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ABSTRACT

We study when the period and the index of a class in the Brauer group of the function field of a real algebraic
surface coincide. We prove that it is always the case if the surface has no real points (more generally, if the class vanishes
in restriction to the real points of the locus where it is well-defined), and give a necessary and sufficient condition for
unramified classes. As an application, we show that the u-invariant of the function field of a real algebraic surface is equal
to 4, answering questions of Lang and Pfister. Our strategy relies on a new Hodge-theoretic approach to de Jong’s period-
index theorem on complex surfaces.

Introduction

0.1. The period-index problem. — Let K be a field, and let Br(K) be its Brauer group.
The period per(α) of α ∈ Br(K) is its order in Br(K) and its index ind(α) is the smallest
(equivalently, the gcd) of the degrees of the finite field extensions L/K over which α
vanishes. In general, per(α) | ind(α), and these invariants have the same prime divisors.
Finding further constraints on the period and the index is the so-called period-index
problem (see [22] for an account of this question).

Two outstanding results are de Jong and Lieblich’s theorems on function fields of
surfaces over algebraically closed ([25], see also [44, Theorem 4.2.2.3]) or finite fields
[45, Theorem 1.1] (see [3] for results on function fields of p-adic surfaces).

Theorem 0.1 (de Jong). — Let S be a connected smooth projective surface over an algebraically

closed field k. If α ∈ Br(k(S)), then ind(α)= per(α).

Theorem 0.2 (Lieblich). — Let S be a connected smooth projective surface over a finite field k. If

α ∈ Br(k(S)), then ind(α) | per(α)2.

A general guideline is that if K has cohomological dimension δ, one might hope
that ind(α) | per(α)δ−1 for every α ∈ Br(K). Theorems 0.1 and 0.2 fit into this philo-
sophy, but Merkurjev has constructed convoluted counterexamples [47, §3]. The case of
K = C(x, y, z), that has cohomological dimension 3, is wide open.

In this paper, relying on a new Hodge-theoretic approach to de Jong’s theorem
(see §0.6 and Section 1), we investigate the case of function fields K of real algebraic sur-
faces. They may have infinite cohomological dimension, but have virtual cohomological
dimension 2 (i.e. K[√−1] has cohomological dimension 2).

0.2. Function fields of real surfaces. — Let S be a connected smooth projective surface
over R, and let α ∈ Br(R(S)) be a Brauer class. De Jong’s Theorem 0.1 and a norm
argument show that ind(α) = per(α) or ind(α) = 2 per(α). We show that the equality
ind(α)= per(α) always holds if S has no real points.
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Theorem 0.3. — Let S be a connected smooth projective surface over R such that S(R)= ∅.

If α ∈ Br(R(S)), then ind(α)= per(α).

This gives new examples of fields of cohomological dimension 2 (by [24, Propo-
sition 1.2.1]), such as K = R(x, y, z | x2 + y2 + z2 = −1), on which period and index
coincide. As we explain in §0.5, Theorem 0.3 was predicted by a conjecture of Lang.

In general, the class α belongs to the subgroup Br(U)⊂ Br(R(S)) for some open
subset U ⊂ S (see §2.4). Theorem 0.3 generalizes to the case when α vanishes in re-
striction to the real points of U. We also explain in §0.5 that this statement had been
conjectured by Pfister.

Theorem 0.4. — Let U be a connected smooth surface over R and let α ∈ Br(U) ⊂
Br(R(U)) be such that for every x ∈ U(R), α|x = 0 ∈ Br(R). Then ind(α)= per(α).

We refer to §0.5 for applications of Theorems 0.3 and 0.4 to the arithmetic of
function fields of real varieties, that were the main motivation for this work.

0.3. Unramified classes. — Brauer classes that belong to the subgroup Br(S) of
Br(R(S)) are said to be unramified, and are often better behaved (over finite fields, see
[44, Theorem 4.3.1.1]). We compute their index entirely.

For α ∈ Br(S)⊂ Br(R(S)), define � := {x ∈ S(R) | α|x �= 0 ∈ Br(R)}. It is a union
of connected components of S(R). As explained in §2.4, there is a short exact sequence:

(0.1) 0 → Pic(S)/2 → H2
G

(
S(C),Z/2

) → Br(S)[2] → 0,

where H2
G(S(C),Z/2) is an equivariant cohomology group with respect to the action

of G = Gal(C/R) � Z/2 on S(C) (see (2.16)). In (2.9) of §2.3, we define a morphism
H2

G(S(C),Z/2)→ H1(S(R),Z/2) denoted by ξ �→ [ξ ]1. We may now state:

Theorem 0.5. — Let S be a connected smooth projective surface over R, and let α ∈ Br(S)⊂
Br(R(S)) be a Brauer class of period n. If n is odd, or if there exists a lift ξ ∈ H2

G(S(C),Z/2) of
n

2α ∈ Br(S)[2] in (0.1) such that ([ξ ]1)|� = 0 ∈ H1(�,Z/2), then ind(α) = per(α). Other-

wise, ind(α)= 2 per(α).

When H2(S,OS)= 0, the condition of Theorem 0.5 is purely topological and may
be checked in practice by concrete computations. In §8.1, we illustrate this in the case of
Enriques surfaces. To state this result, we recall that the real locus of an Enriques surface
S over R has a canonical decomposition S(R)= S1 	 S2 as a disjoint union of two open
and closed subsets, called the halves of S (see [27, §1.3]).
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Theorem 0.6. — Let S be an Enriques surface over R. The following are equivalent:

(i) There exists a class α ∈ Br(S)⊂ Br(R(S)) such that ind(α) �= per(α).
(ii) The manifold S(R) is not orientable and, if exactly one of the halves of S is nonempty, S(R)

has an odd number of connected components with odd Euler characteristic.

The possible real loci of Enriques surfaces have been classified by Degtyarev, Iten-
berg and Kharlamov [26, Appendix C]. Many satisfy (ii), and many do not.

0.4. Situations where period and index differ. — If S is a connected smooth projec-
tive surface over R, it has been known for a long time that the period and the index
of α ∈ Br(R(S)) may not coincide. For instance, Albert has shown that the biquater-
nion class α = (x, x)+ (y, xy) ∈ Br(R(x, y)) has period 2 and index 4 in one of the first
examples of Brauer classes for which period and index differ [1, Theorem 2] (see also
[41, VI, Example 1.11]). In these examples, the difference between period and index
may be explained by an analysis of the ramification of α on S. We refer to [21] for a
general discussion of the obstructions to the equality of period and index induced by the
ramification.

That an unramified Brauer class α ∈ Br(S) may have different period and in-
dex, as in some of the examples of Theorem 0.6, is new. The obstruction, described
in Theorem 0.5, has an obvious topological flavour. Since the image of the morphism
Pic(S)/2 → H2

G(S(C),Z/2) in (0.1) is controlled by Krasnov’s real Lefschetz (1,1) the-
orem [9, Proposition 2.8], this obstruction also depends on the Hodge theory of the
surface S. For this reason, it is reminiscent of Kresch’s Hodge-theoretical obstructions to
the equality of the period and the index of unramified Brauer classes on complex varieties
[40, Theorem 1]. Kresch’s article is, to the best of our knowledge, the first to point out
the influence of Hodge theory on period-index problems.

Theorem 0.5 makes sense over any real closed field, such as K := ∪nR((t1/n)), if
one replaces Betti cohomology with semi-algebraic cohomology. The following proposi-
tion, proven in §8.2, shows that it fails to hold in this greater generality. This demonstrates
the existence of further obstructions to the equality of period and index over general real
closed fields.

Proposition 0.7. — There exists a K3 surface S over K := ∪nR((t1/n)) such that

H1(S(K),Z/2)= 0, and a class α ∈ Br(S)[2] such that ind(α)= 4.

0.5. Relation with conjectures of Lang and Pfister. — Recall that a field K is said to be
Ci if every degree d hypersurface in PN

K with di ≤ N has a K-point. The main example of
such fields is:

Theorem 0.8 (Tsen-Lang [42]). — The function field of an integral variety X of dimension i

over an algebraically closed field is Ci .
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Lang [43, p. 379] has conjectured a real analogue of this theorem.

Conjecture 0.9 (Lang). — The function field of an integral variety X of dimension i over R such

that X(R)= ∅ is Ci .

Very little is known about Conjecture 0.9. The case i = 1 and d = 2 of quadrics
over function fields of curves is a classical result of Witt [58, Satz 22], and Lang has
shown in [43, Corollary, p. 390] that Conjecture 0.9 holds for odd degrees d , as the proof
of Theorem 0.8 may be adapted in this case. As a consequence of Theorem 0.3, we give
further evidence for Conjecture 0.9 by solving it for i = 2 and d = 2:

Theorem 0.10. — Let S be an integral surface over R such that S(R)= ∅. Then all quadratic

forms of rank ≥ 5 over R(S) are isotropic.

Recall that a field is said to be real if it may be ordered (as a field). The u-invariant
u(K) of a non-real field K is defined as the maximal rank of an anisotropic quadratic
form over K (see [49, Chap. 8], [41, Chapter XI, §6]). Theorem 0.10 asserts that the
u-invariant of the function field of a real surface without real points is at most 4. The
definition of the u-invariant has been generalized by Elman and Lam [29, Definition 1.1]
to the case of real fields, as the maximal rank of an anisotropic quadratic form over K
whose signature with respect to any ordering of K is trivial. In this more general setting,
Pfister [48, Conjecture 2] (see also [41, XIII, Question 6.5]) proposed that the following
should hold:

Conjecture 0.11 (Pfister). — If K/R has transcendence degree i, then u(K)≤ 2i .

Pfister also pointed out a link between Conjecture 0.11 for i = 2 and the period-
index problem [48, Proposition 9]. This allows us to apply Theorem 0.4 to solve the
2-dimensional case of this conjecture. Our result is already new for K = R(x, y).

Theorem 0.12. — Let K be a field of transcendence degree 2 over R. Then u(K) ≤ 4. If

moreover K = R(S) for some integral surface S over R, then u(K)= 4.

Conversely, Theorems 0.3 and 0.4 were known to be consequences of Conjec-
tures 0.9 and 0.11. Indeed, they reduce to the case of Brauer classes of period 2 by de
Jong’s theorem [25] and a norm argument, and one may apply [48, Proposition 9].

By the Amer-Brumer theorem [17, Théorème 1], Theorem 0.10 implies that pairs
of quadratic forms of rank ≥ 5 over the function field of a real curve with no real points
have a nontrivial common zero. As a consequence, we get:

Theorem 0.13. — Let C be an integral curve over R such that C(R)= ∅. Then every degree

4 del Pezzo surface over R(C) has a rational point.
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Conjecture 0.9 for i = 1 and the C1 conjecture of Kollár and Manin combine to
predict that a rationally connected variety on the function field of a real curve without
real points has a rational point. Theorem 0.13 solves the first open case of this problem.
It was also known to follow from Conjecture 0.9 [42, Theorem 3].

By [10, Proposition 8.3], when C is the anisotropic conic over R, Theorem 0.13
is equivalent to the validity of the real integral Hodge conjecture [9, Definition 2.2] for
1-cycles on degree 4 del Pezzo fibrations over C. This gives further evidence for its validity
for 1-cycles on rationally connected varieties over R [9, Question 2.16].

By work of Merkurjev [47, Theorem 4], Theorem 0.10 does not generalize to
arbitrary fields of cohomological dimension 2. Similarly, Colliot-Thélène and Madore
[23, Théorème 1.2] have shown that Theorem 0.13 does not hold for all fields of coho-
mological dimension 1. This explains that the proofs of Theorems 0.10 and 0.13 use in
an essential way the geometric nature of function fields of real varieties.

Lang and Pfister have given slightly more general formulations of Conjectures 0.9
and 0.11, where the field R of real numbers is replaced with an arbitrary real closed field.
Our method of proof, relying in an essential way on infinitesimal methods in Hodge
theory, does not apply in this more general setting (although one may use the Tarski-
Seidenberg principle to extend our main theorems to the case of archimedean real closed
fields: real closed subfields of R).

0.6. Strategy of the proof. — We do not know how to adapt the existing proofs of
de Jong’s theorem ([25], [44, §4.2.2]) to prove our main results. Instead, we use a new
approach to period-index problems, based on Hodge theory.

To explain its principle, let us outline the proofs of Theorems 0.3, 0.4 and of the
first half of Theorem 0.5, for a period 2 class α ∈ Br(R(S)) in the function field of a
connected smooth projective surface S over R. We wish to show that ind(α)= 2.

In order to do so, we construct carefully (in §§3.1–5.1–6.1) a ramified double cover
p : T → S, and try to prove that αR(T) = 0 ∈ Br(R(T))[2]. As a first step, we show in §4.1
that αR(T) is unramified, i.e. belongs to Br(T)[2] ⊂ Br(R(T))[2]. To analyze Br(T)[2],
we make use of the exact sequence (2.17):

(0.2) 0 → H2
G

(
T(C),Z(1)

)
/
〈
Pic(T),2

〉 → Br(T)[2] → H3
G

(
T(C),Z(1)

)[2] → 0.

We prove in §4.2 that αR(T) lifts in (0.2) to a class β ∈ H2
G(T(C),Z(1)). By (0.2), it remains

to show that β ∈ 〈Pic(T),2〉. At this point, there is no reason why it should be true.
The idea to achieve it is to let T vary in moduli. For some values of the parameter

corresponding to Noether-Lefschetz loci, the surface T will carry extra algebraic cycles,
making it more likely that β ∈ 〈Pic(T),2〉. To conclude, we need an abundance result
for Noether-Lefschetz loci that will allow us to pick a surface T for which one has indeed
β ∈ 〈Pic(T),2〉, hence αR(T) = 0.

Over C, an infinitesimal criterion for the abundance of Noether-Lefschetz loci in a
family of surfaces has been discovered by Green [18, §5] (see [57, §17.3.4]). This criterion
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has been adapted to the real setting in [10, §7.2] and [8, §1]. In §§5.2–5.3, we verify the
hypothesis of the real analogue of Green’s infinitesimal criterion for some families of
ramified double covers of surfaces, thus completing the proof.

Since this proof is long and technical, we first illustrate our approach in a simplified
situation in Section 1, by giving a proof of de Jong’s Theorem 0.1 in the unramified com-
plex case (Theorem 1.1). In this setting, Green’s infinitesimal criterion has been verified
by Voisin [57] in a generality sufficient for the argument.

There are two additional reasons to include Section 1. First, since de Jong’s Theo-
rem 0.1 may be reduced to characteristic 0 by [44, §4.1.2], to C by the Lefschetz princi-
ple, and to the unramified case by [25, §7], it yields an alternative proof of this theorem.
Second, our method provides new information about Theorem 0.1 in the unramified
case: we obtain a density result for covers splitting a fixed unramified Brauer class on a
complex surface (see Proposition 1.2).

The proofs of our main theorems are significantly more involved than that of Theo-
rem 1.1 because one has to take into account the ramification and the topology of the real
locus, and because no real analogue of Voisin’s theorem is available. Although the analy-
sis of the topology of the real locus plays obviously no role in the proof of Theorem 0.3,
it is very important for the proof of Theorem 0.4. Finally, we cannot use de Jong’s trick
[25, §7] to reduce to the unramified case. Indeed, in the process, the base field R would
be replaced with a non-archimedean real closed field, where Hodge-theoretic arguments
do not apply.

0.7. Structure of the paper. — As explained above, Section 1 is devoted to imple-
menting our strategy in the simplified setting of unramified Brauer classes on complex
surfaces. Section 2 then gathers generalities concerning the cohomology of real algebraic
varieties that are used throughout the text.

The proof of Theorems 0.3, 0.4 and of the first half of Theorem 0.5, that has
been sketched in §0.6, covers Sects. 3–6. The argument itself, building on the material
developed in the previous sections, can be found in §6.2 for classes of period 2, and in
§6.3 in general. In §6.4, it is explained why Theorem 0.12, hence also Theorems 0.10
and 0.13, follow from these results.

The second half of Theorem 0.5, that is the description of an obstruction to the
equality of period and index, is proven in Section 7. The argument relies on a topological
analysis of ramified covers of smooth projective surfaces over R.

Finally, Section 8 illustrates our results with examples. In §8.1, we study unramified
Brauer classes on real Enriques surfaces and prove Theorem 0.6. In §8.2, we exhibit a
K3 surface over a non-archimedean real closed field for which Theorem 0.5 fails, thus
proving Proposition 0.7.
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1. Unramified Brauer classes on complex surfaces

In this section, we illustrate our method by proving de Jong’s Theorem 0.1 for
unramified classes on complex surfaces. As we have already explained in §0.6, the full
statement of de Jong’s theorem may be reduced to this case.

Theorem 1.1 (de Jong). — Let S be a connected smooth projective surface over C. If

α ∈ Br(S)⊂ Br(C(S)), then ind(α)= per(α).

Let A be a very ample line bundle on S, chosen sufficiently positive so that
A2 >KSA. Introduce the threefold X := P1

C ×S, and consider the very ample line bundle
H := p∗

1OP1(1)⊗ p∗
2A on X. Our hypothesis on A implies that H2KX < 0.

Let n be the period of α. If d ≥ 1 is a fixed integer, we will denote by B ⊂ |dnH|
the Zariski open locus parametrizing smooth surfaces and by T → B the universal family
over B. We obtain the following more precise result:

Proposition 1.2. — If d � 0 is big enough, the b ∈ B(C) such that α|Tb
= 0 ∈ Br(Tb) are

dense in B(C) for the euclidean topology.

