibers (see Proposition 2.3).
An earlier version of this article, relying on the Oka manifolds constructed by
Kusakabe [Kus24, Theorem 1.6], only produced such a map with values in C3. We
are grateful to Franc Forstnerič for drawing our attention to the article [FW24],
thereby allowing us to prove Theorem 0.2 in the form stated above.

The results of Oka theory that we need are gathered in Section 1. These tools
are used to prove Theorem 0.2 in Section 2. In Section 3, we deduce Theorem 0.1
from Theorem 0.2 and from Forster’s works [For66, For67].

1. Tools from Oka theory

We recall that a complex manifold Y is said to be Oka if for all convex compact
subsets K ⊂ CN and all open neighborhoods Ω of K in CN , any holomorphic
map Ω → Y can be approximated uniformly on K by holomorphic maps CN → Y
(see [For09, Definition 1.2]).

We now introduce the Oka manifolds of interest to us. For r ∈ R, define
Yr := {(z1, z2) ∈ C2 | Im(z2) < |z1|2 + Re(z2)2 − r}.

The next proposition is a particular case of a theorem of Forstnerič and Wold
[FW24, Corollary 1.5] (pointed out in [FW24, (1.2)]).

Proposition 1.1. For r ∈ R, the complex manifold Yr is Oka.

The following easy lemma implies in particular that Yr is contractible.

Lemma 1.2. Fix r ∈ R. There is a homotopy (ht)t∈[0,1] : C2 → C2 inducing strong
deformation retractions of both C2 and Yr onto {(z1, z2) ∈ C2 | Im(z2) ≤ −r − 1}.

Proof. The homotopy (ht)t∈[0,1] defined by
ht(z1, z2) = (z1, z2 − it(Im(z2) + r + 1)) if Im(z2) ≥ −r − 1
ht(z1, z2) = (z1, z2) if Im(z2) ≤ −r − 1

has the required properties.

We will make use of the Oka property and of the contractibility of Yr through the
next extension result, which is an application of theorems of Forstnerič (see [For05,
Theorem 1.1] and the more general [For17, Theorem 5.4.4]).

Proposition 1.3. Fix r ∈ R. Let S be a reduced Stein space and let S′ be a (possibly
nonreduced) closed complex subspace of S. Let f ′ : S′ → Yr be a holomorphic map.
Then there exists a holomorphic map f : S → Yr with f |S′ = f ′.
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Proof. Since S is Stein, the restriction map O(S) → O(S′) is onto. It follows that
there exists a holomorphic map f1 : S → C2 such that f1|S′ = f ′.

Define U := f−1
1 (Yr). It is an open neighborhood of S′ in S. Let Z ⊂ U be a

closed neighborhood of S′ in U . By the Tietze–Urysohn extension theorem, there
exists a continuous map τ : S → [0, 1] which is equal to 0 on Z and to 1 on S \ U .

Define a continuous map f2 : S → Yr by the formula f2(s) = hτ(s)(f1(s)),
where (ht)t∈[0,1] is the homotopy given by Lemma 1.2. Since f2 is equal to f1 on U ,
it is holomorphic in a neighborhood of S′ and satisfies f2|S′ = f ′.

As Yr is Oka by Proposition 1.1, it now follows from the jet interpolation part
of [For17, Theorem 5.4.4] (applied with π equal to be the first projection map
S × Y → S and with S equal to the ideal sheaf of S′ in S) that f2 is homotopic
to a holomorphic map f : S → Yr with f |S′ = f2|S′ , and hence f |S′ = f ′. This
completes the proof of the proposition. □

2. Holomorphic maps with finite-dimensional fibers

The next theorem is the key to our main results.

Theorem 2.1. Let S be a Stein space. Then there exists a holomorphic map
f : S → C2 all of whose fibers are finite-dimensional.

Proof. Let Sred be the reduction of S. Since S is Stein, the restriction map
O(S) → O(Sred) is onto, and we may assume that S is reduced.

Let (Sk)0≤k<n with n ∈ N ∪ {+∞} be the irreducible components of S, viewed
as reduced closed complex subspaces of S. Let Θ be the collection of all reduced
and irreducible closed complex subspaces of S that may be obtained as irreducible
components of an intersection of finitely many of the Sk. The set Θ is at most
countable, and any compact subset of S meets at most finitely many elements of Θ.

