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tamás szamuely is Senior Research Fellow, Alfréd Rényi Institute of
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Alfréd Rényi Institute of Mathematics,
Hungarian Academy of Sciences, Budapest



cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-86103-8

isbn-13 978-0-511-22635-9

© P. Gille and T. Szamuely 2006

2006

Information on this title: www.cambridge.org/9780521861038

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-22635-7

isbn-10 0-521-86103-9

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521861038


Contents

Preface page xi
Acknowledgments xii

1 Quaternion algebras 1
1.1 Basic properties 1
1.2 Splitting over a quadratic extension 4
1.3 The associated conic 7
1.4 A theorem of Witt 9
1.5 Tensor products of quaternion algebras 12

2 Central simple algebras and Galois descent 17
2.1 Wedderburn’s theorem 17
2.2 Splitting fields 20
2.3 Galois descent 24
2.4 The Brauer group 29
2.5 Cyclic algebras 33
2.6 Reduced norms and traces 37
2.7 A basic exact sequence 40
2.8 K1 of central simple algebras 42

3 Techniques from group cohomology 50
3.1 Definition of cohomology groups 50
3.2 Explicit resolutions 56
3.3 Relation to subgroups 60
3.4 Cup-products 68

4 The cohomological Brauer group 80
4.1 Profinite groups and Galois groups 80
4.2 Cohomology of profinite groups 85
4.3 The cohomology exact sequence 90
4.4 The Brauer group revisited 95
4.5 Index and period 100
4.6 The Galois symbol 106
4.7 Cyclic algebras and symbols 109



viii Contents

5 Severi–Brauer varieties 114
5.1 Basic properties 115
5.2 Classification by Galois cohomology 117
5.3 Geometric Brauer equivalence 120
5.4 Amitsur’s theorem 125
5.5 An application: making central simple algebras cyclic 131

6 Residue maps 135
6.1 Cohomological dimension 135
6.2 C1-fields 140
6.3 Cohomology of Laurent series fields 146
6.4 Cohomology of function fields of curves 151
6.5 Application to class field theory 157
6.6 Application to the rationality problem: the method 160
6.7 Application to the rationality problem: the example 167
6.8 Residue maps with finite coefficients 171
6.9 The Faddeev sequence with finite coefficients 176

7 Milnor K-theory 183
7.1 The tame symbol 183
7.2 Milnor’s exact sequence and the Bass–Tate lemma 189
7.3 The norm map 195
7.4 Reciprocity laws 204
7.5 Applications to the Galois symbol 210
7.6 The Galois symbol over number fields 215

8 The Merkurjev–Suslin theorem 223
8.1 Gersten complexes in Milnor K-theory 223
8.2 Properties of Gersten complexes 227
8.3 A property of Severi–Brauer varieties 232
8.4 Hilbert’s Theorem 90 for K2 238
8.5 The Merkurjev–Suslin theorem: a special case 245
8.6 The Merkurjev–Suslin theorem: the general case 250

9 Symbols in positive characteristic 259
9.1 The theorems of Teichmüller and Albert 259
9.2 Differential forms and p-torsion in the Brauer group 266
9.3 Logarithmic differentials and flat p-connections 269
9.4 Decomposition of the de Rham complex 276
9.5 The Bloch–Gabber–Kato theorem: statement and reductions 279
9.6 Surjectivity of the differential symbol 282
9.7 Injectivity of the differential symbol 288



Contents ix

Appendix: A breviary of algebraic geometry 298
A.1 Affine and projective varieties 298
A.2 Maps between varieties 300
A.3 Function fields and dimension 302
A.4 Divisors 305
A.5 Complete local rings 308
A.6 Discrete valuations 310
A.7 Derivations 314
A.8 Differential forms 318

Bibliography 323
Index 339





Preface

This book provides a comprehensive and up-to-date introduction to the theory
of central simple algebras over arbitrary fields, emphasizing methods of Galois
cohomology and (mostly elementary) algebraic geometry. The central result is
the Merkurjev–Suslin theorem. As we see it today, this fundamental theorem is
at the same time the culmination of the theory of Brauer groups of fields initiated
by Brauer, Noether, Hasse and Albert in the 1930s, and a starting point of motivic
cohomology theory, a domain which is at the forefront of current research
in algebraic geometry and K-theory – suffice it here to mention the recent
spectacular results of Voevodsky, Suslin, Rost and others. As a gentle ascent
towards the Merkurjev–Suslin theorem, we cover the basic theory of central
simple algebras, methods of Galois descent and Galois cohomology, Severi–
Brauer varieties, residue maps and finally, Milnor K-theory and K-cohomology.
These chapters also contain a number of noteworthy additional topics. The last
chapter of the book rounds off the theory by presenting the results in positive
characteristic. For an overview of the contents of each chapter we refer to their
introductory sections.

Prerequisites The book should be accessible to a graduate student or a non-
specialist reader with a solid training in algebra including Galois theory and
basic commutative algebra, but no homological algebra. Some familiarity with
algebraic geometry is also helpful. Most of the text can be read with a basic
knowledge corresponding to, say, the first volume of Shafarevich’s text. To help
the novice, we summarize in an appendix the results from algebraic geometry
we need. The first three sections of Chapter 8 require some familiarity with
schemes, and in the proof of one technical statement we are forced to use tech-
niques from Quillen K-theory. However, these may be skipped in a first reading
by those willing to accept some ‘black boxes’.
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Alfréd Rényi Institute. We thank both audiences for their pertinent questions and
comments, and in particular Endre Szabó who shared his geometric insight with
us. Most of the book was written while the first author visited the Rényi Institute
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1

Quaternion algebras

As a prelude to the book, we present here our main objects of study in the
simplest case, that of quaternion algebras. Many concepts that will be ubiquitous
in what follows, such as division algebras, splitting fields or norms appear
here in a concrete and elementary context. Another important notion we shall
introduce is that of the conic associated with a quaternion algebra; these are the
simplest examples of Severi–Brauer varieties, objects to which a whole chapter
will be devoted later. In the second part of the chapter two classic theorems
from the 1930s are proven: a theorem of Witt asserting that the associated conic
determines a quaternion algebra up to isomorphism, and a theorem of Albert
that gives a criterion for the tensor product of two quaternion algebras to be
a division algebra. The discussion following Albert’s theorem will lead us to
the statement of one of the main theorems proven later in the book, that of
Merkurjev concerning division algebras of period 2.

The basic theory of quaternion algebras goes back to the nineteenth century.
The original references for the main theorems of the last two sections are
Witt [1] and Albert [1], [5], respectively.

1.1 Basic properties
In this book we shall study finite dimensional algebras over a field. Here by an
algebra over a field k we mean a k-vector space equipped with a not necessar-
ily commutative but associative k-linear multiplication. All k-algebras will be
tacitly assumed to have a unit element.

Historically the first example of a finite dimensional noncommutative alge-
bra over a field was discovered by W. R. Hamilton during a walk with his
wife (presumably doomed to silence) on 16 October 1843. It is the algebra of
quaternions, a 4-dimensional algebra with basis 1, i, j, k over the field R of
real numbers, the multiplication being determined by the rules

i2 = −1, j2 = −1, i j = − j i = k.

This is in fact a division algebra over R, which means that each nonzero element
x has a two-sided multiplicative inverse, i.e. an element y with xy = yx = 1.
Hamilton proved this as follows.
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For a quaternion q = x + yi + z j + wk, introduce its conjugate

q = x − yi − z j − wk

and its norm N (q) = qq . A computation gives N (q) = x2 + y2 + z2 + w2, so
if q �= 0, the quaternion q/N (q) is an inverse for q .

We now come to an easy generalization of the above construction. Henceforth
in this chapter, unless otherwise stated, k will denote a field of characteristic
not 2.

Definition 1.1.1 For any two elements a, b ∈ k× define the (generalized)
quaternion algebra (a, b) as the 4-dimensional k-algebra with basis 1, i, j, i j ,
multiplication being determined by

i2 = a, j2 = b, i j = − j i.

One calls the set {1, i, j, i j} a quaternion basis of (a, b).

Remark 1.1.2 The isomorphism class of the algebra (a, b) depends only on the
classes of a and b in k×/k×2, because the substitution i �→ ui, j �→ v j induces
an isomorphism

(a, b) ∼→ (u2a, v2b)

for all u, v ∈ k×. This implies in particular that the algebra (a, b) is isomorphic
to (b, a); indeed, mapping i �→ abj, j �→ abi we get

(a, b) ∼= (a2b3, a3b2) ∼= (b, a).

Given an element q = x + yi + z j + wi j of the quaternion algebra (a, b),
we define its conjugate by

q = x − yi − z j − wi j.

The map (a, b) → (a, b) given by q �→ q is an anti-automorphism of the k-
algebra (a, b), i.e. it is a k-vector space automorphism of (a, b) satisfying
(q1q2) = q2q1. Moreover, we have q = q; an anti-automorphism with this prop-
erty is called an involution in ring theory.

We define the norm of q = x + yi + z j + wi j by N (q) = qq. A calculation
yields

N (q) = x2 − ay2 − bz2 + abw2 ∈ k, (1)

so N : (a, b) → k is a nondegenerate quadratic form. The computation

N (q1q2) = q1q2q2q1 = q1 N (q2)q1 = N (q1)N (q2)
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shows that the norm is a multiplicative function, and the same argument as for
Hamilton’s quaternions yields:

Lemma 1.1.3 An element q of the quaternion algebra (a, b) is invertible if and
only if it has nonzero norm. Hence (a, b) is a division algebra if and only if the
norm N : (a, b) → k does not vanish outside 0.

Remark 1.1.4 In fact, one can give an intrinsic definition of the conjugation
involution (and hence of the norm) on a quaternion algebra (a, b) which does not
depend on the choice of the basis (1, i, j, i j). Indeed, call an element q of (a, b)
a pure quaternion if q2 ∈ k but q /∈ k. A straightforward computation shows
that a nonzero q = x + yi + z j + wi j is a pure quaternion if and only if x = 0.
Hence a general q can be written uniquely as q = q1 + q2 with q1 ∈ k and q2

pure, and conjugation is given by q = q1 − q2. Moreover, a pure quaternion q
satisfies N (q) = −q2.

Example 1.1.5 (The matrix algebra M2(k))
Besides the classical Hamilton quaternions, the other basic example of

a quaternion algebra is the k-algebra M2(k) of 2 × 2 matrices. Indeed, the
assignment

i �→ I :=
[

1 0

0 −1

]
, j �→ J :=

[
0 b

1 0

]

defines an isomorphism (1, b) ∼= M2(k), because the matrices

Id =
[

1 0

0 1

]
, I =

[
1 0

0 −1

]
, J =

[
0 b

1 0

]
and I J =

[
0 b

−1 0

]
(2)

generate M2(k) as a k-vector space, and they satisfy the relations

I 2 = Id, J 2 = b Id, I J = −J I.

Definition 1.1.6 A quaternion algebra over k is called split if it is isomorphic
to M2(k) as a k-algebra.

Proposition 1.1.7 For a quaternion algebra (a, b) the following statements are
equivalent.

1. The algebra (a, b) is split.
2. The algebra (a, b) is not a division algebra.
3. The norm map N : (a, b) → k has a nontrivial zero.
4. The element b is a norm from the field extension k(

√
a)|k.
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Of course, instead of (4) another equivalent condition is that a is a norm from
the field extension k(

√
b)|k.

Proof The implication (1) ⇒ (2) is obvious and (2) ⇒ (3) was proven in
Lemma 1.1.3. For (3) ⇒ (4) we may assume a is not a square in k, for otherwise
the claim is obvious. Take a nonzero quaternion q = x + yi + z j + wi j with
norm 0. Then equation (1) implies (z2 − aw2)b = x2 − ay2, and so in particular
z2 − aw2 = (z + √

aw)(z − √
aw) �= 0, for otherwise a would be a square in

k. Denoting by NK |k the field norm from K = k(
√

a) we get

b = NK |k(x + √
ay)NK |k(z + √

aw)−1,

whence (4) by multiplicativity of NK |k . Finally, we shall show assuming (4)
that (a, b) ∼= (1, 4a2), whence (1) by the isomorphism in Example 1.1.5. To
see this, we may again assume that a is not a square in k. If b is a norm from
K , then so is b−1, so by (4) and our assumption on a we find r, s ∈ k satisfy-
ing b−1 = r2 − as2. Putting u = r j + si j thus yields u2 = br2 − abs2 = 1.
Moreover, one verifies that ui = −iu, which implies that the element
v = (1 + a)i + (1 − a)ui satisfies uv = (1 + a)ui + (1 − a)i = −vu and
v2 = (1 + a)2a − (1 − a)2a = 4a2. Passing to the basis (1, u, v, uv) thus gives
the required isomorphism (a, b) ∼= (1, 4a2).

Remark 1.1.8 Over a field of characteristic 2 one defines the generalized
quaternion algebra [a, b) by the presentation

[a, b) = 〈i, j | i2 + i = a, j2 = b, i j = j i + j〉
where a ∈ k and b ∈ k×. This algebra has properties analogous to those in the
above proposition (see Exercise 4).

1.2 Splitting over a quadratic extension
We now prove a structure theorem for division algebras of dimension 4. Recall
first that the centre Z (A) of a k-algebra A is the k-subalgebra consisting of
elements x ∈ A satisfying xy = yx for all y ∈ A. By assumption we have
k ⊂ Z (A); if this inclusion is an equality, one says that A is central over k. If
A is a division algebra, then Z (A) is a field. We then have:

Proposition 1.2.1 A 4-dimensional central division algebra D over k is iso-
morphic to a quaternion algebra.

We first prove:

Lemma 1.2.2 If D contains a commutative k-subalgebra isomorphic to a non-
trivial quadratic field extension k(

√
a) of k, then D is isomorphic to a quaternion

algebra (a, b) for suitable b ∈ k×.
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Proof A k-subalgebra as in the lemma contains an element q with q2 = a ∈ k.
By assumption, q is not in the centre k of D and hence the inner automorphism
of D given by x �→ q−1xq has exact order 2. As a k-linear automorphism of
D, it thus has −1 as an eigenvalue, which means that there exists r ∈ D such
that qr + rq = 0. The elements 1, q, r, qr are linearly independent over k, for
otherwise left multiplication by q would show that qr = −rq lies in the k-span
of 1 and q, but then it would commute with q, whereas they anticommute. The
relation qr + rq = 0 then implies that the k-linear automorphism x �→ r−2xr2

leaves all four basis elements 1, q, r and qr fixed. Thus r2 belongs to the centre
of D which is k by assumption. The lemma follows by setting r2 = b ∈ k×.

Proof of Proposition 1.2.1 Let d be an element of D \ k. As D is finite
dimensional over k, the powers {1, d, d2, . . . } are linearly dependent, so there
is a polynomial f ∈ k[x] with f (d) = 0. As D is a division algebra, it has no
zero divisors and we may assume f irreducible. This means there is a k-algebra
homomorphism k[x]/( f ) → D which realizes the field k(d) as a k-subalgebra
of D. Now the degree [k(d) : k] cannot be 1 as d /∈ k, and it cannot be 4 as D
is not commutative. Hence [k(d) : k] = 2, and the lemma applies.

The crucial ingredient in the above proof was the existence of a quadratic
extension k(

√
a) contained in D. Observe that the algebra D ⊗k k(

√
a) then

splits over k(
√

a). In fact, it follows from basic structural results to be proven
in the next chapter (Lemma 2.2.2 and Wedderburn’s theorem) that any 4-
dimensional central k-algebra for which there exists a quadratic extension of k
with this splitting property is a division algebra or a matrix algebra.

It is therefore interesting to characterize those quadratic extensions of k over
which a quaternion algebra splits.

Proposition 1.2.3 Consider a quaternion algebra A over k, and fix an element
a ∈ k× \ k×2. The following statements are equivalent:

1. A is isomorphic to the quaternion algebra (a, b) for some b ∈ k×.
2. The k(

√
a)-algebra A ⊗k k(

√
a) is split.

3. A contains a commutative k-subalgebra isomorphic to k(
√

a).

Proof To show (1) ⇒ (2), note that (a, b) ⊗k k(
√

a) is none but the quater-
nion algebra (a, b) defined over the field k(

√
a). But a is a square in k(

√
a),

so (a, b) ∼= (1, b), and the latter algebra is isomorphic to M2(k(
√

a)) by
Example 1.1.5. Next, if A is split, the same argument shows that (1) always
holds, so to prove (3) ⇒ (1) one may assume A is nonsplit, in which case
Lemma 1.2.2 applies.

The implication (2) ⇒ (3) is easy in the case when A ∼= M2(k): one chooses
an isomorphism M2(k) ∼= (1, a) as in Example 1.1.5 and takes the subfield
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k(J ), where J is the basis element with J 2 = a. We now assume A is non-
split, and extend the quaternion norm N on A to A ⊗k k(

√
a) by base change.

Applying part (3) of Proposition 1.1.7 to A ⊗k k(
√

a) one gets that there
exist elements q0, q1 ∈ A, not both 0, with N (q0 + √

aq1) = 0. Denote by
B : A ⊗k k(

√
a) × A ⊗k k(

√
a) → k(

√
a) the symmetric bilinear form associ-

ated with N (recall that B(x, y) = (N (x + y) − N (x) − N (y))/2 by definition,
hence B(x, x) = N (x)). We get

0 = B(q0 + √
aq1, q0 + √

aq1) = N (q0) + aN (q1) + 2
√

aB(q0, q1).

Now note that since q0, q1 ∈ A, the elements B(q0, q1) and N (q0) + aN (q1)
both lie in k. So it follows from the above equality that

N (q0) = −aN (q1) and 2B(q0, q1) = q0q1 + q1q0 = 0.

Here N (q0), N (q1) �= 0 as A is nonsplit. The element q2 := q0q1 ∈ A satisfies

q2
2 = q0q1q0q1 = −q0q0q1q1 = −N (q0)N (q1) = aN (q1)2.

The square of the element q := q2 N (q1)−1 is then precisely a, so mapping
√

a
to q embeds k(

√
a) into A.

We conclude this section by another characterization of the quaternion norm.

Proposition 1.2.4 Let (a, b) be a quaternion algebra over a field k, and let
K = k(

√
a) be a quadratic splitting field for (a, b). Then for all q ∈ (a, b) and

all K -isomorphisms φ : (a, b) ⊗k K ∼→ M2(K ) we have N (q) = det(φ(q)).

Proof First note that det(φ(q)) does not depend on the choice of φ. Indeed,
if ψ : (a, b) ⊗k K ∼→ M2(K ) is a second isomorphism, then φ ◦ ψ−1 is an
automorphism of M2(K ). But it is well known that all K -automorphisms of
M2(K ) are of the form M → C MC−1 for some invertible matrix C (check
this by hand or see Lemma 2.4.1 for a proof in any dimension), and that the
determinant map is invariant under such automorphisms.

Now observe that by definition the quaternion norm on (a, b) ⊗k K restricts
to that on (a, b). Therefore to prove the proposition it is enough to embed (a, b)
into M2(K ) via φ and check that on M2(K ) the quaternion norm (which is
intrinsic by Remark 1.1.4) is given by the determinant. For this, consider a
basis of M2(K ) as in (2) with b = 1 and write[

a1 a2

a3 a4

]
=
(

a1 + a4

2

)[ 1 0

0 1

]
+
(

a1 − a4

2

)[1 0

0 −1

]

+
(

a2 + a3

2

)[0 1

1 0

]
+
(

a2 − a3

2

)[ 0 1

−1 0

]
.
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Then equation (1) yields

N

([
a1 a2

a3 a4

])
=
(

a1 + a4

2

)2

−
(

a1 − a4

2

)2

−
(

a2 + a3

2

)2

+
(

a2 − a3

2

)2

= a1a4 − a2a3 = det

([
a1 a2

a3 a4

])
.

1.3 The associated conic
We now introduce another important invariant of a quaternion algebra (a, b),
the associated conic C(a, b). By definition, this is the projective plane curve
defined by the homogeneous equation

ax2 + by2 = z2 (3)

where x, y, z are the homogeneous coordinates in the projective plane P2. In
the case of (1, 1) ∼→M2(k) we get the usual circle

x2 + y2 = z2.

Remark 1.3.1 In fact, the conic C(a, b) is canonically attached to the algebra
(a, b) and does not depend on the choice of a basis. To see why, note first that the
conic C(a, b) is isomorphic to the conic ax2 + by2 = abz2 via the substitution
x �→ by, y �→ ax, z �→ abz (after substituting, divide the equation by ab). But
ax2 + by2 − abz2 is exactly the square of the pure quaternion xi + y j + zi j
and hence is intrinsically defined by Remark 1.1.4.

This observation also shows that if two quaternion algebras (a, b) and (c, d)
are isomorphic as k-algebras, then the conics C(a, b) and C(c, d) are also iso-
morphic over k. Indeed, constructing an isomorphism (a, b) ∼= (c, d) is equiv-
alent to finding a k-basis in (a, b) that satisfies the multiplicative rule in (c, d).

Recall from algebraic geometry that the conic C(a, b) is said to have a
k-rational point if there exist x0, y0, z0 ∈ k, not all zero, that satisfy equation
(3) above.

We can now give a complement to Proposition 1.1.7.

Proposition 1.3.2 The quaternion algebra (a, b) is split if and only if the conic
C(a, b) has a k-rational point.

Proof If (x0, y0, z0) is a k-rational point on C(a, b) with y0 �= 0, then
b = (z0/y0)2 − a(x0/y0)2 and part (4) of Proposition 1.1.7 is satisfied. If y0
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happens to be 0, then x0 must be nonzero and we get similarly that a is a norm
from the extension k(

√
b)|k. Conversely, if b = r2 − as2 for some r, s ∈ k,

then (s, 1, r ) is a k-rational point on C(a, b).

Remark 1.3.3 Again, the proposition has a counterpart in characteristic 2; see
Exercise 4.

Example 1.3.4 For a �= 1, the projective conic ax2 + (1 − a)y2 = z2 has the
k-rational point (1, 1, 1), hence the quaternion algebra (a, 1 − a) splits by the
proposition. This innocent-looking fact is a special case of the so-called Stein-
berg relation for symbols that we shall encounter later.

Remark 1.3.5 It is a well-known fact from algebraic geometry that a smooth
projective conic defined over a field k is isomorphic to the projective line P1

over k if and only if it has a k-rational point. The isomorphism is given by taking
the line joining a point P of the conic to some fixed k-rational point O and then
taking the intersection of this line with P1 embedded as, say, some coordinate
axis in P2. In such a way we get another equivalent condition for the splitting
of a quaternion algebra, which will be substantially generalized later.

In the remainder of this section we give examples of how Proposition 1.3.2
can be used to give easy proofs of splitting properties of quaternion algebras
over special fields.

Example 1.3.6 Let k be the finite field with q elements (q odd). Then any
quaternion algebra (a, b) over k is split.

To see this, it suffices by Proposition 1.3.2 to show that the conic C(a, b)
has a k-rational point. We shall find a point (x0, y0, z0) with z0 = 1. As the
multiplicative group of k is cyclic of order q − 1, there are exactly 1 + (q − 1)/2
squares in k, including 0. Thus the sets {ax2 | x ∈ k} and {1 − by2 | y ∈ k} both
have cardinality 1 + (q − 1)/2, hence must have an element in common.

The next two examples concern the field k(t) of rational functions over a
field k, which is by definition the fraction field of the polynomial ring k[t].
Note that sending t to 0 induces a k-homomorphism k[t] → k; we call it the
specialization map attached to t .

Example 1.3.7 Let (a, b) be a quaternion algebra over k. Then (a, b) is split
over k if and only if (a, b) ⊗k k(t) is split over k(t).

Here necessity is obvious. For sufficency, we assume given a point (xt , yt , zt )
of C(a, b) defined over k(t). As the equation (3) defining C(a, b) is homoge-
neous, we may assume after multiplication by a suitable element of k(t) that
xt , yt , zt all lie in k[t] and one of them has a nonzero constant term. Then
specialization gives a k-point (xt (0), yt (0), zt (0)) of C(a, b).
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Finally we give an example of a splitting criterion for a quaternion algebra
over k(t) that does not come from k.

Example 1.3.8 For a ∈ k× the k(t)-algebra (a, t) is split if and only if a is a
square in k.

Here sufficiency is contained in Example 1.1.5. For necessity, assume given
a k(t)-point (xt , yt , zt ) of C(a, b) as above. Again we may assume xt , yt , zt are
all in k[t]. If xt and zt were both divisible by t , then equation (3) would imply
the same for yt , so after an eventual division we may assume they are not. Then
setting t = 0 gives ax2

t (0) = zt (0)2 and so a = x2
t (0)−1zt (0)2 is a square.

1.4 A theorem of Witt
In this section we prove an elegant theorem which characterizes isomorphisms
of quaternion algebras by means of the function fields of the associated conics.
Recall that the function field of an algebraic curve C is the field k(C) of rational
functions defined over some Zariski open subset of C . In the concrete case of a
conic C(a, b) as in the previous section, the simplest way to define it is to take
the fraction field of the integral domain k[x, y]/(ax2 + by2 − 1) (this is also
the function field of the affine curve of equation ax2 + by2 = 1).

A crucial observation for the sequel is the following.

Remark 1.4.1 The quaternion algebra (a, b) ⊗k k(C(a, b)) is always split over
k(C(a, b)). Indeed, the conic C(a, b) always has a point over this field, namely
(x, y, 1) (where we also denote by x, y their images in k(C(a, b))). This point
is called the generic point of the conic.

Now we can state the theorem.

Theorem 1.4.2 (Witt) Let Q1 = (a1, b1), Q2 = (a2, b2) be quaternion alge-
bras, and let Ci = C(ai , bi ) be the associated conics. The algebras Q1 and Q2

are isomorphic over k if and only if the function fields k(C1) and k(C2) are
isomorphic over k.

Remark 1.4.3 It is known from algebraic geometry that two smooth projective
curves are isomorphic if and only if their function fields are. Thus the theorem
states that two quaternion algebras are isomorphic if and only if the associated
conics are isomorphic as algebraic curves.

In Chapter 5 we shall prove a broad generalization of the theorem, due to
Amitsur. We now begin the proof by the following easy lemma.

Lemma 1.4.4 If (a, b) is a quaternion algebra and c ∈ k× is a norm from the
field extension k(

√
a)|k, then (a, b) ∼= (a, bc).
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Proof By hypothesis, we may write c = x2 − ay2 with x, y ∈ k. Hence we
may consider c as the norm of the quaternion q = x + yi + 0 j + 0i j and set
J = q j = x j + yi j . Then J is a pure quaternion satisfying

i J + J i = 0, J 2 = −N (J ) = −N (q)N ( j) = bc,

and 1, i, J, i J is a basis of (a, b) over k (by a similar argument as in the proof
of Lemma 1.2.1). The lemma follows.

Proof of Theorem 1.4.2 Necessity follows from Remark 1.3.1, so it is enough
to prove sufficiency. If both Q1 and Q2 are split, the theorem is obvious. So
we may assume one of them, say Q1, is nonsplit. By Remark 1.4.1 the algebra
Q1 ⊗k k(C1) is split, hence so is the algebra Q1 ⊗k k(C2) by assumption. If Q2

is split, then k(C2) is a rational function field, and therefore Q1 is also split by
Example 1.3.7.

So we may assume that both algebras are nonsplit. In particular a1 is not a
square in k, and the algebra Q1 ⊗k L becomes split over the quadratic extension
L := k(

√
a1). For brevity’s sake, we write C instead of C1 in what follows.

The field L(C) = L ⊗k k(C) is the function field of the curve CL obtained by
extension of scalars from C ; this curve is isomorphic to the projective line
over L , and hence L(C) is isomorphic to the rational function field L(t). As
Q2 ⊗k L(C) is split over L(C) by assumption, Example 1.3.7 again yields that
Q2 ⊗k L must be split over L . Proposition 1.2.3 then implies that Q2

∼→(a1, c)
for some c ∈ k×. As Q2 ⊗k k(C) is split over k(C) (again by assumption and
Remark 1.4.1), it follows from Proposition 1.1.7 that c = NL(C)/k(C)( f ) for
some f ∈ L(C)×.

Our goal is to identify the function f in order to compute c. Recall (e.g.
from Section A.4 of the Appendix) that the group Div(CL ) of divisors on CL

is defined as the free abelian group generated by the closed points of CL (in
this case they corrrespond to irreducible polynomials in L(t), plus a point
at infinity). There is a divisor map div : L(C)× → Div(CL ) associating to a
function the divisor given by its zeros and poles, and a degree map given by∑

mi Pi �→ ∑
mi [κ(Pi ) : L], where κ(Pi ) is the residue field of the closed point

Pi . The two maps fit into an exact sequence

0 → L(C)×/L× div−→ Div(CL )
deg−→ Z → 0, (4)

corresponding in our case to the decomposition of rational functions into prod-
ucts of irreducible polynomials and their inverses.

The Galois group Gal (L|K ) = {1, σ } acts on this exact sequence as follows
(see Remark A.4.5 of the Appendix). On L(C) it acts via its action on L (but
note that under the isomorphism L(C) ∼= L(t) this action does not induce the
similar action on the right-hand side!). On Div(CL ) it acts by sending a closed
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point P to its conjugate σ (P). Finally, it acts trivially on Z, making the maps
of the sequence Gal (L|K )-equivariant.

Now consider the map (1 + σ ) : Div(CL ) → Div(CL ). By additivity of the
divisor map, we have

(1 + σ )div( f ) = div( f σ ( f )) = div(c) = 0,

as c is a constant. On the other hand, as σ has order 2, we have a natural direct
sum decomposition

Div(CL ) =
( ⊕

P=σ (P)

ZP

)
⊕
( ⊕

P �=σ (P)

ZP

)
,

where σ acts trivially on the first summand, and exchanges P and σ (P) in the
second. Writing div( f ) = E1 + E2 according to this decomposition, we get

0 = (1 + σ )div( f ) = 2E1 + (1 + σ )E2.

This implies that E1 = 0 and E2 is of the form
∑

(mi Pi − miσ (Pi )) for some
closed points P1, . . . , Pr and mi �= 0. Setting D = ∑

mi Pi , we may therefore
write

div( f ) = (1 − σ )D.

Let d be the degree of D. The point P0 := (1 : 0 :
√

a1) is an L-rational point of
our conic CL , whose equation is a1x2 + b1 y2 = z2. Exact sequence (4) therefore
shows that there exists g ∈ L(C)× such that

D − d P0 = div(g).

It follows that

div( f ) = div(gσ (g)−1) + d(1 − σ )P0.

Replacing f by f σ (g)g−1, we get a function still satisfying c = NL(C)|k(C)( f ),
but with

div( f ) = d(1 − σ )P0. (5)

We are now able to identify the function f up to a constant. We first claim
that the rational function h := (z − √

a1x)y−1 ∈ L(C)× satisfies

div(h) = (1 : 0 :
√

a1) − (1 : 0 : −√
a1) = (1 − σ )P0. (6)

Indeed, let P = (x0 : y0 : z0) be a pole of h (over an algebraic closure k̄). Then
we must have y0 = 0 and hence P = (1 : 0 : ±√

a1); in particular, P is an
L-rational point. But by the equation of C we have h = b1 y(z + √

a1z)−1, so
(1 : 0 :

√
a1) is a zero of h and not a pole. Therefore (1 : 0 : −√

a1) is the only
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pole of h and similarly (1 : 0 :
√

a1) is its only zero. Comparing formulae (5)
and (6), we get from the left exactness of sequence (4) that f = c0hd for some
constant c0 ∈ L×. We compute

c = NL(C)|k(C)( f ) = NL|k(c0)NL(C)|k(C)(h)d = NL|k(c0)
( z2 − a1x2

y2

)d
= NL|k(c0)bd

1 .

So Lemma 1.4.4 implies

Q2
∼= (a1, c) ∼= (

a1, bd
1

)
.

By our assumption Q2 is nonsplit, so d is odd and Q2
∼= (a1, b1), as

desired.

1.5 Tensor products of quaternion algebras
Now we step forward and consider higher dimensional k-algebras, where k
is still assumed to be a field of characteristic not 2. The simplest of these
are biquaternion algebras, which are by definition those k-algebras that are
isomorphic to a tensor product of two quaternion algebras over k.

We begin with two lemmas that are very helpful in calculations. The first is
well-known:

Lemma 1.5.1 The tensor product of two matrix algebras Mn(k) and Mm(k)
over k is isomorphic to the matrix algebra Mnm(k).

Proof Perhaps the simplest proof is to note that given k-endomorphisms
φ ∈ Endk(kn) and ψ ∈ Endk(km), the pair (φ,ψ) induces an element φ ⊗ ψ of
Endk(kn ⊗k km). The resulting map Endk(kn) ⊗ Endk(km) → Endk(kn ⊗k km)
is obviously injective, and it is surjective e.g. by dimension reasons.

Lemma 1.5.2 Given elements a, b, b′ ∈ k×, we have an isomorphism

(a, b) ⊗k (a, b′) ∼→(a, bb′) ⊗k M2(k).

Proof Denote by (1, i, j, i j) and (1, i ′, j ′, i ′ j ′) quaternion bases of (a, b) and
(a, b′), respectively, and consider the k-subspaces

A1 = k(1 ⊗ 1) ⊕ k(i ⊗ 1) ⊕ k( j ⊗ j ′) ⊕ k(i j ⊗ j ′),

A2 = k(1 ⊗ 1) ⊕ k(1 ⊗ j ′) ⊕ k(i ⊗ i ′ j ′) ⊕ k((−b′i) ⊗ i ′)

of (a, b) ⊗k (a, b′). One checks that A1 and A2 are both closed under multi-
plication and hence are subalgebras of (a, b) ⊗k (a, b′). By squaring the basis
elements i ⊗ 1, j ⊗ j ′ and 1 ⊗ j ′, i ⊗ i ′ j ′ we see that A1 and A2 are isomorphic
to the quaternion algebras (a, bb′) and (b′,−a2b′), respectively. But this latter
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algebra is isomorphic to (b′,−b′), which is split because the conic C(b′,−b′)
has the k-rational point (1, 1, 0).

Now consider the map ρ : A1 ⊗k A2 → (a, b) ⊗k (a, b′) induced by the k-
bilinear map (x, y) → xy. Inspection reveals that all standard basis elements
of (a, b) ⊗k (a, b′) lie in the image of ρ, so it is surjective and hence induces
the required isomorphism for dimension reasons.

Corollary 1.5.3 For a quaternion algebra (a, b) the tensor product algebra
(a, b) ⊗k (a, b) is isomorphic to the matrix algebra M4(k).

Proof The case b = b′ of the previous lemma and Example 1.1.5 give

(a, b) ⊗k (a, b) ∼= (a, b2) ⊗k M2(k) ∼= (a, 1) ⊗k M2(k) ∼= M2(k) ⊗k M2(k),

and we conclude by Lemma 1.5.1.

A biquaternion algebra A = Q1 ⊗k Q2 is equipped with an involution σ

defined as the product of the conjugation involutions on Q1 and Q2, i.e. by
setting σ (q1 ⊗ q2) = q1 ⊗ q2 and extending by linearity. We remark that the
involution σ is not canonical but depends on the decomposition A ∼= Q1 ⊗k Q2.
For i = 1, 2 denote by Q−

i the subspace of pure quaternions in Qi (cf.
Remark 1.1.4).

Lemma 1.5.4 Let V be the k-subspace of A consisting of elements satisfying
σ (a) = −a, and W the subspace of those with σ (a) = a. One has a direct sum
decomposition A = V ⊕ W , and moreover one may write

V = (Q−
1 ⊗k k) ⊕ (k ⊗k Q−

2 ) and W = k ⊕ (Q−
1 ⊗k Q−

2 ).

Proof One has V ∩ W = 0. Moreover, there are natural inclusions

(Q−
1 ⊗k k) ⊕ (k ⊗k Q−

2 ) ⊂ V and k ⊕ (Q−
1 ⊗k Q−

2 ) ⊂ W.

For dimension reasons these must be isomorphisms and V ⊕ W must be the
whole of A.

Denote by N1 and N2 the quaternion norms on Q1 and Q2, respectively, and
consider the quadratic form

φ(x, y) = N1(x) − N2(y) (7)

on V , called an Albert form of A. Again it depends on the decomposition
A ∼= Q1 ⊗k Q2.
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Theorem 1.5.5 (Albert) For a biquaternion algebra A ∼= Q1 ⊗k Q2 over k,
the following statements are equivalent:

1. The algebra A is not a division algebra.
2. There exist a, b, b′ ∈ k× such that Q1

∼→(a, b) and Q2
∼→(a, b′).

3. The Albert form (7) has a nontrivial zero on A.

Proof For the implication (2) ⇒ (3), note that the assumption in (2) implies
that there exist pure quaternions qi ∈ Q−

i with q2
i = −Ni (qi ) = a for i = 1, 2,

and hence φ(q1, q2) = 0. For (3) ⇒ (1), assume there is a nontrivial relation
φ(q1, q2) = 0 in pure quaternions. Note that q1 and q2 commute, because the
components Q1 and Q2 centralize each other in the tensor product Q1 ⊗k Q2.
Hence we have 0 = φ(q1, q2) = q2

1 − q2
2 = (q1 + q2)(q1 − q2), which implies

that A cannot be a division algebra.
For the hardest implication (1) ⇒ (2) assume (2) is false, and let us prove

that A ∼= Q1 ⊗k Q2 is a division algebra. If (2) is false, then both Q1 and Q2

are division algebras (otherwise say b′ = 1 and suitable a, b will do). Denote by
Ki a quadratic extension of K contained in Qi for i = 1, 2. By our assumption
that (2) is false, Proposition 1.2.3 implies that K1 splits Q1 but not Q2, and
similarly for K2. Therefore both K1 ⊗k Q2 and K2 ⊗k Q1 are division algebras.
It will suffice to show that each nonzero α ∈ A has a left inverse αl , for then
the conjugate αr := σ (σ (α)l) is a right inverse for α, and αl = αlααr = αr .
Moreover, it is enough to find α∗ ∈ A such that α∗α is a nonzero element lying
in either K1 ⊗k Q2 or Q1 ⊗k K2, for then α∗α has a left inverse, and so does
α. Fix a quaternion basis {1, i, j, i j} for Q2 such that K2 = k( j). We can then
write

α = (β1 + β2 j) + (β3 + β4 j)i j

with suitable βi ∈ Q1. We may assume that γ := β3 + β4 j �= 0, for otherwise
α lies in Q1 ⊗k K2 already. Then γ −1 exists in Q1 ⊗k K2, and after replacing
α by γ −1α we are reduced to the case when α = β1 + β2 j + i j . If β1 and β2

commute, then k(β1, β2) is either k or a quadratic extension K |k contained in
Q1. Thus α ∈ Q2 or α ∈ K ⊗k Q2, and we are done in this case. So we may
assume β1β2 − β2β1 �= 0. We then contend that α∗ := β1 − β2 j − i j is a good
choice. Indeed, we compute

α∗α = (β1 − β2 j − i j)(β1 + β2 j + i j) = (β1 − β2 j)(β1 + β2 j) − (i j)2

= β2
1 − β2

2 j2 − (i j)2 + (β1β2 − β2β1) j,

where the second equality holds since i j commutes with β1, β2 (for the same
reason as above), and anticommutes with j . Since j2 and (i j)2 lie in k and
β1β2 − β2β1 �= 0, this shows α∗α ∈ (Q1 ⊗k K2) \ {0}, as required.
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Remark 1.5.6 The above proof, taken from Lam [1], is a variant of Albert’s
original argument. For other proofs of the theorem, valid in all characteristics,
see Knus [1] as well as Tits [1] (for the equivalence (1) ⇔ (2)).

The theorem makes it possible to give concrete examples of biquaternion
division algebras, such as the following one.

Example 1.5.7 Let k be a field of characteristic �= 2 as usual, and let F be the
purely transcendental extension k(t1, t2, t3, t4). Then the biquaternion algebra

(t1, t2) ⊗F (t3, t4)

is a division algebra over F .
To see this, we have to check that the Albert form has no nontrivial zero.

Assume it does. Then by formula (1) for the quaternion norm we have a non-
trivial solution of the equation

−t1x2
1 − t2x2

2 + t1t2x2
1,2 + t3x2

3 + t4x2
4 − t3t4x2

3,4 = 0 (8)

in the variables x1, x2, x1,2, x3, x4, x3,4. By multiplying with a rational function
we may assume x1, x2, x1,2, x3, x4, x3,4 are all in k(t1, t2, t3)[t4] and one of them
is not divisible by t4.

Assume that x1, x2, x1,2, x3 are all divisible by t4. Then t2
4 must divide

t4x2
4 − t3t4x2

3,4, so t4 divides x2
4 − t3x2

3,4. Setting t4 = 0 produces a solution of
the equation x2 − t3 y2 = 0 with x, y ∈ k(t1, t2, t3) not both 0, which implies that
t3 is a square in k(t1, t2, t3); this is a contradiction. So one of the x1, x2, x1,2, x3

is not divisible by t4, and by setting t4 = 0 in equation (8) we get a nontrivial
solution of the equation

−t1 y2
1 − t2 y2

2 + t1t2 y2
1,2 + t3 y2

3 = 0

with entries in k(t1, t2, t3). A similar argument as before then shows that there
is a nontrivial solution of the equation

−t1z2
1 − t2z2

2 + t1t2z2
1,2 = 0

over the field k(t1, t2). Applying the same trick one last time, we see that the
equation

t1w
2
1 = 0

has a nontrivial solution in k(t1), which finally yields a contradiction.

In general, we say that a finite dimensional division algebra D over a field k
has period 2 if D ⊗k D is isomorphic to a matrix algebra over k. Quaternion
algebras have this property by Corollary 1.5.3. Also, applying Lemma 1.5.1 we
see that tensor products of division algebras of period 2 are again of period 2.

According to Proposition 1.2.1, a 4-dimensional central division algebra
over k is in fact a quaternion algebra. Moreover, in 1932 Albert proved that a
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16-dimensional central division algebra of period 2 is isomorphic to a biquater-
nion algebra. Thus it was plausible to conjecture that a central division algebra of
period 2 and dimension 4m is always a tensor product of m quaternion algebras.
However, in 1979 Amitsur, Rowen and Tignol [1] produced a 64-dimensional
central division algebra of period 2 which is not a tensor product of quaternion
algebras.

Therefore the following theorem of Merkurjev [1], which is one of the high-
lights of this book, is all the more remarkable.

Theorem 1.5.8 (Merkurjev) Let D be a central division algebra of period 2
over a field k. There exist positive integers m1,m2, n and quaternion algebras
Q1, . . . , Qn over k such that there is an isomorphism

D ⊗k Mm1 (k) ∼= Q1 ⊗k Q2 ⊗k · · · ⊗k Qn ⊗ Mm2 (k).

Exercises

1. Let Q be a quaternion algebra over k. Show that the conjugation involution is the
only linear map σ : Q → Q such that σ (1) = 1 and σ (q)q ∈ k for all q ∈ Q.

2. Show that a quaternion algebra is split if and only if it has a basis (e, f, g, h) in
which the norm is given by (xe + y f + zg + wh) �→ xy − zw. (In the language of
quadratic forms, this latter property means that the norm form is hyperbolic.)

3. Let Q be a quaternion algebra over k, and let K |k be a quadratic extension embedded
as a k-subalgebra in Q. Verify that one has N (q) = NK |k(q) for all q ∈ K , where N
is the quaternion norm and NK |k is the field norm. [Hint: Extend a suitable k-basis
of K to a quaternion basis of Q.]

4. Let k be a field of characteristic 2, and let [a, b) be the quaternion algebra of
Remark 1.1.8. Show that the following are equivalent:
� [a, b) ∼= M2(k).
� [a, b) is not a division algebra.
� The element b is a norm from the extension k(α)|k, where α is a root of the

equation x2 + x = a.
� The projective conic ax2 + by2 = z2 + zx has a k-rational point.

5. Determine those prime numbers p for which the quaternion algebra (−1, p) is split
over the field Q of rational numbers.

6. (Chain lemma) Assume that the quaternion algebras (a, b) and (c, d) are isomorphic.
Show that there exists an e ∈ k× such that

(a, b) ∼= (e, b) ∼= (e, d) ∼= (c, d).

[Hint: Consider the symmetric bilinear form B(q1, q2) := 1
2 (q1q2 + q2q1) on the

subspace B0 ⊂ (a, b) of elements q ∈ (a, b) satisfying q + q̄ = 0. Note that
i, j, I, J ∈ B0, where 1, i, j, i j and 1, I, J, I J are the standard bases of (a, b) ∼=
(c, d) with i2 = a, j2 = b, i j = − j i and I 2 = c, J 2 = d, I J = −J I . Take an ele-
ment ε ∈ B0 \ {0} with B(ε, j) = B(ε, J ) = 0 and set e = ε2.]
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Central simple algebras and
Galois descent

In this chapter we treat the basic theory of central simple algebras from a modern
viewpoint. The main point we would like to emphasize is that, as a consequence
of Wedderburn’s theorem, we may characterize central simple algebras as those
finite dimensional algebras which become isomorphic to some full matrix ring
over a finite extension of the base field. We then show that this extension can in
fact be chosen to be a Galois extension, which enables us to exploit a powerful
theory in our further investigations, that of Galois descent. Using descent we can
give elegant treatments of such classical topics as the construction of reduced
norms or the Skolem–Noether theorem. The main invariant concerning central
simple algebras is the Brauer group which classifies all finite dimensional central
division algebras over a field. Using Galois descent, we shall identify it with a
certain first cohomology set equipped with an abelian group structure.

The foundations of the theory of central simple algebras go back to the great
algebraists of the dawn of the twentieth century; we merely mention here the
names of Wedderburn, Dickson and Emmy Noether. The Brauer group appears
in the pioneering paper of the young Richard Brauer [1]. Though Galois descent
had been implicitly used by algebraists in the early years of the twentieth cen-
tury and Châtelet had considered special cases in connection with Diophantine
equations, it was André Weil who first gave a systematic treatment with applica-
tions to algebraic geometry in mind (Weil [2]). The theory in the form presented
below was developed by Jean-Pierre Serre, and finally found a tantalizing gen-
eralisation in the general descent theory of Grothendieck ([1], [2]).

2.1 Wedderburn’s theorem
Let k be a field. We assume throughout that all k-algebras under consideration
are finite dimensional over k. A k-algebra A is called simple if it has no (two-
sided) ideal other than 0 and A. Recall moreover from the previous chapter that
A is central if its centre equals k.

Here are the basic examples of central simple algebras.

Example 2.1.1 A division algebra over k is obviously simple. Its centre is a
field (indeed, inverting the relation xy = yx gives y−1x−1 = x−1 y−1 for all
y ∈ D, x ∈ Z (D)). Hence D is a central simple algebra over Z (D).
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As concrete examples (besides fields), we may cite nonsplit quaternion
algebras: these are central over k by definition and division algebras by Propo-
sition 1.1.7.

The next example shows that split quaternion algebras are also simple.

Example 2.1.2 If D is a division algebra over k, the ring Mn(D) of n × n
matrices over D is simple for all n ≥ 1. Checking this is an exercise in matrix
theory. Indeed, we have to show that the two-sided ideal 〈M〉 in Mn(D) gener-
ated by a nonzero matrix M is Mn(D) itself. Consider the matrices Ei j having
1 as the j-th element of the i-th row and zero elsewhere. Since each element of
Mn(D) is a D-linear combination of the Ei j , it suffices to show that Ei j ∈ 〈M〉
for all i, j . But in view of the relation Eki Ei j E jl = Ekl we see that it is enough
to show Ei j ∈ 〈M〉 for some i, j . Now choose i, j so that the j-th element in
the i-th row of M is a nonzero element m. Then m−1 Eii M E j j = Ei j , and we
are done.

Noting the easy fact that in a matrix ring the centre can only contain scalar
multiples of the identity matrix, we get that Mn(D) is a central simple algebra
over Z (D).

The main theorem on simple algebras over a field provides a converse to the
above example.

Theorem 2.1.3 (Wedderburn) Let A be a finite dimensional simple algebra
over a field k. Then there exist an integer n ≥ 1 and a division algebra D ⊃ k so
that A is isomorphic to the matrix ring Mn(D). Moreover, the division algebra
D is uniquely determined up to isomorphism.

The proof will follow from the next two lemmas. Before stating them, let us
recall some basic facts from module theory. First, a nonzero A-module M is
simple if it has no A-submodules other than 0 and M .

Example 2.1.4 Let us describe the simple left modules over Mn(D), where
D is a division algebra. For all 1 ≤ r ≤ n, consider the subring Ir ⊂ Mn(D)
formed by matrices M = [mi j ] with mi j = 0 for j �= r . These are left ideals in
Mn(D) and a simple argument with the matrices Ei j of Example 2.1.2 shows
that they are also minimal with respect to inclusion, i.e. simple Mn(D)-modules.
Moreover, we have Mn(D) = ⊕

Ir and the Ir are all isomorphic as Mn(D)-
modules. Finally, if M is a simple Mn(D)-module, it must be a quotient of
Mn(D), but then the induced map

⊕
Ir → M must induce an isomorphism

with some Ir . Thus all simple left Mn(D)-modules are isomorphic to (say) I1.

Next, an endomorphism of a left A-module M over a ring A is an A-
homomorphism M → M ; these form a ring EndA(M) where addition is given
by the rule (φ + ψ)(x) = φ(x) + ψ(x) and multiplication by composition of
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maps. If A is a k-algebra, then so is EndA(M), for multiplication by an ele-
ment of k defines an element in the centre of EndA(M). In the case when A
is a division algebra, M is a left vector space over A, so the usual argument
from linear algebra shows that choosing a basis of M induces an isomorphism
EndA(M) ∼= Mn(A), where n is the dimension of M over A.

The module M is equipped with a left module structure over EndA(M),
multiplication being given by the rule φ · x = φ(x) for x ∈ M, φ ∈ EndA(M).

Lemma 2.1.5 (Schur) Let M be a simple module over a k-algebra A. Then
EndA(M) is a division algebra.

Proof The kernel of a nonzero endomorphism M → M is an A-submodule
different from M , hence it is 0. Similarly, its image must be the whole of M .
Thus it is an isomorphism, which means it has an inverse in EndA(M).

Now let M be a left A-module with endomorphism ring D = EndA(M). As
remarked above, M is naturally a left D-module, hence one may also con-
sider the endomorphism ring EndD(M). One defines a ring homomorphism
λM : A → EndD(M) by sending a ∈ A to the endomorphism x �→ ax of M .
This is indeed a D-endomorphism, for if φ : M → M is an element of D, one
has φ · ax = φ(ax) = aφ(x) = aφ · x for all x ∈ M .

Lemma 2.1.6 (Rieffel) Let L be a nonzero left ideal in a simple k-algebra A,
and put D = EndA(L). Then the map λL : A → EndD(L) defined above is an
isomorphism.

Note that in a ring A a left ideal is none but a submodule of the left A-module A.

Proof Since λL �= 0, its kernel is a proper two-sided ideal of A. But A is
simple, so λL is injective. For surjectivity, we show first that λL (L) is a left
ideal in EndD(L). Indeed, take φ ∈ EndD(L) and l ∈ L . Then φ · λL (l) is the
map x �→ φ(lx). But for all x ∈ L , the map y �→ yx is an A-endomorphism of
L , i.e. an element of D. As φ is a D-endomorphism, we have φ(lx) = φ(l)x ,
and so φ · λL (l) = λL (φ(l)).

Now observe that the right ideal L A generated by L is a two-sided ideal,
hence L A = A. In particular, we have 1 = ∑

li ai with li ∈ L , ai ∈ A. Hence
for φ ∈ EndD(L) we have φ = φ · 1 = φλL (1) = ∑

φλL (li )λL (ai ). But since
λL (L) is a left ideal, we have here φλL (li ) ∈ λL (L) for all i , and thus
φ ∈ λL (A).

Proof of Theorem 2.1.3 As A is finite dimensional, a descending chain of
left ideals must stabilize. So let L be a minimal left ideal; it is then a simple
A-module. By Schur’s lemma, D = EndA(L) is a division algebra, and by
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Rieffel’s lemma we have an isomorphism A ∼= EndD(L). The discussion before
Lemma 2.1.5 then yields an isomorphism EndD(L) ∼= Mn(D), where n is the
dimension of L over D (it is finite as L is already finite dimensional over k).

For the unicity statement, assume that D and D′ are division algebras for
which A ∼= Mn(D) ∼= Mm(D′) with suitable integers n,m. By Example 2.1.4,
the minimal left ideal L then satisfies Dn ∼= L ∼= D′m , whence a chain of iso-
morphisms D ∼= EndA(Dn) ∼= EndA(L) ∼= EndA(D′m) ∼= D′.

Corollary 2.1.7 Let k be an algebraically closed field. Then every central sim-
ple k-algebra is isomorphic to Mn(k) for some n ≥ 1.

Proof By the theorem it is enough to see that there is no finite dimensional
division algebra D ⊃ k other than k. For this, let d be an element of D \ k. As
in the proof of Corollary 1.2.1 we see that there is an irreducible polynomial
f ∈ k[x] and a k-algebra homomorphism k[x]/( f ) → D whose image contains
d. But k being algebraically closed, we have k[x]/( f ) ∼= k.

2.2 Splitting fields
The last corollary enables one to give an alternative characterization of central
simple algebras.

Theorem 2.2.1 Let k be a field and A a finite dimensional k-algebra. Then A
is a central simple algebra if and only if there exist an integer n > 0 and a finite
field extension K |k so that A ⊗k K is isomorphic to the matrix ring Mn(K ).

We first prove:

Lemma 2.2.2 Let A be a finite dimensional k-algebra, and K |k a finite field
extension. The algebra A is central simple over k if and only if A ⊗k K is
central simple over K .

Proof If I is a nontrivial (two-sided) ideal of A, then I ⊗k K is a nontrivial
ideal of A ⊗k K (e.g. for dimension reasons); similarly, if A is not central, then
neither is A ⊗k K . Thus if A ⊗k K is central simple, then so is A.

Using Wedderburn’s theorem, for the converse it will be enough to consider
the case when A = D is a division algebra. Under this assumption, ifw1, . . . , wn

is a k-basis of K , then 1 ⊗ w1, . . . , 1 ⊗ wn yields a D-basis of D ⊗k K as a left
D-vector space. Given an element x = ∑

αi (1 ⊗ wi ) in the centre of D ⊗k K ,
for all d ∈ D the relation x = (d−1 ⊗ 1)x(d ⊗ 1) = ∑

(d−1αi d)(1 ⊗ wi )
implies d−1αi d = αi by the linear independence of the 1 ⊗ wi . As D is central
over k, the αi must lie in k, so D ⊗k K is central over K . Now if J is a nonzero
ideal in D ⊗k K generated by elements z1, . . . , zr , we may assume the zi to be
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D-linearly independent and extend them to a D-basis of D ⊗k K by adjoining
some of the 1 ⊗ wi , say 1 ⊗ wr+1, . . . , 1 ⊗ wn . Thus for 1 ≤ i ≤ r we may
write

1 ⊗ wi =
n∑

j=r+1

αi j (1 ⊗ w j ) + yi ,

where yi is some D-linear combination of the zi and hence an element of J . Here
y1, . . . , yr are D-linearly independent (because so are 1 ⊗ w1, . . . , 1 ⊗ wr ), so
they form a D-basis of J . As J is a two-sided ideal, for all d ∈ D we must have
d−1 yi d ∈ J for 1 ≤ i ≤ r , so there exist βil ∈ D with d−1 yi d = ∑

βil yl . We
may rewrite this relation as

(1 ⊗ wi ) −
n∑

j=r+1

(d−1αi j d)(1 ⊗ w j ) =
r∑

l=1

βil(1 ⊗ wl)

−
r∑

l=1

βil

n∑
j=r+1

αl j (1 ⊗ w j ),

from which we get as above, using the independence of the 1 ⊗ w j , thatβi i = 1,
βil = 0 for l �= i and d−1αi j d = αi j , i.e. αi j ∈ k as D is central. This means
that J can be generated by elements of K (viewed as a k-subalgebra of D ⊗k K
via the embedding w �→ 1 ⊗ w). As K is a field, we must have J ∩ K = K ,
so J = D ⊗k K . This shows that D ⊗k K is simple.

Proof of Theorem 2.2.1 Sufficiency follows from the above lemma and Exam-
ple 2.1.2. For necessity, note first that denoting by k̄ an algebraic closure of k,
the lemma together with Corollary 2.1.7 imply that A ⊗k k̄ ∼= Mn(k̄) for some
n. Now observe that for every finite field extension K of k contained in k̄,
the inclusion K ⊂ k̄ induces an injective map A ⊗k K → A ⊗k k̄ and A ⊗k k̄
arises as the union of the A ⊗k K in this way. Hence for a sufficiently large
finite extension K |k contained in k̄ the algebra A ⊗k K contains the elements
e1, . . . , en2 ∈ A ⊗k k̄ corresponding to the standard basis elements of Mn(k̄) via
the isomorphism A ⊗k k̄ ∼= Mn(k̄), and moreover the elements ai j occurring in
the relations ei e j = ∑

ai j ei defining the product operation are also contained
in K . Mapping the ei to the standard basis elements of Mn(K ) then induces a
K -isomorphism A ⊗k K ∼= Mn(K ).

Corollary 2.2.3 If A is a central simple k-algebra, its dimension over k is a
square.

Definition 2.2.4 A field extension K |k over which A ⊗k K is isomorphic to
Mn(K ) for suitable n is called a splitting field for A. We shall also employ the
terminology A splits over K or K splits A.

The integer
√

dim k A is called the degree of A.
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The following proposition, though immediate in the case of a perfect base
field, is crucial for our considerations to come.

Proposition 2.2.5 (Noether, Köthe) A central simple k-algebra has a splitting
field separable over k.

Proof Assume there exists a central simple k-algebra A which does not split
over any finite separable extension K |k. Fix separable and algebraic closures
ks ⊂ k̄ of k. By the same argument as at the end of the proof of Theorem 2.2.1,
the ks-algebra A ⊗k ks does not split over ks , hence by Wedderburn’s theorem
it is isomorphic to some matrix algebra Mn(D), where D is a division algebra
over ks different from ks . Let d > 1 be the dimension of D over ks . Then by
Corollary 2.1.7 we have D ⊗ks k̄ ∼= Md (k̄). Regarding the elements of Md (k̄)
as k̄-points of affine d2-space Ad2

, elements of D correspond to the points of
Ad2

defined over ks . As D is a division algebra, its nonzero elements give rise to
invertible matrices in Md (k̄); in particular, they have nonzero determinant. Now
the map which sends an element of Md (k̄) viewed as a point of Ad2

(k̄) to its
determinant is given by a polynomial P in the variables x1, . . . , xd2 ; note that
P ∈ ks[x1, . . . , xd2 ] as its coefficients are all 1 or −1. Hence our assumption
means that the hypersurface H ⊂ Ad2

defined by the vanishing of P contains
no points defined over ks except for the origin. But this contradicts the basic
fact from algebraic geometry (see Appendix, Proposition A.1.1) according to
which in an algebraic variety defined over a separably closed field ks the points
defined over ks form a Zariski dense subset; indeed, such a subset is infinite if
the variety has positive dimension.

Corollary 2.2.6 A finite dimensional k-algebra A is a central simple algebra
if and only if there exist an integer n > 0 and a finite Galois field extension K |k
so that A ⊗k K is isomorphic to the matrix ring Mn(K ).

Proof This follows from Theorem 2.2.1, Proposition 2.2.5 and the well-known
fact from Galois theory according to which every finite separable field extension
embeds into a finite Galois extension.

Remarks 2.2.7

1. It is important to bear in mind that if A is a central simple k-algebra
of degree n which does not split over k but splits over a finite Galois
extension K |k with group G, then the isomorphism A ⊗k K ∼= Mn(K ) is
not G-equivariant if we equip Mn(K ) with the usual action of G coming
from its action on K . Indeed, were it so, we would get an isomorphism
A ∼= Mn(k) by taking G-invariants.
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2. In traditional accounts, Proposition 2.2.5 is proven by showing that the
separable splitting field can actually be chosen among the field extensions
of k that are k-subalgebras of A. We shall prove this stronger fact later in
Proposition 4.5.4. However, it is not always possible to realize a Galois
splitting field in such a way, as shown by a famous counterexample by
Amitsur (see Amitsur [2] or Pierce [1]; see also Brussel [1] for counterex-
amples over Q(t) and Q((t))). Central simple algebras containing a Galois
splitting field are called crossed products in the literature.

We finally discuss a method for finding Galois splitting fields among k-
subalgebras of A. The basic idea is contained in the following splitting criterion,
inspired by the theory of maximal tori in reductive groups.

Proposition 2.2.8 A central simple algebra A of degree n over a field k is
split if and only if it contains a k-subalgebra isomorphic to the direct product
kn = k × · · · × k.

For the proof we need a well-known property of matrix algebras.

Lemma 2.2.9 The k-subalgebras in Mn(k) that are isomorphic to kn are
conjugate to the subalgebra of diagonal matrices.

Proof Giving a k-subalgebra isomorphic to kn is equivalent to specifying n
elements e1, . . . , en that form a system of orthogonal idempotents, i.e. satisfy
e2

i = 1 for all i and ei e j = 0 for i �= j . Identifying Mn(k) with the endomor-
phism algebra of an n-dimensional k-vector space V , we may regard the ei

as projections to 1-dimensional subspaces Vi in a direct product decomposi-
tion V = V1 ⊕ · · · ⊕ Vn of V . Choosing a vector space isomorphism V ∼= kn

sending Vi to the i-th component of kn = k ⊕ · · · ⊕ k gives rise to the required
conjugation.

Proof of Proposition 2.2.8 Of course Mn(k) contains subalgebras isomor-
phic to kn , whence the necessity of the condition. Conversely, assume given
a k-algebra embedding i : kn → A, and let e1, . . . , en be the images of the
standard basis elements of kn . By Rieffel’s Lemma it will be enough to show
that Ae1 is a simple left A-module and that the natural map k → EndA(Ae1)
is an isomorphism. If k is algebraically closed, then A ∼= Mn(k) by Corollary
2.1.7. Lemma 2.2.9 then enables us to assume that i is the standard diago-
nal embedding kn ⊂ Mn(k), for which the claim is straightforward. If k is not
algebraically closed, we pass to an algebraic closure and deduce the result by
dimension reasons.
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Corollary 2.2.10 Let A be a central simple k-algebra of degree n containing
a commutative k-subalgebra K which is a Galois field extension of k of
degree n. Then K is a splitting field for A.

Proof By Galois theory, the K -algebra K ⊗k K is isomorphic to K n (see
the discussion after the statement of Lemma 2.3.8 below), and thus it is a
K -subalgebra of A ⊗k K to which the proposition applies.

2.3 Galois descent
Corollary 2.2.6 makes it possible to classify central simple algebras using meth-
ods of Galois theory. Here we present such a method, known as Galois descent.

We shall work in a more general context, that of vector spaces V equipped
with a tensor � of type (p, q). By definition, � is an element of the tensor
product V ⊗p ⊗k (V ∗)⊗q , where p, q ≥ 0 are integers and V ∗ is the dual space
Homk(V, k). Note the natural isomorphism

V ⊗p ⊗k (V ∗)⊗q ∼= Homk(V ⊗q , V ⊗p)

coming from the general formula Homk(V, k) ⊗k W ∼= Homk(V, W ).

Examples 2.3.1 The following special cases will be the most important for us:

� The trivial case � = 0 (with any p, q). This is just V with no additional
structure.

� p = 1, q = 1. In this case � is given by a k-linear endomorphism of V .
� p = 0, q = 2. Then � is a sum of tensor products of k-linear functions,

i.e. a k-bilinear form V ⊗k V → k.
� p = 1, q = 2. This case corresponds to a k-bilinear map V ⊗k V → V .

Note that the theory of associative algebras is contained in the last exam-
ple, for the multiplication in such an algebra A is given by a k-bilinear map
A ⊗k A → A satisfying the associativity condition.

So consider pairs (V,�) of k-vector spaces equipped with a tensor of fixed
type (p, q) as above. A k-isomorphism between two such objects (V,�) and
(W, �) is given by a k-isomorphism f : V ∼→ W of k-vector spaces such that
f ⊗q ⊗ ( f ∗−1)⊗q : V ⊗p ⊗k (V ∗)⊗q → W ⊗p ⊗k (W ∗)⊗q maps � to �. Here
f ∗ : W ∗ ∼→ V ∗ is the k-isomorphism induced by f .

Now fix a finite Galois extension K |k with Galois group G = Gal (K |k).
Denote by VK the K -vector space V ⊗k K and by �K the tensor induced on
VK by�. In this way we associate with (V,�) a K -object (VK ,�K ). We say that
(V,�) and (W, �) become isomorphic over K if there exists a K -isomorphism



2.3 Galois descent 25

between (VK ,�K ) and (WK , �K ). In this situation, (W, �) is also called a
(K |k)-twisted form of (V,�) or a twisted form for short.

Now Galois theory enables one to classify k-isomorphism classes of twisted
forms as follows. Given a k-automorphism σ : K → K , tensoring by V gives
a k-automorphism VK → VK which we again denote by σ . Each K -linear map
f : VK → WK induces a map σ ( f ) : VK → WK defined by σ ( f ) =
σ ◦ f ◦ σ−1. If f is a K -isomorphism from (VK ,�K ) to (WK , �K ), then so is
σ ( f ). The map f → σ ( f ) preserves composition of automorphisms, hence we
get a left action of G = Gal (K |k) on the group AutK (�) of K -automorphisms
of (VK ,�K ). Moreover, given two k-objects (V,�) and (W, �) as well as a
K -isomorphism g : (VK ,�K ) ∼→ (WK , �K ), one gets a map G → AutK (�)
associating aσ = g−1 ◦ σ (g) to σ ∈ G. The map aσ satisfies the fundamental
relation

aστ = aσ · σ (aτ ) for all σ, τ ∈ G. (1)

Indeed, we compute

aστ = g−1 ◦ σ (τ (g)) = g−1 ◦ σ (g) ◦ σ (g−1) ◦ σ (τ (g)) = aσ · σ (aτ ).

Next, let h : (VK ,�K ) ∼→ (WK , �K ) be another K -isomorphism, defining

bσ := h−1 ◦ σ (h) for σ ∈ G. Then aσ and bσ are related by

aσ = c−1bσ σ (c), (2)

where c is the K -automorphism h−1 ◦ g. We abstract this in a general definition:

Definition 2.3.2 Let G be a group and A another (not necessarily commutative)
group on which G acts on the left, i.e. there is a map (σ, a) → σ (a) satisfying
σ (ab) = σ (a)σ (b) and στ (a) = σ (τ (a)) for all σ, τ ∈ G and a, b ∈ A. Then
a 1-cocycle of G with values in A is a map σ �→ aσ from G to A satisfy-
ing the relation (1) above. Two 1-cocycles aσ and bσ are called equivalent or
cohomologous if there exists c ∈ A such that the relation (2) holds.

One defines the first cohomology set H 1(G, A) of G with values in A as the
quotient of the set of 1-cocycles by the equivalence relation (2). It is a pointed
set, i.e. a set equipped with a distinguished element coming from the trivial
cocycle σ �→ 1, where 1 is the identity element of A. We call this element the
base point.

In our concrete situation, we see that the class [aσ ] in H 1(G,AutK (�)) of the
1-cocycle aσ associated with the K -isomorphism g : (VK ,�K ) ∼→ (WK , �K )
depends only on (W, �) but not on the map g. This enables us to state the main
theorem of this section.
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Theorem 2.3.3 For a k-object (V,�) consider the pointed set T FK (V,�) of
twisted (K |k)-forms of (V,�), the base point being given by (V,�). Then the
map (W, �) → [aσ ] defined above yields a base point preserving bijection

T FK (V,�) ↔ H 1(G,AutK (�)).

Before proving the theorem, we give some immediate examples, leaving the
main application (that to central simple algebras) to the next section.

Example 2.3.4 (Hilbert’s Theorem 90) Consider first the case when V has
dimension n over k and � is the trivial tensor. Then AutK (�) is just the group
GLn(K ) of invertible n × n matrices. On the other hand, two n-dimensional
vector k-spaces that are isomorphic over K are isomorphic already over k, so
we get:

H 1(G,GLn(K )) = {1}. (3)

This statement is due to Speiser. The case n = 1 is usually called Hilbert’s
Theorem 90 in the literature, though Hilbert only considered the case when
K |k is a cyclic extension of degree n. In this case, denoting by σ a generator of
G = Gal (K |k), every 1-cocycle is determined by its value aσ on σ . Apply-
ing the cocycle relation (1) inductively we get aσ i = aσ σ (aσ ) · · · σ i−1(aσ ) for
all 1 ≤ i ≤ n. In particular, for i = n we get aσ σ (aσ ) · · · σ n−1(aσ ) = a1 = 1
(here the second equality again follows from the cocycle relation applied with
σ = τ = 1). But aσ σ (aσ ) · · · σ n−1(aσ ) is by definition the norm of aσ for the
extension K |k. Now formula (3) together with the coboundary relation (2) imply
the original form of Hilbert’s Theorem 90:

In a cyclic field extension K |k with Gal (K |k) = 〈σ 〉 each element of norm 1 is
of the form σ (c)c−1 with some c ∈ K .

Example 2.3.5 (Quadratic forms) As another example, assume k is of char-
acteristic different from 2, and take V to be n-dimensional and � a tensor of
type (0,2) coming from a nondegenerate symmetric bilinear form 〈 , 〉 on V .
Then AutK (�) is the group On(K ) of orthogonal matrices with respect to 〈 , 〉
and we get from the theorem that there is a base point preserving bijection

T FK (V, 〈 , 〉) ↔ H 1(G,On(K )).

This bijection is important for the classification of quadratic forms.

To prove the theorem, we construct an inverse to the map (W, �) �→ [aσ ].
This is based on the following general construction.

Construction 2.3.6 Let A be a group equipped with a left action by another
group G. Suppose further that X is a set on which both G and A act in a
compatible way, i.e. we have σ (a(x)) = (σ (a))(σ (x)) for all x ∈ X , a ∈ A and
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σ ∈ G. Assume finally given a 1-cocycle σ �→ aσ of G with values in A. Then
we define the twisted action of G on X by the cocycle aσ via the rule

(σ, x) �→ aσ (σ (x)).

This is indeed a G-action, for the cocycle relation yields

aστ (στ (x)) = aσ σ (aτ )(στ (x)) = aσ σ (aτ τ (x)).