Proof of Theorem 1.1. — Apply Proposition 1.2 to two big enough consecutive in-
tegers d and d + 1. We obtain two smooth surfaces T ∈ |dnH| and T′ ∈ |(d + 1)nH|
on which α vanishes. These surfaces are respectively of degree dn and (d + 1)n over
S, and we deduce that ind(α) | dn and ind(α) | (d + 1)n, hence that ind(α) | n. Since
n = per(α) | ind(α) is automatic, ind(α)= n, as wanted. �

We now fix d ≥ 1, and turn to the proof of Proposition 1.2. For any variety X
over C, the Kummer exact sequence 1 → μn → Gm

n−→ Gm → 1 of étale sheaves on X
and the comparison isomorphism H2

ét(X,μn)
∼−→ H2(X(C),Z/n) between étale and Betti

cohomology [5, Théorème 4.1] induce a short exact sequence:

(1.1) 0 → Pic(X)/n → H2
(
X(C),Z/n

) → Br(X)[n] → 0.

Comparing (1.1) with the long exact sequence associated to the short exact sequence
0 → Z

n−→ Z → Z/n → 0 of sheaves on X(C), we get an exact sequence (see [6, §2]):

(1.2) 0 → H2
(
X(C),Z

)
/
〈
n,Pic(X)

〉 → Br(X)[n] → H3
(
X(C),Z

)[n] → 0.

In the two following lemmas, we fix any point b ∈ B(C). Let T := Tb be the associ-
ated smooth surface, and let p : T → S be the projection.

Lemma 1.3. — The image τ ∈ H3(T(C),Z)[n] of p∗α ∈ Br(T)[n] by (1.2) vanishes.
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Proof. — We consider the commutative diagram:

H3(S(C),Z)
p∗

H3(X(C),Z)
i∗

� clC(T)

H3(T(C),Z)
i∗

∼ H5(X(C),Z),

where i : T → X is the inclusion. The composition i∗i∗ is the cup product by the cycle class
clC(T) ∈ H2(X(C),Z) of T, by the projection formula. Since clC(T)= ndH is divisible by
n in H2(X(C),Z), we deduce that the image τS ∈ H3(S(C),Z)[n] of α by (1.2) vanishes
in H5(X(C),Z) in the diagram above. But i∗ is an isomorphism by the weak Lefschetz
theorem, so that τ = p∗τS = 0 ∈ H3(T(C),Z)[n]. �

By the exact sequence (1.2), p∗α ∈ Br(T)[n] then lifts to a class β ∈ H2(T(C),Z).

Lemma 1.4. — There exists γ ∈ H2(T(C),Z) such that p∗(β− nγ )=0 ∈ H2(S(C),Z).

Proof. — Let α̃ ∈ H2(S(C),Z/n) be a lift of α in (1.1). Then the image of
p∗β ∈ H2(S(C),Z) in H2(S(C),Z/n) is p∗p∗α̃ = dnα̃ = 0 ∈ H2(S(C),Z/n). The short
exact sequence H2(S(C),Z)

n−→ H2(S(C),Z)→ H2(S(C),Z/n) shows that there exists
ε ∈ H2(S(C),Z) such that nε = p∗β .

The composition H2(T(C),Z)
i∗−→ H4(X(C),Z)→ H2(S(C),Z) of push-forward

morphisms is surjective because i∗ is surjective by the weak Lefschetz theorem and
because so is H4(X(C),Z) → H2(S(C),Z) by computation of the cohomology of
X(C)= P1(C)× S(C). It follows that there exists γ ∈ H2(T(C),Z) such that p∗γ = ε.
Then p∗(β − nγ )= p∗β − nε = 0 ∈ H2(S(C),Z), as wanted. �

If �⊂ B(C) is a contractible open set, and b, x ∈�, Ehresmann’s theorem allows
us to identify canonically H2(Tb(C),R) and H2(Tx(C),R). We will use the following
difficult theorem of Voisin:

Theorem 1.5 (Voisin). — Suppose that d � 0. Then there exists a nonempty Zariski open

subset V ⊂ B that satisfies the following property.

If �⊂ V(C) is a contractible neighbourhood of b ∈ V(C), there exists a nonempty open cone

� in H2(Tb(C),R)S := Ker[H2(Tb(C),R)
p∗−→ H2(S(C),R)] with the property that for every

ν ∈ �, there exists x ∈� such that ν ∈ H2(Tx(C),R) is of type (1,1) in the Hodge decomposition

of Tx.

Proof. — It is a particular case of the main results of [57] (whose notation is slightly
different: in [57], X, S and T are denoted by X, � and S). Let us be more precise.

The properties required at the beginning of [57, §3] are satisfied: X admits a mor-
phism X → S to a surface with rational generic fiber, and H2KX < 0 by our choice of
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H. In this situation, and if d � 0, we may apply [57, Proposition 9] for n = dl. This
shows that there exists a nonempty Zariski open subset V ⊂ B such that all surfaces Tb

for b ∈ V(C) satisfy the hypothesis of [57, Proposition 8].
For any such surface Tb, it is possible to run the proof of [57, Proposition 8], and

the existence of an open cone �⊂ H2(Tb(C),R)S satisfying the required property is an
intermediate step in this proof. �

The conclusion of [57, Proposition 8] is the validity of the integral Hodge conjec-
ture for 1-cycles on X, a statement that is trivial in our setting. We use here that the proof
of [57, Proposition 8] contains much more information.

It is now possible to conclude.

Proof of Proposition 1.2. — Fix d � 0 big enough so that Theorem 1.5 applies, and
let W ⊂ B(C) be a nonempty open subset. Since W is Zariski dense in B, it meets the
Zariski open subset V ⊂ B provided by Theorem 1.5. Choose a point b ∈ V(C)∩ W and
let �⊂ V(C)∩ W ⊂ B(C) be a contractible neighbourhood of b in V(C)∩ W.

Applying Lemmas 1.3 and 1.4 to T = Tb provides two classes β,γ ∈ H2(T(C),Z)

such that β − nγ ∈ H2(T(C),Z)S := Ker[H2(T(C),Z)
p∗−→ H2(S(C),Z)]. Since the

image of H2(T(C),Z)S in H2(T(C),R)S is a lattice, it is possible to find a class
δ ∈ H2(T(C),Z)S such that the image of β − nγ − nδ in H2(T(C),R)S belongs to the
nonempty open cone � provided by Theorem 1.5.

Theorem 1.5 shows that there exists x ∈� such that β− nγ − nδ is of type (1,1) in
the Hodge decomposition of H2(Tx(C),R). By the Lefschetz theorem on (1,1) classes,
β = nγ + nδ + clC(ϕ) for some ϕ ∈ Pic(Tx), where clC is the cycle class map. The exact
sequence (1.2) then shows that α|Tx

= 0 ∈ Br(Tx), as wanted. �

2. The cohomology of real algebraic varieties

We collect here general facts that will be used in the remainder of the text.

2.1. Real varieties and their cohomology. — Let R be the field of real numbers and C =
R[√−1] be the field of complex numbers. Define G := Gal(C/R) � Z/2Z, generated
by the complex conjugation σ ∈ G. A variety X over R is a separated scheme of finite
type over R. The set X(C) of complex points of X, endowed with the euclidean topology,
carries a continuous action of G whose fixed locus is the set X(R) of real points of X.

Let Y ⊂ X(C) be a locally closed G-invariant subset (such as X(C) or X(R)).
For i ≥ 0, we set Hi(Y) := Hi(Y,Z/2). We denote by D+(Y) (resp. D+

G(Y)) the bounded
below derived category of sheaves (resp. of G-equivariant sheaves) of abelian groups on Y.
If F is a G-equivariant sheaf of abelian groups on Y, we let Hq

G(Y,F ) be its equivariant
cohomology groups. If M is a G-module, we still denote by M the associated constant
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G-equivariant sheaf on Y, and refer to Hq

G(Y,M) as an equivariant Betti cohomology
group. The G-module Z(j) := (√−1)jZ ⊂ C only depends on the parity of j ∈ Z (this is
the convention of [9]; it differs from the one in [8] where Z(j)= (2π√−1)jZ ⊂ C, but
this should cause no confusion). For F and M as above, we define F (j) := F ⊗Z Z(j)
and M(j) := M ⊗Z Z(j).

We will use extensively properties of equivariant Betti cohomology, for which we
will refer to [9, §1] (see also [54]). If X and X′ are smooth equidimensional varieties of
dimensions d and d ′ over R and f : X′ → X is a proper morphism, we will make use of
the push-forward morphism:

(2.1) f∗ : Hk+2(d ′−d)
G

(
X′(C),M(−k)

) → Hk
G

(
X(C),M

)

defined in [9, (1.22)] for any G-module M and any k ∈ Z. We will also consider, for
a smooth variety X over R, the cycle class map clC : CHk(XC)→ H2k(X(C),Z(k)) in
Betti cohomology, Krasnov’s cycle class map cl : CHk(X)→ H2k

G (X(C),Z(k)) in equiv-
ariant Betti cohomology ([38, §2.1], [9, (1.55)]), and the cycle class map clR : CHk(X)→
Hk(X(R)) defined by Borel and Haefliger ([13, §5], [9, (1.56)]).

2.2. Finite étale double covers. — Let X be a variety over R. To a finite étale cover
p : X̃ → X of degree 2, one can associate a G-equivariant sheaf L on X(C), that is
locally constant with stalks isomorphic to Z as a non-equivariant sheaf, and that fits in
natural exact sequences:

(2.2) 0 → Z → p∗Z → L → 0 and 0 → L → p∗Z → Z → 0.

Reducing any of the exact sequences (2.2) modulo 2 yields an exact sequence:

(2.3) 0 → Z/2 → p∗Z/2 → Z/2 → 0.

Let eLZ ∈ H1
G(X(C),L ) be the extension class of the exact sequences (2.2), and let

eLZ/2 ∈ H1
G(X(C),Z/2) its reduction modulo 2, that is the extension class of (2.3). The

boundary maps of long exact sequences of G-equivariant cohomology induced by (2.2)
or (2.3) are given by cup-products by eLZ or eLZ/2. Multiplication by 2 on L /4 gives an-
other short exact sequence:

(2.4) 0 → Z/2 → L /4 → Z/2 → 0,

of G-equivariant sheaves on X(C). The boundary maps βL of a long exact sequence
of G-equivariant cohomology induced by (2.4), called twisted Bockstein maps, are the
sum of the usual Bockstein βZ and of the cup-product with eLZ/2 (see [31], that applies
here because G-equivariant cohomology may be viewed as non-equivariant cohomology
using the Borel construction).
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We note that it is possible to recover eLZ/2 ∈ H1
G(X(C),Z/2) from L as the image

of 1 by the boundary map of (2.4) and p : X̃ → X from eLZ/2 using the comparison iso-
morphism H1

G(X(C),Z/2) � H1
ét(X,Z/2) between equivariant Betti cohomology and

étale cohomology [50, Corollary 15.3.1]. The data of p : X̃ → X, L or eLZ/2 are thus
equivalent.

Let us spell out the particular case where p : XC → X is the morphism given
by extension of scalars. In this case, one has L = Z(1), and the extension class
e
Z(1)
Z ∈ H1

G(X(C),Z(1)) (resp. e
Z(1)
Z/2 ∈ H1

G(X(C),Z/2)) is induced by the non-zero class
ωZ ∈ H1(G,Z(1)) � Z/2 (resp. the non-zero class ωZ/2 ∈ H1(G,Z/2) � Z/2), see
[9, §1.1.2]. When this causes no confusion, we denote any of these classes by ω. If F
is a G-equivariant sheaf on a G-invariant locally closed subset Y ⊂ X(C), tensoring (2.2)
by F and taking G-equivariant cohomology yields the so-called real-complex exact se-
quences [9, (1.6), (1.7)]:

(2.5) Hk
G

(
Y,F (j + 1)

) → Hk(Y,F )
NC/R−−→ Hk

G

(
Y,F (j)

) �ω−→ Hk+1
G

(
Y,F (j + 1)

)
,

where the middle arrow NC/R will be referred to as the norm map.

2.3. Restriction to the real locus. — Let X be a variety over R, and Y ⊂ X(R) be
a locally closed subset. If F is a G-equivariant sheaf on Y, we consider the composi-
tion of derived functors R�G(Y,F )= R�(Y,RHomG(Z,F )) yielding the first spectral
sequence of equivariant cohomology [32, (4.4.1)]. To compute RHomG(Z,F ), notice
that the free resolution [16, Chapter I (6.3)] of the Z[G]-module Z yields a left resolu-

tion K• = [· · · → Z[G] 1−σ−−→ Z[G] 1+σ−−→ Z[G] 1−σ−−→ Z[G] → 0] of the G-equivariant sheaf
Z on Y, and choose an injective resolution I• of F . Since RHomG(Z,F ) ∈ D+(Y) is
represented by the complex HomG(Z,I•), it is also represented by HomG(K•,F ) as
both are quasi-isomorphic to the total complex of the double complex HomG(K•,I•) by
[37, Theorem 1.9.3]. Consequently,

(2.6) RHomG(Z,F )� [0 → F
1−σ−−→ F

1+σ−−→ F
1−σ−−→ F → ·· · ] ∈ D+(Y).

For some sheaves F , the complex (2.6) splits in D+(Y), inducing decompositions of
the G-equivariant cohomology of F studied by Krasnov [39] and developed in [9, §1.2],
that we now recall (in [9, 39], only the case where Y = X(R) is treated explicitely, but the
arguments there go through verbatim).

2.3.1. 2-torsion coefficients. — If F = Z/2, then RHomG(Z,Z/2)�⊕
q≥0Z/2[−q],

yielding a canonical decomposition [9, (1.26)]

(2.7) Hk
G(Y,Z/2)

∼−→
⊕

0≤i≤k

Hi(Y)
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respecting cup-products [9, (1.28)], for any k ≥ 0. By [9, §1.2.1], (2.7) may also be con-
structed by applying the Künneth decomposition to the right-hand side of the identifica-
tion Hk

G(Y,Z/2)= Hk(Y × BG,Z/2). It follows from this description that the Bockstein
map βZ : Hk

G(Y,Z/2)→ Hk+1
G (Y,Z/2) may be computed, in terms of the canonical de-

compositions (2.7), by the formula

(2.8) (ai)0≤i≤k �→ (
βZ(ai−1)+ (k − i)ai

)
0≤i≤k+1

,

in which a−1 = ak+1 = 0 by convention.
If 0 ≤ i ≤ k and ξ ∈ Hk

G(X(C),Z/2), let [ξ ]i be the image of ξ by the composition

(2.9) Hk
G

(
X(C),Z/2

) → Hk
G

(
X(R),Z/2

) ∼−→
⊕

0≤i≤k

Hi
(
X(R)

) → Hi
(
X(R)

)

of the restriction to X(R), of the decomposition (2.7) and of the projection.

2.3.2. Twisted integral coefficients. — Let L be a G-equivariant locally constant
sheaf on X(C) with stalks isomorphic to Z, associated to p : X̃ → X as in §2.2. If 0 ≤ i ≤ k

and ξ ∈ Hk
G(X(C),L ), we define [ξ ]i ∈ Hi(X(R)) to be the class obtained by apply-

ing (2.9) to the image of ξ by the reduction modulo 2 morphism Hk
G(X(C),L ) →

Hk
G(X(C),Z/2). By [9, §1.2.4], if ξ ∈ Hk

G(X(C),L ), one has:

(2.10) [ξ ]i = [ξ � ω]i ∈ Hi
(
X(R)

)
.

Assume now that the complex conjugation acts on L |Y by multiplication by (−1)j

for j ∈ Z. This condition holds exactly when Y ⊂ p(X̃(R)) if j is even (resp. when
p(X̃(R)) ∩ Y = ∅ if j is odd). Applying (2.6) with F = L yields RHomG(Z,L ) �⊕

q≥0 Hq(G,Z(j))[−q], inducing, for any k ≥ 0, a canonical decomposition [9, (1.30)]:

(2.11) Hk
G(Y,L )

∼−→
⊕

i≥0

Hi
(
Y,L ⊗ Hk−i

(
G,Z(j)

))
.

The decompositions (2.7) and (2.11) are compatible in the sense that the diagram:

(2.12)

Hk
G(Y,L )

∼ ⊕
i Hi(Y,L ⊗ Hk−i(G,Z(j)))

⊕
0≤i≤k

i≡k−j mod 2
Hi(Y)

1+βL

Hk
G(Y,Z/2)

∼
H0(Y)⊕ · · · ⊕ Hk(Y),

whose left vertical arrow and right upper horizontal arrow are given by reduction modulo
2, and where βL has been defined in §2.2, is commutative [9, §1.2.3].

It follows from (2.12) that, when i ≡ k − j mod 2, the class ([ξ ]i)|Y ∈ Hi(Y) may
equivalently be computed as the image of ξ by the composition

(2.13) Hk
G

(
X(C),L

) → Hk
G(Y,L )

∼−→
⊕

i≥0

Hi
(
Y,L ⊗ Hk−i

(
G,Z(j)

)) → Hi(Y)
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of the restriction to Y, of the canonical decomposition (2.11), of the projection and of the
morphism induced by Hk−i(G,Z(j))→ Hk−i(G,Z/2)� Z/2.

