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The tight approximation property
By Olivier Benoist at Paris and Olivier Wittenberg at Villetaneuse

Abstract. This article introduces and studies the tight approximation property, a prop-
erty of algebraic varieties defined over the function field of a complex or real curve that
refines the weak approximation property (and the known cohomological obstructions to it)
by incorporating an approximation condition in the Euclidean topology. We prove that the
tight approximation property is a stable birational invariant, is compatible with fibrations, and
satisfies descent under torsors of linear algebraic groups. Its validity for a number of rationally
connected varieties follows. Some concrete consequences are: smooth loops in the real locus of
a smooth compactification of a real linear algebraic group, or in a smooth cubic hypersurface
of dimension � 2, can be approximated by rational algebraic curves; homogeneous spaces of
linear algebraic groups over the function field of a real curve satisfy weak approximation.

1. Introduction

One of the basic results of the theory of rationally connected varieties states that on any
smooth and proper variety over C which is rationally connected – that is, on which two general
points can be joined by a rational curve – any finite set of points can in fact be joined by a single
rational curve (see [67, Chapter IV, Theorem 3.9]).

Questions on the existence of algebraic curves on algebraic varieties have been at the
core of further developments of the theory.

Graber, Harris and Starr [45] have shown that a dominant map f W X! B between
smooth proper varieties over C, where B is a connected curve, admits a section if its geo-
metric generic fiber is rationally connected. Equivalently, the generic fiber X of f admits
a rational point over the function field F D C.B/. Under the same hypotheses, Hassett and
Tschinkel [55] have proved that f admits sections with any given prescribed jet, of any finite
order, along any finite subset of B.C/ over which f is smooth (see also [54]). The case of
a product fibration (i.e. X is the product of B with a variety over C, and f is the projec-
tion) and jet of order 0 recovers the result mentioned at the beginning of the introduction.
A more general property, which takes into account the singular fibers of f as well, is expected
to hold: the weak approximation property for X , that is, the density of X.F / diagonally
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embedded in
Q
b2B.C/X.Fb/, whereFb denotes the completion ofF at b 2 B.C/, with respect

to the product of the b-adic topologies. Weak approximation over F D C.B/ is easily seen to
be a stable birational invariant, to be compatible with fibrations (in the sense that whenever
g W X ! X 0 is a dominant morphism between smooth varieties over F with rationally con-
nected geometric generic fiber, weak approximation holds for X as soon as it holds for X 0 and
for the fibers of g above the F -points of a dense open subset of X 0; see [23]), and it has been
shown to hold for smooth proper models of homogeneous spaces of linear groups (see [23])
and for smooth cubic hypersurfaces of dimension � 2 (see [97]).

A related line of investigation concerns the integral Hodge conjecture for 1-cycles: for
any smooth and proper rationally connected variety X over C, the integral homology group
H2.X.C/;Z/ is expected to be spanned by classes of rational curves. This is known to hold
when dim.X/ � 3 (see [100], [101], [98]).

Analogous questions have been formulated for varieties defined over the field R of real
numbers. Given a finite set of closed points on a smooth, proper, rationally connected real alge-
braic variety (by which we mean a variety defined over R whose underlying complex algebraic
variety is rationally connected), there is an obvious obstruction to the existence of a single
rational curve passing smoothly through them: the real points in the set must lie in the same
connected component of the real locus of the variety. Under this hypothesis, and assuming in
addition that the real locus in question is non-empty, Kollár [68,69] has shown that such a ratio-
nal curve exists. Similarly, given a dominant map f W X! B between smooth proper varieties
over R whose target B is a connected curve and whose geometric generic fiber is rationally
connected, there are topological obstructions to the existence of a section of f , resp. to weak
approximation for the generic fiber X over the function field F D R.B/. Namely, the map
f .R/ W X.R/! B.R/ must admit a C1 section, resp. a C1 section with a prescribed jet.
These obstructions were studied, at first under a slightly different guise based on a reciprocity
law and on unramified cohomology in analogy with the Brauer–Manin obstruction in number
theory, by Colliot-Thélène [22], Scheiderer [87], Ducros [40], thus leading to the natural hope
that a section of f exists, with a prescribed jet of finite order along a finite set of closed points
of B , as soon as a C1 section with this prescribed jet exists. This conjecture, which in the case
of a product fibration with non-empty real locus and jet of order 0 amounts to the theorem of
Kollár recalled above, is still very much open. It has been verified when X is a smooth proper
model of a homogeneous space of a linear algebraic group with connected geometric stabilizer
(in [22,38,87]) and whenX is a conic bundle surface over P1F (in [40]) or more generally a vari-
ety fibered into Severi–Brauer varieties over P1F (in [39]). More recently, Pál and Szabó [81]
proved its compatibility with fibrations whose base is rational over F , thus extending Ducros’
results about conic bundle surfaces and fibrations into Severi–Brauer varieties.

In a different but related direction, the homology group H1.X.R/;Z=2Z/ is expected
to be spanned by classes of algebraic curves, perhaps of rational curves, for any smooth and
proper rationally connected variety X over R (see [7, 8]). It makes sense to ask the following
much stronger C1 approximation question (in the sense of the C1 compact-open topology
[58, Chapter 2, Section 1]):

Question 1.1. Let B be a smooth projective connected curve over R and let X be
a smooth, proper rationally connected variety over R. Let " W B.R/! X.R/ be a C1 map.
Are there morphisms of algebraic varieties B ! X which induce C1 maps B.R/! X.R/
arbitrarily close to " in the C1 compact-open topology?
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Building on the Stone–Weierstrass theorem, Bochnak and Kucharz [11, Section 2]
provide a positive answer for X D PnR and more generally for all varieties that are rational
over R. To this day, the answer to Question 1.1 is not known for a single X that possesses
a real point and that is not rational over R, despite renewed interest in the problem (see [70]).
One of our goals in the present article is to remedy this situation, by establishing the following:

Theorem A. Question 1.1 admits a positive answer if X is birationally equivalent to
a variety belonging to any of the following families:

(1) smooth cubic hypersurfaces in PnR for n � 3,

(2) smooth intersections of two quadrics in PnR for n � 4,

(3) homogeneous spaces of linear algebraic groups over R.

Even the particular case of cubic surfaces is new, and in fact disproves a conjecture
formulated by Bochnak and Kucharz in [13, p. 12]: according to Theorem A (1), any real
smooth cubic surface whose real locus has two connected components is a “Weierstrass”
surface in the terminology of [13], even though it is not rational.

Theorem A is a by-product of more general results that we now set out to explain.
To approach the many questions that we have mentioned so far, we propose and study,

in this article, the tight approximation property (from the French approximation fine), which
simultaneously generalizes weak approximation and C1 approximation, both in the complex
context and in the real context. We formulate it in a relative setting, for sections of a morphism
over a smooth projective connected curve, though ultimately it is a property of the generic fiber.

Definition 1.2 (see Definitions 2.1 and 3.3). A smooth variety X over the function field
of a complex curve B satisfies the tight approximation property if for any proper flat morphism
f W X! B such that X is regular and whose generic fiber is birationally equivalent to X , any
holomorphic section u W �! X.C/ of f .C/ W X.C/! B.C/ over an open subset � � B.C/
can be approximated arbitrarily well, in the C1 compact-open topology, by maps �! X.C/
induced by algebraic sections B ! X of f having the same jets as u along any prescribed
finite subset of �, at any prescribed finite order. (By an “algebraic section of f ”, we mean
a morphism of algebraic varieties B ! X that is a section of f .)

The definition of tight approximation for a smooth variety X over the function field of
a real curve B is the same, except that we require the open subset � � B.C/ to contain B.R/
and to be stable under Gal.C=R/ and the holomorphic map u to be Gal.C=R/-equivariant.

Let us immediately point out three essential features of this definition. First, by prescrib-
ing jets of finite order at finitely many points, the tight approximation property incorporates
in its very definition a condition of weak approximation type. This is necessary, even if one
is only interested in C1 approximation, to obtain a birationally invariant property, as was
already noted by Bochnak and Kucharz [11]. Secondly, the tight approximation property also
incorporates a C1 approximation condition. This is necessary, even if one is only interested
in weak approximation or in the homology of the real locus, to obtain a property that behaves
well in fibrations (into conics over an arbitrary rationally connected base, for instance), as
can be seen already in the proof of [8, Theorem 6.1]. Finally, unlike Question 1.1, the tight
approximation property is formulated for one-dimensional families of real varieties. This also
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turns out to be crucial for the property to behave well in fibrations, even if one is only interested
in C1 approximation on individual real varieties.

We henceforth let B denote a smooth projective connected curve over R and do not
assume that B is geometrically connected; in a tautological way, this makes the complex
context a particular case of the real one. We let F D R.B/ and now discuss in detail what
we prove concerning the tight approximation property.

As a consequence of Whitney’s approximation theorem of C1 maps by real analytic
maps, the tight approximation property for a smooth variety X implies that any C1 section
of the map f .R/ W X.R/! B.R/ can be approximated arbitrarily well by the real locus of
an algebraic section B ! X with a prescribed jet, of any finite order, at finitely many points
of B (Proposition 2.9). Thus, tight approximation implies, in the case of a product fibration,
a positive answer to Question 1.1, and at the same time, for arbitrary fibrations, the best
possible weak approximation statement (which coincides with weak approximation itself when
B.R/ D ¿, e.g. when B is a complex curve).

We prove that the property appearing in Definition 1.2 does not depend on the choice of
the model f W X! B (Theorem 3.1). We also prove, using a version of Runge’s approximation
theorem for compact Riemann surfaces, that PdF satisfies tight approximation, and deduce that
the tight approximation property is a stable birational invariant (Theorem 4.2, Proposition 4.3).

The first main theorem of the article asserts the compatibility of the tight approximation
property with fibrations:

Theorem B (Theorem 5.1). Let g W X ! X 0 be a dominant morphism between smooth
varieties over F . If X 0 and the fibers of g above the F -points of a dense open subset of X 0

satisfy the tight approximation property, then so does X .

It should be noted that Theorem B – unlike the main theorem of [81], which only
deals with weak approximation – does not assume the base to be rational over F , or even
geometrically rational. As was remarked above, for such a general fibration statement to be
accessible, it is crucial to incorporate a C1 approximation condition into the property under
consideration.

The proof of Theorem B relies on the weak toroidalization theorem of Abramovich,
Denef and Karu [1] and on some toroidal geometry. Letting X and X0 denote proper regular
models of X and X 0 over B such that g extends to a morphism g W X! X0, the key tool
here is an algebro-geometric statement according to which for x 2 X, a general germ of curve
on X through x whose image on X0 is smooth can be made to miss the non-smooth locus of
g W X! X0 by replacing X and X0 with suitable modifications and the germ with its strict
transform. (See Proposition 5.2 for a precise statement.) This assertion, valid for a morphism
g W X! X0 of smooth varieties over an arbitrary field of characteristic 0, can be viewed as an
extension of the Néron smoothening process to higher-dimensional bases (see [16, 3.1/3]).

As a corollary to Theorem B, we deduce Theorem A (1) and (2). Indeed, smooth cubic
hypersurfaces of dimension � 2 over R, as well as smooth complete intersections of two
quadrics of dimension � 2 over R with a real point, are birationally equivalent to quadric
bundles over projective spaces, and positive-dimensional quadrics over F satisfy the tight
approximation property (see Examples 4.5, 5.4 and 5.6).

The second main theorem asserts that the method of descent under arbitrary linear
groups, pioneered over number fields by Colliot-Thélène and Sansuc and extended to non-
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abelian groups by Harari and Skorobogatov, can be successfully applied for verifying the tight
approximation property:

Theorem C (Theorem 6.1). Let X be a smooth variety over F and let S be a linear
algebraic group over F . Let Q! X be a left S -torsor. If every twist of Q by a right S -torsor
over F satisfies the tight approximation property, then so does X .

We note that Theorem C does not assume X to be proper or S to be connected. For the
weak approximation property, a similar descent theorem was established by Ducros [40, Théo-
rème 5.22] under the assumption that S is connected.

By using standard reductions in the theory of homogeneous spaces, together with
Scheiderer’s Hasse principle for homogeneous spaces of linear algebraic groups over F
(see [87]), we deduce from the combination of Theorem B and Theorem C:

Theorem D (Theorem 7.4). Homogeneous spaces of connected linear algebraic groups
over F satisfy the tight approximation property.

In more detail, the proof of Theorem D starts with the remark that the tight approximation
property holds for quasi-trivial tori over F since it holds for projective spaces (Theorem 4.2);
we then successively deduce its validity for arbitrary tori over F (by descent, using Theorem C,
in Proposition 7.1), then for connected linear algebraic groups over F (exploiting the structure
of a fibration into tori over an affine space over F , using Theorem B, in Proposition 7.2), then
for homogeneous spaces of connected linear algebraic groups over F that possess an F -point
(using Theorem C again), and finally for arbitrary homogeneous spaces of connected linear
algebraic groups over F (using Scheiderer’s Hasse principle).

Theorem A (3) immediately results from Theorem D, in the particular case of a product
fibration. On the other hand, Scheiderer’s work allows us to conclude from Theorem D that
homogeneous spaces of connected linear algebraic groups over F satisfy the weak approxi-
mation property (Theorem 7.7). This solves a conjecture put forward by Colliot-Thélène [22].
Scheiderer [87] had proved it when the stabilizer of a geometric point is connected and had left
the general case open.

In fact, Scheiderer allows in [87] the field R to be replaced with an arbitrary real closed
field. Following his lead, we adapt the proof of Theorem D and establish Colliot-Thélène’s
conjecture for function fields of curves over real closed fields:

Theorem E (Theorem 7.17). Homogeneous spaces of connected linear algebraic groups
over the function field of a curve over a real closed field satisfy the weak approximation property.

IfX is a smooth compactification of a homogeneous space of a connected linear algebraic
group over R, it is a noteworthy consequence of Theorem D (in fact, of Theorem A (3)) that
the homology group H1.X.R/;Z=2Z/ is spanned by classes of rational curves. By contrast,
it is still an open question whether H2.X.C/;Z/ is spanned by classes of algebraic curves, i.e.
whether XC satisfies the integral Hodge conjecture for 1-cycles.

In Proposition 8.14, we verify that H1.X.R/;Z=2Z/ is again spanned by classes of
rational curves if X is a rationally connected surface, even though Question 1.1 remains
unanswered in this case.
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In view of the stable birational invariance of the tight approximation property, of its
compatibility with fibrations, of its compatibility with descent under torsors of linear algebraic
groups, and of its validity for homogeneous spaces of linear algebraic groups, it makes sense
to raise the question of the validity of the tight approximation property for arbitrary rationally
connected varieties (Question 3.6).

For some varieties that are not known to satisfy tight approximation, the ideas underlying
the proof of Theorem B turn out to still be useful for proving the weaker property that
H1.X.R/;Z=2Z/ is spanned by classes of algebraic curves, when X is smooth, proper and
defined over R. We explore this direction in the last section of the article, where we formulate
a version of this property for varieties defined over F rather than over R (see Definition 8.1,
Proposition 8.3), prove the analogue of Theorem B for this property (Theorem 8.5) and apply it
to smooth cubic hypersurfaces. Using the results of [8] about cubic surfaces over F , we deduce:

Theorem F (Corollary 8.11). For any smooth proper variety X over R which is,
birationally, an iterated fibration into smooth cubic hypersurfaces of dimension � 2, the group
H1.X.R/;Z=2Z/ is spanned by classes of algebraic curves.

We stress that it is a key point in our proof of Theorem F that we work, all the way
through, with one-dimensional families of real cubic hypersurfaces rather than with real
cubic hypersurfaces, even though it is in the latter that we are ultimately interested. Indeed,
applying our fibration theorems (Theorem 5.1 or Theorem 8.5) leads one to consider fibers
over F -rational points of the base that are not R-points, even when the base and the total space
are defined over R. For the same reason, as we do not know the tight approximation property
for cubic surfaces over F , an answer to Question 1.1 for the varieties appearing in Theorem F
is out of reach.

The article ends with an appendix gathering Gal.C=R/-equivariant versions of a number
of tools of complex analytic geometry that we use throughout, as well as a description
of the relationship, for Gal.C=R/-equivariant Riemann surfaces with compact real locus,
between the real points and the orderings of the field of equivariant meromorphic functions
(Proposition A.9).
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homogeneous spaces of linear algebraic groups. Its influence is gratefully acknowledged. We
thank Roland Huber for sending us a copy of [60], Dmitri Pavlov for having made [52] available
to us, Jean-Louis Colliot-Thélène for a useful comment on a previous version of this article and
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1.1. Notation and conventions. Let k be a field. We denote by k an algebraic closure
of k. A variety over k is a separated scheme of finite type over k. If f W X ! Y is a morphism
of varieties over k, and k � k0 is a field extension, we define f .k0/ W X.k0/! Y.k0/ to be
the induced map on k0-points. We say that f is a modification if it is proper and birational,
a regular modification if in addition X is regular. A rational curve on a variety X over k is
a non-constant morphism f W C ! X where C is a smooth projective geometrically connected
curve of genus 0 over k. We say that a variety X over k is rationally connected if X

k
is

rationally connected in the sense of Kollár–Miyaoka–Mori [67, IV Definition 3.2]. IfG denotes
an algebraic group over k, a homogeneous space of G is a variety X over k endowed with an



Benoist and Wittenberg, The tight approximation property 157

action of G such that the induced action of G.k/ on X.k/ is transitive; in particular X is non-
empty, while X.k/ may be empty.

Let R and C be the fields of real and complex numbers, and let G be the Galois
group Gal.C=R/ D Z=2Z. Let � 2 G be the complex conjugation. In all this text (with the
exception of Section 7.4, where the ground field is an arbitrary real closed field), we fix
a smooth projective connected curve B over R with function field F and generic point �.
Let Fb D Frac. bOB;b/ be the completion of F associated with a closed point b 2 B . If X is
a variety over F , a model of X is a flat morphism f W X! B of varieties over R with a dense
open embedding X � X� of varieties over F .

All C1 or real-analytic manifolds and all complex spaces are assumed to be Hausdorff
and second countable. If M and M 0 are C1 manifolds, we endow the space of C1 maps
C1.M;M 0/ with the weak C1 topology [58, p. 36]. We refer to [58, p. 60] for the definition
of the r-jet of a C1 map g WM !M 0 at x 2M . We denote by ŒM � 2 Hd .M;Z=2Z/ the
fundamental class of a compact C1 manifold of dimension d .

Let � be a complex manifold of dimension 1, and let O�;x be the discrete valuation
ring of germs of holomorphic complex-valued functions at x 2 �. If X is a variety over C,
morphisms Spec.O�;x/! X correspond bijectively to germs at x 2 � of holomorphic maps
�! X.C/. Let f W X ! Y be a modification of varieties over C and let g W �! Y.C/ be
a holomorphic map such that the image by g of any connected component of�meets the locus
where f is an isomorphism. By the valuative criterion of properness applied to .O�;x/x2�, the
morphisms Spec.O�;x/! Y induced by g lift uniquely to morphisms Spec.O�;x/!X . This
gives rise to a holomorphic lift h W �! X.C/ of g, called the strict transform of g. These con-
structions also work if� is a real-analytic manifold of dimension 1 and g is a real-analytic map,
using the discrete valuation rings Oan

�;x of germs of real-analytic real-valued functions at x 2�.

2. Tight approximation

Recall that we have fixed in Section 1.1 a smooth projective connected curve B over R,
and that F D R.B/.

2.1. Tight approximation for models over B. Tight approximation will be a property
of smooth varieties over F (see Definition 3.3). It is convenient to first define it for a proper
regular model over B of such a variety.