If X is equipped with some algebraic structure (e.g. it is a group or a vector
space), and G and A act on it by automorphisms, then the twisted action is also
by automorphisms. The notation a X will mean X equipped with the twisted
G-action by the cocycle aσ .

Remark 2.3.7 Readers should be warned that the above construction can only
be carried out on the level of cocycles and not on that of cohomology classes:
equivalent cocycles give rise to different twisted actions in general. For instance,
take G = Gal (K |k), A = X = GLn(K ), acting on itself by inner automor-
phisms. Then twisting the usual G-action on GLn(K ) by the trivial cocycle
σ �→ 1 does not change anything, whereas if σ �→ aσ is a 1-cocycle with aσ a
noncentral element for some σ , then a−1

σ σ (x)aσ �= σ (x) for a noncentral x , so
the twisted action is different. But a 1-cocycle G → GLn(K ) is equivalent to
the trivial cocycle by Example 2.3.4.

Now the idea is to take a cocycle aσ representing some cohomology class
in H 1(G,AutK (�)) and to apply the above construction with G = Gal (K |k),
A = AutK (�) and X = VK . The main point is then to prove that taking the
invariant subspace (a VK )G under the twisted action of G yields a twisted form
of (V,�).

We show this first when � is trivial (i.e. we in fact prove Hilbert’s
Theorem 90). The statement to be checked then boils down to:

Lemma 2.3.8 (Speiser) Let K |k be a finite Galois extension with group G,
and V a K -vector space equipped with a semi-linear G-action, i.e. a G-action
satisfying

σ (λv) = σ (λ)σ (v) for all σ ∈ G, v ∈ V and λ ∈ K .

Then the natural map

λ : V G ⊗k K → V

is an isomorphism, where the superscript G denotes invariants under G.

Before proving the lemma, let us recall a consequence of Galois theory. Let
K |k be a Galois extension as in the lemma, and consider two copies of K , the
first one equipped with trivial G-action, and the second one with the action of
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G as the Galois group. Then the tensor product K ⊗k K (endowed with the
G-action given by σ (a ⊗ b) ∼= a ⊗ σ (b)) decomposes as a direct sum of copies
of K :

K ⊗k K ∼=
⊕
σ∈G

K eσ ,

where G acts on the right-hand side by permuting the basis elements eσ . To see
this, write K = k[x]/( f ) with f some monic irreducible polynomial f ∈ k[x],
and choose a root α of f in K . As K |k is Galois, f splits in K [x] as a product
of linear terms of the form (x − σ (α)) for σ ∈ G. Thus using a special case of
the Chinese Remainder Theorem for rings (which is easy to prove directly) we
get

K ⊗k K ∼= K [x]/( f ) ∼= K [x]/

(∏
σ∈G

(x − σ (α)

)
∼=
⊕
σ∈G

K [x]/(x − σ (α)),

whence a decomposition of the required form.

Proof Consider the tensor product V ⊗k K , where the second factor K carries
trivial G-action and V the G-action of the lemma. It will be enough to prove that
the map λK : (V ⊗k K )G ⊗k K → V ⊗k K is an isomorphism. Indeed, by our
assumption about the G-actions we have (V ⊗k K )G ∼= V G ⊗k K , and hence
we may identify λK with the map (V G ⊗k K ) ⊗k K → V ⊗k K obtained by
tensoring with K . Therefore if λ had a nontrivial kernel A (resp. a nontrivial
cokernel B), then λK would have a nontrivial kernel A ⊗k K (resp. a nontrivial
cokernel B ⊗k K ).

Now by the Galois-theoretic fact recalled above, the K ⊗k K -module
V ⊗k K decomposes as a direct sum V ⊗k K ∼= ⊕

W eσ , with σ (e1) = eσ

for σ ∈ G. It follows that (V ⊗k K )G = W e1, whence we derive the required
isomorphism (V ⊗k K )G ⊗k K ∼= ⊕

W eσ
∼= V ⊗k K .

Remark 2.3.9 We could have argued directly for λ, by remarking that K
decomposes as a product K = ⊕

keσ with σ (e1) = eσ according to the normal
basis theorem of Galois theory. The above proof, inspired by flat descent theory,
avoids the use of this nontrivial theorem.

Proof of Theorem 2.3.3 As indicated above, we take a 1-cocycle aσ repre-
senting some cohomology class in H 1(G,AutK (�)) and consider the invariant
subspace W := (a VK )G . Next observe that σ (�K ) = �K for all σ ∈ G (as
�K comes from the k-tensor �) and also aσ (�K ) = �K for all σ ∈ G (as
aσ ∈ AutK (�)). Hence aσ σ (�K ) = �K for all σ ∈ G, which means that �K

comes from a k-tensor on W . Denoting this tensor by �, we have defined
a k-object (W, �). Speiser’s lemma yields an isomorphism W ⊗k K ∼= VK ,
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and by construction this isomorphism identifies �K with �K . Thus (W, �)
is indeed a twisted form of (V,�). If aσ = c−1bσ σ (c) with some 1-cocycle
σ �→ bσ and c ∈ AutK (�), we get from the definitions (bVK )G = c(W ), which
is a k-vector space isomorphic to W . To sum up, we have a well-defined map
H 1(G,AutK (�)) → T FK (V,�). The kind reader will check that this map is
the inverse of the map (W, �) �→ [aσ ] of the theorem.

Remark 2.3.10 There is an obvious variant of the above theory, where instead
of a single tensor � one considers a whole family of tensors on V . The K -
automorphisms to be considered are then those preserving all tensors in the
family, and twisted forms are vector spaces W isomorphic to V over K such
that the family of tensors on WK goes over to that on VK via the K -isomorphism.
The descent theorem in this context is stated and proven in the same way as
Theorem 2.3.3.

2.4 The Brauer group
Now we come to the classification of central simple algebras. First we recall a
well-known fact about matrix rings:

Lemma 2.4.1 Over a field K all automorphisms of the matrix ring Mn(K ) are
inner, i.e. given by M �→ C MC−1 for some invertible matrix C.

Proof Consider the minimal left ideal I1 of Mn(K ) described in Example 2.1.4,
and take an automorphism λ ∈ Aut(Mn(K )). Replacing λ by a conjugate with a
suitable matrix, we may assume λ(I1) = I1. Let e1, . . . , en be the standard basis
of K n . Mapping a matrix M ∈ I1 to Me1 induces an isomorphism I1

∼= K n of
K -vector spaces, and thusλ induces an automorphism of K n . As such, it is given
by an invertible matrix C . We get that for all M ∈ Mn(K ), the endomorphism
of K n defined in the standard basis by λ(M) has matrix C MC−1, whence the
lemma.

Corollary 2.4.2 The automorphism group of Mn(K ) is the projective general
linear group PGLn(K ).

Proof There is a natural homomorphism GLn(K ) → Aut(Mn(K )) mapping
C ∈ GLn(K ) to the automorphism M �→ C MC−1. It is surjective by the lemma,
and its kernel consists of the centre of GLn(K ), i.e. the subgroup of scalar
matrices.

Now take a finite Galois extension K |k as before, and let C S AK (n) denote
the set of k-isomorphism classes of central simple k-algebras of degree n split
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by K . We regard it as a pointed set, the base point being the class of the matrix
algebra Mn(k).

Theorem 2.4.3 There is a base point preserving bijection

C S AK (n) ↔ H 1(G,PGLn(K )).

Proof By Corollary 2.2.6 the central simple k-algebras of degree n are
precisely the twisted forms of the matrix algebra Mn(k). To see this, note
that as explained in Example 2.3.1, an n2-dimensional k-algebra can be
considered as an n2-dimensional k-vector space equipped with a tensor of
type (1,2) satisfying the associativity condition. But on a twisted form of
Mn(k) the tensor defining the multiplication automatically satisfies the asso-
ciativity condition. Hence Theorem 2.3.3 applies and yields a bijection of
pointed sets C S AK (n) ↔ H 1(G,Aut(Mn(K )). The theorem now follows by
Corollary 2.4.2.

Our next goal is to classify all central simple k-algebras split by K by means
of a single cohomology set. This should then carry a product operation, for
tensor product induces a natural commutative and associative product operation
on the set of isomorphism classes of central simple algebras, as shown by the
following lemma.

Lemma 2.4.4 If A and B are central simple k-algebras split by K , then so is
A ⊗k B.

Proof In view of the isomorphism (A ⊗k K ) ⊗K (B ⊗k K ) ∼= (A ⊗k B) ⊗k K
and Theorem 2.2.1, it is enough to verify the isomorphism of matrix algebras
Mn(K ) ⊗K Mm(K ) ∼= Mnm(K ). This was done in Lemma 1.5.1.

By the lemma, we have a product operation

C S AK (n) × C S AK (m) → C S AK (mn)

induced by the tensor product. Via the bijection of Theorem 2.4.3, this should
correspond to a product operation

H 1(G,PGLn(K )) × H 1(G, PGLm(K )) → H 1(G,PGLnm(K )) (4)

on cohomology sets. To define this product directly, note that the map

EndK (K n) ⊗ EndK (K m) → EndK (K n ⊗ K m)

given by (φ,ψ) �→ φ ⊗ ψ restricts to a product operation

GLn(K ) × GLm(K ) → GLnm(K )
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on invertible matrices which preserves scalar matrices, whence a product

PGLn(K ) × PGLm(K ) → PGLnm(K ).

This induces a natural product on cocycles, whence the required product
operation (4).

Next observe that for all n,m > 0 there are natural injective maps GLn(K ) →
GLnm(K ) mapping a matrix M ∈ GLn(K ) to the block matrix given by m copies
of M placed along the diagonal and zeros elsewhere. As usual, these pass to
the quotient modulo scalar matrices and finally induce maps

λmn : H 1(G,PGLm(K )) → H 1(G,PGLmn(K ))

on cohomology. Via the bijection of Theorem 2.4.3, the class of a central simple
algebra A in H 1(G,PGLm(K )) is mapped to the class of A ⊗k Mn(k) by λmn .

Lemma 2.4.5 The maps λmn are injective for all m, n > 0.

Proof Assume A and A′ are central simple k-algebras with A ⊗k Mn(k) ∼=
A′ ⊗k Mn(k). By Wedderburn’s theorem they are matrix algebras over division
algebras D and D′, respectively, hence so are A ⊗k Mn(k) and A′ ⊗k Mn(k).
But then D ∼= D′ by the unicity statement in Wedderburn’s theorem, so finally
A ∼= A′ by dimension reasons.

The lemma prompts the following construction.

Construction 2.4.6 Two central simple k-algebras A and A′ are called Brauer
equivalent or similar if A ⊗k Mm(k) ∼= A′ ⊗k Mm ′ (k) for some m,m ′ > 0. This
defines an equivalence relation on the union of the sets C S AK (n). We denote
the set of equivalence classes by Br (K |k) and the union of the sets Br (K |k)
for all finite Galois extensions by Br (k).

Remarks 2.4.7 Brauer equivalence enjoys the following basic properties.

1. One sees from the definition that each Brauer equivalence class contains
(up to isomorphism) a unique division algebra. Thus we can also say that
Br (K |k) classifies division algebras split by K .

2. It follows from Wedderburn’s theorem and the previous remark that if A
and B are two Brauer equivalent k-algebras of the same dimension, then
A ∼= B.

The set Br (K |k) (and hence also Br (k)) is equipped with a product operation
induced by tensor product of k-algebras; indeed, the tensor product manifestly
preserves Brauer equivalence.

Proposition 2.4.8 The sets Br (K |k) and Br (k) equipped with the above prod-
uct operation are abelian groups.
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Before proving the proposition, we recall a notion from ring theory: the
opposite algebra A◦ of a k-algebra A is the k-algebra with the same underlying
k-vector space as A, but in which the product of two elements x, y is given by
the element yx with respect to the product in A. If A is central simple over k,
then so is A◦.

Proof Basic properties of the tensor product imply that the product operation
is commutative and associative. Now let A represent a class in Br (K |k); we
show that the class of A◦ yields an inverse. To see this, define a k-linear map
A ⊗k A◦ → Endk(A) by sending

∑
ai ⊗ bi to the k-linear map x �→ ∑

ai xbi .
This map is manifestly nonzero, and hence injective, because A ⊗k A◦ is simple
by Lemma 2.4.4. Thus it is an isomorphism for dimension reasons.

Definition 2.4.9 We call Br (K |k) equipped with the above product operation
the Brauer group of k relative to K and Br (k) the Brauer group of k.

Now define the set H 1(G,PGL∞) as the union for all n of the sets
H 1(G,PGLn(K )) via the inclusion maps λmn , equipped with the product oper-
ation coming from (4) (which is manifestly compatible with the maps λmn).
Also, observe that for a Galois extension L|k containing K , the natural surjec-
tion Gal (L|k) → Gal (K |k) induces injective maps

H 1(Gal (K |k),PGLn(K )) → H 1(Gal (L|k),PGLn(K ))

for all n, and hence also injections

ιL K : H 1(Gal (K |k),PGL∞) → H 1(Gal (L|k),PGL∞).

Fixing a separable closure ks of k, we define H 1(k,PGL∞) as the union over
all Galois extensions K |k contained in ks of the groups H 1(Gal (K |k),PGL∞)
via the inclusion maps ιL K . The arguments above then yield:

Corollary 2.4.10 The sets H 1(G,PGL∞) and H 1(k, PGL∞) equipped with the
product operation coming from (4) are abelian groups, and there are natural
group isomorphisms

Br (K |k) ∼= H 1(G,PGL∞) and Br (k) ∼= H 1(k,PGL∞).

Remark 2.4.11 The sets H 1(G,PGL∞) are not cohomology sets of G in the
sense defined so far, but may be viewed as cohomology sets of G with values in
the direct limit of the groups PGLn(K ) via the maps λmn . Still, this coefficient
group is fairly complicated. Later we shall identify Br (K |k) with the second
cohomology group of G with values in the multiplicative group K ×, a group
that is much easier to handle.
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2.5 Cyclic algebras
We are now in the position to introduce a class of algebras that will play a
central role in this book.

Construction 2.5.1 (Cyclic algebras) Let K |k be a cyclic Galois extension
with Galois group G ∼= Z/mZ. In the sequel we fix one such isomorphism
χ : G ∼→ Z/mZ; it is a character of G. Furthermore, let b ∈ k× be given. We
associate with these data a central simple algebra over k which is a K |k-twisted
form of the matrix algebra Mm(k). To do so, consider the matrix

F̃(b) =


0 0 · · · 0 b
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0

 ∈ GLm(k).

We denote by F(b) its image in the group PGLm(k). A computation shows that
F̃(b)m = b · Im , and hence F(b)m = 1; in fact, the element F(b) has exact order
m in PGLm(k).

Now consider the homomorphism Z/mZ → PGLm(k) defined by sending 1
to F(b). Embedding PGLm(k) into PGLm(K ) and composing by χ we thus get
a 1-cocycle

z(b) : G → PGLm(K ).

We now equip the matrix algebra Mm(K ) with the twisted G-action

z(b) Mm(K ) coming from z(b) (see Construction 2.3.6) and take G-invariants. By
Theorem 2.4.3 (and its proof), the resulting k-algebra is a central simple algebra
split by K . We denote it by (χ, b), and call it the cyclic algebra associated with
χ and b.

We now come to the definition of cyclic algebras originally proposed by
Dickson.

Proposition 2.5.2 The algebra (χ, b) can be described by the following pre-
sentation. There is an element y ∈ (χ, b) such that (χ, b) is generated as a
k-algebra by K and y, subject to the relations

ym = b, λy = yσ (λ) (5)

for all λ ∈ K , where σ is the generator of G mapped to 1 by χ .

In particular, we see that K is a commutative k-subalgebra in (χ, b) which
is not contained in the centre.
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Proof Denote by A the k-algebra given by the presentation of the proposition
and define a k-algebra homomorphism j : A → Mm(K ) by setting

j(y) = F̃(b) and j(λ) = diag(λ, σ (λ), · · · , σm−1(λ)) for λ ∈ K .

(where diag(. . . ) means the diagonal matrix with the indicated entries), and
extending k-linearly. To see that this is indeed a homomorphism, one checks
by direct computation that the relation

j(λ)F̃(b) = F̃(b) j(σ (λ)) (6)

holds for all λ ∈ K ; the relation F̃(b)m = b has already been noted above.
Next we check that the image of j lands in (χ, b). For this, recall that by
definition the elements of z(b) Mm(K )G are those matrices M which satisfy
F̃(b)σ (M)F̃(b)−1 = M . This relation is obviously satisfied by j(y) = F̃(b)
as it is in Mm(k), and for the j(λ) it follows from relation (6) above, which
proves the claim. Finally, we have to check that j is an isomorphism. For
dimension reasons it is enough to check surjectivity, which in turn can be done
after tensoring by K . The image of j ⊗ idK in (χ, b) ⊗k K ∼= Mm(K ) is the K -
subalgebra generated by F̃(b) and the diagonal subalgebra K ⊕ · · · ⊕ K . If Ei, j

is the usual basis of Mm(K ), it therefore remains to check that the Ei, j s belong
to this subalgebra for i �= j . This is achieved by computing Ei, j = F̃(b)i− j E j, j

for i �= j .

The following proposition provides a kind of a converse to the previous one.

Proposition 2.5.3 Assume that A is a central simple k-algebra of degree m
containing a k-subalgebra K which is a cyclic Galois field extension of degree
m. Then A is isomorphic to a cyclic algebra given by a presentation of the
form (5).

The crucial point in the proof is the following statement.

Lemma 2.5.4 Under the assumptions of the proposition there exists y ∈ A×

such that

y−1xy = σ (x)

for all x ∈ K , where σ is a generator of G = Gal (K |k).

Proof In order to avoid confusing notation, we take another extension K̃ of
k isomorphic to K and put G̃ := Gal (K̃ |k). By Proposition 2.2.8 the algebra
A ⊗k K̃ is split, as it contains the K̃ -subalgebra K ⊗k K̃ ∼= K̃ m . The embed-
ding K ⊗k K̃ → A ⊗k K̃ is G̃-equivariant, where G̃ acts on K ⊗k K̃ via the
second factor. On the other hand, the group G acts on K ⊗k K̃ via the first
factor, and the two actions commute. As seen before the proof of Lemma 2.3.8,
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under the isomorphism K ⊗k K̃ ∼= K̃
m

the action of G corresponds to per-
muting the components on the right-hand side. Under the diagonal embedding
K ⊗k K̃ → A ⊗k K̃ ∼= Mm(K̃ ) we may identify permutation of the compo-
nents of the diagonal with conjugation by a permutation matrix, so we find an
element y ∈ GLm(K̃ ) ∼= (A ⊗k K̃ )× satisfying

σ (x) = y−1xy for all x ∈ K ⊗k K̃ . (7)

We now show that we may choose y in the subgroup A× ⊂ (A ⊗k K̃ )×, which
will conclude the proof of the lemma.

For all τ̃ ∈ G̃ and x ∈ K (where we view K embedded into K ⊗k K̃ via the
first factor), we have

σ (x) = σ (τ̃ (x)) = τ̃ (σ (x)) = τ̃ (y−1)τ̃ (x)τ̃ (y) = τ̃ (y)−1 x τ̃ (y),

using that the two actions commute and that G̃ acts trivially on K . Thus
zτ̃ := y τ̃ (y)−1 satisfies z−1

τ̃ x zτ̃ = x for all x ∈ K . It follows that zτ̃ lies in
Z A(K ) ⊗k K̃ , where Z A(K ) stands for the centralizer of K in A. The natu-
ral embedding K → Z A(K ) is an isomorphism, as one sees by passing to the
split case and counting dimensions. Thus the function τ̃ �→ zτ̃ has values in
(K ⊗k K̃ )×, and moreover it is a 1-cocycle for G̃ by construction.

Now observe that the group H 1(G̃, (K ⊗k K̃ )×) is trivial. Indeed, the group
(K ⊗k K̃ )× is the automorphism group of the K ⊗k K̃ -algebra K ⊗k K̃ , so
by Theorem 2.3.3 the group H 1(G̃, (K ⊗k K̃ )×) classifies those K–algebras
B for which B ⊗k K̃ ∼= K ⊗k K̃ . But these K -algebras must be isomorphic
to K by dimension reasons, whence the claim. In view of this claim we find
y0 ∈ (K ⊗k K̃ )× such that yτ̃ (y)−1 = y0τ̃ (y0)−1 for all τ̃ ∈ G̃. Up to replacing
y by y−1

0 y in the equation (7), we may thus assume that τ̃ (y) = y for all τ̃ , i.e.
y ∈ A×, as required.

Proof of Proposition 2.5.3 We first prove that the element y of the previous
lemma satisfies ym ∈ k. To see this, apply formula (7) to σ (x) in place of
x , with x ∈ K . It yields σ 2(x) = y−2xy2, so iterating m − 1 times we obtain
x = σm(x) = y−m xym . Thus ym commutes with all x ∈ K and hence lies in K
by the equality Z A(K ) = K noted above. Now apply (7) with x = ym to obtain
σ (ym) = ym , i.e. ym ∈ k.

Setting b := ym , to conclude the proof it remains to show that the elements of
K and the powers of y generate A. For this it suffices to check that the elements
1, y, . . . , ym−1 are K -linearly independent in A, where K acts by right multi-
plication. If not, take a nontrivial K -linear relation �yiλi = 0 with a minimal
number of nonzero coefficients. After multiplying by a power of y we may
assume that λ0 and some other λ j are not 0. Choose c ∈ K × with c �= σ (c).
Using equation (7) and its iterates we may write �yiσ i (c)λi = c(�yiλi ) = 0.



36 Central simple algebras and Galois descent

It follows that �yi (cλi − σ i (c)λi ) = 0 is a shorter nontrivial relation, a contra-
diction.

In special cases one gets even nicer presentations for cyclic algebras. One of
these is when m is invertible in k, and k contains a primitive m-th root of unity
ω. In this case, for a, b ∈ k× define the k-algebra (a, b)ω by the presentation

(a, b)ω = 〈x, y| xm = a, ym = b, xy = ωyx〉.
In the case m = 2, ω = −1 one gets back the generalized quaternion algebras
of the previous chapter.

Another case is when k is of characteristic p > 0 and m = p. In this case for
a ∈ k and b ∈ k× consider the presentation

[a, b) = 〈x, y | x p − x = a, y p = b, xy = y(x + 1)〉.
Note that the equation x p − x = a defines a cyclic Galois extension of degree p
whose Galois group is given by the substitutions α �→ α + i (0 ≤ i ≤ p − 1)
for some root α. In the case p = 2 this definition is coherent with that of
Remark 1.1.8.

Corollary 2.5.5

1. Assume that k contains a primitive m-th root of unity and that we may write
K in the form K = k( m

√
a) with some m-th root of an element a ∈ k. Let

χ : Gal(K |k) ∼= Z/mZ be the isomorphism sending the automorphism
σ : m

√
a �→ ω m

√
a to 1. Then for all b ∈ k× there is an isomorphism of

k-algebras

(a, b)ω ∼= (χ, b).

2. Similarly, assume that k has characteristic p > 0, m = p and K |k is
a cyclic Galois extension defined by a polynomial x p − x + a for some
a ∈ k. Fix a root α of x p − x − a and let χ : Gal(K |k) ∼= Z/pZ be the
isomorphism sending the automorphism σ : α �→ α + 1 to 1. Then for all
b ∈ k× there is an isomorphism of k-algebras

[a, b) ∼= (χ, b).

In particular, (a, b)ω and [a, b) are central simple algebras split by K .

Proof In (1), one gets the required isomorphism by choosing as generators of
(χ, b) the element x = m

√
a and the y given by the proposition above. In (2),

one chooses x = α and y as in the proposition.

Remark 2.5.6 In fact, we shall see later that according to Kummer theory
(Corollary 4.3.9) in the presence of a primitive m-th root of unity one may write
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an arbitrary degree m cyclic Galois extension K |k in the form K = k( m
√

a), as
in the corollary above. Similarly, Artin–Schreier theory (Remark 4.3.13 (1))
shows that a cyclic Galois extension of degree p in characteristic p > 0 is
generated by a root of some polynomial x p − x − a.

In the previous chapter we have seen that the class of a nonsplit quaternion
algebra has order 2 in the Brauer group. More generally, the class of a cyclic
division algebra (a, b)ω as above has order m; we leave the verification of this
fact as an exercise to the reader. Thus the class of a tensor product of degree m
cyclic algebras has order dividing m in the Brauer group. The remarkable fact
is the converse:

Theorem 2.5.7 (Merkurjev–Suslin) Assume that k contains a primitive m-th
root of unity ω. Then a central simple k-algebra whose class has order dividing
m in Br (k) is Brauer equivalent to a tensor product

(a1, b1)ω ⊗k · · · ⊗k (ai , bi )ω

of cyclic algebras.

This generalizes Merkurjev’s theorem from the end of Chapter 1. In fact,
Merkurjev and Suslin found this generalization soon after the first result of
Merkurjev. It is this more general statement whose proof will occupy a major
part of this book.

Remark 2.5.8 One cannot replace ‘Brauer equivalence’ with ‘isomorphism’
in the theorem. We have quoted a counterexample with m = 2 at the end of
Chapter 1; for examples with m an odd prime and i = 2, see Jacob [1] and
Tignol [1].

Here is an interesting corollary of the Merkurjev–Suslin theorem of which
no elementary proof is known presently.

Corollary 2.5.9 For k and A as in the theorem above, there exist elements
a1, . . . , ai ∈ k× such that the extension k( m

√
a1, . . . ,

m
√

ai )|k splits A. In partic-
ular, A is split by a Galois extension with solvable Galois group.

2.6 Reduced norms and traces
We now discuss a construction which generalizes the quaternion norm encoun-
tered in the previous chapter.

Construction 2.6.1 (Reduced norms and traces) Let A be a central simple
k-algebra of degree n. Take a finite Galois splitting field K |k with group G, and
choose a K -isomorphism φ : Mn(K ) ∼→ A ⊗k K . Recall that the isomorphism
φ is not compatible with the action of G. However, if we twist the usual action of
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G on Mn(K ) by the 1-cocycle σ �→ aσ with aσ = φ−1 ◦ σ (φ) associated with A
by the descent construction, then we get an isomorphism a Mn(K ) ∼→ A ⊗k K
that is already G-equivariant, whence an isomorphism (a Mn(K ))G ∼= A.

Now consider the determinant map det : Mn(K ) → K . For all σ ∈ G, lifting
aσ to an invertible matrix Cσ ∈ GLn(K ) we get

det
(
Cσ σ (M)C−1

σ

) = det(σ (M)) = σ (det(M))

by multiplicativity of the determinant and its compatibility with the usual
G-action. Bearing in mind that the twisted G-action on a Mn(K ) is given by
(σ, M) → aσ σ (M)a−1

σ , this implies that the map det : a Mn(K ) → K is com-
patible with the action of G. So by taking G-invariants and using the isomor-
phism above we get a map Nrd : A → k, called the reduced norm map. On the
subgroup A× of invertible elements of A it restricts to a group homomorphism
Nrd : A× → k×.

The above construction does not depend on the choice of φ, for changing φ

amounts to replacing aσ by an equivalent cocycle, i.e. replacing the matrix C
above by some D−1C D, which does not affect the determinant. The construction
does not depend on the choice of K either, as one sees by embedding two Galois
splitting fields K , L into a bigger Galois extension M |k.

By performing the above construction using the trace of matrices instead of
the determinant, one gets a homomorphism Trd : A → k of additive groups
called the reduced trace map.

The reduced norm map is a generalization of the norm map for quaternion
algebras, as one sees from Proposition 1.2.4. Just like the quaternion norm, it
enjoys the following property:

Proposition 2.6.2 In a central simple k-algebra A an element a ∈ A is invert-
ible if and only if Nrd(a) �= 0. Hence A is a division algebra if and only if Nrd
restricts to a nowhere vanishing map on A\0.

Proof If a is invertible, it corresponds to an invertible matrix via any isomor-
phism φ : A ⊗K K ∼= Mn(K ), which has nonzero determinant. For the con-
verse, consider φ as above and assume an element a ∈ A maps to a matrix with
nonzero determinant. It thus has an inverse b ∈ Mn(K ). Now in any ring the
multiplicative inverse of an element is unique (indeed, if b′ is another inverse,
one has b = bab′ = b′), so for an automorphism σA ∈ Autk(A ⊗k K ) coming
from the action of an element σ ∈ Gal (K |k) on K we have σA(b) = b. As A
is the set of fixed elements of all the σA, this implies b ∈ A.

We now elucidate the relation with other norm and trace maps. Recall that
given a finite dimensional k-algebra A, the norm and the trace of an element
a ∈ A are defined as follows: one considers the k-linear mapping La : A → A
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given by La(x) = ax and puts

NA|k(a) := det(La), tr A|k(a) := tr (La).

By definition, these norm and trace maps are insensitive to change of the base
field.

Proposition 2.6.3 Let A be a central simple k-algebra of degree n.

1. One has NA|k = (NrdA)n and tr A|k = n TrdA.
2. Assume that K is a commutative k-subalgebra of A which is a degree n

field extension of k. For any x ∈ K one has

NrdA(x) = NK |k(x) and TrdA(x) = trK |k(x).

Proof To prove (1) we may assume, up to passing to a splitting field of A,
that A = Mn(k). The required formulae then follow from the fact that for
M ∈ Mn(k), the matrix of the multiplication-by-M map L M with respect to
the standard basis of Mn(k) is the block diagonal matrix diag(M, . . . , M).

To check (2), note first that as a K -vector space the algebra A is isomorphic
to the direct power K n . For x ∈ K we thus have NA|k(x) = (NK |k(x))n and
tr A|k(x) = n tr K |k(x). By part (1) there exists an n-th root of unity ω(x) such
that NrdA(x) = ω(x)NK |k(x). To show thatω(x) = 1 we use the following trick.
Performing base change from k to k(t) and applying the previous formula to
t + x ∈ K (t)× yields the equality

NrdA(t + x) = ω(t + x)NK |k(t + x).

Since NrdA(t + x) and NK |k(t + x) are monic polynomials in t , we obtain
ω(t + x) = 1, and therefore NrdA(t + x) = NK |k(t + x). We then get the
desired formula NrdA(x) = NK |k(x) by specializing this polynomial identity to
t = 0. To handle the trace formula TrdA(x) = trK |k(x), it then suffices to look at
the coefficients of t in the polynomial identity NrdA(1 + t x) = NK |k(1 + t x).

We conclude by the following result that we shall need later. For a general-
ization, see Exercise 8.

Proposition 2.6.4 Let k be a field, and let A be a central division algebra of
prime degree p over k. An element c ∈ k× is a reduced norm from A× if and
only if c ∈ NK |k(K ×) for some k-subalgebra K ⊂ A which is a degree p field
extension of k and moreover a splitting field for A.

Proof Sufficiency follows from part (2) of the previous proposition. To check
necessity, take a ∈ A× such that c = Nrd(a). If a /∈ k, let K be the k-subalgebra
generated by a, which is necessarily a degree p field extension of k since A is
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a division algebra of degree p. If a ∈ k, take K to be any degree p subfield of
A obtained in the above way. Since A ⊗k K contains K ⊗k K which is not a
division algebra, A ⊗k K itself is not a division algebra and thus can only be
isomorphic to the matrix algebra Mp(K ) by Wedderburn’s theorem. Thus K is
a degree p splitting field for A, and we again conclude by part (2) of the above
proposition.

2.7 A basic exact sequence
In this section we first establish a formal proposition which, combined with the
descent method, is a main tool in computations.

Proposition 2.7.1 Let G be a group and

1 → A → B → C → 1

an exact sequence of groups equipped with a G-action, the maps being G-
homomorphisms. Then there is an exact sequence of pointed sets

1 → AG → BG → CG → H 1(G, A) → H 1(G, B) → H 1(G,C).

By definition, an exact sequence of pointed sets is a sequence in which the
kernel of each map equals the image of the previous one, the kernel being the
subset of elements mapping to the base point.

Proof The only nonobvious points are the definition of the map δ : CG →
H 1(G, A) and the exactness of the sequence at the third and fourth terms.
To define δ, take an element c ∈ CG and lift it to an element b ∈ B via the
surjection B → C . For all σ ∈ G the element bσ (b)−1 maps to 1 in C because
c = σ (c) by assumption, so it lies in A. Immediate calculations then show that
the map σ �→ bσ (b)−1 is a 1-cocycle and that modifying b by an element of A
yields an equivalent cocycle, whence a well-defined map δ as required, sending
elements coming from BG to 1. The relation δ(c) = 1 means by definition
that bσ (b)−1 = a−1σ (a) for some a ∈ A, so c lifts to the G-invariant element
ab in B. This shows the exactness of the sequence at the third term, and the
composition CG → H 1(G, A) → H 1(G, B) is trivial by construction. Finally,
that a cocycle σ �→ aσ with values in A becomes trivial in H 1(G, B) means that
aσ = b−1σ (b) for some b ∈ B, and modifying σ �→ aσ by an A-coboundary we
may choose b so that its image c in C is fixed by G; moreover, the cohomology
class of σ �→ aσ depends only on c.

As a first application, we derive a basic theorem on central simple algebras.

Theorem 2.7.2 (Skolem–Noether) All automorphisms of a central simple
algebra are inner, i.e. given by conjugation by an invertible element.
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Proof Let A be a central simple k-algebra of degree n and K a finite Galois
splitting field of A. Denoting by A× the subgroup of invertible elements of A
and using Lemma 2.4.1 we get an exact sequence

1 → K × → (A ⊗k K )× → AutK (A ⊗k K ) → 1

of groups equipped with a G = Gal (K |k)-action, where the second map maps
an invertible element to the inner automorphism it defines. Proposition 2.7.1
then yields an exact sequence

1 → k× → A× → Autk(A) → H 1(G, K ×),

where the last term is trivial by Hilbert’s Theorem 90. The theorem follows.

As another application, we derive from Proposition 2.7.1 a useful cohomo-
logical characterization of reduced norms. First a piece of notation: for a central
simple algebra A, we denote by SL1(A) the multiplicative subgroup of elements
of reduced norm 1.

Proposition 2.7.3 Let A be a central simple k-algebra split by a finite Galois
extension K |k of group G. There is a canonical bijection of pointed sets

H 1(G,SL1(A ⊗k K )) ↔ k×/Nrd(A×).

For the proof we need a generalization of Example 2.3.4.

Lemma 2.7.4 For A, K and G as above, we have H 1(G, (A ⊗k K )×) = 1.

Proof Let M be a left A-module with dim k M = dim k A. Then M is iso-
morphic to the left A-module A. Indeed, since A ∼= Mn(D) by Wedderburn’s
theorem, it is isomorphic to a direct sum of the minimal left ideals Ir introduced
in Example 2.1.4; these are all isomorphic simple A-modules. As M is finitely
generated over A, there is a surjection AN → M for some N > 0, so M must
be isomorphic to a direct sum of copies of Ir as well and hence isomorphic to
A for dimension reasons.

On the other hand, multiplication by an element of A is an endomorphism of
M as a k-vector space. By the second example in Example 2.3.1 combined with
Remark 2.3.10, the module M can thus be considered as a k-object (M,�) to
which the theory of Section 2.3 applies. Now M ⊗k K is an A ⊗k K -module
of rank 1, and hence isomorphic to A ⊗k K as above. An automorphism of
A ⊗k K as a left module over itself is given by right multiplication by an
invertible element, thus AutK (M ⊗k K ) ∼= (A ⊗k K )×. The lemma then follows
from Theorem 2.3.3 (more precisely, from its variant in Remark 2.3.10).
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Proof of Proposition 2.7.3 Applying Proposition 2.7.1 to the exact sequence

1 → SL1(A ⊗k K ) → (A ⊗k K )× Nrd−→ K × → 1

we get an exact sequence

A× Nrd−→ k× → H 1(G,SL1(A ⊗k K )) → H 1(G, (A ⊗k K )×),

where the last term is trivial by the lemma above.

2.8 K1 of central simple algebras
The main result of this section is a classical theorem of Wang on commutator
subgroups of division algebras. Following the present-day viewpoint, we dis-
cuss it within the framework of the K-theory of rings. Therefore we first define
the group K1 for a ring.

Construction 2.8.1 Given a not necessarily commutative ring R with unit and
a positive integer n, consider the group GLn(R) of n × n invertible matrices
over R. For each n there are injective maps in,n+1 : GLn(R) → GLn+1(R) given
by

in,n+1(A) :=
[

A 0

0 1

]
. (8)

Let GL∞(R) be the union of the tower of embeddings

GL1(R) ⊂ GL2(R) ⊂ GL3(R) ⊂ · · · ,

given by the maps in,n+1. (Note that this definition of GL∞ is not compatible
with the definition of PGL∞ introduced in Section 2.4.)

We define the group K1(R) as the quotient of GL∞(R) by its commutator
subgroup [GL∞(R),GL∞(R)]. This group is sometimes called the Whitehead
group of R. It is functorial with respect to ring homomorphisms, i.e. a map
R → R′ of rings induces a map K1(R) → K1(R′).

For calculations the following description of the commutator subgroup
[GL∞(R),GL∞(R)] is useful. A matrix in GLn(R) is called elementary if all
of its diagonal entries are equal to 1 and moreover it has at most one nonzero
off-diagonal entry. We denote by Ei j (r ) the elementary matrix with r in the
i-th row and j-th column and by En(R) the subgroup of GLn(R) generated
by elementary matrices. The maps in,n+1 preserve these subgroups, whence a
subgroup E∞(R) ⊂ GL∞(R).

Proposition 2.8.2 (Whitehead’s Lemma) The subgroup E∞(R) is precisely
the commutator subgroup [GL∞(R),GL∞(R)] of GL∞(R).
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The proof uses the following lemma.

Lemma 2.8.3 Any upper triangular n × n matrix with 1’s in the diagonal is a
product of elements of En(R). A similar statement holds for lower triangular
matrices.

Proof It suffices to treat the case of an upper triangular matrix A = [ai j ].
Multiplication on the right by the elementary matrix E12(−a12) produces
a matrix A′ = [a′

i j ] with a′
12 = 0. Then multiplication by E23(−a23) pro-

duces A′′ = [a′′
i j ] with a′′

12 = a′′
23 = 0. Continuing the process we get a matrix

B = [bi j ] which is still upper triangular with 1s in the diagonal but has 0’s in
the subdiagonal j = i + 1. Then multiplication by E13(−b13) annihilates the
first element of the subdiagonal j = i + 2. Continuing the process we finally
arrive at the identity matrix.

Proof of Theorem 2.8.2 The relation Ei j (r ) = [Eik(r ), Ekj (1)] for dis-
tinct i, j and k is easily checked by matrix multiplication and shows that
E∞(R) is contained in [E∞(R), E∞(R)] ⊂ [GL∞(R),GL∞(R)]. To show
[GL∞(R),GL∞(R)] ⊂ E∞(R), we embed GLn(R) into GL2n(R) and for
A, B ∈ GLn(R) compute[

AB A−1 B−1 0

0 1

]
=
[

AB 0

0 B−1 A−1

] [
A−1 0

0 A

] [
B−1 0

0 B

]
.

All terms on the right are of similar shape. Denoting by In the identity matrix,
another computation shows that[

A 0

0 A−1

]
=
[

In A

0 In

] [
In 0

−A−1 In

] [
In A

0 In

] [
0 −In

In 0

]
(9)

and similarly for the other terms. The first three terms on the right-hand side
are upper or lower triangular matrices with 1s in the diagonal, so the lemma
applies. For the fourth, notice that[

0 −In

In 0

]
=
[

In −In

0 In

] [
In 0

In In

] [
In −In

0 In

]
,

so the lemma applies again.

Using Whitehead’s lemma we may easily calculate K1-groups of fields.

Proposition 2.8.4 For a field k the natural map k× = GL1(k) → GL∞(k)
induces an isomorphism k× ∼→ K1(k).
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Proof We first show surjectivity. It is well known from linear algebra that
a matrix in Mn(k) may be put in diagonal form by means of elementary row
and column operations, i.e. by multiplication with suitable elementary matrices.
Thus by Whitehead’s lemma each element of K1(k) may be represented by some
diagonal matrix. But any diagonal matrix may be expressed as a product of a
diagonal matrix of the form diag(b, 1, . . . , 1) and diagonal matrices of the form
diag(1, . . . , 1, a, a−1, 1, . . . , 1). The same matrix calculation that establishes
formula (9) shows that the latter are products of elementary matrices, so the class
in K1(k) is represented by diag(b, 1, . . . , 1), whence the required surjectivity.

To show injectivity one considers the determinant maps GLn(k) → k×. They
are compatible with the transition maps in,n+1, and therefore they define a
homomorphism det∞ : GL∞(k) → k× which is a splitting of the the surjection
k× → K1(k) studied above. The proposition follows.

Remarks 2.8.5

1. More generally, for a division ring D one can consider the map

D×/[D×, D×] → K1(D)

induced by the map D× = GL1(D) → GL∞(D) and show that it is an
isomorphism. The proof of surjectivity goes by the same argument as
above (since diagonalization of matrices by elementary row and column
transformations also works over a division ring). The proof of injectivity is
also the same, except that one has to work with the Dieudonné determinant,
a noncommutative generalization of the usual determinant map (see e.g.
Pierce [1], §16.5).

2. Another, much easier, generalization is the following: the isomorphism of
the proposition also holds for finite direct products k1 × · · · × kr of fields.
This follows from the proposition and the general formula

K1(R × R′) ∼= K1(R) × K1(R′),

valid for arbitrary rings R and R′, which is a consequence of the definition
of K1.

Consider now for n,m ≥ 1 the maps in,nm : Mn(R) → Mnm(R) given by

in,nm(A) :=
[

A 0

0 Inm−n

]
.

By functoriality, the map i1,m induces a map K1(R) → K1(Mm(R)).

Lemma 2.8.6 The above map K1(R) → K1(Mm(R)) is an isomorphism.
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This map is sometimes called the Morita isomorphism because of its relation
with Morita equivalence in ring theory. In the case of a central simple algebra
A it shows that the isomorphism class of K1(A) only depends on the Brauer
class of A.

Proof For all n ≥ 1, the diagram

GLn(R)
i1,m∗−−−−→ GLn(Mm(R)) ∼= GLnm(R)

in,nm

� in,nm

� inm,nm2

�
GLnm(R)

i1,m∗−−−−→ GLnm(Mm(R)) ∼= GLnm2 (R)

commutes, so the map GL∞(R) → GL∞(Mm(R)) is an isomorphism. This
isomorphism preserves the commutator subgroups, whence the lemma.

The lemma enables us to construct a norm map for K1 of k-algebras.

Construction 2.8.7 Let A be a k-algebra and K |k a field extension of degree
n. Denote by AK the base change A ⊗k K . We construct a norm map
NK |k : K1(AK ) → K1(A) as follows. Fixing an isomorphism φ : Endk(K ) ∼=
Mn(k) gives rise to a composite map

φ∗ : AK = A ⊗k K → A ⊗k Endk(K )
id⊗φ−−−−−→ A ⊗k Mn(k) ∼= Mn(A).

We then define the norm map NK |k as the composite

K1(AK )
φ∗→ K1(Mn(A)) ∼→ K1(A),

where the second map is the inverse of the isomorphism of the previous lemma.
Since the conjugation action of the group GLn(k) (and even of GLn(A)) on
Mn(A) induces a trivial action on K1(Mn(A)), we conclude that the map above
is independent of the choice of φ.

Proposition 2.8.8 In the situation above the composite map

K1(A) → K1(AK )
NK |k−→ K1(A)

is multiplication by n = [K : k].

Proof The composite K1(A) → K1(AK ) → K1(Mn(A)) is induced by the
map A → A ⊗k Mn(k) sending a matrix M to the block diagonal matrix
diag(M, . . . , M). The same argument with formula (9) as in the proof of Propo-
sition 2.8.4 shows that the class of diag(M, . . . , M) in K1(A) equals that of
diag(Mn, 1, . . . , 1), whence the claim.



46 Central simple algebras and Galois descent

We now focus on the case of a central simple k-algebra A and construct
reduced norm maps on K1-groups. Given an integer n ≥ 1, we denote by
Nrdn : GLn(A) → k× the composite

GLn(A) ∼= GL1(Mn(A))
NrdMn (A)−−−−−−−−−→ k×.

Lemma 2.8.9 For all integers n ≥ 1, the diagram

GLn(A)
in,n+1−−−−→ GLn+1(A)

Nrdn

� Nrdn+1

�
k× id−−−−→ k×

commutes.

Proof By the construction of reduced norm maps, it is enough to check com-
mutativity after base change to a Galois splitting field of A. There the diagram
becomes

GLnm(k)
inm,(n+1)m−−−−→ GL(n+1)m(k)

det

� det

�
k× id−−−−→ k×,

and commutativity is straightforward.

By the lemma, the collection of reduced norm homomorphisms
Nrdn : GLn(A) → k× gives rise to a map Nrd∞ : GL∞(A) → k× which
induces a map

Nrd : K1(A) → k×

called the reduced norm map for K1.
By construction, its composite with the natural map A× → K1(A) induced by

A× = GL1(A) → GL∞(A) is the usual reduced norm Nrd : A× → k×. Thus
for all positive n the isomorphism K1(A) ∼= K1(Mn(A)) of Lemma 2.8.6 yields
the following remarkable fact:

Corollary 2.8.10 (Dieudonné) For a central simple k-algebra A we have

Nrd(A×) = Nrdn(GLn(A))

for all n ≥ 1.

We note the following compatibility property.
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Proposition 2.8.11 For a central simple k-algebra A and a finite field extension
K |k the diagram

K1(AK )
NK |k−−−−→ K1(A)

NrdAK

� NrdA

�
K × NK |k−−−−→ k×

commutes.

Proof Again this can be checked after base change to a Galois splitting field
of A. After such a base change the field K may not remain a field any more,
but may become a finite product of fields. Still, the definition of the norm map
NK |k : K1(AK ) → K1(A) immediately generalizes to this setting, so we are
reduced to checking the commutativity of the diagram

K1(Mm(K ))
NK |k−−−−→ K1(Mm(k))

det

� det

�
K × NK |k−−−−→ k×

where m is the degree of A. By Lemma 2.8.6 and Remark 2.8.5 (2) both vertical
maps are isomorphisms. The composite map

K × ∼= K1(Mm(K ))−→K1(Mm(k)) ∼= k×

is nothing but the composite

K × → Endk(K )
det−→ k,

which is indeed the norm map NK |k . The lemma follows.

Denote by SK1(A) the kernel of the reduced norm map Nrd : K1(A) → k×.
The proposition shows that for each finite extension K |k there is a norm map

NK |k : SK1(AK ) → SK1(A).

We now come to the main theorem of this section.

Theorem 2.8.12 (Wang) If A is a central simple k-algebra of prime degree p,
then SK1(A) = 0.

Proof The case when A is split is immediate from Lemma 2.8.6 and Proposi-
tion 2.8.4, so we may assume that A is a division algebra. By Remark 2.8.5 (1)
the natural map A×/[A×, A×] → K1(A) is surjective, so each element of
SK1(A) may be represented by some element a ∈ A× of trivial reduced norm.
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If a /∈ k, let L ⊂ A be the k-subalgebra generated by a; it is a degree p field
extension of k. Otherwise take L to be any degree p extension of k contained in
A. By Proposition 2.6.3 (2) we have NL|k(a) = 1. The algebra AL := A ⊗k L
contains the subalgebra L ⊗k L which is not a division algebra, hence neither is
AL . Since deg L (AL ) = p, Wedderburn’s theorem shows that AL must be split.
By the split case we have SK1(AL ) = 0, hence the composite map

SK1(A) → SK1(AL )
NL|k−→ SK1(A)

is trivial. Proposition 2.8.8 then implies that p SK1(A) = 0. We now distinguish
two cases.

Case 1: The extension L|k is separable. Take a Galois closure L̃|k of L and
denote by K |k the fixed field of a p-Sylow subgroup in Gal (L̃|k). Since
Gal (L̃|k) is a subgroup of the symmetric group Sp, the extension L̃|K is a
cyclic Galois extension of degree p. By Proposition 2.8.8 the composite

SK1(A) → SK1(AK )
NK |k−→ SK1(A)

is multiplication by [K : k] which is prime to p. But we know that
pSK1(A) = 0, so the map SK1(A) → SK1(AK ) is injective. Up to replac-
ing k by K and L by L̃ , we may thus assume that L|k is cyclic of degree p.
Let σ be a generator of Gal (L|k). According to the classical form of Hilbert’s
Theorem 90 (Example 2.3.4), there exists c ∈ L× satisfying a = c−1σ (c). On
the other hand, L is a subfield of A which has degree p over k, so by Lemma
2.5.4 we find b ∈ A× with b−1cb = σ (c). Hence a = c−1σ (c) = c−1b−1cb is
a commutator in A×, and as such yields a trivial element in SK1(A).

Case 2: The extension L|k is purely inseparable. In this case NL|k(a) = a p = 1
and thus (a − 1)p = 0. Since A is a division algebra, we must have a = 1, and
the result follows.

Remarks 2.8.13

1. With a little more knowledge of the theory of central simple algebras the
theorem can be generalized to division algebras of arbitrary squarefree
degree. See Chapter 4, Exercise 9.

2. In the same paper (Wang [1]) that contains the above theorem, Wang
showed that over a number field the group SK1(A) is trivial for an arbitrary
central simple algebra A. However, this is not so over an arbitrary field.
Platonov [1] constructed examples of algebras A of degree p2 for all primes
p such that SK1(A) �= 0. For further work on SK1(A), see Merkurjev [4]
and Suslin [3].
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Exercises

1. Prove that the tensor product D1 ⊗k D2 of two division algebras of coprime degrees
is a division algebra. [Hint: Apply Rieffel’s lemma to a minimal left ideal L in
D1 ⊗k D2. Then show that dim k(D1 ⊗k D2) = dim k L .]

2. Determine the cohomology set H 1(G,SLn(K )) for a finite Galois extension K |k
with group G.

3. Let K |k be a finite Galois extension with group G, and let B(K ) ⊂ GL2(K ) be the
subgroup of upper triangular matrices.
(a) Identify the quotient GL2(K )/B(K ) as a G-set with P1(K ), the set of K -points

of the projective line.
(b) Show that H 1(G, B(K )) = 1. [Hint: Exploit Proposition 2.7.1.]
(c) Denote by K + the additive group of K . Show that H 1(G, K +) = 1. [Hint:

Observe that sending an element a ∈ K + to the 2 × 2 matrix (ai j ) with
a11 = a22 = 1, a21 = 0 and a12 = a defines a G-equivariant embedding
K + → B(K ).]

4. Let k be a field containing a primitive m-th root of unity ω. Take a, b ∈ k× satisfying
the condition in Proposition 2.5.5 (1). Prove that the class of the cyclic algebra (a, b)ω
has order dividing m in the Brauer group of k.

5. Show that the class of the cyclic algebra (a, 1 − a)ω is trivial in the Brauer group
for all a ∈ k×.

6. Show that the following are equivalent for a central simple k-algebra A:
� A is split.
� The reduced norm map Nrd : (A ⊗k F)× → F× is surjective for all field exten-

sions F |k.
� t is a reduced norm from the algebra A ⊗k k((t)).

7. Let A be a central simple k-algebra of degree n. Assume that there exists a finite
extension K |k of degree prime to n that is a splitting field of A. Show that A is split.
[Hint: Use the last statement of the previous exercise.]

8. Let A be a central simple k-algebra, and let K |k be a finite field extension which
splits A. Show that NK |k(K ×) ⊂ Nrd(A×). [Hint: Use Propositions 2.8.4 and 2.8.11
(2).]

9. Let k be an infinite field, and A a central simple k-algebra of degree n.
(a) Show that the set k×[A×, A×] is Zariski dense in A viewed as an n2-dimen-

sional affine space. [Hint: Argue as in the proof of Proposition 2.2.5.]
(b) Given a ∈ A×, show that there exist x, y ∈ A× such that the k-subalgebra of

A generated by a[x, y] is of dimension n.
10. Show that for a central simple algebra over an infinite field k the subgroup

Nrd(A×) ⊂ k× is generated by the subgroups NK |k(K ×) with K |k running over
the finite field extensions which split A. [Hint: Reduce to the case of a division
algebra and use the previous exercise.]
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Techniques from group cohomology

In order to pursue our study of Brauer groups, we need some basic notions from
the cohomology theory of groups with abelian coefficient modules. This is a
theory which is well documented in the literature; we only establish here the
facts we shall need in what follows, for the ease of the reader. In particular,
we establish the basic exact sequences, construct cup-products and study the
maps relating the cohomology of a group to that of a subgroup or a quotient. In
accordance with the current viewpoint in homological algebra, we emphasize
the use of complexes and projective resolutions, rather than that of explicit
cocycles and the technique of dimension-shifting (though the latter are also
very useful).

As already said, the subject matter of this chapter is fairly standard and almost
all facts may already be found in the first monograph written on homological
algebra, that of Cartan and Eilenberg [1]. Some of the constructions were first
developed with applications to class field theory in view. For instance, Shapiro’s
lemma first appears in a footnote to Weil [1], then with a (two-page) proof in
Hochschild–Nakayama [1].

3.1 Definition of cohomology groups
Let G be a group. By a (left) G-module we shall mean an abelian group A
equipped with a left action by G. Notice that this is the same as giving a left
module over the integral group ring Z[G]: indeed, for elements

∑
nσ σ ∈ Z[G]

and a ∈ A we may define (
∑

nσ σ )a := ∑
nσ σ (a) and conversely, a Z[G]-

module structure implies in particular the existence of “multiplication-by-σ”
maps on A for all σ ∈ G. We say that A is a trivial G-module if G acts trivially
on A, i.e. σa = a for all σ ∈ G and a ∈ A. By a G-homomorphism we mean
a homomorphism A → B of abelian groups compatible with the G-action.
Denote by HomG(A, B) the set of G-homomorphisms A → B; it is an abelian
group under the natural addition of homomorphisms. Recall also that we denote
by AG the subgroup of G-invariant elements in a G-module A.

We would like to define for all G-modules A and all integers i ≥ 0 abelian
groups Hi (G, A) subject to the following three properties.

1. H 0(G, A) = AG for all G-modules A.
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2. For all G-homomorphisms A → B there exist canonical maps

Hi (G, A) → Hi (G, B)

for all i ≥ 0.
3. Given a short exact sequence

0 → A → B → C → 0

of G-modules, there exists an infinite long exact sequence

· · · → Hi (G, A) → Hi (G, B) → Hi (G,C) → Hi+1(G, A) → . . .

of abelian groups, starting from i = 0.

In other words, we would like to generalize the H 1(G, A) introduced in
the previous chapter to higher dimensions, and in particular we would like to
continue the long exact sequence of Proposition 2.7.1 to an infinite sequence.
This is known to be possible only when A is commutative; for non-commutative
A reasonable definitions have been proposed only for i = 2 and 3, but we shall
not consider them here.

To construct the groups Hi (G, A) we begin by some reminders concerning
left modules over a ring R which is not necessarily commutative but has a
unit element 1. Recall that a (cohomological) complex A• of R-modules is a
sequence of R-module homomorphisms

. . . · · · di−1−→ Ai di−→ Ai+1 di+1−→ Ai+2 di+2−→ . . .

for all i ∈ Z, satisfying di+1 ◦ di = 0 for all i . For i < 0 we shall also use the
convention A−i := Ai . We introduce the notations

Zi (A•) := ker (di ), Bi (A•) := Im (di−1) and Hi (A•) := Zi (A•)/Bi (A•).

The complex A• is said to be acyclic or exact if Hi (A•) = 0 for all i .
A morphism of complexes φ : A• → B• is a collection of homomorphisms

φi : Ai → Bi for all i such that the diagrams

Ai −−−−→ Ai+1

φi

� �φi+1

Bi −−−−→ Bi+1

commute for all i . By this defining property, a morphism of complexes A• → B•

induces maps Hi (A•) → Hi (B•) for all i . A short exact sequence of complexes
is a sequence of morphisms of complexes

0 → A• → B• → C• → 0
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such that the sequences

0 → Ai → Bi → Ci → 0

are exact for all i . Now we have the following basic fact which gives the key to
the construction of cohomology groups satisfying property 3 above.

Proposition 3.1.1 Let

0 → A• → B• → C• → 0

be a short exact sequence of complexes of R-modules. Then there is a long exact
sequence

· · · → Hi (A•) → Hi (B•) → Hi (C•)
∂→ Hi+1(A•) → Hi+1(B•) → . . .

The map ∂ is usually called the connecting homomorphism or the (co)-
boundary map.

For the proof of the proposition we need the following equally basic lemma.

Lemma 3.1.2 (The Snake Lemma) Given a commutative diagram of R-
modules

A −−−−→ B −−−−→ C −−−−→ 0�α

�β

�γ

0 −−−−→ A′ −−−−→ B ′ −−−−→ C ′

with exact rows, there is an exact sequence

ker(α) → ker(β) → ker(γ ) → coker (α) → coker (β) → coker (γ ).

Proof The construction of all maps in the sequence is immediate, except for
the map ∂ : ker(γ ) → coker (α). For this, lift c ∈ ker(γ ) to b ∈ B. By commu-
tativity of the right square, the element β(b) maps to 0 in C ′, hence it comes
from a unique a′ ∈ A′. Define ∂(c) as the image of a′ in coker (α). Two choices
of b differ by an element a ∈ A which maps to 0 in coker (α), so ∂ is well
defined. Checking exactness is left as an exercise to the readers.

Proof of Proposition 3.1.1 Applying the Snake Lemma to the diagram

Ai/Bi (A•) −−−−→ Bi/Bi (B•) −−−−→ Ci/Bi (C•) −−−−→ 0�α

�β

�γ

0 −−−−→ Zi+1(A•) −−−−→ Zi+1(B•) −−−−→ Zi+1(C•)

yields a long exact sequence

Hi (A•) → Hi (B•) → Hi (C•) → Hi+1(A•) → Hi+1(B•) → Hi+1(C•),

and the proposition is obtained by splicing these sequences together.
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We also have to recall the notion of projective R-modules. By definition,
these are R-modules P for which the natural map Hom(P, A) → Hom(P, B)
given by λ → α ◦ λ is surjective for every surjection α : A → B.

Lemma 3.1.3

1. The R-module R is projective.
2. Arbitrary direct sums of projective modules are projective.

Proof For the first statement, given an R-homomorphism λ : R → B and a
surjection A → B, lift λ to an element of Hom(R, A) by lifting λ(1) to an
element of A. The second statement is immediate from the compatibility of
Hom-groups with direct sums in the first variable.

Recall also that a free R-module is by definition an R-module isomorphic to
a (possibly infinite) direct sum of copies of the R-module R. The above lemma
then yields:

Corollary 3.1.4 A free R-module is projective.

Example 3.1.5 Given an R-module A, define a free R-module F(A) by taking
an infinite direct sum of copies of R indexed by the elements of A. One has a
surjectionπA : F(A) → A induced by mapping 1a to a, where 1a is the element
of F(A) with 1 in the component corresponding to a ∈ A and 0 elsewhere.

As a first application of this example, we prove the following lemma:

Lemma 3.1.6 An R-module P is projective if and only if there exist an R-
module M and a free R-module F with P ⊕ M ∼= F.

Proof For sufficiency, extend a map λ : P → B to F by defining it to be 0
on M and use projectivity of F . For necessity, take F to be the free R-module
F(P) associated with P in the above example. We claim that we have an
isomorphism as required, with M = ker(πP ). Indeed, as P is projective, we may
lift the identity map of P to a map π : P → F(P) with πP ◦ π = idP.

For each R-module A there exist projective resolutions, i.e. infinite exact
sequences

· · · → P2 → P1 → P0 → A → 0

with Pi projective. One may take, for instance, P0 to be the free R-module F(A)
defined in the example above; in particular, we get a surjection p0 : P0 → A.
Once Pi and pi : Pi → Pi−1 are defined (with the convention P−1 = A), one
defines Pi+1 and pi+1 by applying the same construction to ker(pi ) in place of A.
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Now the basic fact concerning projective resolutions is:

Lemma 3.1.7 Assume given a diagram

. . . −−−−→ P2
p2−−−−→ P1

p1−−−−→ P0
p0−−−−→ A −−−−→ 0�α

. . . −−−−→ B2
b2−−−−→ B1

b1−−−−→ B0
b0−−−−→ B −−−−→ 0

where the upper row is a projective resolution of the R-module A and the lower
row is an exact sequence of R-modules. Then there exist maps αi : Pi → Bi

for all i ≥ 0 making the diagram

. . . −−−−→ P2
p2−−−−→ P1

p1−−−−→ P0
p0−−−−→ A −−−−→ 0�α2

�α1

�α0

�α

. . . −−−−→ B2
b2−−−−→ B1

b1−−−−→ B0
b0−−−−→ B −−−−→ 0

commute. Moreover, if (αi ) and (βi ) are two collections with this property,
there exist maps γi : Pi → Bi+1 for all i ≥ −1 (with the conventions P−1 = A,
α−1 = β−1 = α) satisfying

αi − βi = γi−1 ◦ pi + bi+1 ◦ γi . (1)

Proof To construct αi , assume that the α j are already defined for j < i , with
the convention α−1 = α. Observe that Im (αi−1 ◦ pi ) ⊂ Im (bi ); this is imme-
diate for i = 0 and follows from bi−1 ◦ αi−1 ◦ pi = αi−2 ◦ pi−1 ◦ pi = 0 for
i > 0 by exactness of the lower row. Hence by the projectivity of Pi we may
define αi as a preimage in Hom(Pi , Bi ) of the map αi−1 ◦ pi : Pi → Im (bi ).
For the second statement, define γ−1 = 0 and assume γ j defined for j < i
satisfying (1) above. This implies Im (αi − βi − (γi−1 ◦ pi )) ⊂ Im (bi+1)
because

bi ◦ (αi − βi − (γi−1 ◦ pi )) = (αi−1 − βi−1) ◦ pi − bi ◦ γi−1 ◦ pi

= γi−2 ◦ pi−1 ◦ pi = 0,

so, again using the projectivity of Pi , we may define γi as a preimage of
αi − βi − (γi−1 ◦ pi ) ∈ Hom(Pi , Im (bi+1)) in Hom(Pi , Bi+1).

Now we can construct the cohomology groups Hi (G, A).

Construction 3.1.8 Let G be a group and A a G-module. Take a projective res-

olution P• = (· · · → P2
p2−→ P1

p1−→ P0) of the trivial G-module Z. Consider
the sequence HomG(P•, A) defined by

HomG(P0, A) → HomG(P1, A) → HomG(P2, A) → . . .
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where the maps HomG(Pi , A) → HomG(Pi+1, A) are defined byλ �→ λ ◦ pi+1.
The fact that P• is a complex of G-modules implies that HomG(P•, A) is a
complex of abelian groups; we index it by defining HomG(Pi , A) to be the term
in degree i . We may now put

Hi (G, A) := Hi (HomG(Pi , A))

for i ≥ 0.

Proposition 3.1.9 The groups Hi (G, A) satisfy properties 1-3 postulated at
the beginning of this section, and their isomorphism class does not depend on
the choice of the resolution P•.

Proof Notice first that HomG(Z, A) ∼= AG , the isomorphism arising from
sending a G-homomorphism φ : Z → A to φ(1). On the other hand, every
G-homomorphism Z → A lifts to λ0 : P0 → A inducing the trivial homomor-
phism by composition with p1. Conversely, each such λ0 defines an element of
HomG(Z, A), whence property 1. Property 2 is immediate from the construc-
tion and property 3 follows from Proposition 3.1.1 applied to the sequence of
complexes

0 → HomG(P•, A) → HomG(P•, B) → HomG(P•,C) → 0,

which is exact because the Pi are projective. For the second statement,
let Q• be another projective resolution of Z and apply Lemma 3.1.7
with A = Z, B• = Q• and α = id. We get maps αi : Pi → Qi inducing
α∗

i : Hi (HomG(Qi , A)) → Hi (HomG(Pi , A)) on cohomology. Exchanging the
roles of the resolutions P• and Q• we also get maps βi : Qi → Pi inducing
β∗

i : Hi (HomG(Pi , A)) → Hi (HomG(Qi , A)). We show that the compositions
α∗

i ◦ β∗
i and β∗

i ◦ α∗
i are identity maps. By symmetry it is enough to do this

for the first one. Apply the second statement of Lemma 3.1.7 with Pi in place
of Bi and the maps βi ◦ αi and idPi in place of the αi and βi of the lemma.
We get γi : Pi → Pi+1 satisfying βi ◦ αi − idPi = γi−1 ◦ pi + pi+1 ◦ γi ,
whence λ ◦ βi ◦ αi − λ = λ ◦ γi−1 ◦ pi for a map λ ∈ HomG(Pi , A) satisfy-
ing λ ◦ pi+1 = 0. This means precisely that λ ◦ βi ◦ αi − λ is in the image of
the map HomG(Pi−1, A) → HomG(Pi , A), i.e. (βi ◦ αi )∗ = α∗

i ◦ β∗
i equals the

identity map of Hi (HomG(Pi , A)).

Remarks 3.1.10

1. The above construction is a special case of that of Ext-groups in homo-
logical algebra: for two R-modules M and N these are defined by
Exti (M, N ) := Hi (HomR(P•, N )) with a projective resolution P• of M .
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The same argument as above shows independence of the choice of P•. In
this parlance we therefore get Hi (G, A) = ExtiZ[G](Z, A).

2. It follows from the definition that cohomology groups satisfy certain nat-
ural functorial properties. Namely, if

A −−−−→ B� �
A′ −−−−→ B ′

is a commutative diagram of G-modules, then the associated diagrams

Hi (G, A) −−−−→ Hi (G, B)� �
Hi (G, A′) −−−−→ Hi (G, B ′)

commute for all i ≥ 0. Moreover, given a commutative diagram

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0� � �
0 −−−−→ A′ −−−−→ B ′ −−−−→ C ′ −−−−→ 0

of short exact sequences, the diagrams

Hi (G,C) −−−−→ Hi+1(G, A)� �
Hi (G,C ′) −−−−→ Hi+1(G, A′)

coming from the functorial property and the long exact sequences commute
for all i ≥ 0.

3.2 Explicit resolutions
To calculate the groups Hi (G, A) explicitly, one uses concrete projective res-
olutions. The most useful of these is the following one, inspired by simplicial
constructions in topology.

Construction 3.2.1 (The standard resolution) Consider for each i ≥ 0 the
Z[G]-module Z[Gi+1], where Gi+1 is the (i + 1)-fold direct power of G and
the action of G is determined by σ (σ0, . . . , σi ) = (σσ0, . . . , σσi ). These are
projective (in fact, free) Z[G]-modules, being isomorphic to Z[G]i+1. For i > 0
define G-homomorphisms δi : Z[Gi+1]→Z[Gi ] by δi = ∑

j (−1) j si
j , where

si
j : Z[Gi+1]→ Z[Gi ] is the map determined by sending

(σ0, . . . , σi ) �→ (σ0, . . . , σ j−1, σ j+1, . . . , σi ).
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In this way, we get a projective resolution

· · · → Z[G3]
δ2−→ Z[G2]

δ1−→ Z[G]
δ0−→ Z → 0,

where δ0 sends each σi to 1. This resolution is called the standard resolution
of Z. To see that the sequence is indeed exact, an immediate calculation shows
first that δi ◦ δi+1 = 0 for all i . Then fix σ ∈ G and define hi : Z[Gi+1] →
Z[Gi+2] by sending (σ0, . . . , σi ) to (σ, σ0, . . . , σi ). Another calculation shows
δi+1 ◦ hi + hi−1 ◦ δi = idZ[Gi+1], which implies ker(δi ) = Im (δi+1).

For a G-module A, one calls the elements of HomG(Z[Gi+1], A) i -cochains,
those of Zi+1(HomG(Z[G•], A)) and Bi+1(HomG(Z[G•], A)) i -cocycles and
i -coboundaries, respectively. We shall denote these respective groups by
Ci (G, A), Zi (G, A) and Bi (G, A). The cohomology groups Hi (G, A) then
arise as the groups Hi+1(HomG(Z[G•], A)). We shall see in the example below
that for i = 1 we get back the notions of the previous chapter (in the commu-
tative case).

For calculations, another expression is very useful.

Construction 3.2.2 (Inhomogeneous cochains) In Z[Gi+1] consider the
particular basis elements

[σ1, . . . , σi ] := (1, σ1, σ1σ2, . . . , σ1 · · · σi ).

From the definition of the G-action on Z[Gi+1] we get that Z[Gi+1] is none
but the free Z[G]-module generated by the elements [σ1, . . . , σi ]. A calculation
shows that on these elements the differentials δi are expressed by

δi ([σ1, . . . , σi ]) = σ1[σ2, . . . , σi ] +
i∑

j=1

(−1) j [σ1, . . . , σ jσ j+1, . . . , σi ]

+ (−1)i+1[σ1, . . . , σi−1]. (2)

Therefore we may identify i-cochains with functions [σ1, . . . , σi ] → aσ1,...,σi

and compute the maps δ∗
i : Ci−1(G, A) → Ci (G, A) by the formula

aσ1,...,σi−1 �→ σ1aσ2,...,σi +
i∑

j=1

(−1) j aσ1,...,σ jσ j+1,...,σi + (−1)i+1aσ1,...,σi−1 .

The functions aσ1,...,σi are called inhomogeneous cochains.

Here is how to calculate the groups Hi (G, A) in low dimensions by means
of inhomogeneous cochains.

Examples 3.2.3

1. A 1-cocycle is given by a function σ �→aσ satisfying aσ1σ2 =σ1aσ2 + aσ1 .
It is a 1-coboundary if and only if it is of the form σ �→ σa − a for
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some a ∈ A. We thus get back the first cohomology group defined in
the noncommutative situation in the previous chapter. Note that in the
special case when G acts trivially on A, i.e. σ (a) = a for all a ∈ A, we
have Z1(G, A) = Hom(G, A) and B1(G, A) = 0, so finally H 1(G, A) =
Hom(G, A).

2. A 2-cocycle is given by a function (σ1, σ2) �→ aσ1,σ2 satisfying

σ1aσ2,σ3 − aσ1σ2,σ3 + aσ1,σ2σ3 − aσ1,σ2 = 0.

It is a 2-coboundary, i.e. an element of Im (∂1∗) if it is of the form
σ1bσ2 − bσ1σ2 + bσ1 for some 1-cochain σ �→ bσ .

