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Abstract
We give upper bounds for the level and the Pythagoras number of function fields over
fraction fields of integral Henselian excellent local rings. In particular, we show that
the Pythagoras number of R((x1, . . . , xn)) is ≤ 2n−1, which answers positively a
question of Choi, Dai, Lam and Reznick.

Introduction

In [2, Satz 4], Artin proved that a real rational function f ∈ R(x1, . . . , xn)which does
not take negative values is a sum of squares in R(x1, . . . , xn), thus solving Hilbert’s
17th problem. It is natural to wonder about the number of squares required to write
f as a sum of squares. To study this question, one introduces the Pythagoras number
p(K ) ∈ N ∪ {+∞} of a field K : it is the smallest integer p ∈ N such that all sums of
squares in K are sums of p squares if such an integer exists, and+∞ otherwise. Pfister
[28, Theorem 1] was able to show that p(R(x1, . . . , xn)) ≤ 2n ; as a consequence, a
real rational function f ∈ R(x1, . . . , xn) that does not take negative values is a sum
of 2n squares in R(x1, . . . , xn).

A related invariant is the level s(K ) ∈ N ∪ {+∞} of a field K : the smallest integer
s ∈ N such that −1 is a sum of s squares in K , if such an integer exists, and +∞
otherwise. By Artin and Schreier [3, Satz 7b], the level s(K ) is infinite if and only if
K admits a field ordering (K is then said to be formally real). Pfister has shown that
if s(K ) is finite, then it is a power of 2 [27, Satz 4], and that if K is moreover a field
of transcendence degree n over R, then s(K ) ≤ 2n [28, Theorem 2].

We refer to [24, Chapters VIII and XI] and [30] for nice accounts of these results.
As a particular case of our main statement (Theorem 0.2 below), we obtain local

analogues of Pfister’s aforementioned theorems [28, Theorems 1 and 2].
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Theorem 0.1 Fix n ≥ 1 and let K := R((x1, . . . , xn)).

(i) One has p(K ) ≤ 2n−1.
(ii) If a finite extension F of K is not formally real, then s(F) ≤ 2n−1.

Theorem0.1 (i)was conjectured byChoi,Dai, LamandReznick [6, Sect. 9, Problem
6 and below]. It was proven by them when n ≤ 2 [6, Corollary 5.14] and by Hu when
n = 3 [17, Theorem 1.2]. In addition, Theorem 0.1 (ii) had already been proven by
Hu for n = 2 [17, Theorem 5.1].

Pfister’s inequalities p(R(x1, . . . , xn)) ≤ 2n are not known to be optimal (see [29,
Sect. 4 Problem 1]). The best result to date is the theorem of Cassels, Ellison and Pfis-
ter [5] according to which p(R(x1, x2)) = 4. We do not know if the bounds stated in
Theorem 0.1 are optimal either. They are however the best possible under the assump-
tion that Pfister’s bounds are optimal (see [17, Corollary 2.3] and Proposition 2.6).
This line of thought had already been exploited by Hu [17, Theorem 1.2] to show the
equality p(R((x1, x2, x3))) = 4.

In Theorem 0.2, we consider more generally function fields F over the fraction field
of an integral Henselian excellent local ring A of dimension ≥ 1. In this setting, our
bounds depend on the dimension of A, on the transcendence degree of F over Frac(A),
as well as on the virtual cohomological 2-dimension cd2(k[

√−1]) of the residue field
k of A, which is defined as the cohomological 2-dimension of the absolute Galois
group of the field k[√−1] in the sense of [37, I Sect. 3.1].
Theorem 0.2 Let A be an integral Henselian excellent local ring of dimension n ≥ 1
whose residue field k has characteristic 0 and satisfies cd2(k[

√−1]) ≤ δ. Let F be a
field of transcendence degree m over K := Frac(A).