For d ≥ 0, we let Θd ⊂ Θ be the set of all d-dimensional elements of Θ.
Let (Zd,j)0≤j<m(d) with m(d) ∈ N ∪ {+∞} be an enumeration of the elements
of Θd. We henceforth identify Θ with the set of all pairs (d, j) with d ≥ 0 and
0 ≤ j < m(d) and endow it with the lexicographical order. It is a well-ordered set.
For all (d, j) ∈ Θ, we view Wd,j := ∪(d′,j′)≤(d,j)Zd′,j′ and W ′

d,j := ∪(d′,j′)<(d,j)Zd′,j′

as reduced closed complex subspaces of S. Finally, for (d, j) ∈ Θ, we let r(d, j) be
the biggest integer k ≥ 1 such that Zd,j ⊂ Sk.

We will now construct holomorphic functions fd,j : Wd,j → C2 for all (d, j) ∈ Θ
with the property that fd,j |Wd′,j′ = fd′,j′ and fd,j(Zd′,j′) ⊂ Yr(d′,j′) whenever
(d′, j′) ≤ (d, j). The construction is by induction on the pair (d, j) ∈ Θ (which
is legitimate since Θ is well-ordered).

Assume that the fd′,j′ for (d′, j′) < (d, j) have been constructed. Since these
maps are compatible, they glue to give rise to a holomorphic map f ′

d,j : W ′
d,j → C2.

Now Wd,j = W ′
d,j ∪ Zd,j . Define Vd,j := W ′

d,j ∩ Zd,j . It is a possibly nonreduced
closed complex subspace of S. Note that Vd,j is set-theoretically a union of some
of the Zd′,j′ with (d′, j′) < (d, j). If Zd′,j′ ⊂ Vd,j is one of them, then Zd′,j′ ⊂ Zd,j

and hence r(d′, j′) ≥ r(d, j). Since fd′,j′(Zd′,j′) ⊂ Yr(d′,j′) ⊂ Yr(d,j), we de-
duce that f ′

d,j(Vd,j) ⊂ Yr(d,j). Proposition 1.3 now implies that the holomorphic
map f ′

d,j |Vd,j
: Vd,j → Yr(d,j) extends to a holomorphic map f ′′

d,j : Zd,j → Yr(d,j).
Since f ′

d,j and f ′′
d,j coincide on Vd,j = W ′

d,j ∩ Zd,j , they glue (by Lemma 2.2 below)
to give rise to a holomorphic map fd,j : Wd,j → C2 with the required properties.
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As the (fd,j)(d,j)∈Θ are compatible, they induce a holomorphic map f : S → C2.
Let us verify that this map has the required property. One has f(Sk) ⊂ Yk for
all 0 ≤ k < n (as Sk is one of the Zd,j). Since the (Yk)k≥0 form a decreasing family
of subsets of C2 with empty intersection, we deduce that any point of C2 belongs to
at most finitely many of the f(Sk). In other words, any fiber of f intersects at most
finitely many of the Sk. It follows that all the fibers of f are finite-dimensional. □

Lemma 2.2. Let S be a complex space. Let S1 and S2 be closed complex subspaces
of S. Set T := S1 ∩ S2. The following diagram of sheaves on S is exact:

(2.1) OS
f 7→(f |S1 ,f |S2 )
−−−−−−−−−→ OS1 ⊕ OS2

(g,h)7→g|T −h|T−−−−−−−−−−→ OT → 0.

If moreover S is reduced and S = S1 ∪ S2, then the left arrow of (2.1) is injective.

Proof. Fix s ∈ S. Write A = OS,s and let I1 (resp. I2) be the ideal of A consisting
of germs of functions vanishing on S1 (resp. S2). Then the exactness of (2.1) at s
results from the exactness of A → A/I1 ⊕ A/I2 → A/⟨I1, I2⟩ → 0, which is valid
for any two ideals I1 and I2 of a commutative ring A.

If S = S1 ∪S2, then a holomorphic function in the kernel of the left arrow of (2.1)
vanishes at all points and hence vanishes if S is reduced. □

The next proposition shows the optimality of Theorem 2.1.

Proposition 2.3. There exists a Stein space S such that all holomorphic maps
f : S → C admit an infinite-dimensional fiber.