Remark 3.2.4 Using the above description via cocycles one also gets explicit
formulae for the coboundary maps δi : Hi (G,C) → Hi+1(G, A) in long exact
cohomology sequences. In particular, in the case i = 0 we get the same answer
as in the noncommutative situation (Proposition 2.7.1): given c ∈ CG , we lift it
to an element b ∈ B, and δ0(c) is represented by the map σ �→ σb − b, which
is readily seen to be a 1-cocycle with values in A.

Example 3.2.5 For some questions (e.g. as in the example of group extensions
below) it is convenient to work with normalized cochains. These are obtained
by considering the free resolution

· · · → L2
δ2

n−→ L1
δ1

n−→ L0
δ0

n−→ Z → 0,

where Li is the free G-submodule of Z[Gi+1] generated by those [σ1, . . . σi ]
where none of the σ j is 1. The morphisms δi

n are defined by the same formulae
as for the δi in (2), except that if we happen to have σ jσ j+1 = 1 for some j in
[σ1, . . . σi ], we set the term involving σ jσ j+1 on the right-hand side to 0. This
indeed defines a map Li → Li−1, and a calculation shows that we again have
ker(δi

n) = Im (δi+1
n ). So we have obtained a free resolution of Z and may use

it for computing the cohomology of a G-module A. Elements in HomG(Li , A)
may be identified with inhomogeneous i-cochains aσ1,...,σi which have the value
0 whenever one of the σ j equals 1.

Example 3.2.6 (Group extensions) An important example of 2-cocycles aris-
ing ‘in nature’ comes from the theory of group extensions. Consider an exact
sequence of groups 0 → A → E → G

π→ 1, with A abelian. The conjugation
action of E on A passes to the quotient in G and gives A the structure of a
G-module. Now associate with E a 2-cocycle as follows. Choose a normalized
set-theoretic section of π , i.e. a map s : G → E with s(1) = 1 andπ ◦ s = idG.
For elements σ1, σ2 ∈ G the element aσ1,σ2 := s(σ1)s(σ2)s(σ1σ2)−1 maps to
1 in G, and therefore defines an element of A. An immediate calculation
shows that (σ1, σ2) �→ aσ1,σ2 is a 2-cocycle of G with values in A, which is
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in fact normalized, i.e. satisfies a1,σ = aσ,1 = 1 for all σ ∈ G. Another calcu-
lation shows that replacing s by another set-theoretic section yields a 2-cocycle
with the same class in H 2(G, A). In this way one associates with E a class
c(E) ∈ H 2(G, A). Furthermore, we see that in the case when there is a section
s which is a group homomorphism, i.e. the extension E splits as a semidirect
product of G by A, then c(E) = 0.

In fact, once we fix a G-action on A, we may consider the set Ext(G, A)
of equivalence classes of extensions E of G by A inducing the given action
of G on A modulo the following equivalence relation: two extensions E and
E ′ are called equivalent if there is an isomorphism λ : E ∼→ E ′ inducing a
commutative diagram

0 −−−−→ A −−−−→ E −−−−→ G −−−−→ 1�id

�λ

�id

0 −−−−→ A −−−−→ E ′ −−−−→ G −−−−→ 1.

The map E �→ c(E) is easily seen to preserve this equivalence relation, and
in fact induces a bijection between Ext(G, A) → H 2(G, A). The inverse is
constructed as follows: one represents a class in H 2(G, A) by a normalized
cocycle aσ1,σ2 and defines a group E with underlying set A × G and group law
(a1, σ1) · (a2, σ2) := (a1 + σ1(a2) + aσ1,σ2 , σ1σ2). The cocycle relation implies
that this product is associative, and the fact that aσ1,σ2 is normalized implies
that (0, 1) is a unit element. The element (−σ−1(a) − σ−1(aσ,σ−1 ), σ−1) yields
an inverse for (a, σ ), therefore E is indeed a group and one checks that it is an
extension of G by A with c(E) = [aσ1,σ2 ]. All this is verified by straightforward
calculations which we leave to the readers to carry out or to look up e.g. in
Weibel [1], Section 6.6.

Remark 3.2.7 Given a homomorphism φ : A → B of G-modules, the natural
map φ∗ : H 2(G, A) → H 2(G, B) induced on cohomology has the following
interpretation in terms of group extensions: the class c(E) of an extension
0 → A

ι→ E → G → 1 is mapped to that of the pushforward extension φ∗(E)
defined as the quotient of B × E by the normal subgroup of elements of the
form (φ(a), ι(a)−1) for a ∈ A. One verifies that φ∗(E) is indeed an extension of
G by B, and that c(φ∗(E)) = φ∗(c(E)) by the explicit description of the cocycle
class c(E) given above.

For special groups other projective resolutions may be useful for computing
cohomology, as the examples of cyclic groups show.

Example 3.2.8 Let G = Z. Then the sequence

0 → Z[Z] → Z[Z] → Z → 0
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gives a projective resolution of the trivial Z-module Z, where the second map
is given by multiplication by σ − 1 for a generator σ of Z considered a cyclic
group, and the third one is induced by mapping σ to 1. It is immediate to check
the exactness of the sequence, and for a Z[Z]-module A we get

H 0(Z, A) = Aσ , H 1(Z, A) = A/(σ − 1)A and Hi (Z, A) = 0 for i > 1.

Example 3.2.9 Let now G be a finite cyclic group of order n, generated by an
element σ . Consider the maps Z[G] → Z[G] defined by

N : a �→
n−1∑
i=0

σ i a and σ − 1 : a �→ σa − a.

One checks easily that ker(N ) = Im (σ − 1) and Im (N ) = ker(σ − 1). Hence
we obtain a free resolution

· · · N→ Z[G]
σ−1−→ Z[G]

N→ Z[G]
σ−1−→ Z[G] → Z → 0,

the last map being induced by σ �→ 1.
For a G-module A, define maps N : A → A and σ − 1 : A → A by the

same formulae as above and put N A := ker(N ). Using the above resolution,
one finds

H 0(G, A)= AG, H 2i+1(G, A)= N A/(σ − 1)A and H 2i+2(G, A)= AG/N A
(3)

for i ≥ 0.

Remark 3.2.10 If K |k is a finite Galois extension with cyclic Galois group G
as above, the above calculation shows H 1(G, K ×) = N K ×/(σ − 1)K ×. The
first group is trivial by Hilbert’s Theorem 90 and we get back the original form
of the theorem, as established in Example 2.3.4.

3.3 Relation to subgroups
Let H be a subgroup of G and A an H -module. Then Z[G] with its canonical
G-action is an H -module as well, and we can associate with A the G-module

MG
H (A) := HomH (Z[G], A)

where the action of G on an H -homomorphism φ : Z[G] → A is given by
(σφ)(g) := φ(gσ ) for a basis element g of Z[G]. One sees that σφ is indeed
an H -homomorphism.

Lemma 3.3.1 Assume moreover given a G-module M. We have a canonical
isomorphism

HomG(M,HomH (Z[G], A)) ∼→ HomH (M, A)
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induced by mapping a G-homomorphism m → φm in the left-hand side group
to the H-homomorphism m �→ φm(1).

Proof Given an H -homomorphism λ : M → A, consider the map m �→ λm ,
where λm ∈ HomH (Z[G], A) is the map determined by g �→ λ(gm). The kind
reader will check that we get an element of HomG(M,HomH (Z[G], A)) in this
way, and that the two constructions are inverse to each other.

Now apply the lemma to the terms of a projective Z[G]-resolution P• of Z.
Note that this is also a resolution by projective H -modules, because Z[G] is free
as a Z[H ]-module (a system of coset representatives yields a basis). Passing to
cohomology groups, we get:

Corollary 3.3.2 (Shapiro’s Lemma) Given a subgroup H of G and an H-
module A, canonical isomorphisms exist

Hi
(
G, MG

H (A)
) ∼→ Hi (H, A)

for all i ≥ 0.

The case when H = {1} is particularly important. In this case an H -module
A is just an abelian group; we denote MG

H (A) simply by MG(A) and call it the
co-induced module associated with A.

Corollary 3.3.3 The group Hi (G, MG(A)) is trivial for all i > 0.

Proof In this case the right-hand side in Shapiro’s lemma is trivial (e.g. because
0 → Z → Z → 0 gives a projective resolution of Z).

Remarks 3.3.4

1. It is important to note that the construction of co-induced modules is func-
torial in the sense that every homomorphism A → B of abelian groups
induces a G-homomorphism MG(A) → MG(B). Of course, a similar
property holds for the modules MG

H (A).
2. For a G-module A there is a natural injective map A → MG(A) given

by assigning to a ∈ A the homomorphism Z[G] → A of abelian groups
induced by the mapping σ �→ σa.

3. If G is finite, the choice of a Z-basis of Z[G] induces a non-canonical
isomorphism MG(A) ∼= A ⊗Z Z[G] for all abelian groups A.

Using Shapiro’s lemma we may define two basic maps relating the cohomol-
ogy of a group to that of a subgroup.
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Construction 3.3.5 (Restriction maps) Let G be a group, A a G-module and
H a subgroup of G. There are natural maps of G-modules

A ∼→ HomG(Z[G], A) → HomH (Z[G], A) = MG
H (A),

the first one given by mapping a ∈ A to the unique G-homomorphism send-
ing 1 to a and the second by considering a G-homomorphism as an H -
homomorphism. Taking cohomology and applying Shapiro’s lemma we thus
get maps

Res : Hi (G, A) → Hi (H, A)

for all i ≥ 0, called restriction maps. One sees that for i = 0 we get the natural
inclusion AG → AH .

When the subgroup H has finite index, there is a natural map in the opposite
direction.

Construction 3.3.6 (Corestriction maps) Let H be a subgroup of G of finite
index n and let A be a G-module.

Given an H -homomorphism φ : Z[G] → A, define a new map Z[G] → A
by the assignment

φG
H : x �→

n∑
j=1

ρ jφ
(
ρ−1

j x
)
,

where ρ1, . . . , ρn is a system of left coset representatives for H in G. This
is manifestly a group homomorphism which does not depend on the choice
of the ρ j ; indeed, if we replace the system of representatives (ρ j ) by another
system (ρ jτ j ) with some τ j ∈ H , we get ρ jτ jφ(τ−1

j ρ−1
j x) = ρ jφ(ρ−1

j x) for all
j , the map φ being an H -homomorphism. Furthermore, the map φG

H is also a
G-homomorphism, because we have for all σ ∈ G

n∑
j=1

ρ jφ
(
ρ−1

j σ x
) = σ

(
n∑

j=1

(σ−1ρ j )φ((σ−1ρ j )
−1x)

)
= σ

(
n∑

j=1

ρ jφ
(
ρ−1

j x
))

,

as the σ−1ρ j form another system of left coset representatives.
The assignment φ �→ φG

H thus defines a well-defined map

HomH (Z[G], A) → HomG(Z[G], A) ∼= A,

so by taking cohomology and applying Shapiro’s lemma we get maps

Cor : Hi (H, A) → Hi (G, A)

for all i ≥ 0, called corestriction maps.
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An immediate consequence of the preceding constructions is the following
basic fact.

Proposition 3.3.7 Let G be a group, H a subgroup of finite index n in G and
A a G-module. Then the composite maps

Cor ◦ Res : Hi (G, A) → Hi (G, A)

are given by multiplication by n for all i ≥ 0.

Proof Indeed, if φ : Z[G] → A is a G-homomorphism, then for all x ∈ Z[G]
we have φG

H (x) = ∑
ρ jφ(ρ−1

j x) = ∑
ρ jρ

−1
j φ(x) = nφ(x).

In the case H = {1} we get:

Corollary 3.3.8 Let G be a finite group of order n. Then the elements of
Hi (G, A) have finite order dividing n for all G-modules A and integers i > 0.

Another basic construction is the following one.

Construction 3.3.9 (Inflation maps) Let G be a group, and H a normal sub-
group. Then for a G-module A the submodule AH of fixed elements under
H is stable under the action of G (indeed, for σ ∈ G, τ ∈ H and a ∈ AH one
has τσa = σ (σ−1τσ )a = σa). Thus AH carries a natural structure of a G/H -
module.

Now take a projective resolution P• of Z as a trivial G-module and a projective
resolution Q• of Z as a trivial G/H -module. Each Qi can be considered as
a G-module via the projection G → G/H , so applying Lemma 3.1.7 with
R = Z[G], B• = Q• and α = idZ we get a morphism P• → Q• of complexes
of G-modules, whence also a map HomG(Q•, AH ) → HomG(P•, AH ). Now
since HomG(Qi , AH ) = HomG/H (Qi , AH ) for all i , the former complex equals
HomG/H (Q•, AH ), so by taking cohomology we get maps Hi (G/H, AH ) →
Hi (G, AH ) which do not depend on the choices of P• and Q• by the same
argument as in the proof of Proposition 3.1.9. Composing with the natural map
induced by the G-homomorphism AH → A we finally get maps

Inf : Hi (G/H, AH ) → Hi (G, A),

for all i ≥ 0, called inflation maps.

Remark 3.3.10 Calculating the inflation maps in terms of the standard reso-
lution of Z, we see that inflating an i-cocycle Z[(G/H )i+1] → AH amounts to
taking the lifting Z[Gi+1] → AH induced by the projection G → G/H .

Similarly, one checks that the restriction of a cocycle Z[Gi+1] → A to a
subgroup H is given by restricting it to a map Z[Hi+1] → A.
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Remark 3.3.11 Given a normal subgroup H in G and a G-module A with
trivial H -action, the inflation map Inf : H 2(G/H, A) → H 2(G, A) has the
following interpretation in terms of group extensions: given an extension
0 → A

π→ E → (G/H ) → 1, its class c(E) satisfies Inf(c(E)) = c(ρ∗(E)),
where ρ : G → G/H is the natural projection, and ρ∗(E) is the pullback exten-
sionρ∗(E) defined as the subgroup of E × G given by elements (e, g) satisfying
π (e) = ρ(g). One verifies that ρ∗(E) is indeed an extension of G by A, and the
relation c(ρ∗(E)) = Inf(c(E)) holds by the construction of inflation maps and
that of the class c(E) in Example 3.2.6.

We now turn to the last basic construction relative to subgroups.

Construction 3.3.12 (Conjugation) Let P and A be G-modules, and H a
normal subgroup of G. For each σ ∈ G we define a map

σ∗ : HomH (P, A) → HomH (P, A)

by setting σ∗(φ)(p) := σ−1φ(σ (p)) for each p ∈ P and φ ∈ HomH (P, A). To
see that σ∗(φ) indeed lies in HomH (P, A), we compute for τ ∈ H

σ∗(φ)(τ (p))=σ−1φ(στ (p))=σ−1φ(στσ−1σ (p))=σ−1στσ−1φ(σ (p))=τσ∗(φ)(p),

where we have used the normality of H in the penultimate step. As σ−1
∗ is

obviously an inverse for σ∗, we get an automorphism of the group HomH (P, A).
It follows from the definition that σ∗ is the identity for σ ∈ H .

Now we apply the above to a projective resolution P• of the trivial G-module
Z. The construction yields an automorphism σ∗ of the complex HomH (P•, A),
i.e. an automorphism in each term compatible with the G-maps in the resolution.
Taking cohomology we thus get automorphisms σ i

∗ : Hi (H, A) → Hi (H, A)
in each degree i ≥ 0, and the same method as in Proposition 3.1.9 implies that
they do not depend on the choice of P•. These automorphisms are trivial for
σ ∈ H , so we get an action of the quotient G/H on the groups Hi (H, A), called
the conjugation action.

It is worthwhile to record an explicit consequence of this construction.

Lemma 3.3.13 Let

0 → A → B → C → 0

be a short exact sequence of G-modules, and H a normal subgroup in G. The
long exact sequence

0→ H 0(H, A)→ H 0(H, B)→ H 0(H,C) → H 1(H, A) → H 1(H, B) → . . .

is an exact sequence of G/H-modules, where the groups Hi (H, A) are equipped
with the conjugation action defined above.
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Proof This follows immediately from the fact that the conjugation action as
defined above induces an isomorphism of the exact sequence of complexes

0 → HomH (P•, A) → HomH (P•, B) → HomH (P•,C) → 0

onto itself.

This lemma will be handy for establishing the following fundamental exact
sequence involving inflation and restriction maps.

Proposition 3.3.14 Let G be a group, H a normal subgroup and A a G-module.
There is a natural map τ : H 1(H, A)G/H → H 2(G/H, AH ) fitting into an exact
sequence

0 → H 1(G/H, AH )
Inf−→ H 1(G, A)

Res−→ H 1(H, A)G/H τ→
→ H 2(G/H, AH )

Inf−→ H 2(G, A).

We begin the proof by the following equally useful lemma.

Lemma 3.3.15 In the situation of the proposition we have

MG(A)H ∼= MG/H (A) and H j (H, MG(A)) = 0 for all j > 0.

Proof The first statement follows from the chain of isomorphisms

MG(A)H = Hom(Z[G], A)H ∼= Hom(Z[G/H ], A) = MG/H (A).

As for the second, the already used fact that Z[G] is free as a Z[H ]-module
implies that MG(A) is isomorphic to a direct sum of copies of M H (A).
But it follows from the definition of cohomology that H j (H,

⊕
M H (A)) ∼=⊕

H j (H, M H (A)), which is 0 by Corollary 3.3.3.

Proof of Proposition 3.3.14 Define C as the G-module fitting into the exact
sequence

0 → A → MG(A) → C → 0. (4)

This is also an exact sequence of H -modules, so we get a long exact sequence

0 → AH → MG(A)H → C H → H 1(H, A) → H 1(H, MG(A)),

where the last group is trivial by the second statement of Lemma 3.3.15. Hence
we may split up the sequence into two short exact sequences

0 → AH → MG(A)H → B → 0, (5)

0 → B → C H → H 1(H, A) → 0. (6)
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Using Lemma 3.3.13 we see that these are exact sequences of G/H -modules.
Taking the long exact sequence in G/H -cohomology coming from (5) we get

0 → AG → MG(A)G → BG/H → H 1(G/H, AH ) → H 1(G/H, MG(A)H ),

where the last group is trivial by Lemma 3.3.15. So we have a commutative
diagram with exact rows

0�
0 −−−−→ AG −−−−→ MG(A)G −−−−→ BG/H −−−−→ H 1(G/H, AH ) → 0�id

�id

�
0 −−−−→ AG −−−−→ MG(A)G −−−−→ CG −−−−→ H 1(G, A) → 0�

H 1(H, A)G/H�
H 1(G/H, B)

where second row comes from the long exact G-cohomology sequence of (4),
and the column from the long exact sequence of (6). A diagram chase shows
that we obtain from the diagram above an exact sequence

0 → H 1(G/H, AH )
α→ H 1(G, A)

β→ H 1(H, A)G/H → H 1(G/H, B).

Here we have to identify the maps α and β with inflation and restriction maps,
respectively. For α, this follows by viewing AH and B as G-modules via the
projection G → G/H and considering the commutative diagram

BG/H id−−−−→ BG −−−−→ CG� � �
H 1(G/H, AH )

λ−−−−→ H 1(G, AH ) −−−−→ H 1(G, A)

where the composite of the maps in the lower row is by definition the inflation
map. Here λ is given by viewing a 1-cocycle G/H → AH as a 1-cocycle
G → AH , and the diagram commutes by the functoriality of the long exact
cohomology sequence. As for β, its identification with a restriction map follows
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from the commutative diagram

CG −−−−→ H 1(G, A)� �Res

C H −−−−→ H 1(H, A)

where the left vertical map is the natural inclusion.
Now the remaining part of the required exact sequence comes from the

commutative diagram

H 1(H, A)G/H −−−−→ H 1(G/H, B) −−−−→ H 1(G/H,C H )
Inf−−−−→ H 1(G,C)�∼=

�∼=

H 2(G/H, AH )
Inf−−−−→ H 2(G, A)

where the top row, coming from (6), is exact at H 1(G/H, B), and the vertical
isomorphisms are induced by the long exact sequences coming from (5) and
(4), using again that MG(A) and MG(A)H have trivial cohomology. Commu-
tativity of the diagram relies on a compatibility between inflation maps and
long exact sequences which is proven in the same way as the one we have just
considered for H 1. Finally, the exactness of the sequence of the proposition
at H 2(G/H, B H ) comes from the exactness of the row in the above diagram,
together with the injectivity of the inflation map H 1(G/H,C H ) → H 1(G,C)
that we have already proven (for A in place of C).

Remark 3.3.16 The map τ of the proposition is called the transgression map.
For an explicit description of τ in terms of cocycles, see Neukirch-Schmidt-
Wingberg [1], Proposition 1.6.5.

Proposition 3.3.17 In the situation of the previous proposition, let i > 1 be
an integer and assume moreover that the groups H j (H, A) are trivial for
1 ≤ j ≤ i − 1. Then there is a natural map

τi,A : Hi (H, A)G/H → Hi+1(G/H, AH )

fitting into an exact sequence

0 → Hi (G/H, AH )
Inf−→ Hi (G, A)

Res−→ Hi (H, A)G/H τi,A−→
→ Hi+1(G/H, AH )

Inf−→ Hi+1(G, A).

Proof Embed A into the co-induced module MG(A) and let CA be the cokernel
of this embedding. The G-module MG(A) is an H -module in particular, and the
assumption that H 1(H, A) vanishes implies the exactness of the sequence 0 →
AH → MG(A)H → C H

A → 0 by the long exact cohomology sequence. This is
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a short exact sequence of G/H -modules, so taking the associated long exact
sequence yields the first and fourth vertical maps in the commutative diagram

0 −−−−→ H j−1
(
G/H,C H

A

) Inf−−−−→ H j−1(G,CA)
Res−−−−→ H j−1(H,CA)G/H →� � �

0 −−−−→ H j (G/H, AH )
Inf−−−−→ H j (G, A)

Res−−−−→ H j (H, A)G/H →

τ j−1,C A−−−−→ H j
(
G/H,C H

A

) Inf−−−−→ H j (G,CA)� �
τ j,A−−−−→ H j+1(G/H, AH )

Inf−−−−→ H j+1(G, A)

where the other vertical maps come from long exact sequences associ-
ated with 0 → A → MG(A) → CA → 0, and the maps τ j,A and τ j−1,CA are
yet to be defined. The second and fifth vertical maps are isomorphisms
because H j (G, MG(A)) = 0 for j > 0 according to Corollary 3.3.3. Moreover,
Lemma 3.3.15 shows that the groups H j (G/H, MG(A)H ) and H j (H, MG(A))
are also trivial for j > 0, hence the first and fourth vertical maps and the
map H j−1(H,CA) → H j (H, A) inducing the third vertical map are isomor-
phisms as well. In particular, the assumption yields that H j (H,CA) = 0 for all
1 ≤ j < i − 1. By induction starting from the case i = 1 proven in the previ-
ous proposition, we may thus assume that the map τi−1,CA has been defined and
the upper row is exact for j = i . We may then define τi,A by identifying it to
τi−1,CA via the isomorphisms in the diagram, and from this obtain an exact lower
row.

Remarks 3.3.18

1. The proposition is easy to establish using the Hochschild–Serre spectral
sequence for group extensions (see e.g. Shatz [1] or Weibel [1]).

2. The argument proving Proposition 3.3.17 is an example of a very useful
technique called dimension shifting, which consists of proving statements
about cohomology groups by embedding G-modules into co-induced mod-
ules and then using induction in long exact sequences. For other examples
where this technique can be applied, see the exercises.

3.4 Cup-products
In this section we construct an associative product operation

Hi (G, A) × H j (G, B) → Hi+ j (G, A ⊗ B), (a, b) �→ a ∪ b
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which is graded-commutative, i.e. it satisfies

a ∪ b = (−1)i j (b ∪ a). (7)

Here A ⊗ B is the tensor product of A and B over Z, equipped with the G-
module structure given by σ (a ⊗ b) = σ (a) ⊗ σ (b). Note that in general this
is different from the tensor product of A and B over Z[G].

We begin the construction with general considerations on complexes. We
restrict to the case of abelian groups, the only one we shall need.

Construction 3.4.1 Let A• and B• be complexes of abelian groups. We define
the tensor product complex A• ⊗ B• by first considering the double complex

...
...

...� � �
. . . −−−−→ Ai−1 ⊗ B j+1 −−−−→ Ai ⊗ B j+1 −−−−→ Ai+1 ⊗ B j+1 −−−−→ . . .� � �
. . . −−−−→ Ai−1 ⊗ B j −−−−→ Ai ⊗ B j −−−−→ Ai+1 ⊗ B j −−−−→ . . .� � �
. . . −−−−→ Ai−1 ⊗ B j−1 −−−−→ Ai ⊗ B j−1 −−−−→ Ai+1 ⊗ B j−1 −−−−→ . . .� � �

...
...

...
(8)

where the horizontal maps ∂h
i j : Ai ⊗ B j → Ai+1 ⊗ B j are given by ∂ i

A ⊗ id

and the vertical maps ∂v
i j : Ai ⊗ B j → Ai ⊗ B j+1 by id ⊗ (−1)i∂

j
B . In this

way, the squares anticommute, i.e. one has

∂h
i, j+1 ◦ ∂v

i j = −∂v
i+1, j ◦ ∂h

i j .

Now take the total complex associated with this double complex. By defini-
tion, this is the complex T • with

T n =
⊕

i+ j=n

Ai ⊗ B j

and ∂n : T n → T n+1 given on the component Ai ⊗ B j by ∂h
i j + ∂v

i j . The above
anticommutativity then implies ∂n+1 ◦ ∂n = 0, i.e. that T • is a complex. We
define T • to be the tensor product of A• and B• and denote it by A• ⊗ B•.

We now proceed to the second step of the construction.
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Construction 3.4.2 In the situation of the above construction, assume fur-
ther given abelian groups A and B. Consider the complexes Hom(A•, A) and
Hom(B•, B) whose degree i terms are Hom(A−i , A) and Hom(B−i , B), respec-
tively, with differentials induced by those of A• and B•. We construct a product
operation

Hi (Hom(A•, A)) × H j (Hom(B•, B)) → Hi+ j (Hom(A• ⊗ B•, A ⊗ B)) (9)

as follows. Given homomorphisms α : A−i → A and β : B− j → B with
i + j = n, the tensor product α ⊗ β is a homomorphism A−i ⊗ B− j → A ⊗ B,
and hence defines an element of the degree i + j term in Hom(A• ⊗ B•, A ⊗ B)
via the diagonal embedding

Hom(A−i ⊗ B− j , A ⊗ B) → Hom
( ⊕

k+l=i+ j

A−k ⊗ B−l , A ⊗ B
)
.

Here if α ∈ Zi (Hom(A•, A)) and β ∈ Z j (Hom(B•, B)), then by construc-
tion of A• ⊗ B• we have α ⊗ β ∈ Zi+ j (Hom(A• ⊗ B•, A ⊗ B)). Moreover, if
α ∈ Bi (Hom(A•, A)), then α ⊗ β ∈ Bi+ j (Hom(A• ⊗ B•, A ⊗ B)) (use again
the diagonal embedding), and similarly for β. This defines the required map
(9).

We note that if here all abelian groups carry a G-module structure for some
group G and α, β are G-homomorphisms, then so is α ⊗ β, hence by restricting
to G-homomorphisms we obtain a product

Hi (HomG(A•, A)) × H j (HomG(B•, B)) → Hi+ j (HomG(A• ⊗ B•, A ⊗ B)),

where A ⊗ B and A• ⊗ B• are endowed with the G-module structure defined
at the beginning of this section.

The next step is the following key proposition. Recall that the lower num-
bering in a projective resolution P• is defined by Pi := P−i .

Proposition 3.4.3 Let G be a group, and let P• be a complex of G-modules
which is a projective resolution of the trivial G-module Z. Then P• ⊗ P• is a
projective resolution of the trivial Z[G × G]-module Z.

Here the terms of P• ⊗ P• are endowed by a G × G-action coming from

(σ1, σ2)(p1 ⊗ p2) = σ1(p1) ⊗ σ2(p2).

The proof is based on the following lemma.

Lemma 3.4.4 If A• and B• are acyclic complexes of free abelian groups, then
so is the complex A• ⊗ B•.

Similarly, if A• and B• are complexes of free abelian groups concentrated
in nonpositive degrees, acyclic in negative degrees and having a free abelian
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group as 0-th cohomology, then so is the complex A• ⊗ B•. Moreover, we have
H 0(A• ⊗ B•) ∼= H 0(A•) ⊗ H 0(B•).

Proof As tensor products and direct sums of free abelian groups are again
free, we get that the terms of A• ⊗ B• are free. The proof of acyclicity is based
on the fact that a subgroup of a free abelian group is again free. This implies that
for all i , the subgroups Bi (A•) are free, and in particular projective. Consider
for all i the short exact sequences

0 → Zi (A•) → Ai → Bi+1(A•) → 0.

The terms here are free abelian groups, so the sequence splits. Moreover, we
have Zi (A•) = Bi (A•) by the acyclicity of A•, therefore we may rewrite the
above exact sequence as

0 → Bi (A•)
id−→ Bi (A•) ⊕ Bi+1(A•)

(0,id)−→ Bi+1(A•) → 0.

Hence the complex A• decomposes as an infinite direct sum of complexes of
the shape

· · · → 0 → 0 → A
id→ A → 0 → 0 → . . . ,

and similarly, the complex B• decomposes as a direct sum of complexes

· · · → 0 → 0 → B
id→ B → 0 → 0 → . . . .

As the construction of tensor products of complexes manifestly commutes with
arbitrary direct sums, we are reduced to check acyclicity for the tensor product
of complexes of this type. But by definition, these are complexes of the form

· · · → 0 → 0 → A ⊗ B
(id,id)−→ (A ⊗ B) ⊕ (A ⊗ B)

id−id−→ A ⊗ B

→ 0 → 0 → . . . ,

or similar ones with the second identity map replaced by −id. The first statement
is then obvious. The second one is proven by the same argument, and the
description of the 0-th cohomology follows from right exactness of the tensor
product.

Proof of Proposition 3.4.3 By definition, the Pi are direct summands in
some free G-module, which is in particular a free abelian group, so they are
also free abelian groups. Hence the second statement of the lemma applies.
Therefore the corollary is proven if we show that the terms of P• ⊗ P• are pro-
jective as Z[G × G]-modules. For this, notice first the canonical isomorphism
Z[G × G] ∼= Z[G] ⊗Z Z[G]: indeed, both abelian groups are free on a basis
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corresponding to pairs of elements in G. Taking direct sums we get that ten-
sor products of free Z[G]-modules are free Z[G × G]-modules with the above
G × G-action. Finally, if Pi (resp. Pj ) are projective Z[G]-modules with direct
complement Qi (resp. Q j ) in some free Z[G]-module, the isomorphism

(Pi ⊕ Qi ) ⊗ (Pj ⊕ Q j ) ∼= (Pi ⊗ Pj ) ⊕ (Pi ⊗ Q j ) ⊕ (Qi ⊗ Pj ) ⊕ (Qi ⊗ Q j )

shows that Pi ⊗ Pj is a direct summand in a free Z[G × G]-module, and hence
it is projective. Projectivity of the terms of P• ⊗ P• follows.

Putting everything together, we can finally construct the cup-product.

Construction 3.4.5 Let A and B be G-modules, and P• a projective resolution
of the trivial G-module Z. Applying Construction 3.4.2 with A• = B• = P• we
get maps

Hi (Hom(P•, A)) × H j (Hom(P•, B)) → Hi+ j (Hom(P• ⊗ P•, A ⊗ B)).

By the proposition above, the complex P• ⊗ P• is a projective resolution of Z
as a G × G-module, so by definition of group cohomology we may rewrite the
above as

Hi (G, A) × H j (G, B) → Hi+ j (G × G, A ⊗ B).

On the other hand, the diagonal embedding G → G × G induces a restriction
map

Res : Hi+ j (G × G, A ⊗ B) → Hi+ j (G, A ⊗ B).

Composing the two, we finally get an operation

Hi (G, A) × H j (G, B) → Hi+ j (G, A ⊗ B),

which we call the cup-product map. We denote the image of two elements
a ∈ Hi (G, A) and b ∈ H j (G, B) by a ∪ b. The kind reader will check that this
construction does not depend on the chosen projective resolution P•.

Remarks 3.4.6

1. The construction is functorial in the sense that for a morphism A → A′ of
G-modules the diagram

Hi (G, A) × H j (G, B) −−−−→ Hi+ j (G, A ⊗ B)� �
Hi (G, A′) × H j (G, B) −−−−→ Hi+ j (G, A′ ⊗ B)

commutes, and similarly in the second variable.
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2. Given a morphism of G-modules A × B → C , we get pairings

Hi (G, A) × H j (G, B) → Hi+ j (G,C)

by composing the cup-product with the natural map

Hi+ j (G, A ⊗ B) → Hi+ j (G,C).

We shall also refer to these more general pairings as cup-products.
3. It follows from the construction that for i = j = 0 the cup-product

H 0(G, A) × H 0(G, B) → H 0(G, A ⊗ B)

is just the natural map AG ⊗ BG → (A ⊗ B)G .

Proposition 3.4.7 The cup-product is associative and graded-commutative, i.e.
it satisfies the relation (7).

Proof One checks associativity by carefully following the construction. It
ultimately boils down to the associativity of the tensor product; we leave the
details to the reader. For graded-commutativity, we first work on the level of
tensor products of complexes and compare the images of the obvious maps

Ai ⊗ B j →
⊕

k+l=i+ j

Ak ⊗ Bl and B j ⊗ Ai →
⊕

k+l=i+ j

Bl ⊗ Ak

in the complexes A• ⊗ B• and B• ⊗ A•, respectively. Given a ⊗ b ∈ Ai ⊗ B j ,
the differential in A• ⊗ B• acts on it by ∂ i

A ⊗ idB + (−1)i idA ⊗ ∂
j
B , whereas the

differential of B• ⊗ A• acts on b ⊗ a by ∂
j
B ⊗ idA + (−1) j idB ⊗ ∂ i

A. Therefore
mapping a ⊗ b to (−1)i j (b ⊗ a) induces an isomorphism of complexes

A• ⊗ B• ∼→ B• ⊗ A•.

Applying this with A• = B• = P• and performing the rest of the construction
of the cup-product, we get that via the above isomorphism the elements a ∪ b
and (−1)i j (b ∪ a) get mapped to the same element in Hi+ j (G, A ⊗ B).

The cup-product enjoys the following exactness property.

Proposition 3.4.8 Given an exact sequence

0 → A1 → A2 → A3 → 0 (10)

of G-modules such that the tensor product over Z

0 → A1 ⊗ B → A2 ⊗ B → A3 ⊗ B → 0 (11)
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with a G-module B remains exact, we have for all elements a ∈ Hi (G, A3) and
b ∈ H j (G, B) the relation

δ(a) ∪ b = δ(a ∪ b)

in Hi+ j+1(G, A1 ⊗ B), where the δ are the connecting maps in the associated
long exact sequences.

Similarly, if

0 → B1 → B2 → B3 → 0

is an exact sequence of G-modules such that the tensor product over Z

0 → A ⊗ B1 → A ⊗ B2 → A ⊗ B3 → 0

with a G-module A remains exact, we have for all elements a ∈ Hi (G, A) and
b ∈ H j (G, B3) the relation

a ∪ δ(b) = (−1)iδ(a ∪ b)

in Hi+ j+1(G, A ⊗ B1).

Proof For the first statement, fix an element b ∈ H j (G, B). Take a projective
resolution P• of the trivial G-module Z and consider the sequences

0 → Hom(P•, A1) → Hom(P•, A2) → Hom(P•, A3) → 0 (12)

and

0 → Hom(P• ⊗ P•, A1 ⊗ B) → Hom(P• ⊗ P•, A2 ⊗ B)

→ Hom(P• ⊗ P•, A3 ⊗ B) → 0.

These are exact sequences of complexes by virtue of the projectivity of the
Pi and the exactness of sequences (10) and (11). Lifting b to an element
β ∈ Hom(Pj , B), tensor product with β yields maps

Hom(Pi , Ak) → Hom(Pi ⊗ Pj , Ak ⊗ B)

for k = 1, 2, 3. Hence proceeding as in Construction 3.4.2 we obtain maps from
the terms in the first sequence to those of the second (increasing degrees by
j), giving rise to a commutative diagram by functoriality of the cup-product
construction. The connecting maps δ are obtained by applying the snake lemma
to the above sequences as in Proposition 3.1.1, and one gets the first statement
from the aforementioned commutativity by following the image of the element
a ∈ Hi (G, A). The proof of the second statement is similar, except that one has
to replace the differentials in the complexes Hom•(P•, Bλ) by their multiples by
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(−1)i in order to get a commutative diagram, by virtue of the sign convention
we have taken in Construction 3.4.1.

We shall also need another exactness property of the cup-product.

Proposition 3.4.9 Assume given exact sequences

0 → A1 → A2 → A3 → 0 and 0 → B1 → B2 → B3 → 0

of G-modules and a Z-bilinear pairing A2 × B2 → C into some G-module
C, compatible with the action of G. Assume further that the restriction of this
pairing to A1 × B1 is trivial. Then it induces pairings

A1 × B3 → C and A3 × B1 → C

such that the induced cup-products satisfy the compatibility

δA(α) ∪ β = (−1)i+1α ∪ δB(β)

for α ∈ Hi (G, A3) and β ∈ H j (G, B3), where δA : Hi (G, A3) →
Hi+1(G, A1) and δB : H j (G, B3) → H j+1(G, B1) are boundary maps
coming from the above short exact sequences.

Proof Take again a projective resolution P• of the trivial G-module Z, giving
rise to an exact sequence of the form (12) and a similar one with the Bi . These
are linked by a pairing

Hom(P•, A2) × Hom(P•, B2) → Hom(P• ⊗ P•,C)

trivial on Hom(P•, A1) × Hom(P•, B1). Represent α and β by cocycles
α3 ∈ Zi (Hom(P•, A3)) and β3 ∈ Z j (Hom(P•, B3)), respectively. Recall from
the proof of Proposition 3.1.1 that the class δA(α) is constructed as follows.
We first lift α3 to an element α2 ∈ Hom(Pi , A2), and then take ∂ i

A(α2) in
Bi+1(Hom(P•, A2)). This is an element mapping to 0 in Zi+1(Hom(P•, A3)) and
hence coming from some α1 ∈ Zi+1(Hom(P•, A1)), and we define δA(α) to be
its class in Hi+1(Hom(P•, A1)). By definition of our pairing, δA(α) ∪ β is con-
structed by lifting β3 to some β2 ∈ Hom(Pj , B2) and then taking the image of
∂ i

A(α2) ⊗ β2 in Hom(Pi+1 ⊗ Pj ,C). Since α2 comes from Zi+1(Hom(P•, A1)),
this does not depend on the choice of the liftingβ2, and moreover it yields a cocy-
cle in Zi+ j+1(Hom(P• ⊗ P•,C)). In a similar way, one represents α ∪ δB(β)
by the image of α2 ⊗ ∂

j
B(β2) in Zi+ j+1(Hom(P• ⊗ P•,C)). Now viewing

∂ i
A(α2) ⊗ β2 + (−1)iα2 ⊗ ∂

j
B(β2) as an element in Zi+ j+1(Hom(P• ⊗ P•,C)),

we see that it is none but ∂ i+ j (α2 ⊗ β2), where ∂ i+ j is the total differential of
the complex. Hence it becomes 0 in Hi+ j+1(Hom(P• ⊗ P•,C)), which yields
the required formula.
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Finally, given a subgroup H of G (normal or of finite index if needed), the
cup-product satisfies the following compatibility relations with the associated
restriction, inflation and corestriction maps.

Proposition 3.4.10 Given G-modules A and B, the following relations hold.

1. For a ∈ Hi (G, A) and b ∈ H j (G, B) we have

Res(a ∪ b) = Res(a) ∪ Res(b).

2. Assume H is normal in G. Then we have for a ∈ Hi (G/H, AH ) and
b ∈ H j (G/H, B H )

Inf(a ∪ b) = Inf(a) ∪ Inf(b).

3. (Projection Formula) Assume that H is of finite index in G. Then for
a ∈ Hi (H, A) and b ∈ H j (G, B) we have

Cor(a ∪ Res(b)) = Cor(a) ∪ b.

4. Assume H is normal in G. Then for all σ ∈ G/H, a ∈ Hi (H, A) and
b ∈ H j (H, B) we have

σ∗(a ∪ b) = σ∗(a) ∪ σ∗(b).

Proof According to the definition of restriction maps, the first statement fol-
lows by performing the cup-product construction for the modules MG

H (A) =
HomH (Z[G], A) and MG

H (B) = HomH (Z[G], B), and using functoriality of
the construction for the natural maps A → MG

H (A) and B → MG
H (B). Simi-

larly, the second statement follows by performing the cup-product construction
simultaneously for the projective resolutions P• and Q• considered in the def-
inition of inflation maps, and using functoriality. For the projection formula
consider the diagram

HomH (Z[G], A) × HomH (Z[G], B) → HomH×H (Z[G × G], A ⊗ B)

↓ ↑ ↓
HomG(Z[G], A) × HomG(Z[G], B) → HomG×G(Z[G × G], A ⊗ B),

where the horizontal maps are induced by the tensor product, the middle vertical
map is the one inducing the restriction and the two others are those inducing the
corestriction maps. The diagram is commutative in the sense that starting from
elements in HomH (Z[G], A) and HomG(Z[G], B) we get the same elements in
HomG×G(Z[G × G], A ⊗ B) by going through the diagram in the two possible
ways; this follows from the definition of the maps. The claim then again follows
by performing the cup-product construction for the pairings in the two rows of
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the diagram and using functoriality. Finally, part (4) follows from the fact that
the action of σ on HomH (P•, A) for a projective resolution P• of the trivial
G-module Z defined in the construction of the map σ∗ is compatible with taking
tensor products of resolutions.

We close this section with an important compatibility relation which
complements the calculation of the cohomology of finite cyclic groups in
Example 3.2.9.

Proposition 3.4.11 Let G be a finite cyclic group of order n, and let χ be the
element of the group H 1(G,Z/nZ) ∼= Hom(G,Z/nZ) corresponding to the
identity map.

1. Denote by δ : H 1(G,Z/nZ) → H 2(G,Z) the boundary map coming from
the short exact sequence

0 → Z
n→ Z → Z/nZ → 0. (13)

The element δ(χ ) is a generator of the cyclic group H 2(G,Z).
2. If A is a G-module, the isomorphisms

Hi (G, A) ∼= Hi+2(G, A)

of Example 3.2.9 are induced by cup-product with δ(χ ) for all i > 0.
3. The isomorphism

AG/N A ∼= H 2(G, A)

is induced by mapping an element of AG = H 0(G, A) to its cup-product
with δ(χ ).

Proof Recall the free resolution

· · · → Z[G]
σ−1−→ Z[G]

N→ Z[G]
σ−1−→ Z[G] → Z → 0 (14)

used to calculate the cohomology of G. To prove the first statement, it will suffice
to check that the element δ(χ ) ∈ H 2(G,Z) is represented by the homomorphism
χ̄ : Z[G] → Z given by sending a generator σ of G to 1, with Z[G] placed
in degree −2 in the above resolution. This is done by carefully going through
the construction of δ, given by applying Proposition 3.1.1 to the short exact
sequence of complexes arising from homomorphisms of the above resolution
to the sequence (13). It yields the following: first we lift χ to the element
ψ ∈ Hom(Z[G],Z) sending a fixed generator σ ∈ G to 1. We then compose
ψ by N : Z[G] → Z[G] to get a homomorphism with values in nZ. The class
δ(χ ) is then represented by any map λ : Z[G] → Z satisfying nλ = ψ ◦ N ;
the map λ = χ̄ manifestly has this property.
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This being said, the calculation of the cup-product with δ(χ ) is shown by the
diagram

Hom(Z[G], A)
N∗−−−−→ Hom(Z[G], A)

(σ−1)∗−−−−→ Hom(Z[G], A) → . . .

⊗χ̄

� ⊗χ̄

� ⊗χ̄

�
Hom(Z[G×G], A) −−−−→ Hom(Z[G × G], A) −−−−→ Hom(Z[G × G], A)→ . . .

Res

� Res

� Res

�
Hom(Z[G], A)

N∗−−−−→ Hom(Z[G], A)
(σ−1)∗−−−−→ Hom(Z[G], A) → . . .

where the maps in the bottom line are the same as in the top one except that the
whole complex is shifted by degree 2. But the resolution (14) is periodic by 2,
whence the second statement.

The last statement is proven by a similar argument: here we represent
a ∈ H 0(G, A) by the homomorphism ā : Z[G] → A sending σ to a, with
Z[G] placed in degree 0 this time. Then it remains to observe that tensoring
with ā and taking restriction along the diagonal yields the natural diagram

Hom(Z[G],Z)
N∗−−−−→ Hom(Z[G],Z)

(σ−1)∗−−−−→ Hom(Z[G],Z) → . . .� � �
Hom(Z[G], A)

N∗−−−−→ Hom(Z[G], A)
(σ−1)∗−−−−→ Hom(Z[G], A) → . . .

corresponding to the map Z → A given by sending 1 to a.

Exercises

1. Let φ : G1 → G2 be a homomorphism of groups, and equip each G2-module A
with the G1-action induced by φ. Show that there exists a unique family of homo-
morphisms

φi
A : H i (G2, A) → H i (G1, A)

for each i ≥ 0 such that for every short exact sequence

0 → A → B → C → 0

of G2-modules the arising diagrams

H i (G2, A) −−−−→ H i (G2, B) −−−−→ H i (G2,C) −−−−→ H i+1(G2, A)

φi
A

� φi
B

� φi
C

� φi+1
A

�
H i (G1, A) −−−−→ H i (G1, B) −−−−→ H i (G1,C) −−−−→ H i+1(G1, A)

commute. [Note: This gives in particular another construction of restriction and
inflation maps.]
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2. Let H be a subgroup of G of finite index n, and let ρ1, . . . , ρn be a system of left
coset representatives.
(a) Check that the map Cor0 : AH → AG given by x �→ ∑

j ρ j x does not
depend on the choice of the ρ j .

(b) Show that the corestriction maps H i (H, A) → Hi (G, A) are the only maps
which coincide with the above Cor0 for i = 0 and satisfy a property analogous
to that of the maps φi

A of the previous exercise.
3. With notations as in the previous exercise, assume moreover that H is normal in

G. Define for all i ≥ 0 norm maps NG/H : H i (H, A) → H i (H, A) by the formula
NG/H = ∑n

j=1 ρ j∗.
(a) Check that the above definition does not depend on the choice of the ρ j .
(b) Verify the formula Res ◦ Cor = NG/H .

4. Show that using the standard resolution one can give the following explicit
description of the cup-product using cocycles: if a ∈ H i (G, A) is represented
by an i-cocycle (σ1, . . . , σi ) �→ aσ1,...,σi and b ∈ Hi (G, B) is represented by a
j-cocycle (σ1, . . . , σ j ) �→ bσ1,...,σ j , then a ∪ b ∈ Hi+ j (G, A ⊗ B) is represented by
the (i + j)-cocycle (σ1, . . . , σi+ j ) �→ aσ1,...,σi ⊗ σ1 . . . σi (bσi+1,...,σi+ j ).

5. Give an explicit interpretation of the piece

H 1(H, A)G/H → H 2(G/H, AH )
Inf−→ H 2(G, A)

of the exact sequence of Proposition 3.3.14 in terms of classes of group extensions.
(You may assume for simplicity that H acts trivially on A.)

6. Let G be a finite cyclic group generated by σ ∈ G and let A, B be G-modules.
(a) Describe directly the pairing

(AG/N A) × (N B/(σ − 1)B) → N (A ⊗ B)/(σ − 1)(A ⊗ B)

induced by the cup-product

H 2i+2(G, A) × H 2 j+1(G, B) → H 2i+2 j+1(G, A ⊗ B)

via the formulae of Example 3.2.9.
(b) Similar question for the pairings

(AG/N A) × (BG/N B) → (A ⊗ B)G/N (A ⊗ B)

and

(N A/(σ − 1)A) × (N B/(σ − 1)B) → (A ⊗ B)G/N (A ⊗ B).
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The cohomological Brauer group

We now apply the cohomology theory of the previous chapter to the study of the
Brauer group. However, we shall have to use a slightly modified construction
which takes into account the fact that the absolute Galois group of a field is
determined by its finite quotients. This is the cohomology theory of profinite
groups, which we develop first. As a fruit of our labours, we identify the Brauer
group of a field with a second, this time commutative, cohomology group of
the absolute Galois group. This makes it possible to give an easy proof of basic
facts about the Brauer group, e.g. that it is a torsion group. We also treat the
foundations of the theory of index and period for central simple algebras with
the help of cohomology. Last but not least, one of the main objects of study in
this book makes its appearance: the Galois symbol.

The cohomology theory of profinite groups was introduced in the late
1950s by John Tate, motivated by sheaf-theoretic considerations of Alexan-
der Grothendieck. His original aim was to find the appropriate formalism for
developing class field theory. Tate himself never published his work, which thus
became accessible to the larger mathematical community through the famous
account of Serre [4], which also contains many original contributions. It was
Brauer himself who described the Brauer group as a second cohomology group,
using his language of factor systems. We owe to Serre the insight that descent
theory can be used to give a more conceptual proof. The Galois symbol was
defined by Tate in connection with the algebraic theory of power residue sym-
bols, a topic extensively studied in the 1960s by Bass, Milnor, Moore, Serre
and others.

4.1 Profinite groups and Galois groups
It can be no surprise that the main application of the cohomological techniques
of the previous chapter will be in the case when G is the Galois group of a
finite Galois extension. However, it will be convenient to consider the case of
infinite Galois extensions as well, and first and foremost that of the extension
ks |k, where ks is a separable closure of k.

Recall that a (possibly infinite) algebraic field extension K |k is a Galois
extension if it is separable (i.e. the minimal polynomials of all elements of K
have distinct roots in an algebraic closure) and if for each element x ∈ K \ k
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a field automorphism σ of K exists fixing k elementwise such that σ (x) �= x .
We denote the group of k-automorphisms of K by Gal (K |k) as in the finite
case, and call it the Galois group of K |k. A basic example of a Galois extension
is given by a separable closure ks of k. Its Galois group is called (somewhat
abusively) the absolute Galois group of k.

A Galois extension K |k is a union of finite Galois extensions, because we may
embed each simple extension k(α) ⊂ K into the splitting field of the minimal
polynomial of α, which is a finite Galois extension contained in K . This fact
has a crucial consequence for the Galois group Gal (K |k), namely that it is
determined by its finite quotients. We shall prove this in Proposition 4.1.3 below,
in a more precise form. To motivate its formulation, consider a tower of finite
Galois subextensions M |L|k contained in an infinite Galois extension K |k.
The main theorem of Galois theory provides us with a canonical surjection
φM L : Gal (M |k) → Gal (L|k). Moreover, if N |k is yet another finite Galois
extension containing M , we have φN L = φM L ◦ φN M . Thus one expects that if
we somehow “pass to the limit in M”, then Gal (L|k) will actually become a
quotient of the infinite Galois group Gal (K |k) itself. This is achieved by the
following construction.

Construction 4.1.1 A (filtered) inverse system of groups (Gα, φαβ) consists of:

� a partially ordered set (�,≤) which is directed in the sense that for all
(α, β) ∈ � there is some γ ∈ � with α ≤ γ , β ≤ γ ;

� for each α ∈ � a group Gα;
� for eachα ≤ β a homomorphismφαβ : Gβ → Gα such that we have equal-

ities φαγ = φαβ ◦ φβγ for α ≤ β ≤ γ .

The inverse limit of the system is defined as the subgroup of the direct product∏
α∈� Gα consisting of sequences (gα) such that φαβ(gβ) = gα for all α ≤ β.

It is denoted by lim← Gα; we shall not specify the inverse system in the notation

when it is clear from the context. Also, we shall often say loosely that lim← Gα

is the inverse limit of the groups Gα , without special reference to the inverse
system.

Plainly, this notion is not specific to the category of groups, and one can
define the inverse limit of sets, rings, modules, even of topological spaces in an
analogous way.

We can now define a profinite group as an inverse limit of a system of finite
groups. For a prime number p, a pro-p-group is an inverse limit of finite p-
groups.



82 The cohomological Brauer group

Examples 4.1.2

1. A finite group is profinite; indeed, it is the inverse limit of the system
(Gα, φαβ) for any directed index set �, with Gα = G and φαβ = idG.

2. Given a group G, the set of its finite quotients can be turned into an inverse
system as follows. Let � be the index set formed by the normal subgroups
of finite index partially ordered by the following relation: Uα ≤ Uβ iff
Uα ⊃ Uβ . Then if Uα ≤ Uβ are such normal subgroups, we have a quotient
map φαβ : G/Uβ → G/Uα . The inverse limit of this system is called the
profinite completion of G, customarily denoted by Ĝ. There is a canonical
homomorphism G → Ĝ.

3. Take G = Z in the previous example. Then � is just the set Z>0, since
each subgroup of finite index is generated by some positive integer m. The
partial order is induced by the divisibility relation: m|n iff mZ ⊃ nZ. The
completion Ẑ is usually called zed hat (or zee hat in the US).

4. In the previous example, taking only powers of some prime p in place of
m we get a subsystem of the inverse system considered there; in fact it is
more convenient to index it by the exponent of p. With this convention
the partial order becomes the usual (total) order of Z>0. The inverse limit
is Zp, the additive group of p-adic integers. This is a commutative pro-p-
group. The Chinese Remainder Theorem implies that the direct product
of the groups Zp for all primes p is isomorphic to Ẑ.

Now we come to the main example, that of Galois groups.

Proposition 4.1.3 Let K |k be a Galois extension of fields. Then the Galois
groups of finite Galois subextensions of K |k together with the homomorphisms
φM L : Gal (M |K ) → Gal (L|k) form an inverse system whose inverse limit is
isomorphic to Gal (K |k). In particular, Gal (K |k) is a profinite group.

Proof Only the isomorphism statement needs a proof. For this, define a group
homomorphism φ : Gal (K |k) → ∏

Gal (L|k) (where the product is over all
finite Galois subextensions L|k) by sending a k-automorphism σ of K to the
direct product of its restrictions to the various subfields L indexing the product.
This map is injective, since if an automorphism σ does not fix an element
α of ks , then its restriction to a finite Galois subextension containing k(α) is
nontrivial (as we have already remarked, such an extension always exists). On
the other hand, the main theorem of Galois theory assures that the image of φ is
contained in lim← Gal (L|k). It is actually all of lim← Gal (L|k), which is seen as

follows: take an element (σL ) of lim← Gal (L|K ) and define a k-automorphism σ

of K by putting σ (α) = σL (α) with some finite Galois L containing k(α). The
fact that σ is well defined follows from the fact that by hypothesis the σL form a
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compatible system of automorphisms; finally, σ maps to (σL ) ∈ lim← Gal (L|K )

by construction.

Corollary 4.1.4 Projection to the components of the inverse limit of the pro-
position yields natural surjections Gal (K |k) → Gal (L|k) for all finite Galois
subextensions L|k contained in K .

Example 4.1.5 (Finite fields) Let F be a finite field and Fs a separable clo-
sure of F . It is well known that for each integer n > 0 the extension Fs |F
has a unique subextension Fn|F with [Fn : F] = n. Moreover, the extension
Fn|F is Galois with group Gal (Fn|F) ∼= Z/nZ, and via this isomorphism the
natural projections Gal (Fmn|F) → Gal (Fn|F) correspond to the projections
Z/mnZ → Z/nZ. It follows that Gal (Fs |F) ∼= Ẑ.

Example 4.1.6 (Laurent series fields) As another example of a field with
absolute Galois group Ẑ, we may consider the formal Laurent series field k((t))
over an algebraically closed field k of characteristic 0.

Here is a sketch of the proof of this fact. Take a finite extension
L|k((t)) of degree n. As we are in characteristic 0, we may write
L = k((t))(α) with some α ∈ L . Multiplying α by a suitable element of
k[[t]] we may assume α satisfies an irreducible monic polynomial equation
f (α) = αn + an−1α

n−1 + · · · + a0 = 0 with ai ∈ k[[t]] and f ′(α) �= 0. Then
by the implicit function theorem for formal power series (which can be easily
proven by Newton’s method) we may express t as a formal power series
t = b0 + b1α + b2α

2 + · · · ∈ k[[α]]. In particular, plugging this expression
into the power series expansions of the ai and using the above equation for
α we get that b j = 0 for j < n. Next, we may find a formal power series
τ = c1α + c2α

2 + · · · ∈ k[[α]] with τ n = t . Indeed, comparing power series
expansions we get cn

1 = b1, ncn−1
1 c2 = b2 and so on, from which we may

determine the ci inductively. Finally, we may also express α as a power series
α = d1τ + d2τ

2 + · · · ∈ k[[τ ]], with d1 = c−1
1 , d2 = −c2c−3

1 and so on. Hence
we may embed L into the Laurent series field k((τ )), but this field is none but
the degree n cyclic Galois extension k((t))(τ ) of k((t)). We conclude as in the
previous example.

Profinite groups are endowed with a natural topology as follows: if G is the
inverse limit of a system of finite groups (Gα, φαβ), endow the Gα with the
discrete topology, their product with the product topology and the subgroup
G ⊂ ∏

Gα with the subspace topology. It immediately follows from this con-
struction that the natural projection maps G → Gα are continuous and their
kernels form a basis of open neighbourhoods of 1 in G (for the last statement,
note that the image of each element g �= 1 of G must have nontrivial image in
some Gα , by definition of the inverse limit).

To state other topological properties, we need a lemma.
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Lemma 4.1.7 Let (Gα, φαβ) be an inverse system of groups endowed with the
discrete topology. Then the inverse limit lim← Gα is a closed topological subgroup

of the product
∏

Gα .

Proof Take an element g = (gα) ∈ ∏
Gα . If g /∈ lim← Gα , we have to show

that it has an open neighbourhood which does not meet lim← Gα . By assumption

for some α and β we must have φαβ(gβ) �= gα . Now take the subset of
∏

Gα

consisting of all elements with α-th component gα and β-th component gβ .
It is a suitable choice, being open (by the discreteness of the Gα and by the
definition of the topological product) and containing g but avoiding lim← Gα .

Corollary 4.1.8 A profinite group is compact and totally disconnected (i.e.
the only connected subsets are the one-element subsets). Moreover, the open
subgroups are precisely the closed subgroups of finite index.

Proof Recall that finite groups are compact, and so is a product of compact
groups, by Tikhonov’s theorem. Compactness of the inverse limit then follows
from the lemma, as closed subspaces of compact spaces are compact. Complete
disconnectedness follows from the construction. For the second statement, note
that each open subgroup U is closed since its complement is a disjoint union
of cosets gU which are themselves open (the map U �→ gU being a homeo-
morphism in a topological group); by compactness of G, these must be finite
in number. Conversely, a closed subgroup of finite index is open, being the
complement of the finite disjoint union of its cosets which are also closed.

Remark 4.1.9 In fact, one may characterize profinite groups as being those
topological groups which are compact and totally disconnected. See e.g.
Shatz [1] for a proof.

We may now state and prove the main theorem of Galois theory for possibly
infinite extensions. Observe first that if L is a subextension of a Galois extension
K |k, then K is also a Galois extension of L and Gal (K |L) is naturally identified
with a subgroup of Gal (K |k).

Theorem 4.1.10 (Krull) Let L be a subextension of the Galois extension K |k.
Then Gal (K |L) is a closed subgroup of Gal (K |k). Moreover, in this way we get
a bijection between subextensions of K |k and closed subgroups of Gal (K |k),
where open subgroups correspond to finite extensions of k contained in K .

Proof Take first a finite separable extension L|k contained in K . Recall that
we can embed it in a finite Galois extension M |k contained in K (use the theo-
rem of the primitive element to write L = k(α) and take the associated splitting
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field). Then Gal (M |k) is one of the standard finite quotients of Gal (K |k),
and it contains Gal (M |L) as a subgroup. Let UL be the inverse image of
Gal (M |L) by the natural projection Gal (K |k) → Gal (M |k). Since the pro-
jection is continuous and Gal (M |k) has the discrete topology, UL is open. It
thus suffices to show UL = Gal (K |L). We have UL ⊂ Gal (K |L), for each ele-
ment of UL fixes L . On the other hand, the image of Gal (K |L) by the projection
Gal (K |k) → Gal (M |k) is contained in Gal (M |L), whence the reverse inclu-
sion. Now if L|k is an arbitrary subextension of K |k, write it as a union of
finite subextensions Lα|k. By what we have just proven, each Gal (K |Lα) is an
open subgroup of Gal (K |k), hence it is also closed by Corollary 4.1.8. Their
intersection is precisely Gal (K |L) which is thus a closed subgroup; its fixed
field is exactly L , for K is Galois over L .

Conversely, given a closed subgroup H ⊂ G, it fixes some extension L|k
and is thus contained in Gal (K |L). To show equality, let σ be an element of
Gal (K |L), and pick a fundamental open neighbourhood UM of the identity
in Gal (K |L), corresponding to a Galois extension M |L . Now H ⊂ Gal (K |L)
surjects onto Gal (M |L) by the natural projection; indeed, otherwise its image
in Gal (M |L) would fix a subfield of M strictly larger than L according to finite
Galois theory, which would contradict our assumption that each element of
M \ L is moved by some element of H . In particular, some element of H must
map to the same element in Gal (M |L) as σ . Hence H contains an element of
the coset σUM and, as UM was chosen arbitrarily, this implies that σ is in the
closure of H in Gal (K |L). But H is closed by assumption, whence the claim.
Finally, the assertion about finite extensions follows from the above in view of
Corollary 4.1.8.

Remark 4.1.11 The group Gal (K |k) contains many nonclosed subgroups if
K |k is an infinite extension. For instance, cyclic subgroups are usually non-
closed; as a concrete example, one may take the cyclic subgroup of Ẑ generated
by 1. In fact, a closed subgroup of a profinite group is itself profinite, but it can
be shown that an infinite profinite group is always uncountable. Thus none of
the countable subgroups in a profinite group are closed.

4.2 Cohomology of profinite groups
Let G = lim← Gα be a profinite group. In this section we attach to G another

system of cohomology groups, different from that of the previous chapter for
infinite G, which reflects the profiniteness of G and which is more suitable for
applications.

By a (discrete) continuous G-module we shall mean a G-module A such
that the stabilizer of each a ∈ A is open in G. Unless otherwise stated, we shall
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always regard A as equipped with the discrete topology; continuous G-modules
are then precisely the ones for which the action of G (equipped with its profi-
nite topology) is continuous. If Gα = G/Uα is one of the standard quotients
of G, the submodule AUα is naturally a Gα-module. The canonical surjection
φαβ : Gβ → Gα between two of the standard quotients induces inflation maps
Infβα : Hi (Gα, AUα ) → Hi (Gβ, AUβ ) for all i ≥ 0. Furthermore, the compati-
bility condition φαγ = φαβ ◦ φβγ implies that the groups Hi (Gα, A) together
with the maps Infβα form a direct system in the following sense.

Construction 4.2.1 A (filtered) direct system of abelian groups (Bα, ψαβ)
consists of:

� a directed partially ordered set (�,≤);
� for each α ∈ � an abelian group Bα;
� for eachα ≤ β a homomorphismψαβ : Bα → Bβ such that we have equal-

ities ψαγ = ψβγ ◦ ψαβ for α ≤ β ≤ γ .

The direct limit of the system is defined as the quotient of the direct sum⊕
α∈� Bα by the subgroup generated by elements of the form bβ − ψαβ(bα). It

is denoted by lim→ Bα . Direct limits of abelian groups with additional structure

(e.g. rings or modules) are defined in an analogous way.
Also, given direct systems (Bα, ψαβ) and (Cα, ραβ) indexed by the same

directed set�, together with mapsλα : Bα → Cα satisfyingλβ ◦ψαβ = ραβ ◦ λα

for all α ≤ β, we have an induced map λ : lim→ Bα → lim→ Cα , called the direct

limit of the maps λα .

We can now define:

Definition 4.2.2 Let G = lim← Gα be a profinite group, and A a continuous

G-module. For all integers i ≥ 0, we define the i-th continuous cohomology
group Hi

cont(G, A) as the direct limit of the direct system (Hi (Gα, AUα ), Infβα)
constructed above. In the case when G = Gal (ks |k) for some separable closure
ks of a field k, we also denote Hi

cont(G, A) by Hi (k, A), and call it the i-th Galois
cohomology group of k with values in A.

Example 4.2.3 Consider Z with trivial action by a profinite group G. Then
H 1

cont(G,Z) = 0. Indeed, by definition this is the direct limit of the groups
H 1(G/U,Z) = Hom(G/U,Z) for U open and normal in G, which are trivial,
as the G/U are finite and Z is a torsion free abelian group.

Remark 4.2.4 It follows from the definition that H 0
cont(G, A) = H 0(G, A) for

all continuous G-modules A, and that Hi
cont(G, A) = Hi (G, A) if G is finite.
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However, for i > 0 and G infinite the two groups are different in gen-
eral. Take, for instance, i = 1, G = Ẑ and A = Q with trivial Ẑ-action. Then
H 1

cont(Ẑ,Q) = lim→ Hom(Z/nZ,Q) = 0, because Q is torsion free.

On the other hand, H 1(Ẑ,Q) is the group of Z-module homomorphisms
Ẑ → Q. But as Q is a divisible abelian group (i.e. the equation nx = y is
solvable in Q for all n ∈ Z), one knows that a homomorphism C → Q from a
subgroup C of an abelian group B extends to a homomorphism B → Q (see e.g.
Weibel [1], p. 39; note that the proof of this fact uses Zorn’s lemma). Applying
this with C = Z, B = Ẑ and the natural inclusion Z → Q we get a nontrivial
homomorphism Ẑ → Q.

Convention 4.2.5 From now on, all cohomology groups of a profinite group
will be understood to be continuous, and we drop the subscript cont from the
notation.

We now come to a basic property of the cohomology of profinite groups.

Proposition 4.2.6 For a profinite group G and a continuous G-module A the
groups Hi (G, A) are torsion abelian groups for all i > 0. Moreover, if G is a
pro-p-group, then they are p-primary torsion groups.

Proof This follows from the definition together with Corollary 3.3.8.

Corollary 4.2.7 Let V be a Q-vector space equipped with a continuous action
by a profinite group G. Then Hi (G, V ) = 0 for all i > 0.

Proof It follows from the construction of cohomology that in this case the
groups Hi (G, V ) are Q-vector spaces; since for i > 0 they are also torsion
groups, they must be trivial.

Recall that Corollary 3.3.8 was obtained as a consequence of a statement
about restriction and corestriction maps. We now adapt these to the profinite
situation.

Construction 4.2.8 Let G be a profinite group, H a closed subgroup and A a
continuous G-module. Define continuous restriction maps

Res : Hi (G, A) → Hi (H, A)

as the direct limit of the system of usual restriction maps

Hi (G/Uα, AUα ) → Hi (H/(H ∩ Uα), AUα ),

where the Uα are the standard open normal subgroups of G.
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In the case when H is open in G, one defines continuous corestriction maps
Cor : Hi (H, A) → Hi (G, A) in a similar way. Finally, when H is a closed
normal subgroup in G, one defines inflation maps

Inf : Hi (G/H, AH ) → Hi (G, A)

as the direct limit of the system of inflation maps

Hi ((G/Uα)/(H ∩ Uα), AH∩Uα ) → Hi (G/Uα, AUα ).

Manifestly, in the case of a finite G we get back the previous restriction, core-
striction and inflation maps.

Remark 4.2.9 In the above situation, one may define the module MG
H (A) to be

the direct limit lim→ HomH/(H∩Uα )(Z[G/Uα], AUα ), where the Uα are the stan-

dard open normal subgroups of G. We have a continuous G-action defined by
g(φα(xα)) = φα(xαgα), where gα is the image of g in G/Uα; one checks that this
action is well defined and continuous. (Note that in the spirit of the convention
above we employ the notation MG

H (A) for another G-module as before; the one
defined in Chapter 3 is not continuous in general.) Then we have MG

G (A) ∼= A
and the Shapiro isomorphism Hi (G, MG

H (A)) ∼= Hi (H, A) holds with a similar
proof as in the non-continuous case. In particular, one has the vanishing of the
cohomology Hi (G, MG(A)) of (continuous) co-induced modules for i > 0.
One may then also define the continuous restriction and corestriction maps
using this Shapiro isomorphism, by mimicking the construction of Chapter 3.

As in the non-continuous case, we have:

Proposition 4.2.10 Let G be a profinite group, H an open subgroup of index
n and A a continuous G-module. Then the composite maps

Cor ◦ Res : Hi (G, A) → Hi (G, A)

are given by multiplication by n for all i > 0. Consequently, the restriction
Hi (G, A) → Hi (H, A) is injective on the prime-to-n torsion part of Hi (G, A).

Proof Each element of Hi (G, A) comes from some Hi (G/Uα, AUα ),
and Proposition 3.3.7 applies. The second statement follows because the
multiplication-by-n map is injective on the subgroup of elements of order prime
to n.

A refined version of the last statement is the following.

Corollary 4.2.11 Let G be a profinite group, p a prime number and H a
closed subgroup such that the image of H in each finite quotient of G has



4.2 Cohomology of profinite groups 89

order prime to p. Then for each continuous G-module A the restriction map
Hi (G, A) → Hi (H, A) is injective on the p-primary torsion part of Hi (G, A).

Proof Assume that an element of Hi (G, A) of p-power order maps to 0
in Hi (H, A). It comes from an element of some Hi (Gα, AUα ) of which we
may assume, up to replacing Uα by a smaller subgroup, that it maps to 0 in
Hi (H/(H ∩ Uα), AUα ). By the proposition (applied to the finite group G/Uα)
is must then be 0.

The main application of the above corollary will be to pro-p-Sylow subgroups
of a profinite group G. By definition, these are subgroups of G which are pro-
p-groups for some prime number p and whose images in each finite quotient
of G are of index prime to p.

Proposition 4.2.12 A profinite group G possesses pro-p-Sylow subgroups for
each prime number p, and any two of these are conjugate in G.

The proof uses the following well-known lemma.

Lemma 4.2.13 An inverse limit of nonempty finite sets is nonempty.

Proof The proof works more generally for compact topological spaces. Given
an inverse system (Xα, φαβ) of nonempty compact spaces, consider the subsets
Xλµ ⊂ ∏

Xα consisting of the sequences (xα) satisfying φλµ(xµ) = xλ for a
fixed pair λ ≤ µ. These are closed subsets of the product, and their intersection
is precisely lim← Xα . Furthermore, the directedness of the index set implies

that finite intersections of the Xλµ are nonempty. Since
∏

Xα is compact by
Tikhonov’s theorem, it ensues that lim← Xα is nonempty.