2.3.3. Line bundles. — Let X be a smooth variety over R and M ∈ Pic(X). Kras-
nov [39, Theorem 0.6] has shown that the cycle class maps cl and clR are compatible:

(2.14) clR(M)= [
cl(M)

]
1
∈ H1

(
X(R)

)
.

The following lemma, contained in [9, Proof of Lemma 3.4], concerns 2-torsion line
bundles.

Lemma 2.1. — Let X be a smooth variety over R and e ∈ H1
G(X(C),Z/2). Let

υ : H1
G(X(C),Z/2) → Pic(X) be induced by the isomorphism [50, Corollary 15.3.1]

H1
G(X(C),Z/2)� H1

ét(X,μ2) and the inclusion μ2 → Gm. Then clR(υ(e))= [e]1.

Proof. — Consider the commutative diagram

(2.15)

H1
G(X(C),Z/2)

υ

H1
G(X(R),Z/2)=H0 ⊕H1(X(R))

Pic(X)
cl

H2
G(X(C),Z(1)) H2

G(X(R),Z(1))=H1(X(R))

H2
G(X(C),Z/2) H2

G(X(R),Z/2)=H0 ⊕H1 ⊕H2(X(R)),

whose right horizontal arrows are restrictions to X(R), whose vertical arrows are bound-

ary maps associated to 0 → Z(1)
2−→ Z(1)→ Z/2 → 0 and reductions modulo 2, where

we have indicated the canonical decompositions (2.7) and (2.11). Its upper left triangle
indeed commutes because it commutes by [19, (3.8) and §3.3.1] and comparison with
2-adic cohomology. The image [cl(υ(e))]1 of e in the factor H1(X(R)) of the bottom
right group of (2.15) equals clR(υ(e)) by (2.14). The composition of the two right ver-
tical arrows of (2.15) is βZ(1), hence given by (a0, a1) �→ (0, a1, βZ(a1)) in terms of the
canonical decompositions by (2.8) and (2.10). That [e]1 = clR(υ(e)) then follows from the
commutativity of (2.15). �

2.4. Brauer groups. — Let X be a smooth integral variety over R. We define the
Brauer group of X to be Br(X) := H2

ét(X,Gm). It is a torsion group, as a subgroup of
Br(R(X)) [33, II, Corollaire 1.10]. For any integral divisor � ⊂ X, there is a residue
map res� : Br(R(X))→ H1

ét(R(�),Q/Z) [33, III, Corollaire 2.2].
For α ∈ Br(R(X)), there are only finitely many integral divisors � ⊂ X such that

res�(α) �= 0. Their union is the ramification divisor of α. Their complement U ⊂ X
is the biggest open subset of X such that α ∈ Br(U) ⊂ Br(R(X)), by purity [33, III,
Corollaire 6.2]. We refer to [20, (3.9)] for an exposition of these facts.
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We now describe real analogues of the exact sequences (1.1) and (1.2). For n ≥ 1,
the Kummer exact sequence 1 → μn → Gm

n−→ Gm → 1 of étale sheaves on X and the
comparison isomorphism H2

ét(X,μn)
∼−→ H2

G(X(C),Z/n(1)) between étale cohomology
and equivariant Betti cohomology [50, Corollary 15.3.1] induce a short exact sequence:

(2.16) 0 → Pic(X)/n → H2
G

(
X(C),Z/n(1)

) → Br(X)[n] → 0.

Comparing (2.16) with the long exact sequence of equivariant cohomology associated to
the short exact sequence 0 → Z(1)

n−→ Z(1)→ Z/n(1)→ 0 of G-equivariant sheaves on
X(C), we obtain a short exact sequence:

(2.17) 0 → H2
G

(
X(C),Z(1)

)
/
〈
n,Pic(X)

〉 → Br(X)[n] → H3
G

(
X(C),Z(1)

)[n] → 0,

where cl : Pic(X)→ H2
G(X(C),Z(1)) is Krasnov’s cycle class map. The right-hand side

of (2.17) may be thought of as the topological part of Br(X)[n], and the left-hand side as
its Hodge-theoretic part.

3. Ramified double covers

Let S be a connected smooth projective surface over R and let R ⊂ S be a simple
normal crossings divisor. Most of the proof of our main theorems will be devoted the
construction and the analysis of double covers p : T → S that are ramified over R. In this
section, we set up the relevant notation, and basic tools.

3.1. Construction of double covers. — Fix a line bundle L on S. Consider the Zariski
open subset B ⊂ H0(S,L⊗2(R)) of sections s ∈ H0(S,L⊗2(R)) whose zero locus D ⊂ S is
smooth and intersects R transversally in its smooth locus. The divisor � := R ∪ D ⊂ S is
then a simple normal crossings divisor.

Let r ∈ H0(S,OS(R)) be an equation of R. Let X be the projective bundle
PS(OS ⊕L), with tautological bundle OX(1) and structural morphism f : X → S. Con-
sider the sections v ∈ H0(X,OX(1)) and w ∈ H0(X,OX(1) ⊗ f ∗L−1) induced by the
factors OS ↪→OS ⊕L� f∗OX(1) and OS ↪→L−1 ⊕OS � f∗(OX(1)⊗ f ∗L−1). To a sec-
tion s ∈ B, we associate the surface T := {rv2 = sw2} ⊂ X with projection p : T → S. It is
a finite double cover of S ramified over �. The surface T is smooth apart from ordinary
double points above the singular points of R.

Define T to be the blow-up of T at its singular points: it is the minimal resolution
of singularities of T. We denote by p : T → S the natural morphism. Let π : T → B be
the family of such double covers obtained by letting s vary in B.

In Section 5, it will be convenient to view T as a family of surfaces in a fixed
threefold X. To do so, we notice that the singular points of T, viewed as a subset of X, do
not depend on s. Indeed they are exactly the points lying above the singular locus of R
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where v vanishes. Letting X → X be the blow-up of X at this finite number of points, T
identifies with the strict transform of T in X and the total space of the family π : T → B
may the be viewed as a hypersurface T ⊂ B ×X.

3.2. The topology of double covers. — We collect here a few facts that will be used
in §3.3 and §4.2 to perform cohomological computations on the ramified double covers
constructed in §3.1.

Fix a double cover p : T → S as in §3.1. Let S∗ := S \� be the locus over which
p is étale, let S0 := S \ Sing(�) be the locus over which p is finite flat. Let j0 : S∗ ↪→ S0

be the inclusion, and p : T∗ → S∗ and p : T0 → S0 be the restrictions of p over S∗ and S0.
Let Z̃ be the G-equivariant locally constant sheaf on S∗(C) associated to the finite étale
double cover p : T∗ → S∗ as in §2.2.

A local computation at points x ∈ S0(C) \ S∗(C) shows that j0∗Z = Z, that j0∗p∗Z =
p∗Z, that R1j0∗p∗Z

∼−→ R1j0∗Z, and that Ri j0∗p∗Z = Ri j0∗Z = 0 if i ≥ 2. Consider the distin-
guished triangles in D+

G(S
0(C)): Rj0∗Z̃ → Rj0∗p∗Z → Rj0∗Z −→ (obtained by applying Rj0∗

to (2.2)) as well as Z → Rj0∗Z → R1j0∗Z[−1] → and p∗Z → Rj0∗p∗Z → R1j0∗p∗Z[−1] →
(obtained by applying truncation functors). By the octahedron axiom of triangulated cat-
egories, they fit in a commutative diagram of distinguished triangles in D+

G(S
0(C)):

(3.1)

Rj0∗Z̃
κ

p∗Z Z

Rj0∗Z̃ Rj0∗p∗Z Rj0∗Z

R1j0∗p∗Z[−1] R1j0∗Z[−1]

In the sequel, we will make use of the first row of (3.1):

(3.2) Rj0∗Z̃
κ−→ p∗Z → Z → .

Applying [7, Proposition 1.1.9] to the two vertical distinguished triangles in (3.1) shows
that the morphism p∗Z → Z in (3.2) is the unique one inducing a morphism between
these triangles, hence is obtained by applying j0∗ to the morphism p∗Z → Z on S∗(C) ap-
pearing in (2.2). In contrast, the morphism κ : Rj0∗Z̃ → p∗Z in (3.2) may not be uniquely
determined. Axiom (TR3) of triangulated categories gives rise to a morphism of distin-
guished triangles in D+

G(S
0(C)):

(3.3)
Rj0∗Z̃

κ

2
Rj0∗Z̃

κ

Rj0∗(Z/2)
κ2

p∗Z
2

p∗Z p∗Z/2
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Restricting (3.1) and (3.3) to S∗(C) shows that the morphisms κ|S∗(C) : Z̃ → p∗Z and
κ2|S∗(C) : Z/2 → p∗Z/2 are the natural ones appearing in (2.2) and (2.3).

3.3. A weak Lefschetz theorem. — Recall that we used the weak Lefschetz theorem
twice in the proof of Theorem 1.1, in Lemmas 1.3 and 1.4. The goal of this paragraph is
to prove Proposition 3.3, that will serve as a substitute for the weak Lefschetz theorem in
the proofs of our main results.

Real variants of the weak Lefschetz theorem have been studied in [9, §1.5]. As in
loc. cit., we deduce real statement from the usual (complex) statements using real-complex
exact sequences. The arguments of loc. cit. are given for hypersurfaces and we adapt them
to the setting of double covers.

We keep the notation of §§3.1–3.2. Define P := Sing(�)= S\S0 (it is a finite union
of points), and let E := p−1(P)= T \ T0. The complex variety E(C) is a disjoint union of
copies of P1(C), one above each point of P(C).

We will make the following hypothesis on the line bundle L on S fixed in §3.1:

Assumption 3.1. — The line bundle L(R) is ample.

We start by proving the complex analogue of Proposition 3.3:

Proposition 3.2. — Under Assumption 3.1, the morphism p∗ : Hi(T(C),Z)→Hi(S(C),Z)
is an isomorphism for i ≥ 3, and is surjective for i = 2.

Proof. — Since OS(�) � L⊗2(2R) is ample, S∗ is affine, and so is its finite cover
T∗. Since they are two-dimensional, Hi(S∗(C),Z) = Hi(T∗(C),Z) = 0 for i ≥ 3 (com-
bine [2, Theorem 1] and the universal coefficient theorem). The long exact sequence
associated to (2.2) on S∗(C) then shows that Hi(S∗(C), Z̃)= 0 for i ≥ 3. The long exact
sequence of cohomology associated to (3.2) reads:

Hi
(
S∗(C), Z̃

) → Hi
(
T0(C),Z

) → Hi
(
S0(C),Z

) → Hi+1
(
S∗(C), Z̃

)
,

and shows that p∗ : Hi(T0(C),Z)→ Hi(S0(C),Z) is an isomorphism if i ≥ 3 and surjec-
tive if i = 2. A diagram chase in the commutative diagram:

· · · Hi−2(E(C),Z)
p∗

Hi(T(C),Z)
p∗

Hi(T0(C),Z)
p∗

Hi−1(E(C),Z)
p∗

· · · Hi−4(P(C),Z) Hi(S(C),Z) Hi(S0(C),Z) Hi−3(P(C),Z),

whose rows are long exact sequences of cohomology with support and whose vertical ar-
rows are push-forward maps, then implies that p∗ : Hi(T(C),Z)→ Hi(S(C),Z) is an iso-
morphism for i ≥ 3 and is surjective for i = 2, because p∗ : Hj(E(C),Z)→ Hj−2(P(C),Z)
is an isomorphism for j ≥ 1. �
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Define I ⊂ H1(S(R)) to be the image of p∗ : H1(T(R))→ H1(S(R)).

Proposition 3.3. — Under Assumption 3.1, for i ≥ 2, the image of the morphism p∗ :
Hi

G(T(C),Z(i − 1))→ Hi
G(S(C),Z(i − 1)) is {ξ ∈ Hi

G(S(C),Z(i − 1)) | [ξ ]1 ∈ I}.

Proof. — We argue as in [9, §1.5], by decreasing induction on i. If i ≥ 5, the dia-
gram:

Hi
G(T(C),Z(i − 1))

p∗

∼
Hi

G(T(R),Z(i − 1))
∼

H1(T(R))
p∗

Hi
G(S(C),Z(i − 1))

∼
Hi

G(S(R),Z(i − 1))
∼

H1(S(R)),

whose horizontal maps are restrictions to the real locus (that are isomorphisms by
[9, §1.1.3]) and canonical decompositions (2.11), and whose vertical maps are push-
forwards, commutes by [9, Proposition 1.22] and (2.12), proving the proposition.

If i ≥ 2 and the proposition is proven for i + 1, consider the commutative diagram:

Hi(T(C),Z(i − 1))
p∗

Hi
G(T(C),Z(i − 1))

p∗

Hi+1
G (T(C),Z(i))

p∗

Hi+1(T(C),Z(i))
p∗

Hi(S(C),Z(i − 1)) Hi
G(S(C),Z(i − 1))

�ω

Hi+1
G (S(C),Z(i)) Hi+1(S(C),Z(i))

whose horizontal arrows are real-complex exact sequences (2.5) and whose vertical
arrows are push-forward morphisms. We deduce from the induction hypothesis and
Proposition 3.2 that the image of p∗ : Hi

G(T(C),Z(i − 1)) → Hi
G(S(C),Z(i − 1)) is

{ξ ∈ Hi
G(S(C),Z(i − 1)) | [ξ � ω]1 ∈ I}, which concludes by (2.10). �

4. The pull-back of the Brauer class on a double cover

In this section, we fix a connected smooth projective surface S over R, and a class
α ∈ Br(R(S))[2] of period 2 with simple normal crossings ramification divisor R ⊂ S (see
§2.4). Define U := S \ R and � := {x ∈ U(R) | α|x �= 0 ∈ Br(R)}, and fix an open and
closed subset � ⊂ U(R) containing �. We also fix a line bundle L on S, and a double
cover p : T → S as in §3.1, and use the notation of §§3.1–3.2.

Let TU := p−1(U)⊂ T. We study p∗α ∈ Br(TU)[2] ⊂ Br(R(T))[2]. Our goal is to
prove Propositions 4.2, 4.4 and 4.5. The latter two are real counterparts of Lemmas 1.3
and 1.4. We will make the following hypotheses:

Assumption 4.1. — The morphism p : T → S satisfies that:

(i) The image p(T(R))⊂ S(R) is disjoint from � .
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(ii) The kernel of the restriction map H1(S(R))→ H1(�) is generated by the image of the

push-forward p∗ : H1(T(R))→ H1(S(R)) and by the Borel-Haefliger classes of curves

on S whose real locus does not meet � .

(iii) The push-forward p∗ : H2(T(R))→ H2(S(R)) is injective.

Since �(R)⊂ p(T(R)), Assumption 4.1 (i) implies that � does not meet �(R), or
in other words that � ⊂ S∗(R).

4.1. The ramification. — We first deal with the ramification of α.

Proposition 4.2. — Under Assumption 4.1, αR(T) belongs to Br(T)[2] ⊂ Br(R(T))[2].

Proof. — As explained in §2.4, we have to show that the residue res�(α) of α along
an integral curve � ⊂ T vanishes. If � does not lie over R, this is obvious. If p(�) is an
irreducible component of R, this follows from [20, Proposition 3.3.1].

Otherwise, � is an exceptional divisor of the blow-up T → T. At this point, we
know that the ramification locus of αR(T) is smooth. Since the Gersten complexes (ap-
pearing in the first page of the coniveau spectral sequence [11, Proposition 3.9]) are com-
plexes, the class res�(α) ∈ H1(R(�),Z/2) is unramified, hence belongs to H1

ét(�,Z/2).
But � � P1

C or � � P1
R. In the first case, H1

ét(�,Z/2)= 0 and we are done. In the second
case, H1(R,Z/2)

∼−→ H1
ét(�,Z/2), and it suffices to show that res�(α)|x = 0 ∈ H1(R,Z/2)

for some x ∈ �(R).
To do so, choose a curve �′ ⊂ T that meets � transversally at x, and that in-

tersects TU. By Assumption 4.1 (i) and since � ⊂ � , one has p∗α|y = 0 ∈ Br(R)
for y ∈ TU(R), hence for y ∈ �′(R) general. By a theorem of Witt, it follows that
p∗α|R(�′) ∈ Br(R(�′))= 0. Indeed, p∗α|C(�′) = 0 by cohomological dimension, so that
p∗α|R(�′) is the class of a conic, and this conic is split by [58, Satz 22]. As a consequence,
the residue of p∗α|R(�′) at x vanishes. Since it coincides with the restriction of res�(α) at x,
the proof is complete. �

4.2. The topological Brauer class. — Under the hypothesis of Proposition 4.2, αR(T)

belongs to the subgroup Br(T)[2] ⊂ Br(R(T))[2]. In §4.2, we study the image τ ∈
H3

G(T(C),Z(1))[2] of αR(T) by (2.17).

Proposition 4.3. — Under Assumptions 3.1 and 4.1, τ � ω= 0 ∈ H4
G(T(C),Z).