(i) If F is not formally real, then s(F) ≤ 2n+m+δ−1 and p(F) ≤ 2n+m+δ−1 + 1.
(ii) If F is formally real, p(F) ≤ 2n+m+δ − 1.
(iii) If A is regular and k is formally real, then p(K ) ≤ 2n+δ−1.

Theorem 0.1 follows from Theorem 0.2 by taking A = R[[x1, . . . , xn]].
The assumption that k has characteristic 0 in Theorem 0.2 is not a significant

restriction, as there are trivial upper bounds for s(F) and p(F) otherwise. (If k has
characteristic p ≥ 3, then s(k) ≤ s(Fp) ≤ 2, so that s(F) ≤ s(Frac(A)) ≤ 2 by
henselianity, and p(F) ≤ 3 by [24, XI, Theorem 5.6 (2)]. A similar argument shows
that s(F) ≤ 4 and p(F) ≤ 5 if k has characteristic 2.)

The Pythagoras numbers p(F) of function fields F over Henselian local fields as
above had previously been studied in the literature for low values of n andm. We refer
to Becher, Grimm and Van Geel [4, Sect. 6] for an analysis of the n = m = 1 case,
and to Hu’s articles [17,18] for various results when n + m ≤ 3.

A striking feature of these works is that the hypotheses made on the residue field
k of A are much weaker than ours: the authors only need to control sums of squares
in function fields over k (see for example [4, Theorem 6.8], [17, Theorem 1.1] or [18,
Theorem 1.4]), and not the whole cohomological 2-dimension of k[√−1]. We believe
that our stronger hypothesis is key in obtaining higher-dimensional results.

Let us illustrate this difference with the example of the field F := Q((x1, . . . , xn))
for n ≥ 3. What was known before, as an application of Pfister’s work and of the
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Milnor conjectures, is the inequality p(F) ≤ 2n+2 (see [17, beginning of Sect. 5]).
Theorem 0.2 (iii) improves on this result by showing that p(F) ≤ 2n+1. On the other
hand, combining [17, Conjecture 5.4] and Jannsen’s theorem [19, Corollary 0.7] yields
the optimistic conjecture that p(F) ≤ 2n , which is only known for n = 3 (see [18,
Corollary 4.7 (ii)]).

We prove Theorem 0.2 (i) in Sect. 2.2. Our main tool is a variant of the Lefschetz-
type vanishing theorem of Saito and Sato [34, Theorem 3.2 (1)], and the relevant
material is gathered in Sect. 1. Assertions (ii) and (iii) of Theorem 0.2 are conse-
quences of Theorem 0.2 (i), as we show in Sect. 2.3. The former is easy, and the latter
relies prominently on Panin’s proof of the Gersten conjecture for regular schemes
of characteristic 0 [25, Theorem C]. The optimality of Theorem 0.1 is discussed in
Sect. 2.4.

Notation and conventions

A variety over a field k is a separated scheme of finite type over k. We use k[√−1]
as a notation for k if −1 is a square in k and for k[T ]/(T 2 + 1) otherwise. We let
cd2(X) be the cohomological 2-dimension of the étale site of a scheme X (see [35,
Definition 7.1]). If k is a field, we use the notation cd2(k) := cd2(Spec(k)).

If X is a scheme and x ∈ X is a point, we let κ(x) be the residue field of X at x .
The real spectrum Xr of a scheme X is the set of pairs (x,≺), where x ∈ X and ≺ is
a field ordering of κ(x), endowed with its natural topology [35, (0.4)].

A reduced Cartier divisor D in a regular scheme X is said to have simple normal
crossings if for all c ≥ 1 and any collection D1, . . . , Dc of distinct irreducible compo-
nents of D, the scheme-theoretic intersection D1 ∩ · · · ∩ Dc is either empty or regular
of codimension c in X .