Proof of Proposition 4.2.12 Write G as an inverse limit of a system of finite
groups Gα . For each Gα , denote by Sα the set of its p-Sylow subgroups (for the
classical Sylow theorems, see e.g. Lang [3]). These form an inverse system of
finite sets, hence by the lemma we may find an element S in the limit lim← Sα .

This S corresponds to an inverse limit of p-Sylow subgroups of the Gα and
hence gives a pro-p-Sylow subgroup of G. If P and Q are two pro-p-Sylow
subgroups of G, their images in each Gα are p-Sylow subgroups there and
hence are conjugate by some xα ∈ Gα by the finite Sylow theorem. Writing Xα

for the set of possible xαs, we get again an inverse system of finite sets, whose
nonempty inverse limit contains an element x with x−1 Px = Q.

Corollary 4.2.11 now implies:
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Corollary 4.2.14 If P is a pro-p-Sylow subgroup of a profinite group G, the
restriction maps Res : Hi (G, A) → Hi (P, A) are injective on the p-primary
torsion part of Hi (G, A) for all i > 0 and continuous G-modules A.

To conclude this section, we mention another construction from the previous
chapter which carries over without considerable difficulty to the profinite case,
that of cup-products.

Construction 4.2.15 Given a profinite group G and continuous G-modules A
and B, define the tensor product A ⊗ B as the tensor product of A and B over Z
equipped with the continuous G-action induced by σ (a ⊗ b) = σ (a) ⊗ σ (b). In
the previous chapter we have constructed for all i, j ≥ 0 and all open subgroups
U of G cup-product maps

Hi (G/U, AU ) × H j (G/U, BU ) → Hi+ j (G/U, AU ⊗ BU ), (a, b) �→ a ∪ b

satisfying the relation

Inf (a ∪ b) = Inf (a) ∪ Inf (b)

for the inflation map arising from the quotient map G/V → G/U for an open
inclusion V ⊂ U . Note that by the above definition of the G-action we have a
natural map AU ⊗ BU → (A ⊗ B)U , so by passing to the limit over all inflation
maps of the above type we obtain cup-product maps

Hi (G, A) × H j (G, B) → Hi+ j (G, A ⊗ B), (a, b) �→ a ∪ b

for continuous cohomology.

It follows immediately from the non-continuous case that this cup-product is
also associative and graded-commutative, and that moreover it satisfies compat-
ibility formulae with restriction, corestriction and inflation maps as in Propo-
sition 3.4.10. It also satisfies the exactness property of Proposition 3.4.8, but
for this we have to establish first the long exact cohomology sequence in the
profinite setting. We treat this question in the next section.

4.3 The cohomology exact sequence
We now show that the analogues of exact sequences established for usual coho-
mology groups also hold for continuous ones. We begin with the long exact
cohomology sequence.

Proposition 4.3.1 Given a profinite group G and a short exact sequence

0 → A → B → C → 0
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of continuous G-modules, there is a long exact sequence of abelian groups

· · · → Hi (G, A) → Hi (G, B) → Hi (C,C) → Hi+1(G, A) → . . .

starting from H 0(G, A).

For the proof we need two formal statements about direct limits.

Lemma 4.3.2 Let (Aα, φαβ), (Bα, ψαβ) and (Cα, ραβ) be three direct systems
indexed by the same directed set �. Assume moreover given exact sequences

Aα

λα−→ Bα

µα−→ Cα

for each α ∈ � such that the diagrams

Aα

λα−−−−→ Bα

µα−−−−→ Cα

φαβ

� ψαβ

� ραβ

�
Aβ

λβ−−−−→ Bβ

µβ−−−−→ Cβ

commute for all α ≤ β. Then the limit sequence

lim→ Aα
λ−→ lim→ Bα

µ−→ lim→ Cα

is exact as well.

Proof An element of ker(µ) is represented by some bα ∈ Bα with the property
that ραβ(µα(bα)) = µβ(ψαβ(bα)) = 0 for some β ≥ α. But then there is some
aβ ∈ Aβ with λβ(aβ) = ψαβ(bα).

Lemma 4.3.3 Consider a profinite group G and a direct system (Aα, φαβ) of
continuous G-modules (in particular, theφαβ are G-homomorphisms). Then the
G-module lim→ Aα is also continuous, the groups Hi (G, Aα) with the induced

maps form a direct system, and there exist canonical isomorphisms

lim→ Hi (G, Aα) ∼→ Hi (G, lim→ Aα)

for all i ≥ 0.

Proof The first statement follows from the construction of direct limits, which
also shows that for each open subgroup U the G/U -module (lim→ Aα)U is the

direct limit of the G/U -modules AU
α . Hence it suffices to show the isomorphism

statement for the cohomology of the latter. Taking a projective resolution P•

of the trivial G/U -module Z, we are reduced to establishing isomorphisms of
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the form

lim→ Hom(Pi , Aα) ∼→ Hom(Pi , lim→ Aα)

compatible with coboundary maps. Such isomorphisms again follow from the
construction of direct limits (for instance, one may observe that the canonical
isomorphisms ⊕ Hom(Pi , Aα) ∼= Hom(Pi ,⊕Aα) preserve the relations defin-
ing the direct limit).

Proof of Proposition 4.3.1 The homomorphisms Hi (G, A) → Hi (G, B) and
Hi (G, B) → Hi (G,C) arise from the finite case by passing to the limit. To
define the connecting homomorphism ∂ : Hi (G,C) → Hi+1(G, A), consider
first an open subgroup U of G and define KU as the cokernel of the map
BU → CU (this is a nontrivial group in general). As the map B → C is surject-
ive, we get that the direct limit of the groups KU with U running over all open
subgroups is trivial. Therefore the last term in the sequence

lim→ Hi (G/U, (BU/AU )) → lim→ Hi (G/U,CU ) → lim→ Hi (G/U, KU )

is trivial by Lemma 4.3.3 (note that each KU is also a G-module via the natural
projection). The sequence is exact by Lemma 4.3.2, hence we may always lift
an element γ of the middle term, which is none but Hi (G,C), to an element
in some Hi (G/U, (BU/AU )). The usual long exact sequence coming from the
sequence of G/U -modules

0 → AU → BU → BU/AU → 0 (1)

then yields an element in Hi+1(G/U, AU ), and hence in Hi+1(G, A), which
we define to be ∂(γ ). This definition manifestly does not depend on the choice
of U , and furthermore, the long exact sequence coming from

0 → BU/AU → CU → KU → 0

shows that any two liftings of γ into Hi (G/U, (BU/AU )) differ by an element
of Hi−1(G/U, KU ), which then maps to 0 in Hi−1(G/V, KV ) for some V ⊂ U .
This shows that the map ∂ is well defined. Exactness of the sequence at
the terms Hi (G, A) and Hi (G,C) now follows from that of the long exact
sequence associated with (1) and exactness at the terms Hi (G, B) follows from
Lemma 4.3.2.

Remarks 4.3.4

1. A more elegant way for establishing the above proposition is by construct-
ing continuous cohomology groups directly as Ext-groups in the category
of continuous G-modules; the long exact sequence then becomes a for-
mal consequence, just as in the previous chapter (see e.g. Weibel [1],
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Section 6.11). We have chosen the above more pedestrian presentation in
order to emphasize the viewpoint that all basic facts for the cohomology
of profinite groups follow from the finite case by passing to the limit.

2. It is important to note that if the exact sequence

0 → A → B
p−→ C → 0

has a splitting, i.e. a map of G-modules i : C → B with p ◦ i = idC,
then the induced maps p∗ : Hi (G, B) → Hi (G,C) and i∗ : Hi (G,C) →
Hi (G, B) also satisfy p∗ ◦ i∗ = id by the functoriality of cohomology.
Therefore the long exact sequence splits up into a collection of (split)
short exact sequences

0 → Hi (G, A) → Hi (G, B) → Hi (G,C) → 0,

a fact we shall use many times later.

The inflation-restriction sequences of the last chapter also carry over to the
profinite setting:

Corollary 4.3.5 Let G be a profinite group, H a closed normal subgroup. Then
the statements of Propositions 3.3.14 and 3.3.17 remain valid in the continuous
cohomology.

Proof This follows from loc. cit. via Lemma 4.3.2.

We conclude this section with a first application of the cohomology of profi-
nite groups which will be invaluable for the sequel.

Proposition 4.3.6 (Kummer Theory) Let k be a field, and m > 0 an integer
prime to the characteristic of k. Denote by µm the group of m-th roots of unity
in a fixed separable closure of k, equipped with its Galois action. There exists
a canonical isomorphism

k×/k×m ∼→ H 1(k, µm)

induced by sending an element a ∈ k× to the class of the 1-cocycle
σ �→ σ (α)α−1, where α is an m-th root of a.

For the proof we need the continuous version of Hilbert’s Theorem 90:

Lemma 4.3.7 The Galois cohomology group H 1(k, k×
s ) is trivial.

Proof This follows from Example 2.3.4 after passing to the limit.

Proof of Proposition 4.3.6 Consider the exact sequence of Gal (ks |k)-modules

1 → µm → k×
s

m→ k×
s → 1, (2)
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where the third map is given by raising elements to the m-th power. This map
is surjective because the polynomial xm − a is separable for all a ∈ ks , in view
of the assumption on m. A piece of the associated long exact sequence reads

H 0(k, k×
s ) → H 0(k, k×

s ) → H 1(k, µm) → H 1(k, k×
s ),

where the last group is trivial by the lemma. Noting that H 0(k, k×
s ) = k× and that

the first map is multiplication by m, by construction of cohomology, we obtain
the required isomorphism. Its explicit description follows from the construction
of the coboundary map in cohomology (see Remark 3.2.4).

Remark 4.3.8 Note that it was crucial here to work with ks and Galois coho-
mology, for we do not dispose of the analogue of exact sequence (2) at a finite
level.

The proposition has the following consequence (which is the original form
of Kummer’s theorem):

Corollary 4.3.9 For k and m as above, assume moreover that k contains a
primitive m-th root of unity ω. Then every finite Galois extension of k with
Galois group isomorphic to Z/mZ is of the form k(α)|k with some α ∈ k×

s

satisfying αm ∈ k×.

Proof The Galois group of an extension as in the corollary is a quotient
of Gal (ks |k) isomorphic to Z/mZ, and thus corresponds to a surjection
χ : Gal (ks |k) → Z/mZ. But since by assumption µm ⊂ k, we have iso-
morphisms Hom(Gal (ks |k),Z/mZ) ∼= H 1(k,Z/mZ) ∼= H 1(k, µm) (the sec-
ond one depending on the choice of ω). By the proposition χ corresponds
to the class of some a ∈ k× modulo k×m , and moreover the kernel of χ is
precisely Gal (k(α)|k), where α is an m-th root of a.

In positive characteristic we have the following complement to Kummer
theory.

Proposition 4.3.10 (Artin–Schreier Theory) Let k be a field of characteristic
p > 0. Denote by ℘ : k → k the endomorphism mapping x ∈ k to x p − x.
Then there exists a canonical isomorphism

k/℘(k) ∼→ H 1(k,Z/pZ)

induced by mapping a ∈ k to the cocycle σ �→ σ (α) − α, where α is a root of
the equation x p − x = a.

The proof is based on the following lemma. It is sometimes called the additive
version of Hilbert’s Theorem 90, as it concerns the additive group of ks viewed
as a Gal (ks |k)-module instead of the multiplicative group.
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Lemma 4.3.11 For an arbitrary field k the groups Hi (k,ks) are trivial for all
i > 0.

Proof We prove the triviality of Hi (G, K ) for all Galois extensions K |k with
group G and all i > 0. According to the normal basis theorem of Galois theory
(see e.g. Lang [3], Chapter VI, Theorem 13.1), we may find an element x ∈ K
such that σ1(x), . . . , σn(x) form a basis of the k-vector space K , where
1 = σ1, . . . , σn are the elements of G. This means that K is isomorphic to
K ⊗Z Z[G] as a G-module. The latter is a co-induced G-module by Remark
3.3.4 (3), so its cohomology is trivial by Corollary 3.3.3.

Remark 4.3.12 In characteristic 0 the lemma is easy to prove: the coefficient
module ks is a Q-vector space, hence Corollary 4.2.7 applies. However, we are
about to apply the positive characteristic case.

Proof of Proposition 4.3.10 The endomorphism ℘ extends to the separable
closure ks with the same definition. Its kernel is the prime field Fp, which is
isomorphic to the trivial Gal (ks |k)-module Z/pZ as a Gal (ks |k)-module. More-
over, the map ℘ : ks → ks is surjective, because for each a ∈ ks the polynomial
x p − x − a is separable. We thus have an exact sequence of Gal (ks |k)-modules

0 → Z/pZ → ks
℘−→ ks → 0, (3)

from which we conclude as in the proof of Proposition 4.3.6, using Lemma
4.3.11 in place of Hilbert’s Theorem 90.

Remarks 4.3.13

1. In a similar way as in Corollary 4.3.9 above, one derives from the propo-
sition that every finite Galois extension of k with Galois group Z/pZ is
generated by a root of some polynomial x p − x − a, with a ∈ k.

2. There is a generalization of Artin–Schreier theory to powers of the prime
p due to Witt. The principle of the proof is the same as above, but instead
of the additive group of ks one has to use so-called Witt vectors (see e.g.
Serre [2]).

4.4 The Brauer group revisited
The main goal of this section is to identify the Brauer group of a field
k with the Galois cohomology group H 2(k, k×

s ), which is more tractable
than the group H 1(k,PGL∞) encountered in Chapter 2. To this aim,
we first have to extend the non-commutative cohomology sequence of
Proposition 2.7.1.
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Proposition 4.4.1 Let G be a group, and

1 → A → B → C → 1

an exact sequence of groups equipped with a G-action, such that B and C are
not necessarily commutative, but A is commutative and contained in the centre
of B. Then there is an exact sequence of pointed sets

1→ AG → BG →CG → H 1(G, A) → H 1(G, B) → H 1(G,C) → H 2(G, A).

Proof The sequence was constructed until the penultimate term in Propo-
sition 2.7.1. To define the map ∂ : H 1(G,C) → H 2(G, A), take a 1-cocycle
σ �→ cσ representing a class in H 1(G,C), and lift each cσ to an element bσ ∈ B.
The cocycle relation for σ �→ cσ implies that for all σ, τ ∈ G the element
bσ σ (bτ )b−1

στ maps to 1 in C , hence comes from an element aσ,τ ∈ A. The func-
tion (σ, τ ) �→ aσ,τ depends only on the class of σ �→ cσ in H 1(G,C). Indeed,
if we replace it by an equivalent cocycle σ �→ c−1cσ σ (c), lifting c to b ∈ B
replaces aστ by (b−1bσ σ (b))(σ (b−1)σ (bτ )στ (b))(στ (b)−1b−1

σ,τb) = b−1aσ,τb,
which equals aσ,τ because A is central in B. A straightforward calcula-
tion, which we leave to the readers, shows that (σ, τ ) �→ aστ satisfies the
2-cocycle relation σ (aσ,τ )a−1

στ,υaσ,τυa−1
σ,τ = 1 that we made explicit in Exam-

ple 3.2.3 (2). Finally, replacing bσ by another lifting aσ bσ replaces aσ,τ by
aσ bσ σ (aτbτ )b−1

στ a−1
στ = aσ σ (aτ )a−1

στ aσ,τ , which has the same class in H 2(G, A)
(notice that we have used again that A is central in B). This defines the map ∂ ,
and at the same time shows that it is trivial on the image of H 1(G, B).

Finally, in the above notation, a class in H 1(G,C) represented by σ �→ cσ is
in the kernel of ∂ if the 2-cocycle (σ, τ ) �→ bσ σ (bτ )b−1

στ equals a 2-coboundary
(σ, τ ) �→ aσ σ (aτ )a−1

στ . Replacing bσ by the equivalent lifting a−1
σ bσ we may

assume bσ σ (bτ )b−1
στ = 1, which means that σ �→ bσ is a 1-cocycle representing

a cohomology class in H 1(G, B).

Remarks 4.4.2

1. Readers should be warned that the proposition does not hold in the above
form when A is not contained in the centre of B. Instead, one has to work
with twists of A as in Serre [4], §I.5.6.

2. When B and C are commutative, the exact sequence of the proposi-
tion is of course part of the long exact sequence for group cohomol-
ogy. This follows from the cocycle descriptions of Example 3.2.3 and
Remark 3.2.4.

Now let K |k be a finite Galois extension of fields with group G, and m a
positive integer. Applying the previous proposition to the exact sequence of
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G-groups

1 → K × → GLm(K ) → PGLm(K ) → 1

we get an exact sequence of pointed sets

H 1(G,GLm(K )) −→ H 1(G,PGLm(K ))
δm−→ H 2(G, K ×). (4)

Now recall the maps λmn : H 1(G,PGLm(K )) → H 1(G,PGLmn(K )) intro-
duced in Chapter 2, Section 2.4.

Lemma 4.4.3 The diagram

H 1(G,PGLm(K ))
δm−−−−→ H 2(G, K ×)

λmn

� �id

H 1(G,PGLmn(K ))
δmn−−−−→ H 2(G, K ×)

commutes for all m, n > 0.

Proof A 1-cocycle σ �→ cσ representing a class in H 1(G,PGLm(K )) is
mapped by δm to a 2-cocycle aσ,τ = bσ σ (bτ )b−1

στ by the construction of the
previous proof, where bσ is given by some invertible matrix Mσ and aσ,τ is the
identity matrix Im multiplied by some scalar µσ,τ ∈ K ×. Performing the same
construction for the image of σ �→ cσ by λmn means replacing Mσ by the block
matrix with n copies of Mσ along the diagonal, which implies that the scalar
matrix we obtain by taking the associated 2-cocycle is µσ,τ Imn .

By the lemma, taking the union of the pointed sets H 1(G,PGLm(K )) with
respect to the maps λmn yields a map

δ∞ : H 1(G,PGL∞) → H 2(G, K ×).

Lemma 4.4.4 Equip the set H 1(G,PGL∞) with the product operation defined
in Chapter 2, Section 2.4. Then the map δ∞ is a group homomorphism.

Proof We have already checked in Chapter 2, Section 2.4 that H 1(G,PGL∞)
equipped with the product operation is a group. To show that δ∞ pre-
serves multiplication, take cohomology classes cm ∈ H 1(G,PGLm(K )) and
cn ∈ H 1(G,PGLn(K )). With notations as in the previous proof, the classes
δm(cm) and δn(cn) are represented by 2-cocycles of the form (σ, τ ) → µσ,τ Im

and (σ, τ ) → νσ,τ In , respectively. From the fact that the product cmn of
λmn (cm) and λnm (cn) in H 1(G,PGLmn(K )) is induced by tensor product of lin-
ear maps we infer that δmn(cmn) is represented by a 2-cocycle mapping (σ, τ ) to
the tensor product of the linear maps given by multiplication by µσ,τ and νσ,τ ,
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respectively. But this tensor product is none but multiplication by µσ,τ νσ,τ ,
which was to be seen.

Now we come to the main result of this section.

Theorem 4.4.5 The map δ∞ defined above induces an isomorphism

H 1(G,PGL∞) ∼→ H 2(G, K ×)

of abelian groups.

Proof Since δ∞ is a group homomorphism and H 1(G,PGL∞) is the union of
the pointed sets H 1(G,PGLm(K )), for injectivity it is enough to show that the
map δm in exact sequence (4) has trivial kernel for all m. This follows from the
exact sequence in view of the triviality of H 1(G,GLm(K )) (Example 2.3.4).

For surjectivity we show much more, namely that the map δn is surjec-
tive, where n is the order of G. For this, consider K ⊗k K as a K -vector
space. Multiplication by an invertible element of K ⊗k K is a K -linear auto-
morphism K ⊗k K → K ⊗k K . In this way we get a group homomorphism
(K ⊗k K )× → GLn(K ) which we may insert into a commutative diagram with
exact rows

1 −−−−→ K × −−−−→ (K ⊗k K )× −−−−→ (K ⊗k K )×/K × −−−−→ 1

id

� � �
1 −−−−→ K × −−−−→ GLn(K ) −−−−→ PGLn(K ) −−−−→ 1,

where all maps are compatible with the action of G if we make G act on
K ⊗k K via the right factor and on the other terms by the standard action.
Hence by taking cohomology we get a commutative diagram

H 1(G, (K ⊗k K )×/K ×)
α−−−−→ H 2(G, K ×) −−−−→ H 2(G, (K ⊗k K )×)� id

�
H 1(G,PGLn(K ))

δn−−−−→ H 2(G, K ×)

where the upper row is exact. Recall now the G-isomorphism K ⊗k K ∼=⊕
K ei explained before the proof of Lemma 2.3.8. In other words, it says

that K ⊗k K is isomorphic as a G-module to K ⊗Z Z[G], which implies that
(K ⊗k K )× is isomorphic to the G-module K × ⊗Z Z[G], because the invert-
ible elements in

⊕
K ei are exactly those with coefficients in K ×. Now by

Remark 3.3.4 (3) the G-module K × ⊗Z Z[G] is co-induced, hence the group
H 2(G, (K ⊗k K )×) is trivial. This yields the surjectivity of the map α in the
diagram, and hence also that of δn by commutativity of the diagram.
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The above proof shows much more than the assertion of the theorem. Namely,
the fact that we have at our disposal both the injectivity of δm for all m and the
surjectivity of δn has the following remarkable consequences.

Corollary 4.4.6 Let K |k be a finite Galois extension of degree n and group G.
Then the maps λnm : H 1(G,PGLn(K ))→ H 1(G,PGLnm(K )) are bijective for
all m.

Furthermore, the pointed set H 1(G,PGLn(K )) is equipped with a group
structure via

H 1(G,PGLn(K )) × H 1(G,PGLn(K )) → H 1(G,PGLn2 (K )) ∼← H 1(G,PGLn(K ))

and the map δn : H 1(G,PGLn(K )) → H 2(G, K ×) is an isomorphism of
abelian groups.

Proof In the first assertion only surjectivity requires a proof, and this follows
from the surjectivity of δn together with Lemma 4.4.3. The second assertion
then follows from the theorem.

Combining the theorem with Proposition 2.4.10 we get:

Theorem 4.4.7 Let k be a field, K |k a finite Galois extension and ks a separable
closure of k. There exist natural isomorphisms of abelian groups

Br (K |k) ∼= H 2(G, K ×) and Br (k) ∼= H 2(k, k×
s ).

The theorem has a number of corollaries. Here is a first one which is quite
cumbersome to establish in the context of central simple algebras but is almost
trivial once one disposes of cohomological techniques.

Corollary 4.4.8 Let K |k be a Galois extension of degree n. Then each element
of the relative Brauer group Br (K |k) has order dividing n. Consequently, the
Brauer group Br (k) is a torsion abelian group.

Proof This follows from Corollary 3.3.8.

One also has the following cohomological interpretation of the m-torsion
part mBr (k) of the Brauer group.

Corollary 4.4.9 For each positive integer m prime to the characteristic of k
we have a canonical isomorphism

mBr (k) ∼= H 2(k, µm).

Recall that µm denotes the group of m-th roots of unity in ks equipped with
its canonical Galois action.
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Proof We again exploit the exact sequence (2). A piece of the associated long
exact sequence is

H 1(k, k×
s ) → H 2(k, µm) → H 2(k, k×

s ) → H 2(k, k×
s ),

where the first group is trivial by Hilbert’s Theorem 90 (Lemma 4.3.7). The
corollary follows by noting that the last map is multiplication by m.

As another corollary, we have a nice description of the relative Brauer group
in the case of a cyclic extension.

Corollary 4.4.10 For a cyclic Galois extension K |k there is a canonical
isomorphism

Br (K |k) ∼= k×/NK |k(K ×).

Proof This follows from the theorem in view of the calculation of the coho-
mology of cyclic groups (Example 3.2.9).

4.5 Index and period
In this section we use the cohomological theory of the Brauer group to derive
basic results of Brauer concerning two important invariants for central simple
algebras. We shall assume throughout that the base field k is infinite; indeed,
we shall see in Chapter 6 that the Brauer group of a finite field is trivial, so the
discussion to follow is vacuous in that case.

The first of the announced invariants is the following.

Definition 4.5.1 Let A be a central simple algebra over a field k. The index
indk(A) of A over k is defined to be the degree of D over k, where D is the
division algebra for which A ∼= Mn(D) according to Wedderburn’s theorem.
We shall drop the subscript k from the notation when clear from the context.

Remarks 4.5.2

1. For a division algebra index and degree are one and the same thing.
2. The index of a central simple k-algebra A depends only on the class of A

in the Brauer group Br (k). Indeed, this class depends only on the division
algebra D associated with A by Wedderburn’s theorem, and the index is
by definition an invariant of D.

3. We have ind(A) = 1 if and only if A is split.

We begin the study of the index with the following elementary proposition
which could have figured in Chapter 2.
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Proposition 4.5.3 Let D be a central division algebra over k. If D contains a
subfield K which is of degree ind(D) over k, then D splits over K .

Proof Let D◦ be the opposite algebra to D. We have established during the
proof of Proposition 2.4.8 an isomorphism D ⊗k D◦ ∼= Endk(D). If K is as
above, the inclusion K ⊂ D induces an inclusion K ⊂ D◦ by commutativ-
ity of K , whence also an injection ι : D ⊗k K → Endk(D). Viewing D as a
K -vector space with K acting via right multiplication, we see that the image
of ι lies in EndK (D). By definition, we have EndK (D) ∼= Mn(K ), where
n = indk(D); in particular, it has dimension n2 over K . On the other hand, we
have dim K (D ⊗k K ) = dim k(D) = n2, so the map ι : D ⊗k K → EndK (D)
is an isomorphism.

We can now prove the following basic fact.

Proposition 4.5.4 Every central simple k-algebra A is split by a separable
extension K |k of degree ind(A) over k. Moreover, such a K may be found
among the k-subalgebras of A.

The proof is based on the following lemma, which uses the notion of the
reduced characteristic polynomial Pa(T ) of an element a ∈ A. This is defined
as the polynomial Nrd(T − a) ∈ k[T ], where Nrd is the reduced norm map
introduced in Construction 2.6.1. Note that if we choose an algebraic closure k̄ of
k and an isomorphism A ⊗k k̄ ∼= Mn(k̄), then Pa(T ) becomes the characteristic
polynomial of the matrix Ma corresponding to a. In particular, its coefficients
are polynomials in the entries of Ma .

Lemma 4.5.5 For A as above, we may find a ∈ A so that its reduced charac-
teristic polynomial Pa(T ) has distinct roots.

Proof The polynomial Pa(T ) has distinct roots if and only if its discriminant
Da is nonzero. It is known from algebra that Da is a polynomial in the coef-
ficients of Pa(T ). Now choose an isomorphism A ⊗k k̄ ∼= Mn(k̄) and view the
elements Mn(k̄) as points of affine n2-space over k̄. By the above discussion, the
points corresponding to matrices whose characteristic polynomial has nonzero
discriminant form a Zariski open subset in An2

k̄ . A k-rational point in this open
subset corresponds to an element a ∈ A with the required property.

Proof of Proposition 4.5.4 By Wedderburn’s theorem we may assume that A
is a division algebra. By the lemma we find a ∈ A so that Pa(T ) has distinct
roots. As Pa(T ) is the characteristic polynomial of a matrix Ma over k̄, this
implies that Ma has distinct eigenvalues, and hence Pa(T ) is also its minimal
polynomial. In particular, Pa(T ) is irreducible over k̄ and hence also over k, so
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the ring K := k[T ]/(Pa(T )) is a separable field extension of k. Therefore the
homomorphism k[T ] → A sending T to a embeds K as a subfield in A which
is of degree deg Pa(T ) = deg k(A) = indk(A) over k (as A is assumed to be a
division algebra). We conclude by the previous proposition.

To proceed further, we need the following refinement of Theorem 4.4.5.

Proposition 4.5.6 Let K |k be a separable field extension of degree n. Then the
boundary map δn : H 1(k, PGLn(ks)) → Br (k) induces a bijection

ker(H 1(k,PGLn(ks)) → H 1(K ,PGLn(ks))) ∼→ Br (K |k).

The proof uses a lemma from Galois theory.

Lemma 4.5.7 Let K̃ be the Galois closure of K , and denote the Galois groups
Gal (K̃ |k) and Gal (K̃ |K ) by G and H, respectively. Making G act on the tensor
product K ⊗k K̃ via the second factor, we have an isomorphism of G–modules

(K ⊗k K̃ )× ∼= MG
H (K̃ ×).

Proof According to the theorem of the primitive element, we may write
K = k(α) for some α ∈ K with minimal polynomial f ∈ k[x], so that K̃ is
the splitting field of f . By Galois theory, if 1 = σ1, . . . , σn is a system of left
coset representatives for H in G, the roots of f in K are exactly the σi (α) for
1 ≤ i ≤ n. So we get, just like before the proof of Speiser’s lemma in Chapter 2,
a chain of isomorphisms

K ⊗k K̃ ∼= K̃ [x]/
n∏

i=1

(x − σi (α)) ∼= HomH (Z[G], K̃ ) = MG
H (K̃ ).

The lemma follows by restricting to invertible elements.

Proof of Proposition 4.5.6 We have already shown in the proof of Theo-
rem 4.4.5 the injectivity of δn (even of δ∞), so it suffices to see surjectivity.
With the notations of the lemma above, consider the short exact sequence of
G-modules

1 → K̃ × → (K ⊗k K̃ )× → (K ⊗k K̃ )×/K̃ × → 1,

where G acts on K ⊗k K̃ via the second factor. Part of the associated long exact
sequence reads

H 1(G, (K ⊗k K̃ )×/K̃ ×) → H 2(G, K̃ ×) → H 2(G, (K ⊗k K̃ )×). (5)

Using the previous lemma, Shapiro’s lemma and Theorem 4.4.5, we get a chain
of isomorphisms

H 2(G, (K ⊗k K̃ )×) ∼= H 2(G, MG
H (K̃ ×)) ∼= H 2(H, K̃ ×) ∼= Br (K̃ |K ).
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We also have H 2(G, K̃ ×) ∼= Br (K̃ |k), so all in all we get from exact sequence
(5) a surjection

α̃ : H 1(G, (K ⊗k K̃ )×/K̃ ×) → Br (K |k).

On the other hand, the choice of a k-basis of K provides an embedding K ↪→
Mn(k), whence a G-equivariant map K ⊗k K̃ → Mn(K̃ ), and finally a map
(K ⊗k K̃ )× → GLn(K̃ ). Arguing as in the proof of Theorem 4.4.5, we get a
commutative diagram:

H 1(G, (K ⊗k K̃ )×/K ×)
α̃−−−−→ H 2(G, K̃ ×)� �id

H 1(G,PGLn(K̃ ))
δn−−−−→ H 2(G, K̃ ×)

Therefore by the surjectivity of α̃ each element of Br (K |k) ⊂ H 2(G, K̃ ×)
comes from some element in H 1(G,PGLn(K̃ )). By the injectivity of δn and
its obvious compatibility with restriction maps, this element restricts to 1 in
H 1(H,PGLn(K̃ )), as required.

We can now prove the following characterizations of the index.

Proposition 4.5.8 Let A be a central simple k-algebra. The index ind(A) is the
greatest common divisor of the degrees of finite separable field extensions K |k
that split A.

Proof In view of Proposition 4.5.4 it is enough to show that if a finite sep-
arable extension K |k of degree n splits A, then ind(A) divides n. For such a
K , the class of A in Br (K |k) comes from a class in H 1(k,PGLn(ks)) accord-
ing to Proposition 4.5.6. By Theorem 2.4.3 this class is also represented by
some central simple k-algebra B of degree n, hence of index dividing n. But
ind(A) equals ind(B) by Remark 4.5.2 (2).

Combining with Proposition 4.5.4 we get:

Corollary 4.5.9 The index ind(A) is the smallest among the degrees of finite
separable field extensions K |k that split A.

Here are some other easy corollaries.

Corollary 4.5.10 Let A and B be central simple k-algebra that generate the
same subgroup in Br (k). Then ind(A) = ind(B).



104 The cohomological Brauer group

Proof The proposition implies that for all i we have ind (A⊗i ) | ind (A). But
for suitable i and j we have [A⊗i ] = [B] and [B⊗ j ] = [A] in Br (k) by assump-
tion, so the result follows, taking Remark 4.5.2 (2) into account.

Corollary 4.5.11 Let K |k be a finite separable field extension.

1. We have the divisibility relations

indK (A ⊗k K ) | indk(A) | [K : k] indK (A ⊗k K ).

2. If indk(A) is prime to [K : k], then indk(A) = indK (A ⊗k K ). In partic-
ular, if A is a division algebra, then so is A ⊗k K .

Proof It is enough to prove the first statement. The divisibility relation
indK (A ⊗k K ) | indk(A) is immediate from the proposition. For the second
one, use Proposition 4.5.4 to find a finite separable field extension K ′|K split-
ting A ⊗k K with [K ′ : K ] = indK (A ⊗k K ). Then K ′ is also a splitting field
of A, so Proposition 4.5.8 shows indk(A) | [K ′ : k] = indK (A ⊗k K )[K : k].

Now we come to the second main invariant.

Definition 4.5.12 The period (or exponent) of a central simple k-algebra A is
the order of its class in Br (k). We denote it by per(A).

The basic relations between the period and the index are the following.

Proposition 4.5.13 (Brauer) Let A be a central simple k-algebra.

1. The period per(A) divides the index ind(A).
2. The period per(A) and the index ind(A) have the same prime factors.

For the proof of the second statement we shall need the following lemma.

Lemma 4.5.14 Let p be a prime number not dividing per(A). Then A is split
by a finite separable extension K |k of degree prime to p.

Proof Let L|k be a finite Galois extension that splits A, let P be a p-Sylow
subroup of Gal (L|k) and K its fixed field. Then Br (L|K ) ∼= H 2(P, L×) is a
p-primary torsion group by Corollary 4.4.8, so the assumption implies that the
image of [A] by the restriction map Br (L|k) → Br (L|K ) is trivial. This means
that A is split by K .

Proof of Proposition 4.5.13 According to Proposition 4.5.4, the algebra A
is split by a separable extension K |k of degree ind(A) over A. By Proposi-
tion 4.5.6, the class [A] of A in Br (k) is then annihilated by the restriction
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map Br (k) → Br (K ). Composing with the corestriction Br (K ) → Br (k) and
using Proposition 4.2.10, we get that [A] is annihilated by multiplication by
[K : k] = ind(A), whence the first statement. For the second statement, let p
be a prime number that does not divide per(A). By the lemma above, there
exists a finite separable splitting field K |k with [K : k] prime to p. Hence by
Proposition 4.5.8, the index ind(A) is also prime to p.

Remark 4.5.15 It is an interesting and largely open question to determine
the possible values of the integer ind(A)/per(A) for central simple algebras
over a given field k. For instance, it is conjectured by Michael Artin [1]
that for C2-fields (see Remark 6.2.2 for this notion) one should always have
per(A) = ind(A). The conjecture is now known to hold for Fq ((t)) and Fq (t)
(see Corollary 6.3.10 as well as Remark 6.5.5), function fields of complex
surfaces (de Jong [1]), and completions of the latter at smooth points (Colliot-
Thélène/Ojanguren/Parimala [1]). Another interesting recent result on this topic
is that of Saltman [4], who proves that for an algebra A over the function field
of a curve over a p-adic field Qp the ratio ind(A)/per(A) is always at most 2,
provided that per(A) is prime to p.

As an application of the above, we finally prove the following decomposition
result.

Proposition 4.5.16 (Brauer) Let D be a central division algebra over k. Con-
sider the primary decomposition

ind(D) = pm1
1 pm2

2 · · · pmr
r .

Then we may find central division algebras Di (i = 1, . . . , r ) such that

D ∼= D1 ⊗k D2 ⊗k · · · ⊗k Dr

and ind(Di ) = pmi
i for i = 1, . . . , r . Moreover, the Di are uniquely determined

up to isomorphism.

Proof The Brauer group is torsion (Corollary 4.4.8), so it splits into p-primary
components:

Br (k) =
⊕

p

Br (k){p}.

In this decomposition the class of D decomposes as a sum

[D] = [D1] + [D2] + · · · + [Dr ]

where the Di are division algebras with [Di ] ∈ Br (k){pi } for some primes pi .
By Proposition 4.5.13 (2) the index of each Di is a power of pi . The tensor
product A = D1 ⊗k D2 ⊗k · · · ⊗k Dr has degree

∏
i ind(Di ) over k and its
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index equals that of D by Remark 4.5.2 (2), so ind(D) divides
∏

i ind(Di ). A
repeated application of Proposition 4.5.4 shows that for fixed i one may find
a finite separable extension Ki |k of degree prime to pi that splits all the D j

for j �= i . Then D ⊗k Ki and Di ⊗k Ki have the same class in Br (Ki ), and
thus indKi (Di ⊗k Ki ) | ind(D) by Corollary 4.5.11 (1). The algebras Di ⊗k Ki

are still division algebras of index ind(Di ) over Ki by Corollary 4.5.11 (2). To
sum up, we have proven that ind(Di ) divides ind(D) for all i , so we conclude
that ind(D) = ∏

i ind(Di ). The k-algebras D and D1 ⊗k D2 ⊗k · · · ⊗k Dr thus
have the same Brauer class and the same dimension, hence they are isomorphic
as claimed. The unicity of the Di holds for the same reason.

4.6 The Galois symbol
It is time to introduce one of the main protagonists of this book, the Galois
symbol. To construct it, consider an integer m > 0 and a field k of characteristic
prime to m. Recall that µm denotes the group of m-th roots of unity in a fixed
separable closure ks of k, equipped with its canonical action by G = Gal (ks |k).
Kummer theory (Proposition 4.3.6) then defines a map

∂ : k× → H 1(k, µm),

which is surjective with kernel k×m . On the other hand, for an integer n > 0 we
may take n copies of H 1(k, µm) and consider the cup-product

H 1(k, µm) ⊗ · · · ⊗ H 1(k, µm) → H n(k, µ⊗n
m ),

where according to the convention taken in Chapter 3 the G-module µ⊗n
m is

the tensor product over Z of n copies of µm , equipped with the Galois action
defined by σ (ω1 ⊗ · · · ⊗ ωn) = σ (ω1) ⊗ · · · ⊗ σ (ωn).

Putting the two together, we obtain a homomorphism from the n-fold tensor
product

∂n : k× ⊗Z · · · ⊗Z k× → H n(k, µ⊗n
m ).

We now have the following basic fact due to Tate.

Proposition 4.6.1 Assume that a1, . . . , an ∈ k× is a sequence of elements such
that ai + a j = 1 for some 1 ≤ i < j ≤ n. Then

∂n(a1 ⊗ · · · ⊗ an) = 0.

The proof uses some simple compatibility statements for the Kummer map.
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Lemma 4.6.2 Let K |k be a finite separable field extension. Then the diagrams

k× ∂k−−−−→ H 1(k, µm)� �Res

K × ∂K−−−−→ H 1(K , µm)

and

K × ∂K−−−−→ H 1(K , µm)�NK |k

�Cor

k× ∂k−−−−→ H 1(k, µm)

commute, where in the first diagram the left vertical map is the natural inclusion.

Proof It follows from the construction of restriction and corestriction maps
and Remark 3.1.10 (2) that they are compatible with the boundary maps on
cohomology. It therefore remains to see that the maps Res : H 0(k, k×

s ) →
H 0(K , k×

s ) and Cor : H 0(K , k×
s ) → H 0(k, k×

s ) are given by the inclusion
k× → K × and the norm NK |k : K × → k×, respectively. The first of these state-
ments is obvious, and the second comes from the fact that if we embed K |k into
a finite Galois extension L|k, the norm of an element α ∈ K × is given by the
product

∏
σi (α), where 1 = σ1, . . . , σl is a system of left coset representatives

of Gal (L|k) modulo Gal (L|K ).

Proof of Proposition 4.6.1 By graded-commutativity and associativity of the
cup-product we may assume i = 1 and j = n = 2, and use the notation a1 = a,
a2 = 1 − a. Take an irreducible factorisation

xm − a =
∏

l

fl

in the polynomial ring k[x], for each l let αl be a root of fl in ks and define
Kl = k(αl). We then have

1 − a =
∏

l

fl(1) =
∏

l

NKl |k(1 − αl)

by definition of the field norm. Therefore, as ∂2 is a group homomorphism,

∂2(a ⊗ (1 − a)) =
∑

l

∂2(a ⊗ NKl |k(1 − αl)).

Here

∂2(a ⊗ NKl |k(1 − αl)) = ∂(a) ∪ ∂(NKl |k(1 − αl)) =
= ∂(a) ∪ CorKl

k (∂(1 − αl)) = CorKl
k (ResKl

k (∂(a)) ∪ ∂(1 − αl)),

where we have used the definition of ∂2, the above lemma and the projection
formula (Proposition 3.4.10 (3)), respectively. But (again using the lemma)

ResKl
k (∂(a)) = ∂Kl (a) = 0,
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because by definition we have a = αm
l in Kl , and so a lies in K ×m

l , which is
the kernel of ∂Kl . This proves the proposition.

The proposition prompts the following definition.

Definition 4.6.3 Let k be a field. For n > 1 we define the n-th Milnor K-group
K M

n (k) to be the quotient of the n-fold tensor product k× ⊗Z · · · ⊗Z k× by the
subgroup generated by those elements a1 ⊗ · · · ⊗ an with ai + a j = 1 for some
1 ≤ i < j ≤ n. By convention, we put K0(k) := Z and K1(k) := k×.

For elements a1, . . . , an ∈ k×, we denote the class of a1 ⊗ · · · ⊗ an in K M
n (k)

by {a1, . . . , an}. We usually call these classes symbols.

By the proposition, the map ∂n factors through K M
n (k) and yields a map

hn
k,m : K M

n (k) → H n(k, µ⊗n
m ),

which makes sense even for n = 0.

Definition 4.6.4 The above map hn
k,m is called the Galois symbol.

We now have the following basic conjecture.

Conjecture 4.6.5 (Bloch–Kato) The Galois symbol yields an isomorphism

K M
n (k)/m ∼→ H n(k, µ⊗n

m )

for all n ≥ 0, all fields k and all m prime to the characteristic of k.

The case when m is a power of 2 is usually known as Milnor’s Conjecture;
the attribution of the general case to Bloch and Kato is not sure but generally
accepted.

The current status of the conjecture is as follows. For n = 0 the statement is
trivial, and for n = 1 it is none but Kummer theory (Proposition 4.3.6).

The case n = 2 is what will occupy us in Chapter 8 of this book.

Theorem 4.6.6 (Merkurjev–Suslin) The Bloch–Kato conjecture is true for
n = 2 and all m invertible in k.

We shall explain in the next section the relation of this statement to the one
given in Chapter 2, Section 2.5.

Returning to the general Bloch–Kato conjecture, the case when m is a power
of 2 and n is arbitrary was proven by Voevodsky [1]. A proof in the general
case has been announced by Rost and Voevodsky, but at the time of writing
only parts of this work are available to the mathematical community.
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4.7 Cyclic algebras and symbols
Continuing the discussion of the previous section, let us now focus on the case
n = 2. Assume first that k has characteristic prime to m and contains a primitive
m-th root of unity ω. The symbol h2

k then has as target H 2(k, µ⊗2
m ), but choosing

an isomorphism µm
∼= Z/mZ by sending ω to 1 we get isomorphisms

H 2(k, µ⊗2
m ) ∼= H 2(k,Z/mZ) ∼= H 2(k, µm) ∼= mBr (k),

the last one by Corollary 4.4.9. We emphasize that this chain of isomorphisms
depends on the choice of ω. We then have:

Proposition 4.7.1 Let a, b ∈ k×. Then under the above isomorphisms the ele-
ment h2

k({a, b}) ∈ H 2(k, µ⊗2
m ) goes to the Brauer class of the cyclic algebra

(a, b)ω defined in Chapter 2, Section 2.5.

Remarks 4.7.2

1. The statement makes sense because we have seen in Chapter 2, Section 2.5
that the algebra (a, b)ω is split by an extension of degree m, therefore it
has period dividing m.

2. The proposition implies that the form of the Merkurjev–Suslin theorem
stated in Theorem 2.5.7 is equivalent to the surjectivity of h2

k under the
assumption ω ∈ k. Henceforth, by ‘Merkurjev–Suslin theorem’ we shall
mean this most general form, i.e. Theorem 4.6.6.

Before embarking on the proof, recall from the construction of the Kummer
map ∂ : k× → H 1(k, µm) that under the identification

H 1(k, µm) ∼= H 1(k,Z/mZ) = Hom(Gal (ks |k),Z/mZ)

induced by sending ω to 1 the element ∂(a) is mapped to the character sending
the automorphism σ : m

√
a �→ ω m

√
a to 1, where m

√
a is an m-th root of a in

ks . The kernel of this character fixes the cyclic Galois extension K = k( m
√

a)
of k, whence an isomorphism χ : Gal (K |k) → Z/mZ. In Corollary 2.5.5 we
have shown that (a, b)ω is isomorphic to the more general cyclic algebra (χ, b)
introduced in Construction 2.5.1, the isomorphism depending, as always, on
the choice of ω.

We shall derive Proposition 4.7.1 from the following more general one which
is valid without assuming m prime to the characteristic of k.

Proposition 4.7.3 Let k be a field and m > 0 an integer. Assume given a degree
m cyclic Galois extension K |k with group G, and let χ : G ∼→ Z/mZ be an
isomorphism. Take a lifting χ̃ ofχ to a character Gal (ks |k) → Z/mZ, and fix an
element b ∈ k×. Denoting by δ the coboundary map H 1(k,Z/mZ) → H 2(k,Z)
coming from the exact sequence 0 → Z

m→ Z → Z/mZ → 0, the cup-product
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map

H 2(k,Z) × H 0(k, k×
s ) → H 2(k, k×

s ) ∼= Br (k)

sends the element δ(χ̃ ) ∪ b to the Brauer class of the cyclic algebra (χ, b).

Proof Recall from Chapter 2, Section 2.5 that we have constructed the algebra
(χ, b) via Galois descent, by twisting the standard Galois action on the matrix
algebra Mm(k) by the 1-cocycle z(b) : G → PGLm(K ) given by applying first
χ and then sending 1 to the class F(b) of the invertible matrix

F̃(b) =


0 0 · · · 0 b
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0


in PGLm(K ). Recall also that F̃(b)m = b · Im .

Consider now the commutative diagram of G-groups

1 −−−−→ Z
m−−−−→ Z −−−−→ Z/mZ −−−−→ 1

b

� F̃(b)

� F(b)

�
1 −−−−→ K × −−−−→ GLm(K ) −−−−→ PGLm(K ) −−−−→ 1,

where the maps denoted by b, F(b), F̃(b) mean the map induced by sending
1 to the corresponding element. The commutativity of the left square follows
from the equality F̃(b)m = b · Im , and that of the right one is straightforward.
Taking cohomology we obtain the commutative diagram

H 1(G,Z/mZ)
δ−−−−→ H 2(G,Z)

(F(b))∗

� b∗

�
H 1(G,PGLm(K ))

δm−−−−→ H 2(G, K ×),

where the horizontal arrows are boundary maps. The character χ is naturally
an element of Hom(G,Z/mZ) = H 1(G,Z/mZ) and, as explained above, it
is mapped by F(b)∗ to the class of the 1-cocycle z(b). By definition, we
have therefore δm((F(b))∗χ ) = [(χ, b)], so by commutativity of the diagram
[(χ, b)] = b∗(δ(χ )). But one checks from the definition of cup-products that
the map b∗ is given by cup-product with the class of b in H 0(G, K ×), so
we get [(χ, b)] = δ(χ ) ∪ b. Moreover, we defined the character χ̃ as the
image of χ by the inflation map H 1(G,Z/mZ) → H 1(k,Z/mZ), and the
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inflation map H 0(G, K ×) → H 0(k, k×
s ) is obviously the identity. We finally

get [(χ, b)] = δ(χ̃ ) ∪ b by compatibility of the cup-product with inflations.

Before moving on to the proof of Proposition 4.7.1, we note some interesting
consequences.

Corollary 4.7.4 For K |k, G and χ as above, the isomorphism

H 2(G, K ×) ∼= k×/NK |k(K ×) (6)

of Corollary 4.4.10 is induced by the map k× → H 2(G, K ×) sending an
element b ∈ k× to the class of the cyclic algebra (χ, b).

Proof By Proposition 3.4.11, the isomorphism (6) is induced (from right to
left) by cup-product with δ(χ ), as it is a generator of the group H 2(G,Z) ∼=
Z/mZ. On the other hand, the previous proposition implies that δ(χ ) ∪ b is
exactly the class of (χ, b) in Br (K |k) ∼= H 2(G, K ×).

This immediately yields the following criterion for the splitting of cyclic
algebras, which will be used many times in what follows.

Corollary 4.7.5 The class of the cyclic algebra (χ, b) in Br (K |k) is trivial if
and only if b is a norm from the extension K |k.

Another consequence is the following characterization of cyclic algebras.

Corollary 4.7.6 Let K |k, m and G be as above, and let A be a central simple
k-algebra split by K .

1. There exist an isomorphism χ : G ∼→ Z/mZ and an element b ∈ k such
that the cyclic algebra (χ, b) is Brauer equivalent to A.

2. If moreover A has degree m, then we have actually (χ, b) ∼= A.

Proof The first statement is an immediate consequence of Corollary 4.7.4. The
second follows from the first, since we are then dealing with Brauer equivalent
algebras of the same degree.

We now finally prove Proposition 4.7.1.

Proof of Proposition 4.7.1 In view of Proposition 4.7.3 and the discussion
preceding it, all that remains to be seen is the equality

δ(χ̃ ) ∪ b = χ̃ ∪ ∂(b),

where δ(χ̃ ) ∪ b ∈ H 2(k, k×
s ) is the element considered in Proposition 4.7.3, the

map ∂ : k× → H 1(k, µm) is the Kummer coboundary and the cup-product on
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the left is that between H 1(k,Z/mZ) and H 1(k, µm). This follows from (the
profinite version of) of Proposition 3.4.9, with the exact sequences

0 → Z
m→ Z → Z/mZ → 0, 1 → µm → k×

s → k×
s → 1,

the pairing Z × k×
s → k×

s (which is trivial on mZ × µm), and the elements
χ̃ ∈ H 1(k,Z) and b ∈ H 0(k, k×

s ).

Putting together Proposition 4.7.1 and Corollary 4.7.5 we get:

Corollary 4.7.7 Assume k contains a primitive m-th root of unity ω, and let
a, b ∈ k×. Then the following statements are equivalent.

1. The symbol h2
k({a, b}) is trivial.

2. The cyclic algebra (a, b)ω is split.
3. The element b is a norm from the extension k( m

√
a)|k.

Note that the equivalence (2) ⇔ (3) generalizes the equivalence (1) ⇔ (4)
in Proposition 1.1.7.

Remark 4.7.8 Since the first two conditions of the corollary are symmetric in
a and b, we get that b is a norm from the extension k( m

√
a)|k if and only if a is

a norm from the extension k( m
√

b)|k. This type of statement is usually called a
reciprocity law in arithmetic.

Exercises

1. Show that in the correspondence of Theorem 4.1.10 Galois extensions L|k contained
in K correspond to closed normal subgroups of Gal (K |k).

2. (Continuous cochains) Let G be a profinite group and A a continuous G-module.
Define the group Ci

cont(G, A) of continuous i-cochains as the subgroup of those
maps in HomG(Z[Gi+1], A) whose restriction to Gi+1 is continuous when Gi+1 is
equipped with the product topology. Show that the boundary maps δi∗ of the complex
C•(G, A) introduced in Construction 3.2.1 map Ci

cont(G, A) into Ci+1
cont(G, A), and

that the cohomology groups of the arising complex C•
cont(G, A) are isomorphic to

the continuous cohomology groups H i
cont(G, A).

3. Let m > 0 be an integer, and k a field containing a primitive m-th root of unity ω.
Consider a degree m cyclic extension K = k( m

√
a)|k with Galois group G.

(a) Show that the group (K ×/K ×m)G is generated by k× and m
√

a. [Hint: Use
Proposition 3.3.14].

(b) Determine explicitly the cokernel of the map

k×/k×m → (K ×/K ×m)G .

4. Give a new proof of Lemma 2.7.4 based on the injectivity of the group homomor-
phism δ∞ : H 1(G,PGL∞) → H 2(G, K ×).
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5. (Theorem of Frobenius) Prove that Br (R) ∼= Z/2Z, the nontrivial class being that
of the Hamilton quaternions.

6. Let k be a field of characteristic 0 such that Gal (k̄|k) ∼= Z/pZ for some prime
number p.
(a) Show that Br (k) ∼= Br (k)/p Br (k) ∼= k×/k×p . [Hint: Use the Kummer

sequence and the periodicity of the cohomology of cyclic groups.]
(b) By computing Br (k) in a different way, show that Nk̄|k(k̄×) = k×p .
(c) Conclude that the above is only possible for p = 2 and k̄ = k(

√−1).
(d) Show that moreover in the above case k may be equipped with an ordered

field structure. [Hint: Declare the squares to be the positive elements.]
7. Using the previous exercise, prove the following theorem of E. Artin and O. Schreier:

If k is a field of characteristic 0 whose absolute Galois group is a nontrivial finite
group, then k̄ = k(

√−1) and k has an ordered field structure. [Hint: Begin by taking
a p-Sylow subgroup in the Galois group and recall that p-groups are solvable.]

[Remark: In fact, Artin and Schreier also showed that in positive characteristic the
absolute Galois group is either trivial or infinite.]

8. Let k be a field of characteristic 0, and A a central simple algebra over k of degree
n. Denote by [A] the class of A in H 2(k, µn) ∼= nBr (k), and consider the map
H 1(k, µn) → H 3(k, µ⊗2

n ) given by cup-product with [A].
(a) If x ∈ Nrd(A×), show that δ(x) ∪ [A] = 0 in H 3(k, µ⊗2

n ), where δ is the
Kummer coboundary map. [Hint: Use Exercise 10 of Chapter 2.]

(b) Give an example of k, A and x ∈ k× such that δ(x) ∪ [A] �= 0.
9. (Wang’s theorem in the general case) Let D be a central division algebra over k.

(a) Consider the primary decomposition

D ∼= D1 ⊗k D2 ⊗k · · · ⊗k Dr

of Proposition 4.5.16. Show that

SK1(D) ∼=
r⊕

i=1

SK1(Di ).

(b) Assume that ind(D) is squarefree, i.e. a product of distinct primes. Show that
SK1(D) = 0. [Hint: Reduce to Theorem 2.8.12.]

10. (a) Verify the relations (χ, b1) ⊗ (χ, b2) ∼= (χ, b1b2) and (χ, b)op ∼= (χ, b−1) for
cyclic algebras.

(b) Deduce that the cyclic algebras (χ, b1) and (χ, b2) are isomorphic if and only
if b1b−1

2 is a norm from the cyclic extension of the base field determined
by χ .

11. Let n be a positive integer, and let k be a field containing a primitive n-th root of
unity ω. Consider a purely transcendental extension k(x, y) of dimension 2. Given
integers i, j prime to n, show that the cyclic k(x, y)-algebras (x, y)ωi and (x, y)ω j

are isomorphic if and only if i − j is divisible by n.
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Severi–Brauer varieties

In Chapter 1 we associated with each quaternion algebra a conic with the
property that the conic has a k-point if and only if the algebra splits over k. We
now generalize this correspondence to arbitrary dimension: with each central
simple algebra A of degree n over an arbitrary field k we associate a projective
k-variety X of dimension n − 1 which has a k-point if and only if A splits.
Both objects will correspond to a class in H 1(G,PGLn(K )), where K is a
Galois splitting field for A with group G. The varieties X arising in this way
are called Severi–Brauer varieties; they are characterized by the property that
they become isomorphic to some projective space over the algebraic closure.
This interpretation will enable us to give another, geometric construction of the
Brauer group. Another central result of this chapter is a theorem of Amitsur
which states that for a Severi–Brauer variety X with function field k(X ) the
kernel of the natural map Br (k) → Br (k(X )) is a cyclic group generated by
the class of X . This seemingly technical statement (which generalizes Witt’s
theorem proven in Chapter 1) has very fruitful algebraic applications. At the
end of the chapter we shall present one such application, due to Saltman, which
shows that all central simple algebras of fixed degree n over a field k containing
the n-th roots of unity can be made cyclic via base change to some large field
extension of k.

Severi–Brauer varieties were introduced in the pioneering paper of
Châtelet [1], under the name ‘variétés de Brauer’. Practically all results in the
first half of the present chapter stem from this work. The term ‘Severi–Brauer
variety’ was coined by Beniamino Segre in his note [1], who expressed his
discontent that Châtelet had ignored previous work by Severi in the area. Indeed,
in the paper of Severi [1] Severi–Brauer varieties are studied in a classical
geometric context, and what is known today as Châtelet’s theorem is proven
in some cases. As an amusing feature, we may mention that Severi calls the
varieties in question ‘varietà di Segre’, but beware, this does not refer to
Beniamino but to his second uncle Corrado Segre. The groundbreaking paper by
Amitsur [1] was the first to emphasize the importance of the birational viewpoint
on Severi–Brauer varieties in the study of central simple algebras. This obser-
vation was a milestone on the road leading to the proof of the Merkurjev–Suslin
theorem.
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5.1 Basic properties
In Chapter 2 we have seen that as a consequence of Wedderburn’s theorem
one may define a central simple algebra over a field k as a finite dimensional
k-algebra that becomes isomorphic to some full matrix algebra Mn(K ) over
a finite extension K |k of the base field. As a consequence of descent the-
ory, we have seen that when K |k is Galois, the central simple k-algebras split
by K can be described by means of the automorphism group PGLn(K ) of
Mn(K ). But PGLn(K ) is also the automorphism group of projective (n − 1)-
space Pn−1

K (considered as an algebraic variety), which motivates the following
definition.

Definition 5.1.1 A Severi–Brauer variety over a field k is a projective alge-
braic variety X over k such that the base extension X K := X ×k K becomes
isomorphic to Pn−1

K for some finite field extension K |k. The field K is called a
splitting field for X .

Remarks 5.1.2

1. A k-variety X is a Severi–Brauer variety if and only if Xk̄
∼= Pn−1

k̄ for
an algebraic closure k̄ of k. Indeed, necessity is obvious and sufficiency
follows from the fact that the coefficients of the finitely many polynomials
defining an isomorphism Xk̄

∼= Pn−1
k̄ are all contained in a finite extension

of k.
2. It follows from general considerations in algebraic geometry that a Severi–

Brauer variety is necessarily smooth. Also, the assumption that X be pro-
jective is also superfluous: it can be shown that an algebraic variety (i.e.
separated scheme of finite type) over k that becomes isomorphic to a pro-
jective variety over a finite extension of k is itself projective.

As examples of Severi–Brauer varieties we may cite the projective plane
conics encountered in Chapter 1. The next section will describe a general method
for constructing examples.

We now come to the fundamental result about Severi–Brauer varieties. Before
stating it, let us introduce some (non-standard) terminology: we say that a closed
subvariety Y → X defined over k is a twisted-linear subvariety of X if Y is a
Severi–Brauer variety and moreover over k̄ the inclusion Yk̄ ⊂ Xk̄ becomes
isomorphic to the inclusion of a linear subvariety of Pn−1

k̄ .

Theorem 5.1.3 (Châtelet) Let X be a Severi–Brauer variety of dimension
n − 1 over the field k. The following are equivalent:

1. X is isomorphic to projective space Pn−1
k over k.

2. X is birationally isomorphic to projective space Pn−1
k over k.
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3. X has a k-rational point.
4. X contains a twisted-linear subvariety D of codimension 1.

It is usually the equivalence of statements (1) and (3) that is referred to
as Châtelet’s theorem. The only implication which is not straightforward to
establish is (3) ⇒ (4); we owe the beautiful proof given below to Endre Szabó.
This proof uses some elementary notions from algebraic geometry; however,
for the less geometrically minded, we note that in Section 5.3 another proof
will be given, under the assumption that X has a Galois splitting field. We shall
see in Corollary 5.1.5 below that this condition is always satisfied.

Proof The implication (1) ⇒ (2) is obvious. If (2) holds, then X and Pn−1
k have

k-isomorphic Zariski open subsets, but a Zariski open subset of Pn−1
k contains a

k-rational point, whence (3). Next we prove (4) ⇒ (1). The subvariety D whose
existence is postulated by (4) is a divisor, so we may consider the associated
complete linear system |D| (see the Appendix) which defines a rational map
φD into some projective space. Over k̄ the divisor D becomes a hyperplane
by assumption, so the rational map it defines is in fact an isomorphism with
projective (n − 1)-space Pn−1

k̄ . Hence the target of φD must be Pn−1
k and it must

be an everywhere defined isomorphism.
It remains to prove the implication (3) ⇒ (4). Let P be a k-rational point and

denote by π : Y → X the blow-up of X at P (see Appendix, Example A.2.3).
As X (and in particular P) is smooth, the exceptional divisor E is isomor-
phic to Pn−2

k . Pick a hyperplane L ⊂ E . Over the algebraic closure k̄ our Yk̄ is
isomorphic to the blow-up of Pn−1

k̄ in P , hence it is a subvariety of Pn−1
k̄ × Pn−2

k̄ .
The second projection induces a morphism ψk̄ : Yk̄ → Pn−2

k̄ , mapping Ek̄

isomorphically onto Pn−2
k̄ . As the fibres of ψk̄ are projective lines and πk̄ is an

isomorphism outside P , we see that the subvariety Dk̄ := πk̄(ψ−1
k̄ (ψk̄(Lk̄))) of

Xk̄ is a hyperplane in Pn−1
k̄ . We want to define this structure over k, i.e. we are

looking for a morphism ψ : Y → Z defined over k which becomes ψk̄ after
base extension to k̄.

Let A ⊂ X be an ample divisor, and let d denote the degree of Ak̄ in the
projective space Xk̄

∼= Pn−1
k̄ . The divisor (π∗ A − d E)k̄ has degree 0 on the

fibres of ψk̄ and has degree d on Ek̄ . Hence the morphism Yk̄ → PN
k̄ associated

with the corresponding linear system factors as the composite

Yk̄
ψk̄−→ Zk̄

φd−→ PN
k̄ ,

where φd is the d-uple embedding. The linear system |π∗ A − d E | defines (over
k) a rational map ψ : Y → PN

k . By construction this ψ becomes the above ψk̄

after base extension to k̄, hence it is is actually an everywhere defined morphism
Y → Z , where Z := ψ(Y ). Then the subvariety D := π (ψ−1(ψ(L))) ⊂ X is
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defined over k, and becomes Dk̄ after extension to k̄. This is the D we were
looking for.

Corollary 5.1.4 A Severi–Brauer variety X always splits over a finite separa-
ble extension of the base field k.

Proof By a now familiar argument, it is enough to show that X becomes
isomorphic to projective space over a separable closure ks of k. This follows
from the theorem, for Xks always has a rational point over ks (see Appendix,
Proposition A.1.1).

By embedding a separable splitting field into its Galois closure, we get:

Corollary 5.1.5 A Severi–Brauer variety X always splits over a finite Galois
extension of the base field k.

5.2 Classification by Galois cohomology
Let X be a Severi–Brauer variety of dimension n − 1 over a field k, and let K |k
be a finite Galois extension with group G which is a splitting field of X . We
now associate with X a 1-cohomology class of G with values in PGLn(K ) by
a construction analogous to that in the theory of central simple algebras.

First some conventions. Given quasi-projective varieties Y, Z over k, denote
by YK , Z K the varieties obtained by base extension to K , and make G act on
the set of morphisms YK → Z K by φ �→ σ (φ) := φ ◦ σ−1. In particular, for
Y = Z we obtain a left action of G on the K -automorphism group AutK (Y ).

Given a K -isomorphism φ : Pn−1
K

∼→ X K , define for each element σ ∈ G a
K -automorphism aσ ∈ AutK (Pn−1

K ) by

aσ := φ−1 ◦ σ (φ).

Exactly the same computations as in Chapter 2, Section 2.3 show that the map
σ �→ aσ is a 1-cocycle of G with values in AutK (Pn−1

K ), and that changing φ

amounts to changing aσ by a 1-coboundary. Therefore we have assigned to
X a class [aσ ] in H 1(G,AutK (Pn−1

K )). Fixing an isomorphism AutK (Pn−1
K ) ∼=

PGLn(K ) (see Appendix, Example A.2.2), we may consider it as a class in
H 1(G,PGLn(K )). Using the boundary map H 1(G, PGLn(K )) → Br (K |k) we
can also assign to X a class [X ] in Br (K |k).

Denote by SBn(k) the pointed set of isomorphism classes of Severi–Brauer
varieties of dimension n − 1 over k, the base point being the class of Pn−1

k .

Theorem 5.2.1 The map SBn(k) → H 1(k,PGLn) given by X �→ [aσ ] is a base
point preserving bijection.
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Combining the theorem with Theorem 2.4.3 we thus get a base point pre-
serving bijection

C S An(k) ↔ SBn(k).

Given a central simple k-algebra A of degree n, we shall call (somewhat abu-
sively) a Severi–Brauer variety X whose isomorphism class corresponds to that
of A by the bijection above a Severi–Brauer variety associated with A.

We now prove Theorem 5.2.1 using a construction due to Kang [1]. The proof
will at the same time yield the following important property.

Theorem 5.2.2 Let X be a Severi–Brauer variety of dimension n − 1 over k,
and let d be the period of X, i.e. the order of [X ] in the Brauer group Br (K |k).
Then there exists a projective embedding

ρ : X ↪→ Pn−1
k , N =

(
n + d − 1

d

)
such that ρK : X K ↪→ Pn−1

K is isomorphic to the d-uple embedding φd .

Proof of Theorems 5.2.1 and 5.2.2 We begin by proving the injectivity of the
map SBn(k) → H 1(k,PGLn). Let X and Y be Severi–Brauer varieties split
by K and having the same class in H 1(G,PGLn). Take trivialization isomor-
phisms φ : Pn−1

K
∼→ X K and ψ : Pn−1

K
∼→ YK . Our assumption that the cocycles

φ−1 ◦ σ (φ) and ψ−1 ◦ σ (ψ) have the same class in H 1(G,PGLn(K )) means
that there exists h ∈ PGLn(K ) such that

φ−1 ◦ σ (φ) = h−1 ◦ ψ−1 ◦ σ (ψ) ◦ σ (h)

for all σ ∈ G. We then have

ψ ◦ h ◦ φ−1 = σ (ψ ◦ h ◦ φ−1) ∈ HomK (X K , YK ),

so the K -isomorphism ψ ◦ h ◦ φ−1 : X K → YK is G-equivariant. It follows
that ψ ◦ h ◦ φ−1 is defined over k, and hence yields a k-isomorphism between
X and Y .

Let now α = [aσ ] be a class in H 1(G,PGLn(K )). We show that α can be
realized as the cohomology class of a Severi–Brauer variety of dimension n − 1
which becomes isomorphic over K to φd (Pn−1

K ). This will prove the surjectivity
statement in Theorem 5.2.1 and at the same time Theorem 5.2.2.

Consider the boundary map δ : H 1(G,PGLn(K )) → H 2(G, K ×). By def-
inition, a 2-cocycle representing δ(α) is obtained by lifting the elements
aσ ∈ PGLn(K ) to elements ãσ ∈ GLn(K ) and setting

bσ,τ = ãσ σ (̃aτ ) ã−1
στ . (1)
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Let d be the order of δ(α) in Br (K |k) (which is a torsion group by Corol-
lary 4.4.8). In terms of the cocycle bσ,τ this means that (bσ,τ )d is a 2-coboundary,
i.e. there is a 1-cochain σ �→ cσ with values in K × such that

(bσ,τ )d = cσ σ (cτ ) c−1
στ . (2)

Now consider the natural left action of the group GLn(K ) on V := K n which
is compatible with that of G in the sense of Construction 2.3.6. This action
extends to the symmetric powers Vi := V ⊗i/Si by setting

ã(v1 ⊗ · · · ⊗ vi ) = ã(v1) ⊗ · · · ⊗ ã(vi ).

Note that Vi is none but the space of homogeneous polynomials of degree i
over K . We extend the action of G to the Vi in a similar way. Now consider the
case i = d, and for each σ ∈ G define an element νσ ∈ AutK (Vd ) by

νσ := c−1
σ ãσ ,

where c−1
σ acts as constant multiplication and ãσ via the action of GLn(K ) on

Vd described above. We contend that the map σ → νσ is a 1-cocycle. Indeed,
for σ, τ ∈ G, we compute using (1)

νστ = c−1
στ ãστ = c−1

στ

(
b−1
σ,τ ãσ σ (̃aτ )

) = (
c−1
στ b−d

σ,τ

)
(̃aσ σ (̃aτ )),

where in the second step we considered bσ,τ as a scalar matrix in GLn(K ) and
in the third just as a scalar. Hence using (2) we get

νστ = c−1
στ

(
cστ σ (cτ )−1c−1

σ

)
(̃aσ σ (̃aτ )) = (

cσ σ (cτ )
)−1

ãσ σ (̃aτ ) = νσσ (ντ ),

so that we have indeed defined a 1-cocycle.
Now equip Vd with the twisted G-action defined by νσ (see Construc-

tion 2.3.6 for the definition). Let W := (νVd )G be the invariant subspace under
this twisted action. By Speiser’s lemma (Lemma 2.3.8), this is a k-vector
space such that W ⊗k K ∼= Vd . Let k[X ] be the graded k-subalgebra of
K [x0, . . . , xn−1] ∼= ⊕

i Vi generated by W . Choosing a k-basis v0, . . . , vN−1

of W we get a natural surjection of graded k-algebras k[x0, . . . , xN−1] → k[X ]
induced by sending xi to vi . The kernel of this surjection is a homogeneous
ideal in k[x0, . . . , xN−1] defining a closed subset X ⊂ PN−1

k . Moreover, the
isomorphism W ⊗k K ∼= Vd implies that k[X ] ⊗k K becomes isomorphic to
the graded K -subalgebra of K [x0, . . . , xn−1] generated by Vd . But this is none
but the homogeneous coordinate ring of φd (Pn−1

K ) (see Appendix, Example
A.2.1), hence X ⊗k K ∼= φd (Pn−1

K ). This shows that X is a Severi–Brauer
variety, and at the same time that Theorem 5.2.2 holds. By construction the
class in H 1(G,PGLn(K )) associated with X is indeed α.
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Remark 5.2.3 It should be noted that the embedding X ↪→ PN−1
k constructed

in the above proof is not canonical, but depends on the choice of the cocycle
σ �→ cσ .