Definition 2.1. Let f W X! B be a proper flat morphism with X regular. One says that
f satisfies the tight approximation property if for all G-stable open neighborhoods � of B.R/
in B.C/, all m � 0, all b1; : : : ; bm 2 �, all r � 0 and all G-equivariant holomorphic sections
u W�!X.C/ of f .C/ WX.C/!B.C/ over �, there exists a sequence sn WB!X of sections
off having the same r-jets asu at the bi and such that sn.C/j� converges tou in C1.�;X.C//.

In practice, to verify that the tight approximation property holds, we will use the
following variant of Definition 2.1.

Proposition 2.2. A proper flat morphism f W X! B with X regular satisfies the tight
approximation property if and only if for all G-stable compact subsets B.R/ � K � B.C/,
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all m � 0, all b1; : : : ; bm 2 K, all r � 0, all G-stable Stein open neighborhoods � of K
in B.C/ and all G-equivariant holomorphic sections u W �! X.C/ of f .C/ over �, there
exists a sequence sn W B ! X of sections of f with the same r-jets as u at the bi such that
sn.C/jK converges uniformly to ujK .

Proof. The condition is obviously necessary, and we show that it is sufficient. Since the
statement in Definition 2.1 is automatically verified for � D B.C/ as u is then algebraic by
GAGA (see Section A.2), we may assume that � ¤ B.C/, hence that � is Stein [47, p. 134].
By [59, Theorem 2.2.3], the sequence sn.C/j� converges to u in C1.�;X.C// if and only
if it converges to u uniformly on every compact subset K � �. Choosing an exhaustion of �
by G-stable compact subsets containing the bi finishes the proof.

2.2. Particular cases and variants.

2.2.1. Complex fibrations. If B 0 is a smooth projective connected curve over C with
generic point �0 and f 0 W X0 ! B 0 is a proper flat morphism with X0 regular, one can mimic
Definition 2.1, by disregarding all references to the action of G. The resulting property of f 0

is equivalent to the tight approximation property for f W X! B , where f D f 0, X D X0 and
B D B 0, butB is viewed as a (not geometrically connected) smooth projective connected curve
over R by composing its structural morphism with Spec.C/! Spec.R/. (Use the fact that
B.C/ D .B 0 �Spec.R/ Spec.C//.C/ is the disjoint union of two copies of B 0.C/ exchanged by
the action of G, and the similar description of X.C/.) In this way, Definition 2.1 encompasses
both real and complex fibrations.

2.2.2. Constant fibrations. When X D X � B for some smooth and proper variety X
over R and f is the second projection, the tight approximation property generalizes Bochnak
and Kucharz’ property .B/ for the variety X , defined in [11, p. 604] when K D B.R/ (where
K � B.C/ is a compact subset as in Proposition 2.2) and in [12, p. 88] when B is a smooth
projective connected curve over C (keeping Section 2.2.1 in mind).

2.2.3. Nash approximation. In [34], Demailly, Lempert and Shiffman consider a vari-
ant of the tight approximation property. They restrict to constant complex fibrations (as in
Sections 2.2.1–2.2.2), allow possibly higher-dimensional bases, but only look for Nash sec-
tions, not algebraic ones. Dropping the algebraicity requirement on the section yields a very
general theorem [34, Theorem 1.1]. Tight approximation cannot possibly hold in this generality
(see Proposition 3.5).

2.3. Sections over the real locus. The tight approximation property is only interesting
for morphisms f W X! B as above such that f .R/ W X.R/! B.R/ has a C1 section.
(Otherwise, it holds trivially as the property to be checked is vacuous.) This condition is
equivalent to the existence of a C 0 section of f .R/ with values in the locus U � X.R/ where
f .R/ is submersive. Indeed, C1 sections of f .R/ always take values in U , and one can
approximate C 0 sections with values in U by C1 sections (using the normal form theorem
for submersions and [58, Chapter 2, Theorem 2.4]). When a C1 section of f .R/ exists, the
tight approximation property allows one to approximate it by algebraic sections, as we show
in Corollary 2.4.
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Proposition 2.3. Let f W X! B be a proper flat morphism with X regular, and let
v W B.R/! X.R/ be a C1 section of f .R/. Choose b1; : : : ; bm 2 B.R/ and r � 0. Then
there exist a sequence ofG-stable open neighborhoods�n ofB.R/ inB.C/ andG-equivariant
holomorphic sections un W �n ! X.C/ of f .C/ over�n such that the .un/jB.R/ have the same
r-jets as v at the bi and converge to v in C1.B.R/;X.R//.

Corollary 2.4. Under the assumptions of Proposition 2.3, if f satisfies the tight
approximation property, there exists a sequence sn W B ! X of sections of f such that the
sn.R/ have the same r-jets as v at the bi and converge to v in C1.B.R/;X.R//.

Proof of Proposition 2.3. By Whitney’s approximation theorem (Lemma 2.5 below),
there exists a sequence vn W B.R/! X.R/ of real-analytic maps with the same r-jets as v
at the points bi converging to v in C1.B.R/;X.R//. If n� 0, then the map f .R/ ı vn is
a diffeomorphism of B.R/ (see [77, Corollary 5.7]), and v0n WD vn ı .f .R/ ı vn/�1 converges
to v in C1.B.R/;X.R// (see [77, Theorem 7.6]). Locally at x 2 B.R/, the map v0n is given
by convergent power series, and extends in a unique way to a germ of holomorphic map
B.C/! X.C/ at x. By uniqueness, these local extensions glue to aG-equivariant holomorphic
map un W �n ! X.C/ on some G-stable open neighborhood �n of B.R/ in B.C/ each
connected component of which meets B.R/, and un is a section of f .C/ over �n by analytic
continuation.

Lemma 2.5. Let g WM !M 0 be a C1 map between real-analytic manifolds, let
S �M be a discrete subset, let r W S ! N be a function, and let U � C1.M;M 0/ be
a neighborhood of g for the strong C1 topology [103, p. 36]. Then there exists a real-analytic
map h 2 U that has the same r.s/-jet as g at s for all s 2 S .

Proof. We may assume M and M 0 to be connected. By the Grauert–Morrey theorem
[46, Theorem 3], we may then assume that M and M 0 are embedded in Euclidean spaces. In
this case, the lemma without jets is Whitney’s approximation theorem [103, Theorem 2]. With
jets, it is claimed without proof in [103, p. 654]. It can be reduced to the case where M 0 D R
by the argument of [103, Lemma 22], in which case it follows from [99, Theorem 3.3].

2.4. Weak approximation. We finally discuss the relation between the tight approxi-
mation property and the more classical weak approximation property.

Definition 2.6. A smooth variety X over F satisfies the weak approximation property
if the image of the diagonal map X.F /!

Q
b X.Fb/ is dense with respect to the product

topology (endowing each X.Fb/ with the topology defined by the discrete valuation on Fb),
where the product runs over all closed points b 2 B .

We will say that a proper flat morphism f W X! B with X regular satisfies the weak
approximation property if so does its generic fiber X�.

This property may fail since local data at finitely many real points of B might not be
interpolable by a C1 section of f .R/, let alone by an algebraic section of f . This is precisely
Colliot-Thélène’s reciprocity obstruction [22, Section 3] to the weak approximation property,
as reinterpreted by Ducros ([40, Théorème 4.3], see also [81, Proposition 3.19]).
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Definition 2.7. Let f W X! B be a proper flat morphism with X regular, and let
„ �

Q
b X�.Fb/ be the subset of .vb/ 2

Q
b X�.Fb/ whose projection in

Q
b2B.R/X�.Fb/ is

induced by a C1 section v W B.R/! X.R/ of f .R/. We say that the reciprocity obstruction
is the only obstruction to the validity of the weak approximation property for f if the image of
the diagonal map X�.F /!

Q
b X�.Fb/ is dense in „. We say that there is no reciprocity ob-

struction to the validity of the weak approximation property for f if„ is dense in
Q
b X�.Fb/.

Remark 2.8. Using [22, Lemme 3.5, Lemme 3.6], [40, Théorème 3.5, proof of Propo-
sition 4.1] and [58, Chapter 2, Theorem 2.4], one checks that the closure of „ in

Q
b X�.Fb/

coincides with the subset denoted E .X�/ in [40, Définition 1.8].

The tight approximation property is designed to take into account the reciprocity obstruc-
tion, by incorporating the assumption that B.R/ � � into Definition 2.1.

Proposition 2.9. Let f W X! B be a proper flat morphism with X regular that satisfies
the tight approximation property. Choose a family .vb/ 2

Q
b X�.Fb/ whose projection inQ

b2B.R/X�.Fb/ is induced by a C1 section v W B.R/! X.R/ of f .R/. Let † � B be
a finite set of closed points, and fix r � 0. Then there exists a sequence sn W B ! X of sections
of f that coincide to order r with vb W Spec. bOB;b/! X for all b 2 † and such that sn.R/
converges to v in C1.B.R/;X.R//.

Corollary 2.10. Let f W X! B be a proper flat morphism with X regular. If f satisfies
the tight approximation property, then the reciprocity obstruction is the only obstruction to the
validity of the weak approximation property for f .

Proof of Proposition 2.9. Let †1 � † (resp. †2 � †) be the subset of points with real
(resp. complex) residue fields. By Proposition 2.3, we know that there exists a sequence of
G-stable open neighborhoods�n of B.R/ in B.C/ and ofG-equivariant holomorphic sections
un W �n ! X.C/ of f .C/ over �n such that the .un/jB.R/ coincide with vb to order r for all
b 2 †1 and converge to v in C1.B.R/;X.R//. For b 2 †2, let OB.C/;b � bOB;b be the subring
of convergent power series. It is a Henselian discrete valuation ring with completion bOB;b by
[80, Theorem 45.5]. By Greenberg’s theorem [48, Corollary 1], we may assume that vb is
given by a morphism vb W Spec.OB.C/;b/! X for all b 2 †2. The points .vb/b2†2 then give
rise to aG-equivariant holomorphic section u0 W �0 ! X.C/ of f .C/ over someG-stable open
subset �0 � B.C/ containing †2.C/. After shrinking �1 and �0 and then replacing �n with
�1 \�n for all n, we may assume that�n \�0 D ¿ for all n. Applying Definition 2.1 to the
section .un; u0/ W �n [�0 ! X.C/ of f .C/ over�n [�0, to the finite set†.C/ � B.C/ and
to the integer r concludes the proof.

By using the following proposition, it is sometimes possible to deduce the weak approxi-
mation property itself (for instance when B.R/ D ¿; see also Theorem 7.7).

Proposition 2.11. Let f W X! B be a proper flat morphism with X regular. Assume
that the reciprocity obstruction is the only obstruction to the validity of the weak approximation
property for f and that there exists a dense open subset U � B such that Xb.R/ is connected
for all b 2 U.R/. Then f satisfies the weak approximation property.
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Proof. After shrinking U , we may assume that f is smooth above U . If X�.Fb/ D ¿
for some point b 2 B.R/, then f satisfies the weak approximation property. Otherwise, as f
is proper, the map f �1.U.R//! U.R/ induced by f is surjective. On the other hand it is
a locally trivial fibration with connected fibers, by Ehresmann’s theorem; therefore it possesses
a C1 section v W U.R/! X.R/, which we fix.

Choose r � 0, b1; : : : ; bm 2 B.R/ and vbi 2 X�.Fbi / for 1 � i � m. After enlarging
¹b1; : : : ; bmº and shrinking U , we may assume that B.R/ n ¹b1; : : : ; bmº D U.R/. View the
vbi as morphisms vbi W Spec.1OB;bi /! X by the valuative criterion of properness. Applying
Greenberg’s theorem as in the proof of Proposition 2.9 yields an open neighborhood Wi of bi
in B.R/ and a real-analytic section vi W Wi ! X.R/ of f .R/ over Wi that coincides with vbi
to order r at bi .

Since Xb.R/ is connected for b 2 U.R/, one can use Ehresmann’s theorem again to
modify v in small neighborhoods of the bi so that it can be glued to the vi to yield a C1

section v0 W B.R/! X.R/ of f .R/ that coincides with vi near bi . This shows that there
cannot be any reciprocity obstruction to the validity of the weak approximation property for f ,
as required.

3. Birational aspects

3.1. Birational invariance. In Theorem 3.1, we show the birational invariance of the
tight approximation property. If one restricts to constant fibrations as in Section 2.2.2 and
to K D B.R/ in the notation of Proposition 2.2, then this result is due to Bochnak and
Kucharz [11, Section 2]. The corresponding result for the weak approximation property is due
to Kneser [65, Section 2.1].

Theorem 3.1. Let f W X! B and f 0 W X0 ! B be proper flat morphisms with X and
X0 regular. Let g W XÜ X0 be a birational map such that f 0 ı g D f . If f 0 satisfies the tight
approximation property, then so does f .

We start with the particular case of Theorem 3.1 where h WD g�1 is a morphism.

Lemma 3.2. Let f W X! B and f 0 W X0 ! B be proper flat morphisms with X and
X0 regular. Let h W X0 ! X be a birational morphism with f ı h D f 0. If f 0 satisfies the tight
approximation property, then so does f .

Proof. LetK,�, bi , r and u be as in Proposition 2.2. By Proposition A.10 (ii), one may
assume that no connected component of u.�/ is included in the locus above which h is not an
isomorphism. The strict transform of u in X0.C/ is a section u0 W �! X0.C/ of f 0.C/ above
� that lifts u. Applying the tight approximation property of f 0 to K, �, bi , r and u0 yields
a sequence s0n W B ! X0 of sections of f such that the sequence sn D h ı s0n has the required
properties.

Proof of Theorem 3.1. By Hironaka’s resolution of indeterminacies theorem [57, Sec-
tion 5] and by Lemma 3.2, one may assume that g is the blow-up of a smooth integral subvariety
of X0 with exceptional divisor E � X. Let K, �, bi , r and u be as in Proposition 2.2. By
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Proposition A.10 (ii), one may assume, after shrinking �, that no connected component of
u.�/ is included in E.C/. Since K is compact, shrinking � further, one may assume that
u.�/ meets E.C/ at only finitely many points. We add these points to the collection of the bi .
A local computation (carried out in [11, Proof of Lemma 2.1] in a very similar context, see also
[12, Proof of Lemma 2.1]) shows that if r 0 � 0 is big enough, and if s0n W B ! X0 is a sequence
of sections of f 0 obtained by applying the tight approximation property of f 0 to K, �, bi , r 0

and g ı u, the sequence sn W B ! X of strict transforms of s0n has the required properties.

3.2. Tight approximation for varieties over F . We can now give the definition.

Definition 3.3. A smooth variety X over F satisfies the tight approximation property if
some proper regular model f W X! B of X over B satisfies the tight approximation property
in the sense of Definition 2.1.

Remarks 3.4. (i) By Theorem 3.1, this does not depend on the model f W X! B ofX ,
and the tight approximation property is a birational invariant of X .

(ii) The case when X is defined over R corresponds to the case of product fibrations
f W X � B ! B and is of particular interest.

This property is only relevant for the varieties whose smooth compactifications are
rationally connected (in the geometric sense specified in Section 1.1).

Proposition 3.5. Let f W X! B be a proper flat morphism with X regular and generic
fiber X . If f .R/ has a C1 section and if f satisfies the tight approximation property, then X
is rationally connected.

Proof. Since f satisfies the tight approximation property and f .R/ has a C1 section,
Corollary 2.4 implies that f has a section. As moreover the reciprocity obstruction is the
only obstruction to the validity of the weak approximation property for f by Corollary 2.10,
it follows that XF.

p
�1/ satisfies the hypothesis of [54, Corollary 2.16], hence is rationally

connected.

Proposition 3.5 is in the spirit of [11, Theorem 1.2] and [12, Theorem 1.3], with a stronger
conclusion. We are interested in converse statements.

Question 3.6. Do smooth proper rationally connected varieties over F satisfy the tight
approximation property?

Remarks 3.7. (i) When B.R/ D ¿, the weaker question whether smooth proper ratio-
nally connected varieties X over F satisfy the weak approximation property (see Section 2.4)
is open. It is not even known whether X , if non-empty, always has an F -point, even if X
is defined over R. Applied with B equal to the anisotropic conic over R, this would show the
existence of a rational curve in an arbitrary positive-dimensional rationally connected varietyX
over R when X.R/ D ¿, which would answer a question raised in [4, Remarks 20].

(ii) If B.R/ D ¿, and if X is a smooth proper rationally connected variety over F that
is known to have an F -point, weak approximation holds at places of good reduction, as the
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arguments of Hassett and Tschinkel [55, Theorem 3] adapt to this situation. It is not known if
it also holds at places of bad reduction, even if B is a complex curve (see [55, Conjecture 2]
and [54]).

Remark 3.8. Although the tight approximation property is interesting only for ratio-
nally connected varieties, one may ask weaker questions for other classes of varieties, such
as K3 surfaces, or Enriques surfaces. For instance, if X is a K3 surface over R, can any
homologically trivial loop on X.R/ be approximated for the C1 topology by the real locus of
a rational curve onX? More generally, what about loops whose homology classes belong to the
image H alg

1 .X.R/;Z=2Z/ of the Borel–Haefliger cycle class map? The particular case of the
Fermat quartic surface is raised by Bochnak and Kucharz [11, p. 602]. We do not even know
if all real K3 surfaces with real points contain rational curves, although complex K3 surfaces
always contain rational curves by Bogomolov and Mumford [79, Appendix].

4. Rational varieties

4.1. Projective spaces. As a first example, we show that projective spaces satisfy the
tight approximation property. Variants of this statement are due to Bochnak and Kucharz
([11, Lemma 2.3], [12, Lemma 2.5]), and we adapt their arguments. We need a real analogue
of Runge’s approximation theorem, which is easy to deduce from classical statements.

Proposition 4.1. Let K � B.C/ be a G-stable compact subset, let � be a G-stable
open neighborhood of K in B.C/, let f W �! C be a G-equivariant holomorphic func-
tion, and choose b1; : : : ; bm 2 K and r � 0. Then there is a sequence of rational functions
fn 2 R.B/ such that the fn.C/ have no poles on K, have the same r-jets as f at the bi , and
such that fn.C/jK converges uniformly to f jK .

Proof. The statement is obvious if K D B.C/, as f is then constant. Otherwise, using
the Riemann–Roch theorem, we find rational functions g; h 2 R.B/� such that g.C/ and h.C/
have no poles on K, such that g.C/ has the same r-jets as f at the bi , and such that h.C/
vanishes to order exactly r at the bi . Set f 0 D .f � g.C//=h.C/. By [66, Satz 1] (see also
[94, Theorem 1.1]), there exists a sequence f 0n of rational functions on B with no poles on K
such that f 0n.C/jK converges uniformly to f 0jK . Replacing f 0n with .f 0n C �.f

0
n//=2, we may

assume that f 0n 2 R.B/. The sequence fn D hf 0n C g has the required properties.

Theorem 4.2. The projective space PdF satisfies the tight approximation property.