If S is a local scheme with closed point s ∈ S, and π : X → S is a morphism,
we denote by Xs := π−1(s) the special fiber of π . If S is quasi-excellent and κ(s)
has characteristic 0, then separated schemes of finite type over S and coherent ideal
sheaves on them admit resolutions of singularities (Hironaka’s theorems [16] apply as
indicated p.151 of loc. cit., see also [38, Theorem 1.1.11]).

1 Preliminaries

We gather here two results that will be used in the proof of Theorem 0.2 (i).

1.1 A purity result of Saito and Sato

If i : D → X is the inclusion of a Cartier divisor in a Noetherian scheme X , and
if N ≥ 1 is invertible on X , we let clX ,N (D) ∈ H2

ét,D(X ,µN ) be the cycle class

of D in X [12, Sect. 2.1]. In view of the canonical isomorphism H2
ét,D(X ,µN ) =

H2
ét(D,Ri !µN ), it gives rise to a morphism Gysi,N : Z/N → Ri !µN [2] in D+

ét (D)

called theGysinmorphism. Gabber’s absolute purity theorem (see [11, Theorem 2.1.1]
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or [33, Théorème 3.1.1]) implies that Gysi,N is an isomorphism if X and D are regular.
Building on Gabber’s theorem, and extending earlier results of Rapoport and Zink [32,
Lemma 2.18, Satz 2.19], Saito and Sato [34, Lemma 3.4] have proven (a variant of)
the following statement.

Proposition 1.1 Let X be a regular Noetherian scheme, and let N ≥ 1 be invertible
on X. Let D and E be two Cartier divisors on X that have no irreducible component
in common, such that D is regular, and such that D ∪ E is a simple normal crossings
divisor on X. We let i : D → X, j : X \ D → X, i ′ : D ∩ E → E and j ′ :
E \ (D ∩ E) → E be the natural inclusions.

(i) The Gysin morphism Gysi ′,N is an isomorphism.
(ii) The restriction morphism (R j∗Z/N )|E → R j ′∗Z/N is an isomorphism.
(iii) Assume moreover that X is proper over a local Henselian Noetherian scheme,

and that E is the reduced special fiber of X. Then, for all q, l ∈ Z, the restriction
maps Hq

ét(X\D,µ⊗l
N ) → Hq

ét(E\(D ∩ E),µ⊗l
N ) are isomorphisms.

Proof Assertion (i) is exactly what is shown in the proof of [34, Lemma 3.4 (1)]. In loc.
cit., the additional assumptions that X is flat of finite type over a discrete valuation ring
and that E is the reduced special fiber of X are not used, and D and E are respectively
denoted by Y and Z .

To prove (ii) and (iii), we argue as in the proof of [34, Lemma 3.4 (2)]. In the
following natural morphism of distinguished triangles in D+

ét (E):

(i∗Ri !Z/N )|E
�

Z/N (R j∗Z/N )|E

i ′∗Ri ′!Z/N Z/N R j ′∗Z/N

the left vertical arrow is an isomorphism since Gysi,N and Gysi ′,N are isomorphisms
by Gabber’s purity theorem and by (i), and since clX ,N (D)|E = clE,N (D ∩ E) by
functoriality of the cycle class [12, Sect. 2.1.1]. Assertion (ii) follows. To deduce (iii)
from (ii), tensorwithµ⊗l

N , take cohomology, and apply the proper base change theorem
[15, Exposé XII, Corollaire 5.5 (iii)] and the invariance of étale cohomology under
nilpotent closed immersions [14, Exposé VIII, Corollaire 1.2]. ��
Remark 1.2 In Sect. 2.2, we will apply Proposition 1.1 to a scheme X of characteristic
0. In this case, one can replace the use of Gabber’s purity theorem in the proof of
Proposition 1.1 by the earlier [15, Exposé XIX, Théorèmes 3.2 et 3.4].

1.2 A Bertini theorem over a local base

Proposition 1.3 is an analogue of Jannsen and Saito’s Bertini theorem over a discrete
valuation ring [20, Theorem 1.1], when the base has higher dimension.