Example 5.2.4 Theorem 5.2.1 shows that the 1-dimensional Severi–Brauer
varieties are exactly the smooth projective conics. Indeed, such a variety X
defines a class in H 1(k,PGL2) which also corresponds to a central simple
algebra of degree 2 by Theorem 2.4.3. By the results of Chapter 1, this must
be a quaternion algebra (a, b), whose class has always order 2 in the Brauer
group. By Theorem 5.2.2, we can embed X as a smooth subvariety in P2

k which
is isomorphic to the conic x2

1 = x0x2 over the algebraic closure. It is a well-
known fact from algebraic geometry that then X itself is a conic. In Section 5.4
we shall prove that X is in fact the conic C(a, b) associated with the quaternion
algebra (a, b) in Chapter 1.

Remark 5.2.5 In the literature one finds other approaches to the construction
of Severi–Brauer varieties. The classical approach, going back to Châtelet, is to
construct the Severi–Brauer variety associated with a degree n algebra A as the
variety of left ideals of dimension n in A, by embedding it as a closed subvariety
into the Grassmannian Gr (n, n2) (see e.g. Saltman [3] or Knus–Merkurjev–
Rost–Tignol [1]). This construction has the advantage of being canonical, but
the projective embedding it gives is far from being the most ‘economical’
one. For instance, Severi–Brauer varieties of dimension 1 are realized not as
plane conics, but as curves in P5 defined by 31 (non-independent) equations;
see Jacobson [3], p. 113. Another approach is that of Grothendieck, which is
based on general techniques in descent theory. It has similar advantages and
disadvantages: it is more conceptual than the one above and works in a much
more general situation, but it does not give explicit information on the projective
embedding. See Jahnel [1] for a very detailed exposition of Grothendieck’s
construction.

5.3 Geometric Brauer equivalence
In the previous section we have shown that isomorphism classes of Severi–
Brauer varieties of dimension n − 1 correspond bijectively to elements in the
pointed set H 1(k,PGLn). They therefore have a class in Br (k). Defining this
class involves, however, the consideration of an equivalence relation on the
disjoint union of the sets H 1(k, PGLn) for all n, which corresponds to Brauer
equivalence on central simple algebras. We now show that Brauer equivalence
is quite easy to define geometrically on Severi–Brauer varieties, using closed
embeddings of twisted-linear subvarieties.

The first step in this direction is:
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Proposition 5.3.1 Let X be a Severi–Brauer variety, and Y a twisted-linear
subvariety of X. Then X and Y have the same class in Br (k).

Proof Let n − 1 be the dimension of X , and d − 1 that of Y . Let Vd ⊂ kn be
the linear subspace generated by the first d standard basis vectors, and P̃d (k)
the subgroup of GLn(k) consisting of elements leaving Vd ⊂ kn invariant. In
other words, P̃d (k) is the subgroup

[
GLd (k) ∗

0 GLn−d (k)

]
⊂ GLn(k).

We denote by Pd (k) its image in PGLn(k). Note that restriction to the subspace
Vd yields a natural map P̃d (k) → GLd (k), and hence a map Pd (k) → PGLd (k).

Now by definition of a twisted-linear subvariety (taking Corollary 5.1.5 into
account), there exists a finite Galois extension K |k of group G and a commu-
tative diagram of trivializations

X ×k K
φ←−−−−∼ Pn−1 ×k K� �

Y ×k K
ψ←−−−−∼ Pd−1 ×k K ,

where the right vertical map is the inclusion of a projective linear subspace.
Since PGLn(k) acts transitively on the (d − 1)-dimensional projective lin-
ear subspaces of Pn−1

k , we may assume that this map actually is the pro-
jectivization of the inclusion map Vd ⊗k K → K n . Therefore the cocycle
aσ : σ �→ ψ ◦ σ (ψ−1) defining the class of Y in H 1(G,PGLn(K )) takes its
values in the subgroup Pd (K ) ⊂ PGLn(K ). In other words, the class of [Y ] is
in the image of the map H 1(G, Pd (K )) → H 1(G,PGLd (K )).The commutative
diagram

1 −−−−→ K × −−−−→ GLn(K ) −−−−→ PGLn(K ) −−−−→ 1

id

� � �
1 −−−−→ K × −−−−→ P̃d (K ) −−−−→ Pd (K ) −−−−→ 1

id

� � �
1 −−−−→ K × −−−−→ GLd (K ) −−−−→ PGLd (K ) −−−−→ 1
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yields the commutative diagram of boundary maps

[X ] ∈ H 1(G,PGLn(K )) −−−−→ H 2(G, K ×)� id

�
[aσ ] ∈ H 1(G, Pd (K )) −−−−→ H 2(G, K ×)� id

�
[Y ] ∈ H 1(G,PGLd (K )) −−−−→ H 2(G, K ×) .

(3)

Here the commutativity of the upper square is obvious and that of the lower
one is proven by an argument similar to that of Lemma 4.4.3. We conclude that
[Y ] = [X ] ∈ Br (k).

Proposition 5.3.2 Let B be a central simple algebra, and let A = Mr (B) for
some r > 0. Denote by X and Y the Severi–Brauer varieties associated with
A and B, respectively. Then Y can be embedded as a twisted-linear subvariety
into X.

The proof below is due to Michael Artin.

Proof We keep the notations from the proof of Proposition 5.3.1; in partic-
ular, let d be the degree of B, and n = rd that of A. It will be enough to
show that the class of B in H 1(G, PGLd (K )) lies in the image of the natural
map

H 1(G, Pd (K )) → H 1(G,PGLd (K )).

Indeed, then diagram (3) shows that [X ] and [Y ] are both images of the same
class in H 1(G, Pd (K )), and the construction of Severi–Brauer varieties out of
1-cocycles given in the previous chapter implies that Y embeds as a twisted-
linear subvariety into X . To see this, consider the natural projection πd : K n →
K d given by mapping the last n − d basis elements to 0. In the construction
of the varieties X and Y we twisted the G-action on a symmetric power of
these vector spaces by the action of PGLn , resp. PGLd . These twisted actions
are compatible with each other under the maps PGLn ← Pd → PGLd . The
induced map on G-invariants is surjective, because so is the map given by base
change to K , which is just the aboveπd by Speiser’s lemma. The construction of
X and Y then shows that this surjection of k-vector spaces induces a surjection
of homogeneous coordinate rings k[X ] → k[Y ], which corresponds to a closed
embedding of Y into X as a twisted-linear subvariety.
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Now to prove our claim about the class [B], consider the commutative dia-
gram with exact rows and columns

1 1� �
1 →K × �−−−−→ K ××K × (+,−)−−−−→ K × → 1

id

� � �
1 →K × −−−−→ GLd (K )×GLn−d (K ) −−−−→ (

GLd (K )×GLn−d (K )
)
/K ×→ 1� �

PGLd (K )×PGLn−d (K )
id−−−−→ PGLd (K )×PGLn−d (K )� �

1 1

where � is the diagonal map, and (+,−) is the map (a, b) �→ a − b. This is a
diagram of groups equipped with a G-action, so by taking cohomology we get
a commutative diagram of pointed sets with exact columns

H 1
(
G,GLd (K )

)×H 1
(
G,GLn−d (K )

) → H 1
(
G,GLd (K )×GLn−d (K )

)
/K ×)� �

H 1
(
G,PGLd (K )

)×H 1
(
G,PGLn−d (K )

) id→ H 1
(
G,PGLd (K )

)×H 1
(
G,PGLn−d (K )

)� �
H 2(G, K ×)×H 2(G, K ×)

(+,−)−−→ H 2(G, K ×).

We have n − d = (r − 1)d , so M(r−1)d (B) is a central simple algebra of degree
n − d satisfying

[Mr (B)] − [M(r−1)d (B)] = [B] − [B] = 0 ∈ H 2(G, K ×).

The diagram then shows that the pair ([Mr (B)], [M(r−1)d (B)]) defines an ele-
ment of H 1(G,PGLd (K )) × H 1(G,PGLn−d (K )) which is in the image of the
map

H 1(G,
(
GLd (K )×GLn−d (K )

)
/K ×)→ H 1(G,PGLd (K ))×H 1(G,PGLn−d (K )).

In particular, the class [B] is in the image of the map

λ : H 1
(
G,

(
GLd (K ) × GLn−d (K )

)
/K ×) → H 1(G,PGLd (K ))



124 Severi–Brauer varieties

obtained from the previous one by composing with the natural projection. Now
observe that the natural surjection

α : Pd (K ) → (GLd (K ) × GLn−d (K )) /K ×

induced by the mapping[
GLd (K ) ∗

0 GLn−d (K )

]
−→

[
GLd (K ) 0

0 GLn−d (K )

]
has a section β : (GLd (K ) × GLn−d (K )) /K × → Pd (K ) satisfying α ◦ β = id,
which is induced by the obvious map in the reverse direction. Consequently,
the natural map

H 1(G, Pd (K ))
α∗→ H 1(G,

(
GLd (K ) × GLn−d (K )

)
/K ×)

induced on cohomology is surjective, so we conclude that the class [B] lies in
the image of the composite map

λ ◦ α∗ : H 1(G, Pd (K )) → H 1(G,PGLd (K )),

as was to be shown.

We can sum up the two previous propositions in the following statement.

Theorem 5.3.3 (Châtelet) Two Severi–Brauer varieties X and Y over k have
the same class in Br (k) if and only if there exists a Severi–Brauer variety Z over
k into which both X and Y can be embedded as twisted-linear subvarieties.

Remark 5.3.4 Châtelet formulated this statement in a different but equivalent
way: he stated that two Severi–Brauer varieties are Brauer equivalent if and only
if they have isomorphic twisted-linear subvarieties. (Indeed, the corresponding
central simple algebras are then matrix algebras over the same division algebra,
by Wedderburn’s theorem.)

The theorem has several interesting consequences. First some terminology:
we call a Severi–Brauer variety minimal if it has no proper twisted-linear sub-
varieties.

Corollary 5.3.5 A central simple algebra A is a division algebra if and only if
the associated Severi–Brauer variety is minimal.

Proof This follows from the theorem and the fact that division algebras are
the central simple algebras of lowest dimension in their Brauer class.

Next recall that we have defined the index of a central simple algebra A to
be the degree of the division algebra D for which A ∼= Mr (D) according to
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Wedderburn’s theorem. In other words, the index ind(A) is the degree of the
unique division algebra in the Brauer class of A. Hence:

Corollary 5.3.6 (Châtelet) Let A be a central simple algebra, and let X be
the Severi–Brauer variety associated with A. Then all minimal twisted-linear
subvarieties of X have the same dimension d, satisfying the equality

d = ind(A) − 1.

We thus get a geometric definition of the index.

Remarks 5.3.7

1. Recall that A is split if and only if it has index 1. According to the propo-
sition, this happens if and only if the minimal twisted-linear subvarieties
have dimension 0. The subvarieties of dimension 0 defined over k are
precisely the k-rational points, and conversely these are trivially twisted-
linear subvarieties (if they exist). We thus get another proof of Châtelet’s
theorem (assuming the existence of a separable splitting field, which was
used in the proof of Theorem 5.3.3).

2. One can construct the correspondence between central simple algebras and
Severi–Brauer varieties in a purely geometric way. This makes it possible to
obtain the results in this section without the use of cohomology. It is also
feasible to introduce geometrical operations on Severi–Brauer varieties
which correspond to multiplication and the inverse map in the Brauer
group; they are, however, more complicated to define than the operations
on central simple algebras. For all these constructions we refer to the paper
of Endre Szabó [1].

5.4 Amitsur’s theorem
Let V be a variety over a field k. The natural inclusion k ⊂ k(V ) induces a map

rV : Br (k) → Br (k(V ))

given by mapping the class of a Severi–Brauer variety X over k to the class
of the variety Xk(V ) obtained by base extension. In particular, this applies to
V = X . In this case, the base extension Xk(X ) has a k(X )-rational point coming
from the generic point of X . Hence by Châtelet’s theorem the class of X in
Br (k) lies in the kernel of the map rX . The following famous theorem shows
that this construction already describes the kernel.

Theorem 5.4.1 (Amitsur) Let X be a Severi–Brauer variety defined over a
field k. Then the kernel of the restriction map rX : Br (k) → Br (k(X )) is a
cyclic group generated by the class of X in Br (k).
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An immediate corollary is:

Corollary 5.4.2 Let X and Y be Severi–Brauer varieties that are birational
over k. Then their classes [X ] and [Y ] generate the same subgroup in Br (k).

Remark 5.4.3 Amitsur’s conjecture predicts that the converse to the above
corollary should be true: if [X ] and [Y ] generate the same subgroup in Br (k),
and they have the same dimension, then X should be birational to Y over k. See
Roquette [1] and Tregub [1] for partial results in this direction.

Note, however, that a weaker result is quite easy to prove: If [X ] and [Y ] gen-
erate the same subgroup in Br (k), then X and Y are stably birational over k, i.e.
there exist positive integers m, n such X ×k Pm is birational to Y ×k Pn over k.
Indeed, the assumption implies that X ×k k(Y ) and Y ×k k(Y ) generate the same
subgroup in Br (k(Y )). But Y ×k k(Y ) has a k(Y )-rational point (coming from
the generic point of Y ), so by Châtelet’s theorem its class in Br (k(Y )) is trivial.
Hence so is that of X ×k k(Y ), which means that X ×k k(Y ) ∼= Pn ×k k(Y ).
In particular, these varieties have the same function field, which by definition
equals k(X ×k Y ) for the left-hand side and k(Pn ×k Y ) for the right-hand side.
Thus X ×k Y is birational to Pn ×k Y , and the claim follows by symmetry.

The main ingredient in the proof of Amitsur’s theorem is the following propo-
sition. Before stating it, we recall from Proposition A.4.4 (2) of the Appendix
that the Picard group of projective space Pn

K over a field K is isomorphic to Z,
generated by the class of a K -rational hyperplane. We call the map realizing the
isomorphism Pic (Pn

K ) ∼= Z the degree map, and define the degree of a divisor
on Pn

K to be the image of its class by the degree map. This map is not to be
confused with the degree map defined for curves.

Proposition 5.4.4 Let K |k be a finite Galois extension with group G that is a
splitting field for X. There is an exact sequence

0 → Pic (X )
deg→ Z

δ→ H 2(G, K ×) → H 2(G, K (X )×),

where the map deg is given by composing the natural map Pic (X )→Pic (X K )
with the degree map.

Proof By definition of the Picard group, we have an exact sequence of G-
modules

0 → K (X )×/K × → Div(X K ) → Pic (X K ) → 0. (4)

The beginning of the associated long exact cohomology sequence reads

0 → (K (X )×/K ×)G → Div(X K )G → Pic (X K )G →
→ H 1(G, K (X )×/K ×) → H 1(G,Div(X K )).
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The group G acts by permutation on Div(X K ), hence this G-module is none
but the co-induced G-module coming from Div(X ). Corollary 3.3.3 therefore
implies H 1(G,Div(X K )) = 0.

Next, a piece of the long exact sequence coming from the sequence of G-
modules

0 → K × → K (X )× → K (X )×/K × → 0 (5)

reads

H 1(G, K (X )×) → H 1(G, K (X )×/K ×) → H 2(G, K ×) → H 2(G, K (X )×).

Here the group H 1(G, K (X )×) is trivial by Hilbert’s Theorem 90 (applied to
the extension K (X )|k(X )). Therefore by splicing the two long exact sequences
together we get

0 → (K (X )×/K ×)G → Div(X K )G → Pic (X K )G →
→ H 2(G, K ×) → H 2(G, K (X )×).

To identify this sequence with that of the proposition we make the following
observations. First, we have (Div(X K ))G = Div(X ) (again because Div(X K ) is
the co-induced module associated with Div(X )). Next, the beginning of the long
exact sequence associated with (5) and the vanishing of H 1(G, K ×) (again by
Hilbert’s Theorem 90) yields the isomorphism k(X )×/k× ∼= (K (X )×/K ×)G .
So we may replace the first two terms in the sequence above by Pic (X ).

Finally, we have X K
∼= Pn−1

K , whence an isomorphism Pic (X K ) ∼= Z given
by the degree map. To finish the proof, we have to show that Pic (X K ) is a trivial
G-module. Indeed, the group G can only act on Z by sending 1 to 1 or −1. This
action, however, comes from the action of G on line bundles on Pn−1

K and the
line bundles in the class of −1 have no global sections, whereas those in the
class of 1 do. (In terms of linear systems, the complete linear system associated
with the class of 1 is that of hyperplanes in Pn−1

K , whereas that associated with
the class of −1 is empty.) This implies that 1 can only be fixed by G.

Now it is easy to derive the following basic exact sequence.

Theorem 5.4.5 There is an exact sequence

0 → Pic (X )
deg−→ Z

δ→ Br (k) → Br (k(X )),

with deg : Pic (X ) → Z the same map as above.

For the proof of the theorem we need the following lemma.

Lemma 5.4.6 Let V be a k-variety having a smooth k-rational point. Then the
restriction map Br (k) → Br (k(V )) is injective.
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Proof If P is a smooth k-point on V , the local ring OX,P embeds into the
formal power series ring k[[t1, . . . , tn]], where n is the dimension of V (see
Appendix, Theorem A.5.4). Passing to quotient fields we get an injection
k(V ) ⊂ k((t1, . . . , tn)). This field in turn can be embedded into the iterated
Laurent series field k((t1))((t2)) . . . ((tn)). All in all, we have an induced map
Br (k(V )) → Br (k((t1)) . . . ((tn))). We show injectivity of the composite map
r : Br (k) → Br (k((t1)) . . . ((tn))). For this it will be enough to treat the case
n = 1, i.e. the injectivity of r : Br (k) → Br (k((t))), as the general case then
follows by a straightforward induction.

Represent a class in the kernel of r by a Severi–Brauer variety X defined
over k. Regarding it as a variety defined over k((t)), Châtelet’s theorem implies
that it has a k((t))-rational point. If X is embedded into projective space PN ,
this point has homogeneous coordinates (x0, . . . , xN ). Viewing k((t)) as the
quotient field of the ring k[[t]], we may assume that each xi lies in k[[t]] and
not all of them are divisible by t . Setting t = 0 then defines a rational point of
X over k, and we conclude by Châtelet’s theorem that the class of X in Br (k)
is trivial.

Proof of Theorem 5.4.5 By Theorem 4.4.7 we have isomorphisms

H 2(G, K ×) ∼= Br (K |k) and H 2(G, K (X )×) ∼= Br (K (X )|k(X )).

Now the definition of relative Brauer groups gives a commutative diagram with
exact rows:

0 −−−−→ Br (K |k) −−−−→ Br (k) −−−−→ Br (K )� � �
0 −−−−→ Br (K (X )|k(X )) −−−−→ Br (k(X )) −−−−→ Br (K (X ))

Here the third vertical map is injective by the lemma above. Hence the snake
lemma gives an isomorphism

ker(Br (K |k) → Br (K (X )|k(X ))) ∼= ker(Br (k) → Br (k(X )),

and the theorem results from the previous proposition.

Remark 5.4.7 The exact sequence of the theorem is easy to establish using the
Hochschild–Serre spectral sequence in étale cohomology (see e.g. Milne [2]).

We can now prove Amitsur’s theorem.

Proof of Theorem 5.4.1 The exact sequence of the theorem shows that the
kernel of the map rX : Br (k) → Br (k(X )) is cyclic, so it is a finite cyclic group,
because Br (k) is a torsion group. By the remarks at the beginning of this section,
the class of X is contained in ker(rX ), so if d denotes the order of this class,
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we see that ker(rX ) has order divisible by d . On the other hand, by the exact
sequence of the theorem the group ker(rX ) is the quotient of Z by the image
of the map deg : Pic (X ) → Z. Theorem 5.2.2 implies that there is a divisor
class on X which becomes the d-th power of the class of a hyperplane over the
algebraic closure. This means that Im (deg ) ⊂ Z contains d, therefore ker(rX )
must have exact order d and the class of X must be a generator.

Our next goal is to show that Witt’s theorem (Theorem 1.4.2) follows from
that of Amitsur. First a corollary already announced before:

Corollary 5.4.8 Assume that the base field k is not of characteristic 2. Let (a, b)
be a quaternion algebra over k. Then the Severi–Brauer variety associated with
(a, b) is the conic C(a, b) introduced in Chapter 1.

Proof The conic C := C(a, b) is a Severi–Brauer variety of dimension 1,
so it defines a class [C] in Br (k). The conic has a point over some quadratic
extension L|k, so by Châtelet’s theorem [C] restricts to the trivial class in Br (L).
By the restriction-corestriction formula (Corollary 4.2.10) [C] therefore lies in
the 2-torsion of Br (k). By Amitsur’s theorem, this 2-torsion class generates the
kernel of the map Br (k) → Br (k(C)). On the other hand, by Proposition 1.3.2
the algebra (a, b) ⊗k k(C) splits, so [(a, b)] = [C] or [(a, b)] = 0. If (a, b) is
split, C has a k-point by loc. cit. and Châtelet’s theorem implies that [C] = 0 as
required. In the other case, [(a, b)] must be the nontrivial element in the kernel
which is [C], and we are done again.

Remarks 5.4.9

1. Now we see how Witt’s Theorem follows from Amitsur’s theorem above:
by the above proof, for a quaternion division algebra (a, b) the only non-
trivial class in the kernel of the map Br (k) → Br (k(C)) is that of (a, b).
But if two division algebras of the same degree have the same Brauer class,
they are isomorphic by Wedderburn’s theorem.

2. The corollary also holds in characteristic 2, for the quaternion algebras
[a, b) and the associated conics defined in Exercise 4 of Chapter 1.

We conclude this section by the following refinement of Theorem 5.4.5 which
incorporates most of the results obtained so far.

Theorem 5.4.10 (Lichtenbaum) Let X be a Severi–Brauer variety over a field
k. In the exact sequence

0 → Pic (X ) → Z
δ→ Br (k) → Br (k(X ))

the map δ is given by sending 1 to the class of X in Br (k).
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Proof Let K |k be a Galois extension splitting X . By the proof of Proposition
5.4.4, the map δ arises as the composition of the coboundary maps

Pic (X K )G → H 1(G, K (X )×/K ×) and H 1(G, K (X )×/K ×)→ H 2(G, K ×)

coming from the short exact sequences (4) and (5), respectively. In view of the
construction of these coboundary maps (see the proofs of Proposition 2.7.1 and
Proposition 4.4.1), we can therefore describe δ(1) as follows. One takes first a
divisor D representing the divisor class 1 ∈ Z ∼= Pic (X K ). Here the divisor D is
not G-invariant in general but its class is (see the end of the proof of Proposition
5.4.4), so one finds a function fσ with div( fσ ) = σ (D) − D. The K (X )×-valued
map σ �→ fσ is the lifting of a 1-cocycle with values in K (X )×/K ×, and the
image of this cocycle by the second coboundary map is by definition the 2-
cocycle (σ, τ ) �→ fσ σ ( fτ ) f −1

στ . This is the 2-cocycle representing δ(1).
Now since D is of degree 1, the linear system |D| defines an isomor-

phism X K
∼= Pn−1

K , where n = dim X . This isomorphism arises by taking the
associated projective space to an isomorphism of vector spaces L(D) ∼= K n .
Let g0, . . . , gn−1 be a basis of the left-hand side mapping to the standard
basis e0, . . . , en−1 of K n . Denote by λ the inverse isomorphism sending ei

to gi . In terms of linear systems, the map λ sends ei to the positive divi-
sor (gi ) + D. So for σ ∈ G, the isomorphism σ (λ) sends ei to the divisor
(σ (gi )) + σ (D) = (σ (gi )) + ( fσ ) + D = ( fσ σ (gi )) + D. This last divisor is
also an element of |D|, therefore fσ σ (gi ) ∈ L(D). We may therefore write

fσ σ (gi ) =
∑

ai jσ gi (6)

with some ai jσ ∈ K . The matrix Aσ := [ai jσ ] is therefore the matrix of the
K -automorphism σ (λ) ◦ λ−1. Comparing with the definition at the beginning
of Section 5.2, we see that this is exactly the matrix defining the class of X in
H 1(G,PGLn(K )), and the class in Br (k) is therefore given by the 2-cocycle
(σ, τ ) �→ Aσ σ (Aτ )A−1

στ .
To compare these two 2-cocycles, we perform the following computation in

the function field K (X ):

στ (gi ) = σ (τ (gi )) = σ ( f −1
τ Aτ gi ) = σ ( f −1

τ )σ (Aτ )σ (gi ) =
σ ( f −1

τ )σ (Aτ )( f −1
σ Aσ gi ) = σ ( f −1

τ ) f −1
σ σ (Aτ )Aσ gi .

Comparing with equation (6) applied to στ gives

gi = fστ σ ( f −1
τ ) f −1

σ A−1
στ σ (Aτ )Aσ gi

for all i , and therefore

fσ σ ( fτ ) f −1
στ = (A−1

σ σ (A−1
τ )Aστ )−1.
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It remains to observe that the 2-cocycle (σ, τ ) �→ (A−1
σ σ (A−1

τ )Aστ ) represents
the class −[X ] in Br (k).

Remarks 5.4.11

1. Lichtenbaum’s theorem immediately implies Amitsur’s, and therefore
yields a proof which does not use the results of Section 2, just the con-
struction of the Brauer class associated with X .

2. We also get a second (less explicit) proof of Theorem 5.2.2: if the class
of X has order d in the Brauer group, then there exists a divisor class of
degree d on X . The associated linear system defines the d-uple embedding
over a splitting field K .

5.5 An application: making central simple algebras cyclic
We give now the following nice application of Amitsur’s theorem, whose
statement is purely algebraic and apparently does not involve Severi–Brauer
varieties.

Theorem 5.5.1 (Saltman) Assume that k contains a primitive n-th root of unity
ω, and let A be a central simple algebra of degree n over k. There exists a field
extension F |k such that

� the algebra A ⊗k F is isomorphic to a cyclic algebra;
� the restriction map Br (k) → Br (F) is injective.

Saltman himself did not publish this result (but see Berhuy–Frings [1],
Theorem 4 for a slightly more general statement).

Remark 5.5.2 An iterated application of the theorem (possibly infinitely many
times) shows that there exists a field extension K |k such that the map Br (k) →
Br (K ) is injective, and all central simple k-algebras of degree n become cyclic
over K .

For the proof of Saltman’s theorem we need the following lemma.

Lemma 5.5.3 Consider a purely transcendental extension k(x, y)|k generated
by the independent variables x and y. The degree n cyclic algebra (x, y)ω over
k(x, y) has period n.

Proof We prove slightly more than required, namely that the algebra
(x, y)ω ⊗k(x,y) K has period n, where K denotes the field k((x))((y)). The exten-
sion L := K ( n

√
y) is cyclic of degree n and splits (x, y)ω ⊗k(x,y) K . By Corol-

lary 4.7.4, the isomorphism K ×/NL|K (L×) ∼= Br (L|K ) is given by mapping
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a ∈ K × to the class of the cyclic algebra (a, y)ω over K , therefore the period of
the K -algebra (x, y)ω equals the order of x ∈ K × in the group K ×/NL|K (L×).

Denoting this order by e, we thus have by definition some z ∈ L× with
xe = NL|K (z). By the general theory of formal power series, L is the formal
Laurent series ring in one variable n

√
y over k((x)). If z viewed as a Laurent

series in n
√

y had a nonzero term of negative degree, the same would be true
of xe viewed as a (constant) Laurent series in the variable y, which is not
the case. Therefore z ∈ k((x))[[ n

√
y]], and taking its image by the natural map

k((x))[[ n
√

y]] → k((x)) sending n
√

y to 0 we get an element z ∈ k((x)) satisfying
xe = (z)n . Writing z as a power series in x , we see that n must divide e. On the
other hand, e divides n, because quite generally the period divides the degree
(even the index; see Proposition 4.5.13 (1)). Therefore e = n, and the lemma
is proven.

Proof of Theorem 5.5.1 Define the field F to be the function field of a Severi–
Brauer variety associated to the central simple algebra

B := (A ⊗k k(x, y)) ⊗k(x,y) (x, y)ω

defined over the field k(x, y). By Châtelet’s theorem (see the discussion before
Theorem 5.4.1), the algebra

B ⊗k(x,y) F ∼= (A ⊗k F) ⊗F
(
(x, y)ω ⊗k(x,y) F

)
splits. This implies that A ⊗k F and the opposite algebra of (x, y)ω ⊗k F have
the same class in Br (F). As they both have degree n, they must be isomorphic.
But the latter algebra is isomorphic to the F-algebra (x, y−1)ω, as one sees from
their presentation. We conclude that A ⊗k F is isomorphic to a cyclic algebra.

We now show that Br (k) injects into Br (F). Let α be an element in the
kernel of the map Br (k) → Br (F). For a field K containing k, we denote
by αK the image of α in Br (K ). According to Amitsur’s theorem, the group
ker(Br (k(x, y)) → Br (F)) is the cyclic subgroup generated by the class of B,
so there exists an integer m > 0 for which the equality

αk(x,y) = m [A ⊗k k(x, y)] + m [(x, y)ω] (7)

holds in Br (k(x, y)). By passing to the field ks(x, y) we obtain

0 = αks (x,y) = m [(x, y)ω] ∈ Br (ks(x, y)),

because A and α split over ks . By Lemma 5.5.3, the ks(x, y)-algebra (x, y)ω
has period n, so n divides m. But since both A and (x, y)ω have degree n and
the period divides the degree, we have n[A] = 0 in Br (k) and n [(x, y)ω] = 0
in Br (k(x, y)). Therefore we get from the identity (7) that αk(x,y) = 0, whence
α = 0 by Lemma 5.4.6, as desired.
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Exercises

1. Let k be a field containing a primitive n-th root ω of unity, and let K =k( n
√

a) be
a cyclic extension of degree n. Given b ∈ k×, consider the closed subvariety Yb of
An+1

k defined by the equation

bx = NK/k

(n−1∑
i=0

( n
√

a)i yi

)
,

where we denoted the coordinates by (x, y0, y1, · · · , yn−1).
(a) Verify that Yb(k) �= ∅ if and only if the cyclic algebra (a, b)ω is split.
(b) If Yb(k) �= ∅, show that Y is a k–rational variety.
(c) Show that Yb is stably birational to the Severi–Brauer variety associated to

the cyclic algebra (a, b)ω. [Hint: Argue as in Remark 5.4.3.]
2. (Heuser) Let A be a central simple algebra of degree n over k, and let e1, . . . , en2 be a

k-basis of A. Consider the reduced characteristic polynomial NrdA(x −∑
ei xi ) as a

polynomial in the variables x, x1, . . . , xn2 , and let X ⊂ An2+1
k be the associated affine

hypersurface. Moreover, let Y ⊂ Pn2−1
k be the projective hypersurface associated to

the homogeneous polynomial NrdA(
∑

ei xi ); it is called the norm hypersurface of A.
(a) Show that the function field k(X ) of X is a splitting field of A. [Hint: Observe

that k(X ) is a degree n extension of k(x1, . . . , xn2 ) that may be embedded into
A ⊗k k(x1, . . . , xn2 ).]

(b) Show that the function field k(Y ) of Y is a splitting field of A. [Hint: Let
Ỹ ⊂ An2

be the affine cone over Y , i.e. the affine hypersurface defined by
NrdA(

∑
ei xi ) = 0. Show that k(X )|k(Ỹ ) and k(Ỹ )|k(Y ) are purely transcen-

dental extensions, and specialize.]
3. Let k be a field, and let A1, A2 be central simple algebras over k. Denote by X1, resp.

X2 the associated Severi–Brauer varieties. Compute the kernel of the natural map
Br (k) → Br (k(X1 × X2)). [Hint: Mimic the proof of Amitsur’s theorem, and use
the isomorphism Pic (Pn × Pm) ∼= Z ⊕ Z (Shafarevich [2], III.1.1, Example 3).]

4. Let k be a field of characteristic different from 2, and let C be a projective conic over
k without k-rational points. Construct a field F ⊃ k and a central simple algebra A
over F such that 1 < indF(C)(A ⊗F F(C)) < indF (A).

5. Letφ : C1 → C2 be a nonconstant morphism of projective conics defined over a field
k. Denote by d the degree of φ, i.e. the degree of the induced extension k(C1)|φ∗k(C2)
of function fields.
(a) Show that φ induces a commutative diagram

Pic (C2)G δ−−−−→ Br (k)

d

� �id

Pic (C1)G δ−−−−→ Br (k),

where G is the absolute Galois group of k, and δ is the map of Theorem 5.4.5.
(b) Conclude that if d is even, then C2 has a k-rational point. [Hint: Use Lichten-

baum’s theorem.]
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6. Let k be a field of characteristic 0, A a central simple algebra over k and X the asso-
ciated Severi–Brauer variety. Denote by NX (k) ⊂ k× the subgroup of k× generated
by the subgroups NK |k(K ×) ⊂ k× for those finite field extensions K |k for which
X (K ) �= ∅. Prove that Nrd(A×) = NX (k).

[Remark: The group NX (k) is called the norm group of X .]
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Residue maps

Residue maps constitute a fundamental technical tool for the study of the coho-
mological symbol. Their definition is not particularly enlightening at a first
glance, but the reader will see that they emerge naturally during the compu-
tation of Brauer groups of function fields or power series fields. When one
determines these, a natural idea is to pass to a field extension having trivial
Brauer group, so one needs some sufficient condition that ensures this prop-
erty. The C1 condition introduced by Emil Artin and baptized by Serge Lang
furnishes such a sufficient condition via the vanishing of low-degree polynomi-
als. There are three famous classes of C1-fields: finite fields, function fields of
curves and Laurent series fields, the latter two over an algebraically closed base
field. Once we know that the Brauer groups of these fields vanish, we are able to
compute the Brauer groups of function fields and Laurent series fields over an
arbitrary perfect field. The central result here is Faddeev’s exact sequence for
the Brauer group of a rational function field. We give two important applications
of this theory: one to the class field theory of curves over finite fields, the other
to constructing counterexamples to the rationality of the field of invariants of
a finite group acting on some linear space. Following this ample motivation,
we finally attack residue maps with finite coefficients, thereby preparing the
ground for the next two chapters.

Residue maps for the Brauer group first appeared in the work of the German
school on class field theory; the names of Artin, Hasse and F. K. Schmidt are the
most important to be mentioned here. It was apparently Witt who first noticed
the significance of residue maps over arbitrary discretely valued fields. Residue
maps with finite coefficients came into the foreground in the 1960s in the context
of étale cohomology; another source for their emergence in Galois cohomology
is work by Arason [1] on quadratic forms.

6.1 Cohomological dimension
Before embarking on the study of fields with vanishing Brauer group it is
convenient to discuss the relevant cohomological background: this is the theory
of cohomological dimension for profinite groups, introduced by Tate.
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Recall that for an abelian group B and a prime number p, the notation B{p}
stands for the p-primary torsion subgroup of B, i.e. the subgroup of elements
of p-power order.

Definition 6.1.1 Let G be a profinite group, p a prime number. We say that G
has p-cohomological dimension ≤ n if Hi (G, A){p} = 0 for all i > n and all
continuous torsion G-modules A. We define the p-cohomological dimension
cdp(G) to be the smallest positive integer n for which G has cohomological
dimension ≤ n if such an n exists, and set cdp(G) = ∞ otherwise.

One may wonder why we restrict to torsion G-modules in the definition and
why not take all G-modules. This is solely for technical convenience; the anal-
ogous notion defined using all G-modules is called the strict p-cohomological
dimension of G in the literature. In fact, there is not much difference between
the two concepts, as the following proposition shows.

Proposition 6.1.2 Assume that cdp(G) ≤ n. Then Hi (G, A){p} = 0 for all
i > n + 1 and all continuous G-modules A.

Proof Let A be a continuous G-module, and consider the multiplication-by-p
map p : A → A. Its kernel p A and cokernel A/p A are torsion G-modules
fitting into the exact sequence

0 → p A → A
p→ A → A/p A → 0,

which may be split into two short exact sequences

0 → p A → A
p→ C → 0 and 0 → C → A → A/p A → 0,

with C := Im (p). By assumption, the groups Hi (G, p A) and Hi (G, A/p A)
vanish for i > n, so the associated long exact sequences induce isomorphisms

Hi (G, A) ∼= Hi (G,C) and Hi+1(G,C) ∼= Hi+1(G, A)

for i > n. Thus for i > n + 1 the induced map p∗ : Hi (G, A) → Hi (G, A) is
an isomorphism. But by the construction of cohomology, the map p∗ is also
given by multiplication by p, so if it is an isomorphism, then the group Hi (G, A)
cannot have p-primary torsion. The claim follows.

As a first example, we have:

Proposition 6.1.3 We have cdp(Ẑ) = 1 for all primes p.

Proof Note first that cdp(Ẑ) �= 0, because

H 1(Ẑ,Z/pZ) = lim→ Hom(Z/nZ,Z/pZ) ∼= Z/pZ.
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Next we show the vanishing of H 2(Ẑ, A) for all torsion Ẑ-modules A. By def-
inition, this group is the direct limit of the groups H 2(Z/nZ, AnẐ) via the infla-
tion maps Inf : H 2(Z/nZ, AnẐ) → H 2(Z/mnZ, AmnẐ), which by construction
are induced by the natural map between the projective resolutions of Z con-
sidered as a trivial (Z/mnZ)- and (Z/nZ)-module, respectively. On the special
projective resolution of Example 3.2.9 all of whose terms equal Z[Z/mnZ]
and Z[Z/nZ], respectively, this map is given by mapping a generator σ of
Z/mnZ to the generator mσ of Z/nZ. Hence the above inflation map is noth-
ing but multiplication by m. In particular, it annihilates all m-torsion elements
of H 2(Z/nZ, AnẐ), which implies the claim because m was arbitrary here.

Finally, we prove the vanishing of Hi (Ẑ, A) for i > 2 by dimension shift-
ing as follows. Given a continuous torsion Ẑ-module A, we may embed
it to the co-induced module MG(A) which is torsion by construction (see
Remark 4.2.9). Hence so is the quotient MG(A)/A, and so Corollary 4.3.1
gives Hi (Ẑ, MG(A)/A) ∼= Hi+1(Ẑ, A), which is trivial for i > 1 by induction,
starting from the case i = 2 treated above.

Next a general lemma about cohomological dimension.

Lemma 6.1.4 Let G and p be as above, and let H be a closed subgroup of G.
Then cdp(H ) ≤ cdp(G). Here equality holds in the case when the image of H in
all finite quotients of G has index prime to p. In particular, cdp(G) = cdp(G p)
for a pro-p-Sylow subgroup G p of G.

Proof Let B be a continuous torsion H -module. Then the continuous G-
module MG

H (B) introduced in Remark 4.2.9 is also torsion and satisfies
Hi (H, B) = Hi (G, MG

H (B)) for all i ≥ 0 by Shapiro’s lemma, whence the
inequality cdp(H ) ≤ cdp(G). The opposite inequality in the case when H sat-
isfies the prime-to-p condition of the lemma follows from Corollary 4.2.11.

In the case of pro-p-groups there is a very useful criterion for determining
the p-cohomological dimension.

Proposition 6.1.5 Let G be a pro-p-group for some prime number p. Then
cdp(G) ≤ n if and only if H n+1(G,Z/pZ) = 0.

For the proof we need the following lemma from module theory.

Lemma 6.1.6 The only simple G-module of p-power order is Z/pZ with trivial
action.

Proof If A is a finite G-module of p-power order, then AG must be a nontrivial
G-submodule. Indeed, the complement A \ AG is the disjoint union of G-orbits
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each of which has p-power order and thus AG cannot consist of the unit element
only. Now if moreover we assume A to be simple, we must have A = AG , i.e.
triviality of the G-action. But then A must be Z/pZ, because a subgroup of a
trivial G-module is a G-submodule.

Proof of Proposition 6.1.5 Necessity of the condition is obvious. For suffi-
ciency, note first that H j (G, A{p}) = H j (G, A) for all torsion G-modules A
and all j > 0; indeed, decomposing A into the direct sum of its p-primary com-
ponents, we see that for a prime � �= p the group H j (G, A{�}) is both �-primary
torsion (by definition of cohomology) and p-primary torsion (by Proposition
4.2.6), hence trivial. Thus we may restrict to p-primary torsion modules. Next
observe that it is enough to prove H n+1(G, A) = 0 for all p-primary torsion
G-modules A, by a similar dimension shifting argument as at the end of the
proof of Proposition 6.1.3. Writing A as the direct limit of its finitely generated
G-submodules, we may assume using Lemma 4.3.3 that A is finitely generated,
hence finite of p-power order. Then by general module theory A has a compo-
sition series whose successive quotients are simple G-modules. The long exact
cohomology sequence and induction on the length of the composition series
implies that it is enough to consider these. We have arrived at the situation of
the above lemma, and may conclude from the assumption.

Now we come to the cohomological dimension of fields.

Definition 6.1.7 The p-cohomological dimension cdp(k) of a field k is the
p-cohomological dimension of the absolute Galois group Gal (ks |k) for some
separable closure ks . Its cohomological dimension cd(k) is defined as the supre-
mum of the cdp(k) for all primes p.

For us the most interesting case is that of fields of p-cohomological dimen-
sion 1, for this is a property that can be characterized using the Brauer group.

Theorem 6.1.8 Let k be a field, and p a prime number different from the
characteristic of k. Then the following statements are equivalent:

1. The p-cohomological dimension of k is ≤ 1.
2. For all separable algebraic extensions K |k we have Br (K ){p} = 0.
3. The norm map NL|K : L× → K × is surjective for all separable algebraic

extensions K |k and all Galois extensions L|K with Gal (L|K ) ∼= Z/pZ.

Proof For the implication (1) ⇒ (2), choose a separable closure ks of k con-
taining K . Then Gal (ks |K ) identifies with a closed subgroup of Gal (ks |k),
and hence we have cdp(K ) ≤ cdp(k) ≤ 1 using Lemma 6.1.4. In particular,
the group H 2(K , µpi ) is trivial for all i > 0, but this group is none but the
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pi -torsion part of Br (K ) according to Corollary 4.4.9. For (2) ⇒ (3), note first
that for L|K as in (3) we have Br (L|K ) ∼= K ×/NL|K (L×) thanks to Corollary
4.4.10. But Gal (L|K ) ∼= Z/pZ also implies that Br (L|K ) is annihilated by p,
so Br (L|K ) ⊂ Br (K ){p} = 0, whence the claim.

Finally, for (3) ⇒ (1) let G p be a pro-p-Sylow subgroup of Gal (ks |k).
Lemma 6.1.4 implies that it is enough to prove cdp(G p) ≤ 1, and moreover
for this it is enough to show H 2(G p,Z/pZ) = 0 by Proposition 6.1.5. As
the extension k(µp)|k has degree p − 1, the fixed field kp of G p contains the
p-th roots of unity, hence we have a chain of isomorphisms H 2(G p,Z/pZ) ∼=
H 2(kp, µp) ∼= pBr (kp). Let K p|kp be a finite extension contained in ks and
denote by P the Galois group Gal (K p|kp). As Br (K p|kp) injects into Br (kp),
we are reduced to showing pBr (K p|kp) = 0. The group P , being a finite p-
group, is solvable, i.e. there exists a finite chain

P = P0 ⊃ P1 ⊃ · · · ⊃ Pn = {1}
of normal subgroups such that Pi/Pi+1

∼= Z/pZ. These subgroups correspond
to field extensions

kp = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K p

such that Gal (Ki |kp) ∼= P/Pi . We now show pBr (Ki |kp) = 0 by induction on
i , the case i = 0 being trivial. Assuming the statement for i − 1, consider the
exact sequence

0 → H 2(P/Pi−1, K ×
i−1) → H 2(P/Pi , K ×

i ) → H 2(Pi−1/Pi , K ×
i )

coming from Proposition 3.3.17 applied with G = P/Pi , H = Pi−1/Pi and
A = K ×

i , noting that H 1(Pi/Pi−1, K ×
i ) = 0 thanks to Hilbert’s Theorem 90.

Restricting to p-torsion subgroups, we get

0 → pBr (Ki−1|kp) → pBr (Ki |kp) → pBr (Ki |Ki−1).

Here the right-hand side group is trivial by (3) applied with K = Ki−1 and
L = Ki (and noting Corollary 4.4.10 again), and the left-hand side group is
trivial by induction. Hence so is the middle one, which completes the proof of
the inductive step.

We have the following complement:

Proposition 6.1.9 Let k be a field of characteristic p > 0. Then cdp(k) ≤ 1.

Proof By Lemma 6.1.4, we may replace k by the fixed field of some
pro-p-Sylow subgroup of Gal (ks |k). Hence we may assume that k is a
field of characteristic p whose absolute Galois group is a pro-p-group. By
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Proposition 6.1.5, it suffices therefore to establish the vanishing of
H 2(k,Z/pZ). For this, recall the exact sequence

0 → Z/pZ → ks
℘−→ ks → 0

from the proof of Proposition 4.3.10, where ℘ : ks → ks is given by
℘(x) = x p − x . Part of the associated long exact sequence reads

H 1(k, ks) → H 2(k,Z/pZ) → H 2(k, ks),

from which we get the required vanishing, the two extremal terms being trivial
by Lemma 4.3.11.

Remark 6.1.10 According to the proposition, the higher Galois cohomology
groups with p-torsion coefficients are trivial invariants for fields of characteristic
p > 0. In the study of these other cohomology theories have been helpful. One
approach, proposed by Milne [1] and Kato [2], is to use the modules ν(n) of
logarithmic differentials that we shall discuss later in Section 9.5, and consider
the groups H n+1

p (k) := H 1(k, ν(n)ks ) for n ≥ 1. As we shall see in Section 9.2,
for n = 1 one has H 2

p(k) ∼= pBr (k), which is a nontrivial group in general for
non-perfect k, in contrast to the situation of Theorem 6.1.8.

This phenomenon is related to the problem of defining the ‘right’ notion of
p-cohomological dimension for fields of characteristic p. In Serre [2], §II.3
such a field k is defined to be of p-dimension ≤ 1 if pBr (K ) = 0 for all finite
extensions K |k. In Kato [2] and Kato–Kuzumaki [1] a generalization of this
condition is proposed: k is said to be of p-dimension n if n is the smallest
integer with [k : k p] ≤ pn and H n+1

p (K ) = 0 for all finite extensions K |k.

We conclude this chapter by two examples of fields of cohomological dimen-
sion 1. For the moment, we have at our disposal only the ones with absolute
Galois group Ẑ; we shall see more examples in the next section.

Examples 6.1.11 Finite fields and Laurent series fields over an algebraically
closed field of characteristic 0 have absolute Galois group isomorphic to Ẑ,
by Examples 4.1.5 and 4.1.6, respectively. They therefore have cohomological
dimension 1 by Proposition 6.1.3.

6.2 C1-fields
The pertinence of the following condition to our subject matter has been first
observed by Emil Artin.

Definition 6.2.1 A field k is said to satisfy condition C1 if every homogeneous
polynomial f ∈ k[x1, . . . , xn] of degree d < n has a nontrivial zero in kn .

We briefly call such fields C1-fields.
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Remarks 6.2.2

1. More generally, a field k satisfies condition Cr for an integer r > 0 if every
homogeneous polynomial f ∈ k[x1, . . . , xn] of degree d with dr < n has
a nontrivial zero in kn . This condition was introduced and first studied by
Lang [1].

2. Even more generally, a field k is said to satisfy condition C ′
r for some

integer r > 0 if each finite system f1, . . . , fm ∈ k[x1, . . . , xn] of homo-
geneous polynomials of respective degrees d1, . . . , dm has a nontrivial
common zero in kn , provided that dr

1 + · · · + dr
m < n. For more on this

property, see the book of Pfister [1].

Artin himself called C1-fields quasi-algebraically closed, because they have
the property that there is no nontrivial finite dimensional central division algebra
over them. In fact, one has:

Proposition 6.2.3 Let k be a C1-field. Then cd(k) ≤ 1, and Br (L) = 0 for
every finite extension L|k.

Note that the extension L|k is not assumed to be separable. We prove first
the following lemma which will be also useful later.

Lemma 6.2.4 If K is a C1-field, then so is every finite extension L|K .

Proof Let f ∈ L[x1, . . . , xn] be a homogeneous polynomial of degree d < n,
and letv1, . . . , vm be a basis of the K -vector space L . Introduce new variables xi j

(1 ≤ i ≤ n, 1 ≤ j ≤ m) satisfying xi1v1 + · · · + ximvm = xi , and consider the
equation NL|K ( f (x1, . . . , xn)) = 0. This is then a homogeneous equation over
K of degree md in the mn variables xi j , so by assumption it has a nontrivial
zero (α11, . . . , αmn) in K mn , since md < mn. Whence a nontrivial element
(α1, . . . , αn) ∈ Ln satisfying NL|K ( f (α1, . . . , αn)) = 0, which holds if and only
if f (α1, . . . , αn) = 0.

Proof of Proposition 6.2.3 If our C1-field k has positive characteristic p, we
have cdp(k) ≤ 1 by the general Proposition 6.1.9. So as far as cohomological
dimension is concerned, we may concentrate on the other primes and conclude
from Theorem 6.1.8 and Lemma 6.2.4 that it is enough to show the second
statement in the case L = k, i.e. that a C1-field has trivial Brauer group.

So consider a division algebra D of degree n over a C1-field k, and denote
by Nrd : D → k the associated reduced norm. Choosing a k-basis v1, . . . , vn2

of D considered as a k-vector space, we see from the construction of Nrd in
Chapter 2 that f (x1, . . . , xn2 ) := Nrd(x1v1 + · · · + xn2vn2 ) is a homogeneous
polynomial of degree n in the n2 variables x1, . . . , xn2 . If here n > 1, then by the
C1 property f has a nontrivial zero in kn . But this contradicts the assumption
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that D is a division algebra, by Proposition 2.6.2. Therefore n = 1, and D = k
is the trivial division algebra over k.

Remark 6.2.5 The question arises whether the converse of the proposition
holds true. The answer is no: Ax [1] has constructed a field of cohomological
dimension 1 (and of characteristic 0) which is not a C1-field. See also the book
of Shatz [1] for details.

Here are the first nontrivial examples of C1-fields.

Theorem 6.2.6 (Chevalley) Finite fields satisfy the C1 property.

Proof Let Fq be the field with q elements, where q is some power of a prime
number p. Following Warning, we prove more, namely that the number of
solutions in Fn

q of a polynomial equation f (x1, . . . , xn) = 0 of degree d < n is
divisible by p. If f is moreover homogeneous, it already has the trivial solution,
whence the claim.

For a polynomial g ∈ k[x1, . . . , xn] denote by N (g) the number of its zeros
in Fn

q , and introduce the notation

�(g) :=
∑

(α1,...,αn )∈Fn
q

(g(α1, . . . , αn))q−1.

As αq−1 = 1 for each nonzero α ∈ Fq , we see that the element �(g) ∈ Fq

actually lies in Fp ⊂ Fq , and moreover

qn − �(g) =
∑

(α1,...,αn )∈Fn
q

(1 − (g(α1, . . . , αn))q−1) ≡ N (g) mod p.

Therefore it is enough to show that �( f ) = 0 in Fq for our particular f
above. For this, write f (x1, . . . , xn)q−1 as a linear combination of monomials
xr1

1 · · · xrn
n . We show that �(xr1

1 · · · xrn
n ) = 0 in Fq for all occurring monomials

xr1
1 · · · xrn

n . This is obvious if one of the ri is 0, so we may assume this is not
the case. Then, as f has degree less than n by assumption, we may assume that
one of the ri , say r1, is smaller than q − 1. Then fixing (α2, . . . , αn) ∈ Fn−1

q and
taking a generator ω of the cyclic group F×

q we get

∑
α∈Fq

αr1α
r2
2 · · ·αrn

n = α
r2
2 · · ·αrn

n

q−2∑
i=0

ωir1 = (αr2
2 · · ·αrn

n )
(ωr1 )q−1 − 1

ωr1 − 1
,

which equals 0 in Fq . We conclude by making (α2, . . . , αn) run over Fn−1
q .

Remark 6.2.7 Together with the previous proposition, the theorem gives
another proof of the fact that finite fields have cohomological dimension 1.
Moreover, we also get that finite fields have trivial Brauer group (up to now,
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we only knew that the prime-to-p part is trivial, by Theorem 6.1.8). In other
words, we have proven another famous theorem due to Wedderburn: A finite
dimensional division algebra over a finite field is a field.

Other classic examples of C1-fields are given by the following theorem.

Theorem 6.2.8 (Tsen) Let k be an algebraically closed field, and let K be the
function field of an algebraic curve over k. Then K is a C1-field.

Proof Using Lemma 6.2.4 we may assume K is a simple transcendental exten-
sion k(t) of k. Given a homogeneous polynomial f ∈ k(t)[x1, . . . , xn] of degree
d < n, we may also assume the coefficients to be in k[t], and we may look for
solutions in k[t]n . Choose an integer N > 0 and look for the xi in the form

xi =
N∑

j=0

ai j t
j ,

with the ai j ∈ k to be determined. Plugging this expression into f and regroup-
ing according to powers of t , we get a decomposition

0 = f (x1, . . . , xn) =
d N+r∑

l=0

fl(a10, . . . , anN )t l ,

where r is the maximal degree of the coefficients of f and the fl are homo-
geneous polynomials in the ai j all of which should equal 0. Since d < n by
assumption, for N sufficiently large the number d N + r + 1 of the polynomials
fl is smaller than the number n(N + 1) of the indeterminates ai j , so they define
a nonempty Zariski closed subset in projective (nN + n − 1)-space PnN+n−1

(see Appendix, Corollary A.3.3). As k is algebraically closed, this closed set
has a point in PnN+n−1(k), whence the ai j we were looking for.

Remarks 6.2.9

1. The theorems of Chevalley and Tsen can be sharpened in the sense that
finite fields as well as function fields of curves over algebraically closed
fields (or even C1-fields) satisfy the C ′

1 property of Remark 6.2.2 (2). The
proofs are similar to the ones given above and are left as an exercise.

2. Tsen’s theorem has the following geometric interpretation. Let C be a
smooth projective curve with function field K . The homogeneous polyno-
mial f ∈ K [x1, . . . , xn] defines an (n − 1)-dimensional projective variety
equipped with a surjective morphism X → C . A nontrivial solution of
f (x1, . . . , xn) = 0 in K n defines a section of p, i.e. a morphism s : C → X
with p ◦ s = idC. In particular, s(C) ⊂ X is a closed subvariety of dimen-
sion 1 mapped isomorphically onto C by p.
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As a particular example, consider a degree 2 homogeneous polyno-
mial in three variables with coefficients in k[t]. It defines a surface fibred
in conics over the projective line. By Tsen’s theorem, there is a curve
on the surface intersecting each fibre in exactly one point. For remark-
able recent generalizations of this fact, see Graber–Harris–Starr [1] and
de Jong–Starr [1].

Before moving over to other classes of C1-fields, we point out the following
interesting corollary to Tsen’s theorem.

Corollary 6.2.10 Let C be a smooth projective geometrically irreducible curve
over a finite field F. Every central simple algebra over the function field F(C)
is split by a cyclic field extension, and hence it is Brauer equivalent to a cyclic
algebra.

Proof Let F be an algebraic closure of F. We have Br (F(C)) = 0 by Tsen’s
theorem, so every central simple algebra over F(C) is split by F′(C) for some
finite extension F′|F. This is necessarily a cyclic extension as F is finite. The
second statement follows from Proposition 4.7.6.

The third famous class of C1-fields is that of fields complete with respect to
a discrete valuation with algebraically closed residue field. The C1 property for
these was established by Serge Lang in his thesis (Lang [1]). In this book we
shall only need the equal characteristic case, which reads as follows. For a field
k consider the field k((t)) of formal Laurent series, and denote by k((t))nr the
composite of the separable closure ks of k with k((t)) inside a fixed separable
closure of the latter. This field is the maximal unramified extension of the
discretely valued field k((t)). It is the union of the fields k ′((t)) for all finite
extensions k ′|k inside ks .

Theorem 6.2.11 (Lang) For a perfect field k the field k((t))nr is a C1-field. In
particular, if k is algebraically closed, then k((t)) itself is a C1-field.

We shall deduce the theorem above from Tsen’s theorem using an approxi-
mation method taken from Greenberg [1]. The crucial statement is:

Theorem 6.2.12 (Greenberg) Let k be a perfect field, and let moreover
S = { f1, . . . , fm} be a system of polynomials in k[[t]][x1, . . . , xn]. There is
an integer N0(S) > 0, depending on S, such that for all N > N0(S) the exis-
tence of a common solution (a(N )

1 , . . . , a(N )
n ) of the congruences

fi (x1, . . . , xn) = 0 mod (t N ), i = 1, . . . ,m

implies the existence of a common zero (a1, . . . , an) ∈ k[[t]]n of the fi ∈ S.

We first show that Theorem 6.2.12 implies Theorem 6.2.11. Consider a homo-
geneous polynomial f ∈ k((t))nr [x1, . . . , xn] of degree d < n. To prove that f
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has a zero in k((t))n
nr , after multiplying with a common denominator we may

assume that f has coefficients in k ′[[t]] for a finite extension k ′|k. Since the
rings k ′[[t]]/(t N ) and k ′[t]/(t N ) are isomorphic for all N > 0, we may find
for each N a degree d homogeneous polynomial f (N ) ∈ k ′[t][x1, . . . , xn] with
f (N ) = f mod (t N ). By Tsen’s theorem, after replacing k ′ by a finite extension
we see that f (N ) has a zero (a(N )

1 , . . . , a(N )
n ) ∈ k ′(t)n , where we may assume the

a(N )
j to lie in k ′[t] by homogeneity of f (N ). Reducing modulo (t N ) thus yields

a zero of f modulo (t N ), and so for N sufficiently large the case m = 1 of
Theorem 6.2.12 applies.

Proof of Theorem 6.2.12 Consider the affine closed subset V ⊂ An defined
as the locus of common zeros of the fi ∈ S. We prove the theorem by induction
on the dimension d of V , starting from the obvious case d = −1, i.e. V = ∅.

We first make a reduction to the case when V is a closed subvariety
of An . For this, let J be the ideal in k((t))[x1, . . . , xn] generated by the
fi ∈ S. Let g be a polynomial with g �∈ J but gr ∈ J for some r > 1. Then if
(a1, . . . , an) ∈ k[[t]]n satisfies fi (a1, . . . , an) = 0 mod t N for all i , we conclude
the same for gr , and hence we get g(a1, . . . , an) = 0 mod tν for all integers
0 < ν ≤ N/r . Applying this to a system of generators T = {g1, . . . , gM} of
the radical of J , we see that if the theorem holds for the system T with some
constant N0(T ), it also holds for the system S with a sufficiently high multiple
N0(S) of N0(T ). So we may assume J equals its own radical, and hence
is an intersection of finitely many prime ideals P1, . . . , Pr . Now if g j ∈ Pj

are such that g1 · · · gr ∈ J , we see as above that fi (a1, . . . , an) = 0 mod t N

for all i implies that there is some j with g j (a1, . . . , an) = 0 mod tν for all
0 < ν ≤ N/r . Reasoning as above, we therefore conclude that it is enough to
prove the theorem for the Pj , i.e. we may assume V is a variety.

Now for each subset I ⊂ {1, . . . ,m} of cardinality n − d consider the closed
subset VI defined in An by the system SI = { fi ∈ S : i ∈ I }, and let V +

I ⊂ VI be
the union of the d-dimensional k((t))-irreducible components different from V .
The sets V +

I are defined as the locus of zeroes of some finite system S+
I ⊃ SI of

polynomials. Consider also the singular locus W ⊂ V of V . Propositions A.3.4
and A.3.7 of the Appendix imply that it is a proper closed subset of V , and
as such has dimension < d . Furthermore, it is defined by a system SW of
polynomials obtained by adding some equations (namely the (n − d) × (n − d)
minors of the Jacobian of the fi ) to S. Finally, let P = (a1, . . . , an) ∈ k[[t]]n

be a point satisfying fi (a1, . . . , an) = 0 mod (t N ) for all fi ∈ S, with some N
to be determined later. If P also happens to satisfy all the other equations in SW

modulo (t N ), and if N > N0(SW ), we conclude by the inductive hypothesis that
there is some point in W ⊂ V congruent to P modulo (t N ), and we are finished.
Similarly, if P also satisfies the equations in some S+

I modulo (t N ), then by the
inductive hypothesis applied to the proper closed subset V ∩ V +

I we get a point
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in V ∩ V +
I congruent to P , provided N > N0(S ∪ S+

I ). So we may choose N
greater than both N0(SW ) and the N0(S ∪ S+

I ), and assume we are not in the
above cases. Then if P is congruent to a k[[t]]-valued point of V modulo (t N ), it
must be a smooth point not contained in any of the other components of the VI ,
so it will be enough to assure that P is congruent to some smooth point in VI .

We may assume I = {1, . . . , n − d}, and we may enlarge the system SI

by adding the linear polynomials xn−d+1 − an−d+1, . . . , xn − an . For ease of
notation we denote this new system again by S. Let JS be the Jacobian matrix
of the system S, and let h be its determinant evaluated at P . Observe that
since the j-th partial derivatives of the xi − ai equal 0 for i �= j and 1 for
i = j , the subdeterminant formed by the first n − d columns in the Jacobian
of the system SI at P also equals h. Hence h is nontrivial modulo (t N ) by
assumption; denote by ν the highest power of t dividing h, and take N so
large that N > 2ν. Under this assumption a refined form of Hensel’s lemma
(cf. Appendix, Proposition A.5.6) implies that there is a point of VI over k[[t]]
congruent to P modulo (t N−ν), and we are done.

Remarks 6.2.13

1. An examination of the above proof shows that even if we only need the
case m = 1 for the application to Lang’s Theorem, in order to prove this
special case we still have to consider systems of polynomials to make
the induction work. Thus working with several polynomials is often more
advantageous than with a single one; in particular, the C ′

1 property can
be more handy than just C1. In fact, assuming the C ′

1 analogue of Tsen’s
theorem (Remark 6.2.9 (1)), we get from the above proof that the fields
k((t))nr are actually C ′

1-fields.
2. Greenberg’s theorem is more general than the form proven above, and is

very useful for many applications. It states that given a discrete valuation
ring R for which Hensel’s lemma holds and a system of equations with
coefficients in R, then under a separability assumption one may approx-
imate solutions over the completion R̂ by solutions over R arbitrarily
closely in the topology of R̂. For example, this more general statement
works for the subring R ⊂ k[[t]] formed by power series algebraic over
k(t). In the characteristic 0 case there is also a constructive method for
finding a good approximation (Kneser [1]).

6.3 Cohomology of Laurent series fields
In the next section we shall apply Tsen’s theorem to study the cohomology of
function fields of curves. It will be convenient to look at a local situation first.
Namely, the completion of a local ring at a smooth closed point P of a curve
C over a field k is isomorphic to the formal power series ring κ(P)[[t]] (see
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Appendix, Proposition A.5.3). Assume that the residue field κ(P) is separable
over k, and take a separable closure ks of κ(P). Then the completions of the local
rings of the curve C ×k ks at the points lying above P are isomorphic to ks[[t]].
This ring is equipped with a natural action by the Galois group G := Gal (ks |k).

Consider the valuation homomorphism

v : ks((t))× → Z

sending a Laurent series over ks to the degree of the least nonzero term. This map
is G-equivariant if Z carries the trivial action, and restricts to a G-equivariant
map on the field k((t))nr of the previous section. Denoting by Unr the multi-
plicative group of invertible power series contained in k((t))nr , we get an exact
sequence of G-modules

1 → Unr → k((t))×
nr → Z → 0 (1)

which is split by the map Z → k((t))×
nr sending 1 to t . Hence for each i ≥ 0 we

have a split exact sequence of cohomology groups

0 → Hi (G,Unr ) → Hi (G, k((t))×
nr ) → Hi (G,Z) → 0

by Remark 4.3.4 (2). For i = 0 this is just the analogue of exact sequence (1) for
k instead of ks , and for i = 1 it is uninteresting because of Hilbert’s Theorem 90.
For i ≥ 2, we may use the exact sequence

0 → Z → Q → Q/Z → 0

to obtain isomorphisms Hi (G,Z) ∼= Hi−1(G,Q/Z), as Hi (G,Q) = 0 for
i > 0 by Corollary 4.2.7. Hence we may rewrite the above sequence as

0 → Hi (G,Unr ) → Hi (G, k((t))×
nr )

rv−→ Hi−1(G,Q/Z) → 0.

The map rv is called the residue map associated to v.
As regards the kernel of the residue map, we have:

Proposition 6.3.1 The natural map Unr → k×
s sending a power series to its

constant term induces isomorphisms

Hi (G,Unr ) ∼= Hi (G, k×
s )

for all i > 0. Therefore we have split exact sequences

0 → Hi (G, k×
s ) → Hi (G, k((t))×

nr )
rv−→ Hi−1(G,Q/Z) → 0.

For the proof we need a formal lemma.

Lemma 6.3.2 Let G be a finite group, and let (Aα)α∈Z+ be an inverse system
of continuous G-modules indexed by the directed set Z+ of positive integers.
Assume that i > 0 is an integer such that Hi (G, Aα) = 0 for all α ∈ Z+. Then
Hi (G, lim← Aα) = 0.
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Proof Choose a projective resolution P• of Z, and represent an element of
Hi (G, lim← Aα) by an element φ ∈ Hom(Pi , A) annihilated by the coboundary

map δi
∗. Now φ is a collection of homomorphisms φα : Pi → Aα each of which

are mapped to 0 by δi
∗, hence are of the form δi−1

∗ (ψα) by assumption. The maps
ψα : Pi−1 → Aα may not be compatible with the maps in the inverse system,
but for a fixed pairλ < µ the image ofψµ by the mapρλµ∗ : Hom(Pi−1, Aµ) →
Hom(Pi−1, Aλ) differs from ψλ by an element τλ ∈ ker(δi−1

∗ ). Hence if for fixed
µ we replace φλ by φλ + τλ for all λ < µ, we get by induction on µ an element
ψ ∈ Hom(Pi−1, lim← Aα) with δi−1

∗ (ψ) = φ.

Proof of Proposition 6.3.1 In view of the discussion preceding the proposi-
tion it will be enough to prove the first statement. For this it will be enough to
establish isomorphisms Hi (Gal (k ′|k), k ′[[t]]×) � Hi (Gal(k ′|k), k ′×), by defi-
nition of Galois cohomology. For this, consider for all j > 0 the multiplicative
subgroups

U j := 1 + t j k ′[[t]]

of k ′[[t]]×. Sending t to 0 yields a natural exact sequence

1 → U 1 → k ′[[t]]× → k ′× → 1

whose associated long exact sequence shows that the proposition follows if we
show Hi (Gal (k ′|k),U 1) = 0 for all i > 0. For this, consider the exact sequences

1 → U j+1 → U j → k ′ → 0

obtained by sending a power series in U j to the coefficient of t j .
Here we have Hi (Gal (k ′|k), k ′) = 0 for i > 0 by Lemma 4.3.11, so
Hi (Gal (k ′|k),U j/U j+1) = 0 for i, j > 0. By induction on j using the exact
sequences

1 → U j/U j+1 → U 1/U j+1 → U 1/U j → 1

we obtain Hi (Gal (k ′|k),U 1/U j ) = 0 for all i > 0 and j > 0. As U 1 is the
inverse limit of the U 1/U j , we conclude using the lemma above.

Remark 6.3.3 For k of characteristic 0 one can give a simpler proof of the
proposition by remarking that U 1 is a divisible abelian group, and hence a
Q-vector space. This fact can be proven using Hensel’s lemma (see Appendix,
Proposition A.5.5). In characteristic p > 0, the group U 1 is only divisible by
integers prime to p.

For i = 2 we get the Brauer group of k as the left term in the exact sequence
of the proposition. In fact, in this case the middle term of the sequence is none
but the Brauer group of k((t)), if we assume moreover that k is perfect. To
show this, let Ks be a separable closure of k((t))nr . There is a natural surjection
Gal (Ks |k((t))) → G giving rise to inflation maps.
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Proposition 6.3.4 Assume moreover that k is perfect. Then the inflation maps

Inf : Hi (G, k((t))×
nr ) → Hi (k((t)), K ×

s )

are isomorphisms for all i > 0.

The key to the proof of the proposition is the following lemma.

Lemma 6.3.5 Under the above assumptions the groups Hi (k((t))nr , K ×
s ) are

trivial for i > 0. In particular, the Brauer group of k((t))nr vanishes.

Proof Since k((t))nr is a C1-field by Lang’s theorem (Theorem 6.2.11), the
lemma is a consequence of Propositions 6.2.3 and 6.1.2 for i > 1, and of
Hilbert’s Theorem 90 for i = 1.

Remarks 6.3.6
1. In characteristic 0 there is an easier proof of the lemma, because

Gal(Ks |k((t))nr ) � Ẑ by the same arguments as in Example 4.1.6.

2. For two other proofs for the vanishing of Br k((t))nr , more traditional than
the one given above, consult Serre [2], Chapter XII, §§1, 2.

Proof of Proposition 6.3.4 By the lemma, the condition for the exactness of the
inflation-restriction sequence (Proposition 3.3.17 completed by Corollary 4.3.5)
is satisfied, so we have for each i > 0 an exact sequence

0 → Hi (G, k((t))×
nr )

Inf−→ Hi (k((t)), K ×
s )

Res−→ Hi (k((t))nr , K ×
s ).

Again by the lemma, the last group vanishes for i > 0, and the proposition
follows.

Thus in the exact sequence of Proposition 6.3.1 we may replace the middle
term by Hi (k((t)), K ×

s ). As already indicated, the most important case is when
i = 2, and we record it separately.

Corollary 6.3.7 (Witt) For a perfect field k there is a split exact sequence

0 → Br (k) → Br (k((t))) → Homcont(G,Q/Z) → 0 (2)

induced by the residue map rv : Br (k((t))) → Hom(G,Q/Z).

Proof The identification with Brauer groups follows from Theorem 4.4.7,
and the isomorphism H 1(G,Q/Z) ∼= Homcont(G,Q/Z) follows from Exam-
ple 3.2.3 (1) by passing to the limit.