Proof. Consider the model X D PdR � B of PdF with first projection p W PdR � B ! PdR.
Let K, �, bi , r and u be as in Proposition 2.2. Set

v D p.C/ ı u W �! Pd .C/:

We only have to construct morphisms gn W B ! PdR such that the gn.C/ have the same r-jets
as v at the bi , and converge uniformly to v on K. Indeed, one can then choose

sn D .gn; Id/ W B ! PdR � B:
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Analytifying OPdR
.1/ as in Section A.2 endows the invertible sheaf OPd .C/.1/ on Pd .C/

with a structure of G-equivariant invertible sheaf whose coordinate sections Y0; : : : ; Yd are
G-invariant. Consider the commutative diagram

(4.1) Pic.B/ D PicG.B.C// //

clR
��

PicG.�/

clR
��

H 1.B.R/;Z=2Z/ // H 1.�G ;Z=2Z/,
whose horizontal arrows are restriction maps, whose vertical maps are Borel–Haefliger maps
(defined in Section A.4), and where the equality Pic.B/ D PicG.B.C// follows from GAGA
(see Section A.2). The right vertical map is an isomorphism by Proposition A.3. The bottom
horizontal map is a surjection because�G is an open subset of the one-dimensional C1 mani-
fold B.C/G D B.R/. The left vertical map is surjective because if ‚ � B.R/ is a connected
component and x 2 ‚, the class clR.O.x// is non-zero in H 1.‚;Z=2Z/ but vanishes on the
other connected components of B.R/, by [71, Remark 1.3.2] or [72, Theorem 4.2]. We then
deduce from (4.1) the existence of a line bundle L 2 Pic.B/ such that L anj� ' v

�OPd .C/.1/.
Replacing L with L .lx/ for some closed point x 2 B not in � and l � 0, we may

assume that there exists a surjection q W ON
B � L of locally free sheaves on B . It induces

a surjection
qan
j� W O

N
� � v�OPd .C/.1/

of G-equivariant locally free sheaves on �. By Lemma A.1 (ii), one can lift v�Y0; : : : ; v�Yd
to G-invariant sections �0; : : : ; �d 2 H 0.�;ON

� /
G . For 0 � j � d , view �j as a collection

.fj;k/1�k�N of G-equivariant holomorphic functions �! C. By Proposition 4.1, there
exists a sequence fj;k;n 2 R.B/ such that the fj;k;n.C/ have no poles on K, have the same
r-jets as fj;k at the bi and converge uniformly to fj;k on K. Through the morphism q, the
functions .fj;k;n/1�k�N induce a rational section �j;n of L . For n� 0, the �j;n do not vanish
simultaneously on the compact K, since the v�Yj do not vanish simultaneously. It follows that
they define rational maps gn W BÜ PdR, which extend to morphisms gn W B ! PdR by the
valuative criterion of properness, and have the required properties.

4.2. Stable birational invariance. Recall that two varietiesX andX 0 over F are stably
birational if there exist d; d 0 � 0 such that PdF �X and Pd 0F �X

0 are birational. A variety is
said to be stably rational if it is stably birational to the point.

Proposition 4.3. Let X and X 0 be stably birational smooth varieties over F . If X
satisfies the tight approximation property, then so does X 0.

Proof. By Theorem 3.1, it suffices to show that, for d � 0, a smooth variety X over F
satisfies the tight approximation property if and only if so does PdF �X . Letting f W X! B

be a proper regular model of X , and choosing PdR � X as a proper regular model for PdF �X ,
this is an immediate consequence of Theorem 4.2.

Corollary 4.4. Smooth stably rational varieties over F satisfy the tight approximation
property.

Example 4.5. Smooth quadrics of dimension � 1 and Severi–Brauer varieties over F
satisfy the tight approximation property. Indeed, if f W X! B is a proper regular model of
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a quadric of dimension � 1 (resp. of a Severi–Brauer variety) X over F , and if u W �! X.C/
is aG-equivariant holomorphic section of f .C/ over aG-stable open neighborhood� ofB.R/
in B.C/ as in Definition 2.1, then ujB.R/ is a section of f .R/, so that X.F / ¤ ¿ by a theorem
of Witt [104, Satz 22] (resp. by [37, (1.4)]). It follows that X is F -rational, and Corollary 4.4
applies. We will greatly generalize these examples in Theorem 7.4.

5. The fibration method

In Theorem 5.1, we explain how to deduce the tight approximation property for the total
space of a fibration if it is known for its base and for its general fibers. In the complex setting, for
the weak approximation property, this is due to Colliot-Thélène and Gille [23, Proposition 2.2].
In the real setting, for the property that the reciprocity obstruction is the only obstruction to the
validity of the weak approximation property, such a fibration theorem was proven by Pál and
Szabó [81, Theorem 1.5] under the additional assumption that the base is rational over F .

Theorem 5.1. Let g W X ! X 0 be a dominant morphism of smooth varieties over F .
If the tight approximation property holds forX 0 as well as forXx D g�1.x/ for all F -points x
of a dense open subset of X 0, then it holds for X .

Our main tool is Proposition 5.2 which ensures that an analytic curve in the total space of
a fibration f W X ! Y can be made to avoid the singular locus of f by passing to appropriate
modifications ofX and Y . Its proof, given in Section 5.2, relies on toroidal geometry; we recall
basic definitions in Section 5.1 and refer to [1, 2] for more information. Theorem 5.1 is proven
in Section 5.3 and a few applications are given in Section 5.4.

5.1. Toroidal embeddings. Let k be a field of characteristic 0. An open immersion
U � X of varieties over k is a toroidal embedding if for all x 2 X.k/, there exist a toric
varietyZ over k with open orbit T � Z, a point z 2 Z.k/ and an isomorphism 1OX

k
;x
�
�!1OZ;z

of k-algebras sending the completion of the ideal of X n U to the completion of the ideal
of Z n T . We call such an isomorphism a toric chart of U � X at x.

A toroidal embedding U � X is said to be strict normal crossings ifX is smooth and the
irreducible components .Di /1�i�n of X n U have the property that for all I � ¹1; : : : ; nº of
cardinality c, the subvariety DI WD

T
i2I Di � X is smooth of pure codimension c (possibly

empty). The non-empty DI are called the strata of U � X .
A toroidal morphism f W .U � X/! .V � Y / of toroidal embeddings is a dominant

morphism f W X ! Y with f .U / � V such that for all geometric points x 2 X.k/ the mor-
phism bf � W3OY

k
;f .x/ !

1OX
k
;x , viewed in appropriate toric charts of U � X and V � Y , is

induced by the completion of a toric morphism of toric varieties over k.

5.2. Avoiding the singular locus of a fibration. The following statement will be key
to the proof of Theorem 5.1. In practice, it will be applied in combination with the weak
toroidalization theorem [1, Theorem 1.1].

Proposition 5.2. Let f W .U � X/! .V � Y / be a toroidal morphism of snc toroidal
embeddings, with X and Y quasi-projective, over a field k of characteristic 0. Let .Rj /1�j�m
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be discrete valuation rings with valuations vj , residue fields �j and fraction fields Kj ,
and set Tj D Spec.Rj /, tj D Spec.�j / and �j D Spec.Kj /. Let 'j W Tj ! X be morphisms
and define  j WD f ı 'j . Assume that 'j .�j / 2 U , that the image of  �j W OY; j .tj / ! Rj
contains a uniformizer of Rj , and that the induced field extensions k � �j are algebraic. Then
there exist projective birational morphisms �X W X 0 ! X and �Y W Y 0 ! Y and a morphism
f 0 W X 0 ! Y 0 with f ı �X D �Y ı f 0 such that �X (resp. �Y ) is an isomorphism above U
(resp. above V ) and such that f 0 is smooth at '0j .tj /, where '0j W Tj ! X 0 is the lift of 'j .

Our proof has three steps. In the first two steps, we blow up X and Y appropriately, and
the third is a verification that our goal has been reached.

Step 1. We may assume that the  j .tj / do not belong to any stratum of V � Y that has
codimension � 2 in Y .

Proof. We claim that there exists a projective birational toroidal morphism of snc
toroidal embeddings �Y W .V 0 � Y 0/! .V � Y / such that the  0j .tj / do not belong to any
stratum of codimension � 2 of V 0 � Y 0, where  0j W Tj ! Y 0 is the lift of  j .

We construct �Y as a composition of blow-ups. For some j 2 ¹1; : : : ; mº, consider
the smallest stratum DI � Y containing y WD  j .tj / (with the notation of Section 5.1). Let
.Di /i2I be the irreducible components of Y n V containing DI and let .zi /i2I 2 OY;y be
local equations of the Di . Define

j̨ .Y / WD
X
i2I

vj . 
�
j zi /:

Let i0 2 I be such that vj . �j zi0/ is minimal. Let b� W bY ! Y be the blow-up of DI and
define bV WD b��1.V / so that b� W .bV � bY /! .V � Y / is a toroidal morphism of snc toroidal
embeddings (to verify that b� is toroidal, apply [29, Definition 3.3.17] in toric charts). Consider
the lift b j W Tj ! bY of  j . Local equations at by WD b j .tj / of the irreducible components
of bY n bV through by can be chosen to be zi0 and the zi=zi0 for those indices i 2 I such that
vj . 

�
j zi / > vj . 

�
j zi0/. This shows that if DI has codimension � 2 in Y , one has

j̨ .bY / D j̨ .Y / � .jI j � 1/vj . 
�
j zi0/ < j̨ .Y /:

The claim thus follows by applying this procedure finitely many times for j D 1, then again
for j D 2, etc.

Considering the subdivision of the polyhedral complex associated with the toroidal
embedding U � X induced by �Y shows the existence of a toroidal embedding eU � eX
and of toroidal morphisms ef W .eU � eX/! .V 0 � Y 0/ and e� W .eU � eX/! .U � X/ withe� projective and birational. (Apply [2, Definition 8.3 1, Lemma 1.11] and note that this
construction is defined over k as it is canonical.) To conclude Step 1, let us consider a projective
birational toroidal morphism � W .U 0 � X 0/! .eU � eX/ that is an isomorphism above the snc
locus of .eU � eX/ and such that .U 0 � X 0/ is a snc toroidal embedding [1, Section 2.5.2]. Set
f 0 WD ef ı � and �X WD e� ı �, and replace f with f 0 and 'j with its lift '0j W Tj ! X 0.

Step 2. There exist projective birational morphisms �X W X 0 ! X and �Y W Y 0 ! Y

and a toroidal morphism f 0 W .U 0 � X 0/! .V 0 � Y 0/ of snc toroidal embeddings with

f ı �X D �Y ı f
0
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such that �X (resp. �Y ) is an isomorphism above U (resp. above V ) and such that the following
holds. For 1 � j � m, letting  0j W Tj ! Y 0 denote the lift of  j , the minimal stratum D0 of
V 0 � Y 0 containing  0j .tj / has codimension 1 in Y 0, and if zj 2 OY 0; j .tj / is a local equation
of D0, then . 0j /

�zj 2 Rj is a uniformizer.

Proof. The hypothesis that the field extensions k � �j are algebraic implies that the
 j .tj / are closed points of Y . Let H � Y be a general hypersurface, in a sufficiently ample
linear system on Y , that contains the  j .tj /. By the Bertini theorem, V n .H \ V / � Y is a
snc toroidal embedding. By [2, Proposition 3.2], the morphism

f W .U n .f �1.H/ \ U/ � X/! .V n .H \ V / � Y /

is toroidal. Let
� W .UH � XH /! .U n .f �1.H/ \ U/ � X/

be a projective birational toroidal morphism that is an isomorphism above the snc locus of
.U n .f �1.H/ \ U/ � X/ and such that .UH � XH / is a snc toroidal embedding [1, Sec-
tion 2.5.2]. Define fH WD f ı � W .UH � XH /! .V n .H \ V / � Y /.

Since H has been chosen general and by our hypothesis on the  j , a local equation wj
ofH at j .tj / has the property that �j wj 2 Rj is a uniformizer ofRj . Applying the procedure
of Step 1 to the morphism fH yields a toroidal morphism f 0 W .U 0 � X 0/! .V 0 � Y 0/ of
snc toroidal embeddings. Each blow-up of this procedure preserves the property that a local
equation of some codimension 1 stratum through the image of tj induces a uniformizer of Rj
(in the local coordinates chosen in Step 1, this local equation can be chosen to be zi0). It follows
that f 0 has the required properties.

Step 3. The morphism f 0 is smooth at '0j .tj /, where '0j W Tj ! X 0 is the lift of 'j .

Proof. Since the question is of geometric nature, we may assume that k D k. Since the
question is local, we may assume that f 0 is a toric morphism of smooth affine toric varieties.
By the classification of smooth affine toric varieties [43, Proposition, p. 29], one can choose
toric coordinates x1; : : : ; xr on X 0 and y1; : : : ; ys on Y 0 such that

X 0 D Spec.kŒx1; : : : ; xp; x˙1pC1; : : : ; x
˙1
r �/

and
Y 0 D Spec.kŒy1; : : : ; yq; y˙1qC1; : : : ; y

˙1
s �/;

and such that .f 0/�yb D
Q
a x

ma;b
a for some matrix M D .ma;b/1�a�r;1�b�s 2Mr;s.Z/.

After permuting y1; : : : ; yq , we may assume that the stratum D0 of Step 2 has equation
¹y1 D 0º. It follows that the valuation of . 0j /

�yb is equal to 1 if b D 1 and to 0 if b � 2. In
view of the formula .f 0/�yb D

Q
a x

ma;b
a , we deduce the existence of 1 � a0 � r such that

ma0;1 ¤ 0 and such that the valuation of .'0j /
�xa0 is non-zero, hence positive. As f 0 is domi-

nant by assumption, the matrixM has rank s. We can therefore choose a subset A � ¹1; : : : ; rº
of cardinality s containing a0 such that det.ma;b/a2A;1�b�s 2 Z is non-zero.

The Jacobian matrix of f 0 at .x1; : : : ; xr/ is given by .àybàxa / D .
ma;b �.f

0/�yb
xa

/. Its maxi-
mal minor associated with A is � WD

Q
1�b�s.f

0/�yb �
Q
a2A x

�1
a � det.ma;b/a2A;1�b�s . By

the above choices, the valuation of the non-zero element .'0j /
�� 2 Rj is non-positive, hence

zero. This shows that � is invertible at '0j .tj / so that f 0 is smooth at '0j .tj /.
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5.3. Proof of the fibration theorem.

Proof of Theorem 5.1. Choose proper regular models f WX! B and f 0 WX0 ! B ofX
and X 0 over B such that g extends to a morphism g W X! X0. By Theorem 3.1 and [1, Theo-
rem 1.1], we may assume that g underlies a toroidal morphism g W .U � X/! .U0 � X0/ of
snc toroidal embeddings and that X and X0 are projective.

As in Proposition 2.2, let B.R/ � K � � � B.C/, withK compact and G-stable and�
open and G-stable, let b1; : : : ; bm 2 K, let r � 0, and let u W �! X.C/ be a G-equivariant
holomorphic section of f .C/. Our goal is to construct a sequence sn W B ! X of sections
of f satisfying the conditions appearing in Proposition 2.2, i.e. such that the sn have the
same r-jets as u at the bi and sn.C/jK converges uniformly to ujK . By Proposition A.10 (ii),
we may assume, after shrinking � and perturbating u, that all the connected components of
u.�/ meet U.C/. Since K is compact, we may assume, after shrinking � again, that the set
† WD ¹x 2 � j u.x/ … U.C/º is finite. Applying Proposition 5.2 to the toroidal morphism g

and to the discrete valuation rings O�;x for x 2 † shows the existence of regular modifications
� W Z! X and � 0 W Z0 ! X0 and of a morphism h W Z! Z0 such that g ı � D � 0 ı h, such
that � (resp. � 0) is an isomorphism above U (resp. above U0) and such that the strict transform
v W �! Z.C/ of u has the property that h.C/ is submersive at v.x/ for all x 2 †. Since g
was already smooth along U, the latter property in fact holds for all x 2 �.

By Theorem 3.1, we may replace g W X! X0 and u with h W Z! Z0 and v and thus
assume that g.C/ is submersive along u.�/. We will not consider any toroidal structure on
g anymore. Let .X 0/0 � X 0 be a dense open subset such that the tight approximation prop-
erty holds for Xx D g�1.x/ for all x 2 .X 0/0.F /. Extend it to an open subset .X0/0 � X0.
By Proposition A.10 (ii), we may assume, after shrinking � and perturbating u, that all the
connected components of u.�/ meet g�1..X0/0/.C/. Define u0 WD g.C/ ı u W �! X0.C/.
By Proposition A.10 (iii), there exist a G-stable open neighborhood W of u0.�/ in X0.C/ and
aG-equivariant holomorphic mapw W W ! X.C/ such that g.C/ ı w D IdW andw ı u0 D u.
Let�0 � � be a G-stable open neighborhood ofK whose closureK 0 in� is compact. Apply-
ing the tight approximation property of f 0 yields a sequence s0n W B ! X0 of sections of f 0 with
the same r-jets as u0 at the bi such that s0n.C/jK0 converges uniformly to u0jK0 . Replacing �
with�0, we can ensure that s0n.C/.�/�W for n� 0. Define vn WD w ı s0n.C/j� W�! X.C/.
For n� 0, consider the commutative diagram

eYn

pn

((
//

gn
  

Yn
//

��

X

g

��

B
s0n // X0,

whose square is cartesian and where eYn ! Yn is a resolution of singularities that is an isomor-
phism above the regular locus of Yn. The map vn W �! X.C/ induces a map �! Yn.C/
whose strict transform evn W �! eYn.C/ is a G-equivariant holomorphic section of gn.C/
over �. Since we have ensured that no connected component of u.�/ avoids g�1..X0/0/.C/,
the morphism gn satisfies the tight approximation property (for n� 0) by our hypothesis
on .X 0/0 and by Theorem 3.1.

Applying the tight approximation property of gn yields a sequence tn;k W B ! eYn of
sections of gn with the same r-jets as evn at the bi such that tn;k.C/jK converges uniformly
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to evnjK . Then, if k.n/ is a well-chosen sequence of integers, the sections sn WD pn ı tn;k.n/
off have the same r-jets as u at the bi , and the sequence sn.C/jK converges uniformly to ujK .
The proof is now complete.

5.4. Applications. Using Theorem 5.1, Example 4.5 and Corollary 4.4, we get the
following result:

Proposition 5.3. A smooth variety over F that is birational to an iterated fibration into
quadrics satisfies the tight approximation property.

Example 5.4. For n � 3, a smooth cubic hypersurface X � PnF containing a line
L � X over F satisfies the tight approximation property. Indeed, projecting from L induces
a rational conic bundle structure XÜ Pn�2F , and Proposition 5.3 applies.

In particular, if X is a smooth cubic hypersurface of dimension � 2 over R, the variety
XF satisfies the tight approximation property (as it always contains a line defined over R, see
[8, Proof of Theorem 9.23]). This yields a positive answer to Question 1.1 for these varieties.

We do not know whether all smooth cubic surfaces over F satisfy the tight approximation
property, even if B is a complex curve. See Theorem 8.10 for a weaker property that smooth
cubic hypersurfaces of dimension � 2 over F do enjoy.

Example 5.5. Arguing exactly as in [56, Section 1], but using Theorem 5.1 instead
of [23, Proposition 2.2], shows that if B is a complex curve and � W N! N is defined as
in [56, p. 938], then smooth hypersurfaces of degree d in PnF with n � �.d/ satisfy the
tight approximation property. This applies in particular to smooth cubic hypersurfaces of
dimension � 5. We note that the weak approximation property has been shown to hold for
smooth cubic hypersurfaces of dimension � 2 over function fields of complex curves by Tian
[97, Theorem 1.2] (the crucial case being that of cubic surfaces).

Example 5.6. For n � 4, a smooth complete intersection of two quadrics X � PnF that
has a rational point x 2 X.F / satisfies the tight approximation property. Indeed, the pencil
of hyperplane sections of X that contain x and are singular at x induces a rational quadric
bundle structure XÜ P1F (see [26, Theorem 3.2]), and one can apply Proposition 5.3. The
hypothesis that X has a rational point is always satisfied if B.R/ D ¿. In general, this results
from [6, Theorem 0.13] applied to a two-dimensional hyperplane section of X ; when n � 6,
one can also split off three hyperbolic planes from a quadratic form vanishing on X to find
a conic, and hence an F -point, on X (see [104, Satz 22]).

If n � 4 and X � PnR is a smooth complete intersection of two quadrics over R, the
above argument applied to XF yields a positive answer to Question 1.1 for the variety X .
Indeed, X.F / ¤ ¿ if X.R/ ¤ ¿ (obvious) or if B.R/ D ¿ (as there exist morphisms from B

to the anisotropic real conic � by [104, Satz 22] and from � to X by [27, discussion below
Teorema VI, p. 60], see also [21]).