Proposition 1.3 Let S be a local Noetherian scheme whose closed point s ∈ S has
perfect residue field k. Let π : X → S be a projective morphism with X regular, let
E ⊂ X be a simple normal crossings divisor, and let L be a π -ample line bundle on
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X. Then there exists l ≥ 1 and σ ∈ H0(X ,L⊗l) such that the zero-locus D ⊂ X of σ
is regular, contains no irreducible component of E and such that D ∪ E is a simple
normal crossings divisor in X.

Proof If l � 0, and we choose such a l, then L⊗l |Xs is very ample and the restriction
map H0(X ,L⊗l) → H0(Xs,L⊗l |Xs ) is surjective by Serre vanishing. Let (Ei )i∈I be
the irreducible components of E , and define EH := ∩i∈H Ei for H ⊂ I . ByNoetherian
induction, we may write the k-variety (EH ,s)

red as a disjoint union of finitely many
smooth connected locally closed subvarieties (YH , j ⊂ X red

s ) j∈J (H), where J (H) is a
finite set of indices. By Bertini’s theorem [21, Théorème 6.10 2)] (if k is finite, we
rather use Poonen’s [31, Theorem 1.3] after maybe replacing l with an appropriate
multiple) applied to all the subvarieties YH , j of X red

s for varying H ⊂ I and j ∈ J (H),
there exists τ ∈ H0(Xs,L⊗l |Xs ) such that the zero-locus of τ in YH , j is smooth of
codimension 1 in YH , j . Let σ ∈ H0(X ,L⊗l) be such that σ |Xs = τ . Let D ⊂ X be
the zero-locus of σ and set DH := D ∩ EH for H ⊂ I .

Fix H ⊂ I , and let � ⊂ DH be the set of x ∈ DH such that DH is regular of
codimension 1 in EH at x . Choose x ∈ DH ,s , and let j ∈ J (H) be such that x ∈ YH , j .
The inclusion TD∩YH , j ,x ⊂ TYH , j ,x is not an equality by our choice of τ . It follows
that the inclusion TDH ,x ⊂ TEH ,x is not an equality either. Since EH is regular at
x and DH is defined, locally at x ∈ EH , by the vanishing of a single equation, we
deduce that x ∈ �. We have shown that DH ,s ⊂ �. As � is stable by generization
and π |DH : DH → S is proper, we deduce that � = DH . This completes the proof
of the proposition. ��

2 Sums of squares

This section is devoted to the proof of Theorem 0.2.

2.1 Sums of squares and Galois cohomology

If X is a scheme on which 2 is invertible, and if a ∈ O(X)∗, we denote by {a} ∈
H1
ét(X , Z/2) the image of a by the boundary map of the Kummer exact sequence

0 → Z/2 → Gm
2−→ Gm → 0.

Proposition 2.1 Let F be a field of characteristic �= 2, let a ∈ F∗, and choose r ≥ 0.
The following assertions are equivalent.

(i) One has {−1}r � {a} = 0 ∈ Hr+1(F, Z/2).
(ii) The element a ∈ F∗ is a sum of 2r squares in F.

Proof By the Milnor conjecture proven by Voevodsky [39, Corollary 7.4], statement
(i) is equivalent to the vanishing of the symbol {−1, . . . ,−1, a} ∈ KM

r+1(F)/2 in
Milnor K-theory. By [10, Corollary 3.3], it is in turn equivalent to the Pfister form
〈1, 1〉⊗r ⊗ 〈1,−a〉 being isotropic. Since a Pfister form is isotropic if and only if
it is hyperbolic [26, Theoreme 1 und 2], this is also equivalent to the isotropy of
〈1〉⊕2r ⊕ 〈−a〉, hence to condition (ii) by [24, I, Corollary 3.5]. ��
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2.2 Level

In Sect. 2.2, we study the level of function fields over Henselian local fields.