Proof. For n ≥ 1, set Sn := Cn. Define Tn := {(z1, . . . , zn) ∈ Sn | zn = 0} and
T ′

n := {(z1, . . . , zn+1) ∈ Sn+1 | zn = 0 and zn+1 = 1}. Let φn : Tn
∼−→ T ′

n be
the isomorphism given by φn(z1, . . . , zn−1, 0) = (z1, . . . , zn−1, 0, 1). Let S be the
complex space obtained from ⊔n≥1Sn by gluing Sn and Sn+1 transversally along Tn

and T ′
n by means of φn (for all n ≥ 1). The complex space S is Stein because so is

its normalization ⊔n≥1Sn (see [Nar62, Theorem 1]).
Let f : S → C be a holomorphic map. Assume first that f |Sn

is constant for
all n ≫ 0. As the subset Sn ∩ Sn+1 of S is nonempty, the value taken by f |Sn does
not depend on n ≫ 0. It follows that f has a (single) infinite-dimensional fiber.

Assume now that the set Σ := {n ∈ N≥1 | f |Sn
is not constant} is infinite. For

all n ∈ Σ, the map f |Sn
: Sn → C omits at most one value, by Picard’s little

theorem. We deduce that at most one complex number is not the image of f |Sn
for

all but finitely many n ∈ Σ. Consequently, all complex numbers except possibly
one are in the image of infinitely of the f |Sn . As the nonempty fibers of f |Sn

have dimension ≥ n − 1, we deduce that all the fibers of f except possibly one are
infinite-dimensional. □

3. Morphisms of Stein algebras

Theorem 3.1. Let S be a Stein space. Let χ : O(S) → C be a C-algebra morphism.
Then χ is continuous and there exists s ∈ S such that χ(f) = f(s) for all f ∈ O(S).

Proof. Let f : S → C2 be as in Theorem 2.1. Let (fi)1≤i≤2 be the components
of f . Set λi := χ(fi) ∈ C. Let T ⊂ S be the closed complex subspace defined by
the equations {fi = λi}1≤i≤2. Let rS,T : O(S) → O(T ) be the restriction map,
which is continuous by [GR79, V, §6.4 Theorem 6]. By [Eph78, Lemma 1.7], there
exists a morphism of C-algebras χT : O(T ) → C such that χ = χT ◦ rS,T .
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Our choice of f implies that T is a finite-dimensional Stein space. It therefore
follows from Forster’s theorem [For66, Theorem 5] that χT is continuous and hence
that so is χ. Another theorem of Forster [For67, Satz 1] then implies that there
exists s ∈ S such that χ(f) = f(s) for all f ∈ O(S). □

Theorem 3.2. Any C-algebra morphism between Stein algebras is continuous.

Proof. Let S and S′ be two Stein spaces, and let ξ : O(S′) → O(S) be a C-algebra
morphism. Fix a finitely generated maximal ideal m ⊂ O(S). There exists s ∈ S
such that m = {f ∈ O(S) | f(s) = 0} (see e.g. [GR79, V, §7.1, statement above
Theorem 1]). Evaluation at s therefore induces an isomorphism O(S)/m ∼−→ C.
We let χ : O(S) → C be the induced map.

Apply Theorem 3.3 to the C-algebra morphism χ◦ξ : O(S′) → C. We deduce the
existence of s′ ∈ S′ such that χ◦ξ(f) = f(s′) for all f ∈ O(S′). It then follows that
ξ−1(m) = {f ∈ O(S′) | f(s′) = 0}. This maximal ideal is closed (by continuity of
the evaluation map f 7→ f(s′)), and hence finitely generated by [For67, Theorem 2].

Since m was arbitrary, the continuity of ξ is now an application of the criterion
given in [For67, Theorem 3]. □

Theorem 3.3. The contravariant functor

(3.1)
{

Stein spaces
and holomorphic maps

}
→

{
Stein algebras

and C-algebra morphisms

}
given by S 7→ O(S) is an anti-equivalence of categories.

Proof. Since C-algebra morphisms of Stein algebras are automatically continuous
by Theorem 3.2, the theorem is equivalent to [For67, Satz 1]. □

We finally record the following consequence of Theorem 3.3 for later use in
[Ben24]. If S is a Stein space, we let λS : S → Spec(O(S)) be the unique morphism
of locally ringed spaces such that λ∗

S : O(S) → O(S) is the identity (see [SP, Lemma
01I1]).

Proposition 3.4. Let X be a complex space and let S be a Stein space. The map

(3.2)
{

holomorphic maps
X → S

}
→

{
morphisms of C-locally ringed spaces

X → Spec(O(S))

}
given by f 7→ λS ◦ f is a bijection.

Proof. As the statement is local on X, we may assume that X is Stein. In this case,
the proposition follows from Theorem 3.3 since the global sections functor induces a
bijection between the set of morphisms of C-locally ringed spaces X → Spec(O(S))
and the set of C-algebra morphisms O(S) → O(X) (see [SP, Lemma 01I1]). □
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