Theorem 5.1 also has the following consequence:

Proposition 5.7. If two smooth varieties X and X 0 over F satisfy the tight approxi-
mation property, then so does their product X �X 0.
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6. The descent method

The goal of this section is to prove Theorem 6.1, which is a descent theorem for the
tight approximation property. In Section 7, we shall use it in combination with the fibration
technique of Section 5 to study homogeneous spaces of linear groups.

Theorem 6.1. Let X be a smooth variety over F , and let S be a linear algebraic
group over F . Let Q! X be a left S -torsor over X . Assume that any twist of Q by
a right S -torsor over F satisfies the tight approximation property. Then X satisfies the tight
approximation property.

In Theorem 6.1, the algebraic group S is not assumed to be connected.
We refer to Section 6.1 for generalities about torsors. Proposition 6.3, proven in Sec-

tion 6.2, is the heart of the proof of Theorem 6.1 given in Section 6.3.

6.1. Torsors. Let S be a smooth affine group scheme over a scheme X . The set
of isomorphism classes of right S -torsors on X (in the sense of [96, Definition 2.2.1]) is
in bijection with the étale Čech cohomology pointed set LH 1

ét.X; S/ (see [78, Chapter III,
Proposition 4.6 and Remark 4.8 (a)]). When X D Spec.k/ is the spectrum of a field k, this
pointed set can be identified with the non-abelian Galois cohomology pointed set H 1.k; S/

defined in [90, I 5.1].
If Y is an affine X -scheme equipped with a left S -action and P is a right S -torsor on X ,

we can define the twist PY of Y by P to be the quotient of P �X Y by the diagonal action

s � .p; y/ D .p � s�1; s � y/

of S (see [96, Lemma 2.2.3]). Letting S act on itself by conjugation yields the inner form PS

of S (see [96, Example 1, p. 10]). The right S -torsor P has a natural and compatible structure
of left PS -torsor.

If Q is a left S -torsor on X , we let Q�1 be the right S -torsor on X that is isomorphic
to Q as an X -scheme, with action given by

q �Q�1 s WD s
�1
�Q q;

and we call it the inverse torsor of Q. Then Q�1 (resp. Q) is also naturally a left (resp.
right) Q�1S -torsor. It follows that the composition P ıQ WD PQ is a right Q�1S -torsor and
a left PS -torsor and that Q�1 ıQ is a trivial Q�1S -torsor (see [96, Example 2, p. 10] for
more details).

Let k be a field, let S � H be a closed immersion of smooth affine group schemes over
X D Spec.k/, and let S act on H by left multiplication. This action admits a quotient scheme
H ! SnH endowing H with the structure of a left S -torsor over SnH (see [35, Exposé VIA,
Théorème 3.3.2]). If P is a right S -torsor over k, one can consider the twist PH of H by P .
Right multiplication of H on PH endows PH with the structure of a right H -torsor over k.

We will make use of topological analogues of the above notions. A finite group over
a topological space T is a finite covering q W S ! T of T equipped with a continuous section
and with a continuous map S �T S ! S endowing the fibers of q with a group structure.
A right S -torsor p WP ! T is a surjective finite covering of T endowed with a continuous
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map P �T S !P inducing a simply transitive right action of the fibers of q on the fibers
of p. If T is endowed with an action of G, we define G-equivariant finite groups S over T
and G-equivariant right S -torsors P by requiring that S and P be endowed with actions of
G for which all the above maps are G-equivariant.

6.2. Torsors over real function fields. An open subset � � B.C/ is a domain with
C1 boundary if it is the interior of a closed C1 submanifold with boundary, say �, of B.C/.
It has finitely many connected components by compactness of B.C/. We denote its boundary
by à� D � n�.

Lemma 6.2. Let K � B.C/ be a G-stable compact subset, and let � be a G-stable
open neighborhood of K in B.C/. Then there exists a G-stable domain with C1 boundary
�0 � B.C/ such that K � �0 and �0 � �.

Proof. Using partitions of unity, we find a C1 map f W B.C/! Œ0; 1� that is equal to 0
on K and to 1 on B.C/ n�. Replacing f with x 7! .f .x/C f .�.x///=2, we may assume
that f isG-invariant. By Sard’s theorem, the map f has a regular value " 2 .0; 1/, and one can
choose �0 D f �1.Œ0; "//.

We refer to Sections A.5–A.6 for a study of the ring M .�/G ofG-equivariant meromor-
phic functions on a G-equivariant complex manifold� of dimension 1. Letting .�i /i2I be the
G-orbits of connected components of�, one has M .�/G D

Q
i2I M .�i /

G . If� has finitely
many connected components and if S is a linear algebraic group over M .�/G , the pointed
set H 1.M .�/G ; S/ is the product

Q
i2I H

1.M .�i /
G ; S/.

The next proposition was inspired by [23, Théorème 4.2].

Proposition 6.3. Let � � B.C/ be a G-stable domain with C1 boundary and let
K � � be a G-stable compact subset containing B.R/. Let S be a linear algebraic group
over F , and let ˛ 2 H 1.M .�/G ; S/. Then there exists a G-stable domain with C1 bound-
ary �0 such that K � �0 � � and such that ˛j�0 2 H 1.M .�0/G ; S/ is in the image of the
restriction map H 1.F; S/! H 1.M .�0/G ; S/.

Lemma 6.4. Proposition 6.3 holds if S is finite.

Proof. The algebraic group S extends to a finite étale group scheme S over a dense
open subset B0 � B . Then S WD S.C/ is a G-equivariant finite group over B0.C/ in the
sense of Section 6.1. Let P be a right S -torsor over M .�/G of class ˛. By Proposition A.5, P
corresponds to a G-equivariant finite ramified covering p WP ! � of � such that, denoting
by R � � the ramification locus of that covering p, PjB0.C/\.�nR/ is a G-equivariant right
S jB0.C/\.�nR/-torsor.

Since R is a discrete subset of �, we may assume, after shrinking � using Lemma 6.2,
that R is finite and that pjB0.C/\.�nR/ extends to a G-equivariant right S jB0.C/\.�nR/-torsor

p WP ! B0.C/ \ .� nR/:

Shrinking B0 ensures B0.C/ \R D ¿. Since B.R/ \ à� D ¿, we may assume after further
shrinkingB0 that the connected components ofB0.C/ \ à� are contractible and notG-stable.
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It follows that the G-equivariant right S jB0.C/\à�-torsor pjB0.C/\à� can be G-equivariantly
trivialized. Gluing p with the trivial G-equivariant right S jB0.C/n.B0.C/\�/-torsor using such
trivializations yields a G-equivariant right S -torsor p0 WP 0 ! B0.C/ such that p0jB0.C/\�
is isomorphic to p.

By the G-equivariant analogue of Riemann’s existence theorem (see Section A.2), P 0 is
the analytification of a right S-torsor P0 over B0. The class in H 1.F; S/ of the generic fiber
of P0 has image ˛ in H 1.M .�/G ; S/, proving the lemma.

To prove Proposition 6.3 in general, we will use deep results of Scheiderer [87]. We
first introduce some notation. Let Sper.k/ be the real spectrum of a field k (denoted by
�k in [87] and by Xk in [74]). It is the set of orderings of the field k, endowed with the
Harrison topology [74, Chapter VIII, Section 6]. With an ordering � 2 Sper.k/ is associated
a real closure k� of k. If S is an algebraic group over the field k, Scheiderer defines
a sheaf of pointed sets H 1.S/ on Sper.k/ whose stalk at � is H 1.k� ; S/, and a canonical
map hS W H 1.k; S/! H 0.Sper.k/;H 1.S// whose stalks are the restriction maps in Galois
cohomology [87, Definition 2.8, Proposition 2.9].

These definitions extend at once to finite products of fields, as the real spectrum of such
a product is the disjoint union of the real spectra of the factors.

Proof of Proposition 6.3. Denote by S0 be the connected component of the identity of
S and consider the commutative diagram of cohomology pointed sets

(6.1) H 1.F; S/

��

// H 1.F; S=S0/

��

H 1.M .�/G ; S/ // H 1.M .�/G ; S=S0/,

whose vertical arrows are the restriction maps, and where we still denote by S and S0 the
extensions of scalars of S and S0 from F to M .�/G .

Applying Lemma 6.4 to S=S0, we may assume, after shrinking the subset �, that there
exists a class ˇ 2 H 1.F; S=S0/ such that the images of ˛ and ˇ in H 1.M .�/G ; S=S0/ in
diagram (6.1) coincide. Since B.R/ � � is compact, Proposition A.9 shows that the natural
map ' W Sper.M .�/G/! Sper.F / is bijective. Since ' is moreover continuous and closed
[74, Corollary p. 272], it is a homeomorphism. By [87, Proposition 1.2], the natural map
'�H 1.S/!H 1.S/ is an isomorphism at the level of stalks, hence an isomorphism of
sheaves on Sper.M .�/G/. We deduce an isomorphism of pointed sets

(6.2) '� W H 0.Sper.F /;H 1.S//
�
�! H 0.Sper.M .�/G/;H 1.S//:

Let  2 H 0.Sper.F /;H 1.S// be the inverse image of hS .˛/ by (6.2). Using [87, Corol-
lary 6.6], choose a class ı 2 H 1.F; S/ inducing ˇ 2 H 1.F; S=S0/ in (6.1) and such that
hS .ı/ D  . Let " 2 H 1.M .�/G ; S/ be the class induced by ı in (6.1).

Let P be a right S -torsor over F of class ı. Letting S act by conjugation on the exact
sequence 1! S0 ! S ! S=S0 ! 1 yields a short exact sequence

1! PS
0
! PS ! P .S=S

0/! 1:

We consider the compatible bijections

�P W H
1.F;PS/! H 1.F; S/ and �P W H

1.M .�/G ;PS/! H 1.M .�/G ; S/
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with �P .0/ D ı and �P .0/ D " described in [90, I 5.3, Proposition 35]. Since ˛ and " have the
same image in H 1.M .�/G ; S=S0/ in diagram (6.1), it follows from [90, I 5.4] that ��1P .˛/

has the same image as ��1P ."/ D 0 in H 1.M .�/G ;P .S=S
0//. We deduce from the natural

commutative diagram of pointed sets with exact rows

(6.3) H 1.F;PS
0/ //

��

H 1.F;PS/

��

// H 1.F;P .S=S
0//

��

H 1.M .�/G ;PS
0/ // H 1.M .�/G ;PS/ // H 1.M .�/G ;P .S=S

0//

the existence of � 2 H 1.M .�/G ;PS
0/ lifting ��1P .˛/. In the commutative diagram

(6.4) H 1.F;PS
0/

��

h
PS

0
// H 0.Sper.F /;H 1.PS

0//

��

H 1.M .�/G ;PS
0/

h
PS

0
// H 0.Sper.M .�/G/;H 1.PS

0//,

the horizontal maps are bijective by [87, Theorem 4.1] and Corollary A.7, and the right vertical
map is bijective since ' is a homeomorphism and the natural map '�H 1.PS

0/!H 1.PS
0/

is an isomorphism by [87, Proposition 1.2]. The left vertical arrow of (6.4), hence of (6.3), is
thus bijective. Let � be the image in H 1.F;PS/ of the inverse image of � by this arrow. The
commutativity of (6.3) shows that � 2 H 1.F;PS/ has image ��1P .˛/ in H 1.M .�/G ;PS/.
Consequently, the class �P .�/ 2 H 1.F; S/ has image ˛ in H 1.M .�/G ; S/, which concludes
the proof.

6.3. Descent along torsors. We now reach the goal of this section.

Proof of Theorem 6.1. Let f W X! B be a proper regular model of X over B . Extend
S to a smooth affine group scheme S over a dense open subsetB0 � B . Let X0 � f �1.B0/ be
a dense open subset over whichQ extends to a left SX0-torsor Q. Let ŒQ�1� 2 LH 1

ét.X
0;SX0/

be the class of the inverse torsor Q�1 (see Section 6.1).
Let K, �, bi , r and u be as in Proposition 2.2. Shrinking � and perturbating u, we

may assume that all the connected components of u.�/ meet X0 by Proposition A.10 (ii)
and that � is a domain with C1 boundary by Lemma 6.2. Let ˛ be the image of ŒQ�1� by
the restriction map LH 1

ét.X
0;SX0/! H 1.M .�/G ; S/ induced by u. Proposition 6.3 ensures,

after further shrinking �, that ˛ is the image of a class ˇ 2 H 1.F; S/ by the restriction map
H 1.F; S/! H 1.M .�/G ; S/.

Let P be a right S -torsor over F of class ˇ. After replacing B0 with a dense open
U � B0 and X0 with X0 \ f �1.U /, we extend P to a right S-torsor P over B0. Consider
the twist PX0 ıQ of Q by PX0 as in Section 6.1: it is a right Q�1.SX0/-torsor over X0. By
construction, its class is in the kernel of the restriction map

LH 1
ét.X

0;Q�1.SX0//! H 1.M .�/G ; ˛S/

induced by u. This exactly means that there exists a G-equivariant meromorphic map

v W �Ü .PX0 ıQ/.C/

lifting u.
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Let g W Y! B be a proper flat morphism such that Y is regular and contains PX0 ıQ

as a dense open subset, and such that there exists h W Y! X with g D f ı h. By the valuative
criterion of properness applied to the .O�;x/x2� as in Section 1.1, v extends to aG-equivariant
holomorphic map v W �! Y.C/ lifting u. The tight approximation property of g yields
a sequence tn W B ! Y of sections of g with the same r-jets as v at the bi and such that
tn.C/jK converges uniformly to vjK . The sections sn WD h ı tn of f show that f has the tight
approximation property.

7. Homogeneous spaces

We now provide new examples of varieties satisfying the tight approximation property:
homogeneous spaces of connected linear algebraic groups over F .

7.1. Tight approximation for algebraic groups. We start with the case of connected
linear algebraic groups over F .

Proposition 7.1. Tori over F satisfy the tight approximation property.

Proof. Let H be a torus over F . Writing the cocharacter lattice of H as a quotient
of a permutation Gal.F =F /-module yields an exact sequence 1! S ! Q! H ! 1 of
algebraic groups over F , where Q is a quasi-trivial torus [24, p. 187], that is, a product of
Weil restriction of scalars of Gm.

The torus Q is a left S -torsor over H . Let Q0 be a twist of Q by a right S -torsor over F .
The variety Q0 is naturally a right Q-torsor over F (see Section 6.1). Since H 1.F;Q/ D 0 by
Shapiro’s lemma and Hilbert’s Theorem 90, Q0 is isomorphic to Q. Since Q is F -rational, as
is any quasi-trivial torus [24, p. 188], we deduce from Corollary 4.4 that Q0 satisfies the tight
approximation property.

Theorem 6.1 now shows that H satisfies the tight approximation property.

Proposition 7.2. Connected linear algebraic groups over F satisfy the tight approxi-
mation property.

Proof. By [14, Corollaries 15.5 (ii) and 15.8], a connected linear algebraic group over F
is birational to the product of its unipotent radical, which is F -rational, and of a connected
reductive group. In view of Proposition 5.7 and Corollary 4.4, we may therefore assume our
group to be reductive. It follows from [36, Exposé XIII, Théorème 3.1] and [36, Exposé XIV,
Théorème 6.1] that any connected reductive F -group is birational to a torus over an F -rational
variety. By Theorem 5.1 and Corollary 4.4, we are reduced to the case of a torus, dealt with in
Proposition 7.1.

Remark 7.3. Proposition 7.2 is new even for an algebraic group defined over R.
Platonov [83, p. 169] asks whether all connected linear algebraic groups over R are R-rational.
It is not even known whether they are always stably rational, which would allow one to
deduce Proposition 7.2 from Corollary 4.4. (See however [19, Theorem 2] for a partial result
in this direction.)
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For contrast, let us recall that homogeneous spaces of linear algebraic groups need not be
stably rational, even over C (see [85] and [25, Corollary 3.11]) and that over F , even tori are
not stably rational in general (see, e.g., [102, Section 4.10]).

7.2. Tight approximation for homogeneous spaces. We now come to the main theo-
rem of this section:

Theorem 7.4. Homogeneous spaces of connected linear algebraic groups over F
satisfy the tight approximation property.

Proof. Let f W X! B be a proper regular model of such a (right) homogeneous
space X . In order to prove the tight approximation property, we may assume that there exists
a C1 section u W B.R/! X.R/. It follows that X� has an Fb-point for every b 2 B.R/, hence
that so does X , by the inverse function theorem. The description of the orderings of F (apply
Proposition A.9 with Z D B.C/) shows that X has a point in every real closure of F . By
Scheiderer’s Hasse principle [87, Corollary 6.2], one therefore has X.F / ¤ ¿.

If X is a right torsor under a connected linear algebraic group over F , then it is
isomorphic to this algebraic group since X.F / ¤ ¿, and Proposition 7.2 applies.

In general, we have X D SnH for a connected linear algebraic group H over F and an
algebraic subgroup S � H . We consider the quotient map g W H ! SnH (see Section 6.1).
The variety H is a left S -torsor over SnH . Let PH ! SnH be a twist of this S -torsor by
a right S -torsor P over F . The variety PH is a right H -torsor over F (see Section 6.1),
hence satisfies the tight approximation property. Theorem 6.1 now shows that X satisfies the
tight approximation property.

In practice, one may combine Theorem 7.4 with Theorem 5.1 to show the tight approxi-
mation property for smooth varieties over F that are, birationally, iterated fibrations into ho-
mogeneous spaces of connected linear algebraic groups. Another consequence of Theorem 7.4
is the following:

Corollary 7.5. Let H be a (not necessarily connected) reductive group over F acting
linearly on AdF with trivial generic geometric stabilizer. Then the smooth locus of AdF =H
satisfies the tight approximation property.

Proof. LetH � GLN be a closed embedding of algebraic groups. In view of [25, Corol-
lary 3.11], the smooth locus of AdF =H is stably birational to GLN =H . It thus satisfies the tight
approximation property by Theorem 7.4 and Proposition 4.3.

7.3. No reciprocity obstruction. The reciprocity obstruction (see Section 2.4) causes
the weak approximation property to fail for some smooth proper rationally connected vari-
eties over F , even for some with an F -point. The next proposition, which we extract from
Scheiderer’s work [87], shows, in view of Proposition 2.11, that such a phenomenon cannot
occur for smooth compactifications of homogeneous spaces of connected linear algebraic
groups over F . For its later use in Section 7.4, we state it over an arbitrary real closed field R;
we recall that when R D R, the connectedness of a semi-algebraic space over R is equivalent
to the connectedness of the underlying set for the usual topology (see [10, Theorem 2.4.5]).
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Proposition 7.6. Let X be a homogeneous space of a connected linear algebraic group
over a real closed fieldR and let Y be a smooth compactification ofX . Then the semi-algebraic
space Y.R/ is connected.

Proof. We view X.R/, Y.R/ and P1.R/ as semi-algebraic spaces over R. Since Y
is smooth and connected, all the connected components of Y.R/ are Zariski dense (by
[10, Proposition 3.3.10 and Corollary 2.9.8]), hence meetX.R/. It thus suffices to show that any
two points x1; x2 2 X.R/ belong to the same connected component of Y.R/. For i 2 ¹1; 2º,
the morphism Spec.R.t//! XR.t/ with value xi induces a map Sper.R.t//! .XR.t//r at the
level of real spectra. This map induces, in turn, a section �i 2 H 0.Sper.R.t//;CXR.t//, where
we use the notation of [87, Theorem and Definition 2.1] for k D R.t/. Consider the partition
Sper.R.t// D Z1 [Z2 where Z1 (resp. Z2) is the open subset of orderings for which t > 0
(resp. t < 0). Let � 2 H 0.Sper.R.t//;CXR.t// be the section that coincides with �i on Zi . By
[87, Theorem 8.15], the section � is induced by some x 2 X.R.t// � Y.R.t//. The point x
gives rise to a morphism f W P1R ! Y by the valuative criterion of properness. By construction,
f .t/ belongs to the same connected component of Y.R/ as x1 (resp. as x2) if t > 0 (resp. if
t < 0). Since P1.R/ is connected, x1 and x2 lie in the same connected component of Y.R/.