Proposition 2.2 Let S be an integral Henselian excellent local scheme of dimension
≥ 1 with closed point s ∈ S whose residue field k has characteristic 0. Let π : X → S
be a proper surjective morphism with X regular, integral of dimension d, and let F be
the function field of X.

(i) If (Xs)r �= ∅, then s(F) = +∞.
(ii) If (Xs)r = ∅ and cd2(k[

√−1]) ≤ δ, then s(F) ≤ 2d+δ−1.

Proof If (Xs)r �= ∅, then Spec(F)r �= ∅ by Lemma 2.3 below, proving assertion (i).
To prove (ii), we may assume that π is projective and that E := X red

s is a simple
normal crossings divisor in X , by Chow’s lemma [13, Théorème 5.6.1] and resolution
of singularities [16,38]. By Proposition 1.3, there exists a regular divisor D ⊂ X
containing no irreducible component of E , such that D∪E is a simple normal crossings
divisor in X and such that X \ D is affine.

Since the k-variety U := (Xs \ Ds)
red is affine of dimension d − 1, one has

cd2(Uk[√−1]) ≤ d + δ − 1 by [15, Exposé XIV, Corollaire 3.2] and by the hypothesis

that cd2(k[
√−1]) ≤ δ. Since moreover Ur = ∅, Scheiderer [35, Corollary 7.21] has

shown that cd2(U ) ≤ d + δ − 1, hence that Hd+δ
ét (U , Z/2) = 0. Proposition 1.1 (iii)

yields an isomorphism Hd+δ
ét (X \ D, Z/2) � Hd+δ

ét (U , Z/2) = 0.

One has {−1}d+δ = 0 ∈ Hd+δ
ét (X \ D, Z/2) since the whole group vanishes. As a

consequence, {−1}d+δ = 0 ∈ Hd+δ(F, Z/2). Applying Proposition 2.1 with a = −1
yields s(F) ≤ 2d+δ−1, proving (ii). ��
Lemma 2.3 Let X be an integral regular scheme with function field F. Then any point
of Xr is in the closure of some point of Spec(F)r ⊂ Xr .

Proof Let (x,≺) ∈ Xr , where x ∈ X and ≺ is a field ordering of κ(x). Since κ(x)
is formally real, it has characteristic 0. As OX ,x is regular, we can find a sequence
OX ,x = AN → · · · → A0 = κ(x) of surjections of regular local rings such that the
localization of Ai at the kernel of Ai → Ai−1 is a discrete valuation ring.Applying [36,
II Sect. 4, Théorème 2] to the completions of these discrete valuation rings yields an
inclusion F ⊂ κ(x)((t1)) . . . ((tN )). By [24, VIII, Proposition 4.11 (1)], the ordering
≺ of κ(x) may be extended to an ordering ≺′ of κ(x)((t1)) . . . ((tN )). The description
of ≺′ given in loc. cit. shows that if the constant coefficient of f ∈ κ(x)[[t1, . . . , tN ]]
is � 0, then f �′ 0. Let ≺F be the restriction of ≺′ to F . The definition [35, (0.4)] of
the topology of Xr shows that (x,≺) belongs to the closure of (Spec(F),≺F ) in Xr ,
proving the lemma. ��

The first assertion of Theorem 0.2 follows easily from Proposition 2.2.

Proof of Theorem 0.2 (i) We may assume that F is finitely generated over K . Define
S := Spec(A), and let π : X → S be a projective morphism with X integral such that
F is the function field of X . Resolving singularities [16,38], we may assume that X
is regular. It has dimension d := n +m. Since F is not formally real, Proposition 2.2
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shows that s(F) ≤ 2d+δ−1. As p(F) ≤ s(F) + 1 for any field F that is not formally
real [24, XI, Theorem 5.6 (2)], we deduce that p(F) ≤ 2d+δ−1 + 1. ��

2.3 Pythagoras number

We now deduce the two last assertions of Theorem 0.2 from the first.