Proof. — We consider the diagram:

(4.1)
Br(T)[2]

p∗

H3
G(T(C),Z(1))

p∗

�ω

H4
G(T(C),Z)

p∗

H0(T(R))⊕ H2(T(R))
p∗

Br(S)[2] H3
G(S(C),Z(1))

�ω

H4
G(S(C),Z) H0(S(R))⊕ H2(S(R)),
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whose vertical arrows are push-forward maps, whose left horizontal arrows stem
from (2.17), and whose right horizontal arrows are ξ �→ ([ξ ]0, [ξ ]2). It commutes (by
[9, Proposition 1.22] and (2.12) for the right-hand square). Since p∗(αR(T)) = p∗p∗α =
2α = 0 ∈ Br(R(S)), (4.1) shows that p∗[τ � ω]2 = 0 ∈ H2(S(R)). By Assumption 4.1 (iii),
we see that [τ � ω]2 = 0 ∈ H2(T(R)). By Assumption 4.1 (i), p∗α|x = 0 ∈ Br(R) for ev-
ery x ∈ T(R), implying that [τ � ω]0 = 0 ∈ H0(T(R)). By [9, Lemma 2.11 (ii)], the
upper right horizontal arrow of (4.1) fits into an exact sequence:

H4
(
T(C),Z

) NC/R−−→ H4
G

(
T(C),Z

) −→ H0
(
T(R)

) ⊕ H2
(
T(R)

)
,

whose first arrow is the norm map, showing that τ � ω is the norm of a class in
H4(T(C),Z). By Proposition 3.2 applied with i = 4, the connected components of T(C)
and S(C) are in bijection. Since the real surface S is connected, we deduce that T(C)
is either connected or has two connected components exchanged by the complex conju-
gation σ ∈ G. In either case, the image of the norm map H4(T(C),Z)→ H4

G(T(C),Z)
is generated by the norm NC/R(clC(y)) of the cycle class of any point y ∈ T(C). It fol-
lows that there exists n ∈ Z such that τ � ω = nNC/R(clC(y)) = n cl(y + σ(y)). In the
commutative diagram:

H4
G(T(C),Z)

p∗

H4(T(C),Z)
p∗

H4
G(S(C),Z) H4(S(C),Z),

the class τ � ω dies in H4(S(C),Z) because p∗(τ � ω) = 0. We deduce that
p∗(n clC(y + σ(y)))= n clC(p(y)+ p(σ (y)))= 0. Since p(y) + p(σ (y)) is a nontrivial ef-
fective 0-cycle, we see that n = 0, hence that τ � ω= 0, as wanted. �

We now find conditions under which τ vanishes.

Proposition 4.4. — Under Assumptions 3.1 and 4.1, and if there exists a lift α̃ ∈
H2

G(U(C),Z/2) of α in (2.16) such that ([α̃]1)|� = 0 ∈ H1(�), one has τ = 0.

Proof. — Consider the commutative diagram:

(4.2)
H3

G(T(C),Z)
p∗

H3(T(C),Z)
�p∗

NC/R

H3
G(T(C),Z(1))

p∗

H2
G(S(C),Z(1))

�ω

H3
G(S(C),Z) H3(S(C),Z) H3

G(S(C),Z(1)),

whose horizontal arrows are real-complex exact sequences (2.5), whose vertical arrows
are push-forward maps, and whose middle vertical arrow is an isomorphism by Propo-
sition 3.2. Since τ � ω = 0 by Proposition 4.3, there exists γ ∈ H3(T(C),Z) such that
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τ = NC/R(γ ). Since p∗τ = 0 as was explained in the proof of Proposition 4.3, one can lift
p∗γ to a class δ ∈ H3

G(S(C),Z). We claim that, up to replacing δ with δ − (ξ � ω) for
some class ξ ∈ H2

G(S(C),Z(1)), we may assume that ([δ]1)|� = 0 ∈ H1(�).
By Assumption 4.1 (ii), this claim implies that there exists θ ∈ Pic(S) such that

[δ]1 − clR(θ) is in the image of p∗ : H1(T(R))→ H1(S(R)). By (2.10) and (2.14), one
has clR(θ)= [cl(θ) � ω]1, and Proposition 3.3 shows that δ = p∗ε+ cl(θ) � ω for some
ε ∈ H3

G(T(C),Z). Since the middle vertical arrow in (4.2) is an isomorphism, it follows
from a diagram chase in (4.2) that τ = 0.

It remains to prove the above claim. Represent the distinguished triangle (3.2) by
a short exact sequence 0 → I•

1 → I•
2 → I•

3 → 0 of bounded below complexes of in-
jective G-equivariant sheaves on S0(C) [34, Proposition 6.10]. For F = Z, Z[G] or
Z(1), applying the tensor product termwise produces complexes I•

i ⊗Z F of injective
objects, that represent I•

i ⊗L
Z F because F is Z-flat. Tensoring by the exact sequence

0 → Z → Z[G] → Z(1)→ 0 and applying R�G(−) := R�G(S0(C),−) termise yields a
commutative exact diagram of complexes of abelian groups:

(4.3)

0 0 0

0 R�G(I•
1 ) R�G(I•

1 ⊗Z Z[G]) R�G(I•
1 ⊗Z Z(1)) 0

0 R�G(I•
2 ) R�G(I•

2 ⊗Z Z[G]) R�G(I•
2 ⊗Z Z(1)) 0

0 R�G(I•
3 ) R�G(I•

3 ⊗Z Z[G]) R�G(I•
3 ⊗Z Z(1)) 0

0 0 0

Taking cohomology in (4.3) gives an exact commutative diagram

(4.4)

H2
G(S

0(C),Z(1))
�ω

H3
G(S

0(C),Z)
g

H3
G(S

∗(C), Z̃(1))
κ

�ω

H4
G(S

∗(C), Z̃)

H3(T0(C),Z)
p∗

NC/R

H3
G(T

0(C),Z(1))
p∗

H3
G(S

0(C),Z)
g

H3(S0(C),Z) H3
G(S

0(C),Z(1))

H4
G(S

∗(C), Z̃) ,
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whose rows are real-complex exact sequences (2.5). In the commutative diagram:

H2
G(S

∗(C),Z/2)
∂

κ2

H3
G(S

∗(C), Z̃(1))
κ

H2
G(T

0(C),Z/2)
∂

H3
G(T

0(C),Z(1))

obtained by twisting (3.3) by Z(1) and taking G-equivariant cohomology, the class
ζ := ∂(α̃|S∗) ∈ H3

G(S
∗(C), Z̃(1)) satisfies the relation κ(ζ )= τ |T0 ∈ H3

G(T
0(C),Z(1)).

The two classes g(δ|S0) and ζ � ω in H4
G(S

∗(C), Z̃) have been constructed from
γ |T0 ∈ H3(T0(C),Z) by a diagram chase in (4.4). By [35, Lemma p. 268] applied to
diagram (4.3), there exists η0 ∈ H2

G(S
0(C),Z(1)) such that

(4.5) g(δ|S0)+ ζ � ω= g
(
η0 � ω

)
.

By purity [9, (1.21)], the restriction H2
G(S(C),Z(1))→H2

G(S
0(C),Z(1)) is onto; let

η ∈ H2
G(S(C),Z(1)) be such that η|S0 = η0. Let e := eZ̃

Z/2 ∈ H1
G(S

∗(C),Z/2) be as in
§2.2. By Lemma 2.1 and the surjectivity of the restriction map Pic(S) → Pic(S∗),
there exists ϕ ∈ Pic(S) such that clR(ϕ)|S∗(R) = [e]1 ∈ H1(S∗(R)). After replacing δ with
δ − ((η+ cl(ϕ)) � ω), equation (4.5) becomes:

(4.6) g(δ|S0)+ ζ � ω+ g
(
cl(ϕ|S0) � ω

) = 0 ∈ H4
G

(
S∗(C), Z̃

)
.

We will use (4.6) to compute ([δ]1)|� ∈ H1(�). We first calculate ([g(δ|S0)]1)|� and
([g(cl(ϕ|S0) � ω)]1)|� by considering the commutative diagram:

(4.7)
H3

G(S
0(C),Z)

g

H3
G(�,Z)=H1(�) H3

G(�,Z/2)=H0 ⊕H1 ⊕H2(�)

H4
G(S

∗(C), Z̃) H4
G(�, Z̃)=H1(�) H4

G(�,Z/2)=H0 ⊕H1 ⊕H2(�),

whose vertical arrows are induced by (3.2), whose left horizontal arrows are restrictions
to � and whose right horizontal arrows are given by reduction modulo 2. The equali-
ties in (4.7) are the canonical decompositions (2.7) and (2.11); in particular, the equality
H4

G(�, Z̃) = H1(�) follows from the fact that complex conjugation acts by −1 on the
stalks of Z̃|� by Assumption 4.1 (i). By (2.12), the upper (resp. lower) right horizontal ar-
row of (4.7) is given, in terms of the canonical decompositions, by a �→ (0, a, βZ(a)) (resp.
a �→ (0, a, βZ̃(a))). The right vertical arrow of (4.7) is a boundary map induced by (2.3) for
L = Z̃, hence is given by the cup-product by e|� ∈ H1

G(�,Z/2). By Assumption 4.1 (i),
the class e|x ∈ H1

G(x,Z/2)= Z/2 is nontrivial for every x ∈� , so that [e]0 = 1 ∈ H0(�).
By the cup-product formula [9, (1.28)] the right vertical arrow of (4.7) is given, in the
canonical decompositions, by the formula (a, b, c) �→ (a, b + a� [e]1, c + b� [e]1). By
the commutativity of (4.7), the middle vertical arrow of (4.7) is the identity of H1(�).
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We deduce that ([g(δ|S0)]1)|� = ([δ]1)|� ∈ H1(�). Using (2.10) and (2.14), we also get:
([g(cl(ϕ|S0) � ω)]1)|� = ([cl(ϕ) � ω]1)|� = ([cl(ϕ)]1)|� = clR(ϕ)|� = ([e]1)|� .

Our next step is to calculate ([ζ � ω]1)|� ∈ H1(�). By (2.10), we know that it is
equal to ([ζ ]1)|� . To compute it, we consider the commutative diagram:

(4.8)

H2
G(S

∗(C),Z/2) H3
G(S

∗(C), Z̃(1))

H2
G(�,Z/2)=H0 ⊕H1 ⊕H2(�) H3

G(�, Z̃(1))=H1(�)

H3
G(�,Z/2)=H0 ⊕H1 ⊕H2(�),

whose vertical arrows are restrictions to � and reduction modulo 2, whose horizontal
arrows are boundary maps of the exact sequence 0 → Z̃(1)

2−→ Z̃(1)→ Z/2 → 0, and
where we have indicated the canonical decompositions (2.7) and (2.11). The diagonal
arrow is a boundary map induced by (2.2) for L = Z̃(1), hence is the sum of the Bock-
stein map and of the cup-product with e + ω. Since ([e +ω]0)|� = 1 + 1 = 0 ∈ H0(�)

and ([e + ω]1)|� = ([e]1)|� by [9, §1.2.5], the formulae [9, (1.28)] and (2.8) show
that the diagonal arrow is given by (a, b, c) �→ (0, b + a � [e]1, βZ(b) + b � [e]1) in
the canonical decompositions. By (2.12), the lower right vertical arrow is given by
a �→ (0, a, βZ̃(a)). Applying the commutativity of (4.8) to α̃|S∗ ∈ H2

G(S
∗(C),Z/2) then

shows that ([ζ ]1)|� = ([e]1)|� , by our hypothesis that ([α̃]1)|� = 0 ∈ H1(�).
Plugging our computations into (4.6) shows that:

0=([
g(δ|S0)

]
1
+ [ζ � ω]1 + [

g
(
cl(ϕ|S0) � ω

)]
1

)|�
=([δ]1

)|� + 2
([e]1

)|�=([δ]1

)|�,
which completes the proof of the claim, and of the proposition. �

4.3. The push-forward. — Under the hypotheses of Proposition 4.4, p∗α ∈ Br(T)[2]
vanishes in H3

G(T(C),Z(1))[2] in (2.17), hence lifts to a class β ∈ H2
G(T(C),Z(1)). We

now study the class p∗β ∈ H2
G(S(C),Z(1)).

Proposition 4.5. — Under Assumptions 3.1 and 4.1, and if there exists α̃ ∈ H2
G(U(C),Z/2)

lifting α in (2.16) such that ([α̃]1)|� = 0 ∈ H1(�), there exist classes γ ∈ H2
G(T(C),Z(1)) and

θ ∈ Pic(S) such that p∗(β − 2γ )= cl(θ) ∈ H2
G(S(C),Z(1)).

Proof. — Let p : TU → U be the restriction of p : T → S to U ⊂ S. As β|TU and p∗α̃
both induce the class p∗α ∈ Br(R(T)), the exact sequence (2.17) shows that there exist
ε ∈ H2

G(TU(C),Z(1)) and ϕ ∈ Pic(TU) such that

β|TU = p∗α̃ + 2ε+ cl(ϕ).



THE PERIOD-INDEX PROBLEM FOR REAL SURFACES

Since p∗β ∈ H2
G(S(C),Z(1)) induces p∗p∗α = 2α = 0 ∈ Br(S)[2] ⊂ Br(R(S))[2] in

the exact sequence (2.17), there exist δ ∈ H2
G(S(C),Z(1)) and θ1 ∈ Pic(S) such that

p∗β = 2δ+ cl(θ1) ∈ H2
G(S(C),Z(1)). We deduce that

2α̃+ 2p∗ε+ cl(p∗ϕ)= (p∗β)|U = 2δ|U + cl(θ1)|U ∈ H2
G

(
U(C),Z(1)

)
.

As cl : Pic(U) → H2
G(U(C),Z(1)) has torsion-free cokernel by [9, Proposition 2.9],

and as the restriction map Pic(S) → Pic(U) is surjective, there exists θ2 ∈ Pic(S)
such that (δ − cl(θ2))|U = α̃ + p∗ε ∈ H2

G(U(C),Z(1)). Since ([α̃]1)|� = 0 by hy-
pothesis and since [p∗ε]1 = p∗[ε]1 = 0 ∈ H1(S(R)) by [9, Proposition 1.22] and As-
sumption 4.1 (i), we get ([δ − cl(θ2)]1)|� = 0 ∈ H1(�). It then follows from Propo-
sition 3.3 and Assumption 4.1 (ii) that there exists γ ∈ H2

G(T(C),Z(1)) such that
p∗γ = δ− cl(θ2) ∈ H2

G(S(C),Z(1)). To conclude, we set θ := θ1 + 2θ2 and compute:
p∗(β − 2γ )= 2δ+ cl(θ1)− 2(δ − cl(θ2))= cl(θ) ∈ H2

G(S(C),Z(1)). �

5. Small Noether-Lefschetz loci for double covers

In Section 5, we fix a connected smooth projective surface S over R, and a simple
normal crossings divisor R ⊂ S. Our goal, achieved in Proposition 5.4, is to construct a
Noether-Lefschetz locus of the expected dimension in a family of double covers of S that
are ramified over R, thus verifying (the real analogue of) Green’s infinitesimal criterion
for this family. This will serve as a substitute of Theorem 1.5 in the proof of our main
theorems.

The Noether-Lefschetz locus is constructed in §5.1 and Green’s criterion is checked
in §5.2 under restrictive assumptions on (S,R). In §5.3, we explain how to ensure that
these assumptions hold, by carefully replacing S by a birational model.

5.1. Curves on ramified double covers. — Let A and N be line bundles on S with A
very ample. Let l ∈ N be even, and define L := A⊗l ⊗ N (−R). Then, if l � 0 (and we
choose such a l), the following holds:

Assumption 5.1. — The groups H1(S,A⊗l), H1(S,L) and H1(S,L ⊗ N ) vanish. The

line bundles L and L⊗N are very ample.

We apply the constructions of §3.1 with this choice of L, and use the notation
defined there. In particular, we defined a Zariski open subset B ⊂ H0(S,L⊗2(R)) and
associated with each s ∈ B a diagram of varieties:

T

p

X

T
p

X

f

S
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We now construct a particular point s ∈ B whose associated surface T contains a curve
C ⊂ T, that will give rise to an interesting Noether-Lefschetz locus.

Let (ui) be a basis of H0(S,A⊗l/2). Since A is very ample, the ui do not vanish
simultaneously, and {∑i u2

i = 0} ⊂ S has no real points. Let c ∈ H0(S,A⊗l) be a general
small deformation of

∑
i u2

i ∈ H0(S,A⊗l). Since A is very ample, C := {c = 0} ⊂ S is
a smooth curve intersecting R transversally in its smooth locus, and C(R) = ∅ as this
property is preserved by small deformations.

Choose a general section g ∈ H0(C,L). Since L is very ample by Assumption 5.1,
{g = 0} ⊂ C is reduced and disjoint from R. The section rg2 ∈ H0(C,L⊗2(R)) lifts to
a section s0 ∈ H0(S,L⊗2(R)) because H1(S,L ⊗ N ) = 0 by Assumption 5.1. Consider
the linear system V ⊂ H0(S,L⊗2(R)) of sections of the form a1s0 + a2c with a1 ∈ R and
a2 ∈ H0(S,L⊗N ). Its base locus is {c = s0 = 0} because L⊗N is very ample by Assump-
tion 5.1, hence is finite. Let us show that a general s ∈ V belongs to B ⊂ H0(S,L⊗2(R)),
i.e. that its zero locus D ⊂ S is smooth and intersects R transversally in its smooth locus.
Outside of the base locus of V, this follows from the Bertini theorem. At a point x in the
base locus of V, this holds for any particular choice of (a1, a2) with a1 = 0 and a2|x �= 0
because C is smooth and intersects R transversally in its smooth locus, hence for a general
choice of (a1, a2), as wanted. We now fix such a general s ∈ V with a1 > 0.