Combining Theorem 7.4, Corollary 2.10, Proposition 2.11 and Proposition 7.6 yields the
following result concerning the weak approximation property itself.

Theorem 7.7. Any homogeneous space of a connected linear algebraic group over F
satisfies the weak approximation property.

Theorem 7.7 solves a conjecture of Colliot-Thélène [22, p. 151], who had dealt with the
case of connected linear algebraic groups themselves [22, Théorème 2.1]. This conjecture had
previously been shown to hold in the case where the stabilizers of the homogeneous space are
connected, by Scheiderer [87, Corollary 6.2 and Theorem 8.9], and in the case where B is
a complex curve, by Colliot-Thélène and Gille [23, Théorème 4.3].

7.4. Real closed ground fields. Unlike the tight approximation property, the weak
approximation property makes sense for varieties defined over the function field of a curve
over an arbitrary real closed field. We now adapt our arguments to establish Colliot-Thélène’s
conjecture over such function fields (Theorem 7.17 below).

One of the ingredients in the proof of Theorem 7.4 we gave was Riemann’s existence
theorem, a statement about complex algebraic curves, first used in this context in the work [23]
of Colliot-Thélène and Gille. Here we need a version of Riemann’s existence theorem for
algebraic curves defined over the algebraic closure of an arbitrary real closed field. Such
a version was originally proved by Huber and was reproved, more recently, by Peterzil and
Starchenko. This is discussed in Section 7.4.1. In Section 7.4.2 we establish Proposition 7.13,
which will serve as a substitute for Proposition 6.3. In Section 7.4.3 we apply Proposition 7.13
to obtain a general descent theorem for the conjunction of the weak approximation property and
of the so-called strong Hasse principle (Theorem 7.15). Finally, we deduce weak approximation
for arbitrary homogeneous spaces from Scheiderer’s work, by descent, in Section 7.4.4.

From now on and until the end of Section 7.4, we fix a real closed field R and a smooth
projective connected curve B over R. We denote by F the function field of B and by Fb
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the completion of F with respect to a closed point b 2 B . Finally, we set C D R.
p
�1/ and

G D Gal.C=R/.

7.4.1. Riemann’s existence theorem over algebraically closed fields of characteris-
tic 0. By definition, a finite semi-algebraic covering of a locally complete semi-algebraic
space T over R is a locally complete semi-algebraic space S equipped with a semi-algebraic
map p W S ! T with finite fibers, subject to the following condition: T can be covered by
finitely many open semi-algebraic subsets U such that p�1.U / is semi-algebraically isomor-
phic, over U , to U �E for a finite set E.

If V andW are (algebraic) varieties over C , we consider V.C /,W.C/ as semi-algebraic
spaces over R. We note that any finite étale covering W ! V functorially induces a finite
semi-algebraic coveringW.C/! V.C / (see [32, Example 5.5]). Riemann’s existence theorem
over C can now be stated as follows.

Theorem 7.8 (Huber [60, Satz 12.12], [61, Theorem 6.1]). Let V be a variety over C .
The functor .W ! V / 7! .W.C /! V.C // from the category of finite étale coverings of V to
the category of finite semi-algebraic coverings of V.C / is an equivalence of categories.

Remarks 7.9. (i) Given a connected locally complete semi-algebraic space T over R
and t 2 T , Delfs and Knebusch have defined the semi-algebraic fundamental group �1.T; t/
and have shown that the “fiber at t” functor induces an equivalence from the category of finite
semi-algebraic coverings of T to the category of finite sets endowed with an action of �1.T; t/
(see [32, Theorems 5.9, 5.10, 5.11]). Thus, Theorem 7.8 can be reformulated, when V is
connected, by saying that for any v 2 V.C /, the étale fundamental group �ét

1 .V; v/ is naturally
isomorphic to the profinite completion of the (finitely generated) semi-algebraic fundamental
group �1.V .C /; v/.

(ii) A proof of Theorem 7.8 (in a more general o-minimal setting) can also be deduced
from the work of Peterzil and Starchenko [82].

The precise statements that we shall need are Corollary 7.11 and Remark 7.12 below.
Before stating them we introduce a definition.

Definition 7.10. Given a variety V over R, a finite étale group scheme S! V and
a semi-algebraic subset T � V.C / stable under G, a semi-algebraic G-equivariant right
S.C /-torsor over T is by definition a finite semi-algebraic covering p W S ! T endowed, on
the one hand, with a semi-algebraic mapm W S �V.C/ S.C /! S inducing a simply transitive
right action of the set-theoretic fibers of S.C /! V.C / above T on the set-theoretic fibers
of p, and, on the other hand, with a semi-algebraic action of G on S such that p and m
are G-equivariant.

Corollary 7.11. Let S be a finite étale group scheme over a variety V over R. The
functor W 7! W.C/ from the category of right S-torsors over V to the category of semi-
algebraic G-equivariant right S.C /-torsors over V.C / is an equivalence of categories.

Proof. Apply Theorem 7.8 to VC ; note that the two categories that appear in its
statement carry an action of G; on each side of the equivalence, pass to the category of torsor
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objects under a fixed group object, all endowed with a G-equivariant structure (i.e. with an
isomorphism between the object in question and its conjugate, such that the composition of the
isomorphism with its conjugate is the identity).

Remark 7.12. By the same argument, the equivalence of categories of Remark 7.9 (i)
can be upgraded as follows: given a variety V over R, a finite étale group scheme S over V ,
a connected semi-algebraic subset T � V.C / stable under G and a point t 2 T fixed by G, if
we denote by St the fiber of S.C /! V.C / above t , the “fiber at t” functor induces an equiv-
alence from the category of semi-algebraic G-equivariant right S.C /-torsors over T to the
category of finite .St Ì �1.T; t//-sets on which the action of St is simply transitive, endowed
with a G-equivariant structure; that is, to the category of finite ..St Ì �1.T; t// ÌG/-sets on
which the action of St is simply transitive.

7.4.2. Existence of torsors. We now establish Proposition 7.13, the key result in the
proof of weak approximation for homogeneous spaces of connected linear algebraic groups
over F . The maps hS that appear below are those defined by Scheiderer in [87, Proposi-
tion 2.9 (c)].

Proposition 7.13 plays the same role, over real closed fields, as Proposition 6.3 did over
the field of real numbers. Over real closed fields, we need to use semi-algebraic substitutes
for the fields of meromorphic functions appearing in Proposition 6.3. This forces technicalities
both into the proof and into the statement of Proposition 7.13.

Proposition 7.13. Let S be a linear algebraic group over F . Let † � B be a finite
closed subset. The natural commutative square

(7.1) H 1.F; S/ //

hS
��

Y
b2†

H 1.Fb; S/

hS
��

H 0.Sper.F /;H 1.S// //
Y
b2†

H 0.Sper.Fb/;H
1.S//

induces a surjection of the set H 1.F; S/ onto the fiber product of
Q
b2†H

1.Fb; S/ and
H 0.Sper.F /;H 1.S// over

Q
b2†H

0.Sper.Fb/;H 1.S//.

When S is connected, Proposition 7.13 contains nothing new. Indeed, in this case, the
two maps hS are bijections according to Scheiderer [87, Theorem 4.1].

Proof. Let us fix ˛0 2 H 0.Sper.F /;H 1.S// and .˛b/b2† 2
Q
b2†H

1.Fb; S/ having
the same image in

Q
b2†H

0.Sper.Fb/;H 1.S// and prove that there exists an element
of H 1.F; S/ which induces both ˛0 and .˛b/b2†.

Let us first reduce ourselves to the case of a finite algebraic group S .
To this end, let us denote by S0 � S the connected component of the identity and

by ˇ0 2 H 0.Sper.F /;H 1.S=S0// and .ˇb/b2† 2
Q
b2†H

1.Fb; S=S
0/ the images of ˛0

and .˛b/b2†. Assuming that the proposition holds for finite algebraic groups, there exists
an element of H 1.F; S=S0/ which induces both ˇ0 and .ˇb/b2†. According to [87, Corol-
lary 6.6], this element can be lifted to an element ı 2 H 1.F; S/ such that hS .ı/ D ˛0. Thus ı
simultaneously lifts ˛0 and .ˇb/b2†.



Benoist and Wittenberg, The tight approximation property 179

Let P be a right S -torsor over F whose isomorphism class is ı. For any field L

containing F and any S 0 2 ¹S; S=S0º, if PS 0 denotes the algebraic group over F obtained
by twisting S 0 by P through the action of S on S 0 by conjugation, twisting right torsors by P
produces bijections

�P W H
1.L;PS

0/
�
�! H 1.L; S 0/

and
� 0P W H

0.Sper.L/;H 1.PS
0//
�
�! H 0.Sper.L/;H 1.S 0//

such that �P .0/ and � 0P .0/ coincide with the images of ı and of hS .ı/, respectively (see
[90, Chapter I, Section 5.3, Proposition 35]). Thus, after replacing S with PS , the classes
˛0, ˇ0 with � 0�1P .˛0/, � 0�1P .ˇ0/, and the classes ˛b , ˇb , ı with ��1P .˛b/, ��1P .ˇb/, ��1P .ı/,
respectively, we may assume that ı D 0, and hence that ˛0 D ˇ0 D ˇb D 0 for all b 2 †.

For each b 2 †, as ˇb D 0, there exists ˛0
b
2 H 1.Fb; S

0/ which induces ˛b . Let us fix
such ˛0

b
. As ˛0 D 0, the hypothesis that ˛b and ˛0 are compatible implies that hS .˛b/ D 0. In

view of the commutative diagram of pointed sets with exact columns

(7.2) H 0.Sper.F /;H 0.S=S0//

��

//
Y
b2†

H 0.Sper.Fb/;H
0.S=S0//

��

H 0.Sper.F /;H 1.S0//

��

//
Y
b2†

H 0.Sper.Fb/;H
1.S0//

��

H 0.Sper.F /;H 1.S// //
Y
b2†

H 0.Sper.Fb/;H
1.S//,

whose vertical arrows are induced by the exact sequence of sheaves of pointed sets

H 0.S=S0/!H 1.S0/!H 1.S/

(see [90, Chapter I, Section 5.3, Proposition 36]) on the boolean spaces Sper.F / and Sper.Fb/
(see [87, (C.2)]), it follows that .hS0.˛

0
b
//b2† belongs to the image of the top right-hand

side vertical arrow of (7.2). On the other hand, the top horizontal arrow of (7.2) is surjective
since

`
b2† Sper.Fb/ is a finite subset of the boolean space Sper.F / (see [87]). Therefore

.hS0.˛
0
b
//b2† comes from an element of the kernel of the bottom left-hand side vertical arrow

of (7.2). By a theorem of Scheiderer [87, Theorem 4.1], the maps

hS0 W H
1.F; S0/! H 0.Sper.F /;H 1.S0//

and
hS0 W H

1.Fb; S
0/! H 0.Sper.Fb/;H

1.S0//

for b 2 † are bijective. We deduce that .˛0
b
/b2† comes from an element of H 1.F; S0/ whose

image � in H 1.F; S/ satisfies hS .�/ D 0. Thus � induces both ˛0 and .˛b/b2†, as desired.
We can therefore assume that the algebraic group S is finite. Let us extend S to a finite

étale group scheme S over a dense open subset B0 � B .
As the sheaf H 1.S/ on the compact space Sper.F / is locally constant (see [87, Theo-

rem 2.13]), we may cover Sper.F / with finitely many constructible open subsets on which the
sheaf H 1.S/ and the global section ˛0 are constant. After shrinking B0, we may therefore
assume that H 1.S/ and ˛0 are constant on the open subsets of Sper.F / given by the con-
nected components of the semi-algebraic space B0.R/. After further shrinking B0, we may
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assume that B0 misses at least two points of each connected component of the semi-algebraic
space B.R/. Finally, in order to prove the proposition, we may enlarge†, as [87, Theorem 5.1]
guarantees the existence of suitable ˛b for the new points b. In particular, by enlarging † and
shrinking B0, we may assume that B0 D B n†.

Let F h
b

denote the fraction field of the henselization of the local ring OB;b . As the inclu-
sion F h

b
� Fb induces an isomorphism between the absolute Galois groups of these fields,

the pull-back map H 1.F h
b
; S/! H 1.Fb; S/ is a bijection. Writing the algebraic extension

F h
b
=F as the union of its finite subextensions, we thus find, for each b 2 †, a smooth

connected curve B 0
b
, an étale map �b W B

0
b
! B , an F -linear embedding R.B 0

b
/ ,! F h

b
,

a rational point �b of the fiber ��1
b
.b/ and a class ˛0

b
2 LH 1

ét.B
0
b
n ¹�bº;S/ whose image by

the composition of the pull-back maps

LH 1
ét.B

0
b n ¹�bº;S/! H 1.R.B 0b/; S/! H 1.F hb ; S/! H 1.Fb; S/

coincides with ˛b .
For b 2 †, let us view b and �b as subsets of B.C/ and of B 0

b
.C / of cardinality 1 or 2

(depending on whether b is a rational point of B or a closed point of degree 2). The semi-
algebraic map �b.C / W B 0b.C /! B.C/ induces an isomorphism from a semi-algebraic open
neighborhood of �b in B 0

b
.C / to a semi-algebraic open neighborhood �b of b in B.C/ (see

[30, Theorem 6.9], [32, Example 5.1]). After shrinking the �b , we may assume that �b is
stable under G for each b 2 † and that the �b for b 2 † are pairwise disjoint.

Applying the triangulation theorem of Delfs and Knebusch [31, Theorem 2.1] to the
quotient semi-algebraic space B.C/=G (see [18, Corollary 1.6]), we find a G-equivariant
triangulation of the semi-algebraic space B.C/ in which B0.C /, the points of †, the �b
for b 2 † and the connected components of B0.R/ are unions of simplices. For b 2 †, the
star neighborhood of b (see [33, p. 22] for the definition we use) is then a semi-algebraic
open subset of B.C/ contained in �b and stable under G. After shrinking �b , we may thus
assume that �b coincides with the star neighborhood of b for each b 2 †; in particular, the
connected components of �b are now semi-algebraically contractible. For each connected
component e ofB0.R/, let�e denote the star neighborhood of e. This is a semi-algebraic open
subset of B.C/ that is stable under G. After replacing the triangulation with its barycentric
subdivision (and shrinking �b accordingly, so that it still denotes the star neighborhood of b),
we may assume that the triangulation is “good on e”, in the sense of [31, Definition 8], for each
e 2 �0.B

0.R// (see [31, Proposition 2.4]), that the�e for e 2 �0.B0.R// are pairwise disjoint
and are semi-algebraically contractible (see [33, Chapter III, Proposition 1.6]), that the �b
for b 2 † \ .B.C / n B.R// have two connected components and that for any e 2 �0.B0.R//
and any b 2 †, the intersection �b \�e is semi-algebraically contractible if b is one of the
two points of † that belong to the closure of e and is empty otherwise (see [33, Chapter II,
Lemma 9.7]). Let �† D

S
b2†�b and �0 D

S
e2�0.B0.R//

�e.
The connected components of� D �† [�0 can now be described as follows: the pairs

of components that are permuted by G are the star neighborhoods of the non-rational points
of † and the components that are fixed by G are the star neighborhoods of the connected
components of B.R/. After replacing once more the triangulation with its barycentric sub-
division (which in effect makes these star neighborhoods smaller), we may assume that the
semi-algebraic closures in B.C/ of the connected components of � are pairwise disjoint. The
semi-algebraic boundary à� D � n� of � then coincides with the semi-algebraic boundary
of B.C/ n�.
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For each b 2 †, the element ˛0
b
2 LH 1

ét.B
0
b
n ¹�bº;S/ is the isomorphism class of a right

S-torsor, say qb WQb ! B 0
b
n ¹�bº. By [32, Example 5.5], this torsor induces a semi-algebraic

G-equivariant right S.C /-torsor pb WPb ! �b \ B
0.C /. Let p† WP† ! �† \ B

0.C /

denote the disjoint union of the pb .
For a semi-algebraic subset U ofB0.R/, let F .U / denote the set of isomorphism classes

of semi-algebraic G-equivariant right S.C /-torsors over U . (We recall from Definition 7.10
that these are really torsors under the semi-algebraic group U �B0.C/ S.C /! U .) With the
obvious restriction maps, this defines a presheaf F on the semi-algebraic space B0.R/. If U
is semi-algebraically contractible, the restriction map F .U /! F .¹uº/ is a bijection for any
u 2 U , by Remark 7.12, since U is then connected and simply connected (in the sense that the
semi-algebraic fundamental group �1.U; u/ is trivial, see [32, Section 4]). As the connected
components of any semi-algebraic open subset of B0.R/ are semi-algebraically contractible,
it follows that the presheaf F is in fact a sheaf and that its restriction to any connected compo-
nent of B0.R/ is constant. Let F jSper.F / denote the sheaf obtained by restricting to Sper.F /
the sheaf corresponding to F on the “abstraction” ofB0.R/ (in the sense of [33, Appendix A to
Chapter I]). As the natural map H 1.S/! F jSper.F / (see [87, Section 2.3]) induces bijections
between the stalks of these two sheaves on Sper.F /, it is an isomorphism. On the other hand,
we recall that ˛0 is constant on each connected component of B0.R/. Thus ˛0 belongs to the
image of the resulting map H 0.B0.R/;F /! H 0.Sper.F /;H 1.S//. In other words ˛0 is
induced by a semi-algebraic G-equivariant right S.C /-torsor pB0.R/ WPB0.R/ ! B0.R/.

For each connected component e of B0.R/, as the two semi-algebraic spaces e and �e
are semi-algebraically contractible, the torsor p�1

B0.R/
.e/! e can be extended (uniquely up

to isomorphism) to a semi-algebraic G-equivariant right S.C /-torsor pe WPe ! �e, by
Remark 7.12. Let p0 WP0 ! �0 be the disjoint union of the pe.

Let e 2 B0.R/ and b 2 † be such that �b \�e ¤ ¿. Viewing Sper.Fb/ as a subset
(of cardinality 2) of Sper.F /, we let b0 be the unique point of Sper.Fb/ that belongs to the
constructible open subset of Sper.F / corresponding to e. Let R0 denote the real closure of Fb
at b0, let C 0 D R0.

p
�1/, and let p0

b
WP 0

b
! �0

b
\ B0.C 0/ and p0e WP

0
e ! �0e denote the

morphisms of semi-algebraic spaces over R0 obtained from pb and pe by an extension of
scalars (see [31, Section 4]). Our assumption that the classes ˛0 and ˛b have the same image
inH 0.Sper.Fb/;H 1.S// implies that p0�1

b
.b0/ and p0�1e .b0/ are isomorphic as G-equivariant

S.C 0/-torsors over b0 D Sper.R0/. As �b \�e is semi-algebraically contractible, it follows
from Remark 7.12 that p0�1

b
.�0

b
\�0e/ and p0�1e .�0

b
\�0e/ are themselves isomorphic. By

[32, Theorem 4.1], we deduce that p�1
b
.�b\�e/ and p�1e .�b\�e/ are isomorphic. Letting b

and e vary, we conclude that the restrictions of p† and p0 to �† \ B0.C / \�0 D �† \�0
are isomorphic as G-equivariant S.C /-torsors.

Choosing an isomorphism between them and using it to glue p† and p0, we obtain
a semi-algebraic G-equivariant right S.C /-torsor p WP ! � \ B0.C /.