Proof of Theorem 0.2 (ii) Let a ∈ F∗ be a sum of squares. Since F is formally real,−a
is not a square in F . We consider the field extension L := F[√−a] of F . One has
s(L) ≤ 2n+m+δ−1 by Theorem 0.2 (i) because L is not formally real. That a is a sum
of 2n+m+δ − 1 squares in F follows from [23, Chapter 11, Theorem 2.7]. ��
Proof of Theorem 0.2 (iii) Let a ∈ K ∗ be a sum of squares, and consider the class
α := {−1}n+δ−1 � {a} ∈ Hn+δ(K , Z/2). If D ⊂ S := Spec(A) is an integral divisor
with generic point ηD , we let resD(α) ∈ Hn+δ−1(κ(ηD), Z/2) be the residue of α

along D [8, Sect. 3.3]. It follows from [9, Proposition 1.3] that resD(α) = e{−1}n+δ−1,
where e ∈ Z is the order of vanishing of a along D.

Completing A at ηD yields an embedding K ⊂ κ(ηD)((t)). Since a is a sum of
squares in K hence also in κ(ηD)((t)), either the t-adic valuation of a ∈ κ(ηD)((t))
is even, or κ(ηD) is not formally real, by [4, Proposition 4.2]. In the first case, e is
even and resD(α) = 0. In the second case, one has n ≥ 2 since k is formally real.
It is thus possible to apply Theorem 0.2 (i) to the coordinate ring O(D) of D. This
shows that s(κ(ηD)) ≤ 2n+δ−2, hence that {−1}n+δ−1 = 0 ∈ Hn+δ−1(κ(ηD), Z/2)
by Proposition 2.1. Consequently, resD(α) = 0.

We have shown that the residues of α along all integral divisors D ⊂ S vanish.
Since A is regular, applying the Gersten conjecture proven in this context by Panin
[25, TheoremC] shows that α lifts to a class β ∈ Hn+δ

ét (S, Z/2). Let R be a real closed
extension of K . Since a is a sum of squares in K , it is a square in R, and it follows
that β|R = α|R = 0 ∈ Hn+δ(R, Z/2). By Lemma 2.4 below, one has β = 0, hence
α = 0, and Proposition 2.1 implies that a is a sum of 2n+δ−1 squares in K . ��

We have used the following lemma.

Lemma 2.4 Let S be the spectrum of an integral Henselian regular local ring with
residue field k and fraction field K , and let β ∈ Hq

ét(S, Z/2). If q > cd2(k[
√−1])

and if β|R = 0 ∈ Hq(R, Z/2) for all real closed extensions R of K , then β = 0.

Proof The case where k has characteristic 2 is trivial since k = k[√−1] and the
restriction map Hq

ét(S, Z/2) → Hq(k, Z/2) is an isomorphism by proper base change
[15, Exposé XII, Corollaire 5.5 (iii)]. Assume now that the characteristic of k is �= 2.

We set kr := Spec(k)r and G := Z/2, and we consider the commutative diagram

Hq
ét(S, Z/2)

�
Hq
G(Sr , Z/2)

⊕q
i=0 H

i (Sr , Z/2) H0(Sr , Z/2)

Hq(k, Z/2) ∼
Hq
G(kr , Z/2)

⊕q
i=0 H

i (kr , Z/2) ∼
H0(kr , Z/2)

(2.1)

whose vertical maps are restrictionmaps, whose right horizontal arrows are the projec-
tions, and whose other arrows are the one appearing in [35, (7.19.1)]. More precisely,
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the left horizontal arrows of (2.1) are the maps [35, (6.6.3)] applied with A = Z/2,
taking into account [35, Corollary 6.6.1] and using the fact that the topoi associated to
Xr and to the real étale site Xrét of X are naturally equivalent [35, Theorem 1.3], and
the middle horizontal equalities of (2.1) are obtained by taking C = Xr and k = Z/2
in [35, Corollary 6.3.2].