Remark 6.3.8 In terms of central simple algebras, the last corollary may be
restated as follows: Every central simple algebra over k((t)) is Brauer equiv-
alent to a tensor product of the form (A ⊗k k((t))) ⊗k((t)) (χ, t), where A is a
central simple algebra over k, and (χ, t) is a cyclic algebra over k((t)) for some
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character χ : G → Q/Z. This statement follows from the corollary above and
the observation that the section of exact sequence (2) coming from the splitting
Z → k((t))×

nr , 1 �→ t of the valuation map is given by χ �→ (χ, t). We leave the
easy verification to the readers.

We now focus on the important special case of a finite base field.

Proposition 6.3.9 (Hasse) Let F be a finite field. Then we have a canonical
isomorphism

Br (F((t))) ∼= Q/Z.

Moreover, for a finite separable extension L|F((t)) we have commutative
diagrams

Br (L)
∼=−−−−→ Q/Z

Cor

� �id

Br (F((t)))
∼=−−−−→ Q/Z

and

Br (F((t)))
∼=−−−−→ Q/Z

Res

� �[L:F((t))]

Br (L)
∼=−−−−→ Q/Z,

where the right vertical map in the second diagram is multiplication by the
degree [L : F((t))].

The map inducing the isomorphism Br (F((t))) ∼= Q/Z is classically called
the Hasse invariant map.

Proof The first statement results from Corollary 6.3.7, taking into account
that Br (F) = 0 (Example 6.1.11) and Homcont(Ẑ,Q/Z) ∼= Q/Z. For the second
statement, note first that it is enough to verify the commutativity of the second
diagram, in view of the formula Cor ◦ Res = [L : F((t))] (Proposition 4.2.10).
Next, observe that we may write L in the form L = F′((u)) with some finite
extension F′|F and parameter u. It will then be enough to treat the case of
the extensions F′((t))|F((t)) and F′((u))|F′((t)) separately. This follows from
the fact that the composition of restriction (resp. corestriction) maps is again a
restriction (resp. corestriction) map, as one sees directly from the definition. For
the extension F′((t))|F((t)), the commutativity of the second diagram follows
from that of the diagram

H 1(F′,Q/Z)
∼=−−−−→ Q/Z

Cor

� �id

H 1(F,Q/Z)
∼=−−−−→ Q/Z

whose commutativity results from the definition of corestriction maps. In the
case of the extension F′((u))|F′((t)), the corestriction map on Brauer groups
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induces the identity on H 1(F′,Q/Z), whence the required commutativity is
obvious.

We finally describe central simple algebras over F((t)).

Proposition 6.3.10 Every central simple algebra over F((t)) is isomorphic to
a cyclic algebra, and its period equals its index.

Proof Let A be a central simple algebra of degree n over F((t)). By
Remark 6.3.8 and the triviality of Br (F) it is Brauer equivalent to the cyclic
algebra (χ, t), where χ ∈ Hom(Ẑ,Q/Z) ∼= Q/Z is the character defining the
Hasse invariant of A. The order d of χ in Q/Z is the period of A, and the fixed
field Fχ of ker(χ ) is a degree d extension of F such that Fχ ((t)) splits (χ, t)
and a fortiori A. Thus by Proposition 4.5.8 the index of A divides d, so it must
be actually equal to d by Proposition 4.5.13 (1), whence the second statement.
The first statement then follows from Proposition 4.7.6, for A is split by F′((t)),
where F′ ⊃ F is a degree n cyclic extension containing Fχ .

Remark 6.3.11 The results of this section (with basically the same proofs) are
valid more generally for complete discrete valuation fields with perfect residue
field. See Serre [2], Chapter XII, §3.

6.4 Cohomology of function fields of curves
Let k again be a perfect field and C a smooth projective curve over k with
function field K . We choose an algebraic closure k̄ of k, and denote by G the
Galois group Gal (k̄|k). We denote the curve C ×k k̄ (which is assumed to be
connected) by C ; its function field is by definition the composite K k̄.

We shall investigate the cohomology of G with values in the multiplicative
group (K k̄)×. As in Chapter 5, Section 5.4, the key tool for this will the exact
sequence of G-modules

0 → k̄× → (K k̄)× div−→ Div(C) → Pic (C) → 0, (3)

but we shall go further in the associated long exact sequences this time. There
is a similar exact sequence over k:

0 → k× → K × div−→ Div(C) → Pic (C) → 0. (4)

This sequence exists in arbitrary dimension, but our assumption that C is a
curve makes it possible to define a degree map

deg : Div(C) → Z
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associating to a divisor
∑

P m P P the integer
∑

P m P [κ(P) : k] (not to be con-
fused with the degree map used in Chapter 5, Section 5.4). It is a fundamen-
tal fact (see Appendix, Proposition A.4.6) that the image of the divisor map
div: K × → Div(C) is contained in the kernel Div0(C) of the degree map, so
we have an induced map deg : Pic (C) → Z. We denote its kernel by Pic 0(C).

One can decompose the group Div(C) into G-orbits as follows. For each
closed point P , the group G permutes the closed points lying over P (Appendix,
Proposition A.6.3 (1) and Example A.6.2). Therefore we get a direct sum
decomposition

Div(C) =
⊕
P∈C0

(⊕
Q �→P

Z

)
, (5)

where C0 denotes the set of closed points of C , and the notation Q �→ P stands
for the closed points Q of C lying over P .

Hence for each i ≥ 0 the divisor map induces maps

Hi (G, (K k̄)×) → Hi (G,Div(C)) ∼→
⊕
P∈C0

Hi
(

G,
⊕
Q �→P

Z
)
, (6)

as cohomology commutes with direct sums (more generally, with direct limits;
see Lemma 4.3.3 and its proof).

To proceed further, we need a lemma. Fix a preimage Q0 of P in C , and
denote by G P the stabilizer of Q0 in G; it is an open subgroup of G depending
on Q0 only up to conjugation.

Lemma 6.4.1 We have an isomorphism of G-modules MG
G P

(Z) ∼=
⊕
Q �→P

Z.

Proof By definition of MG
G P

(Z), we have to construct an isomorphism

HomG P (Z[G],Z) ∼→
⊕
Q �→P

Z.

For this, choose a system of left coset representatives 1 = σ1, . . . , σr of G
modulo G P . The map φ �→ φ(σ1), . . . , φ(σr ) induces an isomorphism

HomG P (Z[G],Z) ∼→
r⊕

i=1

Z,

which does not depend on the choice of the system {σ1, . . . , σr }, as φ is a G P -
homomorphism. So it will be enough to identify the right-hand side with the
sum indexed by the set {Q �→ P} of points of C lying above P . But as G acts
transitively on {Q �→ P} (see Appendix, Proposition A.6.3 (1) and Example
A.6.2), and G P is the stabilizer of Q0, the map σi �→ σi (Q) is a bijection
between the sets {σ1, . . . , σr } and {Q �→ P}.
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By Shapiro’s lemma (Remark 4.2.9) and the lemma above, we may rewrite
the maps (6) as

Hi (G, (K k̄)×) →
⊕
P∈C0

Hi (G P ,Z).

Furthermore, the exact sequence 0 → Z → Q → Q/Z → 0 induces isomor-
phisms Hi (G P ,Z) ∼= Hi−1(G P ,Q/Z) for i ≥ 2, as in the previous section. So
finally we get for each i ≥ 2 and P ∈ C0 a map

rP : Hi (G, (K k̄)×) → Hi−1(G P ,Q/Z),

called the residue map associated with P. By construction, for fixed i these
maps are trivial for all but finitely many P . In order to get honest maps, we still
have to prove:

Lemma 6.4.2 The maps rP depend only on P, and not on the closed point Q0

lying above P used in the previous lemma.

Proof As G acts transitively on the set {Q �→ P}, if we work with another
point Q′ instead of Q0, we may find an element τ ∈ G with Q′ = τ (Q0).
The stabilizer of Q′ then will be τG Pτ

−1. So an inspection of the previous
construction reveals that is enough to see that the maps Hi−1(G P ,Q/Z) →
Hi−1(τG Pτ

−1,Q/Z) induced by the natural map Z[G P ] → Z[τG Pτ
−1] on

cohomology became identity maps after identification of G P with τG Pτ
−1,

which in turn is an immediate consequence of the construction of group
cohomology.

The relation of the above residue maps with those of the previous section is
as follows. As C is a smooth curve, the completion of the local ring of C at P is
isomorphic to a formal power series ring κ(P)[[t]] (see Appendix, Proposition
A.5.3). By our assumption that k is perfect, here k̄ is a separable closure of κ(P),
with Gal (k̄|κ(P)) ∼= G P . The construction of the previous section therefore
yields residue maps rv : Hi (G P , k((t))×

nr ) → Hi−1(G P ,Q/Z).

Proposition 6.4.3 The diagram

Hi (G, (K k̄)×)
rP−−−−→ Hi−1(G P ,Q/Z)

Res

� �rv

Hi (G P , (K k̄)×) −−−−→ Hi (G P , k((t))×
nr )

commutes, where the bottom map is induced by the inclusion K k̄ ↪→ k((t))nr

coming from completing the local ring of a point of C above P.
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Proof By Shapiro’s lemma and Lemma 6.4.1, we have a chain of isomor-
phisms

Hi (G P , (K k̄)×) ∼= Hi (G, MG
G P

(K k̄)×) ∼=
⊕
Q �→P

Hi (G, (K k̄)×),

and the restriction map in the diagram is induced by taking a component of the
direct sum corresponding to a point above P , say Q0. The component of the divi-
sor map associated with Q0 is none but the discrete valuation vQ0 : (K k̄)× → Z
corresponding to the local ring OC,Q0

of Q0. The Proposition now follows from
the isomorphism G P

∼= Gal (k̄|κ(P)) and the obvious fact that the discrete val-
uation induced by vQ0 on the completion k̄[[t]] of OC,Q0

is none but the usual
valuation v of the power series ring.

The basic fact concerning residue maps is:

Theorem 6.4.4 (Residue Theorem) With notations as above, consider the
corestriction maps

CorP : Hi−1(G P ,Q/Z) → Hi−1(G,Q/Z)

for each closed point P. The sequence of morphisms

Hi (G, (K k̄)×)
⊕rP−−→

⊕
P∈C0

Hi−1(G P ,Q/Z)
� CorP−−→ Hi−1(G,Q/Z)

is a complex for all i ≥ 1.

Proof The long exact sequence associated with the exact sequence of
G-modules

0 → (K k̄)×/k̄× → Div(C) → Pic (C) → 0 (7)

yields exact sequences

Hi (G, (K k̄)×/k̄×) → Hi (G,Div(C)) → Hi (G,Pic (C))

for each i . By construction, the direct sum of the maps rP is obtained by
composing the natural map Hi (G, (K k̄)×) → Hi (G, (K k̄)×/k̄×) with the first
map in the above sequence, and then applying the chain of isomorphisms

Hi (G,Div(C)) ∼=
⊕
P∈C0

Hi (G P ,Z) ∼=
⊕
P∈C0

Hi−1(G P ,Q/Z).

On the other hand, the degree map deg : Pic (C) → Z induces a map
Hi (G,Pic (C)) → Hi (G,Z). Therefore the theorem follows if we prove that
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the diagram

Hi (G,Div(C)) −−−−→ Hi (G,Pic (C))

∼=
� �⊕

P∈C0

Hi (G P ,Z)
�CorP−−−−→ Hi (G,Z)

commutes. As the degree map Div(C) → Z factors though Pic (C), it will be
enough to show that the composite

Hi (G,Div(C)) ∼→
⊕
P∈C0

Hi (G P ,Z)
�CorP−→ Hi (G,Z)

equals the map induced by deg : Div(C) → Z, or else, by decomposing Div(C)
as in (5), that the composite

Hi
(

G,
⊕
Q→P

Z
) ∼→ Hi (G P ,Z)

CorP−→ Hi (G,Z)

equals the map induced by (m1, . . . ,mr ) �→ ∑
mi . But by Lemma 6.4.1 we

may rewrite the above composite map as

Hi (G, MG
G P

(Z)) → Hi (G,Z),

the map being induced by summation according to the definition of corestriction
maps. This finishes the verification of commutativity.

In special cases we can say more. The most important of these is when C
is the projective line. Then K is a rational function field k(t), and we have the
following stronger statement.

Theorem 6.4.5 (Faddeev) Assume that C is the projective line. Then for each
i ≥ 1 the sequence

0→ H i (G, k̄×)→ H i (G, (K k̄)×)
⊕rP−−→

⊕
P∈P1

0

H i−1(G P ,Q/Z)
� CorP−−→Hi−1(G,Q/Z)→0

is exact.

Proof For C = P1 the degree map deg : Pic (C) → Z is an isomorphism,
hence exact sequence (7) takes the form

0 → (K k̄)×/k̄× → Div(C) → Z → 0.

Moreover, the choice of a rational point of C (say ∞) defines a G-equivariant
splitting Z → Div(C) of the above exact sequence, so that the sequence

0 → Hi (G, (K k̄)×/k̄×) −→ Hi (G,Div(C))
deg∗−→ Hi (G,Z) → 0 (8)
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is (split) exact for all i (see Remark 4.3.4 (2)). We have seen in the proof of
Theorem 6.4.4 that here for i ≥ 1 the map deg∗ can be identified with the map⊕

P∈C0

Hi−1(G P ,Q/Z) → Hi−1(G,Q/Z)

given by the sum of corestrictions. Hence to conclude the proof it will be enough
to establish exact sequences

0 → Hi (G, k̄×) → Hi (G, (K k̄)×) → Hi (G, (K k̄)×/k̄×) → 0 (9)

for all i ≥ 1. For this, consider the exact sequence

0 → k̄× → (K k̄)× → (K k̄)×/k̄× → 0

of G-modules. We claim that in the associated long exact sequence

· · · →H i (G, k̄×)
αi→ H i (G, (K k̄)×) → H i (G, (K k̄)×/k̄×) → H i+1(G, k̄×) → . . .

(10)

the maps αi : Hi (G, k̄×) → Hi (G, (K k̄)×) are injective for i ≥ 1. Indeed, the
completion of the local ring at a k-rational point of P1

k̄ (say ∞) is isomorphic
to k̄[[t]] as a G-module, whence a sequence of G-equivariant embeddings
k̄× → K k̄× → k̄((t))×, where the second map factorizes through k((t))×

nr . The
composite of the induced maps

Hi (G, k̄×)
αi→ Hi (G, K k̄×) → Hi (G, k((t))×

nr )

is injective by Proposition 6.3.1, hence so is the map αi . By this injectivity prop-
erty the long exact sequence splits up into a collection of short exact sequences
(9), as desired.

The case i = 2 is of particular importance because of the relation with the
Brauer group.

Corollary 6.4.6 (Faddeev) The sequence

0 → Br (k) → Br (K )
⊕rP−−→

⊕
P∈P1

0

H 1(G P ,Q/Z)
� CorP−−→ H 1(G,Q/Z) → 0

is exact.

Proof The corollary follows from the case i = 2 of the theorem, once we
show that H 2(G, (K k̄)×) ∼= Br (K ). This is established in the same way as the
isomorphism H 2(G, k((t))×

nr ) ∼= Br (k((t))) in Proposition 6.3.4, except that we
use Tsen’s theorem instead of Lemma 6.3.5.

Remark 6.4.7 One may also derive Faddeev’s exact sequence using methods
of étale cohomology. See Milne [2], Example 2.22.
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6.5 Application to class field theory
We now investigate the particular case when the base field is finite, and combine
the techniques of the last section with some nontrivial facts from algebraic
geometry in order to derive the main results in the class field theory of function
fields over finite fields, first obtained by Hasse using a different method.

Throughout this section, F will denote a finite field, G ∼= Gal (F|F) its abso-
lute Galois group, and K the function field of a smooth projective curve C over F.
We shall continue to use some notations from the previous section.

Theorem 6.5.1 The complex

0 → Br (K )
⊕rP−−→

⊕
P∈C0

H 1(G P ,Q/Z)
� CorP−−→ H 1(G,Q/Z) → 0

coming from Theorem 6.4.4 is exact. Furthermore, we have Hi (G, (K F)×) = 0
for i ≥ 3.

Facts 6.5.2 The proof will use the following facts about curves over finite fields
which we quote from the literature:

For a smooth projective curve C over a finite field F, the group Pic 0(C) is a
torsion abelian group and the group H 1(F,Pic 0(C)) vanishes.

The first claim follows from the fact that Pic 0(C) can be identified with the
group J (F) of F-points of an abelian variety J defined over F, the Jacobian of
C (see e.g. Milne [4]). Being a projective variety, J has only a finite number
of points over each finite extension F′|F of the finite field F, and the group
J (F) is the union of the J (F′), so it is a torsion abelian group. The second fact
is a theorem of Lang [2]: for an abelian variety A (in fact, for any connected
algebraic group) over a finite field F the group H 1(F, A(F)) vanishes. This
holds in particular for J .

As a first step towards the proof of the theorem, we derive the following
classical lemma.

Lemma 6.5.3 (F. K. Schmidt) Let C be a smooth projective curve over a finite
field F. Then the degree map deg : Div(C) → Z is surjective.

Proof As the degree map factors through Pic (C), it will be enough to consider
the induced map Pic (C) → Z. The sequence

0 → Pic 0(C) −→ Pic (C)
deg−→ Z → 0 (11)

is an exact sequence of G-modules. In the piece

Pic (C)G deg−→ Z → H 1(G,Pic 0(C))
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of the corresponding long exact sequence the last term vanishes by Lang’s
theorem recalled above, so it remains to identify the group Pic (C)G with Pic (C).
For this, consider the long exact sequence

0 → ((K F)×/F
×

)G → Div(C)G → Pic (C)G → H 1(G, (K F)×/F
×

)

coming from (7) applied with k = F. In the long exact sequence (10) (again
with k = F) the terms vanish for i > 1 since cd(F) = 1, and so do the the terms
H 1(G,F

×
) and H 1(G, (K F)×), by Hilbert’s Theorem 90. Therefore the map

K × → ((K F)×/F
×

)G is surjective and the group H 1(G, (K F)×/F
×

) is trivial,
so Pic (C)G gets identified with the quotient Div(C)G/K ×. Now Lemma 6.4.1
gives Div(C) ∼= MG(Div(C)), from which the equality Div(C)G = Div(C)
follows by the case i = 0 of Shapiro’s lemma.

Proof of Theorem 6.5.1 As cd (F) = 1, the second statement follows from
Proposition 6.1.2. Granted the Facts 6.5.2 above, the proof of the case
i = 2 is very similar to that of Theorem 6.4.5. The point is that the groups
Hi (G,Pic 0(C)) are trivial for i > 0; for i = 1 this is just Lang’s theorem, and
for i > 1 it results from the fact that Pic 0(C) is torsion, in view of cd(F) ≤ 1.
Now in the piece

Hi (G,Pic 0(C)) → Hi (G,Pic (C)) → Hi (G,Z) → Hi+1(G,Pic 0(C))

of the long exact sequence associated with (11) the first and last groups are
trivial for i > 0. Hence in the piece

H 1(G,Div(C))
β1−→ H 1(G,Pic (C)) → H 2(G, (K F)×/F

×
) →

−→ H 2(G,Div(C))
β2−→ H 2(G,Pic (C)) → 0

of the long exact sequence associated with (7) we may replace the groups
Hi (G,Pic (C)) by Hi (G,Z) for i = 1, 2. By Lemma 6.5.3 the degree map
Div(C) → Z has a G-equivariant section, so the map H 1(G,Div(C)) →
H 1(G,Z) is a split surjection. We conclude that β1 is surjective, and obtain
an exact sequence

0 → H 2(G, (K F)×/F
×

) −→ H 2(G,Div(C))
β2−→ H 2(G,Z) → 0.

As Hi (G,F
×

) = 0 for i > 0, the long exact sequence (10) yields an isomor-
phism H 2(G, (K F)×) ∼= H 2(G, (K F)×/F

×
), so we may replace (K F)×/F

×
by

(K F)× in the left-hand side group. Hence we arrive at the Brauer group of K
as in Corollary 6.4.6. To conclude the proof, one identifies the map β2 with the
sum of corestrictions

⊕
H 1(G P ,Q/Z) → H 1(G,Q/Z), in the same way as in

the proof of the Residue Theorem.
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One can obtain a more classical formulation of the theorem as follows. Take
the completion of the local ring of C at a closed point P and denote by K P

its fraction field. It is a Laurent series field over the residue field κ(P), so
Proposition 6.3.9 yields an isomorphism Br (K P ) ∼= Q/Z induced by the Hasse
invariant map, which we denote here by invP . The theorem then implies the
following statement, which can be regarded as the main theorem in the class
field theory of curves over finite fields.

Corollary 6.5.4 (Hasse) With assumptions and notations as above, we have
an exact sequence

0 → Br (K ) →
⊕
P∈C0

Br (K P )
� invP−−→ Q/Z → 0.

Proof This follows from the theorem and the discussion above, noting
the compatibility of Proposition 6.4.3 and the first commutative diagram of
Proposition 6.3.9.

Remark 6.5.5 Using the above corollary and the function field analogue of the
so-called Grunwald–Wang theorem, one proves, following Hasse, that a central
simple algebra A over K is cyclic and its period equals its index (see Weil [3]).
Note a subtle point here: though we know by Corollary 6.2.10 that A is split by
a cyclic extension of the base field F, in general the degree of such an extension
is larger than the degree n of A. But in order to apply Proposition 4.7.6 one
needs a cyclic splitting field of degree n. Therefore in general the required cyclic
extension does not come from the base field, and our method based on Tsen’s
theorem does not apply.

Remark 6.5.6 According to the celebrated theorem of Albert, Brauer, Hasse
and Noether, there is an exact sequence like the one in Corollary 6.5.4 above also
in the case when K is a number field, i.e. a finite extension of Q. Here the fields
K P run over all completions of K with respect to its (inequivalent) valuations.
As opposed to the geometric case discussed above, these may be of two types.
Either they are discrete valuations coming from some prime ideal in the ring
of integers; in these cases an invariant map for the Brauer group similar to that
in Proposition 6.3.9 can be constructed according to a theorem of Hasse. But
there also exist so-called Archimedean valuations, for which the completion is
isomorphic to R or C. The Brauer groups of these fields are respectively Z/2Z
and 0, and thus may be viewed as subgroups of Q/Z, yielding the ‘archimedean
invariant maps’ in the sequence. The proof of this theorem is different from the
one given above, and uses the main results of class field theory for number fields.
See e.g. Tate [2] or Neukirch–Schmidt–Wingberg [1]. Using this result, Brauer,
Hasse and Noether also proved that over a number field every central simple
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algebra is cyclic, and its period equals its index. See Kersten [1], Pierce [1]
or Roquette [4] for recent accounts of the proof.

These famous theorems were found a few years earlier than the geometric
statements we discussed above, but from today’s viewpoint the latter are easier
to establish thanks to the geometric techniques which are unavailable in the
arithmetic case.

6.6 Application to the rationality problem: the method
In this section we show how an application of Faddeev’s exact sequence yields a
simple answer to a long-standing problem in algebraic geometry. The question
may be stated in purely algebraic terms as follows.

Problem 6.6.1 Let k be a field, and k(t1, . . . , tn) a purely transcendental exten-
sion of k. Let k ⊂ K ⊂ k(t1, . . . , tn) be a subfield such that k(t1, . . . , tn)|K is a
finite extension. Is it true that K |k is a purely transcendental extension?

Remarks 6.6.2

1. In the language of algebraic geometry, the problem may be rephrased as
follows. A k-variety X of dimension n is called rational (over k) if it is
birational over k to projective n-space Pn

k ; it is unirational if there exists
a dominant rational map Pn

k → X over k. So the question is: is every
unirational k-variety rational?

2. Positive results. When n = 1, the answer is yes, by a classical theorem due
to Lüroth (see e.g. van der Waerden [1], §73). For this reason, the problem
is sometimes called the Lüroth problem in the literature. In the case n = 2
counterexamples can be given if the ground field k is not assumed to be
algebraically closed (see Exercise 10). However, when k is algebraically
closed of characteristic 0, it follows from a famous theorem of Castelnuovo
in the classification of surfaces (see e.g. Beauville [1], Chapter V) that the
answer is positive. Zariski showed that the answer is also positive for k
algebraically closed of characteristic p > 0 if one assumes the extension
K |K0 to be separable.

3. Negative results. Castelnuovo’s theorem dates back to 1894. However,
after some false starts by Fano and Roth, the first counterexamples showing
that the answer may be negative over k = C in dimension 3 have only been
found around 1970, by Clemens–Griffiths [1] and Iskovskih–Manin [1],
independently. Immediately afterwards, Artin and Mumford [1] found
counterexamples which could be explained by the nonvanishing of a certain
birational invariant (i.e. an element of some group associated functorially
to varieties and depending only on the birational isomorphism class of the
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variety) which is trivial for projective space. The group in question was
the torsion part of the cohomology group H 3(X,Z).

Still, even the counterexamples cited above did not rule out the possibility
that the answer to the following weaker question might be positive. Observe
that a purely transcendental field extension k(t1, . . . , tn) of k may be identified
with the field of rational functions on an n-dimensional k-vector space V (by
looking at V as affine n-space An over k, or by passing to the symmetric algebra
of V ). If a finite group G acts k-linearly on V , there is an induced action on the
field k(V ). The action is called faithful if the homomorphism G → GL(V ) is
injective. In this case the field extension k(V )|k(V )G is Galois with group G.

Problem 6.6.3 Let k be an algebraically closed field of characteristic 0, and
let V be a finite dimensional vector space over k. Assume that a finite group G
acts k-linearly and faithfully on V . Is it true that the field of invariants k(V )G

is a purely transcendental extension of k?

In his 1984 paper [2] Saltman showed that the answer to even this weaker
question is negative in general. His approach, which was inspired by that of
Artin and Mumford, but much more elementary, was developed further in works
of Bogomolov ([1] and [2]). Our account below has been influenced by the notes
of Colliot-Thélène and Sansuc [1].

The starting point for the construction of the counterexample is the considera-
tion of the following invariant. Let K |k be an extension of fields of characteristic
0, and A ⊃ k a discrete valuation ring with fraction field K . The completion of
K is isomorphic to a Laurent series field κ((t)), where κ is the residue field of
A (see Appendix, Proposition A.5.3). Note that if the transcendence degree of
K |k is at least 2, then the extension κ|k is transcendental. Let κ be an algebraic
closure of κ . As in Section 6.3, we have a residue map

rA : H 2(Gal (κ|κ), κ((t))×
nr ) → H 1(κ,Q/Z)

induced by the valuation associated with A. As Br (κ((t))nr ) is trivial by
Example 6.1.11, the inflation-restriction sequence shows, as in the proof
of Proposition 6.3.4, that we may identify the Brauer group of κ((t)) with
H 2(Gal (κ|κ), κ((t))×

nr ), so we get a composite map

Br (K ) → Br (κ((t))) → H 1(κ,Q/Z)

which we also denote by rA.

Definition 6.6.4 The intersection
⋂

ker(rA) ⊂ Br (K ) of the groups ker(rA)
for all discrete valuation rings of K |k is called the unramified Brauer group of
K |k and denoted by Brnr (K ).
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Though not reflected in the notation, one should bear in mind that Brnr (K )
is an invariant which is relative to k. Of course, an analogous definition can be
made for the higher cohomology groups of k̄×; the proofs of the basic properties
established below carry over without change.

In the case when K is the function field of a variety X defined over k, we
may view Brnr (K ) as an invariant attached to X . As it depends only on K , it is
a birational invariant in the sense explained above. We now have the following
functorial property.

Lemma 6.6.5 Given a field extension L|K , the natural map Br (K ) → Br (L)
sends the subgroup Brnr (K ) into Brnr (L).

Proof Let B be a discrete valuation ring of L|k, with residue field κB . Its
completion is isomorphic to κB((t)). If B contains K as a subfield, then we
must have K ⊂ κB in κB((t)) since the elements of K are units, and thus
K ⊂ ker(rB) by Corollary 6.3.7. Otherwise the intersection A := B ∩ K is a
discrete valuation ring of K |k. Denoting by κA its residue field, we have a natu-
ral inclusion κA ⊂ κB . The associated valuations satisfy an equality vA = e · vB

with some integer e ≥ 1, for if tA generates the maximal ideal of A, we have
tA = ute for some unit u in B. The construction of residue maps then implies
the commutativity of the diagram

Br (κB((t)))
rB−−−−→ H 1(κB,Q/Z)

Res

� �e·Res

Br (κA((tA)))
rA−−−−→ H 1(κA,Q/Z),

whence ker(rA) ⊂ ker(rB), and the lemma follows.

The following crucial proposition implies that purely transcendental exten-
sions have trivial unramified Brauer group.

Proposition 6.6.6 Let K be as above, and let K (t)|K be a purely transcen-
dental extension. Then the natural map Brnr (K ) → Brnr (K (t)) given by the
previous lemma is an isomorphism.

Proof The map Br (K ) → Br (K (t)) is injective by Corollary 6.4.6, hence so is
the map Brnr (K ) → Brnr (K (t)) of the previous lemma. Therefore it is enough
to check surjectivity. For this take an α ∈ Brnr (K (t)). As α is in the kernel
of all residue maps coming from valuations trivial on K , we have α ∈ Br (K ),
again by Corollary 6.4.6. It therefore remains to be seen that rA(α) = 0 for each
discrete valuation ring A of K |k. But for such an A one may find a discrete valu-
ation ring B of K (t)|k with B ∩ K = A, by continuing the discrete valuation vA
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to a discrete valuation vB on K (t) via setting vB(t) = 0 (see Appendix, Propo-
sition A.6.11). For the associated discrete valuations one has e = 1, and hence
ker(rB) ∩ K ⊂ ker(rA) by the diagram of the previous proof. Since α ∈ ker(rB)
by assumption, the claim follows.

We get by induction starting from the case n = 1 (Faddeev’s theorem):

Corollary 6.6.7 For a purely transcendental extension k(t1, . . . , tm) of k one
has

Brnr k(t1, . . . , tm) ∼= Br (k).

In particular, if k is algebraically closed, then Brnr k(t1, . . . , tm) = 0.

We now turn to the construction of Bogomolov and Saltman. In the rest of
this section we assume that the base field is algebraically closed of cha-
racteristic 0.

As an appetizer, we prove the following classical result of Fischer [1] which
shows that in the counterexample to Problem 6.6.3 G must be noncommutative.

Theorem 6.6.8 (Fischer) Assume that a finite abelian group A acts k-linear-
ly and faithfully on a finite dimensional k-vector space V . Then the field of
invariants k(V )A is a purely transcendental extension of k.

Proof As we are in characteristic 0, the A-representation on V is semisimple,
i.e. the k[A]-module V decomposes as a direct sum of 1-dimensional sub-k[A]-
modules Vi , such that on Vi the A-action is given by σ (v) = χi (σ )v for some
character χi : A → k×. Let vi be a nonzero vector in Vi for each i , and let X be
the subgroup of k(V )× generated by the vi . As the vi are linearly independent,
X is a free abelian group. Now let Â = Hom(A, k×) be the character group of
A, and consider the homomorphism φ : X → Â given by vi �→ χi . By con-
struction, we have σ (x) = (φ(x)(σ ))x for x ∈ X and σ ∈ A. In particular, with
the notation Y := ker(φ) we get Y ⊂ k(V )A. On the other hand, the index of
Y in X is at most | Â| = |A|, so the field index [k(V ) : k(Y )] is at most |A|.
But [k(V ) : k(V )A] = |A|, as this extension is Galois with group A. Thus we
conclude k(Y ) = k(V )A. Now Y is a free abelian group, being a subgroup of X ,
and therefore we have k(Y ) = k(y1, . . . , ym) for a basis y1, . . . , ym of Y . This
proves the theorem.

Remark 6.6.9 An examination of the above proof reveals that the theorem is
valid more generally for an arbitrary finite abelian group A of exponent e and
any ground field F of characteristic prime to e and containing the e-th roots of
unity. In the case of arbitrary F the field F(V )A will be the function field of an
algebraic torus, not necessarily rational over F (see Voskresensky [2], §7.2).
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This being said, Corollary 6.6.7 shows that in order to find a counterexample
to Problem 6.6.3 it suffices to find a faithful representation V of a finite group
G with Brnr (k(V )G) �= 0. The key to this will be the following basic theorem
characterizing the unramified Brauer group of invariant fields.

Theorem 6.6.10 (Bogomolov) Let V be a finite dimensional k-vector space,
and let G be a finite group acting k-linearly and faithfully on V . Then

Brnr (k(V )G) = ker

(
Br (k(V )G) →

∏
H∈B

Br (k(V )H )

)
,

where B denotes the set of bicyclic subgroups of G.

Recall that a bicyclic group is just a direct product of two cyclic groups.

Proof By Lemma 6.6.5 the image of Brnr (k(V )G) by each restriction map
Br (k(V )G) → Br (k(V )H ) lies in Brnr (k(V )H ). But since bicyclic groups are
abelian, we have Brnr (k(V )H ) = 0 by Fischer’s theorem (Theorem 6.6.8) and
Corollary 6.6.7. So we conclude that the left-hand side is contained in the
right-hand side.

For the reverse inclusion, take an element α ∈ Br (k(V )G) with rA(α) �= 0 for
some discrete valuation ring A of k(V )G |k. Let B be one of the finitely many
discrete valuation rings of k(V )|k lying above A, let D ⊂ G be the stabilizer of
B under the action of G, and let κB and κA be the respective residue fields of B
and A. As the finite extension k(V )|k(V )G is Galois, it is known (cf. Appendix,
Proposition A.6.3 (2)) that the extension κB |κA is a finite Galois extension as
well, and there is a natural surjection D → Gal (κB |κA). Denote by I the kernel
of this map. As κA is algebraically closed of characteristic 0, it is also known
(see Appendix, Corollary A.6.10) that I is a central cyclic subgroup in D.
If the image of α by the restriction map ResI : Br (k(V )G) → Br (k(V )I ) is
nonzero, then so is its image by the map Br (k(V )G) → Br (k(V )H ) for a bicyclic
subgroup H containing the cyclic subgroup I , and we are done. So we may
assume ResI (α) = 0. Now consider the commutative diagram with exact rows

0 −−−−→ Br (k(V )I |k(V )G)
Inf−−−−→ Br (k(V )G)

Res−−−−→ Br (k(V )I )� �rA

�rC

0 −−−−→ H 1(Gal (κB |κA),Q/Z)
Inf−−−−→ H 1(κA,Q/Z)

Res−−−−→ H 1(κB,Q/Z)

in which the rows are restriction-inflation sequences (Corollary 4.3.5), and
the map rC is the residue map associated with the discrete valuation ring
C := B ∩ k(V )I which has the same residue field κB as B. The diagram
shows that α comes from an element of Br (k(V )I |k(V )G), and rA(α) may
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be identified with a homomorphism φα : D/I → Q/Z. Let g ∈ D be an
element whose image g in Gal (κB |κA) ∼= D/I satisfies φα(g) �= 0. As I
is a central cyclic subgroup in D, the subgroup H g ⊂ D generated by g
and I is bicyclic. We now show that the image of α by the restriction map
ResH g : Br (k(V )G) → Br (k(V )H g

) is nontrivial. Indeed, if we denote by Bg

the discrete valuation ring B ∩ k(V )H g
, then the same argument as above

with Bg in place of A shows that the image of ResH g (α) by the associated
residue map rBg is a homomorphism H g/I → Q/Z. By construction, this
homomorphism is none but the restriction of φα to the group H g/I , and hence
is nonzero. So ResH g (α) itself is nonzero, as required.

Remark 6.6.11 The above proof (together with Fischer’s theorem) shows that
instead of B one could take the set of all abelian subgroups of G.

As a consequence of the preceding theorem, Bogomolov was able to give a
purely group-theoretic characterization of Brnr (k(V )G).

Theorem 6.6.12 Let k(V ), G and B be as in the theorem above.
The group Brnr (k(V )G) is canonically isomorphic to the group

H 2
B(G) := ker

(
H 2(G,Q/Z)

Res−→
∏
H∈B

H 2(H,Q/Z)

)
.

Proof The proof is in three steps.

Step 1 We first establish an isomorphism

Brnr (k(V )G) = ker

(
H 2(G, k(V )×) →

∏
H∈B

H 2(H, k(V )×)

)
.

For this, consider the exact sequence

0 → Br (k(V )|k(V )G) −→ Br (k(V )G) −→ Br (k(V )).

As Brnr (k(V )) = 0 by Corollary 6.6.7, we see using Lemma 6.6.5 that
each element of Brnr (k(V )G) comes from Br (k(V )|k(V )G). Using the fact
that the composite map Br (k(V )|k(V )G) → Br (k(V )G) → Br (k(V )H ) fac-
tors through Br (k(V )|k(V )H ) and noting the isomorphism Br (k(V )|k(V )G) ∼=
H 2(G, k(V )×), we may rewrite the formula of the previous theorem as stated
above.

Step 2 We next show that we may replace the coefficient module k(V )× by k×,
i.e. we have an isomorphism

Brnr (k(V )G) = ker

(
H 2(G, k×) →

∏
H∈B

H 2(H, k×)

)
.
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For this we view k(V ) as the function field of affine n-space An
k . As the Picard

group of An
k is trivial (cf. Appendix, Proposition A.4.4 (1)), we have an exact

sequence of G-modules

0 → k× → k(V )× → Div(An
k ) → 0. (12)

Denote by W the affine variety with coordinate ring k[t1, . . . , tn]G . By exactly
the same argument as in Lemma 6.4.1, we have a direct sum decomposition

Div(An
k ) ∼=

⊕
P∈W 1

MG
G P

(Z),

where W 1 denotes the set of codimension 1 irreducible subvarieties of W , and
G P is the stabilizer of an irreducible component lying over the codimension 1
subvariety P . Therefore using Shapiro’s lemma we get from sequence (12) an
exact sequence⊕

P∈W 1

H 1(G P ,Z) → H 2(G, k×)
π→ H 2(G, k(V )×)

ρ→
⊕
P∈W 1

H 2(G P ,Z).

Here the groups H 1(G P ,Z) = Hom(G P ,Z) are trivial because the G P are
finite, so the map π is injective.

As for the groups H 2(G P ,Z) ∼= H 1(G P ,Q/Z) = Hom(G P ,Q/Z), we obvi-
ously have injections ιP : Hom(G P ,Q/Z) ↪→ ⊕

Hom(〈g〉,Q/Z), where the
sum is over all cyclic subgroups 〈g〉 of G P . Now if the restrictions of an
element α ∈ H 2(G, k(V )×) to all bicyclic subgroups are trivial, the same
must be true for all restrictions to cyclic subgroups, so all components of
ρ(α) ∈ ⊕

Hom(G P ,Q/Z) are sent to 0 by the various ιP . Therefore ρ(α) = 0
and α comes from H 2(G, k×). The claim follows by noting that the maps
H 2(G, k×) → H 2(H, k(V )×) factor through H 2(H, k×).

Step 3 In view of the previous step, to prove the proposition it is enough to
establish isomorphisms

H 2(G, k×) ∼= H 2(G,Q/Z) and H 2(H, k×) ∼= H 2(H,Q/Z)

for all H . Now as k is algebraically closed of characteristic 0, the group k×

is divisible and its torsion subgroup (i.e. the group of roots of unity in k) is
isomorphic to Q/Z. Therefore the quotient k×/(Q/Z) is a Q-vector space, so
the long exact sequence coming from the exact sequence

0 → Q/Z → k× → k×/(Q/Z) → 0

of trivial G-modules yields the required isomorphisms in view of Corollary
4.2.7.
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6.7 Application to the rationality problem: the example
Keeping the assumptions and the notations of the previous section, we show at
last:

Theorem 6.7.1 A finite group G exists for which H 2
B(G) �= 0. Therefore

G yields a counterexample to Problem 6.6.3 over k.

The proof below is based on an idea of Shafarevich [1]. The following lemma
from the theory of group extensions will be a basic tool.

Lemma 6.7.2 Let A, B be two abelian groups. Regard A as a B-module with
trivial action.

1. There is a homomorphism

ρA : H 2(B, A) → Hom(�2 B, A),

functorial in A, sending the class of an extension

0 → A → E → B → 0

to the map φE : b1 ∧ b2 → [b̃1, b̃2], where the b̃i are arbitrary liftings
of the bi to E, and [b̃1, b̃2] denotes their commutator. The kernel of ρA

consists of extension classes with E commutative.
2. In terms of cocycles, the map ρA sends the class of a normalized 2-cocycle

cb1,b2 to the alternating map b1 ∧ b2 �→ cb1,b2 − cb2,b1 .
3. Assume moreover that A and B are finite dimensional Fp-vector spaces

for a prime number p > 2. Then ρA has a canonical splitting.

Here �2 B denotes the quotient of B ⊗Z B by the subgroup generated by the
elements b ⊗ b for all b ∈ B. Part (1) of the lemma can be proven using the
universal coefficient sequence for cohomology (Weibel [1], Theorem 3.6.5);
we give here a direct argument.

Proof For (1), note first that since B acts trivially on A, the extension E is
central, and therefore in the above definition φE (b1, b2) = [b̃1, b̃2] does
not depend of the choice of the liftings b̃1, b̃2. Moreover, φE satisfies
φE (b, b) = 0 for all b ∈ B; let us check that it is also bilinear. For this,
let s : B → E be a (set-theoretic) section of the projection E → B satis-
fying s(1) = 1. As in Example 3.2.6 this yields the normalized 2-cocycle
cb1,b2 = s(b1)s(b2) s(b1 + b2)−1 of B with values in A. Recall also the for-
mula [g1g2, g3] = g1[g2, g3]g−1

1 [g1, g3] which holds in any group. Since A is
central in E , we have

φE (b1 + b2, b3) = [s(b1 + b2), s(b3)] = [c−1
b1,b2

s(b1)s(b2), s(b3)]

= [s(b1)s(b2), s(b3)]=s(b1)[s(b2), s(b3)]s(b1)−1 [s(b1), s(b3)]

= φE (b2, b3) + φE (b1, b3).



168 Residue maps

Similarly, φE (b1, b2 + b3) = φE (b1, b2) + φE (b1, b3), so φE is a well-defined
alternating bilinear map. To finish the proof of (1), it remains to check that ρA is
a group homomorphism, because the second statement in (1) is then immediate
from the definition of ρA. For this it is enough to establish (2), because the
map cb1,b2 �→ cb1,b2 − cb2,b1 is manifestly a homomorphism from the group of
normalized 2-cocycles of B with values in A to the group Hom(�2 B, A). But
for the 2-cocycle cb1,b2 associated with E above we have

φE (b1, b2) = s(b1)s(b2)s(b1)−1s(b2)−1 = cb1,b2 s(b1 + b2)s(b2 + b1)−1c−1
b2,b1

,

which is indeed cb1,b2 − cb2,b1 in the additive notation.
We finally turn to (3). It will be enough to construct a splitting in the case

A = Fp. Recall from linear algebra that the space of bilinear forms splits as
the direct sum of the spaces of symmetric and alternating forms via the map
λ �→ (λ + λτ , λ − λτ ), where λτ is the bilinear form obtained from λ by switch-
ing the entries. Thus given an alternating bilinear form φ : �2 B → Fp, there
exists a bilinear form γ : B × B → Fp such that

φ(b1 ∧ b2) = γ (b1, b2) − γ (b2, b1).

Notice that the map (b1, b2) �→ γ (b1, b2) is a normalized 2-cocycle, as we
have γ (0, b) = γ (b, 0) = 0 for all b ∈ B, and the cocycle relation holds by the
calculation

γ (b2, b3) − γ (b1 + b2, b3) + γ (b1, b2 + b3) − γ (b1, b2)

= −γ (b1, b3) + γ (b1, b3) = 0.

The difference of two choices of γ is a symmetric bilinear form. But if γ is
symmetric, then since p > 2, we may write

γ (b1, b2) = 1

2

(
γ (b1 + b2, b1 + b2) − γ (b1, b1) − γ (b2, b2)

)
= (d f )(b1, b2),

where f is the 1-cocycle b �→ (1/2)γ (b, b) of B with values in the trivial
B-module Fp. Therefore the class [γ ] of the 2-cocycle (b1, b2) �→ γ (b1, b2)
in H 2(B,Fp) only depends on the alternating form φ, and we may define the
map ξ : Hom(�2 B,Fp) → H 2(B,Fp) by sending φ to [γ ]. By (2), the map ξ

satisfies ρFp ◦ ξ = idFp .

The lemma enables us to construct important examples of nilpotent groups.

Example 6.7.3 Let p > 2 be a prime number, and let V be an n-dimensional
Fp-vector space. Applying the canonical splitting constructed in part (3) of
the above lemma for B = V , A = �2V , we get that the identity map of �2V
gives rise to an extension Gn of V by �2V . Here �2V is both the centre and the
commutator subgroup of the group Gn , which is in particular nilpotent of class 2.
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It is the universal nilpotent group of class 2 and exponent p on n generators.
Its elements can be written in the form

∏
i aαi

i

∏
i< j [ai , a j ]βi j , where a1, . . . , an

are liftings of a basis of V to G and αi , βi j ∈ Fp.

Proof of Theorem 6.7.1 Let p > 2 be a prime number, and consider the group
Gn of the above example for n ≥ 4. Let a1, . . . , an be a system of generators
as above, and look at the element z = [a1, a2][a3, a4]. Note that z lies in the
centre �2V of Gn , and it has the property that the powers zr = [a1, a2]r [a3, a4]r

cannot be expressed as commutators [b1, b2] of elements b1, b2 ∈ Gn whose
images in V are linearly independent over Fp. Indeed, in �2V the zr correspond
to bivectors of the form r (v1 ∧ v2) + r (v1 ∧ v3), which are either trivial or
indecomposable bivectors, i.e. not of the form w1 ∧ w2 for independent wi .

Now define G as the quotient of Gn by the central cyclic subgroup 〈z〉 gen-
erated by z. The conjugation action of G on 〈z〉 is trivial, hence it is isomorphic
to Z/pZ as a G-module. The extension

1 → 〈z〉 → Gn → G → 1 (13)

therefore defines a class c(Gn) ∈ H 2(G,Z/pZ) by Example 3.2.6. We may
send it to a class in H 2(G,Q/Z) via the map ι∗ : H 2(G,Z/pZ) → H 2(G,Q/Z)
induced by the inclusion ι : Z/pZ → Q/Z sending 1 to 1/p. Let us now show
that ι∗(c(Gn)) lies in H 2

B(G). For this it will be enough to see that the images of
c(Gn) by the restriction maps H 2(G,Z/pZ) → H 2(H,Z/pZ) are trivial for
each bicyclic subgroup H ⊂ G. Such a subgroup necessarily meets the centre
Z (G) of G. Indeed, write H = 〈h1〉 × 〈h2〉 with some generators h1, h2. As
the hi commute, we have [h1, h2] = 1 in G and so [b1, b2] = zk in Gn for
some k ∈ Fp and liftings bi of the hi in Gn . By the choice of z made above,
the images of the bi should be linearly dependent in V ∼= G/Z (G), which means
precisely that H ∩ Z (G) �= {1}. Now as Z (G) is the image of �2V in G, this
implies that the inverse image H of H in Gn is cyclic modulo H ∩ (�2V ), and
thus it is a commutative subgroup. Moreover, it is an Fp-vector space, because
Gn is of exponent p. But then the extension 1 → 〈z〉 → H → H → 1 is an
extension of Fp-vector spaces and therefore a split extension. On the other hand,
its class in H 2(H,Z/pZ) is precisely the image of c(Gn) ∈ H 2(G,Z/pZ) by
the restriction map to H , and we are done.

It remains to see that i∗(c(Gn)) is a nontrivial class. For this, observe first
that the extension (13) is nonsplit. Indeed, if it were, then since it is a central
extension, we would get a direct product decomposition Gn

∼= 〈z〉 × G, which
is impossible (e.g. because then z would not lie in the commutator subgroup of
Gn). Next we show that c(Gn) is the image of a class c ∈ H 2(V,Z/pZ) by the
inflation map Inf : H 2(V,Z/pZ) → H 2(G,Z/pZ). For this, decompose �2V
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as a direct sum �2V ∼= 〈z〉 ⊕ W , and define c as the class of the extension

1 → 〈z〉 → Gz → V → 1 (14)

obtained by pushforward from the extension 1 → �2V → Gn → V → 1 via
the map �2V → 〈z〉 sending W to 0 and z to itself. We leave it to the readers
to check that the pullback of the extension (14) by the surjection G → V is
indeed (13).

Now consider the commutative diagram

0 −−−−→ Hom(W,Z/pZ) −−−−→ H 2(V,Z/pZ)
Inf−−−−→ H 2(G,Z/pZ)

∼=
� ι∗

� ι∗

�
0 −−−−→ Hom(W,Q/Z) −−−−→ H 2(V,Q/Z)

Inf−−−−→ H 2(G,Q/Z)

whose exact rows come from Proposition 3.3.14 (noting the identifications
H 1(W, A)V ∼= Hom(W, A) for G-modules A with trivial action). Here the left
vertical map is an isomorphism, since W is an Fp-vector space. Therefore if
we assume ι∗(c(Gn)) = 0, a diagram chase shows that we may replace c by a
class c′ still mapping to c(Gn) in H 2(G,Z/pZ), but with ι∗(c′) = 0. Now using
Lemma 6.7.2 (1) we conclude that c′ must be the class of a commutative group
extension. Indeed, one has Hom(�2V,Z/pZ) ∼= Hom(�2V,Q/Z) because V
is an Fp-vector space, so we must have ρZ/pZ(c′) = 0 in the notation of the
lemma. Here c′ cannot be 0, as it maps to a nonzero class in H 2(G,Z/pZ), and
so it must come from an abelian group E which has elements of order p2. But
then Gn cannot be obtained by pullback from E , for it has no elements of order
p2 in its abelian quotients. This contradiction concludes the proof.

Remarks 6.7.4

1. For n = 4 the group G considered above is one of the first examples of
Saltman [2]. Bogomolov has given a classification of all finite p-groups
G of nilpotence class 2 and G/Z (G) ∼= F4

p with H 2
B(G) �= 0. He has also

made a thorough study of the unramified Brauer group of invariant fields
under actions of reductive algebraic groups, a topic which has interesting
connections with geometric invariant theory. Besides the original papers
(Bogomolov [1], [2]) one may profitably consult the survey of Colliot-
Thélène and Sansuc [1].

2. One may ask whether the vanishing of the unramified Brauer group is a
sufficient condition for the rationality of a variety. This is not the case:
Colliot-Thélène and Ojanguren [1] gave examples of unirational but non-
rational varieties with trivial unramified Brauer group. Moreover, Peyre [1]
found a finite group G acting faithfully on a C-vector space V with
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Brnr (C(V )G) = 0, but C(V )G not purely transcendental over C. In these
examples, nonrationality is explained by the nonvanishing of an unramified
cohomology group of degree 3.

3. A question closely related to the above is the famous Noether problem. The
issue is the same as in Problem 6.6.3, except that the ground field is k = Q.
Emmy Noether’s interest in the problem stemmed from its connection with
the inverse Galois problem. Namely, it is a consequence of Hilbert’s irre-
ducibility theorem (see e.g. Serre [3], §10.1) that a positive answer to the
problem for a given group G would yield an infinite family of Galois exten-
sions of Q with group G obtained via specializations ti �→ ai . However,
as opposed to the case of an algebraically closed ground field, the answer
here may be negative even for cyclic G. Swan [1] and Voskresensky [1]
found independently the first counterexample with G = Z/47Z; this is the
smallest group of prime order yielding a counterexample. Later, Lenstra [1]
found a counterexample with G = Z/8Z and gave a necessary and
sufficient condition for the answer to be positive in the case of a general
commutative G. Saltman [1] found a new approach to the counterexam-
ple G = Z/8Z by relating it to Wang’s counterexample to the so-called
Grunwald theorem in class field theory. See Swan [2] or Kersten [2] for
nice surveys of the area including an account of Saltman’s work. See also
Garibaldi–Merkurjev–Serre [1] for a discussion from the point of view of
cohomological invariants. Theorem 33.16 of this reference explains Salt-
man’s approach by showing that in his counterexample a certain element
in Brnr (Q(V )G) does not come from Br (Q), and hence Q(V )G cannot be
purely transcendental by Corollary 6.6.7.

6.8 Residue maps with finite coefficients
This section and the next are of a technical nature; their results will be needed
for our study of the cohomological symbol. Our purpose here is to define and
study residue maps of the form

∂ i
v : Hi (K , µ⊗ j

m ) → Hi−1(κ(v), µ⊗( j−1)
m ),

where K is a field equipped with a discrete valuation v with residue field κ(v),
m is an integer invertible in κ(v) and i, j are positive integers. This is a finite
coefficient analogue of the residue map studied earlier, because for j = 1 we
get maps Hi (K , µm) → Hi−1(κ(v),Z/mZ), i.e. instead of the multiplicative
group we work with its m-torsion part. We shall only need the case when K and
κ(v) have the same characteristic, so we conduct our study under this restrictive
assumption, but the arguments work more generally.

The basis for our labours is the following construction in homological algebra.
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Construction 6.8.1 Let G be a profinite group, and let H be a closed normal
subgroup in G with cd(H ) ≤ 1. We construct maps

∂i : Hi (G, A) → Hi−1(G/H, H 1(H, A))

for all torsion G-modules A and all integers i > 0 as follows. Embed A into the
co-induced module MG(A), and let C be the G-module fitting into the exact
sequence

0 → A → MG(A) → C → 0. (15)

Observe that here H j (H,C) = 0 for all j ≥ 1. Indeed, by Lemma 3.3.15
we have H j (H, MG(A)) = 0 for all j ≥ 1, so that the long exact sequence
in H -cohomology associated with (15) yields isomorphisms H j (H,C) ∼=
H j+1(H, A) for all j ≥ 1, but the latter groups are all trivial by assumption.

This shows that for i > 2 the assumptions of Proposition 3.3.17 (completed
by Corollary 4.3.5) are satisfied, and therefore the inflation maps

Inf : Hi−1(G/H,C H ) → Hi−1(G,C)

are isomorphisms. We draw a similar conclusion for i = 2 from Proposition
3.3.14. On the other hand, for i ≥ 2 we get from the long exact sequence associ-
ated with (15) isomorphisms Hi−1(G,C) ∼= Hi (G, A), so finally isomorphisms

Hi (G, A) ∼= Hi−1(G/H,C H ). (16)

But from the long exact sequence in H -cohomology coming from (15) we also
obtain a map C H → H 1(H, A), which is a morphism of G/H -modules by
Lemma 3.3.13. Hence there are induced maps

Hi−1(G/H,C H ) → Hi−1(G/H, H 1(H, A))

for all i ≥ 1. Composing with the isomorphism (16) we thus obtain a construc-
tion of the maps ∂i for i > 1. The case i = 1 was treated in Proposition 3.3.14
(in fact, it is just a restriction map). If p is a fixed prime, and we only assume
cd�(H ) ≤ 1 for � �= p, the same construction works for prime-to-p torsion
G-modules A.

A fundamental property of the maps ∂i is the following.

Proposition 6.8.2 The maps ∂i fit into a functorial long exact sequence

. . .→ H i (G/H, AH )
Inf→H i (G, A)

∂i→H i−1(G/H, H 1(H, A))→ H i+1(G/H, AH )→ . . .

starting from H 1(G, A).

Proof The beginning of the long exact sequence in H -cohomology coming
from exact requence (15) above reads

0 → AH → MG(A)H → C H → H 1(H, A) → 0.
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We may split this up into two short exact sequences

0 → AH → MG(A)H → T → 0, (17)

0 → T → C H → H 1(H, A) → 0. (18)

The long exact sequence in G/H -cohomology associated with (18) reads

. . .→ H i−1(G/H, T )→H i−1(G/H,C H )→ H i−1(G/H, H 1(H, A))→H i (G, T )→ . . .

Using Lemma 3.3.15 we see that Hi (G/H, MG(A)H ) = 0 for all i > 0,
hence the long exact sequence associated with (17) yields isomorphisms
Hi (G/H, AH ) ∼= Hi−1(G/H, T ) for all i > 1. Taking isomorphism (16) into
account we may therefore identify the above long exact sequence with that of
the proposition. The fact that the maps Hi (G/H, AH ) → Hi (G, A) are indeed
the usual inflation maps follows from an easy compatibility between inflations
and boundary maps in long exact sequences, which readers may check for
themselves.

Remark 6.8.3 In the literature the maps ∂i are usually obtained as edge mor-
phisms of the Hochschild–Serre spectral sequence for group extensions, and
the exact sequence of the above proposition results from the degeneration of
the spectral sequence. It can be shown that the two constructions yield the same
map.

The maps ∂i enjoy the following compatibility property with respect to cup-
products.

Lemma 6.8.4 In the situation above let A, B be continuous G-modules.
Assume that exact sequence (15) remains exact when tensored over Z by B.
Then the diagram

H p(G, A) × H q (G, B)
∪−→ H p+q (G, A ⊗ B)

↓ ∂p ↑ Inf ↓ ∂p+q

H p−1(G/H, H 1(H, A)) × H q (G/H, H 0(H, B))
∪→ H p+q−1(G/H, H 1(H, A ⊗ B))

commutes. In other words, for a ∈ H p(G, A) and b ∈ Hq (G/H, H 0(H, B))
we have

∂p+q (a ∪ Inf(b)) = ∂p(a) ∪ b.

Proof Observe first that we have MG(A) ⊗Z B ∼= MG(A ⊗ B). To establish
this isomorphism, we may assume G finite, by compatibility of tensor products
with direct limits. Then given φ : Z[G] → A sending gi ∈ G to ai ∈ A, we
may define for each b ∈ B a map φb : Z[G] → A ⊗ B by sending gi to ai ⊗ b.
This construction is bilinear, and defines the required isomorphism. Now the
assumption of the lemma implies exactness of the sequence

0 → A ⊗ B → MG(A ⊗ B) → C ⊗ B → 0,
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which we may use to construct the map ∂p+q on the right as in Construction 6.8.1.
The compatibility of cup-products with boundary maps (Proposition 3.4.8) and
inflations (Proposition 3.4.10 (2)) gives then rise to the commutative diagram

H p(G, A) × Hq (G, B)
∪−→ H p+q (G, A ⊗ B)

↑∼= ↑ Inf ↑∼=

H p−1(G/H,C H ) × Hq (G/H, B H )
∪−→ H p+q−1(G/H, (C ⊗ B)H )

where the two unnamed vertical maps come from the isomorphism (16), itself
defined as the composite of a boundary map and an inflation. The lemma now
follows from the commutative diagram

H p−1(G/H,C H ) × H q (G/H, B H )
∪−→ H p+q−1(G/H, (C ⊗ B)H )

↓ ↓ id ↓
H p−1(G/H, H 1(H, A)) × H q (G/H, H 0(H, B))

∪→ H p+q−1(G/H, H 1(H, A ⊗ B))

resulting from the functoriality of cup-products.

We now turn to the promised construction of residue maps.

Construction 6.8.5 Let k be a field, and k((t)) the Laurent series field over k.
Choose a separable closure Ks of k((t)), and write G and H for the Galois groups
Gal (Ks |k((t))) and Gal (Ks |k((t))nr ), respectively, where k((t))nr is the maximal
unramified extension as in Section 6.2. Note that the �-Sylow subgroups of H are
isomorphic to Z� for � prime to char(k) by Proposition A.6.9 of the Appendix.
Therefore cd�(H ) ≤ 1 for such � by Proposition 6.1.3 and Lemma 6.1.4, so for
m prime to char(k) Construction 6.8.1 applied with A = µ

⊗ j
m and the above G

and H yields maps

Hi (k((t)), µ⊗ j
m ) → Hi−1(k, H 1(k((t))nr , µ

⊗ j
m ))

for all i, j > 0. As H acts trivially on µm , we see that there is an isomorphism
of G/H -modules

H 1(k((t))nr , µ
⊗ j
m ) ∼= H 1(k((t))nr , µm) ⊗ µ⊗( j−1)

m .

Now Kummer theory gives an isomorphism

H 1(k((t))nr , µm) ∼= k((t))×
nr/k((t))×m

nr ,

which is also G/H -equivariant according to Lemma 3.3.13. This may be com-
posed with the (equally G/H -equivariant) valuation map

k((t))×
nr/k((t))×m

nr → Z/mZ
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sending t to 1. Putting the above together, we get a map

Hi (k((t)), µ⊗ j
m ) → Hi−1(k, µ⊗( j−1)

m ),

as required.
For a general field K equipped with a discrete valuation v whose residue field

κ(v) has characteristic equal to that of K , we first pass to the completion which is
isomorphic to the Laurent series field κ(v)((t)) (Appendix, Proposition A.5.3).
Then we may apply the above construction with k = κ(v) to obtain a map

∂ i
v : Hi (K , µ⊗ j

m ) → Hi−1(κ(v), µ⊗( j−1)
m )

as at the beginning of this section. This is the residue map with µ
⊗ j
m -coefficients

associated with v.

By means of the residue map we may define another useful map in Galois
cohomology.

Construction 6.8.6 (Specialization maps) Consider first the Laurent series
field k((t)) as above with its standard valuation v. Denote by (−t) the image
of −t by the Kummer map k((t))× → H 1(k((t)), µm). Using the cup-product
we may associate with each a ∈ Hi (k((t)), µ⊗ j

m ) the element ∂ i+1
v ((−t) ∪ a)

lying in Hi (k, µ⊗ j
m ). The choice of the minus sign may have an air of mystery

at the moment, but will be justified in the next chapter (Remark 7.1.6 (1) and
Corollary 7.5.3).

In this way we obtain a map

Hi (k((t)), µ⊗ j
m ) → Hi (k, µ⊗ j

m ).

As above, given a general discretely valued field K of equal characteristic, we
may embed it into its completion κ(v)((t)) to obtain a map

si
t : Hi (K , µ⊗ j

m ) → Hi (κ(v), µ⊗ j
m ).

This is the i-th specialization map associated with t . It depends on the choice
of the parameter t .

For Laurent series fields k((t)) the specialization map enjoys the following
crucial property.

Proposition 6.8.7 The composite maps

Hi (k, µ⊗ j
m )

Inf−→ Hi (k((t)), µ⊗ j
m )

si
t−→ Hi (k, µ⊗ j

m )

are identity maps for all i, j > 0.

Proof Apply Lemma 6.8.4 with G and H as in Construction 6.8.5, A = µm ,
B = µ

⊗ j
m , p = 1 and q = i . The condition of the lemma is obviously satisfied,
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as on the level of abelian groups we are just tensoring Z/mZ-modules by Z/mZ.
For b ∈ Hi (k, µ⊗ j

m ) and a = (−t) the lemma then yields

si
t (Inf(a)) = ∂1

v ((−t)) ∪ b.

But ∂1
v ((−t)) = 1, because ∂1

v becomes the mod m valuation map via the
Kummer isomorphism and −t has valuation 1. Hence cup-product with ∂1

v ((−t))
is the identity, and the proposition is proven.

Corollary 6.8.8 The sequences

0 → Hi (k, µ⊗ j
m )

Inf−→ Hi (k((t)), µ⊗ j
m )

∂ i−→ Hi−1(k, µ⊗( j−1)
m ) → 0

are split exact for all i, j > 0.

Proof Apply Proposition 6.8.2 with G, H and A as in Construction 6.8.5. By
the previous proposition, the maps si

t split up the resulting long exact sequence
into a collection of short exact sequences as in the corollary.

6.9 The Faddeev sequence with finite coefficients
We now come to the main result concerning our freshly constructed residue
maps, namely the analogue of Faddeev’s theorem with finite coefficients.

Theorem 6.9.1 Let k be a field, P1 the projective line over k and K its function
field. For each i, j > 0 and m invertible in k the sequence

0→H i (k, µ⊗ j
m )

Inf−→H i (K , µ⊗ j
m )

⊕∂ i
P−−→
⊕
P∈P1

0

H i−1(κ(P), µ⊗( j−1)
m )

� CorP−−→H i−1(k, µ⊗( j−1)
m )→0

is exact.

Remark 6.9.2 Note that in contrast to Theorem 6.4.5 we did not assume here
that k is perfect. Therefore we have to explain what we mean by the corestric-
tion maps CorP in characteristic p > 0. For a finite separable extension F ′|F of
fields, we define the associated corestriction map as before, using Galois theory.
For a purely inseparable extension F ′′|F of degree pr we define the corestric-
tion map to be multiplication by pr . In the case of a general finite extension
F ′′|F , we let F ′|F be the maximal separable subextension and define the core-
striction to be the composite of the above two maps. This definition works for
Galois cohomology with coefficients in torsion modules having no nontrivial
elements of order p. In the presence of p-torsion much more sophisticated
constructions should be used (or one should work with a different cohomology
theory; compare Remark 6.1.10).
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Proof of Theorem 6.9.1 Assume first that k is a perfect field. In this case
the proof follows a pattern similar to that of Theorem 6.4.5, with some local
differences. First, using the isomorphism Pic (P1

k̄) ∼= Z we consider the exact
sequence of G-modules

0 → (K k̄)×/k̄× −→ Div(P1
k̄) −→ Z → 0,

which has a G-equivariant splitting coming from a k-rational point of P1. There-
fore after tensoring with µ

⊗( j−1)
m we still get a split exact sequence

0 → (
(K k̄)×/k̄×)⊗ µ⊗( j−1)

m −→ Div(P1
k̄) ⊗ µ⊗( j−1)

m −→µ⊗( j−1)
m → 0.

For each i > 0 this induces short exact sequences

0 −→ Hi−1(k,
(
(K k̄)×/k̄×)⊗ µ

⊗( j−1)
m ) −→

−→ Hi−1(k,Div(P1
k̄) ⊗ µ

⊗( j−1)
m )

α−→ Hi−1(k, µ⊗( j−1)
m ) −→ 0.

Now exactly in the same way as in the proof of Theorem 6.4.4 we identify
the map α to the map �CorP of the theorem. Furthermore, since k̄× is an
m-divisible group, the tensor product k̄× ⊗ µ

⊗( j−1)
m vanishes, so that tensoring

the exact sequence

0 → k̄× → (K k̄)× → (K k̄)×/k̄× → 0

by µ
⊗( j−1)
m yields an isomorphism

(K k̄)× ⊗ µ⊗( j−1)
m

∼= ((K k̄)×/k×) ⊗ µ⊗( j−1)
m .

We may therefore make this replacement in the exact sequence above and thus
reduce to identifying the group Hi−1(k, (K k̄)× ⊗ µ

⊗( j−1)
m ) with the cokernel of

the inflation map

Inf : Hi (k, µ⊗ j
m ) → Hi (K , µ⊗ j

m ). (19)

To this end, we use the long exact sequence of Proposition 6.8.2 with
G = Gal (K |K ), H = Gal (K |K k̄) and A = µ

⊗ j
m . Here cd(H ) ≤ 1 by Tsen’s

theorem, so the proposition applies and yields a long exact sequence

· · · → Hi (k, µ⊗ j
m )

Inf−→ Hi (K , µ⊗ j
m ) → Hi−1(k, (K k̄)× ⊗ µ⊗( j−1)

m ) → . . .

after making the identification H 1(K k̄, µ⊗ j
m ) ∼= (K k̄)× ⊗ µ

⊗( j−1)
m as in Con-

struction 6.8.5 above. Now just like in the proof of Theorem 6.4.5, the point is
that the inflation maps (19) are injective for all i > 0. To see this, it is enough
to show injectivity of the composite maps Hi (k, µ⊗ j

m ) → Hi (k((t)), µ⊗ j
m )

obtained via the embedding K ↪→ k((t)). But these maps are injective, because
the specialization map yields a section for them by virtue of Proposition 6.8.7.
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Finally, the identification of the resulting maps

Hi (K , µ⊗ j
m ) →

⊕
P∈P1

0

Hi−1(κ(P), µ⊗( j−1)
m )

with a direct sum of residue maps follows by an argument similar to that in
Proposition 6.4.3.

It remains to reduce the case of a general base field k of characteristic p > 0
to the perfect case. To do so, consider the perfect closure kp∞ of k (recall that
this is the perfect field obtained by adjoining all p-power roots of elements in
k). Given a separable closure ks of k, the composite kp∞ ks is a separable closure
of kp∞ , as the extension kp∞|k is purely inseparable. In this way we may identify
the absolute Galois group of k with that of kp∞ , and similar considerations apply
to the absolute Galois groups of k(t) and kp∞ (t). As µm ⊂ ks for m prime to p,
the action of these groups on the modules µ

⊗ j
m is the same, so we get natural

isomorphisms on the corresponding Galois cohomology groups. Whence the
isomorphic vertical maps in the commutative diagram

Hi (k, µ⊗ j
m )

Inf−−−−→ Hi (K , µ
⊗ j
m )

∼=
� �∼=

Hi (kp∞ , µ
⊗ j
m )

Inf−−−−→ Hi (K kp∞ , µ
⊗ j
m ).

Next, consider a closed point P of P1
k \ {∞}. It corresponds to an irreducible

polynomial f ∈ k[t], which becomes the pr -th power of an irreducible poly-
nomial in kp∞ [t], where pr is the inseparability degree of the extension κ(P)|k.
This shows that there is a unique closed point P ′ of P1

kp∞ lying above P ′, with

[κ(P ′) : kp∞ ] = p−r [κ(P) : k]. (20)

Therefore we have a commutative diagram with isomorphic vertical maps

H i (K , µ⊗ j
m )

⊕∂ i
P−−−−→ ⊕

P∈P1
k,0

H i−1(κ(P), µ⊗( j−1)
m )

� CorP−−−−→ H i−1(k, µ⊗( j−1)
m )

∼=
� ∼=

� ∼=
�

H i (K kp∞ , µ⊗ j
m )

⊕∂ i
P−−−−→ ⊕

P∈P1
k p∞ ,0

H i−1(κ(P ′), µ⊗( j−1)
m )

� CorP−−−−→ H i−1(kp∞ , µ⊗( j−1)
m ).

Here the left square commutes by the construction of residue maps and our
remarks on the Galois groups of K and K kp∞ . Commutativity of the right
square follows from our definition of corestriction maps in Remark 6.9.2 and
the formula (20). This completes the identification of the exact sequence over
k with that over kp∞ .
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Observe that for the point at infinity ∞ of P1
k we have κ(∞) = k, and the

corestriction map Cor∞ : Hi−1(κ(∞), µ⊗ j
m ) → Hi−1(k, µ⊗ j

m ) is the identity
map. Hence we get:

Corollary 6.9.3 In the situation of the theorem there is an exact sequence

0 → Hi (k, µ⊗ j
m )

Inf−→ Hi (K , µ⊗ j
m )

⊕∂ i
P−−→

⊕
P∈P1

0\{∞}
Hi−1(κ(P), µ⊗( j−1)

m ) → 0

split by the specialization map si
t−1 : Hi (K , µ

⊗ j
m ) → Hi (k, µ⊗ j

m ) associated
with the local parameter t−1 at ∞.