After shrinking the �b and the �e by replacing a third time the given triangulation with
its barycentric subdivision, we may assume that p extends to a semi-algebraic G-equivariant
right S.C /-torsor p WP ! � \ B0.C /.

Let us fix a finite subset†0 � à� that is stable under G and contains at least one point in
each connected component of à�. We identify †0 with a finite subset of (non-rational) closed
points of B0 and let B1 D B0 n†0. As the connected components of à� \ B1.C / are semi-
algebraically contractible and as none of them is stable underG, we can trivialize the restriction
of p to p�1.à� \ B1.C // and thus glue p�1.� \ B1.C //, along p�1.à� \ B1.C //, with
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the trivial torsor over B1.C / n�, using [33, Chapter II, Theorem 1.3], to finally obtain a semi-
algebraic G-equivariant right S.C /-torsor p0 WP 0 ! B1.C /.

By Corollary 7.11, there exists a right S-torsor p0 W P0 ! B1 such that p0.C / and p0 are
semi-algebraically isomorphic as G-equivariant S.C /-torsors.

To conclude the proof, it is enough to check that the class in H 1.F; S/ of the generic
fiber of p0 induces ˛0 and .˛b/b2† by the maps from (7.1). By construction ˛0 is induced
by pB0.R/ and hence indeed by p0.C /. Let us now fix b 2 †.

We recall that ˛b is induced by a right S-torsor qb WQb ! B 0
b
n ¹�bº and that B 0

b
is

a smooth connected curve endowed with an étale map �b W B 0b ! B and with an F -linear
embedding R.B 0

b
/ ,! F h

b
. Let B 00

b
denote a smooth connected curve endowed with an étale

map � 0
b
W B 00

b
! B 0

b
, an R.B 0

b
/-linear embedding R.B 00

b
/ ,! F h

b
and a rational point � 00

b
of the

fiber � 0�1
b
.�b/ such that

�b.�
0
b.B
00
b n ¹�

00
b º// � B

1:

Let B 000
b
D B 00

b
n ¹� 00

b
º. Let Q00 DQb �B 0

b
n¹�bº

B 000
b

and P00 D P0 �B1 B
000
b

. The quotient R

of Q00 �B 000
b

P00 by the diagonal right action of S is an étale covering of B 000
b

. Let R0 ! B 00
b

denote the normalization of B 00
b

in R.R/, so that R � R0. By an appropriate choice of B 00
b

, we
may assume that every connected component of R0 contains a unique closed point above � 00

b
.

By construction, there exists a semi-algebraic neighborhood �00
b

of � 00
b

in B 00
b
.C /, stable

under G, connected if b 2 B.R/ and with two connected components permuted by G other-
wise, such that the semi-algebraic G-equivariant right S.C /-torsors over �00

b
\ B 000

b
induced

by Q00 and by P00 are isomorphic. Thus, the map R0.C /! B 00
b
.C / admits a G-equivariant

semi-algebraic section over �00
b
\ B 000

b
. Viewing the connected component of R0 that contains

this section as a covering of B 00
b

, we have now found a finite map between smooth connected
curves over R that is totally ramified over a closed point of the base and that at the level of
C -points admits a G-equivariant semi-algebraic section over a punctured G-equivariant semi-
algebraic neighborhood of the point in question. Such a map has to be étale. It follows that the
generic fiber of R0 ! B 00

b
admits an F h

b
-point; hence the two right S -torsors over F h

b
obtained

by base change from qb and from p0 are isomorphic, as desired.

7.4.3. Descent for weak approximation and the strong Hasse principle. The weak
approximation property for varieties over F is defined in this context in the same way as when
R D R (see Definition 2.6). For the formulation of our descent theorem, we shall need to
consider this property in combination with the strong Hasse principle.

Definition 7.14. A variety X over F satisfies the strong Hasse principle if either
X.Fb/ D ¿ for infinitely many closed points b 2 B or X.F / ¤ ¿. In other words, the strong
Hasse principle holds if the existence of Fb-points for all but finitely many b implies the
existence of a rational point.

Theorem 7.15. Let X be a smooth variety over F . Let S be a linear algebraic group
over F . Let Q! X be a left S -torsor over X . Assume that any twist of Q by a right S -torsor
over F satisfies weak approximation and the strong Hasse principle. Then X satisfies weak
approximation and the strong Hasse principle.

Proof. To prove the strong Hasse principle and the weak approximation property for X
in one go, we fix a finite closed subset † � B , a family .xb/b2† 2

Q
b2†X.Fb/, we assume
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that X.Fb/ ¤ ¿ for all but finitely many closed points b of B , and we seek a rational point
of X arbitrarily close to .xb/b2†.

We start with a lemma.

Lemma 7.16. For any non-empty variety Y over F , the following are equivalent:

(i) Y.Fb/ ¤ ¿ for all but finitely many closed points b of B .

(ii) Y.F 0/ ¤ ¿ for all real closed field extensions F 0=F .

Proof. After replacing Y with the disjoint union of finitely many locally closed subsets
which set-theoretically cover Y , we may assume that Y is smooth. After replacing Y with
a smooth compactification, we may then assume that Y is smooth and proper. Let us fix
a dense open subset B0 � B and a variety Y endowed with a smooth and proper morphism
g W Y! B0 whose generic fiber is isomorphic to Y . For any closed point b 2 B0, the
existence of an Fb-point of Y is now equivalent to that of a rational point of g�1.b/. As the
latter condition is satisfied whenever b has degree 2 over R, it follows that (i) holds if and only
if the image of the map g.R/ W Y.R/! B0.R/ is the complement of a finite subset of B0.R/.
On the other hand, letting gr W Yr ! B0r denote the map induced by g at the level of real
spectra (i.e. of abstract semi-algebraic spaces in the sense of [33, Appendix A to Chapter I]),
condition (ii) holds if and only if gr.Yr/ contains the points of Br that lie over the generic
point of B . Let us view B0.R/ as a subset of B0r . As g.R/.Y.R// D gr.Yr/ \ B

0.R/ (see
[33, Example A.3 (ii)] and [10, Theorem 4.1.2]), asB0r n gr.Yr/ is a constructible subset ofB0r
(see [28, Proposition 2.3]) and as any constructible subset of B0r either contains both a point
lying over the generic point of B and an infinite subset of B0.R/ or is itself a finite subset
of B0.R/ (see [10, Theorem 7.2.3] and [30, Lemma 9.3]), we conclude that (i), (ii).

Let � W Xr ! Sper.F / denote the map induced at the level of real spectra by the
structural morphism of the variety X (see [33, Appendix A to Chapter I]). For an open subset
U � Sper.F /, let JU denote the category introduced by Scheiderer [87, (2.3)], [86, (1.13)]; its
objects are the pairs .L; s/ where L is an étale F -algebra and s W U ! Sper.L/ is a continuous
section over U of the natural map Sper.L/! Sper.F /. The formula

H 0.U;H 0.X// D lim
�!

.L;s/2JU

X.L/

defines a sheaf of sets H 0.X/ on Sper.F /. For � 2 Sper.F /, the stalk of H 0.X/ at � isX.F�/
if F� denotes the real closure of F with respect to the ordering �.

Evaluation of the class ŒQ�1� 2 LH 1
ét.X; S/ of the right S -torsor Q�1 ! X (see Sec-

tion 6.1) provides functorial maps X.L/! H 1.L; S/ when L ranges over all F -algebras,
hence a morphism H 0.X/!H 1.S/ of sheaves on Sper.F /. These evaluation maps induce
a morphism from the commutative square

(7.3) X.F / //

��

Y
b2†

X.Fb/

��

H 0.Sper.F /;H 0.X// //
Y
b2†

H 0.Sper.Fb/;H
0.X//

to the commutative square (7.1).
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By Lemma 7.16 applied to X , all of the stalks of the sheaf H 0.X/ are non-empty.
The bottom horizontal map of diagram (7.3) is therefore surjective (see [87, (C.2)]). Let us
fix an element x0 2 H 0.Sper.F /;H 0.X// having the same image as the family .xb/b2† inQ
b2†H

0.Sper.Fb/;H 0.X//. We shall denote the images of x0 and of .xb/b2† in (7.1) by
˛0 2 H

0.Sper.F /;H 1.S// and .˛b/b2† 2
Q
b2†H

1.Fb; S/.
By Proposition 7.13, there exists a right S -torsor P over F whose isomorphism class

induces ˛0 and .˛b/b2†. After replacing the algebraic group S with its inner form PS and
the left S -torsor Q! X with its twist PQ! X , which is a left PS -torsor (see Section 6.1),
we may assume that ˛0 and the ˛b for b 2 † are all trivial.

For any real closed field extension F 0=F , the F 0-point ofX induced by x0 can be lifted to
an F 0-point ofQ since ˛0 is trivial. ThusQ.F 0/ ¤ ¿ for all real closed field extensions F 0=F .
Since Q satisfies the strong Hasse principle, Lemma 7.16 implies that Q.F / ¤ ¿. As the ˛b
for b 2 † are trivial, each xb 2 X.Fb/ can be lifted to some qb 2 Q.Fb/, which we fix. As Q
satisfies the weak approximation property and asQ.F / ¤ ¿, we can find q 2 Q.F / arbitrarily
close to .qb/b2†. The image of q in X.F / is arbitrarily close to .xb/b2†, as desired.

7.4.4. Colliot-Thélène’s conjecture over real closed fields. We can at last prove the
main theorem of Section 7.4, Theorem 7.17 below. Under the additional assumption that
the stabilizers are connected, Theorem 7.17 is due to Scheiderer [87, Corollary 6.2 and
Theorem 8.9], on whose work our proof of Theorem 7.17 depends.

Theorem 7.17. Let R be a real closed field. Let B be a smooth projective connected
curve over R, with function field F . Any homogeneous space of a connected linear algebraic
group over F satisfies the weak approximation property.

Proof. Let X be a homogeneous space of a connected linear algebraic groupH over F .
If X.Fb/ D ¿ for some closed point b 2 B , then weak approximation trivially holds for X .
Otherwise, as X satisfies the Hasse principle (see [87, Corollary 6.2]), one has X.F / ¤ ¿,
so that one can write X D SnH for some algebraic subgroup S of H . The quotient map
H ! SnH is a left S -torsor. For any right S -torsor P over F , the variety PH is a right
H -torsor over F ; in particular, it satisfies the strong Hasse principle and weak approximation
(see [87, Corollary 4.2, Remark 4.3, Proposition 8.8]). Applying Theorem 7.15 now concludes
the proof.

8. The image of the Borel–Haefliger map

In this section, we consider a property that we think of as a cohomological variant of the
tight approximation property and that we can verify in a greater generality.

8.1. The Borel–Haefliger map. For all smooth varieties X over R and all i � 0, Borel
and Haefliger have constructed a map clR W CHi .X/! H i .X.R/;Z=2Z/ compatible with
pull-backs, proper push-forwards and cup products: the Borel–Haefliger cycle class map [15]
(see also [7, Section 1.6.2]). We restrict to the case where X has pure dimension d and
i D d � 1. The Borel–Haefliger map then reads clR W CH1.X/! H1.X.R/;Z=2Z/ and we
let H alg

1 .X.R/;Z=2Z/ be its image.
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Recall from Section 1.1 that B denotes a fixed smooth projective connected curve over R
(with function field F ). One has

H1.B.R/;Z=2Z/ ' .Z=2Z/�0.B.R//;

and the groupH alg
1 .B.R/;Z=2Z/, generated by ŒB.R/�, is isomorphic to the group Z=2Z unless

B.R/ D ¿. If f W X! B is a proper flat morphism with X regular, then

(8.1) H
alg
1 .X.R/;Z=2Z/ � ¹˛ 2 H1.X.R/;Z=2Z/ j f .R/�˛ 2 hŒB.R/�iº

by the compatibility of clR with proper push-forwards.

Definition 8.1. Let f W X! B be a proper flat morphism with X regular. We say that
H1.X.R/;Z=2Z/ is f -algebraic if the inclusion (8.1) is an equality.

Remarks 8.2. (i) Suppose that X D X � B for a smooth proper variety X over R, that
f is the second projection, that B.R/ ¤ ¿, and that H1.X.R/;Z=2Z/ is f -algebraic. Then
H

alg
1 .X.R/;Z=2Z/ D H1.X.R/;Z=2Z/.

(ii) IfH1.X.R/;Z=2Z/ is f -algebraic and g W X�PdR ! B is the composition of the first
projection and of the morphism f , the Künneth formula shows thatH1.X.R/ � Pd .R/;Z=2Z/
is g-algebraic.

8.2. Birational invariance. This property is a birational invariant.

Proposition 8.3. Let f W X! B and f 0 W X0 ! B be proper flat morphisms with X

and X0 regular. Let g W X0Ü X be a birational map such that f ıg D f 0. IfH1.X.R/;Z=2Z/
is f -algebraic, then H1.X0.R/;Z=2Z/ is f 0-algebraic.

Proof. We first examine the case where g is a morphism.

Lemma 8.4. Let g W X0 ! X be a birational morphism between smooth and proper
varieties over R.

(i) The map g.R/� W H1.X0.R/;Z=2Z/! H1.X.R/;Z=2Z/ is onto.

(ii) One has g.R/�.H
alg
1 .X0.R/;Z=2Z// D H alg

1 .X.R/;Z=2Z/.

(iii) If g is the blow-up of a smooth subvariety of X, the kernel of g.R/� is algebraic.

Proof. The equality g.R/� ıg.R/� D Id in cohomology with Z=2Z coefficients implies
the injectivity of g.R/� W H 1.X.R/;Z=2Z/! H 1.X0.R/;Z=2Z/, and hence (i) by Poincaré
duality. To prove (ii), note that CH1.X/ is generated by classes of irreducible curves that
meet a dense open subset of X over which g is an isomorphism, and consider their strict
transforms in X0. Let us now assume that g is the blow-up of a smooth subvariety Z � X

of codimension c � 2, with exceptional divisor E, and verify (iii). Let d D dim.X/. Let
i W E ,! X and � W E ! Z denote the natural morphisms. Let � 2 H 1.E.R/;Z=2Z/ be the
first Stiefel–Whitney class of the tautological line bundle OE .1/ of the projective bundle � .
The map

(8.2) Hd�1.X.R/;Z=2Z/˚Hd�c.Z.R/;Z=2Z/ ��! Hd�1.X0.R/;Z=2Z/
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given by x ˚ y 7! g.R/�x C i.R/�.�c�2 ^ �.R/�y/ is an isomorphism, as follows from
the computation of the cohomology with Z=2Z coefficients of a blow-up of real manifolds
(combine [44, Theorem 3.7, Theorem 3.10 and Section 5] with the Thom isomorphism and
with the computation of the cohomology with Z=2Z coefficients of a real projective bundle
[63, Chapter 17, Theorem 2.5 and Theorem 10.3]). Identifying the cohomology of the compact
manifolds X.R/,Z.R/, X0.R/with their homology and using the equality g.R/� ı g.R/? D Id
and the projection formula, we deduce from the isomorphism (8.2) the exactness of the
sequence

0! H0.Z.R/;Z=2Z/
˛
����! H1.X

0.R/;Z=2Z/
g.R/�
����! H1.X.R/;Z=2Z/! 0,

where ˛ is defined by ˛.y/ D i.R/�.�c�2 ^ �.R/�y/. As ˛ sends the class of any point
z 2 Z.R/ to the Borel–Haefliger cycle class in X0.R/ of a line of the projective space ��1.z/,
assertion (iii) follows.

Let us deduce Proposition 8.3, whose notation we take up, from Lemma 8.4. It follows
from Hironaka’s theorem on the resolution of indeterminacies [57, Section 5] applied to g�1

that there exist a composition of blow-ups with smooth centers � W X00 ! X and a morphism
h W X00 ! X0 such that g ı h D � . IfH1.X.R/;Z=2Z/ is f -algebraic, thenH1.X00.R/;Z=2Z/
is .f ı �/-algebraic by Lemma 8.4 (ii)–(iii) applied to the individual blow-ups that make up � .
This, in turn, implies thatH1.X0.R/;Z=2Z/ is f 0-algebraic, by Lemma 8.4 (i) applied to h.

8.3. Fibrations. We now prove the counterpart of Theorem 5.1.

Theorem 8.5. Let f WX! B and f 0 WX0 ! B be proper flat morphisms with X and X0

regular, let g WX!X0 be a dominant morphism with f 0 ıg D f and let .X0/0�X0 be a dense
open subset. Suppose that H1.X0.R/;Z=2Z/ is f 0-algebraic. Suppose moreover that for all
connected smooth projective curves eB over R, all morphisms � W eB ! X0 with f 0 ı � dominant
and �.eB/ \ .X0/0 ¤ ¿, all regular modifications Y! X �X0

eB with projection h W Y! eB
and all C1 sections v W eB.R/! Y.R/ of h.R/, one has v�ŒeB.R/� 2 H alg

1 .Y.R/;Z=2Z/.
Then H1.X.R/;Z=2Z/ is f -algebraic.

Proof. By Proposition 8.3 and [1, Theorem 1.1], we may assume that g underlies
a toroidal morphism g W .U � X/! .U0 � X0/ of snc toroidal embeddings and that X and
X0 are projective. Choose ˛ 2 H1.X.R/;Z=2Z/ such that f .R/�˛ 2 hŒB.R/�i. We will show
that ˛ is algebraic. Representing ˛ by a topological cycle, perturbing it and applying Whit-
ney’s approximation theorem [103, Theorem 2] shows that ˛ D ��ŒS� for some compact one-
dimensional real-analytic manifold S and some real-analytic map � W S! X.R/ such that the
image by � of any connected component of S meets g�1..X0/0/.R/ \ U.R/ and is not included
in a fiber of f .R/.

Let � W S! P2.R/ be a real-analytic embedding. By Remark 8.2 (ii), in order to show
the algebraicity of ��ŒS�, we may replace U � X, U0 � X0, .X0/0 and � with U � P2R � X � P2R,
U0 � P2R � X0 � P2R, .X0/0 � P2R and .�; �/ W S! X.R/ � P2.R/. We may thus assume that �
and �0 WD g.R/ ı � are embeddings.

Define † � S to be the finite set of x 2 S such that �.x/ … U.R/. Applying Propo-
sition 5.2 to the toroidal morphism g and to the discrete valuation rings Oan

S;x for x 2 †
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shows the existence of regular modifications � W Z! X and � 0 W Z0 ! X0 and of a morphism
h W Z! Z0 such that g ı � D � 0 ı h, such that � (resp. � 0) is an isomorphism above U (resp.
above U0) and such that the strict transform j W S! Z.R/ of � has the property that h.R/ is
submersive at j.x/ for all x 2 †. Since g was already smooth along U, the latter property in
fact holds for all x 2 S. It is legitimate, in order to show the algebraicity of ��ŒS�, to replace X,
X0, g and � with Z, Z0, h and j . We may thus assume that g.R/ is submersive along �.S/.

It then follows from [8, Lemma 6.11] that there exists an open neighborhood W of
�0.S/ in X0.R/ and a C1 section w W W ! X.R/ of g.R/ above W such that � D w ı �0.
Note that the existence of the section w shows that g.R/ is submersive along w.W /. Since
H1.X

0.R/;Z=2Z/ is f 0-algebraic, a theorem of Akbulut–King ([3], see [8, Theorem 6.8])
shows the existence of a curve eB � X0 smooth along eB.R/ such that eB.R/ � W , such that
ŒeB.R/� D �0�ŒS� 2 H1.W;Z=2Z/ (where we still denote by �0 W S! W the natural map), and
such that f 0 does not contract any component of eB .