As explained in [35, (7.19.1)], if ξ ∈ Sr corresponds to a point x ∈ S and to an
ordering ≺ of κ(x), and if R is the associated real closure of κ(x), then the image of
β by the first line of (2.1) has value 0 at ξ if and only if β|R = 0 ∈ Hq(R, Z/2). This
is the case for all ξ ∈ Spec(K )r ⊂ Sr by hypothesis. Since Spec(K )r is dense in Sr
by Lemma 2.3 and by regularity of S, we deduce that β vanishes in the upper right
corner of (2.1), hence in the lower right corner of (2.1).

On the other hand, the left vertical arrow of (2.1) is an isomorphism by proper base
change [15, Exposé XII, Corollaire 5.5 (iii)], and the lower left horizontal arrow of
(2.1) is an isomorphism by [35, Corollary 7.10] applied with A = Z/2 and by the
hypothesis that q > cd2(k[

√−1]). Moreover, since kr is Hausdorff, compact and
totally disconnected [24, VIII, Theorem 6.3], the global sections functor for abelian
sheaves on kr is exact, showing that Hi (kr , Z/2) = 0 for i > 0, hence that the lower
right horizontal arrow of (2.1) is also an isomorphism. The commutativity of (2.1)
now shows that β = 0. ��
Remark 2.5 The bottom line of diagram (2.1) goes back to the work of Arason, Elman
and Jacob [1] (see especially Theorem 2.3, Proposition 2.4 and the proof of Corol-
lary 2.8 in loc. cit.). Scheiderer’s book [35] contains far-reaching generalizations of
these results.

2.4 Optimality

We now show the optimality of Theorem 0.1, conditionally upon Pfister’s inequalities
p(R(x1, . . . , xn)) ≤ 2n being equalities.

Proposition 2.6 Assume that p(R(x1, . . . , xn−1)) = 2n−1 for some n ≥ 1. Then:

(i) One has p(R((x1, . . . , xn))) = 2n−1.
(ii) There exists a finite extension F of R((x1, . . . , xn)) such that s(F) = 2n−1 and

p(F) = 2n−1 + 1.

Proof (i) This was proven by Hu in [17, Corollary 2.3].
(ii) Let f ∈ R(x1, . . . , xn−1) be a sum of squares that is not a sum of 2n−1 − 1

squares in R(x1, . . . , xn−1). The field L := R(x1, . . . , xn−1)[√− f ] is such that
s(L) ≥ 2n−1 by [23, Chapter 11, Theorem 2.7]. Let Z be a smooth projective
integral variety over R with R(Z) = L . Since L is not formally real, one has
Z(R) = ∅ by Lemma 2.3. Embed Z in a real projective space, and consider
the cone C over Z in this embedding with vertex p ∈ C . Define A := ÔC,p

and F := Frac(A). By [7, Theorems 15 and 16] (see also the footnote (19)
in loc. cit.), there exists an injection R[[x1, . . . , xn]] ⊂ A endowing A with a
structure of finite R[[x1, . . . , xn]]-algebra; it follows that F is a a finite extension
of R((x1, . . . , xn)).
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Letπ : X → Spec(A) be the blow-up of the closed point. The scheme X is regular
and the exceptional divisor of π is isomorphic to Z . By Proposition 2.2, F is not
formally real. As L is the residue field of a valuation on F , [4, Proposition 4.3]
shows that p(F) ≥ s(L) + 1 ≥ 2n−1 + 1. By [24, XI, Theorem 5.6 (2)], one has
s(F) ≥ p(F) − 1 ≥ 2n−1. That these inequalities are in fact equalities follows
from Theorem 0.1 (ii) and [24, XI, Theorem 5.6 (2)]. ��

Acknowledgements Our use of the Saito–Sato vanishing theorem was inspired by the article [22] of Kerz
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