Over C ⊂ S, the finite double cover p : T → S has equation {rv2 = a1rg2w2}. It
follows that the strict transform of C in T splits into two components isomorphic to C: one
where v = √

a1gw and one where v = −√
a1gw. We choose the first of these components

and still denote it by C ⊂ T. It does not intersect the singular locus of T and we still
denote by C ⊂ T its strict transform. Since C ⊂ T satisfies the equation v = √

a1gw, and
since v and w do not vanish simultaneously on X, w does not vanish on C. In other
words, w induces an isomorphism:

(5.1) L|C ∼
w

OX(1)|C .

5.2. Verifying the hypothesis of Green’s criterion. — We keep the notation of §3.1 and
§5.1. In particular, π : T → B is a family of smooth surfaces in the smooth projective
threefold X over R, where we now view B as a real algebraic variety in the natural way.
In §5.1, we have constructed a curve C in the fiber T = Ts of π above some s ∈ B(R).
Let λ ∈ H1(T,�1

T) be the cohomology class of C ⊂ T in Hodge cohomology. We want
to control the image of the composition

(5.2) φλ : TB,s → H1(T,TT)
λ−→ H2(T,OT)

of the Kodaira-Spencer map of π at s and of the contracted cup-product with λ induced
by the pairing TT ⊗�1

T →OT. We will do it under additional hypotheses:
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Assumption 5.2. — The cup-product morphism H0(S,KS)
η−→ H1(S,N ⊗ KS) is injective

for some (hence for a general) η ∈ H1(S,N ). The groups H0(S,N ⊗ KS), H0(S,N−1 ⊗ KS(R))
and H1(R,N |R) vanish.

We start with a lemma.

Lemma 5.3. — Under Assumptions 5.1 and 5.2, h1(C,NC/X) ≤ h2(S,OS) and

H2(T,OT(C))= 0.

Proof. — To prove the first statement, we use the natural exact sequence:

(5.3) 0 → TX/S|C → NC/X
f∗−→ NC/S → 0.

One computes TX/S � K∨
X/S

� OX(2) ⊗ L−1 so that TX/S|C � L|C by (5.1). Since
NC/S �OS(C)�A⊗l , taking cohomology in (5.3) yields an exact sequence:

(5.4) H1(C,L)→ H1(C,NC/X)→ H1
(
C,A⊗l|C

)
.

As H2(S,N (−R))� H0(S,N⊗−1 ⊗ KS(R))∨ = 0 by Assumption 5.2 and H1(S,L)= 0
by Assumption 5.1, one has H1(C,L)= 0. Since H1(S,A⊗l)= 0 by Assumption 5.1, we
see that h1(C,A⊗l|C) ≤ h2(S,OS), and (5.4) implies that h1(C,NC/X) ≤ h2(S,OS). The
blow-up X → X being an isomorphism along C, NC/X � NC/X, which concludes.

We turn to the second statement. Since the singularities of T are rational
and avoid C, the Leray spectral sequence for T → T shows that H2(T,OT(C)) �
H2(T,OT(C)). Since T is a Cartier divisor in X, it is Gorenstein with dualizing
sheaf ωT � KX(T)|T � p

∗
(KS ⊗ L(R)). By Serre duality, we need to show that

H0(T,ωT(−C))= H0(T, p∗
(KS ⊗ L(R))(−C)) vanishes. Pushing forward the exact se-

quence 0 →OT(−C)→OT →OC → 0 by p : T → S yields:

(5.5) 0 → p∗OT(−C)→OS ⊕L⊗−1(−R)
(1,rg)−−→OC,

where the splitting p∗OT � OS ⊕ L⊗−1(−R) is induced by the involution of the double
cover p : T → S. Tensoring (5.5) with KS ⊗L(R) and taking cohomology gives an exact
sequence:

0 → H0
(
T,ωT(−C)

) → H0
(
S,KS ⊗L(R)

)⊕ H0(S,KS)
(1,rg)−−→ H0

(
C,KS ⊗L(R)

)
.

We need to show that its rightmost arrow is injective. In view of the exact sequence:

H0(S,N ⊗ KS)→ H0
(
S,KS ⊗L(R)

) → H0
(
C,KS ⊗L(R)

) ∂−→ H1(S,N ⊗ KS),

in which the first group vanishes by Assumption 5.2, we only need to prove that the
composition:

(5.6) H0(S,KS)
rg−→ H0

(
C,KS ⊗L(R)

) ∂−→ H1(S,N ⊗ KS)
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is injective. By [14, Chapter II, Theorem 7.1 (c)], the composition (5.6) identi-
fies with the cup-product with ∂(rg) = r � ∂(g), where we have denoted by ∂ the
boundary maps of the short exact sequences 0 → N → L(R) → L(R)|C → 0 and
0 →N (−R)→L→L|C → 0.

At this point, consider the composition:

ψ : H0(C,L) ∂−→ H1
(
S,N (−R)

) � r−→ H1(S,N ).

Since H1(S,L) = H1(R,N |R) = 0 by Assumptions 5.1 and 5.2, ψ is surjective. Since
g ∈ H0(C,L) has been chosen general, ψ(g) = r � ∂(g) ∈ H1(S,N ) is general. By

Assumption 5.2, the cup-product H0(S,KS)
r�∂(g)−−−→ H1(S,N ⊗ KS) is injective, as we

wanted. �

Proposition 5.4. — Under Assumptions 5.1 and 5.2, the cokernel of the morphism φλ defined

in (5.2) is of dimension at most h2(S,OS).

Proof. — By [51, Proposition 3.2.9 (i)], the Kodaira-Spencer map may be de-
scribed as the composition TB,s → H0(T,NT/X) → H1(T,TT) of the map classifying
infinitesimal deformations of T in X and of the boundary of the short exact sequence:

0 → TT → TX|T → NT/X → 0.

It then follows from [8, Proposition 2.1] that φλ coincides with the composition:

(5.7) TB,s → H0(T,NT/X)→ H0(C,NT/X|C)→ H0(C,NC/T)→ H2(T,OT)

of the map classifying infinitesimal deformations of T in X, of the restriction to C and of
the boundary maps of the short exact sequences

(5.8) 0 → NC/T → NC/X → NT/X|C → 0,

(5.9) 0 →OT →OT(C)→OT(C)|C � NC/T → 0.

By Lemma 5.3 and the short exact sequences (5.8) and (5.9), the last arrow in (5.7) is
surjective, and the third has cokernel of dimension at most h2(S,OS). To conclude, it
remains to show that the composition of the first two arrows in (5.7) is surjective. Since
the resolution of singularities T → T is an isomorphism along C, it coincides with the
analogous composition:

(5.10) TB,s → H0(T,NT/X)→ H0(C,NT/X|C).
In (5.10), one has TB,s = H0(S,L⊗2(R)), NT/X =OX(T)|T =OX(2)(R)|T, and the mor-
phism TB,s → H0(T,NT/X) describes the variation with s of the equation of T. Since
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T = {rv2 = sw2} ⊂ X, it is given by multiplication by w2. It follows that (5.10) is the
composition

H0
(
S,L⊗2(R)

) → H0
(
C,L⊗2(R)|C

) w2−→ H0
(
C,OX(2)(R)|C

)

of the restriction map and of the multiplication by w2. The former is surjective as
H1(S,L⊗N )= 0 by Assumption 5.1 and the latter is an isomorphism by (5.1). �

5.3. Choice of a birational model of S. — In this section, we explain how to ensure
that Assumption 5.2 is satisfied, after replacing S by a blow-up S′ at finitely many points
lying outside of R.

Let P,Q ⊂ S be two disjoint reduced finite subschemes of S not meeting R, and
let IP and IQ be their ideal sheaves. We consider the blow-up μ : S′ → S of P ∪ Q, with
exceptional divisor E ∪ F ⊂ S′ where E = μ−1(P) and F = μ−1(Q).

Proposition 5.5. — Let A be an ample line bundle on S, such that H1(R,A|R) = 0. Let

N := μ∗A(2F − 2E). If P and Q consist of sufficiently many general points, then there exists

η ∈ H1(S′,N ) such that:

(i) H0(S′,N ⊗ KS′)= 0,

(ii) H0(S′,N−1 ⊗ KS′(R))= 0,

(iii) H1(R,N |R)= 0,

(iv) The cup-product map H0(S′,KS′)
�η−→ H1(S′,N ⊗ KS′) is injective.

Proof. — Condition (iii) follows from our choice of A. Since H0(S′,N ⊗ KS′) =
H0(S′,μ∗(A ⊗ KS)(3F − E)) = H0(S,A ⊗ KS ⊗ IP), this group vanishes if P contains
sufficiently many general points. By the same argument, H0(S′,N−1 ⊗ KS′(R)) vanishes
if Q contains sufficiently many general points.

It remains to check (iv). If ζ ∈ H0(S,KS), consider the diagram:

(5.11)
H1(S′,N )

�μ∗ζ
H1(S′,N ⊗ KS′)

H1(S,A⊗ I2
P) H1(S,A⊗ IP)

�ζ

H1(S,A⊗ IP ⊗ KS).

The vertical maps are edge maps in the Leray spectral sequence for μ, hence are in-
jective. The bottom left horizontal arrow, induced by the inclusion A ⊗ I2

P ⊂ A ⊗ IP,
is surjective as the cokernel of this inclusion is supported on P. The two other ar-
rows are cup-products by ζ and by its pull-back μ∗ζ ∈ H0(S′,KS′). The description of
μ∗ζ as induced by the inclusion μ∗KS ⊂ μ∗KS(E + F) � KS′ shows that (5.11) com-
mutes. Since μ∗ : H0(S,KS) → H0(S′,KS′) is an isomorphism, it suffices to construct
ν ∈ H1(S,A⊗IP) such that the cup-product map H0(S,KS)

�ν−→ H1(S,A⊗IP ⊗ KS) is
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injective. Indeed, it follows from (5.11) that a class η ∈ H1(S′,N ) constructed by lifting ν
to H1(S,A⊗ I2

P) then sending it to H1(S′,N ) will satisfy the required property.
To construct ν, we consider, for every ζ ∈ H0(S,KS), the commutative diagram:

(5.12)
H0(S,A)

�ζ

H0(P,A|P) ∂

�ζ

H1(S,A⊗ IP)

�ζ

H0(S,A⊗ KS) H0(P, (A⊗ KS)|P) H1(S,A⊗ IP ⊗ KS),

and we choose ν = ∂(ξ) for some ξ ∈ H0(P,A|P). We only have to ensure that
ξ � ζ ∈ H0(P, (A⊗ KS)|P) does not belong to the image of H0(S,A ⊗ KS), for every
non-zero ζ ∈ H0(S,KS). This is possible if P contains sufficiently many general points.
Indeed, P may then be written as a disjoint union P = P1 ∪ P2 such that no non-zero
ζ ∈ H0(S,KS) vanishes identically on P1 and no non-zero section in H0(S,A⊗ KS) van-
ishes identically on P2. Then any ξ ∈ H0(P,A|P) that vanishes at every point of P2 but at
no point of P1 does the job. �

6. Sufficient conditions for the equality of period and index

We now combine the results of the previous sections to show the equality of the
period and the index of some Brauer classes α ∈ Br(R(S)) in §6.2–6.3, and to compute
the u-invariant of R(S) in §6.4. The only step missing is a control on the topology of the
real locus of ramified double covers p : T → S constructed as in §3.1. In §6.1, we gather
technical results that will be used for this purpose.

Let M be a one-dimensional R-vector space. The positive elements of M⊗2 are
those of the form m ⊗ m for some non-zero m ∈ M. This notion depends on the chosen
representation of M⊗2 as a tensor square, but it will always be clear which one we con-
sider. In particular, if X is variety over R and M is a line bundle on X, it makes sense to
say that a section in H0(X,M⊗2) is positive at x ∈ X(R).

6.1. Controlling the real locus of a double cover. — In §6.1, we fix a connected smooth
projective surface S over R, a simple normal crossings divisor R ⊂ S with equation
r ∈ H0(S,OS(R)), and a union of connected components ⊂ S(R) such that R(R)⊂ .
We will consider the following:

Assumption 6.1. — There exists a compact one-dimensional manifold S and a C∞ embedding

ι : S → meeting R(R) transversally in its smooth locus such that:

(i) Every connected component of  meets ι(S).
(ii) One has ι∗[S] = clR(R) ∈ H1( )⊂ H1(S(R)).

(iii) The group H1( ) is generated by classes of connected components of ι(S) and by Borel-

Haefliger classes of curves on S whose real locus is included in  .
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(iv) Let � be a connected component of  , define �0 := � ∩ (ι(S) ∪ R(R)) and write

� \�0 as a disjoint union �+ 	�− of open closed subsets. If any x ∈�0 belongs to the

closures of both �+ and �−, then �+ ∪�0 is connected.

The three following lemmas will be useful to verify that Assumption 6.1 holds.

Lemma 6.2. — If ι : S →  satisfies Assumption 6.1, then so does any ι′ : S →  close

enough to ι in C∞(S, ) for the strong C∞ topology.

Proof. — That ι′ still satisfies conditions (i), (ii) and (iii) is immediate. To show
that ι′ still meets R(R) transversally in its smooth locus and satisfies condition (iv),
introduce the normalization R̃ of R, consider the C∞ normal crossings immersion
(ι, Id) : S 	 R̃(R)→ , and use [30, Chapter III, Theorem 3.11, Definition 1.1]. �

Lemma 6.3. — There exists a blow-up μ : S′ → S at a finite number of general points such

that, letting  ′ := μ−1( )⊂ S′(R), Assumption 6.1 is satisfied for (S′, ′).

Proof. — Consider a union of loops in  whose classes generate H1( ). Adding
additional loops if necessary, and applying C∞ approximation and a transversality theo-
rem, one obtains a compact one-dimensional manifold S and a C∞ immersion ι : S → 

meeting every connected component of  , intersecting R(R) transversally at smooth
points, that is injective except at finitely many general points of  where it has transverse
self-intersection, such that the connected components of S generate H1( ), such that
ι∗[S] = clR(R) ∈ H1( ), and such that, for every connected component � ⊂  , the set
� ∩ (ι(S)∪ R(R)) is connected.

Let μ : S′ → S be the blow-up of S at the finitely many points of transverse self-
intersection of ι, so that ι lifts to an embedding ι′ : S → ′. We claim that ι′ satisfies the
properties required in Assumption 6.1. Condition (i) is clear. Computing the cohomology
of a blow-up allows to deduce the equality ι′∗[S] = clR(R) ∈ H1( ′) of condition (ii) from
the equality ι∗[S] = clR(R) ∈ H1( ). It also shows that H1( ′) is generated by classes
of connected components of ι′(S) and by Borel-Haefliger classes of exceptional divisors
of μ, yielding (iii).

Let us verify condition (iv). Let �′ be a connected component of  ′ and let �′
0,

�′
+ and �′

− be as in Assumption 6.1 (iv). Let x ∈ μ(�) be a point of self-intersection
of ι. Its preimage in  ′ (that is the real locus of an exceptional divisor of μ) is a loop
meeting transversally ι′(S) at exactly two points. The complement of these two points in
the loop has two connected components; one has to belong to �′

+ and the other to �′
−.

This shows that these two points belong to the same connected component of �′
+ ∪�′

0.
We then deduce from the connectedness of μ(�′

0) = μ(�′) ∩ (ι(S) ∪ R(R)) that �′
0 is

contained in a unique connected component of �′
+ ∪�′

0. The connectedness of �′ then
implies that of �′

+ ∪�′
0, as required. �
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Lemma 6.4. — Let A and N be line bundles on S with A very ample, let ι : S → be as

in Assumption 6.1 and let U be a neighbourhood of ι in C∞(S, ). Then, if l ∈ N is a big enough

even integer, there exist elements ι′ ∈ U and t ∈ H0(S,A⊗l ⊗ N⊗2(−R)) such that {t = 0} is

smooth along its real locus Z, such that Z = ι′(S), and such that rt ∈ H0(S,A⊗l ⊗N⊗2) is negative

on S(R) \ .

Proof. — By [12, Theorem 12.4.11], there exist ι′ ∈ U and a hypersurface H ⊂ S
that is smooth along S(R) and such that H(R) = ι′(S). Since ι∗[S] = clR(R), one has
clR(R + H) = 0. Consequently, one may apply Bröcker’s theorem [15, Satz b)] to find
h1 ∈ R(S)∗ that vanishes at order one along R and H and that has no other zeros or poles
along S(R). By the Stone-Weierstrass theorem (see [15, Satz a)]), there exists h2 ∈ R(S)∗

invertible along S(R) that has the same signs as h1 on S(R) \ . Let D be the divisor of
poles of h1h2, let l be an even number such that A⊗l/2 ⊗N (−R−D) is very ample. Let (ui)

be a basis of H0(S,A⊗l/2 ⊗N (−R−D)) viewed as sections of A⊗l/2 ⊗N (−R) vanishing
on D, so that u := ∑

i u2
i ∈ H0(S,A⊗l ⊗N⊗2(−2R)). Then t := −h1h2ru works. �

We now explain how Assumption 6.1 will be used to control the topology of the
real locus of a ramified double cover.

Lemma 6.5. — Let L be a line bundle on S, let s ∈ H0(S,L⊗2(R)) be a section with smooth

zero-locus D, such that rs ∈ H0(S,L⊗2(2R)) is negative on S(R) \ . Let p : T → S be the double

cover ramified over � := R ∪ D constructed in §3.1. Define S := D(R) and assume that the inclusion

ι : S → satisfies Assumption 6.1. Then p : T → S satisfies Assumption 4.1.