Let .�i W eB i ! X0/i2I be the connected components of the normalization of eB , and
denote by �i WeB i .R/!W the induced maps. Consider a regular modification Yi!X�X0

eB i
that is an isomorphism above the regular locus, where the fiber product is taken with respect to
g and �i , and let hi W Yi ! eB i and pi W Yi ! X be the natural morphisms. The strict trans-
form vi WeB i .R/! Yi .R/ of .w ı�i ; Id/ WeB i .R/! .X �X0

eB i /.R/ is a C1 section of hi .R/.
By hypothesis, vi;�ŒeB i .R/�2H alg

1 .Yi .R/;Z=2Z/. It follows that ˛ 2H alg
1 .X.R/;Z=2Z/ since

˛ D ��ŒS� D w��0�ŒS� D
X
i2I

w��i;�ŒeB i .R/� DX
i2I

pi .R/�vi;�ŒeB i .R/�:
The hypothesis v�ŒeB.R/� 2 H alg

1 .Y.R/;Z=2Z/ appearing in Theorem 8.5 is of course
verified if H1.Y.R/;Z=2Z/ is h-algebraic. It is also verified if h satisfies the tight approxima-
tion property, by Corollary 2.4. Thus, applying Theorem 8.5 with X0 D B and f 0 D Id yields:

Corollary 8.6. Let f W X! B be a proper flat morphism with X regular. Let X be the
generic fiber of f . If for every finite extension eF of F , the eF -variety XeF satisfies the tight
approximation property, then H1.X.R/;Z=2Z/ is f -algebraic.

We note that the assumptions of Corollary 8.6 imply that X is rationally connected (see
Proposition 3.5). If one views the tight approximation property as the analogue, for varieties
over F , of the property, for rationally connected varieties over a number field, that rational
points are dense in the Brauer–Manin set, then Corollary 8.6 is the analogue of Liang’s theorem
[76, Theorem B] on the relationship between rational points and zero-cycles in the latter
context. Correspondingly, Theorem 8.5 is the analogue of [53, Corollary 8.4 (2)].

Example 8.7. Let f W X! B be a proper flat morphism with X regular. If the generic
fiber of f is, birationally, an iterated fibration into homogeneous spaces of connected linear
algebraic groups, then H1.X.R/;Z=2Z/ is f -algebraic. Indeed, by Theorem 5.1 and Theo-
rem 7.4, the hypotheses of Corollary 8.6 are satisfied.

Remark 8.8. Let X be a smooth compactification of a homogeneous space of a con-
nected linear algebraic group over R. By Example 8.7 and Remark 8.2 (i), one has

H
alg
1 .X.R/;Z=2Z/ D H1.X.R/;Z=2Z/:
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We do not know whether this remains true if R is replaced with an arbitrary real closed
field (also replacing H1.X.R/;Z=2Z/ with semi-algebraic homology and clR with the map
considered in [7, (1.56)]).

8.4. Cubics. We now give applications of the above results to cubic hypersurfaces.

Theorem 8.9. Let f W X! B be a proper flat morphism with X regular whose generic
fiber is a cubic hypersurface of dimension d � 2. Then H1.X.R/;Z=2Z/ is f -algebraic.

Proof. We argue by induction on d , which we fix, letting all other data, including B ,
vary. We let X be the generic fiber of f .

If d D 2, this is [8, Theorem 8.1 (iv), Proposition 8.4 (i)]. More directly, one can use the
following variant of the argument of [8, Theorem 8.1 (iv), Proposition 8.4 (i)]: after replacing
B with a finite covering eB of odd degree and X with a regular modification of X �B eB , we
may assume that X contains a line `. Apply Example 5.4 and Corollary 8.6 to conclude.

If d > 2, choosing a generic pencil of hyperplane sections on X yields a morphism
g W eX ! P1F , where eX is the blow-up of a smooth subvariety ofX , and where the smooth fibers
of g are cubic hypersurfaces of dimension d � 1. Choose a proper regular model ef W eX! B

of eX for which g extends to a morphism g W eX! B � P1R. Let eX0 D B � P1R, let ef 0 W eX0 ! B

be the first projection and let .eX0/0 � eX0 be a dense open subset over which the fibers of g
are smooth cubic hypersurfaces. By Remark 8.2 (ii), H1.eX0.R/;Z=2Z/ is ef 0-algebraic. By the
induction hypothesis and by Proposition 8.3, we may apply Theorem 8.5 to ef , ef 0 and g, thus
showing that H1.eX.R/;Z=2Z/ is ef -algebraic. One concludes by Proposition 8.3.

As a sample application, we deduce:

Theorem 8.10. Let f W X! B be a proper flat morphism with X regular. Assume that
the generic fiber of f is, birationally, an iterated fibration into varieties of the following types
(allowed to appear both, and to be interleaved):

(i) smooth cubic hypersurfaces of dimension � 2,

(ii) homogeneous spaces of connected linear algebraic groups.

Then H1.X.R/;Z=2Z/ is f -algebraic.

Proof. This follows from Proposition 8.3 and Theorem 8.5, in view of Theorem 8.9 and
of Example 8.7.

Corollary 8.11. Let X be a smooth and proper variety over R. Assume that X is,
birationally, an iterated fibration into smooth cubic hypersurfaces of dimension � 2. Then
H

alg
1 .X.R/;Z=2Z/ D H1.X.R/;Z=2Z/.

Proof. Apply Theorem 8.10 to B D P1R and X D X � B and see Remark 8.2 (i).

Remark 8.12. When X is itself a smooth cubic hypersurface of dimension at least 2,
we have already seen that the Borel–Haefliger classes of rational curves span the group
H1.X.R/;Z=2Z/, since XR.t/ satisfies the tight approximation property (see Example 5.4 and
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apply Corollary 2.4). A theorem of Shen [91, Theorem 1.7] allows one to deduce (at least in
dimension � 3) that the Borel–Haefliger classes of the lines contained in X suffice to span this
group, a fact first proved in [8, Theorem 9.23 (ii), Remark 9.24 (i)] and in [41] and which
holds over arbitrary real closed fields (see [8, Theorem 9.23 (ii)]). For more general X as
in Corollary 8.11, however, we do not know whether the Borel–Haefliger classes of rational
curves span the group H1.X.R/;Z=2Z/ and we do not know whether Corollary 8.11 can be
generalized to arbitrary real closed fields.

8.5. Del Pezzo surfaces. Consider the following question:

Question 8.13. Let X be a smooth proper rationally connected variety over R. Is
H1.X.R/;Z=2Z/ generated by Borel–Haefliger classes of rational curves?

Over a non-archimedean real closed field R, Question 8.13 has a negative answer in
general, as H1.X.R/;Z=2Z/ may not even be generated by Borel–Haefliger classes of curves
[8, Example 9.7]. Over R, the techniques of [68, 69] shed no light on Question 8.13 as the real
locus of the rational curves on X that are constructed in op. cit. is always homologically trivial
(even homotopically trivial) in X.R/.

If XR.t/ satisfies the tight approximation property, then Question 8.13 has a positive
answer for X , as a consequence of Corollary 2.4; by Theorems 5.1 and 7.4, such is the case
ifX is, birationally, an iterated fibration into homogeneous spaces of connected linear algebraic
groups. Our goal in Section 8.5 is to give a positive answer for arbitrary rationally connected
surfaces.

Proposition 8.14. If X is a rationally connected surface over R, the Borel–Haefliger
classes of rational curves on X generate H1.X.R/;Z=2Z/.

Proof. We may assume that X.R/ ¤ ¿. Since the conclusion of Proposition 8.14 is
invariant under blow-ups at closed points, we may replace X by a surface birational to it, and
thus assume that X is minimal and not birational to P2R. One can then use the classification of
minimal rationally connected surfaces over R going back to Comessatti [27, Teorema VI].

If X has a conic bundle structure, then X.R/ is a union of spheres (see [93, Chapter VI,
Corollary 3.1, Proposition 3.2, Proposition 6.1]), and the proposition holds since in this case
H1.X.R/;Z=2Z/ D 0.

If X is a del Pezzo surface, then X is isomorphic to a degree 2 del Pezzo surface with
four spheres as real connected components, or to a degree 1 del Pezzo surface with four
spheres and one real projective plane as real connected components (see [93, Chapter VI,
Proofs of Theorem 4.6 and Proposition 6.3]). The proposition is trivial in the first case since
H1.X.R/;Z=2Z/ D 0.

In the second case, we let eX ! X be the blow-up of the unique base point of the
anticanonical linear system of X , with exceptional divisor E. The surface eX carries an elliptic
fibration eX ! P1R of which E is a section. We denote by… � eX.R/ the connected component
containing E.R/, and by …0 � eX.R/ any other connected component. The smooth fibers of f
are elliptic curves, whose real loci have at most two connected components. Since … and
…0 are not the only components of eX.R/ (there are three others), and since …! P1.R/ is
surjective, we deduce that …0 ! P1.R/ is not surjective. Its image is a closed interval with
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distinct endpoints a; b 2 P1.R/. The fibers eXa and eXb are singular (along their intersection
with…0), so that their geometric irreducible components are rational curves. Since f is smooth
along the sectionE, eXa and eXb contain a unique geometric irreducible component meetingE,
denoted by Ca and Cb . They are defined over R and meet E transversally.

Note that the real loci of the normalizations of E, Ca, Cb are connected. Consequently,
the Borel–Haefliger classes of E, Ca and Cb belong to H1.…;Z=2Z/. Obviously, we have
clR.Ca/ �clR.E/ D 1, clR.Cb/ �clR.E/ D 1 and clR.Ca/ �clR.Cb/ D 0. From these equalities, it
follows that these classes generate a sub-vector space of dimension at least 2 inH1.…;Z=2Z/.
But this is only possible if the connected component of X.R/ that was blown-up was the one
isomorphic to a projective plane, and shows that H1.…;Z=2Z/ is in fact generated by clR.E/,
clR.Ca/ and clR.Cb/. Since the other 4 connected components of eX.R/ are isomorphic to
spheres, we deduce that H1.eX.R/;Z=2Z/ is generated by rational curves, which concludes
the proof.

Remark 8.15. Proposition 8.14 remains true over an arbitrary real closed field R.
Indeed, in the proof of Proposition 8.14, one may replace without any loss the word “sphere”
(resp. “real projective plane”) with “space S such that H1.S;Z=2Z/ has dimension 0” (resp.
“dimension 1”); the proofs given in [93] of the assertions used in the above argument then work
over an arbitrary real closed field.

A. G -equivariant complex analytic spaces

In this appendix, we develop the basics of G-equivariant complex geometry, and collect
the results that we need.

A.1. Definition. A G-equivariant complex analytic space is a complex analytic space
.Z;OZ/ in the sense of [47, p. 16] whose underlying locally ringed space is endowed with
an action of G such that the complex conjugation � acts C-antilinearly on OZ . It is said to
be a manifold (resp. Stein, projective, etc.) if so is the underlying complex analytic space.
A G-equivariant complex manifold is nothing but a complex analytic manifold endowed with
an action of G such that � acts antiholomorphically.

If Z is a G-equivariant complex analytic space, a G-equivariant coherent sheaf on Z is
a coherent sheaf on the underlying complex analytic space that is endowed with an action of G
compatible with its OZ-module structure.

There are two equivalent approaches to G-equivariant complex geometry. One can
consider the G-equivariant spaces defined above, as in [51, Section II.4] where they are called
complex analytic spaces with an antiinvolution, as in [84, p. 250] where they are called analytic
spaces over R, or as in [20, Section 2.1] where they are called real structures on complex spaces.
One can also consider their quotients by the action ofG in the category of locally ringed spaces:
those are the Berkovich R-analytic spaces hinted at in [9, Examples 1.5.4], which were also
considered by Huisman [62] under the name of real analytic spaces. The reason for our choice
is that classical results of complex geometry apply more directly in the former context.
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A.2. Analytification. Let .Z;OZ/ be a complex analytic space with structural mor-
phism � W C! OZ . We define its conjugate .Z� ;OZ� / to be equal to .Z;OZ/ as a locally
ringed space, but with structural morphism � ı � . With a coherent sheaf F on Z, one asso-
ciates a coherent sheaf F � on Z� : it is equal to F as a sheaf and its OZ� -module structure
is induced by the equality OZ� D OZ . One verifies that a G-equivariant complex analytic
space is nothing but a complex analytic space Z endowed with an isomorphism ˛ W Z� ! Z

of complex analytic spaces such that ˛ ı ˛� D IdZ , and that a G-equivariant coherent sheaf
on it is a coherent sheaf F on the underlying complex space endowed with an isomorphism
ˇ W ˛�F ! F � such that ˇ� ı ˛��ˇ D IdF .

If X is a variety over R, then the analytification X an
C of XC has a natural structure of

G-equivariant complex analytic space, denoted by X an. Similarly, if F is a coherent sheaf
on X , then the analytification F an

C of FC has a natural structure of a G-equivariant coherent
sheaf, denoted by F an.

When X is proper, the analytification functor Y 7! Y an induces an equivalence between
the categories of closed subvarieties of X and of closed G-equivariant analytic subspaces
ofX an, and the functor F 7! F an is an equivalence between the categories of coherent sheaves
on X and of G-equivariant coherent sheaves on X an. These facts follow from the above
description of G-equivariant complex analytic spaces and G-equivariant coherent sheaves,
together with Serre’s GAGA theorem for proper varieties [50, Exposé XII, Théorème 4.4] (see
also [50, Exposé XII, Corollaire 4.6]) and Galois descent (see for instance [93, I Section 1]).

Arguing in the same way, we obtain a G-equivariant version of Riemann’s existence
theorem from the non-equivariant statement [50, Exposé XII, Théorème 5.1]: for any varietyX
over R, the analytification functor induces an equivalence between the categories of finite étale
coverings of X and of G-equivariant finite topological coverings of X.C/.

A.3. The Stein property. Recall that a complex analytic space Z is Stein if one has
H q.Z;F / D 0 for all coherent sheaves F on Z and all q > 0. We collect here for later use
G-equivariant analogues of well-known consequences of the Stein property.

For a G-equivariant coherent sheaf F on a G-equivariant complex analytic space Z,
the group G acts on H q.Z;F /, the action of � being C-antilinear. Since the H q.Z;F / are
C-vector spaces, one hasHp.G;H q.Z;F // D 0 for p > 0, and the second spectral sequence
of equivariant cohomology [49, Théorème 5.2.1] shows thatH q

G.Z;F / D H q.Z;F /G . Thus,
if Z is Stein, then H q

G.Z;F / D 0 for all q > 0.
The real vector space H q.Z;F /G satisfies H q.Z;F / D H q.Z;F /G ˝R C, giving

rise to a real structure onH q.Z;F /. The cohomology long exact sequence induced by a short
exact sequence ofG-equivariant coherent sheaves isG-equivariant, hence is defined over R for
these real structures.

Lemma A.1. Let Z be a Stein G-equivariant complex analytic space.

(i) IfZ has finite dimension, then aG-equivariant coherent sheaf F onZ whose fibers have
bounded dimensions is a quotient of a trivial G-equivariant coherent sheaf.

(ii) A short exact sequence 0! F1 ! F2 ! F3 ! 0 of G-equivariant coherent sheaves
on Z splits G-equivariantly if F3 is locally free.

Proof. (i) Combine Cartan’s Theorem A and [73, Theorem 1] to see that F is generated
by finitely many global sections. The smallest G-stable sub-C-vector space V � H 0.Z;F /
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containing these sections is defined over R: an R-basis �1; : : : ; �N of V \H 0.Z;F /G is also
a C-basis of V . The �i induce a G-equivariant surjection ON

Z ! F of coherent sheaves.
(ii) Consider the exact sequence 0! F1˝F_3 ! F2˝F_3 ! F3˝F_3 ! 0. Since

Z is Stein, there is an induced short exact sequence of global sections on Z, hence of the
underlying real vector spaces:

0! H 0.Z;F1 ˝F_3 /
G
! H 0.Z;F2 ˝F_3 /

G
! H 0.Z;F3 ˝F_3 /

G
! 0:

A lift of IdF3 2 H
0.Z;F3 ˝F_3 /

G in H 0.Z;F2 ˝F_3 /
G corresponds to a G-equivariant

morphism F3 ! F2 of coherent sheaves inducing the required splitting.

Proposition A.2. Let Z be a G-equivariant complex analytic space. Any G-stable
locally closed Stein subspace Y � Z has a G-stable Stein open neighborhood in Z.

Proof. By Siu’s theorem [95], Y has a Stein open neighborhood Y 0 in Z. The G-stable
open neighborhood Y 0 \ �.Y 0/ is then Stein by [47, p. 127].

A.4. The Picard group. LetZ be aG-equivariant complex analytic space. The isomor-
phism classes of G-equivariant invertible sheaves on Z form a group for the tensor product:
the Picard group PicG.Z/ of Z. Letting O�Z � OZ be the G-equivariant subsheaf of invert-
ible analytic functions, one has an isomorphism PicG.Z/ ' H 1

G.Z;O
�
Z/. This follows from

the Čech description of G-equivariant cohomology [49, Théorème 5.5.6] (for details in the
topological setting see [64, p. 698] or [71, Proposition 1.1.1]).

Let Z.1/ � C be the sub-G-module generated by
p
�1. Viewing the exponential exact

sequence [47, Lemma, p. 142]

(A.1) 0! Z.1/! OZ
f 7!exp.2�f /
���������! O�Z ! 0

as a short exact sequence of G-equivariant sheaves on Z yields a boundary map

cl W PicG.Z/! H 2
G.Z;Z.1//;

the so-called equivariant cycle class map. Composing it with the restriction map

H 2
G.Z;Z.1//! H 2

G.Z
G ;Z.1//

and with the canonical isomorphism

H 2
G.Z

G ;Z.1// ' H 1.ZG ;Z=2Z/

described in [72, Theorem 1.3] induces the Borel–Haefliger cycle class map

clR W PicG.Z/! H 1.ZG ;Z=2Z/:

Proposition A.3. The map cl W PicG.Z/! H 2
G.Z;Z.1// is an isomorphism if Z is

a Stein G-equivariant complex analytic space. So is clR W PicG.Z/! H 1.ZG ;Z=2Z/ if Z is
a Stein G-equivariant complex manifold of pure dimension 1.

Proof. If Z is Stein, then H q
G.Z;OZ/ D 0 for q > 0 (see Section A.3). The long exact

sequence of G-equivariant cohomology induced by the exponential exact sequence then shows
that cl is an isomorphism.
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It remains to prove that the restriction map H 2
G.Z;Z.1//! H 2

G.Z
G ;Z.1// is an iso-

morphism if Z is a Stein G-equivariant complex manifold of pure dimension 1. To do so,
we let i W Z nZG ,! Z be the inclusion and we let iŠ denote the extension by zero. Since
G acts antiholomorphically on Z, the fixed point set ZG � Z is a one-dimensional C1

closed submanifold, and the quotient Z=G is a C1 manifold with boundary ZG and interior
.Z nZG/=G. We denote by j W .Z nZG/=G ,! Z=G the inclusion, and by eZ the sheaf on
.Z nZG/=G induced by the G-equivariant sheaf Z.1/ on Z nZG . Since G acts antiholomor-
phically on Z, it reverses its orientation, so that jŠeZ is the orientation sheaf of Z=G in the
sense of [17, V, Definition 9.1].

In view of the long exact sequence of relative equivariant cohomology

H 2
G.Z; iŠZ.1//! H 2

G.Z;Z.1//! H 2
G.Z

G ;Z.1//! H 3
G.Z; iŠZ.1//,

it suffices to show thatH q
G.Z; iŠZ.1// D 0 for q � 2. By the first spectral sequence of equivari-

ant cohomology [49, Théorème 5.2.1], H q
G.Z; iŠZ.1// ' H

q.Z=G; jŠeZ/. By Poincaré dual-
ity, we have H q.Z=G; jŠeZ/ ' HBM

2�q.Z=G;Z/, where HBM
� denotes Borel–Moore homology

(apply [17, V, Theorem 9.3] to X D Z=G, M D Z, and with ˆ the family of closed subsets
ofX ). This group obviously vanishes if q � 3. It also vanishes if q D 2 asZ=G has no compact
component since Z is Stein.