Proof The exact sequence results from that of the theorem, and the statement
about the splitting from Proposition 6.8.7 (after embedding K into the Laurent
series field k((t−1))).

The split exact sequence of the corollary allows us to define maps

ψ i
P : Hi−1(κ(P), µ⊗( j−1)

m ) → Hi (K , µ⊗ j
m )

satisfying ∂ i
P ◦ ψ i

P = id for each closed point P �= ∞ of P1
k , which we may call

coresidue maps. We then get the following useful description of corestrictions.

Corollary 6.9.4 The corestriction maps

CorP : Hi−1(κ(P), µ⊗( j−1)
m ) → Hi−1(k, µ⊗( j−1)

m )

satisfy the formula

CorP = −∂ i
∞ ◦ ψ i

P ,

where ∂ i
∞ is the residue map associated with the point ∞.

Proof Let α be an element of Hi−1(κ(P), µ⊗( j−1)
m ). In the exact sequence

of Theorem 6.9.1, consider the element of
⊕

Hi−1(κ(P), µ⊗( j−1)
m ) given by

α in the component indexed by P , −CorP (α) in the component indexed by
∞, and 0 elsewhere. Since Cor∞ is the identity map, this element maps to 0
in Hi−1(k, µ⊗( j−1)

m ) by the sum of corestriction maps, hence it is the residue
of some element in Hi (κ(P), µ⊗ j

m ), which is none but ψ i
P (α). This proves the

corollary.

Remarks 6.9.5

1. The results of this section generalize in a straightforward way to the case
of an arbitrary Z/mZ-module A equipped with a Gal (ks |k)-action instead
of µ

⊗ j
m (still assuming m prime to the characteristic). The role of the
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Gal (ks |k)-modules µ
⊗( j−1)
m is then played by the groups Hom(µm, A)

equipped with the usual Galois action.
2. It is again possible to obtain the results of this section via methods of

étale cohomology, namely using the localization theory and the so-called
purity isomorphisms (see Milne [2]). But it is not obvious to check that
the residue maps in the two theories are the same up to a sign.

Exercises

1. Let G be a profinite group of finite cohomological dimension, and let H be an open
subgroup of G. Prove that cdp(G) = cdp(H ) for all primes p.
[Hint: Show that the corestriction map Cor : H n(H, A) → H n(G, A) is surjective
for n = cd(G) and a torsion G-module A.]

2. Let G be a finite group. Show that cdp(G) = ∞ if p divides the order of G, and
cdp(G) = 0 otherwise. [Hint: Use the previous exercise.]

3. (Kato, Kuzumaki) Let k be a perfect field such that the absolute Galois group
� = Gal (ks |k) has no nontrivial elements of finite order, and let X be a Severi-
Brauer variety over k. Prove that for all primes p not dividing char (k) the product
of restriction maps

H 1(k,Z/pZ) →
∏

P∈X0

H 1(κ(P),Z/pZ)

is injective, where the sum is over all closed points of X . [Hint: By the assumption
on �, the subgroup topologically generated by an element σ ∈ � is isomorphic to
Ẑ, and hence its fixed field has trivial Brauer group.]

[Remark: The condition on � is not very restrictive, for by Chapter 4, Exercise 7
fields of characteristic 0 having no ordered field structure enjoy this property.]

4. (a) Show that finite fields satisfy the C ′
1 property (Remark 6.2.2 (2)).

(b) Same question for the function field of a curve over an algebraically closed
field.

5. Let L|K be a purely inseparable extension of fields of characteristic p > 0. Prove
that the natural map Br (K ) → Br (L) is surjective, and its kernel is a p-primary
torsion group. [Hint: Take a separable closure Ks of K , exploit the exact sequence
1 → K ×

s → (L Ks)× → (L Ks)×/K ×
s → 1 and use cdp(K ) ≤ 1.]

6. Let k be a field and p a prime invertible in k. Let χ ∈ H 1(k,Z/pZ) be a surjective
character, and K |k the associated cyclic extension. Let A|k be a central simple
algebra. Over the rational function field k(t) consider the k(t)-algebra Ak(t) :=
A ⊗k k(t) and the cyclic k(t)-algebra (χ, t). Finally, define B := Ak(t) ⊗k(t) (χ, t)
and B̂ := B ⊗k(t) k((t)).
(a) Show that indk((t))(B̂) divides p indK (A ⊗k K ). [Hint: Use Corollary 4.5.11.]
(b) Let L|k be a field extension such that L((t))|k((t)) splits B̂. Show that L

contains K . [Hint: Use Corollary 6.3.7.]
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(c) Show that indk((t))(B̂) = p indK (A ⊗k K ) and indk(t)(B) = indK (A ⊗k K ).
(d) Conclude that A ⊗k K is a division algebra if and only if B is a division

algebra.
7. (suggested by Colliot-Thélène) Let F = k(x, y) be the rational function field in the

two indeterminates x, y, and let a, b be elements of k×. Prove that the biquaternion
algebra (a, x) ⊗F (b, y) over F is a division algebra if and only if the images of the
elements a and b in the F2-vector space k×/k×2 are linearly independent. [Hint:
Use the previous exercise.]

[Remark: Generalizing the technique of this exercise one may construct algebras
of period 2 and index 2d over the purely transcendental extension Q(x1, . . . , xd ) for
all d > 1.]

8. Let C be a smooth projective conic over a perfect field k with C(k) = ∅. Show that
there is an exact sequence

0 → Z/2Z →Br (k)→Br (k(C))
⊕rP−−→

⊕
P∈C0

H 1(κ(P),Q/Z)
� CorP−−→ H 1(k,Q/Z).

What can you say about the cokernel of the last map?

9. Let K be the function field of a smooth projective curve over a perfect field k. Let
(χ, b) be a cyclic algebra over K , where b ∈ K and χ defines a degree m cyclic
Galois extension of k with group G. We view χ as an element of H 1(G,Z/mZ).
(a) For a closed point P of C , show that the residue map rP is given by

rP ((χ, b)) = ResG
G P

(χ ) ∪ vP (b) ∈ H 1(G P ,Z/mZ),

where G P is the stabilizer of P in G, and vP (b) is viewed as an element of
H 0(G P ,Z).

(b) Assuming moreover that k is finite, deduce a formula of Hasse:

rP ((χ, b)) = [κ(P) : k] vP (b)

m
∈ Q/Z.

(c) Still assuming k finite, show that the Residue Theorem for (χ, b) is equivalent
to the formula deg (div(b)) = 0.

[Remark: This exercise gives some hint about the origin of the name of the Residue
Theorem, because the formula deg (div( f )) = 0 for an algebraic function f is equiv-
alent (in characteristic 0) to the fact that the sum of the residues of the logarithmic
differential form f −1d f equals 0.]

10. Consider the affine surface X of equation x3 − x = y2 + z2 over the field R of real
numbers.
(a) Show that X unirational over R.

[Hint: Find an extension R(z)|R(x) which splits the quaternion algebra
(−1, x3 − x) over R(x), and use Proposition 1.3.2.]
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(b) Show that X is not rational by examining Brnr (k(X )).
[Hint: Consider the class of the quaternion algebra (−1, x).]

11. (‘No-name lemma’ for finite groups) Let G be a finite group, and let V and W be
vector spaces over a field k, of dimensions n and m, respectively.
(a) Prove that k(V ⊕ W )G ∼= k(V )G(t1, . . . , tm) for some independent variables

ti . [Hint: Apply Speiser’s lemma to the extension k(V )|k(V )G and the vector
space W ⊗k k(V ).]

(b) Conclude that k(V )G(t1, . . . , tm) ∼= k(W )G(u1, . . . , un) for some indepen-
dent variables ti and u j , and hence Brnr (k(V )G) ∼= Brnr (k(W )G).

[Remark: This exercise shows that the answer to Problem 6.6.3 depends only on
the group G, and not on the representation V .]

12. This exercise gives another proof of the Steinberg relation for Galois cohomology
by using Theorem 6.9.1. Let k be a field, m an integer invertible in k, and k(t) the
rational function field.
(a) Verify the relation (t) ∪ (1 − t) = 0 in H 2(k(t), µ⊗2

m ) by calculating the
residues of both sides and specializing at 0.

(b) Given a ∈ k×, a �= 0, 1, deduce by specialization that (a) ∪ (1 − a) = 0 in
H 2(k, µ⊗2

m ).
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Milnor K-theory

In this chapter we study the Milnor K-groups introduced in Chapter 4. There
are two basic constructions in the theory: that of tame symbols, which are
analogues of the residue maps in cohomology, and norm maps that gener-
alize the field norm NK |k : K × → k× for a finite extension K |k to higher
K -groups. Of these the first is relatively easy to construct, but showing the
well-definedness of the second involves some rather intricate checking. This
foreshadows that the chapter will be quite technical, but nevertheless it contains
a number of interesting results. Among these, we mention Weil’s reciprocity
law for the tame symbol over the function field of a curve, a reciprocity law of
Rosset and Tate, and considerations of Bloch and Tate about the Bloch–Kato
conjecture.

Most of the material in this chapter stems from the three classic papers of
Milnor [1], Bass–Tate [1] and Tate [4]. Kato’s theorem on the well-definedness
of the norm map appears in the second part of his treatise on the class field
theory of higher dimensional local fields (Kato [1]), with a sketch of the
proof.

7.1 The tame symbol
Recall that we have defined the Milnor K-groups K M

n (k) attached to a field k as
the quotient of the n-th tensor power (k×)⊗n of the multiplicative group of k by
the subgroup generated by those elements a1 ⊗ · · · ⊗ an for which ai + a j = 1
for some 1 ≤ i < j ≤ n. Thus K M

0 (k) = Z and K M
1 (k) = k×. Elements of

K M
n (k) are called symbols; we write {a1, . . . , an} for the image of a1 ⊗ · · · ⊗ an

in K M
n (k). The relation ai + a j = 1 will be often referred to as the Steinberg

relation.
Milnor K-groups are functorial with respect to field extensions: given an

inclusion φ : k ⊂ K , there is a natural map iK |k : K M
n (k) → K M

n (K ) induced
by φ. Given α ∈ K M

n (K ), we shall often abbreviate iK |k(α) by αK .
There is also a natural product structure

K M
n (k) × K M

m (k) → K M
n+m(k), (α, β) �→ {α, β} (1)

coming from the tensor product pairing (k×)⊗n × (k×)⊗m → (k×)⊗n+m which
obviously preserves the Steinberg relation. This product operation equips the
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direct sum

K M
∗ (k) =

⊕
n≥0

K M
n (k)

with the structure of a graded ring indexed by the nonnegative integers. The
ring K M

∗ (k) is commutative in the graded sense:

Proposition 7.1.1 The product operation (1) is graded-commutative, i.e. it
satisfies

{α, β} = (−1)mn{β, α}
for α ∈ K M

n (k), β ∈ K M
m (k).

For the proof we first establish an easy lemma:

Lemma 7.1.2 The group K M
2 (k) satisfies the relations

{x,−x} = 0 and {x, x} = {x,−1}.

Proof For the first relation, we compute in K M
2 (k)

{x,−x} + {x,−(1 − x)x−1} = {x, 1 − x} = 0,

and so

{x,−x} = −{x,−(1 − x)x−1} = −{x, 1 − x−1} = {x−1, 1 − x−1} = 0.

The second one follows by bilinearity.

Proof of Proposition 7.1.1 By the previous lemma, in K M
2 (k) we have the

equalities

0 = {xy,−xy} = {x,−x} + {x, y} + {y, x} + {y,−y} = {x, y} + {y, x},
which takes care of the case n = m = 1. The proposition follows from this by
a straightforward induction.

These basic facts are already sufficient for calculating the following example.

Example 7.1.3 For a finite field F the groups K M
n (F) are trivial for all n > 1.

To see this it is enough to treat the case n = 2. Writing ω for a gen-
erator of the cyclic group F×, we see from bilinearity of symbols that it
suffices to show {ω,ω} = 0. By Lemma 7.1.2 this element equals {ω,−1}
and hence it has order at most 2. We show that it is also annihilated by
an odd integer, which will prove the claim. If F has order 2m for some m,
we have 0 = {1, ω} = {ω2m−1, ω} = (2m − 1){ω,ω}, and we are done. If F
has odd order, then the same counting argument as in Example 1.3.6 shows
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that we may find elements a, b ∈ F× that are not squares in F which sat-
isfy a + b = 1. But then a = ωk , b = ωl for some odd integers k, l and hence
0 = {a, b} = kl{ω,ω}, so we are done again.

As we have seen in Chapter 6, a fundamental tool for studying the Galois
cohomology of discrete valuation fields is furnished by the residue maps. We
now construct their analogue for Milnor K-theory; the construction will at the
same time yield specialization maps for K-groups.

Let K be a field equipped with a discrete valuation v : K × → Z. Denote by
A the associated discrete valuation ring and by κ its residue field. Once a local
parameter π (i.e. an element with v(π ) = 1) is fixed, each element x ∈ K ×

can be uniquely written as a product uπ i for some unit u of A and integer i .
From this it follows by bilinearity and graded-commutativity of symbols that
the groups K M

n (K ) are generated by symbols of the form {π, u2, . . . , un} and
{u1, . . . , un}, where the ui are units in A.

Proposition 7.1.4 For each n ≥ 1 there exists a unique homomorphism

∂M : K M
n (K ) → K M

n−1(κ)

satisfying

∂M ({π, u2, . . . , un}) = {u2, . . . , un} (2)

for all local parameters π and all (n − 1)-tuples (u2, . . . , un) of units of A,
where ui denotes the image of ui in κ .

Moreover, once a local parameterπ is fixed, there is a unique homomorphism

s M
π : K M

n (K ) → K M
n (κ)

with the property

s M
π ({π i1 u1, . . . , π

in un}) = {u1, . . . , un} (3)

for all n-tuples of integers (i1, . . . , in) and units (u1, . . . , un) of A.

The map ∂M is called the tame symbol or the residue map for Milnor K-
theory; the maps s M

π are called specialization maps. We stress the fact that the
sM
π depend on the choice of π , whereas ∂M does not, as seen from its definition.

Proof Unicity for sM
π is obvious, and that of ∂M follows from the above

remark on generators of K M
n (K ), in view of the fact that a symbol of the form

{u1, . . . , un} can be written as a difference {πu1, u2, . . . , un} − {π, u2, . . . , un}
with local parameters π and πu1, and hence it must be annihilated by ∂M .

We prove existence simultaneously for ∂M and the s M
π via a construction due

to Serre. Consider the free graded-commutative K M
∗ (κ)-algebra K M

∗ (κ)[x] on



186 Milnor K-theory

one generator x of degree 1. By definition, its elements can be identified with
polynomials with coefficients in K M

∗ (κ), but the multiplication is determined
by αx = −xα for α ∈ K M

1 (κ). Now take the quotient K M
∗ (κ)[ξ ] of K M

∗ (κ)[x]
by the ideal (x2 − {−1}x), where {−1} is regarded as a symbol in K M

1 (κ). The
image ξ of x in the quotient satisfies ξ 2 = {−1}ξ . The ring K M

∗ (κ)[ξ ] has a
natural grading in which ξ has degree 1: one has

K M
∗ (κ)[ξ ] =

⊕
n≥0

Ln,

where Ln = K M
n (κ) ⊕ ξ K M

n−1(κ) for n > 0 and L0 = K M
0 (κ) = Z.

Now fix a local parameter π and consider the group homomorphism

dπ : K × → L1 = κ× ⊕ ξZ

given by π i u �→ (u, ξ i). Taking tensor powers and using the product structure
in K M

∗ (κ)[ξ ], we get maps

d⊗n
π : (K ×)⊗n → Ln = K M

n (κ) ⊕ ξ K M
n−1(κ).

Denoting by π1 : Ln → K M
n (κ) and π2 : Ln → K M

n−1(κ) the natural projec-
tions, put

∂M := π2 ◦ d⊗n
π and sM

π := π1 ◦ d⊗n
π .

One sees immediately that these maps satisfy the properties (2) and (3). There-
fore the construction will be complete if we show that d⊗n

π factors through
K M

n (K ), for then so do ∂M and s M
π .

Concerning our claim about d⊗n
π , it is enough to establish the Steinberg

relation dπ (x)dπ (1 − x) = 0 in L2. To do so, note first that the multiplication
map L1 × L1 → L2 is given by

(x, ξ i)(y, ξ j) = ({x, y}, ξ{(−1)i j x j yi }), (4)

where apart from the definition of the Li we have used the fact that the multi-
plication map K M

0 (κ) × K M
1 (κ) → K M

1 (κ) is given by (i, x) �→ xi .
Now take x = π i u. If i > 0, the element 1 − x is a unit, hence dπ (1 − x) = 0

and the Steinberg relation holds trivially. If i < 0, then 1 − x = (−u + π−i )π i

and dπ (1 − x) = (−u, ξ i). It follows from (4) that

dπ (x)dπ (1 − x) = (u, ξ i)(−u, ξ i) = ({u,−u}, ξ{(−1)i2
u−i (−u)i }),

which is 0 in L2. It remains to treat the case i = 0. If v(1 − x) �= 0, then
replacing x by 1 − x we arrive at one of the above cases. If v(1 − x) = 0, i.e.
x and 1 − x are both units, then dπ (x)dπ (1 − x) = ({u, 1 − u}, 0 · ξ ) = 0, and
the proof is complete.
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Example 7.1.5 The tame symbol ∂M : K M
1 (K ) → K M

0 (κ) is none but the val-
uation map v : K × → Z. The tame symbol ∂M : K M

2 (K ) → K M
1 (κ) is given

by the formula

∂M ({a, b}) = (−1)v(a)v(b) av(b)b−v(a),

where the line denotes the image in κ as usual. One checks this using the
definition of ∂M and the second statement of Lemma 7.1.2.

This is the classical formula for the tame symbol in number theory; it has its
origin in the theory of the Hilbert symbol.

Remarks 7.1.6

1. The reader may have rightly suspected that tame symbols and specializa-
tion maps are not unrelated. In fact, for {a1, . . . , an} ∈ K M

n (K ) one has
the formula

sM
π ({a1, . . . , an}) = ∂M ({−π, a1, . . . , an})

for all local parameters π .
Indeed, if a1 = π i u1 for some unit u1 and integer i , one has

{−π, a1, . . . , an} = i{−π, π, a2, . . . , an} + {−π, u1, a2, . . . , an},
where the first term on the right is trivial by the first statement in Lemma
7.1.2. Continuing this process, we may eventually assume that all the ai

are units, in which case the formula follows from the definitions.
2. The behaviour of tame symbols under field extensions can be described

as follows. Let L|K be a field extension, and vL a discrete valuation of L
extending v with residue field κL and ramification index e. Denoting the
associated tame symbol by ∂M

L , one has for all α ∈ K M
n (K )

∂M
L (αL ) = e ∂M (α).

To see this, write a local parameter π for v as π = π e
LuL for some local

parameter πL and unit uL for vL . Then for all (n − 1)-tuples (u2, . . . , un)
of units for v one gets

{π, u2, . . . , un}L = e {πL , u2, . . . , un} + {uL , u2, . . . , un},
where the second term is annihilated by ∂M

L . The formula follows.

We close this section with the determination of the kernel and the cokernel
of the tame symbol.
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Proposition 7.1.7 We have exact sequences

0 → Un → K M
n (K )

∂M−→ K M
n−1(κ) → 0

and

0 → U 1
n → K M

n (K )
(sM

π ,∂M )
−−−→ K M

n (κ) ⊕ K M
n−1(κ) → 0,

where Un is the subgroup of K M
n (K ) generated by those symbols {u1, . . . , un}

where all the ui are units in A, and U 1
n ⊂ K M

n (K ) is the subgroup generated
by symbols {x1, . . . , xn} with x1 a unit in A satisfying x1 = 1.

The proof uses the following lemma, whose elegant proof is taken from
Dennis–Stein [1].

Lemma 7.1.8 With notations as in the proposition, the subgroup U 1
n is con-

tained in Un.

Proof By writing elements of K × as x = uπ i with some unit u and prime
element π one easily reduces the general case to the case n = 2 using bilinearity
and the relation {π,−π} = 0. Then it suffices to show that symbols of the form
{1 + aπ, π} with some a ∈ A are contained in U2.

Case 1 a is a unit in A. Then

{1 + aπ, π} = {1 + aπ,−aπ} + {1 + aπ,−a−1} = {1 + aπ,−a−1}
by the Steinberg relation, and the last symbol lies in Un .

Case 2 a lies in the maximal ideal of A. Then

{1 + aπ, π} =
{

1 + 1 + a

1 − π
π, π

}
+ {1 − π, π} =

{
1 + 1 + a

1 − π
π, π

}
.

Since here the element (1 + a)(1 − π )−1 is a unit in A, we conclude by the first
case.

Proof of Proposition 7.1.7 It follows from the definitions that ∂M and sM
π

are surjective, and that the two sequences are complexes. By the lemma, for
the exactness of the first sequence it is enough to check that each element in
ker(∂M ) is a sum of elements from Un and U 1

n . Consider the map

ψ : K M
n−1(κ) → K M

n (K )/U 1
n

defined by {u1, . . . , un−1} �→ {π, u1, . . . , un−1} mod U 1
n , where the ui are

arbitrary liftings of the ui . This is a well-defined map, because replacing some
ui by another lifting u′

i modifies {π, u1, . . . , un−1} by an element in U 1
n . Now for

α ∈ Un we have (ψ ◦ ∂M )(α) = 0, and for an element in ker(∂M ) of the form
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β = {π, u2, . . . , un} with the ui units we have 0 = (ψ ◦ ∂M )(β) = β mod U 1
n ,

i.e. β ∈ U 1
n . Since the β of this form generate ker(∂M ) together with Un , we

are done.
We now turn to the second sequence. Define a map K M

n (κ) → Un/U 1
n by

sending {u1, . . . , un} to {u1, . . . , un} mod U 1
n , again with some liftings ui of

the ui . We see as above that this map is well defined, and moreover it is an
inverse to the map induced by the restriction of s M

π to Un (which is of course
trivial on U 1

n ).

Remark 7.1.9 It follows from the first sequence above (and was implicitly
used in the second part of the proof) that the restriction of s M

π to ker(∂M ) is
independent of the choice of π .

Corollary 7.1.10 Assume moreover that K is complete with respect to v, and
let m > 0 be an integer invertible in κ . Then the pair (sπ , ∂M ) induces an
isomorphism

K M
n (K )/mK m

n (K )
∼−→ K M

n (κ)/mK M
n (κ) ⊕ K M

n−1(κ)/mK M
n−1(κ).

Proof By virtue of the second exact sequence of the proposition it is enough
to see that in this case mU 1

n = U 1
n , which in turn needs only to be checked for

n = 1 by multilinearity of symbols. But since m is invertible in κ , for each
unit u ∈ U 1

1 Hensel’s lemma (cf. Appendix, Proposition A.5.5) applied to the
polynomial xm − u shows that u ∈ mU 1

1 .

7.2 Milnor’s exact sequence and the Bass–Tate lemma
We now describe the Milnor K-theory of the rational function field k(t), and
establish an analogue of Faddeev’s exact sequence due to Milnor.

Recall that the discrete valuations of k(t) trivial on k correspond to the local
rings of closed points P on the projective line P1

k . As before, we denote by
κ(P) their residue fields and by vP the associated valuations. At each closed
point P �= ∞ a local parameter is furnished by a monic irreducible polynomial
πP ∈ k[t]; at P = ∞ one may take πP = t−1. The degree of the field extension
[κ(P) : k] is called the degree of the closed point P; it equals the degree of the
polynomial πP .

By the theory of the previous section we obtain tame symbols

∂M
P : K M

n (k(t)) → K M
n−1(κ(P))

and specialization maps

sM
πP

: K M
n (k(t)) → K M

n (κ(P)).
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Note that since each element in k(t)× is a unit for all but finitely many valuations
vP , the image of the product map

∂M := (∂M
P ) : K M

n (k(t)) →
∏

P∈P1
0\{∞}

K M
n−1(κ(P))

lies in the direct sum.

Theorem 7.2.1 (Milnor) The sequence

0 → K M
n (k) → K M

n (k(t))
∂M−→

⊕
P∈P1

0\{∞}
K M

n−1(κ(P)) → 0

is exact and split by the specialization map s M
t−1 at ∞.

Note that for i = 1 we get the sequence

1 → k× → k(t)× ∂M−→
⊕
π

Z → 0

which is equivalent to the decomposition of a rational function into a product
of irreducible factors.

The proof exploits the filtration on K M
n (k(t))

K M
n (k) = L0 ⊂ L1 ⊂ · · · ⊂ Ld ⊂ . . . (5)

where Ld is the subgroup of K M
n (k(t)) generated by those symbols { f1, . . . , fn}

where the fi are polynomials in k[t] of degree ≤ d.
The key statement is the following.

Lemma 7.2.2 For each d > 0 consider the homomorphism

∂M
d : K M

n (k(t)) →
⊕

deg (P)=d

K M
n−1(κ(P))

defined as the direct sum of the maps ∂M
P for all closed points P of degree d.

Its restriction to Ld induces an isomorphism

∂
M
d : Ld/Ld−1

∼→
⊕

deg (P)=d

K M
n−1(κ(P)).

Proof If P is a closed point of degree d, the maps ∂M
P are trivial on the elements

of Ld−1, hence the map ∂
M
d exists. To complete the proof we construct an inverse

for ∂
M
d .

Let P be a closed point of degree d. For each element a ∈ κ(P) there exists
a unique polynomial a ∈ k[t] of degree ≤ d − 1 whose image in κ(P) is a.
Define maps

h P : K M
n−1(κ(P)) → Ld/Ld−1
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by the assignment

h P
({a2, . . . , an}) = {πP , a2, . . . , an} mod Ld−1.

The maps h P obviously satisfy the Steinberg relation, for ai + a j = 1 implies
ai + a j = 1. So if we show that they are linear in each variable, we get that each
h P is a homomorphism, and then by construction the direct sum ⊕ h P yields

an inverse for ∂
M
d .

We check linearity in the case n = 2, the general case being similar. For
a2 = b2c2, we compare the polynomials a2 and b2c2. If they are equal, the
claim is obvious. If not, we perform Euclidean division of b2c2 by πP to get
b2c2 = a2 − πP f with some polynomial f ∈ k[t] of degree ≤ d − 1 (note that
the rest of the division must be a2 by uniqueness). Therefore

πP f

a2
= 1 − b2c2

a2
, (6)

and so in K M
2 (k(t)) we have the equalities

{πP , b2c2} − {πP , a2}=
{
πP ,

b2c2

a2

}
=−

{ f

a2
,

b2c2

a2

}
+
{πP f

a2
,

b2c2

a2

}
= −

{ f

a2
,

b2c2

a2

}
,

where we used the equality (6) in the last step. The last symbol lies in Ld−1,
and the claim follows.

Proof of Theorem 7.2.1 Using induction on d , we derive from the previous
lemma exact sequences

0 → L0 → Ld →
⊕

deg (P)≤d

K M
n−1(κ(P)) → 0

for each d > 0. These exact sequences form a natural direct system with respect
to the inclusions coming from the filtration (5). As L0 = K M

n (k) and
⋃

Ld =
K M

n (k(t)), we obtain the exact sequence of the theorem by passing to the limit.
The statement about sM

t−1 is straightforward.

Note that Milnor’s exact sequence bears a close resemblance to Faddeev’s
exact sequence in the form of Corollary 6.9.3. As in that chapter, the fact that
the sequence splits allows us to define coresidue maps

ψM
P : K M

n−1(κ(P)) → K M
n (k(t))

for all closed points P �= ∞, enjoying the properties ∂M
P ◦ ψM

P = idκ(P) and
∂M

P ◦ ψM
Q = 0 for P �= Q. We thus obtain the following formula useful in

calculations.

Corollary 7.2.3 We have the equality

α = st−1 (α)k(t) +
∑
P∈A1

0

(ψM
P ◦ ∂M

P )(α)

for all n > 0 and all α ∈ K M
n (k(t)).
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For all P �= ∞ we define norm maps NP : K M
n (κ(P)) → K M

n (k) by the
formula

NP := −∂M
∞ ◦ ψM

P

for all n ≥ 0. For P = ∞ we define NP to be the identity map of K M
n (k).

With the above notations, Milnor’s exact sequence implies

Corollary 7.2.4 (Weil reciprocity law) For all α ∈ K M
n (k(t)) we have∑

P∈P1
0

(NP ◦ ∂M
P )(α) = 0.

Proof For P �= ∞ we have from the defining property of the maps ψP

∂M
P

(
α −

∑
P �=∞

(ψM
P ◦ ∂M

P )(α)
)

= ∂M
P (α) − ∂M

P (α) = 0,

so by Milnor’s exact sequence

α −
∑
P �=∞

(ψM
P ◦ ∂M

P )(α) = β

for some β coming from K M
n (k). We have ∂M

∞ (β) = 0, so the corollary follows
by applying ∂M

∞ to both sides.

Weil’s original reciprocity law concerned the case n = 2 and had the form∑
P∈P1

0

(Nκ(P)|k ◦ ∂M
P )(α) = 0.

Note that in this case the tame symbols ∂M
P have an explicit description by

Example 7.1.5. To relate this form to the previous corollary, it suffices to use
the second statement of the following proposition.

Proposition 7.2.5 For n = 0 the map NP : K M
0 (κ(P)) → K M

0 (k) is given by
multiplication with [κ(P) : k], and for n = 1 it coincides with the field norm
Nκ(P)|k : κ(P)× → k×.

The proof relies on the following behaviour of the norm map under extensions
of the base field.

Lemma 7.2.6 Let K |k be a field extension, and P a closed point of P1
k . Then

the diagram

K M
n (κ(P))

NP−−−−→ K M
n (k)

⊕iκ(Q)|κ(P)

� �iK |k⊕
Q �→P

K M
n (κ(Q))

�eQ NQ−−−−→ K M
n (K )
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commutes, where the notation Q �→ P stands for the closed points of P1
K lying

above P, and eQ is the ramification index of the valuation vQ extending vP to
K (t).

Proof According to Remark 7.1.6 (2), the diagram

K M
n+1(k(t))

∂M
P−−−−→ K M

n (κ(P))

iK (t)|k(t)

� �⊕eQiκ(Q)|κ(P)

K M
n+1(K (t))

⊕∂M
Q−−−−→ ⊕

Q �→P
K M

n (κ(Q))

commutes. Hence so does the diagram

K M
n+1(k(t))

ψM
P←−−−− K M

n (κ(P))

iK (t)|k(t)

� �⊕iκ(Q)|κ(P)

K M
n+1(K (t))

�eQψM
Q←−−−− ⊕

Q �→P
K M

n (κ(Q))

whence the compatibility of the lemma in view of the definition of the norm
maps NP .

Proof of Proposition 7.2.5 Apply the above lemma with K an algebraic
closure of k. In this case the points Q have degree 1 over K , so the maps
NQ are identity maps. Moreover, the vertical maps are injective for n = 0, 1.
The statement for n = 0 then follows from the formula

∑
eQ = [κ(P) : k]

(a particular case of Proposition A.6.7 of the Appendix), and for n = 1 from
the definition of the field norm Nκ(P)|k(α) as the product of the roots in K
(considered with multiplicity) of the minimal polynomial of α.

Remark 7.2.7 For later use, let us note that the norm maps NP satisfy the
projection formula: for α ∈ K M

n (k) and β ∈ K M
m (κ(P)) one has

NP ({ακ(P), β}) = {α, NP (β)}.

This is an immediate consequence of the definitions.

We conclude this section by a very useful technical statement which is not a
consequence of Milnor’s exact sequence itself, but is proven in a similar vein.
Observe that if K |k is a field extension, the graded ring K M

∗ (K ) becomes a
(left) K M

∗ (k)-module via the change-of-fields map K M
∗ (k) → K M

∗ (K ) and the
product structure.
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Proposition 7.2.8 (Bass–Tate Lemma) Let K = k(a) be a field extension
obtained by adjoining a single element a of degree d to k. Then K M

∗ (K ) is
generated as a left K M

∗ (k)-module by elements of the form

{π1(a), π2(a), . . . , πm(a)},
where the πi are monic irreducible polynomials in k[t] satisfying
deg (π1) < deg (π2) < · · · < deg (πm) ≤ d − 1.

The proof is based on the following property of the subgroups Ld introduced
in Lemma 7.2.2.

Lemma 7.2.9 The subgroup Ld ⊂ K M
n (k(t)) is generated by symbols of the

shape

{a1, . . . , am, πm+1, πm+2, . . . , πn}, (7)

where the ai belong to k× and the πi are monic irreducible polynomials in k[t]
satisfying deg (πm+1) < deg (πm+2) < · · · < deg (πn) ≤ d.

Proof By factoring polynomials into irreducible terms and using bilinear-
ity and graded-commutativity of symbols, we obtain generators for the group
Ld of the shape (7), except that the πi a priori only satisfy deg (πm+1) ≤
· · · ≤ deg (πn) ≤ d. The point is to show that the inequalities may be cho-
sen to be strict, which we do in the case n = 2 for polynomials π1, π2 of the
same degree, the general case being similar. We use induction on d starting
from the case d = 0 where we get constants π1 = a1, π2 = a2. So assume
d > 0. If deg (π1) = deg (π2) < d , we are done by induction. It remains the
case deg (π1) = deg (π2) = d , where we perform Euclidean division to get
π2 = π1 + f with some f of degree ≤ d − 1. So 1 = π1/π2 + f/π2 and there-
fore {π1/π2, f/π2} = 0 in K M

2 (k(t)). Using Lemma 7.1.2 we may write

{π1, π2}={π1/π2, π2}+{π2,−1}=−{π1/π2, f/π2}+{π1/π2, f } + {π2,−1},
which equals −({ f, π1} + {− f, π2}) by bilinearity and graded-commutativity.
We conclude by decomposing the polynomial f into irreducible factors.

Proof of Proposition 7.2.8 Let πP be the minimal polynomial of a over k; it
defines a closed point P of degree d on P1

k . It follows from Lemma 7.2.2 that
the tame symbol ∂M

P induces a surjection of Ld onto K M
n (κ(P)). Applying the

previous lemma, we conclude that K M
n (κ(P)) is generated by symbols of the

form

∂M
P {a1, . . . , am, πm+1, πm+2, . . . , πn},

where the ai belong to k× and the πi are monic irreducible polynomials
satisfying deg (π1) < deg (π2) < · · · < deg (πn) ≤ d . If πn �= πP , all the πi
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satisfy vπ (πi ) = 0 and the above symbols are zero. For πn = πP , they equal
{a1, . . . , am, πm+1(a), πm+2(a), . . . , πn−1(a)} up to a sign by the defining prop-
erty of ∂M

P , and the proposition follows.

In what follows we shall use the Bass–Tate lemma several times via the
following corollary.

Corollary 7.2.10 Let K |k be a finite field extension. Assume one of the follow-
ing holds:

� K |k is a quadratic extension,
� K |k is of prime degree p and k has no nontrivial finite extensions of degree

prime to p.

Then K M
∗ (K ) is generated as a left K M

∗ (k)-module by K M
1 (K ) = K ×. In

other words, the product maps K M
n−1(k) ⊗ K × → K M

n (K ) are surjective.

Proof In both cases, K is obtained by adjoining a single element a to k,
and the only monic irreducible polynomials in k[t] of degree strictly smaller
than [K : k] are the linear polynomials x − a. We conclude by applying the
proposition.

Remark 7.2.11 A typical case when the second condition of the corollary is
satisfied is when k is a maximal prime to p extension of some field k0 ⊂ k. This
is an algebraic extension k|k0 such that all finite subextensions have degree
prime to p and which is maximal with respect to this property. If k0 is perfect or
has characteristic p, we can construct such an extension k by taking the subfield
of a separable closure ks of k0 fixed by a pro-p Sylow subgroup of Gal (ks |k0).
If k0 is none of the above, we may take k to be a maximal prime to p extension
of a perfect closure of k0.

7.3 The norm map
Let K |k be a finite field extension. In this section we construct norm maps
NK |k : K M

n (K ) → K M
n (k) for all n ≥ 0 satisfying the following properties:

1. The map NK |k : K M
0 (K ) → K M

0 (k) is multiplication by [K : k].
2. The map NK |k : K M

1 (K ) → K M
1 (k) is the field norm NK |k : K × → k×.

3. (Projection formula) Given α ∈ K M
n (k) and β ∈ K M

m (K ), one has

NK |k({αK , β}) = {α, NK |k(β)}.
4. (Composition) Given a tower of field extensions K ′|K |k, one has

NK ′|k = NK |k ◦ NK ′|K .
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Furthermore, a reasonable norm map should be compatible (for finite sep-
arable extensions) with the corestriction maps on cohomology via the Galois
symbol. This issue will be discussed in the next section.

Remark 7.3.1 For any norm map satisfying the above properties (1)–(3) the
composite maps NK |k ◦ iK |k : K M

n (k) → K M
n (k) are given by multiplication

with the degree [K : k] for all n. This is obvious for n = 0, 1, and the case
n > 1 follows from the case n = 1 by an easy induction using the projection
formula.

In the case when K = k(a) is a simple field extension, the minimal polyno-
mial of a defines a closed point P on P1

k for which K ∼= κ(P). The norm map
NP of the previous section satisfies properties (1) and (2) by virtue of Proposi-
tion 7.2.5, as well as property (3) by Remark 7.2.7, so it is a natural candidate
for NK |k . But even in this case one has to check that the definition depends only
on K and not on the choice of P .

Changing the notation slightly, for a simple finite field extension K = k(a)
define Na|k : K M

n (k(a)) → K M
n (k) by Na|k := NP , where P is the closed point

of P1
k considered above. Given an arbitrary finite field extension K |k, write

K = k(a1, . . . , ar ) for some generators a1, . . . , ar and consider the chain of
subfields

k ⊂ k(a1) ⊂ k(a1, a2) ⊂ · · · ⊂ k(a1, . . . , ar ) = K .

Now put

Na1,...,ar |k := Nar |k(a1,...,ar−1) ◦ · · · ◦ Na2|k(a1) ◦ Na1|k .

Note that by the preceding discussion the maps Na1,...,ar |k satisfy properties
(1)–(4) above, and also the formula Na1,...,ar |k ◦ iK |k = [K : k], by virtue of
Remark 7.3.1.

Theorem 7.3.2 (Kato) The maps Na1,...,ar |k : K M
n (K ) → K M

n (k) do not
depend on the choice of the generating system (a1, . . . , ar ).

The theorem allows us to define without ambiguity

NK |k := Na1,...,ar |k : K M
n (K ) → K M

n (k)

for all n ≥ 0. We have the following immediate corollary:

Corollary 7.3.3 For a k-automorphism σ : K → K one has NK |k ◦ σ = NK |k .

Proof Indeed, according to the theorem Na1,...,ar |k = Nσ (a1),...,σ (ar )|k for every
system of generators (a1, . . . , ar ).
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The rest of this section will be devoted to the proof of Kato’s theorem. A
major step in the proof is the following reduction statement, essentially due to
Bass and Tate.

Proposition 7.3.4 Assume that Theorem 7.3.2 holds for all fields k that have
no nontrivial finite extension of degree prime to p for some prime number p.
Then the theorem holds for arbitrary k.

For the proof we need some auxiliary statements.

Lemma 7.3.5 For an algebraic extension K |k the kernel of the change-of-fields
map iK |k : K M

n (k) → K M
n (K ) is a torsion group. It is annihilated by the degree

[K : k] in the case of a finite extension.

Proof Considering K M
n (K ) as the direct limit of the groups K M

n (Ki ) for all
finite subextensions k ⊂ Ki ⊂ K we see that it suffices to prove the second
statement. Write K = k(a1, . . . , ar ) for some generators ai . As noted above,
the norm map Na1,...,ar |k satisfies the formula Na1,...,ar |k ◦ iK |k = [K : k], whence
the claim.

Before stating the next lemma, recall the following well-known facts from
algebra (see e.g. Atiyah–Macdonald [1], Chapter 8). Given a finite field exten-
sion K |k and an arbitrary field extension L|k, the tensor product K ⊗k L is
a finite dimensional (hence Artinian) L-algebra, and as such decomposes as
a finite direct sum of local L-algebras R j in which the maximal ideal M j is
nilpotent. Let e j be the smallest positive integer with M

e j

j = 0. In the case when
K = k(a) is a simple field extension, the e j correspond to the multiplicities of
the irreducible factors in the decomposition of the minimal polynomial f ∈ k[t]
of a over L . In particular, for K |k separable all the e j are equal to 1.

Lemma 7.3.6 In the above situation, write K = k(a1, . . . , ar ) with suitable
ai ∈ K . Denote by L j the residue field R j/M j and by p j : L ⊗k K → L j the
natural projections. Then the diagram

K M
n (K )

Na1 ,...,ar |k−−−−→ K M
n (k)

⊕ iL j |K
� �iL|k

m⊕
j=1

K M
n (L j )

� e j Np j (a1),...,p j (ar )|L−−−−−−−−−−→ K M
n (L)

commutes.

Proof By the discussion above, for r = 1 we are in the situation of
Lemma 7.2.6 and thus the statement has been already proven (modulo a
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straightforward identification of the ei with the ramification indices of the cor-
responding valuations on k(t)). We prove the general case by induction on r .
Write k(a1) ⊗k L ∼= ⊕R j for some local L-algebras R j , and decompose the
finite dimensional L-algebra K ⊗k(a1) R j as K ⊗k(a1) R j = ⊕Ri j for some Ri j .
Note that K ⊗k L ∼= ⊕i, j Ri j . Write L j (resp. Li j ) for the residue fields of
the L-algebras R j (resp. Ri j ), and similarly e j and ei j for the corresponding
nilpotence indices. In the diagram

K M
n (K )

Na2 ,...,ar |k(a1)−−−−−−→ K M
n (k(a1))

Na1 |k−−−−→ K M
n (k)

⊕ iLi j |K
� ⊕ iL j |k(a1)

� �iL|k

⊕
i, j

K M
n (Li j )

⊕
j
�
i

(ei j e
−1
j )Npi j (a2),...,pi j (ar )|L j

−−−−−−−−−−−−−−−→ ⊕
j

K M
n (L j )

� e j Np j (a1)|L−−−−−−→ K M
n (L)

both squares commute by the inductive hypothesis. The lemma follows.

Proof of Proposition 7.3.4 Write K = k(a1, . . . , ar ) = k(b1, . . . , bs) in two
different ways. Let � ⊂ K M

n (K ) be the subgroup generated by elements of the
form Na1,...,ar |k(α) − Nb1,...,bs |k(α) for some α ∈ K M

n (K ). Our job is to prove
� = 0. Consider the diagram of the previous lemma with L = k̄, an algebraic
closure of k. Then L j

∼= L for all j and in the bottom row we have a sum of
identity maps. Considering the similar diagram for Nbs ,...,bs |k we get an equal-
ity ik̄|k ◦ Na1,...,ar |k = ik̄|k ◦ Nb1,...,bs |k , whence � ⊂ ker(ik̄|k). We thus conclude
from Lemma 7.3.5 that � is a torsion group. Denoting by �p its p-primary
component it is therefore enough to show that �p = 0 for all prime numbers p.
Fix a prime p, and let L be a maximal prime to p extension of k (cf.
Remark 7.2.11). As all finite subextensions of L|k have degree prime to p, an
application of Lemma 7.3.5 shows that the restriction of iL|k to �p is injective.
On the other hand, the assumption of the proposition applies to L and hence the
map � e j Np j (a1),...,p j (ar )|L of Lemma 7.3.6 does not depend on the ai . Therefore
iL|K (�p) = 0, which concludes the proof.

For the rest of this section p will be a fixed prime number, and k will always
denote a field having no nontrivial finite extensions of degree prime to p.

Concerning such fields, the following easy lemma will be helpful.

Lemma 7.3.7 Let K |k be a finite extension.

1. The field K inherits the property of having no nontrivial finite extension
of degree prime to p.

2. If K �= k, there exists a subfield k ⊂ K1 ⊂ K such that K1|k is a normal
extension of degree p.
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Proof For the first statement let L|K be a finite extension of degree prime to
p. If L|k is separable, take a Galois closure L̃ . By our assumption on k, the fixed
field of a p-Sylow subgroup in Gal (L̃|k) must equal k, so that L = K . If K |k is
purely inseparable, then L|K must be separable, so L|k has a subfield L0 �= k
separable over k unless L = K . Finally, if K |k is separable but L|K is not,
we may assume the latter to be purely inseparable. Taking a normal closure L̃ ,
the fixed field of Autk(L̃) defines a nontrivial prime to p extension of k unless
L = K .

The second statement is straightforward in the case when the extension K |k
is purely inseparable, so by replacing K with the maximal separable subex-
tension of K |k we may assume that K |k is a separable extension. Consider
the Galois closure K̃ of K . The first statement implies that the Galois group
G := Gal (K̃ |k) is a p-group. Now let H be a maximal subgroup of G contain-
ing Gal (K̃ |K ). By the theory of finite p-groups (see e.g. Suzuki [1], Corollary
of Theorem 1.6), it is a normal subgroup of index p in G, so we may take K1

to be its fixed field.

We now start the proof of Theorem 7.3.2 with the case of a degree p extension,
still due to Bass and Tate.

Proposition 7.3.8 Assume that [K : k] = p, and write K = k(a) for some
a ∈ K . The norm maps Na|k : K M

n (k(a)) → K M
n (k) do not depend on the choice

of a.

Proof Let P be the closed point of P1
k defined by the minimal polynomial of

a. According to Corollary 7.2.10, the group K M
n (K ) is generated by symbols

of the form {αK , b}, with α ∈ K M
n−1(k) and b ∈ K ×. We compute using the

projection formula for NP (Remark 7.2.7) and Proposition 7.2.5:

Na|k({αK , b}) = NP ({αK , b}) = {α, NP (b)} = {α, NK |k(b)}.

Here the right-hand side does not depend on a, as was to be shown.

Henceforth the notation NL|K : K M
n (L) → K M

n (K ) will be legitimately used
for extensions of degree p (and for those of degree 1).

Next we need the following compatibility statement with the tame symbol
(which does not concern k, so there is no assumption on the fields involved).
For a generalization, see Proposition 7.4.1 in the next section.

Proposition 7.3.9 Let K be a field complete with respect to a discrete valuation
v with residue field κ , and K ′|K a normal extension of degree p. Denote by κ ′

the residue field of the unique extension v′ of v to K ′. Then for all n > 0 the
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diagram

K M
n (K ′)

∂M
K ′−−−−→ K M

n−1(κ ′)

NK ′ |K

� �Nκ′ |κ

K M
n (K )

∂M
K−−−−→ K M

n−1(κ)

commutes.

The notes of Sridharan [1] have been helpful to us in writing up the following
proof. We begin with a special case.

Lemma 7.3.10 The compatibility of the proposition holds for symbols of the
form α = {a′, a2, . . . , an} ∈ K M

n (K ′), with a′ ∈ K ′× and ai ∈ K ×.

Proof Using Lemma 7.1.2, multilinearity and graded-commutativity we may
assume that v(ai ) = 0 for i > 2 and 0 ≤ v(a′), v(a2) ≤ 1. Setting f := [κ ′ : κ]
and denoting by e the ramification index of v′|v we have the formula

f · v′ = v ◦ NK ′|K (8)

(see Appendix, Proposition A.6.8 (2)). Now there are four cases to consider.

Case 1 v′(a′) = v(a2) = 0. Then v(NK ′|K (a′)) = 0, so using the projection for-
mula we obtain ∂M

K (NK ′|K (α)) = 0, and likewise ∂M
K ′ (α) = 0.

Case 2 v′(a′) = 1, v(a2) = 0. In this case Remark 7.3.1 implies that with the
usual notations Nκ ′|κ (∂M

K ′ (α)) = f {ā2, . . . , ān}. On the other hand, from (8) we
infer that NK ′|K (a′) = uπ f for some unit u and local parameterπ for v. So using
the projection formula and the multilinearity of symbols we get NK ′|K (α) =
f {π, a2, . . . , an} + {u, a2, . . . , an}. This element has residue f {ā2, . . . , ān} as
well.

Case 3 v′(a′) = 0, v(a2) = 1. Then a2 = u′π ′e for some unit u′ and local
parameter π ′ for v′, so using graded-commutativity and multilinearity of
symbols we obtain ∂M

K ′ (α) = −e{ā′, ā3, . . . , ān}. This element has norm
−e{Nκ ′|κ (ā′), ā3, . . . , ān} by the projection formula. On the other hand,
∂M

K (NK ′|K (α)) = −{NK ′|K (a′), ā3, . . . , ān}. The claim now follows from the
equality NK ′|K (a′) = Nκ ′|κ (ā′)e, which is easily verified in both the unramified
and the totally ramified case.

Case 4 v′(a′) = v(a2) = 1. Write a′ = π ′, a2 = π , π = u′π ′e, NK ′|K (π ′) =
uπ f as above. Then using multilinearity and Lemma 7.1.2 we get

∂M
K ′ (α) = ∂M

K ′ ({π ′, u′, a3, . . . , an} + e{π ′,−1, a3, . . . , an})
= {(−1)eū′, ā3, . . . , ān}
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which has norm {(−1)e f Nκ ′|κ (ū′), ā3, . . . , ān}. On the other hand, using the
projection formula we obtain as above

∂M
K (NK ′|K (α)) = ∂M

K ({uπ f , π, a3, . . . , an}) =
=∂M

K (−{π, u, a3, . . . , an} + f {π,−1, a3, . . . , an})={(−1) f ū−1, ā3, . . . , ān}.
So it is enough to see (−1)e f Nκ ′|κ (ū′) = (−1) f ū−1. Notice that in the above
computations we are free to modify π and π ′ by units. In particular, in the
case when e = 1 and f = p we may take π = π ′, so that u′ = u = 1 and the
equality is obvious. In the case e = p, f = 1 the element π ′ is a root of an
Eisenstein polynomial x p + ap−1x p−1 + · · · + a0 and we may take π = a0.
Then u = (−1)p and ū′ = −1, so we are done again.

Proof of Proposition 7.3.9 Let α be an element of K M
n (K ′), and set

δ := ∂M
K (NK ′|K (α)) − Nκ ′|κ (∂M

K ′ (α)). We prove δ = 0 by showing that δ is anni-
hilated both by some power of p and by some integer prime to p.

By Corollary 7.2.10, if K (p) denotes a maximal prime to p extension of K ,
the image of α in K M

n (K ′K (p)) is a sum of symbols of the shape as in Lemma
7.3.10 above (for the extension K K (p)|K (p)). These symbols are all defined at
a finite level, so the lemma enables us to find some extension L|K of degree
prime to p so that

δL := ∂M
L (NL K ′|L (iL K ′|K ′ (α))) − Nκ ′

L |κL (∂M
L K ′ (iL K ′|K ′ (α))) = 0.

Now since K ′|K has degree p, we have L K ′ ∼= L ⊗K K ′. This implies that the
valuations v′|v and their unique extensions v′

L |vL have the same ramification
index e, and hence by Remark 7.1.6 (2) the tame symbol ∂M

L K ′ is the e-th multiple
of ∂M

L on symbols coming from K M
n (L), just like the tame symbol ∂M

K ′ is the e-th
multiple of ∂M

K on iK ′|K (K M
n (K )). On the other hand, by Lemma 7.3.6 the norm

map NL K ′|L is the base change of NK ′|K to K M
n (L K ′). It follows from these

remarks that we have iL|K (δ) = δL , and hence iL|K (δ) = 0. Thus [L : K ]δ = 0
by Lemma 7.3.5.

To see that δ is annihilated by some power of p, we look at the base change
K ′ ⊗K K ′. Assume first that K ′|K is separable. Then it is Galois by assumption,
so K ′ ⊗K K ′ splits as a product of p copies of K ′. Therefore it is obvious that
the required compatibility holds for α after base change to K ′. But now there
is a difference between the unramified and the ramified case. In the unramified
case the residue fields in the copies of K ′ all equal κ , so the compatibilities of
Remark 7.1.6 (2) and Lemma 7.3.6 apply with all ramification indices equal to
1, and we conclude as above that iK ′|K (δ) = 0, hence pδ = 0. In the ramified
case the said compatibilities apply with ramification indices equal to p on the
level of residue fields, so we conclude piK ′|K (δ) = 0 and p2δ = 0. Finally, in
the case when K ′|K is purely inseparable, the tensor product K ′ ⊗K K ′ is a
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local ring with residue field κ ′ and nilpotent maximal ideal of length p. After
base change to K ′ we therefore arrive at a diagram where both norm maps are
identity maps, so the required compatibility is a tautology. Remark 7.1.6 (2) and
Lemma 7.3.6 again apply with ramification indices equal to p, so we conclude
as in the previous case that p2δ = 0.

Corollary 7.3.11 Let L|k be a normal extension of degree p, and let P be a
closed point of the projective line P1

k . Then the diagram

K M
n (L(t))

⊕ ∂Q−−−−→ ⊕
Q �→P

K M
n−1(κ(Q))

NL(t)|k(t)

� �� Nκ(Q)|κ(P)

K M
n (k(t))

∂P−−−−→ K M
n−1(κ(P))

commutes for all n > 0.

Proof Denote by K̂ P (resp. L̂ Q) the completions of k(t) (resp. L(t)) with
respect to the valuations defined by P and Q. In the diagram

K M
n (L(t)) −−−−→ ⊕

Q �→P
K M

n (L̂ Q)
⊕ ∂Q−−−−→ ⊕

Q �→P
K M

n−1(κ(Q))

NL(t)|k(t)

� �� NL̂ Q |K̂ P

�� Nκ(Q)|κ(P)

K M
n (k(t)) −−−−→ K M

n (K̂ P )
∂P−−−−→ K M

n−1(κ(P))

(9)

the right square commutes by the above proposition. Commutativity of the left
square follows from Lemma 7.2.6 (or Lemma 7.3.6), noting that L(t) ⊗k(t) K̂ P

is a direct product of fields according to Proposition A.6.4 (1) of the Appendix
(and the remark following it). The corollary follows.

Now comes the crucial step in the proof of Theorem 7.3.2.

Lemma 7.3.12 Let L|k be a normal extension of degree p, and let k(a)|k be
a simple finite field extension. Assume that L and k(a) are both subfields of
some algebraic extension of k, and denote by L(a) their composite. Then for
all n ≥ 0 the diagram

K M
n (L(a))

Na|L−−−−→ K M
n (L)

NL(a)|k(a)

� NL|k

�
K M

n (k(a))
Na|k−−−−→ K M

n (k)

commutes.
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Proof Let P (resp. Q0) be the closed point of P1
k (resp. P1

L ) defined by
the minimal polynomial of a over k (resp. L). Given α ∈ K M

n (L(a)), we
have Na|L (α) = −∂M

∞ (β) for some β ∈ K M
n+1(L(t)) satisfying ∂M

Q0
(β) = α and

∂M
Q (β) = 0 for Q �= Q0. Corollary 7.3.11 yields

∂M
P (NL(t)|k(t)(β)) =

∑
Q �→P

Nκ(Q)|κ(P)(∂
M
Q (β)) = Nκ(Q0)|κ(P)(α),

and, by a similar argument, ∂M
P ′ (NL(t)|k(t)(β)) = 0 for P �= P ′. Hence by defini-

tion of Na|k we get

Na|k(NL(a)|k(a)(α)) = −∂M
∞ (NL(t)|k(t)(β)).

On the other hand, since the only point of P1
L above ∞ is ∞, another application

of Corollary 7.3.11 gives

∂M
∞ (NL(t)|k(t)(β)) = NL|k(∂M

∞ (β)).

Hence finally

Na|k(NL(a)|k(a)(α)) = −NL|k(∂M
∞ (β)) = NL|k(Na|L (α)).

At last, we come to:

Proof of Theorem 7.3.2 As noted before, it is enough to treat the case when k
has no nontrivial extension of degree prime to p for a fixed prime p. Let pm be
the degree of the extension K |k. We use induction on m, the case m = 1 being
Proposition 7.3.8. Write K = k(a1, . . . , ar ) = k(b1, . . . , bs) in two different
ways. By Lemma 7.3.7 (2) the extension k(a1)|k contains a normal subfield
k(ā1) of degree p over k. Applying Lemma 7.3.12 with a = a1 and L = k(ā1)
yields Na1|k = Nā1|k ◦ Na1|k(ā1). So by inserting ā1 in the system of the ai and
reindexing we may assume that [k(a1) : k] = p, and similarly [k(b1) : k] = p.
Write K0 for the composite of k(a1) and k(b1) in K , and choose elements ci

with K = K0(c1, . . . , ct ). Note that by Lemma 7.3.7 (1) the fields k(a1) and
k(b1) have no nontrivial prime to p extensions, so we may apply induction to
conclude that

Na2,...,ar |k(a1) = NK0|k(a1) ◦ Nc1,...,ct |K0 and Nb2,...,bs |k(b1) = NK0|k(b1) ◦ Nc1,...,ct |K0 .

On the other hand, Lemma 7.3.12 for a = a1 and L = k(b1) implies

Na1|k ◦ NK0|k(a1) = Nb1|k ◦ NK0|k(b1).

The above equalities imply Na1,...,ar |k = Nb1,...,bs |k , as desired.
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7.4 Reciprocity laws
As an application of the existence of norm maps, we now prove two theorems
which both go under the name ‘reciprocity law’, though they are quite different.
The first one will be the general form of the Weil reciprocity law. For its proof we
need a compatibility between the tame symbol and the norm map (generalizing
Proposition 7.3.9) which we explain first.

Proposition 7.4.1 Let K be a field complete with respect to a discrete valuation
v with residue field κ . Let K ′|K be a finite extension, and denote by κ ′ the residue
field of the unique extension v′ of v to K ′. Then for all n > 0 the diagram

K M
n (K ′)

∂M
K ′−−−−→ K M

n−1(κ ′)

NK ′ |K

� �Nκ′ |κ

K M
n (K )

∂M
K−−−−→ K M

n−1(κ)

commutes.

Proof We may split up K ′|K into a separable and a purely inseparable exten-
sion. The latter can be written as the union of a tower of radical extensions of
degree equal to the characteristic of K . By applying Proposition 7.3.9 to each
of these extensions we reduce to the case when K ′|K is a separable extension.

We next fix a prime number p, and let K (p) denote a maximal prime to p
extension of K . Then K (p) ⊗K K ′ splits up into a product of finite separable
extensions Ki |K (p) with [Ki : K (p)] a power of p. Using Lemma 7.3.7 induc-
tively, we may write Ki |K (p) as the union of a tower of normal extensions of
degree p. A repeated application of Proposition 7.3.9 therefore implies the claim
for Ki |K (p). Arguing as in the proof of that proposition, we obtain that for each
α ∈ K M

n (K ′) the element δ = ∂M
K (NK ′|K (α)) − Nκ ′|κ (∂M

K ′ (α)) is annihilated by
some integer prime to p. As p was arbitrary here, the proof is complete.

Corollary 7.4.2 Assume moreover that there exist local parameters π and π ′

for v and v′, respectively, satisfying (−π ′)e = −π , where e is the ramification
index. Then for all n > 0 the diagram

K M
n (K ′)

sM
π ′−−−−→ K M

n (κ ′)

NK ′ |K

� �e Nκ′ |κ

K M
n (K )

sM
π−−−−→ K M

n (κ)

commutes.
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Note that the assumption of the corollary is satisfied in the cases when the
ramification is tame (see Appendix, Proposition A.6.8 (4)) or the extension is
purely inseparable.

Proof By Remark 7.1.6 (1) and the projection formula we have

sM
π (NK ′|K (α)) = ∂M

K ({−π, NK ′|K (α)}) = ∂M
K (NK ′|K ({−π, α}))

for all α ∈ K M
n (K ′). By our assumption on π and Proposition 7.4.1, the last

term here equals e Nκ ′|κ (∂M
K ′ ({−π ′, α})) = e Nκ ′|κ (s M

π ′ (α)), as desired.

The proposition has the following globalization.

Corollary 7.4.3 Let K be a field equipped with a discrete valuation v with
residue field κ(v), and let K ′|K be a finite extension. Assume that the integral
closure of the valuation ring A of v in K ′ is a finite A-module, and for an
extension w of v to K ′ denote by κ(w) the corresponding residue field. Then
for all n > 0 the diagram

K M
n (K ′)

⊕∂M
w−−−−→ ⊕

w|v
K M

n−1(κ(w))

NK ′ |K

� ��Nκ(w)|κ(v)

K M
n (K )

∂M
K−−−−→ K M

n−1(κ(v))

commutes, where the sum is over the finitely many extensions w of v.

Proof This is proven by exactly the same argument as Corollary 7.3.11: one
has a diagram analogous to diagram (9) considered there, whose right square
commutes by Proposition 7.4.1, and the left square by Proposition 7.3.6.

We may now extend the Weil reciprocity law to the case of curves.

Proposition 7.4.4 (Weil reciprocity law for a curve) Let C be a smooth pro-
jective curve over k. For a closed point P let ∂M

P : K M
n (k(C)) → K M

n−1(κ(P))
be the tame symbol coming from the valuation on k(C) defined by P. Then for
all α ∈ K M

n (k(C)) we have∑
P∈C0

(Nκ(P)|k ◦ ∂M
P )(α) = 0.
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Proof Take a finite morphismφ : C → P1 defined over k. It induces a diagram

K M
n (k(C))

⊕∂M
Q−−−−→ ⊕

Q∈C0

K M
n−1(κ(Q))

� Nκ(Q)|k−−−−→ K M
n−1(k)

Nk(C)|k(t)

� �⊕
P

�
Q �→P

Nκ(Q)|κ(P)

�id

K M
n (k(t))

⊕∂M
P−−−−→ ⊕

P∈P1
0

K M
n−1(κ(P))

� Nκ(P)|k−−−−→ K M
n−1(k),

where commutativity of the left square follows from Corollary 7.4.3 (applicable
in view of Remark A.6.5 of the Appendix), and that of the right square from
property (4) of the norm map. According to Corollary 7.2.4, the lower row is a
complex, hence so is the upper row by commutativity of the diagram.

Remark 7.4.5 A special case of Weil’s reciprocity law often occurs in the
following form. For a divisor D = ∑

n P P ∈ Div(C) and a rational function
f ∈ k(C) such that n P = 0 at all poles of f put

f (D) :=
∏

P

Nκ(P)|k( f (P))n P ,

where f (P) is defined as the image of f in κ(P).
Now suppose f and g are rational functions on C such that div( f ) and div(g)

have disjoint support, i.e. no closed point of C has a nonzero coefficient in both
div( f ) and div(g). Then by applying the case n = 2 of the Weil reciprocity law
to the symbol { f, g} and using the explicit description of Example 7.1.5 one
obtains the simple formula

f (div(g)) = g(div( f )).

The second reciprocity law we discuss in this section is due to Rosset and Tate,
and only concerns K2. Let f, g ∈ k[t] be nonzero relatively prime polynomials.
Define the Rosset–Tate symbol ( f |g) ∈ K M

2 (k) by

( f |g) := st

( ∑
{P: g(P)=0}

(ψM
P ◦ ∂M

P )({g, f })
)
, (10)

where st is a specialization map at 0 and ψM
P is the coresidue map introduced

before Corollary 7.2.3. For g constant we set ( f |g) := 0.
The symbol is additive in both variables, in the sense that ( f |g1g2) =

( f |g1) + ( f |g2) and ( f1 f2|g) = ( f1|g) + ( f2|g). The following lemma
describes it explicitly.

Lemma 7.4.6 The Rosset–Tate symbol has the following properties.

1. If g is constant or g = t , then ( f |g) = 0.
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2. If g is a nonconstant irreducible polynomial different from t and a is a
root of g in some algebraic closure of k, then

( f |g) = Nk(a)|k({−a, f (a)}).

Proof In statement (1) we only have to treat the case g = t . In this case the
sum in (10) defining ( f |g) has only one term coming from P = 0. Apply-
ing Corollary 7.2.3 with α = {t, f } yields {t, f } = (ψM

0 ◦ ∂M
0 )({t, f }), so that

(t | f ) = st ({t, f (0)}) = 0.
For (2), the only closed point P of A1

k contributing to the sum is that defined
by the polynomial g. Let a be the image of g in κ(P), so that κ(P) = k(a).
Since {−a, f (a)} = st ({t − a, f (a)}) (where the specialization takes place in
κ(P)(t)), applying Corollary 7.4.2 to the unramified extension κ(P)((t))|k((t))
yields

Nκ(P)|k({−a, f (a)}) = st (Nκ(P)(t)|k(t)({t − a, f (a)})).
Therefore the claim is a consequence of the equality

Nκ(P)(t)|k(t)({t − a, f (a)}) = (ψM
P ◦ ∂M

P )({g, f }).
This equivalently means Nκ(P)(t)|k(t)({t − a, f (a)}) = ψM

P ( f (a)), which in turn
follows from Corollary 7.2.3 applied to α = Nκ(P)(t)|k(t)({t − a, f (a)}), not-
ing that ∂M

P (Nκ(P)(t)|k(t)({t − a, f (a)})) = Nκ(P)|κ(P)( f (a)) = f (a) according
to Corollary 7.4.3 applied with K = k(t), K ′ = κ(P)(t) and v the valuation
defined by P , and moreover st−1 (Nκ(P)(t)|k(t)({t − a, f (a)})) = 0 by Coroll-
ary 7.4.2.

The second statement of the lemma implies:

Corollary 7.4.7 The symbol ( f |g) depends only on the image of f in the quo-
tient ring k[t]/(g).

Remark 7.4.8 The properties (1) and (2) of the lemma together with the addi-
tivity property characterize the symbol. In fact, Rosset and Tate [1] defined
their symbol in such an explicit way, with a slight difference: according to their
definition, the right-hand side of the formula in property (2) is Nk(a)|k({a, f (a)}).

To state the main theorem on the Rosset–Tate symbol, introduce the following
notation for polynomials f ∈ k[t]: if f = antn + an−1tn−1 + · · · + amtm with
anam �= 0, put �( f ) := an (the leading coefficient) and c( f ) := am (the last
nonzero coefficient). They depend multiplicatively on f .

Theorem 7.4.9 (Rosset–Tate reciprocity law) Let f, g ∈ k[t] be nonzero rel-
atively prime polynomials. Then

( f |g) + {c( f ), c(g)} = (g| f ) + {�( f ), �(g)}.
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Proof By Corollary 7.2.3 we have

{ f, g} = st−1 ({ f, g})k(t) +
∑

{P: f (P)=0}
(ψM

P ◦ ∂M
P )({ f, g}) +

∑
{P: g(P)=0}

(ψM
P ◦ ∂M

P )({ f, g}),

so that∑
{P: g(P)=0}

(ψM
P ◦ ∂M

P )({g, f }) + { f, g} = st−1 ({ f, g})k(t) +
∑

{P: f (P)=0}
(ψM

P ◦ ∂M
P )({ f, g}).

By applying the specialization map st at 0, we obtain

( f |g) + st ({ f, g}) = st−1 ({ f, g}) + (g| f ).

Finally, writing f = c( f )tm f̃ and g = c(g)t l g̃ with f̃ (0) = g̃(0) = 1 we get
st ({ f, g}) = {c( f ), c(g)} by definition of st (Proposition 7.1.4). A similar com-
putation shows st−1 ({ f, g}) = {�( f ), �(g)}, and the theorem follows.

As a corollary, we obtain a bound on the length of the symbol ( f |g).

Corollary 7.4.10 Let f and g be relatively prime polynomials. Then the symbol
( f |g) ∈ K M

2 (k) is of length at most deg (g), i.e. it is a sum of at most deg (g)
terms of the form {ai , bi }.

Proof The proof goes by induction on the degree of g. The degree zero case
means ( f |g) = 0, which holds by Lemma 7.4.6 (1). The same statement and
additivity of the symbol allows one to assume in the higher degree case that g is
monic. Corollary 7.4.7 allows us to assume deg ( f ) < deg (g), after performing
Euclidean division of g by f . Theorem 7.4.9 then shows ( f |g) + {c( f ), c(g)} =
(g| f ). By the inductive hypothesis the symbol (g| f ) has length at most deg ( f ),
so that ( f |g) has length at most deg ( f ) + 1 ≤ deg (g).

Corollary 7.4.11 Let K |k be a finite field extension, and let a, b be elements
of K ×. Then the symbol NK |k({a, b}) ∈ K M

2 (k) has length at most [k(a) : k].

Proof By the projection formula, we have

NK |k({a, b}) = Nk(a)|k(NK |k(a)({a, b})) = Nk(a)|k({a, NK |k(a)(b)}).
Let g be the minimal polynomial of −a over k. Then NK |k(a)(b) = f (−a)
for some polynomial f ∈ k[t] and Nk(a)|k({a, NK |k(a)(b)}) = ( f |g) by
Lemma 7.4.6 (2), so the previous corollary applies.

Remark 7.4.12 The Euclidean division process by which we have proven
Corollary 7.4.10 also provides an explicit algorithm for computing the sym-
bol NK |k({a, b}).

The main motivation for Rosset and Tate to prove their reciprocity law was
the following application to central simple algebras.
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Proposition 7.4.13 Let p be a prime number, and let k be a field of charac-
teristic prime to p containing a primitive p-th root of unity ω. Every central
simple k-algebra A of degree p is Brauer equivalent to a tensor product of at
most (p − 1)! cyclic k-algebras of degree p.

Note that the proposition proves a special case of the (surjectivity part of the)
Merkurjev–Suslin theorem, and moreover it yields a bound on the length of a
symbol of order p.

The proof will use the fact that norm maps on K-theory and corestrictions in
Galois cohomology are compatible via the Galois symbol. Let’s admit this for
the moment; a proof will be given in the next section (Proposition 7.5.5).