Proof. — Since rs is negative on S(R) \ , the equation of T given in §3.1 shows
that p(T(R)) ⊂  . In particular, p(T(R)) is disjoint from �, and Assumption 4.1 (i)
holds. Since ι(S) = D(R) and D lifts to T, the map ι lifts to a C∞ map S → T(R),
and Assumption 4.1 (ii) follows from Assumption 6.1 (iii).

Let � ⊂  be a connected component, and let p−1(�) ⊂ T(R) be its pre-
image in T(R). To verify Assumption 4.1 (iii), we will show that p−1(�) is connected.
The equation of T given in §3.1 shows that p(p−1(�)) = {x ∈ � | rs(x) ≥ 0}. De-
fine �+ := {x ∈� | rs(x) > 0} and �− := {x ∈ � | rs(x) < 0}. By Assumption 6.1 (iv),
p(p−1(�)) = �+ ∪ (� ∩�(R)) is connected. Suppose for contradiction that p−1(�) is
not connected. Since p(p−1(�)) is connected, one may find two distinct connected com-
ponents "1,"2 ⊂ p−1(�) such that " := p("1) ∩ p("2) �= ∅. By Assumption 6.1 (i),
�− �= ∅, so that " �= �. Since " is closed, it is not open, and one may choose x ∈"
not belonging to the interior of ". Since "1 → � and "2 → � cannot be both open
above x, one has x ∈ �(R). Since the fibers of T(R)→ S(R) above a point in �(R)
are connected, "1 and "2 intersect, a contradiction. Thus, p−1(�) is connected, and
Assumption 4.1 (iii) follows. �
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6.2. Brauer classes of period 2. — We prove, for Brauer classes of period 2, a state-
ment that is slightly more general than our main theorems, and that will be useful to
handle Brauer classes of higher period.

Proposition 6.6. — Let S be a connected smooth projective surface over R, and let α ∈
Br(R(S))[2] be a Brauer class of period 2. Let U ⊂ S be the biggest open subset such that

α ∈ Br(U) ⊂ Br(R(S)) as in §2.4, and let α̃ ∈ H2
G(U(C),Z/2) be a lift of α in (2.16). De-

fine � := {x ∈ U(R) | α|x �= 0 ∈ Br(R)}. Write S(R) =  	 � as a disjoint union of open

closed subsets such that �⊂� ⊂ U(R) and ([α̃]1)|� = 0 ∈ H1(�). Then there exists a connected

smooth projective surface T over R and a degree 2 morphism p : T → S such that p(T(R))⊂ and

αR(T) = 0 ∈ Br(R(T)).

Proof. — Replacing S with a modification, we may assume that the ramification
locus R := S \ U of α is a simple normal crossings divisor. Let r ∈ H0(S,OS(R)) be
an equation of R. By Proposition 5.5, we may assume that S carries a line bundle N
satisfying Assumption 5.2, after blowing up S at finitely many points outside of R. Propo-
sition 5.5 ensures moreover that such a line bundle will still exist if we blow-up S further
at finitely many general points outside of R. By Lemma 6.3, after such a blow-up, we
may suppose that there exists an embedding ι : S → as in Assumption 6.1.

Let A be a very ample line bundle on S. Define L := A⊗l ⊗ N (−R) for a suf-
ficiently big even integer l ∈ N, so that Assumptions 3.1 and 5.1 hold, and so that
Lemma 6.4 may be applied. Lemma 6.4 then shows, up to replacing ι by a small de-
formation which is legitimate by Lemma 6.2, the existence of t ∈ H0(S,L⊗N ) such that
{t = 0} is smooth along its real locus, equal to ι(S), and such that rt ∈ H0(S,A⊗l ⊗N⊗2)

is negative on � .
We apply the construction of §3.1, which produces a family π : T → B of

surfaces that are both ramified double covers of S and hypersurfaces in the smooth
projective threefold X over R. In §5.1, we constructed sections c ∈ H0(S,A⊗l) and
s0 ∈ H0(S,L⊗2(R)), and showed that a general s ∈ H0(S,L⊗2(R)) of the form a1s0 + a2c

with a1 ∈ R>0 and a2 ∈ H0(S,L⊗N ) corresponds to a point s ∈ B(R) whose associated
surface T := Ts contains a particular curve C ⊂ T. We choose such a general section s

with a1 sufficiently small and a2 sufficiently close to t. As c is positive on S(R), this ensures
that rs is negative on � . Thanks to Lemma 6.2, this also ensures, after modifying ι again,
that ι(S) is the real locus of the smooth divisor D := {s = 0}. By Lemma 6.5, p : T → S
satisfies Assumption 4.1.

Having ensured that Assumptions 3.1 and 4.1 hold, and in view of our hypoth-
esis that ([α̃]1)|� = 0, we may apply successively Propositions 4.2, 4.4 and 4.5. This
shows that αR(T) ∈ Br(T)[2] ⊂ Br(R(T))[2], that this Brauer class is induced by a class
β ∈ H2

G(T(C),Z(1)) in (2.17), and that there exist γ ∈ H2
G(T(C),Z(1)) and θ ∈ Pic(S)

such that p∗(β − 2γ )= cl(θ) ∈ H2
G(S(C),Z(1)).

In the remainder of the proof, we apply [8, §1] to the family π : T → B of smooth
projective surfaces over R. We still denote by p : T → S the natural morphism that re-



OLIVIER BENOIST

alizes the fibers of π as ramified double covers of S. The G-equivariant local system
H2

Q := R2π∗Q splits as a direct sum H2
Q = H2(S(C),Q)⊕ H2

Q,van, where H2(S(C),Q)
is the constant sub-local system induced by p, and H2

Q,van is its orthogonal with respect
to the cup-product. It carries a variation of Hodge structures: the holomorphic bundle
H2 := H2

Q ⊗Q OB(C) is endowed with a Gauss-Manin connection ∇ : H2 → H2 ⊗�1
B(C)

and with a Hodge filtration. The sub-local systems H2(S(C),Q) and H2
Q,van are sub-

variations of Hodge structures, and H2(S(C),Q) is a constant one.
Let λ ∈ H1(T,�1

T) be the class of C in Hodge cohomology. By [8, Remark 1.4],
it belongs to H1,1

R (T(C))(1)
G := [H2(T(C),R(1)) ∩ H1,1(T(C))]G, where G acts both

on T(C) and on R(1). Griffiths [56, Théorème 10.21] has computed that the map
∇(λ) : TB(C),s → H2(T,OT) induced by evaluating ∇ at λ is exactly (the complex-
ification of) the map φλ defined in (5.2). By Proposition 5.4, its cokernel has di-
mension at most h2(S,OS). Since the sub-Hodge structure H2(S(C),Q) ⊂ H2

Q is
constant, the image of ∇(λ) is included in the second factor of the decomposition
H2(T,OT)= H2(S,OS)⊕ H2(T,OT)van. It follows that ∇(λ) : TB(C),s → H2(T,OT)van

is surjective.
Choose a G-stable connected analytic neighbourhood � of s in B(C) on which

H2
Q,van is trivialized and such that �(R) := � ∩ B(R) is connected and contractible,

as in [8, §1.2]. Define T (C)|�(R) and T (R)|�(R) to be the inverse images of �(R) by
π : T (C)→ B(C) and π : T (R)→ B(R). By Assumption 4.1 (i), we may assume af-
ter shrinking �(R) that p(T (R)|�(R)) ⊂  . By a G-equivariant version of Ehresmann’s
theorem [28, Lemma 4], we may assume after further shrinking �(R) that there ex-
ists a G-equivariant isomorphism T (C)|�(R) ∼−→ T(C) × �(R) respecting the projec-
tion to �(R). From now on, using this G-equivariant isomorphism, we identify the
Betti cohomology groups and the equivariant Betti cohomology groups of the fibers of
π : T (C)|�(R) →�(R).

By the real analogue of Green’s infinitesimal criterion [8, Proposition 1.1] applied
to H2

Q,van, there exists an open cone�⊂ H2(T(C),R(1))Gvan with the property that for ev-
ery ν ∈�, there exists x ∈�(R) such that ν is of type (1,1) in the Hodge decomposition
of H2(Tx(C),C).

Let (ε1, ε2) be the image of β − 2γ ∈ H2
G(T(C),Z(1)) in the decomposition

(6.1) H2
(
T(C),R(1)

)G = H2
(
S(C),R(1)

)G ⊕ H2
(
T(C),R(1)

)G

van
.

Let H2
G(T(C),Z(1))van be the subgroup of H2

G(T(C),Z(1)) consisting of classes whose
images in the first factor of (6.1) vanish. Since the image of H2

G(T(C),Z(1)) in
H2(T(C),Z(1))G has finite index by the Hochschild-Serre spectral sequence, the im-
age of H2

G(T(C),Z(1))van in H2(T(C),R(1))Gvan is a lattice. Since moreover � ⊂
H2(T(C),R(1))Gvan is an open cone, one may find δ ∈ H2

G(T(C),Z(1))van and ν ∈ �
such that ε2 = 2δ + ν. By definition of �, there exists x ∈ �(R) such that ν is of type
(1,1) in H2(Tx(C),C). The equality p∗(β − 2γ )= cl(θ) shows that ε1 is of type (1,1) in
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H2(S(C),C). The above facts show that β−2γ −2δ ∈ H2
G(Tx(C),Z(1)) is a class of type

(1,1). By the real Lefschetz (1,1) theorem [9, Proposition 2.8], there exists ϕ ∈ Pic(Tx)

such that β = 2γ + 2δ + cl(ϕ) ∈ H2
G(Tx(C),Z(1)). By the exact sequence (2.17), replac-

ing T with Tx proves the proposition. �

6.3. Brauer classes of arbitrary period. — It is now possible to complete the proofs of
Theorems 0.3 and 0.4, and of the first half of Theorem 0.5.

Proposition 6.7. — Let S be a connected smooth projective surface over R, and let α ∈
Br(R(S))[n] be of period n. Let U ⊂ S be, as in §2.4, the biggest open subset such that

α ∈ Br(U)⊂ Br(R(S)), and let ξ ∈ H2
G(U(C),Z/2) be a lift of n

2α in (2.16). Assume that

� := {x ∈ U(R) | α|x �= 0 ∈ Br(R)} is a union of connected components of S(R), and that

([ξ ]1)|� = 0 ∈ H1(�). Then ind(α)= n.

Proof. — If n is odd, that ind(α) = n follows from de Jong’s theorem [25] and a
norm argument. We now suppose that n is even and argue by induction on n.

We apply Proposition 6.6 to the period 2 class n

2α ∈ Br(R(S))[2], with � =� and
 = S(R) \ �. We deduce the existence of a degree 2 morphism p : T → S between
connected smooth projective surfaces over R such that αR(T) ∈ Br(R(T)) has period n

2 ,
and such that p(T(R)) is disjoint from�. Let V ⊂ T be the biggest open subset such that
αR(T) ∈ Br(V)⊂ Br(R(T)), as in §2.4. Since p(T(R)) and � do not intersect, αR(T)|x = 0
for every x ∈ p−1(U)(R). As this property only depends on the connected component of
V(R) to which x belongs, the same holds for every x ∈ V(R). By the induction hypothesis,
αR(T) has index n

2 . It follows, as wanted, that ind(α)= n. �

Applying Proposition 6.7 when�= ∅ gives a proof of Theorem 0.4. Theorem 0.3
is the even more particular of Proposition 6.7 when S(R) = ∅. The first half of Theo-
rem 0.5 also follows from Proposition 6.7, applied when U = S. We will complete the
proof of Theorem 0.5 in §7.5.

6.4. The u-invariant of function fields of real surfaces. — We now explain why Theo-
rem 0.12 follows from Theorem 0.4. We pointed out in §0.5 that Theorems 0.10 and
0.13 are, in turn, consequences of Theorem 0.12.

Proof of Theorem 0.12. — Let R ⊂ K be an extension of transcendence degree 2. By
Pfister’s criterion [48, Proposition 9], showing that u(K)≤ 4 is equivalent to proving that
every non-zero α ∈ Br(K)[2] such that α|K = 0 for all real closures K ⊂ K has index 2.
Let R ⊂ K0 ⊂ K be a subfield of K finitely generated over R such that α is the image of
a class α0 ∈ Br(K0)[2]. Write K = ∪iKi as the union of all finite extensions of K0, and
let αi ∈ Br(Ki)[2] be the image of α0. Let Xi be the space of orderings of Ki endowed
with the Harrison topology [41, VIII, §6]. The subset Zi ⊂ Xi of orderings such that αi
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does not vanish on the associated real closure is closed by [4, Hilfssatz 2], hence compact
[41, VIII, Theorem 6.3]. Since lim←−i

Zi = ∅ by our hypothesis on α, there exists i such
that Zi = ∅ by Tychonoff ’s theorem. Replacing K with Ki and α with αi , we may assume
from now on that K is the function field of an integral surface S over R.

Let U ⊂ S be an open subset such that α ∈ Br(U)⊂ Br(R(S)). Let us prove that
α|x = 0 ∈ Br(R) for every x ∈ U(R). To do so, we choose a local system of parame-
ters z1, z2 ∈ OS,x of S at x, and let R((z1, z2)) ⊂ K be any real closed extension, such
as K = ∪n2[∪n1R((z

1/n1
1 ))]((z1/n2

2 )). In the diagram Br(R)→ Br(R[[z1, z2]])→ Br(K),
the first arrow is an isomorphism by proper base change and has a retraction given
by restriction to x, and the composition of the two arrows is an isomorphism as both
Br(R) and Br(K) are generated by the quaternion class (−1,−1). That αK = 0 im-
plies at once that α|x = 0, as wanted. Theorem 0.4 now shows that α has index 2, as
wanted.

To prove the easier inequality u(R(S)) ≥ 4, let x ∈ S be a closed point with
residue field κ(x) isomorphic to C, and let mS,x ⊂ OS,x be the maximal ideal. Choose
w ∈ OS,x inducing

√−1 ∈ C � κ(x) and let z1, z2 ∈ OS,x be a local system of para-
meters at x such that neither z1 nor z2 is proportional to w2 + 1 in mS,x/m

2
S,x. Define

yj := (1 + zj)
2 + (w+ zj)

2, so that y1, y2 ∈ R(S) also forms a local system of parameters
at x. Completion at x induces an inclusion R(S) ⊂ C((y1))((y2)). By Springer’s results
on quadratic forms over complete discrete valuation fields [52] (see [41, VI, Proposi-
tion 1.9 (2)]), the quadratic form 〈1, y1,−y2,−y1y2〉 is anisotropic over C((y1))((y2)),
hence over R(S). Since y1 and y2 are positive with respect to every ordering of R(S), one
deduces that u(R(S))≥ 4. �

7. An obstruction to the equality of period and index

The main result of this section is the following proposition, proven in §7.5.

Proposition 7.1. — Let p : T → S be a morphism of connected smooth projective surfaces over

R that is generically finite of even degree n. Let α ∈ Br(R(S))[n] be such that p∗α = 0 ∈ Br(R(T)).
Let U ⊂ S be the biggest open subset such that α ∈ Br(U) ⊂ Br(R(S)), as in §2.4, define

� := {x ∈ U(R) | α|x �= 0 ∈ Br(R)}, let α̃ ∈ H2
G(U(C),Z/n(1)) be a lift of α in (2.16),

and let ξ ∈ H2
G(U(C),Z/2) be its reduction modulo 2. Then there exists ν ∈ Pic(S) with

([ξ ]1)|� = clR(ν)|� ∈ H1(�).

Proposition 7.1 should be thought of as giving an obstruction to the index of α
dividing n. It will be used in §7.5 to finish the proof of Theorem 0.5.

We keep the notation of the statement of Proposition 7.1 throughout Section 7.

7.1. The topology of a ramified cover. — We first note for later use that the vanishing
p∗α = 0 ∈ Br(R(T)) implies that p(T(R))∩�= ∅.
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Let j : S∗ ↪→ S be the open subset over which p is étale. Let Q be the cokernel
of the natural injection p∗ : Z → p∗Z of G-equivariant sheaves on S(C). Note that the
adjunction map Z → j∗j∗Z (resp. p∗Z → j∗j∗p∗Z) is an isomorphism because removing
S(C) \ S∗(C) (resp. p−1(S(C) \ S∗(C))) does not disconnect S(C) (resp. T(C)) locally. We
deduce that the adjunction map Q → j∗j∗Q is injective.

The trace map Tr : p∗Z → Z, defined over S∗(C) by summing over the fiber, ex-
tends uniquely to S(C) because Z

∼−→ j∗j∗Z. It induces a morphism φ : Q → Z/n, yielding
a commutative diagram with exact rows of G-equivariant sheaves on S(C):

(7.1)
0 Z

p∗
p∗Z

π

Tr

Q
φ

0

0 Z
n

Z Z/n 0.

The diagram (7.1) induces a short exact sequence of G-equivariant sheaves on S(C):

(7.2) 0 → p∗Z
(Tr,π)−−−→ Z ⊕ Q

(1,−φ)−−−→ Z/n → 0.

For x ∈ S∗(C), if we choose a bijection between p−1(x) and {1, . . . , n}, the fiber

Qx of Q at x identifies with the cokernel of Z
a �→(a,...,a)−−−−−→ Zn. It follows that the as-

signment (a1, . . . , an) �→ (
∑

i ai − na1, . . . ,
∑

i ai − nan) yields a well-defined morphism
j∗Q → j∗p∗Z of G-equivariant sheaves on S∗(C). This morphism extends to a morphism
ψ : Q → p∗Z of G-equivariant sheaves on S(C) because p∗Z

∼−→ j∗j∗p∗Z. The morphism
Tr◦ψ : Q → Z vanishes on S∗(C) as one checks by computing its stalks, hence on S(C),
because Z

∼−→ j∗j∗Z.