A.5. Meromorphic functions and ramified coverings. If Z is a complex manifold,
we let M .Z/ be the ring of meromorphic functions on Z. It is the product of the fields of
meromorphic functions of the connected components of Z.

Proposition A.4. Let Z be a complex manifold of pure dimension 1 with finitely many
connected components. Associating with � W Z0 ! Z the M .Z/-algebra M .Z0/ induces an
equivalence between the categories of finite morphisms � W Z0 ! Z of complex manifolds of
pure dimension 1 and of finite étale M .Z/-algebras.

Proof. When Z is connected, and if one restricts to the subcategories of finite mor-
phisms � W Z0 ! Z withZ0 non-empty and connected, and of finite field extensions of M .Z/,
this is [92, Chapter 1, Section 4.14, Corollary 4]. The general case follows at once.

If Z is a G-equivariant complex manifold, let M .Z/G be the ring of G-equivariant
meromorphic functions on Z. If Z is connected, one has M .Z/G.

p
�1/ DM .Z/. If Z has

two connected components Z0 and �.Z0/, one has M .Z/G 'M .Z0/. In general, M .Z/G is
the product of the fields of G-equivariant meromorphic functions on the G-orbits of connected
components of Z.

Proposition A.5. Let Z be a G-equivariant complex manifold of pure dimension 1
with finitely many connected components. Associating with � W Z0 ! Z the M .Z/G-algebra
M .Z0/G induces an equivalence between the categories of finite morphisms � W Z0 ! Z of
G-equivariant complex manifolds of pure dimension 1 and of finite étale M .Z/G-algebras.

Proof. This follows from Proposition A.4 and from the description of G-equivariant
complex analytic spaces Z given in Section A.2, as complex analytic spaces Z endowed with
the datum of an isomorphism ˛ W Z� ! Z such that ˛ ı ˛� D IdZ .
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A.6. Meromorphic functions and cohomological dimension. The next proposition is
attributed to Artin by Guralnick [52].

Proposition A.6. Let Z be a connected complex manifold of dimension 1. Then the
field M .Z/ has cohomological dimension 1.

Proof. If Z is compact, this is Tsen’s theorem. If Z is not compact, let L be a finite
extension of M .Z/. By Proposition A.4, it is the field of meromorphic functions of some
connected complex manifold of dimension 1. As a consequence, the Brauer group ofL vanishes
by [52, Proposition 3.7]. The proposition then follows from [90, II 3.1, Proposition 5].

Recalling that a field k is said to have virtual cohomological dimension 1 if k.
p
�1/ has

cohomological dimension 1, we deduce from Proposition A.6:

Corollary A.7. Let Z be a G-equivariant complex manifold of dimension 1 such that
Z=G is connected. Then the field M .Z/G has virtual cohomological dimension 1.

Corollary A.7 can be refined if ZG D ¿.

Proposition A.8. Let Z be a G-equivariant complex manifold of dimension 1 such that
Z=G is connected. If ZG D ¿, the field M .Z/G has cohomological dimension 1.

Proof. We claim that �1 is a sum of two squares in M .Z/G . It follows that M .Z/G

cannot be ordered, so that its absolute Galois group contains no element of finite order by
the Artin–Schreier theorem [5]. The main theorem of [88] and Corollary A.7 then imply that
M .Z/G has cohomological dimension 1.

It remains to prove the claim. If Z is compact, then M .Z/G is the function field of
a smooth projective connected curve over R with no R-point by GAGA (see Section A.2), and
the claim is due to Witt [104, Satz 22]. We assume from now on that Z is not compact, hence
Stein [47, p. 134].

Since H 1.Z;OZ/ D 0 because Z is Stein, and since H 2.Z;Z/ ' HBM
0 .Z;Z/ D 0 by

Poincaré duality [17, Chapter V, Theorem 9.3] and because Z has no compact component,
the exponential exact sequence (A.1) yields H 1.Z;O�Z/ D 0. Since H 2

G.Z;OZ/ D 0 because
Z is Stein (see Section A.3), and since H 3

G.Z;Z.1// D H
3.Z=G;eZ/ D 0 (the first equality

stems from the first spectral sequence of equivariant cohomology [49, Théorème 5.2.1] and
the second from the fact that Z=G is a surface), the exponential exact sequence (A.1) shows
that H 2

G.Z;O
�
Z/ D 0.

The second spectral sequence of equivariant cohomology [49, Théorème 5.2.1], that
is, Ep;q2 D Hp.G;H q.Z;O�Z//) H

pCq
G .Z;O�Z/, now shows that H 2.G;O.Z/�/ D 0. By

[89, VIII Section 4], we have H 2.G;O.Z/�/ D .O.Z/�/G=¹f � �.f /; f 2 O.Z/�º. Thus
we deduce from this vanishing that there exists f 2 O.Z/� such that �1 D f � �.f /. It fol-
lows that �1 D .fC�.f /

2
/2 C .f ��.f /

2
p
�1

/2 is a sum of two squares in M .Z/G , as desired.

LetZ be aG-equivariant complex manifold of dimension 1 such thatZ=G is connected.
If x 2 ZG and if t 2M .Z/G is a uniformizer at x, expanding in power series at x yields an
inclusion M .Z/G � R..t//. Restricting to M .Z/G the unique ordering < of the field R..t//
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for which t > 0 gives rise to an ordering �x;t of the field M .Z/G . It is easily verified, using
the fact that Z is either projective or Stein, that �x;t and �x0;t 0 coincide if and only if x D x0

and .t=t 0/.x/ 2 R>0. We show that ifZG is compact, there are no other orderings of M .Z/G .

Proposition A.9. Let Z be a G-equivariant complex manifold of dimension 1 such that
Z=G is connected and ZG is compact. Then all the orderings of M .Z/G are of the form �x;t
described above.

Proof. Fix an ordering � of M .Z/G . With � is associated a valuation ring

A WD ¹f 2M .Z/G j �r � f � r for some r 2 Rº

with maximal ideal

m WD ¹f 2M .Z/G j �r � f � r for all r 2 R>0º

and residue field isomorphic to R [75, Theorems 2 and 3].
Assume for contradiction that for every point x 2 ZG , there exists fx 2 m such that fx

does not vanish at x. Since ZG is compact, there exist a finite subset † � ZG and " 2 R>0
such that f WD

P
x2† f

2
x 2 m does not take any finite value that is � " on ZG . The field

M .Z/G.
p
" � f / is the field of G-equivariant meromorphic functions of a G-equivariant

complex manifold Y of dimension 1, which is a ramified covering of Z (see Proposition A.4).
Since f > " onZG , we see that Y G lies above the poles of " � f , hence is discrete. But Y G is
a one-dimensional differentiable manifold as G acts antiholomorphically on Y . It follows that
Y G D ¿. Proposition A.8 implies that M .Z/G.

p
" � f / cannot be ordered. Since " � f � 0,

this contradicts [74, VIII Basic Lemma 1.4].
We have shown the existence of a point x 2 ZG such that all f 2 m vanish at x. All

g 2 A can be written in a unique way as g D r C f with r 2 R and f 2 m, hence have
no poles at x. Since for all g 2 .M .Z/G/�, one of g and 1=g must belong to A, and since
R � A, we deduce that A �M .Z/G is the set of functions with no poles at x. It follows that
m D ¹f 2M .Z/G j f .x/ D 0º.

Let t 2M .Z/G be a uniformizer at x. After replacing t with �t , assume that t � 0. For
f 2 .M .Z/G/�, there are unique n 2 Z, r 2 R� and g 2 m such that f D tn.r C g/, and
f � 0 if and only if r > 0. It follows that � and �x;t coincide.

A.7. Sections of submersions. Let Z be a G-equivariant complex manifold. The total
spaceE of the holomorphic vector bundleE ! Z associated with aG-equivariant locally free
coherent sheaf E on Z has a natural structure of G-equivariant complex manifold.

The first part of the following proposition is a G-equivariant variant of a particular case
of [42, Proposition 3.2]. We explain how to make the proof work G-equivariantly.

Proposition A.10. Let f W Z ! Y be aG-equivariant holomorphic map ofG-equivar-
iant complex manifolds, and let u W Y ! Z be a G-equivariant holomorphic section of f .
Suppose that Y is Stein.

(i) There exist a G-stable open neighborhood U of u.Y / in Z, a G-stable open neigh-
borhood U 0 of the zero section u.Y / in Nu.Y /=Z and a G-equivariant biholomorphism
U 0
�
�! U respecting the projections to Y that is the identity on u.Y / and induces the

identity Nu.Y /=Z D Nu.Y /=Nu.Y /=Z
�
�! Nu.Y /=Z between normal bundles.
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(ii) Suppose that Y has no isolated point. Let K � Y be a G-stable compact subset and let
S � Z be a nowhere dense analytic subset. Choose b1; : : : ; bm 2 K and r � 0. Then
there exist a G-stable open neighborhood Y 0 of K in Y and a sequence un W Y 0 ! Z of
G-equivariant holomorphic sections of f above Y 0 with the same r-jets as u at the points
bi , converging uniformly to u on K, and such that no connected component of un.Y 0/ is
included in S .

(iii) If Z0 is a G-equivariant complex manifold and if f 0 W Z0 ! Y and g W Z ! Z0 are
G-equivariant holomorphic maps with f D f 0 ı g such that g is submersive along u.Y /,
there exist a G-stable open neighborhood W of g ı u.Y / in Z0 and a G-equivariant
holomorphic map w W W ! Z with g ı w D IdW and w ı g ı u D u.

Proof. (i) Since u is a holomorphic section of f , it follows that the map f is submersive
along u.Y /, and we may assume that f is submersive. We may moreover assume that Z
is Stein by Proposition A.2. The G-stable sub-vector bundle E � TZ consisting of those
vectors tangent to the fibers of f satisfies Eju.Y / ' Nu.Y /=Z . By Lemma A.1 (i), there exists
a G-equivariant surjection p W Z � CN � E of holomorphic vector bundles on Z, induced
by vector fields V1; : : : ; VN on Z. As follows from Lemma A.1 (ii), there is a G-equivariant
morphism q W Nu.Y /=Z ! u.Y / � CN of holomorphic vector bundles on u.Y / that is a section
of pju.Y /�CN . Let 'it be the holomorphic flow of Vi . For .x; t1; : : : ; tN / 2 u.Y / � CN in an
appropriate neighborhood of u.Y / � ¹0º in u.Y / � CN , define

F.x; t1; : : : ; tN / D '
1
t1
ı � � � ı 'NtN .x/ 2 Z:

The map x 7! F.q.x// induces the required biholomorphism between neighborhoods of u.Y /
in Nu.Y /=Z and Z by the inverse function theorem, as explained in [42, Proof of Proposi-
tion 3.2]. Its G-equivariance follows from our choices.

(ii) By (i), we may assume thatZ is a neighborhood of the zero section of aG-equivariant
vector bundle E on Y and that u is the zero section. Let K 0 be a compact G-stable neighbor-
hood of K in Y , and let Y 0 be the union of the connected components of the interior of K 0

that meet K. The compactness of K implies that Y 0 has finitely many connected components
Y 01; : : : ; Y

0
l
. The set † of x 2 Y such that S contains a neighborhood of u.x/ in f �1.x/ is

nowhere dense in Y because S � Z is a nowhere dense analytic subset. Since G acts antiholo-
morphically on Y and Y has no isolated point, the subset Y G � Y is nowhere dense. It follows
that we can choose yj 2 Y 0j for 1 � j � l such that yj … † [ Y G and such that yj and �.yj /
are distinct from the bi . Since yj … †, there exists zj 2 f �1.yj / � Eyj such that tzj … S for
all 0 < t � 1. Since Y is Stein, one can find a section � 2 H 0.Y;E/ vanishing to order r at
the bi and such that �.yj / D zj and �.�.yj // D �.zj /. Replacing � with .� C �.�//=2 ensures
that � 2 H 0.Y;E/G . Since K 0 is compact, it follows that �=n 2 H 0.Y;E/G induces a section
un of f over Y 0 as soon as n� 0. The sequence un has the required properties.

(iii) By part (i), we may assume that Z is a neighborhood of the zero section u.Y /
ofNu.Y /=Z . Since g is submersive along u.Y /, the map g induces a surjection ofG-equivariant
vector bundles p W Nu.Y /=Z� Ngıu.Y /=Z0 . By Lemma A.1 (ii), we can find a G-equivariant
splitting s W Ngıu.Y /=Z0 ! Nu.Y /=Z of p. The composition g ı .sjs�1.Z// W s

�1.Z/! Z0 is
the identity on g ıu.Y / and a local diffeomorphism along g ıu.Y /, hence induces aG-equivar-
iant biholomorphism  W W 0

�
�! W between some G-stable open neighborhoods W 0 and W

of g ı u.Y / in s�1.Z/ and Z0. To conclude, define w WD s ı  �1 W W ! Z.



Benoist and Wittenberg, The tight approximation property 197

References

[1] D. Abramovich, J. Denef and K. Karu, Weak toroidalization over non-closed fields, Manuscripta Math. 142
(2013), no. 1–2, 257–271.

[2] D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000), no. 2,
241–273.

[3] S. Akbulut and H. King, Polynomial equations of immersed surfaces, Pacific J. Math. 131 (1988), no. 2,
209–217.

[4] C. Araujo and J. Kollár, Rational curves on varieties, in: Higher dimensional varieties and rational points
(Budapest 2001), Bolyai Soc. Math. Stud. 12, Springer, Berlin (2003), 13–68.

[5] E. Artin and O. Schreier, Eine Kennzeichnung der reell abgeschlossenen Körper, Abh. Math. Semin. Univ.
Hamburg 5 (1927), no. 1, 225–231.

[6] O. Benoist, The period-index problem for real surfaces, Publ. Math. Inst. Hautes Études Sci. 130 (2019),
63–110.

[7] O. Benoist and O. Wittenberg, On the integral Hodge conjecture for real varieties. I, Invent. Math. 222 (2020),
no. 1, 1–77.

[8] O. Benoist and O. Wittenberg, On the integral Hodge conjecture for real varieties. II, J. Éc. Polytech. Math. 7
(2020), 373–429.

[9] V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys
Monogr. 33, American Mathematical Society, Providence 1990.

[10] J. Bochnak, M. Coste and M.-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb. (3) 36, Springer,
Berlin 1998.

[11] J. Bochnak and W. Kucharz, The Weierstrass approximation theorem for maps between real algebraic
varieties, Math. Ann. 314 (1999), no. 4, 601–612.

[12] J. Bochnak and W. Kucharz, Approximation of holomorphic maps by algebraic morphisms, Ann. Pol.
Math. 80 (2003), 85–92.

[13] J. Bochnak and W. Kucharz, Algebraic approximation of smooth maps, Univ. Iagel. Acta Math. 48 (2010),
9–40.

[14] A. Borel, Linear algebraic groups, 2nd ed., Grad. Texts in Math. 126, Springer, New York 1991.
[15] A. Borel and A. Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math.

France 89 (1961), 461–513.
[16] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron models, Ergeb. Math. Grenzgeb. (3) 21, Springer, Berlin

1990.
[17] G. E. Bredon, Sheaf theory, 2nd ed., Grad. Texts in Math. 170, Springer, New York 1997.
[18] G. W. Brumfiel, Quotient spaces for semialgebraic equivalence relations, Math. Z. 195 (1987), no. 1, 69–78.
[19] V. I. Chernousov, The group of similarity ratios of a canonical quadratic form, and the stable rationality of

the variety PSO, Mat. Zametki 55 (1994), no. 4, 114–119, 144.
[20] C. Ciliberto and C. Pedrini, Real abelian varieties and real algebraic curves, in: Lectures in real geometry

(Madrid 1994), De Gruyter Exp. Math. 23, De Gruyter, Berlin (1996), 167–256.
[21] J.-L. Colliot-Thélène, Real rational surfaces without a real point, Arch. Math. (Basel) 58 (1992), no. 4,

392–396.
[22] J.-L. Colliot-Thélène, Groupes linéaires sur les corps de fonctions de courbes réelles, J. reine angew. Math.

474 (1996), 139–167.
[23] J.-L. Colliot-Thélène and P. Gille, Remarques sur l’approximation faible sur un corps de fonctions d’une

variable, in: Arithmetic of higher-dimensional algebraic varieties (Palo Alto 2002), Progr. Math. 226,
Birkhäuser, Boston (2004), 121–134.

[24] J.-L. Colliot-Thélène and J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. Éc. Norm. Supér. (4) 10
(1977), no. 2, 175–229.

[25] J.-L. Colliot-Thélène and J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic
groups (with special regards to the Brauer group), in: Algebraic groups and homogeneous spaces, Tata Inst.
Fund. Res. Stud. Math. 19, Tata Institute of Fundamental Research, Mumbai (2007), 113–186.

[26] J.-L. Colliot-Thélène, J.-J. Sansuc and P. Swinnerton-Dyer, Intersections of two quadrics and Châtelet
surfaces. I, J. reine angew. Math. 373 (1987), 37–107.

[27] A. Comessatti, Fondamenti per la geometria sopra le suerficie razionali dal punto di vista reale, Math. Ann.
73 (1912), no. 1, 1–72.

[28] M. Coste and M.-F. Roy, La topologie du spectre réel, in: Ordered fields and real algebraic geometry (San
Francisco 1981), Contemp. Math. 8, American Mathematical Society, Providence (1982), 27–59.

[29] D. A. Cox, J. B. Little and H. K. Schenck, Toric varieties, Grad. Stud. Math. 124, American Mathematical
Society, Providence 2011.



198 Benoist and Wittenberg, The tight approximation property

[30] H. Delfs and M. Knebusch, Semialgebraic topology over a real closed field. II. Basic theory of semialgebraic
spaces, Math. Z. 178 (1981), no. 2, 175–213.

[31] H. Delfs and M. Knebusch, On the homology of algebraic varieties over real closed fields, J. reine angew.
Math. 335 (1982), 122–163.

[32] H. Delfs and M. Knebusch, An introduction to locally semialgebraic spaces, Rocky Mountain J. Math.14
(1984), 945–963.

[33] H. Delfs and M. Knebusch, Locally semialgebraic spaces, Lecture Notes in Math. 1173, Springer, Berlin
1985.

[34] J.-P. Demailly, L. Lempert and B. Shiffman, Algebraic approximations of holomorphic maps from Stein
domains to projective manifolds, Duke Math. J. 76 (1994), no. 2, 333–363.

[35] M. Demazure and A. Grothendieck, Schémas en groupes. I: Propriétés générales des schémas en groupes,
Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et
A. Grothendieck, Lecture Notes in Math. 151, Springer, Berlin 1970.

[36] M. Demazure and A. Grothendieck, Schémas en groupes. II: Groupes de type multiplicatif, et structure des
schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé
par M. Demazure et A. Grothendieck, Lecture Notes in Math. 152, Springer, Berlin 1970.

[37] F. R. Demeyer and M. A. Knus, The Brauer group of a real curve, Proc. Amer. Math. Soc. 57 (1976), no. 2,
227–232.

[38] A. Ducros, Principe de Hasse pour les espaces principaux homogènes sous les groupes classiques sur un
corps de dimension cohomologique virtuelle au plus 1, Manuscripta Math. 89 (1996), no. 3, 335–354.

[39] A. Ducros, Fibrations en variétés de Severi–Brauer au-dessus de la droite projective sur le corps des fonctions
d’une courbe réelle, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 1, 71–75.

[40] A. Ducros, L’obstruction de réciprocité à l’existence de points rationnels pour certaines variétés sur le corps
des fonctions d’une courbe réelle, J. reine angew. Math. 504 (1998), 73–114.

[41] S. Finashin and V. Kharlamov, First homology of a real cubic is generated by lines, preprint 2019,
https://arxiv.org/abs/1911.07008.
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