7.2. The alternating double cover. — Keep the notation of §7.1. Let x0 ∈ S∗(C) be a
base point, choose a bijection between p−1(x0) and {1, . . . , n}, and consider the represen-
tation π ét

1 (S
∗, x0)→ Sn associated with the finite étale cover p−1(S∗)→ S∗. Composing

with the signature morphism Sn → Z/2, one obtains a representation π ét
1 (S

∗, x0)→ Z/2
that corresponds to a finite étale double cover p̂ : Ŝ∗ → S∗. By construction, a point
y ∈ Ŝ∗(C) is uniquely determined by x = p̂(y) ∈ S∗(C), and by a bijection between p−1(x)

and {1, . . . , n} well-defined up to the action of the alternating group An. This double
cover extends uniquely to a finite double cover with normal total space p̂ : Ŝ → S.

Let us compute the biggest open subset V ⊂ S over which p̂ is unramified. Let
�⊂ S be the ramification divisor of p, with irreducible components (�i)i∈I, and let Fi be
the geometric fiber of p at the generic point of�i. For i ∈ I, define the multiplicity mi of�i

by the formula mi = n − |Fi|. It is equivalently computed as mi = ∑
y∈Fi
(e(y)− 1), where

e(y) is the ramification index of p at y. Since the monodromy around a component of
�i(C) is an even permutation if and only if mi is even, and since the ramification locus of p̂
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has pure dimension 1 by the Zariski-Nagata purity theorem, one has V = S\ (∪mi odd �i).
We denote by p̂ : V̂ → V the induced finite étale double cover.

Let U0 ⊂ U be the biggest open subset over which p is finite flat with smooth ramifi-
cation locus. It is the complement of finitely many points in U. Define�0 :=�∩ U0(R).
We claim that �0 ⊂ V(R). Otherwise, there would exist i ∈ I such that mi is odd and
x ∈�i(R) ∩�0. Since �0 ⊂ S(R) is open and since �i is smooth along �0, we may as-
sume that x is a general point of �i. The geometric fiber of p over x then has cardinality
n − mi . Since it is an odd number, we would have x ∈ p(T(R)) contradicting the fact that
p(T(R))∩�= ∅.

7.3. The pull-back of the Brauer class. — Keep the notation of §§7.1–7.2, and denote
by p : TU0 → U0 the base-change of p by the inclusion U0 ⊂ S.

Lemma 7.2. — The class α̃|U0 ∈ H2
G(U

0(C),Z/n(1)) is the image under the morphism

(1,−φ) of (7.2) of a class (η, ζ ) ∈ H2
G(U

0(C),Z(1))⊕ H2
G(U

0(C),Q(1)).

Proof. — We have to show that α̃|U0 vanishes in H3
G(U

0(C), p∗Z(1)) under the
boundary map associated to (7.2). Since p is finite over U0, the Leray spectral se-
quence of p : TU0 → U0 degenerates, and the natural morphism H3

G(U
0(C), p∗Z(1))→

H3
G(TU0(C),Z(1)) is an isomorphism. The commutative exact diagram

0 Z(1)
n

p∗
Z(1)

(1,0)

Z/n(1) 0

0 p∗Z(1)
(Tr,π)

Z(1)⊕ Q(1)
(1,−φ)

Z/n(1) 0

shows that the image of α̃|U0 in H3
G(TU0(C),Z(1)) may be computed as the image of

p∗α|U0 ∈ Br(TU0) by (2.17), that vanishes by our assumption on α. �

From now on, fix (η, ζ ) ∈ H2
G(U

0(C),Z(1))⊕H2
G(U

0(C),Q(1)) as in Lemma 7.2.
Recall the definition of ψ : Q → p∗Z in §7.1. We still denote by ψ the composition:

H2
G

(
U0(C),Q(1)

) ψ−→ H2
G

(
U0(C), p∗Z(1)

) → H2
G

(
TU0(C),Z(1)

)
.

Lemma 7.3. — The class p∗α̃|U0 ∈ H2
G(TU0(C),Z/n(1)) coincides with the reduction mo-

dulo n of p∗η+ψ(ζ ) ∈ H2
G(TU0(C),Z(1)).

Proof. — The statement follows from the commutativity of the two diagrams:

(7.3)

H2
G(U

0(C),Z(1))
p∗

H2
G(U

0(C),Z/n(1))
p∗

H2
G(TU0(C),Z(1)) H2

G(TU0(C),Z/n(1)) and
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(7.4)
H2

G(U
0(C),Q(1))

φ

ψ

H2
G(U

0(C),Z/n(1))
p∗

H2
G(TU0(C),Z(1)) H2

G(TU0(C),Z/n(1)),

applied to η and ζ respectively. The commutativity of (7.3) is obvious. To show that
of (7.4), consider the two morphisms of G-equivariant sheaves on S(C) given by
p∗ ◦ φ : Q → p∗(Z/n) and (ψ mod n) : Q → p∗(Z/n). They coincide on S∗(C) because
their stalk at x ∈ S∗(C) are both given by the assignment (a1, . . . , an) �→ (

∑
i ai, . . . ,

∑
i ai).

Since Q → j∗j∗Q is injective, they coincide over S(C). The commutativity of (7.4) results
by taking equivariant cohomology. �

7.4. An algebraicity result. — We keep the notation of §§7.1–7.3. Recall that
ζ ∈ H2

G(U
0(C),Q(1)) has been constructed in §7.3. In §7.4, we study its image

φ(ζ ) ∈ H2
G(U

0(C),Z/n(1)) by φ. Our main goal is the following proposition, that is
key in proving the second part of Theorem 0.5.

Proposition 7.4. — One has ([φ(ζ )]1)|�0 =clR(θ)|�0 ∈ H1(�0) for some θ ∈ Pic(S).

Let ι : S1 →�0 be a C∞ embedding meeting the ramification locus of p transver-
sally at general points. By abuse of notation, we will still denote by ι the induced embed-
ding of S1 in S(C), S(R), etc. Define a sheaf G on S1 by the exact sequence:

(7.5) ι∗Q(1)
(φ2,1+σ)−−−−→ Z/2 ⊕ (

ι∗Q(1)
)G → G → 0,

where φ2 : Q(1)→ Z/2 is the composition of φ : Q(1)→ Z/n(1) and of the surjection
Z/n(1)→ Z/2. We consider the diagram of sheaves on S1:

(7.6) 0 → Z/2
(1,0)−−→ G

(0,φ)−−→ Z/2 → 0,

where we still denote by φ the restriction (ι∗Q(1))G → (Z/n(1))G � Z/2 of φ.

Lemma 7.5. — The diagram (7.6) is an exact sequence of sheaves on S1. Moreover, the image

of 1 ∈ H0(S1) by its boundary map is ι∗[φ(ζ )]1 ∈ H1(S1).

Proof. — If x ∈ S1, one has Ext q

G(Z, ι
∗p∗Z)x = Hq(G, (ι∗p∗Z)x) = 0 for q > 0.

Indeed, the first equality is explained in [32, §4.4], and the vanishing follows from
the existence of an isomorphism of G-modules (ι∗p∗Z)x � Z[G]k for some k ≥ 0, as
p(T(R))∩�= ∅. Consider the commutative diagram in D+(S1):

(7.7)
τ≥1τ≤2 RHomG(Z, ι∗Q(1))

∼

φ

τ≥1τ≤2 RHomG(Z,Z(1)[1])

τ≥1τ≤2 RHomG(Z,Z/n(1)) τ≥1τ≤2 RHomG(Z,Z/2),
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whose arrows are induced by (7.1), except for the lower horizontal arrow that is given
by reduction modulo 2, and where τ≥1 and τ≤2 are truncation functors. We have shown
above that RHomG(Z, ι∗p∗Z) ∈ D+(S1) is concentrated in degree 0; it thus follows from
(7.1) that the upper horizontal arrow of (7.7) is an isomorphism.

All complexes and arrows in (7.7) may be computed using (2.6), allowing to rewrite
(7.7) as follows:

(7.8)
[ι∗Q(1)/〈1 − σ 〉 1+σ−−→ (ι∗Q(1))G] ∼

(φ2,φ)

Z/2[−2]

Z/2[−1] ⊕ Z/2[−2]
(0,1)

Z/2[−1] ⊕ Z/2[−2],

where the upper left complex is concentrated in degrees 1 and 2. Consider the mor-
phism Z/2[−2] → Z/2[−1] in D+(S1) obtained by composing the inverse of the upper
horizontal arrow of (7.8), the left vertical arrow of (7.8), and the projection to the factor
Z/2[−1]. It corresponds to an extension of Z/2 by Z/2 that is, in view of (7.8), given by
(7.6). Let us emphasize that this shows the exactness of (7.6).

Applying H2 to any of the diagrams (7.7) or (7.8) yields a commutative diagram:

(7.9)
H2

G(S
1, ι∗Q(1))

∼
H0(S1)

H1(S1)⊕ H0(S1)

(0,1)

H1(S1)⊕ H0(S1),

where we have used that S1 has cohomological dimension 1 to identify the upper left
group with H2

G(S
1, ι∗Q(1)). We now study the class ι∗ζ ∈ H2

G(S
1, ι∗Q(1)).

If x ∈ S1, one has H2
G(x,Z(1)) = H2(G,Z(1)) = 0, so that η|x = 0. We deduce

from Lemma 7.2 that φ(ζ )|x = −α̃|x �= 0 ∈ H2
G(x,Z/n(1)), where the non-vanishing fol-

lows from the definition of � and (2.16). As a consequence, the image of ι∗ζ in H0(S1)

by the left vertical arrow of (7.9), or equivalently by the upper horizontal arrow of (7.9),
is equal to 1. It follows that the image of ι∗ζ in H1(S1) by the left vertical arrow of
(7.9) is the image of 1 ∈ H0(S1) by the boundary map of (7.6). Since the morphism
Z/2[−1] → Z/2[−1] in the lower horizontal arrow of (7.8) is the identity, this class also
equals the image of ι∗ζ in the factor H1(S1) of the right bottom group of (7.9), which is
exactly ι∗[φ(ζ )]1, proving the lemma. �

It follows from Lemma 7.5 that the sheaf G is locally constant on S1, as an ex-
tension of locally constant sheaves. One can compute that its stalks are isomorphic to
Z/2 ⊕ Z/2 if 4 | n (resp. to Z/4 if 4 � n), but we will not need this fact.

It is easy to describe a double cover ρ̃ : S̃1 → S1 whose class ε̃ ∈ H1(S1) is the
image of 1 ∈ H0(S1) by the boundary map of (7.6): define S̃1 to be the subset of the étalé
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space of G whose fiber over x ∈ S1 consists of the elements in Gx whose image by (0, φ)
in (7.6) is equal to 1 ∈ Z/2.

Recall from §7.2 the construction of the finite étale double cover p̂ : V̂ → V. Pulling
back the covering p̂ : V̂(C)→ V(C) by ι : S1 → V(C) yields a double cover ρ̂ : Ŝ1 → S1.
We denote its class by ε̂ ∈ H1(S1).

Lemma 7.6. — One has the identity:

ε̃ = ε̂+
∑

4�mi

ι∗ clR(�i) ∈ H1
(
S1

)
.

Proof. — Define W := {x ∈ S1 | ι(x) /∈�(R)}: it is the complement of finitely many
points in S1. Our proof has two steps. First, we construct an isomorphism χ : Ŵ

∼−→ W̃
between the double covers ρ̂ : Ŵ → W and ρ̃ : W̃ → W of W obtained by restricting ρ̂
and ρ̃ to W. Second, we fix x ∈ S1 with ι(x) ∈�i(R), and prove that the isomorphism χ

extends through x if and only if 4 | mi . The lemma follows.
Let x ∈ W, and let (a1, . . . , an/2, b1, . . . , bn/2) be an ordering of p−1(x) ⊂ T(C)

defining an element y ∈ ρ̂−1(x). Up to reordering using an even permutation, we may
assume that the complex conjugation acts by σ(aj)= bj . The function f : p−1(x)→ Z(1)
defined by f (aj) = √−1 and f (bj) = 0, viewed as an element in (p∗Z(1))x, in-
duces an element in Q(1)x that one verifies to be G-invariant. As a consequence,
(0, f ) ∈ Z/2 ⊕ Q(1)Gx induces, via (7.5), an element z ∈ Gx. The image φ(f ) of z by the
right arrow of (7.6) is the non-zero element of Z/n(1)G � Z/2. Thus, z may be viewed as
an element in ρ̃−1(x). It is a verification to check that changing the ordering of p−1(x) by
a permutation changes the element z ∈ ρ̃−1(x) if and only if the permutation is odd. The
assignment y �→ z thus induces a well-defined canonical bijection χx : ρ̂−1(x)→ ρ̃−1(x),
giving rise to a canonical isomorphism χ : Ŵ

∼−→ W̃, and completing the first step of the
proof.

We proceed to the second step. Fix x ∈ S1 \ W, and let �i ⊂ � be the compo-
nent such that ι(x) ∈�i(R). Let (z1, z2) ∈ OS,ι(x) be a local system of parameters at ι(x)
such that z1 is a local equation of � at ι(x). The rational map (z1, z2) : S(C) ��� C2 is
a local diffeomorphism at ι(x). Pulling back a small enough ball centered at (0,0) ∈ C2

yields a G-stable contractible neighbourhood � of ι(x) in V(C)⊂ S(C), isomorphic to
the unit ball in C2 with coordinates (z1, z2), such that �(C) ∩� is defined in � by the
equation z1 = 0, and on which σ acts by (z1, z2) �→ (z̄1, z̄2). Let �S1 be a contractible
neighbourhood of x in S1 such that ι(�S1) ⊂ � and such that �S1 ∩ ι−1(�(C))= {x}.
Let x+, x− ∈ �S1 be two points in the two connected components of �S1 \ {x}. Let
c : [0,1] →� \ (�(C)∩�) be a continuous path joining ι(x+) and ι(x−), and let
c̄ : [0,1] → � \ (�(C) ∩ �) be defined by c̄(t) = σ(c(t)). Our system of coordinates
in � makes it clear that one may choose c so that the loop c−1c̄ is a generator of
π1(� \ (�(C)∩�), ι(x−))� Z.
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Consider the diagram of bijections of sets with two elements:

(7.10)
ρ̂−1(x+) ∼

χx+

û �
ρ̃−1(x+)

�ũ

ρ̂−1(x−) ∼

χx−
ρ̃−1(x−)

whose vertical isomorphisms stem from the unique trivializations of ρ̂ and ρ̃ on �S1 .
Our goal is to understand when (7.10) commutes. Since p−1(x) ⊂ T(C) contains no
real points, no point a ∈ p−1(x+) belongs to the same orbit as σ(a) under the mon-
odromy action of π1(� \ (�(C)∩�), ι(x+))� Z. It follows that there exists an ordering
(a+

1 , . . . , a
+
n/2, b

+
1 , . . . , b

+
n/2) of p−1(x+)⊂ T(C) with the property that {a+

1 , . . . , a
+
n/2} is sta-

ble under the monodromy action of π1(�\ (�(C)∩�), ι(x+)), and that σ(a+
j )= b+

j . Let
y+ ∈ ρ̂−1(x+) be the point thus defined. Since the map p : T(C)→ S(C) is unramified
over the image of c, one may lift c to a path in T(C) going from a+

j (resp. b+
j ) to a point that

we denote by a−
j (resp. b−

j ). The ordering (a−
1 , . . . , a

−
n/2, b

−
1 , . . . , b

−
n/2) of p−1(x−) ⊂ T(C)

represents û(y+) ∈ ρ̂−1(x−) because p̂ : Ŝ(C)→ S(C) is unramified over the contractible
set �⊂ V(C).

The sets {a−
1 , . . . , a

−
n/2} and {b−

1 , . . . , b
−
n/2} are stable under the monodromy ac-

tion of π1(� \ (�(C) ∩ �), ι(x−)) � Z on p−1(x−), by our choice of {a+
1 , . . . , a

+
n/2}.

The generator c−1c̄ acts on {a−
1 , . . . , a

−
n/2} and {b−

1 , . . . , b
−
n/2} by the permutations

(a−
1 , . . . , a

−
n/2) �→ (σ (b−

1 ), . . . , σ (b
−
n/2)) and (b−

1 , . . . , b
−
n/2) �→ (σ (a−

1 ), . . . , σ (a
−
n/2)), since

σ(a+
j ) = b+

j . These descriptions show that these two permutations have the same de-
compositions as products of cycles. We deduce that they are even if 4 | mi and odd
otherwise. The ordering (a−

1 , . . . , a
−
n/2, σ (a

−
1 ), . . . , σ (a

−
n/2)) of p−1(x−) thus induces a point

y− ∈ ρ̂−1(x−) that is equal to û(y+) if and only if 4 | mi .
Since {a+

1 , . . . , a
+
n/2} is stable under the monodromy, there exists a continuous func-

tion on p−1(�)⊂ T(C) that is equal to
√−1 on the a+

j and on the a−
j , and that is equal

to 0 on the b+
j and the b−

j . Viewed as section in H0(�S1, ι∗p∗Z(1)), it induces a sec-
tion g ∈ H0(�S1, (ι∗Q(1))G). The section of H0(�S1,G (1)) induced by (0, g) in (7.5)
has stalk χx+(y+) at x+ and χx−(y−) at x−, certifying that ũ(χx+(y+))= χx−(y−). We have
proven that (7.10) commutes if and only if 4 | mi , thus completing the second step of the
proof. �

It is now possible to prove Proposition 7.4.

Proof of Proposition 7.4. — Let ê ∈ H1
G(V(C),Z/2) be the class associated to the fi-

nite étale double cover p̂ : V̂ → V as in §2.2. By Lemma 2.1 and by the surjectivity
of the restriction map Pic(S)→ Pic(V), there exists a line bundle ϕ ∈ Pic(S) such that
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[ê]1 = clR(ϕ)|V(R) ∈ H1(V(R)). We are going to prove the identity

(7.11)
([
φ(ζ )

]
1

)|�0 =
(

clR(ϕ)+
∑

4�mi

clR(�i)

)
|�0 ∈ H1

(
�0

)
,

that implies the proposition. The group H1(�
0,Z/2) is generated by classes of C0 loops

S1 → �0. One can in fact restrict to classes of C∞ embeddings ι : S1 → �0 meet-
ing the ramification locus of p transversally at general points (combine C∞ approxima-
tion, transversality theorems, and replace a loop by a union of loops to remove self-
intersections). By duality, it suffices to prove that

(7.12) ι∗
[
φ(ζ )

]
1
= ι∗ clR(ϕ)+

∑

4�mi

ι∗ clR(�i) ∈ H1
(
S1

)
,

for any such embedding ι. The commutativity of the diagram

H1
G(V(C),Z/2) H1

G(V(R),Z/2)

H1(V(C),Z/2) H1(V(R),Z/2)
ι∗

H1(S1)

shows that ε̂ = ι∗[ê]1 ∈ H1(S1), so that ε̂ = ι∗ clR(ϕ) ∈ H1(S1). The identity (7.12) then
follows from Lemmas 7.5 and 7.6, proving the proposition. �

7.5. The obstruction. — We keep the notation of §§7.1–7.4.

Proof of Proposition 7.1. — By Lemma 7.3, the reduction of the class p∗η + ψ(ζ ) ∈
H2

G(TU0(C),Z(1)) modulo n is p∗α̃|U0. Since p∗α|U0 ∈ Br(TU0) ⊂ Br(R(T)) vani-
shes by hypothesis, it follows from (2.17) that there exists γ ∈ H2

G(TU0(C),Z(1)) and
ϕ ∈ Pic(TU0) such that:

(7.13) p∗η+ψ(ζ )= nγ + cl(ϕ) ∈ H2
G

(
TU0(C),Z(1)

)
.

The class p∗ψ(ζ ) vanishes because Tr◦ψ = 0. Pushing forward (7.13) by p yields:

(7.14) n(η− p∗γ )= cl(p∗ϕ) ∈ H2
G

(
U0(C),Z(1)

)
.

Since the cokernel of Krasnov’s cycle class map cl : Pic(U0) → H2
G(U

0(C),Z(1)) is
torsion-free [9, Proposition 2.9], and since the restriction map Pic(S)→ Pic(U0) is sur-
jective, there exists μ ∈ Pic(S) such that η− p∗γ = cl(μ|U0) ∈ H2

G(U
0(C),Z(1)). Apply-

ing (2.14) shows that

(7.15) [η]1 − [p∗γ ]1 = clR(μ|U0) ∈ H1
(
U0(R)

)
.
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By [9, Proposition 1.22], [p∗γ ]1 = p∗([γ ]1). Since p(T(R)) ∩ � = ∅, one has
(p∗([γ ]1))|�0 = 0 ∈ H1(�0). By (7.15), we see that ([η]1)|�0 = clR(μ)|�0 ∈ H1(�0). By
Proposition 7.4, ([φ(ζ )]1)|�0 = clR(θ)|�0 ∈ H1(�0) for some θ ∈ Pic(S). By definition of
ζ and η, ([ξ ]1)|�0 = clR(ν)|�0 ∈ H1(�0) for ν = θ + μ. Since U \ U0 is finite, the map
H1(�) ↪→ H1(�0) is injective, and ([ξ ]1)|� = clR(ν)|� ∈ H1(�). �

We may now complete the proof of Theorem 0.5.

Proof of Theorem 0.5. — The first statement is a consequence of Proposition 6.7.
To prove the second statement, let S be a connected smooth projective surface

over R, and let α ∈ Br(S) ⊂ Br(R(S)) be a class of even period n. By de Jong’s theo-
rem [25] and a norm argument, ind(α) is equal to n or 2n. Suppose that ind(α) = n.
Then there exists a degree n extension L/R(S) such that αL = 0. Let T be a connected
smooth projective surface over R with function field L such that R(S) ⊂ L is induced
by a morphism p : T → S. Let α̃ ∈ H2

G(S(C),Z/n(1)) be a lift of α in (2.16). The re-
duction ξ ∈ H2

G(S(C),Z/2) of α̃ modulo 2 is a lift of n

2α ∈ Br(S)[2] in (2.16). Proposi-
tion 7.1 shows the existence of ν ∈ Pic(S) such that ([ξ ]1)|� = clR(ν)|� ∈ H1(�). Let
ξ ′ ∈ H2

G(S(C),Z/2) be the difference between ξ and the reduction of cl(ν) modulo 2.
It is another lift of n

2α ∈ Br(S)[2] in (2.16), and satisfies ([ξ ′]1)|� = 0 ∈ H1(�) by (2.14).
This concludes the proof. �

8. Examples

We now illustrate the real period-index problem with a few examples.

8.1. Real Enriques surfaces. — In §8.1, we describe which Enriques surfaces S over
R carry Brauer classes α ∈ Br(S) with per(α) �= ind(α), thus proving Theorem 0.6.

The geometry of real Enriques surfaces S is well understood. The Brauer
group Br(S) and the image of the Borel-Haefliger map clR : Pic(S)→ H1(S(R)) have
been computed by Mangolte and van Hamel [46, Theorems 1.3 and 4.4] (see also
[9, Remark 3.18 (ii)]), the Witt group W(S) has been computed by Sujatha and van
Hamel [53, Theorems 2.6 and 3.3], and their possible topological types have been clas-
sified by Degtyarev, Itenberg and Kharlamov [26].

We will rely on Proposition 8.1 below, that is an application of the duality theorem
[9, Theorem 1.12] proven in a joint work with Wittenberg. If X is a connected smooth
projective variety of dimension d over R, we let deg : Hd(X(R))→ Z/2 be the degree
map. We also denote by deg : H∗(X(R))→ Z/2 the map constructed as the composition
of the projection on Hd(X(R)) and of the degree map.
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Proposition 8.1. — Let S be a connected smooth projective surface over R and let w = (wi) ∈
H∗(S(R)) be the total Stiefel–Whitney class of S(R). Then the image of the composition

ρ : H2
G

(
S(C),Z/2

) → H2
G

(
S(R),Z/2

) ∼−→ H0 ⊕H1 ⊕H2
(
S(R)

) → H0 ⊕H1
(
S(R)

)

of the restriction to the real locus, of the canonical decomposition (2.7) and of the projection is the set of

(a0, a1) ∈ H0 ⊕H1(S(R)) such that, for every class δ ∈ H1
G(S(C),Z/2) with [δ]0 = 0, one has

deg([δ]1 � (a1 + a0 � w1))= 0.

Proof. — Consider the diagram:

(8.1)

0 H2
G,S(R)(S(C),Z/2) H2

G(S(C),Z/2) H2
G(S(C)\S(R),Z/2)

τ

0

H0(S(R))
�w

H0 ⊕H1 ⊕H2(S(R))

H0 ⊕H1(S(R))

whose top row stems from the long exact sequence of cohomology with support and is
exact and canonically split by [9, Proposition 1.3], whose left vertical identification is
given by equivariant purity [9, (1.20)], and whose middle column is the morphism ρ.
The horizontal arrow making the diagram commute is the cup-product by the class
γ ∈ H∗(S(R)) of [9, Definition 1.4], that is equal to the total Stiefel-Whitney class w
by [9, Remark 1.6 (i)]. The canonical section τ of the top row of (8.1) described in the
proof of [9, §1.3.1] induces a decomposition

(8.2) H2
G

(
S(C),Z/2

) = H2
G,S(R)

(
S(C),Z/2

) ⊕ H2
G

(
S(C) \ S(R),Z/2

)
.

We now compute separately the image by ρ of the two factors of (8.2).
A glance at diagram (8.1) shows that the image of the factor H2

G,S(R)(S(C),Z/2)
by ρ is equal to the set of (a0, a1) ∈ H0 ⊕ H1(S(R)) such that a1 = a0 � w1.

The image by ρ of the factor H2
G(S(C) \ S(R),Z/2) consists of classes of the

form (0, a1) ∈ H0 ⊕ H1(S(R)), in view of the construction of τ given in [9, §1.3.1].
We now describe what are the classes a1 ∈ H1(S(R)) that appear. The duality theorem
[9, Theorem 1.12] (more precisely, the duality between the images of the maps denoted
by w1 and w2 in loc. cit.) shows, after unravelling definitions, that the image of the compo-
sition

H2
G

(
S(C)\S(R),Z/2

) τ−→ H2
G

(
S(C),Z/2

) → H0⊕H1⊕H2
(
S(R)

) → H1⊕H2
(
S(R)

)

of τ , of the restriction to S(R) and of (2.7), and of the projection, is dual to the image of
the morphism H1

G(S(C),Z/2)→ H0 ⊕ H1(S(R)) given by the canonical decomposition
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(2.7) with respect to the natural pairing (x, y) �→ deg(x� y). We deduce that the classes
a1 ∈ H1(S(R)) that appear are exactly those that are orthogonal to [δ]1 ∈ H1(S(R)) for
every δ ∈ H1

G(S(C),Z/2) such that [δ]0 = 0.
Combining these two computations gives a complete description of the image of

ρ, and proves the proposition. �

To prove Theorem 0.6, we combine Proposition 8.1 in the case of an Enriques
surface S and [46, Theorem 4.4]. We still denote by w = (wi) ∈ H∗(S(R)) the total
Stiefel-Whitney class of S(R).

Proof of Theorem 0.6. — If S(R)= ∅, the equality per(α)= ind(α) holds for every
α ∈ Br(S) by Theorem 0.5. From now on, we suppose that S(R) �= ∅.

By (1.2), one has Br(SC)
∼−→ H3(S(C),Z)tors = Z/2 since H2(S,OS)= 0. It follows

that Br(S) is 4-torsion (see also the more precise [46, Theorem 1.3]). If α ∈ Br(S) has
period 4, αC ∈ Br(SC) has period 2, hence index 2 by de Jong’s theorem [25]. We deduce
that α has index 4. It remains to study classes α ∈ Br(S) of period 2.

Consider the diagram:

(8.3)
0 Pic(S)/2

clR

H2
G(S(C),Z/2) Br(S)[2] 0

H1(S(R))

whose top row is (2.16), whose vertical arrow is ξ �→ [ξ ]1, that commutes by (2.14).
By [46, Theorem 4.4], the image of clR : Pic(S) → H1(S(R)) is the orthogonal
of w1 ∈ H1(S(R)). In particular, if S(R) is orientable, clR is surjective [46, Theo-
rem 1.1] and it follows from (8.3) that every class α ∈ Br(S)[2] of period 2 has a lift
α̃ ∈ H2

G(S(C),Z/2) with [α̃]1 = 0. Theorem 0.5 then implies that ind(α) = 2, proving
the theorem in this case. From now on, assume that S(R) is not orientable, i.e. that
w1 �= 0. By Poincaré duality, this implies that clR is not surjective.

The isomorphism H1
G(S(C),Z/2)� H1

ét(S,Z/2) between equivariant Betti coho-
mology and étale cohomology [50, Corollary 15.3.1] and the Kummer exact sequence
give a short exact sequence:

0 → R∗/R∗2 → H1
G

(
S(C),Z/2

) � H1
ét(S,Z/2)→ Pic(S)[2] → 0.

The group Pic(S)[2] is isomorphic to Z/2, and is generated by the canonical bundle KS.
The two preimages of KS in H1

ét(S,Z/2) are the two finite étale covers of S considered in
[27, §1.3], giving rise to the two halves of S. It follows that there exists a non-zero class
δ ∈ H1

G(S(C),Z/2) with [δ]0 = 0 if and only if one of the two halves of S is empty, and
that this class is unique.

If the two halves of S are nonempty, there exists no such class δ ∈ H1
G(S(C),Z/2).

By Proposition 8.1, there exists α̃ ∈ H2
G(S(C),Z/2) such that [α̃]0 = 1 and [α̃]1 does not



THE PERIOD-INDEX PROBLEM FOR REAL SURFACES

belong to the image of clR. The induced class α ∈ Br(S)[2] does not have index 2 by
Theorem 0.5 and (8.3), proving the theorem in this case.

Suppose from now on that S has exactly one nonempty half. Then there is a
unique δ ∈ H1

G(S(C),Z/2) with [δ]0 = 0. By Lemma 2.1 and [36, Théorème 4], one
has [δ]1 = clR(KS)=w1. Note that if � is a connected component of S(R), one has
w1(�)

2 ≡ χ(�) mod 2 by classification of compact C∞ surfaces.
Assume first that S(R) has an odd number of connected components with

odd Euler characteristic. Equivalently, deg(w2
1) �= 0. By Proposition 8.1, there exists

α̃ ∈ H2
G(S(C),Z/2) such that [α̃]0 = 1 and [α̃]1 = w1. Since w1 is not in the image of

clR because deg(w2
1) �= 0, Theorem 0.5 and (8.3) show that the Brauer class α ∈ Br(S)[2]

induced by α̃ had index 4.
To conclude, assume that S(R) has an even number of connected components

with odd Euler characteristic. We choose a class α ∈ Br(S)[2] of period 2, and a lift
α̃ ∈ H2

G(S(C),Z/2) of α in (8.3). By Proposition 8.1, deg([α̃]1 � w1 +[α̃]0 � w2
1)=0.

If deg([α̃]1 � w1) = 0, define a := [α̃]1 ∈ H1(S(R)). Otherwise, deg([α̃]0 � w2
1) �= 0

so that there exists a connected component � ⊂ S(R) of odd Euler characteristic such
that ([α̃]0)|� = 0. In this case, define a ∈ H1(S(R)) by a|S(R)\� = ([α̃]1)|S(R)\� and a|� =
([α̃]1)|� + w1(�). In both cases, deg(a� w1) = 0, so that there exists θ ∈ Pic(S) such
that clR(θ)= a by [46, Theorem 4.4]. Modifying α̃ by the image of θ in (8.3) and applying
Theorem 0.5 shows that ind(α)= 2 and concludes. �

8.2. A K3 surface over a non-archimedean real closed field. — We now prove Proposi-
tion 0.7, thus showing that Theorem 0.5 fails over general real closed fields such as
K := ∪nR((t1/n)). The surface S we use is exactly that of [12, Example 15.2.2]. It has
the property that no rational function on S is positive on one of the semi-algebraic con-
nected components of S(K) and negative on the others.

Proof of Proposition 0.7. — Let [u : v :w] be coordinates on P2
K, where K is the real

closed field ∪nR((t1/n)). Consider the sextic double cover X of P2
R[[t]] defined by:

X := {
z2 = (

w2 − u2 − v2
)
u2v2 − tw6

}
.

Since XK has rational double points as singularities, its minimal resolution of singularities
is a K3 surface S over K. One checks that S(K) has four semi-algebraic connected com-
ponents separated by the signs of u/w and v/w, that are semi-algebraically isomorphic
to spheres. In particular, H1(S(K),Z/2)= 0.

Let  ⊂ S(K) be the connected component such that u/w,v/w > 0. By
[24, Proposition 3.1.2] (see also [55, Theorem 2.8]), there exists α ∈ Br(S)[2] such that
α is trivial in restriction to x ∈ S(K) if and only if x ∈  . Suppose for contradiction
that α has index 2. Then it is a quaternion class: there exist f , g ∈ K(S)∗ such that
α = (f , g) ∈ Br(R(S)). In particular, if x ∈ S(K) lies outside of the zeros and poles of f

and g, one has x ∈ if and only at least one of f (x) and g(x) is positive.
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Let n be such that f , g ∈ R((t1/n))(XR((t1/n)))
∗. Multiplying f and g by an ap-

propriate power of t1/n, we may specialize them to rational functions f0, g0 ∈ R(XR)
∗

on the special fiber XR of X . Let Q be the normalization of XR: it is the quadric
Q = {z2 =w2 − u2 − v2} ⊂ P3

R over R. View f0, g0 as rational functions on Q. By our
choice of f and g, if x ∈ Q(R) is such that u(x), v(x) �= 0 and lies outside of the poles of f0
and g0, then at least one of f0(x) and g0(x) is positive if and only if u/w(x), v/w(x) > 0.

Since the signs of f0 and g0 are constant in a neighbourhood of [u : v : w : z] =
[0 : −1 : 1 : 0] ∈ Q(R), we deduce that the orders of vanishing of f0 and g0 along the
divisor D := {u = 0} ⊂ Q are even. It follows that if x ∈ Q(R) is chosen such that w �= 0,
u = 0 and v/w(x) > 0, and such that x does not belong to any divisor of poles of f0 or g0

distinct of D, then the signs of f0 and g0 are constant in a neighbourhood of x ∈ Q(R).
This is the required contradiction. �
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