Proof If A is split, the statement is trivial. If A is nonsplit, then it is a division
algebra split by a degree p extension K |k. As k has characteristic prime to p by
assumption, the extension K |k is separable. Denote by K̃ |k a Galois closure.
Note that Gal (K̃ |k) is a subgroup of the degree p symmetric group Sp, so it has
order dividing p!. In particular, each p-Sylow subgroup P ⊂ Gal (K̃ |K ) has
order p, and its fixed field L := K̃ P has degree at most (p − 1)! over k. Choose
an integer m > 1 with [L : k]m ≡ 1 mod p. Since A has period p, the algebra
B := A⊗m satisfies [L : k][B] = [A] in Br (k). Moreover, since A ⊗k L is split
by the extension K̃ |L , so does B ⊗k L . Hence by Corollary 4.7.7 there exist
a, b ∈ L× with B ⊗k L ∼= (a, b)ω. We have

[A] = [L : k][B] = CorL
k ([B ⊗k L])=CorL

k (h2
L ,p({a, b}))=h2

k,p(NL|k({a, b}))

using Propositions 4.7.1 and 7.5.5. By the previous corollary, the symbol
NL|k({a, b}) has length at most [L : k] ≤ (p − 1)!, whence the proposition.

Remark 7.4.14 The case p = 2 gives back Corollary 1.2.1. In this case, the
bound (p − 1)! is trivially optimal. However, for p > 2 it may be improved to
(p − 1)!/2 in the presence of a p-th root of unity (see Exercise 10). We know
little about the optimality of the latter bound. In fact, the following famous
question is attributed to Albert: Is every degree p division algebra isomorphic
to a cyclic algebra? A positive answer for p = 3 follows from the above bound
(the result is originally due to Wedderburn [3]; see Exercise 9), but the question
is open for p > 3. Albert proposed conjectural counterexamples for p = 5,
which were shown to be actually cyclic in the paper Rowen [3], where new
putative counterexamples are put forward. A positive answer to the question in
characteristic 0 would imply the same in positive characteristic (see Chapter 9,
Exercise 4). Positive answers are known in important special cases, such as
arithmetic fields (see Corollary 6.3.10 as well as Remarks 6.5.5 and 6.5.6).
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7.5 Applications to the Galois symbol
In this section we collect some useful elementary remarks about the Galois sym-
bol and the Bloch–Kato conjecture. To begin with, we examine compatibility
properties for the Galois symbol.

Proposition 7.5.1 Let K be a field equipped with a discrete valuation v with
residue field κ . Assume char (K ) = char (κ), and let m be an integer invertible
in K . Then for all n > 0 the diagram

K M
n (K )

∂M−−−−→ K M
n−1(κ)

hn
K ,m

� hn−1
κ,m

�
H n(K , µ⊗n

m )
∂n
v−−−−→ H n−1(κ, µ⊗(n−1)

m )

commutes, where ∂n
v is the residue map introduced in Chapter 6, Section 6.8.

Proof Without loss of generality we may assume K is complete with respect
to v. The case n = 1 follows immediately from the construction of the maps con-
cerned. In the general case it suffices, as usual, to consider symbols of the shape
{a, u2, . . . , un} ∈ K M

n (K ), where the ui are units for v. Corollary 7.1.10 yields
a well-defined section λm : K M

n−1(κ)/m → K M
n−1(K )/m to any specialization

map modulo m, sending {u2, . . . , un} ∈ K M
n−1(κ) to {u2, . . . , un} ∈ K M

n−1(K ),
where the ui are arbitrary liftings ui of the ui to units in K . Moreover, the
diagram

K M
n−1(κ)/m

λm−−−−→ K M
n−1(K )/m

hn−1
κ,m

� hn−1
K ,m

�
H n−1(κ, µ⊗(n−1)

m )
Inf−−−−→ H n−1(K , µ⊗(n−1)

m )

commutes, as one verifies using the explicit description of the Kummer maps
h1

K ,m and h1
κ,m in terms of cocycles (see e.g. Remark 3.2.4). The proposition

now follows by induction from the case n = 1 via Lemma 6.8.4 (applied with
p = 1, q = n − 1, G the absolute Galois group of K , H the inertia group of v,
A = µm and B = µ⊗(n−1)

m ).

Remark 7.5.2 The restriction char (K ) = char (κ) has been imposed here for
the sole reason that in Chapter 6 we have only defined the maps ∂n

v in this
case. But it is possible to define them for an arbitrary discrete valuation and the
proposition holds in general.
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As a corollary, we get the compatibility between specialization maps.

Corollary 7.5.3 Assume moreover that t is a local parameter for v. Then the
diagram of specialization maps

K M
n (K )

sM
t−−−−→ K M

n (κ)

hn
K ,m

� hn
κ,m

�
H n(K , µ⊗n

m )
sn

t−−−−→ H n(κ, µ⊗n
m )

commutes, where sn
t is the specialization map introduced in Chapter 6,

Section 6.8.

Proof This follows from the proposition in view of Remark 7.1.6 (1) and the
construction of sn

t in Construction 6.8.6.

Another immediate corollary is the compatibility between Milnor’s and Fad-
deev’s exact sequences.

Corollary 7.5.4 The diagram with exact rows

0 → K M
n (k) → K M

n (k(t))
⊕∂M

P−−−−→ ⊕
P∈P1

0\{∞}
K M

n−1(κ(P)) → 0

hn
k,m

� hn
k(t),m

� �⊕ hn−1
κ(P),m

0 → H n(k, µ⊗n
m ) →H n(k(t), µ⊗n

m )
⊕∂n

P−−−−→ ⊕
P∈P1

0\{∞}
H n−1(κ(P), µ⊗(n−1)

m ) → 0

commutes, where the upper row is the sequence of Theorem 7.2.1, and the
lower row that of Corollary 6.9.3.

Finally, we give the already announced compatibility between norm maps in
K-theory and corestrictions in cohomology.

Proposition 7.5.5 Let K |k be a finite separable extension, and m an integer
invertible in k. Then for all n ≥ 0 the diagram

K M
n (K )

NK |k−−−−→ K M
n (k)

hn
K ,m

� hn
k,m

�
H n(K , µ⊗n

m )
Cor−−−−→ H n(k, µ⊗n

m )

commutes.
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Proof By property (4) of the norm map and the similar property of corestric-
tions (which follows easily from their construction), we reduce to the case when
K = k(a) is a simple field extension. In this case NK |k = −∂M

∞ ◦ ψP , where P
is the closed point P1

k defined by the minimal polynomial of a. By Corollary
6.9.4, a similar formula holds for the corestriction map. The two are compatible
via the Galois symbol by virtue of Corollary 7.5.4.

We now turn to applications to the Bloch–Kato conjecture. The first one is
an immediate consequence of Corollary 7.5.4.

Proposition 7.5.6 (Bloch) Let m, n > 0 be integers, with m invertible in k.

1. The Galois symbol

hn
k(t),m : K M

n (k(t))/m → H n(k(t), µ⊗n
m )

is injective (resp. surjective or bijective) if and only if the Galois symbols

hn
k,m : K M

n (k)/m → H n(k, µ⊗n
m ) and hn−1

L ,m : K M
n−1(L)/m → H n−1(L , µ⊗(n−1)

m )

have the same property for all finite simple extensions L|k.
2. Assume that hn−1

L ,m : K M
n−1(L)/mK M

n−1(L) → H n−1(L , µ⊗(n−1)
m ) is bijective

for all finite simple extensions L|k. Then

ker(hn
k,m) ∼= ker(hn

k(t),m) and coker (hn
k,m) ∼= coker (hn

k(t),m).

This gives a means for proving bijectivity of the Galois symbol for k(t) if the
bijectivity is already known for fields of smaller transcendence degree.

Here is another (unpublished) criterion of Bloch for the surjectivity of the
Galois symbol.

Proposition 7.5.7 (Bloch) Let m, n > 0 be integers, with m invertible in k.
Assume that

� the Galois symbol hn−1
L ,m : K M

n−1(L)/mK M
n−1(L) → H n−1(L , µ⊗(n−1)

m ) is an
isomorphism for all finitely generated extensions L|k;

� the Galois symbol hn
k,m : K M

n (k)/mK M
n (k) → H n(k, µ⊗n

m ) is surjective.

Then the following statements are equivalent :

1. The Galois symbol hn
K ,m is surjective for all fields K containing k.

2. For all field extensions K |k equipped with a discrete valuation v the restric-
tion map H n(K , µ⊗n

m ) → H n(K̂v, µ
⊗n
m ) is surjective, where K̂v stands for

the completion of K with respect to v.

In particular, the two statements are equivalent in the case when n = 2 and
cd (k) ≤ 1.
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Proof For (1) ⇒ (2) it is enough to establish the surjectivity of the map
K M

n (K )/mK M
n (K ) → K M

n (K̂v)/mK M
n (K̂v) induced by iKv |K , which readily

follows by combining the second sequence in Proposition 7.1.7 for K with
Corollary 7.1.10 for Kv .

For (2) ⇒ (1), note first that the first assumption and part (2) of the pre-
vious corollary yield an isomorphism coker (hn

k,m) ∼= coker (hn
k(t),m). Apply-

ing statement (2) to the completion K̂ P of k(t) with respect to the dis-
crete valuation defined by a closed point P gives the surjectivity of the map
H n(k(t), µ⊗n

m ) → H n(K̂ P , µ
⊗n
m ). By Proposition 6.8.7, the latter group surjects

onto H n(κ(P), µ⊗n
m ) via every specialization map. Taking Corollary 7.5.3 into

account, we thus get a surjection coker (hn
k,m) → coker (hn

κ(P),m). Proceeding
by induction using this statement and part (2) of the previous corollary, we get
surjective maps coker (hn

k,m) → coker (hn
K ,m) for all finitely generated exten-

sions K |k. Finally, one may write an arbitrary extension K |k as a direct limit
of finitely generated fields Ki |k, and obtain coker (hn

K ,m) ∼= lim→ coker (hn
Ki ,m

).

Thus the surjectivity of hn
k,m implies that of hn

K ,m for all extensions K |k.
The last statement of the proposition is obvious, since h1

K ,m is an isomor-
phism for all fields K by Kummer theory, and H 2(k, µ⊗2

m ) vanishes for fields
of cohomological dimension ≤ 1.

Remark 7.5.8 For fields containing a field of cohomological dimension 1 (in
particular, for fields of positive characteristic) we thus get a purely cohomo-
logical reformulation of the surjectivity part of the Merkurjev–Suslin theo-
rem, which in the case of fields containing a primitive m-th root of unity
reduces to an even more suggestive surjectivity statement about the map

mBr (K ) → mBr (Kv). Bloch found this argument in the 1970s well before
the Merkurjev–Suslin theorem was proven. By a result of Tate, however,
the theorem was already known for number fields (see the next section),
so in fact Bloch’s result rephrased the surjectivity of h2

K ,m for all fields K .
For higher n it gives an inductive strategy for proving the Bloch–Kato
conjecture.

We close this section by an important reduction statement due to Tate, which
reduces the proof of the Bloch–Kato conjecture to the case of p-torsion coeffi-
cients. It will be used in the proof of the Merkurjev–Suslin theorem.

Proposition 7.5.9 (Tate) Let m, n > 0 be integers, with m invertible in k.
Assume that the Galois symbol hn−1

k,m is surjective, and that hn
k,p is bijective

for all prime divisors p of m. Then the Galois symbol hn
k,m is bijective.

For the proof we need the following lemma.
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Lemma 7.5.10 Assume k contains a primitive p-th root of unity ω, where p is
a prime invertible in k. Then for all r > 0 we have a commutative diagram

µp ⊗ K M
n−1(k)

{ , }−−−−→ K M
n (k)/pr K M

n (k)

[ω]∪hn−1
k,p

� hn
k,pr

�
H n−1(k, µ⊗n

p )
δn−−−−→ H n(k, µ⊗n

pr ),

where [ω] denotes the class of ω in H 0(k, µp), the upper horizontal map asso-
ciates with a pair (ω, a) the symbol {ω, a} modulo pr , and δn is a so-called
Bockstein homomorphism, i.e. a boundary map coming from the long exact
sequence associated with the sequence

1 → µ⊗n
pr → µ⊗n

pr+1

pr

→ µ⊗n
p → 1 (11)

of Galois modules.

Proof First a word about exact sequence (11). For n = 0 it is none but the
natural exact sequence

0 → Z/pr Z → Z/pr+1Z
pr

→ Z/pZ → 0,

which can be regarded as an exact sequence of Z/pr+1Z-modules via the nat-
ural maps Z/pr+1Z → Z/pr Z and Z/pr+1Z → Z/pZ given by multiplica-
tion by p and pr , respectively. The general sequence is obtained by tensoring
this sequence by µ⊗n

pr+1 over Z/pr+1Z. Given a symbol α ∈ K M
n−1(k), the ele-

ment y := hn−1
k,p (α) comes from the element yr+1 := hn−1

k,pr+1 (α) via the map

H n−1(k, µ⊗(n−1)
pr+1 ) → H n−1(k, µ⊗(n−1)

p ) induced by raising the coefficients to

the pr -th power. Similarly, the element yr := hn−1
k,pr (α) is the image of yr+1 via

the map that raises coefficients to the p-th power. Now using Proposition 3.4.8
and the preceding discussion, we have

δn([ω] ∪ hn−1
k,p (α)) = δn([ω] ∪ y) = δn([ω] ∪ yr+1) = δ1([ω]) ∪ yr+1

= δ1([ω]) ∪ yr .

It is immediately seen by examining the Kummer sequence that δ1([ω]) is none
but h1

k,pr ([ω]). Hence the right-hand side is hn
k,pr ({ω, α}) by definition of the

Galois symbol, and the proof is complete.

Proof of Proposition 7.5.9 By decomposing m into a product of prime powers
we see that it is enough to consider the case m = pr . Moreover, we may and do
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assume that k contains a primitive p-th root of unity ω. Indeed, if not, consider
the commutative diagrams

K M
n (k)/pr

hn
k,pr−−−−→ H n(k, µ⊗n

pr )

ik(ω)|k
� �Res

K M
n (k(ω))/pr

hn
k(ω),pr−−−−→ H n(k(ω), µ⊗n

pr )

and

K M
n (k)/pr

hn
k,pr−−−−→ H n(k, µ⊗n

pr )�Nk(ω)|k
�Cor

K M
n (k(ω))/pr

hn
k(ω),pr−−−−→ H n(k(ω), µ⊗n

pr ),

where the second diagram commutes by Proposition 7.5.5. The composite maps
Cor ◦ Res and Nk(ω)|k ◦ ik(ω)|k are both multiplication by the degree [k(ω) : k]
which is prime to p. As the groups involved are p-primary torsion groups,
these composite maps are isomorphisms, which implies that the vertical maps
are injective in the first diagram and surjective in the second. It follows that the
bijectivity of hn

k(ω),pr implies that of of hn
k,pr .

For m = pr the proof goes by induction on r using the exact sequence (11).
It induces the bottom row in the exact commutative diagram

K M
n (k)/pr K M

n (k)
p−−−−→ K M

n (k)/pr+1 K M
n (k) −−−−→ K M

n (k)/pK M
n (k) −−−−→ 0

hn
k,pr

� hn
k,pr+1

� hn
k,p

� 

H n(k, µ⊗n
pr ) −−−−→ H n(k, µ⊗n

pr+1 ) −−−−→ H n(k, µ⊗n
p ).

By the inductive hypothesis the left and the right vertical maps are isomor-
phisms. A diagram chase then shows that hn

k,pr+1 is surjective. For injectivity,
we complete the left-hand side of the diagram as

µp ⊗ K M
n−1(k)

{ , }−−−−→ K M
n (k)/pr K M

n (k)
p−−−−→ K M

n (k)/pr+1 K M
n (k)

ω∪hn−1
k,p

� hn
k,pr

� hk,pr+1

�
H n−1(k, µ⊗n

p )
δ−−−−→ H n(k, µ⊗n

pr ) −−−−→ H n(k, µ⊗n
pr+1 )

using the lemma above, where the upper row is not necessarily exact but is a com-
plex since p{ω, a} = 0 for all a ∈ k×. Ifα ∈ K M

n (k) is such that hn
k,pr+1 (pα) = 0

in H 2(k, µ⊗n
pr+1 ), the diagram shows that hn

k,pr (α) is in the image of δ. Now the

left vertical map is surjective, as so is hn−1
k,p by assumption, and tensor product

by µp is the identity map by our assumption that ω ∈ k. Thus we may modify α

by a symbol of the form {ω, a} to get hn
k,pr (α) = 0 without changing pα. Hence

α ∈ pr K M
n (k) by injectivity of h2

k,pr , so pα ∈ pr+1 K M
n (k), i.e. ker(hn

k,pr+1 ) = 0.

7.6 The Galois symbol over number fields
In this section we establish the following basic theorem which was the first
substantial result in the direction of the Merkurjev–Suslin theorem.
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Theorem 7.6.1 (Tate) If k is a number field, then the Galois symbol h2
k,m is

bijective for all positive integers m.

Remarks 7.6.2

1. It is known that a number field k has p-cohomological dimension 2 if
p > 2, or if p = 2 and k is totally imaginary (see Serre [4], II.4.4), so the
theorem answers (but historically predates) the full Bloch–Kato conjecture
for odd m or totally imaginary k.

2. Surjectivity of the Galois symbol is a consequence of the fact that all
central simple algebras are cyclic over k (Remark 6.5.6). Recall that this
difficult result uses the main theorems of class field theory.

In view of the last remark, we only prove injectivity of the Galois symbol here.
This will also use facts from class field theory, but there are purely algebraic
ideas involved as well, which are interesting in their own right. We begin by
explaining these. From now on, we only consider the case when m = p is a
prime (which is allowed by Proposition 7.5.9).

The starting point is the following easy observation.

Lemma 7.6.3 Let k be a field containing the p-th roots of unity for some
prime p invertible in k, and let a, b be elements in k×. If h2

k,p({a, b}) = 0, then
{a, b} ∈ pK M

2 (k).

Proof By Proposition 4.7.1 and Corollary 4.7.5 we find c ∈ k( p
√

a) with
b = Nk( p√a)|k(c). Using the projection formula we compute

{a, b} = {a, Nk( p√a)|k(c)} = Nk( p√a)|k({a, c}) = pNk( p√a)|k({ p
√

a, c}),
whence the lemma.

Now given a, b, x ∈ k× with h2
k,p({a, b}) = h2

k,p({b, x}), an application of
the lemma to {a, b} − {b, x} = {a, b} + {x, b} = {ax, b} shows that {a, b} =
{b, x} modulo pK M

2 (k). We can then continue this procedure with some y ∈ k×

satisfying h2
k,p({b, x}) = h2

k,p({x, y}), and so on. If every other pair (c, d) ∈ k×

can be reached by a chain of this type, then injectivity of h2
k,p follows, at least

for symbols of length 1. The following definition formalizes this idea.

Definition 7.6.4 Let k be a field, and p a prime number invertible in k. We
say that the chain lemma holds for k and p if for any two pairs (a, b) and
(c, d) ∈ k×× k× satisfying h2

k,p({a, b}) = h2
k,p({c, d}) there exist an integer

n ≥ 0 and elements x−1 = a, x0 = b, x1, . . . . , xn−1 = c, xn = d in k× such
that

h2
k,p({xi , xi+1}) = h2

k,p({xi+1, xi+2})
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holds for all i = −1, 0, . . . , n − 2. We say that the chain lemma holds with
length N if for all pairs (a, b) and (c, d) ∈ k× × k× we may choose a chain as
above with n ≤ N .

Remarks 7.6.5

1. It is conjectured that the chain lemma holds for all fields k and all primes p.
For p = 2 we shall prove this in a moment; for p = 3 see Rost [2]. Rost
(unpublished) has also proven that the chain lemma always holds for a
prime p and a field k having no nontrivial finite extensions of degree
prime to p.

2. Variants of the chain lemma occur in quadratic form theory (see Elman
and Lam [1]), and in a more general context in Rost [4].

Note that the argument after Lemma 7.6.3 yields:

Corollary 7.6.6 Assume that the chain lemma holds for k and p. Then the
identity h2

k,p({a, b}) = h2
k,p({c, d}) implies {a, b} = {c, d} mod pK M

2 (k) for all
a, b, c, d ∈ k×.

We can now formalize the strategy for proving Theorem 7.6.1.

Proposition 7.6.7 Let k be a field containing the p-th roots of unity and satis-
fying the following two conditions:

� the chain lemma holds for k;
� for each finite set of elements a1, b1, a2, b2, . . . , ar , br in k× we may

find a degree p cyclic extension K |k so that ResK
k (h2

k,p({ai , bi })) = 0 for
1 ≤ i ≤ r .

Then the Galois symbol h2
k,p is injective.

Proof Let α = ∑r
i=1{ai , bi } be a symbol in the kernel of h2

k,p. Take an exten-
sion K |k as in the second condition above, and write it as K = k( p

√
c) for some

c ∈ k× using Kummer theory. By Proposition 4.7.1 and Corollary 4.7.6 we
find elements di ∈ k× with h2

k,p({ai , bi }) = h2
k,p({c, di }) for 1 ≤ i ≤ r . Corol-

lary 7.6.6 shows that under the first assumption {ai , bi } = {c, di } mod pK M
2 (k)

for all i , so setting d = d1d2 · · · dr yields α = {c, d} mod pK M
2 (k). The propo-

sition then follows from Lemma 7.6.3.

We next verify that the chain lemma holds for all primes and all number
fields. The first step in this direction is:

Lemma 7.6.8 If p = 2, the chain lemma holds with length 3 for all fields k.

In Chapter 1 we gave a sketch of a proof by Tate in an exercise. We now give
another proof due to Rost.
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Proof The condition h2
k,2({a, b}) = h2

k,2({c, d}) means that the quaternion
algebras (a, b) and (c, d) are isomorphic over k. We may assume they
are nonsplit (otherwise use the isomorphisms (a, b) ∼= (1, b) and (c, d) ∼=
(c, 1)). Choose X, Y ∈ (a, b) \ k such that X2 = b and Y 2 = c, and define
Z = XY − Y X . Consider the reduced characteristic polynomial N (t − Z ) of Z ,
where N is the quaternion norm. It has degree 2, and the coefficient of t is the
quaternion trace T (Z ) = Z + Z which is 0. Therefore N (t − Z ) = t2 − z with
z := Z2 ∈ k. Notice that X Z + Z X = X (XY − Y X ) + (XY − Y X )X = 0
and similarly Y Z + ZY = 0. So if Z �= 0, then (X, Z ) and (Y, Z ) are both
quaternion bases of (a, b), and hence (a, b) ∼= (b, z) ∼= (z, c) ∼= (c, d) is a suit-
able chain. If Z = 0, then Y lies in the 2-dimensional commutative subalgebra
k[X ]. Since moreover its minimal polynomial over k is t2 − c, we must have
Y = λX for suitable λ ∈ k and hence c = λ2b. Thus we have a length 3 chain
(a, b) ∼= (b, a) ∼= (a, c) ∼= (c, d) in this case as well.

Next we have the following lemma of Tate.

Lemma 7.6.9 If k contains the p-th roots of unity and the p-torsion subgroup

pBr (k) is cyclic, the chain lemma holds for k and p with length 4.

Proof Lemma 7.6.8 allows us to assume that p is odd. Assume given a, b, c, d
such that h2

k,p({a, b}) = h2
k,p({c, d}). As in the above proof, we may assume that

both sides are nonzero, and therefore yield a generator α of pBr (k) ∼= Fp. Via
this last isomorphism h2

k,p may be identified with a bilinear map of Fp-vector
spaces φ : k×/k×p × k×/k×p → Fp, which is moreover anticommutative by
Proposition 7.1.1. Our task is to find x, y ∈ k× satisfying φ(b, x) = φ(x, y) =
φ(y, c) = α. The linear forms t �→ φ(b, t) and t �→ φ(t, c) are non-zero and
hence surjective. If these forms are either linearly independent or equal, then we
can take y = c and find an x such that φ(b, x) = α and φ(x, y) = φ(x, c) = α.
Suppose now that these two linear forms are dependent but not equal. The
forms t �→ φ(t, c) and t �→ φ(d, t) = φ(t, d−1) are independent of each other
because φ(d, c) = −φ(c, d) �= 0. Thus by assumption for y = cd−1 the linear
forms t �→ φ(b, t) and t �→ φ(t, y) must be linearly independent. As above, we
find x satisfying φ(b, x) = φ(x, y) = α. Finally, note that since p is odd, the
anticommutative formφ is actually alternating, so thatφ(c, c) = 0 and therefore
φ(y, c) = φ(cd−1, c) = φ(d−1, c) = φ(c, d) = α, which yields the end of the
chain.

These were the purely algebraic statements involved in the proof of
Theorem 7.6.1. To proceed further, we need some facts from class field theory.
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Facts 7.6.10 Let k be a number field. Denote by � the set of all places of k,
and for each v ∈ � denote by kv the completion of k at v. For v finite kv is a
finite extension of Qp for some prime p, and for v infinite kv is isomorphic to
R or C.

1. For each finite place v there is an isomorphism invkv
: Br (kv) ∼→ Q/Z,

and for a finite extension Lw|kv one has invLw
◦ ResLw

kv
= [Lw : kv] invkv

.
See Serre [2], Chapter XIII, Propositions 6 and 7.

2. The restriction maps Br (k) → Br (kv) are trivial for all but finitely many
v ∈ �, and the map Br (k) → ⊕v∈�Br (kv) is injective. These state-
ments are contained in the Albert–Brauer–Hasse–Noether theorem already
recalled in Remark 6.5.6.

3. If p is an odd prime, then given a finite set S of places of k and char-
acters χv ∈ H 1(kv,Z/pZ) for all v ∈ S, there exists a global character
χ ∈ H 1(k,Z/pZ) inducing the χv by restriction to kv . This is a particular
case of the Grunwald–Wang theorem (Artin–Tate [1], Chapter X).

4. Let α1, . . . , αr be a finite set of elements in pBr (k) and a1, . . . , ar ∈ k×.
Assume given for each place v of k a character χv ∈ H 1(kv,Z/pZ) such
thatχv ∪ h1

kv,p(ai ) = Reskv

k (αi ) for 1 ≤ i ≤ r . Then there exists a character
χ ∈ H 1(k,Z/pZ) such thatχ ∪ h1

k,p(ai ) = αi for 1 ≤ i ≤ r . This follows
from global class field theory: almost the same statement is proven in
Cassels–Fröhlich [1], Ex. 2.16, p. 355 (note that condition (i) there follows
from the global reciprocity law and that one may choose χv = 0 for all but
finitely many v). One may also consult Lemma 5.2 of Tate [4].

We can now prove the chain lemma for number fields.

Lemma 7.6.11 If k is a number field containing the p-th roots of unity, then
the chain lemma holds with length 4 for k and p.

Proof Assume given a, b, c, d ∈ k× with h2
k,p({a, b}) = h2

k,p({c, d}). We have
to find x, y ∈ k× such that

h2
k,p({b, x}) = h2

k,p({x, y}) = h2
k,p({y, c}) = h2

k,p({c, d}). (12)

Let S be the set of places such that Reskv

k (h2
k,p({c, d})) �= 0. For each v ∈ S the

group pBr (kv) is cyclic (by Fact 7.6.10 (1) and by Br (R) ∼= Z/2Z), so we may
apply Lemma 7.6.9 to find elements xv, yv ∈ k×

v for each v ∈ S such that

h2
kv,p({b, xv}) = h2

kv,p({xv, yv}) = h2
kv,p({yv, c}) = h2

kv,p({c, d}). (13)

The last of these equalities implies that h2
kv,p({dyv, c}) = 0, and therefore

dyv = Nkv ( p√c)|kv
(tv) for some tv ∈ kv( p

√
c) according to Proposition 4.7.1 and

Corollary 4.7.5. Fact 7.6.10 (3) together with the Kummer isomorphism
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k( p
√

c)×/k( p
√

c)×p ∼= H 1(k( p
√

c),Z/pZ) enable us to find t ∈ k( p
√

c) such that
t−1
v t ∈ kv( p

√
c)×p for all v ∈ S. Put y = d−1 Nk( p√c)|k(t). Then for all v ∈ S

we have h2
k,p({y, c}) = h2

k,p({d−1, c}) = h2
k,p({c, d}) by Proposition 4.7.1, and

moreover

h2
kv,p({y, c}) = h2

kv,p({yv, c}), (14)

since Nkv ( p√c)|kv
(t−1

v t) ∈ k×p
v by our choice of t . Fixing this y, it remains to find

x ∈ k× satisfying the first two equalities in (12). According to (13) and (14),
the equations h2

k,p({b, x}) = h2
k,p({y, c}) and h2

k,p({x, y}) = h2
k,p({y, c}) have

simultaneous solutions xv over kv for each v ∈ S, and for v /∈ S they have the
trivial solution by the choice of S. We conclude by Fact 7.6.10 (4), applied with
r = 2, a1 = b−1, a2 = y, α1 = α2 = h2

k,p({y, c}) and χv = h1
kv,p(xv).

We finally come to:

Proof of Theorem 7.6.1 By Proposition 7.5.9 it is enough to treat the case
m = p. As in the proof of that proposition, we may also assume that k con-
tains the p-th roots of unity. It then suffices to check the conditions of Proposi-
tion 7.6.7. The first one is the previous lemma. To check the second, it is enough
to find for a given finite set α1, . . . , αr of classes in pBr (k) a cyclic extension
L|k of degree p so that ResL

k (αi ) = 0 for all i . By Fact 7.6.10 (2) we find a finite
set S of places so that Reskv

k (αi ) = 0 for all i and all v /∈ S. Choose an element
b ∈ k× which does not lie in k×p

v for any v ∈ S. For instance, one may take
b = uπ1 · · ·πs , where u is a unit and the πi are prime elements for the finite
places in S. For p odd this is already sufficient; for p = 2 one uses Dirichlet’s
Unit Theorem (Neukirch [1], Chapter I, Theorem 7.4) to choose u so that b
becomes negative in the completions for the real places in S. The extension
L = k( p

√
b)|k is then cyclic of degree p, and so are the extensions Lkv|kv for

v ∈ S. Using Fact 7.6.10 (1) and the vanishing of Br (C) we therefore see that
ResLkv

k (αi ) = 0 for all i and all v in S. For the other places we already have
Reskv

k (αi ) = 0 by assumption, so that Fact 7.6.10 (2) implies ResL
k (αi ) = 0 for

all i , as required.

Exercises

1. (Bass, Tate) This exercise studies the K-groups of an algebraically closed field k.
(a) Let A, B be two divisible abelian groups. Show that A ⊗Z B is uniquely

divisible, i.e. a Q-vector space.
(b) Show that K M

2 (k) is uniquely divisible. [Hint: Use the presentation
0 → R → k× ⊗ k× → K M

2 (k) → 0].
(c) Let K |k be a field extension. Show that the map K M

2 (k) → K M
2 (K ) is injec-

tive.
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2. (a) Given a field extension K |k, show that the natural maps K M
n (k) ⊗Z Q →

K M
n (K ) ⊗Z Q are injective for all n ≥ 1. [Hint: First consider the cases K |k

finite and K = k(t).]
(b) If k is an uncountable field, show that K M

n (k) ⊗Z Q is uncountable for all
n ≥ 1.

3. Establish isomorphisms K M
n (R)/2K M

n (R) ∼= Z/2Z for all n ≥ 0.
4. This exercise gives a simpler proof of Theorem 7.3.2 for n = 2 and fields of

characteristic 0. Let k be such a field, and let K |k be a finite field extension.
Let N1 = Na1,...,ar |k and N2 = Nb1,...,bs |k be two candidates for the norm map
K M

2 (K ) → K M
2 (k) . Denote by δk the difference N1 − N2.

(a) Observe that Im (δk) is a torsion group.
(b) Show that δk(t) : K M

2 (K (t)) → K M
2 (k(t)) takes values in K M

2 (k), where k(t)|k
is a rational function field.

(c) Given a, b ∈ k×, show that δk(t)({a, (1 − t) + tb}) = 0. [Hint: Use the fact
that the evaluation map k[[t]]× → k× has divisible kernel.]

(d) Conclude by specialization that δk({a, b}) = 0.
5. (Tate) Let m be an integer invertible in k, and assume that k contains a primitive

m-th root of unity ω. Denote by A the subgroup of m K M
2 (k) consisting of elements

of the form {ω, a} with a ∈ k×.
(a) Show that the equality A = m K M

2 (k) is equivalent to the existence of a homo-
morphism f : mK M

2 (k) → K M
2 (k)/A such that f (mα) = α mod A for all

α ∈ K M
2 (k).

(b) If such an f exists, show that it is unique.
(c) Given a, b ∈ k×, show that {a, b} ∈ mK M

2 (k) if and only if there exists a finite
extension K |k and elements α, β ∈ K such that αm = a and NK |k(β) = b.

(d) Verify that for {a, b} ∈ mK M
2 (k) the image of NK |k({α, β}) in the quotient

K M
2 (K )/A depends only on the pair a, b.

(e) Assume that cd(k) ≤ 1. Conclude from (c) that K M
2 (k) is m-divisible, and

use (a) and (d) to show that A = m K M
2 (k). [Hint: Use that Br (L|k) is trivial

for all finite cyclic extensions L|k of degree m.]
6. Let k be a field, n > 0 an integer and α an element of K M

n (k(t)). For each closed
point P of the affine line A1

k , write κ(P) = k(aP ) with suitable aP .
(a) Check that the norm Nκ(P)(t)|k(t)({t − aP , ∂P (α)}) is independent of the choice

of aP .
(b) Establish the following more explicit variant of Corollary 7.2.3:

α = st−1 (α)k(t) +
∑
P∈A1

0

Nk(P)(t)|k(t)({t − aP , ∂P (α)}).

[Remark: The analogous formula for Galois cohomology may be found in
Garibaldi–Merkurjev–Serre [1], Exercise 9.23.]

7. (Optimality of the Rosset–Tate bound) Let p be a prime number, and k a field con-
taining a primitive p-th root of unity ω. Consider the purely transcendental exten-
sion E = k(x1, y1, x2, y2, . . . , x p, yp) in 2p indeterminates. Make the cyclic group
Z/pZ = 〈σ 〉 act on E by σ (xi ) = xi+p and σ (yi ) = yi+p (where i + p is taken
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mod p). Let F ⊂ E be the fixed field under this action. Prove that NE |F ({x1, y1})
cannot be represented in K M

2 (F) by a symbol of length p − 1. [Hint: Use the Galois
symbol and Exercise 6 of Chapter 6].

8. Let n > 1 be an odd integer, and k a field containing a primitive n-th root of unity
ω. Let K |k be a finite Galois extension whose Galois group is the dihedral group
Dn , i.e. it has a presentation of the form

〈σ, τ | σ n = 1, τ 2 = 1, σ τσ = τ 〉.
Let L be the fixed field of σ in K . This exercise shows that a central simple k-algebra
A of degree n split by K is isomorphic to a cyclic algebra.
(a) Show that there is an element a ∈ L× with K = L( n

√
a) and NL|K (a) ∈ (k×)n .

[Hint: if K = L( n
√

c), take a = cn].
(b) Show that A ⊗k L ∼= (a, b)ω for some b ∈ L×.
(c) Conclude that [A] = CorL

k ([(a, b)ω]) in Br (k). If b ∈ k×, conclude moreover
that A is isomorphic to a cyclic algebra.

(d) Assume that b ∈ L× \ k×. Show that there exist a′, b′ ∈ k× such that
aa′ + bb′ = 0 or 1, and prove that the relation

[(a, b)ω] + [(a, b′)ω] + [(a′, bb′)ω] = 0

holds in Br (L). Conclude that A is isomorphic to a cyclic algebra in this
case as well.

(e) Adapt the preceding arguments to show that the conclusion also holds in the
case when k is of characteristic p ≥ 3 and n = p. [Hint: Show that K = L(c)
for some c such that a := cp − c lies in L and TrL|k(a) = un − u for some
u ∈ k.]

[Remark: The theorem of this exercise is due to Rowen–Saltman [1]. The above
proof is that of Mammone–Tignol [1].]

9. (Wedderburn) Show that every central simple algebra of degree 3 over a field k is
isomorphic to a cyclic algebra. [Hint: Use the previous exercise.]

10. Let p > 2 be a prime number, and k a field containing a primitive p-th root of
unity. Improve the bound of Proposition 7.4.13 by showing that every central simple
k-algebra of degree p is Brauer equivalent to the tensor product of at most (p − 1)!/2
cyclic k-algebras of degree p. [Hint: Use Exercise 8 and the fact that the symmetric
group Sp contains Dp as a subgroup.]

11. Let k be a field, and m > 0 an integer invertible in k.
(a) Show that injectivity (resp. surjectivity) of the Galois symbols

hn−1
k,m : K M

n−1(k)/m → H n−1(k, µ⊗(n−1)
m ) and hn

k,m : K M
n (k)/m → H n(k, µ⊗n

m )

imply the corresponding property for the Galois symbol

hn
k((t)),m : K M

n (k((t)))/m → H n(k((t)), µ⊗n
m ).

(b) Verify the Bloch–Kato conjecture for the Laurent series field Fq ((t)) and m
prime to q.
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The Merkurjev–Suslin theorem

This chapter is devoted to the central result of this book, the celebrated
theorem of Merkurjev and Suslin on the bijectivity of the Galois symbol
h2

k,m : K M
2 (k)/mK M

2 (k) → H 2(k, µ⊗2
m ) for all fields k and all integers m invert-

ible in k. Following a method of Merkurjev, we shall deduce the theorem by a
specialization argument from the partial results obtained at the end of the last
chapter, using a powerful tool which is interesting in its own right, the K2-
analogue of Hilbert’s Theorem 90. Apart from the case when m is a power of 2,
no elementary proof of this theorem is known. To establish it, we first develop
the foundations of the theory of Gersten complexes in Milnor K-theory. This
material requires some familiarity with the language of schemes. Next comes
an even deeper input, a technical statement about the K-cohomology of Severi–
Brauer varieties. Its proof involves techniques outside the scope of the present
book, so at this point our discussion will not be self-contained. The rest of the
argument is then much more elementary and requires only the tools developed
earlier in this book, so some readers might wish to take the results of the first
three sections on faith and begin with Section 8.4.

The theorem was first proven in Merkurjev [1] in the case when m is a power
of 2, relying on a computation by Suslin of the Quillen K-theory of a conic. Later
several elementary proofs of this case were found which use no algebraic
K-theory at all, at the price of rather involved calculations. Merkurjev himself
gave two such proofs (see Wadsworth [1] and Merkurjev [6]); another one by
Rost is contained in the book of Kersten [1]. For a proof in the language of
quadratic forms, see Arason [2]. The general theorem first appeared in the sem-
inal paper of Merkurjev and Suslin [1]. Its proof was later improved and simpli-
fied in Suslin [1], [2] and Merkurjev [2]. Several ideas involved in these proofs,
most notably generalizations of Hilbert’s Theorem 90 to higher K-groups, play
a prominent role in the recent proof of the Milnor conjecture by Voevodsky [1],
and in the work currently in progress on the general Bloch–Kato conjecture.

8.1 Gersten complexes in Milnor K-theory
Let X be a variety of dimension d over a field k. We regard X as a k-scheme,
and denote by Xi the set of its points of dimension i (i.e. those scheme-
theoretic points whose Zariski closure in X has dimension i). Following Kato,
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we construct in this section for each integer n complexes of abelian groups

Sn(X ) :
⊕
P∈Xd

K M
n+d (κ(P))

∂→
⊕

P∈Xd−1

K M
n+d−1(κ(P))

∂→ · · · ∂→
⊕
P∈X0

K M
n (κ(P))

called Gersten complexes in Milnor K-theory. The degree i term in such a
complex will be the one indexed by the points in Xi . By convention, we put
K M

n (κ(P)) := 0 for n<0. Therefore the complex Sn(X ) will be trivial for n<−d ,
and concentrated between the terms of degree d and −n for −d ≤ n < 0.

When investigating properties of these complexes, we shall be sometimes
forced to work at the level of local rings. These are not finitely generated
k-algebras any more, so it will be convenient to work at a more general level,
that of noetherian excellent schemes. For readers less at ease with this concept
we note that varieties over fields, their local rings, and completions of these all
give rise to excellent schemes according to Grothendieck [4], (7.8.3), and these
will be the only cases we need. So henceforth in this section X is a noetherian
excellent scheme of finite dimension d , and we construct the complexes Sn(X )
in this generality.

Construction 8.1.1 We construct the maps ∂ in the sequence Sn(X ) as follows.
Take a point P ∈ Xi+1, and let Z P be its Zariski closure in X . Each point Q of
codimension 1 on Z P corresponds to a point in Xi . On the normalization Z̃ P of
Z P there are finitely many points Q1, . . . , Qr lying above Q. The local ring of
each Q j on Z̃ P is a discrete valuation ring, hence it defines a discrete valuation
on the function field κ(P) of Z̃ P . Denoting by ∂M

Q j
the associated tame symbol,

we may define maps ∂ P
Q : K M

n+i+1(κ(P)) → K M
n+i (κ(Q)) by setting

∂ P
Q :=

r∑
j=1

Nκ(Q j )|κ(Q) ◦ ∂M
Q j

.

Since each function f ∈ κ(P) has only finitely many zeros and poles on Z̃ P ,
the valuations vQ j ( f ) associated with the codimension 1 points on X are trivial
for all but finitely many Q j (here Q j runs over the set of all codimension 1
points). A fortiori, for fixed α ∈ K M

n+i+1(κ(P)) the tame symbols ∂M
Q j

are trivial
for all but finitely many Q j . It therefore makes sense to consider the sum

∂P :=
∑

Q∈Z P

∂ P
Q ,

and finally, we may define the map ∂ as the direct sum of the maps ∂P for all
P ∈ Xi+1.

Theorem 8.1.2 (Kato) The sequence Sn(X ) is a complex for all n ≥ −d.

Proof The proof is in several steps.
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Step 1: Reduction to the local case. Let P0 be a point of dimension i , and α an
element of Kn+i (κ(P0)). We have to prove that (∂ ◦ ∂)(α) is the zero element in⊕

Kn+i−2(κ(P)). This sum is indexed by points of dimension i − 2. We may
assume i ≥ 2 (otherwise there is nothing to prove) and reason for each direct
summand separately. The construction of ∂ shows that in doing so we may
replace X by the normalization of the closure of P0 in X ; in particular, we may
assume that X is normal. Let P2 be a point of codimension 2 in X , and denote
by A its local ring. The points of codimension 1 involved in the construction of
the component of ∂(α) indexed by P2 all correspond to prime ideals of height 1
in A. This shows that for the proof of (∂ ◦ ∂)(α) = 0 we may replace Sn(X ) by
Sn(Spec (A)), and assume that X is the spectrum of an integrally closed local
ring of dimension 2.

Step 2: Reduction to the complete case. Next we show that we may replace
A by its completion Â. To see this, write X̂ for the spectrum of Â, K for the
fraction field of A and K̂ for that of Â. Since A is excellent, here Â is integrally
closed as well according to Theorem A.5.2 of the Appendix. Furthermore, the
first statement of the same theorem applied to A/P shows that Â/P Â has no
nilpotents. Thus each prime ideal P of height 1 in X decomposes as a finite
product P = P1 . . . Pr of distinct of height 1 prime ideals in Â (note that since
A and Â are integrally closed, these are actually principal ideals). In terms of
discrete valuations, the valuation defined by each Pi continues that of P with
ramification index 1, which shows the commutativity of the first square in the
diagram

Sn(X ) : K M
n+2(K )

∂−−−−→ ⊕
P∈X1

K M
n+1(κ(P))

∂−−−−→ K M
n (κ)

i K̂ |K

� � ⊕
Q �→P

iκ(Q)|κ(P)

�id

Sn(X̂ ) : K M
n+2(K̂ )

∂−−−−→ ⊕
Q∈X̂1

K M
n+1(κ(Q))

∂−−−−→ K M
n (κ).

in view of Remark 7.1.6 (2). To check the commutativity of the second square,
we consider the quotient ring A/P . Its completion with respect to the maximal
ideal M of A is none but the direct sum ⊕ Â/Pi , as seen using Proposition A.5.1
of the Appendix and the Chinese Remainder Theorem. But the integral closure
of ⊕ Â/Pi in the direct sum of the fraction fields of the A/Pi is none but
the completion of the integral closure of A/P , again by Theorem A.5.2 of
the Appendix. The maximal ideals in these rings are all induced by M , so
there is no ramification and the required commutativity again follows from
Remark 7.1.6 (2).

Step 3: Reduction to the case of a power series ring. We have arrived at the
case when X is the spectrum of a complete local ring A of dimension 2; denote
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by κ its residue field. According to a version of the Cohen structure theorem
(see Appendix, Theorem A.5.4 (1)), such an A can be written as a finitely
generated module over a subring of the form B[[t]], where B is a complete
discrete valuation ring with the same residue field κ . Denote by Y the spectrum
of B[[t]], by K the fraction field of A and by K0 that of B. The left square of
the diagram

Sn(X ) : K M
n+2(K )

∂−−−−→ ⊕
Q∈X1

K M
n+1(κ(Q))

∂−−−−→ K M
n (κ)

NK |K0

� �⊕
P

�
Q �→P

Nκ(Q)|κ(P) id

�
Sn(Y ) : K M

n+2(K0)
∂−−−−→ ⊕

P∈Y1

K M
n+1(κ(P))

∂−−−−→ K M
n (κ)

commutes because of Corollary 7.4.3, and the right square because of Proposi-
tion 7.4.1. An inspection of the diagram reveals that if Sn(Y ) is a complex, then
so is Sn(X ), so we may assume A = B[[t]].

Step 4: Conclusion. The ring B[[t]] is a regular local ring, hence a unique
factorization domain. Its prime ideals of height 1 are all principal, generated
by either a local parameter π of B or a so-called Weierstrass polynomial, i.e. a
monic irreducible polynomial in B[t] whose coefficients, except for the leading
one, are divisible by π (see e.g. Lang [3], Chapter IV, Theorem 9.3). Thus the
multiplicative group of the fraction field K of B[[t]] is generated by the units
of B, by π and by Weierstrass polynomials. In order to verify (∂ ◦ ∂)(α) = 0
for α ∈ K M

n+2(K ), we may reduce, by construction of the tame symbol, to the
case n = 0 and moreover using bilinearity of symbols we may assume α is a
symbol of the form {a, b}, with a and b chosen among the generators of K ×

described above.
The cases when a or b are units of B are straightforward. Next consider the

case when a = π and b is a Weierstrass polynomial of degree N . Note that the
residue field κ(P) of the prime ideal P = (b) is a degree N finite extension
of the fraction field F of B, and hence the discrete valuation v of B extends
uniquely to a valuation vP of κ(P), with some ramification index eP . Its residue
field is a finite extension of κ; write fP for the degree of this extension. Our
assumption that we are dealing with excellent rings implies that eP fP = N .
On the other hand, the image of b in the residue field κ((t)) of (π ) is t N ,
whose t-adic valuation is N . Therefore, by definition of the tame symbol we
get (∂ ◦ ∂)({π, P}) = N − eP fP = 0.

We still have to deal with the cases where a and b are Weierstrass polynomials.
These are units for the valuation associated withπ , and hence the corresponding
tame symbol is trivial. The other discrete valuations to be considered are those
coming from Weierstrass polynomials, and these in turn define closed points of
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the projective line P1
F . The associated tame symbols on K and F(t) are given

by the same formula. Viewing α = {a, b} as an element of K2(F(t)), we now
show that

(∂ ◦ ∂)({a, b}) =
∑

P∈P1
F,0

fP vP (∂M
P ({a, b})), (1)

i.e. that the terms coming from points on P1
F other than those defined by Weier-

strass polynomials do not contribute to the sum. For the points coming from
irreducible polynomials in F[t] which are not Weierstrass polynomials this is
straightforward, because the associated tame symbols are trivial on α. There
is still one point of P1

F to consider, namely the one at infinity, where t−1 is a
local parameter. To handle it, write a = t N a1, b = t M b1, with a1, b1 ∈ B[t−1]
satisfying a1(0) = b1(0) = 1. Using Lemma 7.1.2 and bilinearity of symbols
we get

{a, b} = {a1, b1} − N {t−1, b1} − M{a1, t−1} + M N {t−1,−1}.

We see using the condition a1(0) = b1(0) = 1 that the tame symbol associated
with t−1 annihilates the first three terms, and the fourth gets mapped to (−1)M N

in F . But (−1)M N is a unit for the valuation of F , and we are done.
Now we may rewrite the right-hand side of (1) as∑

P∈P1
F,0

fP vP (∂M
P ({a, b})) = v

( ∑
P∈P1

F,0

Nκ(P)|F (∂M
P ({a, b}))

)
.

Indeed, this follows from the equality fP vP = v ◦ Nκ(P)|F , which is a very
special case of Proposition 7.4.1, because here vP is none but the tame symbol
on κ(P)× equipped with its canonical valuation, and multiplication by fP is
the norm map on K0 of the residue field of κ(P). To conclude the proof it
remains to observe that the sum in parentheses is trivial, by Weil’s reciprocity
law (Corollary 7.2.4).

8.2 Properties of Gersten complexes
In this section X is still an excellent scheme of finite dimension d, but the reader
may safely assume it is a variety over a field. However, some arguments will
be scheme-theoretic.

Notice that given an open subscheme U ⊂ X , there are natural restriction
maps ⊕

P∈Xi

K M
n+i (κ(P)) →

⊕
P∈Ui

K M
n+i (κ(P))
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for all n ∈ Z and 0 ≤ i ≤ d , induced by the inclusion map U ⊂ X . These man-
ifestly commute with the boundary maps ∂ in the complex Sn(X ), whence a
map of complexes j∗ : Sn(X ) → Sn(U ). One defines similarly a pushforward
map i∗ : Sn(Z ) → Sn(X ) induced by the inclusion i : Z → X of a closed sub-
scheme.

Proposition 8.2.1 Let U ⊂ X be an open subscheme with complement Z.

1. (Localization) For all n ∈ Z the natural sequence of complexes

0 → Sn(Z )
i∗−→ Sn(X )

j∗
−→ Sn(U ) → 0

is exact.
2. (Mayer–Vietoris) Let V ⊂ X be a second open subscheme satisfying

U ∪ V = X. Then the sequence of complexes

0 → Sn(X )
j∗
U ⊕ j∗

V−−−−−−→ Sn(U ) ⊕ Sn(V )
j∗
U∩V − j∗

U∩V−−−−−−→ Sn(U ∩ V ) → 0

is exact.
3. (Mayer–Vietoris for closed subsets) Assume there exists a closed sub-

scheme T ⊂ X such that Z ∪ T = X. Then the sequence of complexes

0 → Sn(Z ∩ T )
i(Z∩T )∗⊕i(Z∩T )∗−−−−−−−−−→ Sn(Z ) ⊕ Sn(T )

iZ∗−i T ∗−−−−−−→ Sn(X ) → 0

is exact.

Proof In all three cases the required exactness is readily checked at the level
of each term

⊕
P∈Xi

K M
n+i (κ(P)) of the complex Sn(X ).

Definition 8.2.2 For 0 ≤ i ≤ d denote the i-th homology group of the complex
Sn(X ) (i.e. the homology at the term indexed by the points in Xi ) by Ai (X, K M

n ).
It is the i -th homology group of X with values in K M

n .

Example 8.2.3 The case n = −i is especially important for 0 ≤ i ≤ d . Here
we obtain the group

Ai (X, K M
−i ) = coker

( ⊕
P∈Xi+1

κ(P)× →
⊕
P∈Xi

Z
)
,

the Chow group of dimension i cycles on X. This observation is the starting
point for the application of K-theoretic methods to the study of algebraic cycles.
See Colliot-Thélène [3] and Murre [1] for informative surveys on this research
area.

With the above notations, Proposition 8.2.1 together with Proposition 3.1.1
yields:
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Corollary 8.2.4 Under the assumptions of Proposition 8.2.1 one has natural
long exact sequences

· · · → Ai (Z , K M
n )

i∗−→ Ai (X, K M
n )

j∗
−→ Ai (U, K M

n ) −→ Ai−1(Z , K M
n ) → · · · ,

· · · → Ai (X, K M
n )

j∗
U ⊕ j∗

V−−−−−−→ Ai (U, K M
n ) ⊕ Ai (V, K M

n ) →

j∗
U∩V − j∗

U∩V−−−−−−→ Ai (U ∩ V, K M
n ) → Ai−1(X, K M

n ) → · · ·
and

· · · −→ Ai (Z ∩ T, K M
n )

i(Z∩T )∗⊕i(Z∩T )∗−−−−−−−−−→ Ai (Z , K M
n ) ⊕ Ai (T, K M

n ) →

iZ∗−iT ∗−−−−−−→ Ai (X, K M
n ) → Ai−1(Z ∩ T, K M

n ) → · · ·
Next we turn to the homotopy invariance property of K M

n -homology groups.
First some notation: for an integer j ∈ Z, we define the shifted complex Sn(X )[ j]
as the one whose degree i term is the degree i − j term in Sn(X ).

Assume given a product X ×k Y of finite dimensional excellent schemes over
a field k, and let j be the dimension of Y . Given a point in Xi , its closure in X is
an integral closed subscheme Z . Then Z ×k Y is an integral closed subscheme
in X × Y of dimension i + j , and thus corresponds to a point in (X ×k Y )i+ j .
This construction defines for all n ∈ Z natural maps⊕

P∈Xi

K M
n+i+ j (κ(P)) →

⊕
P∈(X×Y )i+ j

K M
n+i+ j (κ(P)),

commuting with the differentials in the complexes Sn+ j (X )[ j] and Sn(X ×K Y ).
Therefore we obtain maps

Sn+ j (X )[ j] → Sn(X ×k Y ) (2)

for all n ∈ Z.

Proposition 8.2.5 Let X be a noetherian excellent scheme of finite dimension
over a field k. For all n ≥ 0 the natural map

Sn+1(X )[1] → Sn(X ×k A1
k)

defined above induces isomorphisms on homology, i.e. the induced maps

Ai−1(X, K M
n+1) → Ai (X ×k A1

k, K M
n )

are isomorphisms for all i .

The proof is an adaptation of an argument by Quillen proving the homotopy
invariance of Quillen K-theory. It is based on a suggestion of Joël Riou.
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Proof Without loss of generality we may assume X is reduced. By the noethe-
rian assumption, we may decompose it into a finite union of irreducible closed
subschemes, and then a finite number of applications of the Mayer–Vietoris
sequence for closed subsets (and induction on dimension) shows that the irre-
ducible case implies the reducible case.

We can therefore assume X is reduced and irreducible, and use induction on
dimension. If dim (X ) = 0, then X = Spec (F) for some field extension F ⊃ k,
i.e. a point defined over F . The Gersten complex Sn(A1

F ) takes the shape

K M
n+1(F(t)) → ⊕

P∈A1
0

K M
n (κ(P)).

By virtue of Milnor’s exact sequence (Theorem 7.2.1) we have
A0(A1

F , K M
n ) = 0 and A1(A1

F , K M
n ) = K M

n (F) for all n ≥ 0, which proves the
statement for Spec (F). Now take a general X and assume that the statement
holds for all reduced closed subschemes Z ⊂ X properly contained in X .
Consider the commutative diagram

· · · → Ai−1(Z , K M
n+1) → Ai−1(X, K M

n+1) → Ai−1(X \ Z , K M
n+1) → · · ·

↓ αi
Z ↓ αi

X ↓ αi
Z\X

· · · → Ai (Z ×k A1
k, K M

n ) → Ai (X ×k A1
k, K M

n ) → Ai ((X \ Z ) ×k A1
k, K M

n ) → · · ·
whose exact rows come from the first sequence in Corollary 8.2.4. The map αi

Z

is an isomorphism by the inductive assumption.
Now consider the system of (possibly reducible) reduced closed subschemes

Z properly contained in X . The natural inclusion maps make it into a directed
partially ordered set. With respect to this directed index set the complexes
Sn(Z ) together with the pushforward maps iZ∗ form a direct system, hence so
do their homology groups. Similarly, the complexes Sn(X \ Z ) together with the
pullback maps j∗

X\Z also form a direct system. The direct limit of this system is
Sn+d (Spec (k(X ))[d], because the only point of X contained in all of the X \ Z
is the generic point (the shift in degree comes from the fact that the closure of
the generic point in X has dimension d , whereas Spec (k(X )) has dimension
0). We get a similar statement for the homology groups, so by the exactness
property of the direct limit (Lemma 4.3.2) we obtain a commutative diagram

· · · → lim→ Ai−1(Z , K M
n+1) → Ai−1(X, K M

n+1) → Ai−d−1(Spec (k(X )), K M
n+d+1) → · · ·

↓ lim→ αi
Z ↓ αi

X ↓ αi−d
k(X )[d]

· · · → lim→ Ai (Z ×k A1
k , K M

n )→Ai (X ×k A1
k , K M

n )→Ai−d (Spec (k(X ))) ×k A1
k , K M

n+d ) → · · ·

Here the first vertical map is an isomorphism as a direct limit of the isomor-
phisms αi

Z , and the third one is an isomorphism by the zero-dimensional case.
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The diagram then implies that the map αi
X in the middle is an isomorphism as

well.

As an application of the homotopy invariance property, we now compute the
K M

n -homology groups of projective spaces.

Proposition 8.2.6 For all integers n, d ≥ 0 we have

Ai (Pd , K M
n ) ∼=

{
K M

n+i (k) if 0 ≤ i ≤ d;
0 otherwise.

Proof The proof goes by induction on d, the case d = 0 being obvious. Con-
sider Pd−1 embedded in Pd as a hyperplane; the complement is naturally iso-
morphic to affine d-space Ad . In this situation we may combine the localization
sequence of Corollary 8.2.4 with an iterated application of the isomorphism of
Proposition 8.2.5 in the commutative diagram

· · · → Ai (P d−1, K M
n )

i∗−→ Ai (P d , K M
n )

j∗
−→ Ai (Ad

k , K M
n )

∂−→Ai−1(P d−1, K M
n )→· · ·� ∼=

�
Ai−d (k, K M

n+d ) = Ai−d (k, K M
n+d ),

where the vertical maps are morphisms of the type (2). The diagram provides
a splitting of the maps j∗, so we get decompositions

Ai (P d , K M
n ) ∼= Ai−d (k, K M

n+d ) ⊕ Ai (P d−1, K M
n )

for all i and n. Here we have

Ai−d (k, K M
n+d ) ∼=

{
K M

n+d (k) if i = d;
0 otherwise.

Moreover, for i > d the groups Ai (P d , K M
n ) obviously vanish. We therefore

obtain the result by induction on d .

Example 8.2.7 For us the most important case will be that of n = 2 − d . In
this case we get:

Ad (P d , K M
2−d ) ∼= K M

2 (k), Ad−1(P d , K M
2−d ) ∼= k×, Ad−2(P d , K M

2−d ) ∼= Z,

and the other groups are 0.

Remark 8.2.8 The Gersten conjecture for Milnor K-theory states that if X
is the spectrum of an excellent regular local ring of finite dimension d, the
complexes Sn(X ) are acyclic for all q in all degrees smaller than d. In the case
of local rings of a smooth variety over a perfect field, this has been proven by
Gabber; see Colliot-Thél�ène/Hoobler/Kahn [1] or Rost [1] for the proof (both
papers work in a more general axiomatic setup).
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This theorem has the following remarkable consequence. Given a smooth
variety X over a perfect field, the rule U �→ Sn(U ) for all open subsets of X
together with the restriction maps j∗ introduced at the beginning of this section
define a complex Sn,X of presheaves for the Zariski topology on X . Moreover,
one checks easily that that this is actually a complex of flabby sheaves (i.e. the
restriction maps Sn(U ) → Sn(V ) are surjective for V ⊂ U ). Hence if we denote
by KM

n+d the sheaf associated with the presheaf U �→ Ad (U, K M
n+d ), Gabber’s

acyclicity theorem implies that Sn,X furnishes a flabby resolution of the sheaf
KM

n+d . Thus it can be used to calculate the cohomology groups of the Zariski
sheaf KM

n+d , and we get isomorphisms

Hi
Zar(X,KM

n+d ) ∼= Ad−i (X, K M
n ).

8.3 A property of Severi–Brauer varieties
We now begin the proof of the Merkurjev–Suslin theorem by establishing a
crucial technical ingredient needed for the proof of Hilbert’s Theorem 90 for
K2, to be discussed in the next section.

Theorem 8.3.1 Let k be a field, p a prime invertible in k, and X a Severi–
Brauer variety of dimension d = p − 1 over k. If K |k is a finite extension of
degree p which splits X, the natural maps

Ad−i (X, K M
i+1−d ) → Ad−i (X K , K M

i+1−d )

are injective for all 0 ≤ i ≤ p − 1.

Remarks 8.3.2

1. Via the isomorphism of Remark 8.2.8, the statement of the theorem
becomes equivalent to the injectivity of the maps Hi

Zar(X,KM
i+1) →

Hi
Zar(X K ,KM

i+1), but we shall not need this interpretation.
2. The theorem also serves in the proof of the general Bloch–Kato conjec-

ture, during the verification of the ‘multiplication principle’ for splitting
varieties (see Suslin–Joukhovitski [1]).

Oddly enough, the only currently known proof of the theorem is a somewhat
mysterious argument relying on Quillen’s calculation of the algebraic K-theory
of X . As a result we cannot give a self-contained exposition of the argument
here. Still, we shall explain the method, referring to the literature for some facts
from algebraic K-theory. The best short introduction to Quillen K-theory is
Swan [3]; the original paper Quillen [1] still makes valuable reading, and the
book of Srinivas [1] is a useful account. We also have to assume familiarity
with spectral sequences, for which we refer to Weibel [1].
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We begin by a very succinct review of the construction of Quillen’s
K-groups. Given a scheme X , denote by M(X ) the category of coherent
sheaves on X , and by P(X ) ⊂ M(X ) the full subcategory of vector bundles
(by which we mean locally free sheaves of finite rank). In the fundamental
paper of Quillen [1] a purely categorical construction is introduced, producing
new categories QM(X ) and QP(X ) out of M(X ) and P(X ). Taking the geo-
metric realizations of the nerves of these categories yields topological spaces
|B QM(X )| and |B QP(X )|. One then defines for all n ≥ 0 the groups Gn(X )
and Kn(X ) as the homotopy groups πn+1(|B QM(X )|) and πn+1(|B QP(X )|),
respectively. When X is regular (e.g. a smooth variety over a field), each object
in M(X ) has a finite resolution by objects of P(X ). From this one infers via
the so-called resolution theorem of Quillen that in this case Gn(X ) = Kn(X )
for all n.

For a commutative ring A we define the groups Gn(A) and Kn(A) to be
Gn(Spec (A)) and Kn(Spec (A)), respectively. As M(Spec A) is equivalent
to the category M(A) of finitely generated A-modules and P(Spec A) to
the category P(A) of finitely generated projective A-modules, one may also
define Gn(A) and Kn(A) as homotopy groups of the spaces |B QM(A)| and
|B QP(A)|, respectively. This latter construction immediately generalizes to
not necessarily commutative A.

Facts 8.3.3 For a field F there exists a natural map from the n-th Milnor
K-group K M

n (F) to the n-th Quillen K-group Kn(F) which is an isomorphism
for n ≤ 2, but the two groups differ in general for n > 2. The comparison result
for n ≤ 2 is rather difficult, especially in the case n = 2, where it is a famous
theorem of Matsumoto (see Milnor [2]).

Moreover, for n = 1 and A a not necessarily commutative ring the construc-
tion gives back the group K1(A) defined in Chapter 2.

Let Mi be the full subcategory of M(X ) consisting of coherent sheaves
whose support is of codimension ≥ i in X . They define a decreasing filtration
of the category M(X ), whence decreasing filtrations

Gn(X ) = Gn(M0) ⊃ Gn(M1) ⊃ Gn(M2) ⊃ . . . (3)

of the groups Gn(X ). Quillen has shown that there are long exact sequences

· · · → Gn(Mi+1) → Gn(Mi ) → Gn(Mi/Mi+1) → Gn−1(Mi+1) → · · ·
(4)

and isomorphisms

Gn(Mi/Mi+1) ∼=
⊕
P∈Xi

Kn(κ(P)) (5)
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for all i ≥ 0, where Xi stands for the set of scheme-theoretic points whose
closure in X has codimension i .

By the general theory of spectral sequences, the filtration (3) gives rise to an
exact couple via the exact sequence (4), and hence to a spectral sequence which
converges to Gn(X ) if the filtration is finite, i.e. if X has finite dimension. The
isomorphism (5) allows one to identify its E1-term, thus one obtains a spectral
sequence of the shape

Er,s
1 (X ) =

⊕
P∈Xr

K−r−s(κ(P)) ⇒ G−n(X )

called the spectral sequence of Brown–Gersten–Quillen. It is a fourth quadrant
spectral sequence (i.e. r ≥ 0 and s ≤ 0), so the E1-terms are zero for |s| < |r |.
The filtration induced on Gn(X ) is precisely (3); the fact that it is a descending
filtration accounts for the negative indices. We denote its i-th term Gn(Mi ) by
Fi (Gn(X )) and its i-th graded piece Gn(Mi/Mi+1) by gri (Gn(X )).

By definition, the E2-terms of the spectral sequence are obtained as the
homology groups of a complex⊕

P∈X0

Kn(κ(P)) →
⊕
P∈X1

Kn−1(κ(P)) → · · · →
⊕
P∈Xn

K0(κ(P)), (6)

the Gersten complex in Quillen K-theory. Up to reindexing, this complex is of a
similar shape as the Gersten-Milnor complex constructed in Section 8.1. More-
over, the last three terms of the two complexes are isomorphic by Fact 8.3.3.
Quillen has checked that the last coboundary map ⊕K1(κ(P)) → ⊕K0(κ(P))
in (6) is induced by the valuation map, and Suslin has checked (Suslin [1],
Proposition 6.8) that the penultimate coboundary ⊕K2(κ(P)) → ⊕K1(κ(P))
is induced by a map which equals the tame symbol up to a character with values
in {−1, 1}. These facts imply:

Lemma 8.3.4 Let X be a smooth variety of dimension d over a field. Then
there are natural isomorphisms

Ei,−i
2

∼= C Hi (X ) := C Hd−i (X ) and Ei,−i−1
2

∼= Ad−i (X, K M
i+1−d )

for all 0 ≤ i ≤ d.

From now on we assume that X is a smooth variety over a field, so that
Kn(X ) = Gn(X ) for all n. By the lemma and the Brown–Gersten–Quillen
spectral sequence we obtain maps ρi : C Hi (X ) → gri (K0(X )). In fact, they
are induced by sending a closed subvariety Z of codimension i to the class of
OZ in G0(X ) ∼= K0(X ); in particular they are surjective. The general theory of
Chern classes introduced by Grothendieck provides a rational splitting of these
maps.
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Fact 8.3.5 For each i ≥ 0 there exists a canonical group homomorphism
ci : K0(X ) → C Hi (X ) called the i-th Chern class map which is trivial
on K0(Mi+1), and moreover ci ◦ ρi : C Hi (X ) → gri (K0(X )) → C Hi (X )
equals multiplication by (−1)i−1(i − 1)!. Consequently, the collection of the
Chern class maps induces a direct sum decomposition

K0(X ) ⊗ Q ∼=
d⊕

i=0

C Hi (X ) ⊗ Q.

The claim about ci ◦ ρi boils down to the formula [ci (OZ )]= (−1)i−1(i −1)! [Z ]
in C Hi (X ) for a closed subvariety Z ⊂ X of codimension i . When Z is
smooth, this follows from the Riemann–Roch formula without denominators
(Fulton [1], Example 15.3.1). The general case reduces easily to the smooth
case (Suslin [1], Proposition 9.3).

We can now easily prove:

Lemma 8.3.6 Let p be a prime number. For a Severi–Brauer variety X of
dimension d = p − 1 over a field k, the natural maps C Hi (X ) → gri (K0(X ))
are isomorphisms for all 0 ≤ i ≤ p − 1.

Proof We have already remarked that the maps in question are surjective.
For injectivity it will be enough to show in view of Fact 8.3.5 that the groups
C Hi (X ) have no torsion elements of order dividing (i − 1)! for 0 ≤ i ≤ p − 1.
In fact, they have no torsion prime to p. Indeed, by Proposition 7.4.1 we have
a commutative diagram⊕

Q∈Xi−1
K

K1(κ(Q)) −−−−→ ⊕
Q∈Xi

K

K0(κ(Q))

⊕Nκ(Q)|κ(P)

� �⊕Nκ(Q)|κ(P)⊕
P∈Xi−1

K1(κ(P)) −−−−→ ⊕
P∈Xi

K0(κ(P))

where the horizontal maps are induced by valuation maps. According to Exam-
ple 8.2.3 the cokernels of these maps are respectively C Hi (X K ) and C Hi (X ),
so the diagram defines a norm map C Hi (X K ) → C Hi (X ). By a basic prop-
erty of norm maps, the composite of this norm with the natural flat pullback
map C Hi (X ) → C Hi (X K ) induced by the maps ικ(Q)|κ(P) is multiplication
by p. On the other hand, applying Proposition 8.2.6 with n = −i shows that
C Hi (X K ) ∼= Z for all i . In particular, these groups are torsion free, so the groups
C Hi (X ) can only have torsion elements of order dividing p.
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Corollary 8.3.7 With notations as in the above lemma, the natural maps
Ei,−i−1

2 → gri (K1(X )) coming from the Brown–Gersten–Quillen spectral
sequence are isomorphisms for all 0 ≤ i ≤ p − 1.

Proof All differentials whose target or source is a term Ei,−i−1
m come from or

land in terms of the shape E j,− j
m . According to the first isomorphism in Lemma

8.3.4 and the statement of the lemma above these terms map isomorphically
onto gri (K0(X )) for m = 2, and hence for all m ≥ 2. But then all differentials
in question must be zero, whence the corollary.

Combining the corollary with the second isomorphism of Lemma 8.3.4 we
see that the statement of Theorem 8.3.1 is equivalent to the injectivity of the
maps gri (K (X )) → gri (K (X K )). Or in other words:

Proposition 8.3.8 Let X be a Severi–Brauer variety of dimension d = p − 1
over a field k split by an extension K |k of degree p, and let π : X K → X be the
natural projection. The filtration by codimension of support on K1(X K ) induces
that on K1(X ), i.e. Fi K1(X K ) ∩ π∗K1(X ) = Fi K1(X ) for all i .

Here π∗ : K1(X ) → K1(X K ) is the natural pullback map on K-theory,
induced by pulling back vector bundles. The proof relies on Quillen’s cal-
culation on the K -theory of Severi–Brauer varieties.

Fact 8.3.9 Let X be a Severi–Brauer variety of dimension d − 1 split by K |k,
and let A be a corresponding central simple algebra. Then for all n ≥ 0 there
is a decomposition

Kn(X ) ∼=
d⊕

j=0

Kn(A⊗ j ). (7)

To construct the decomposition, Quillen shows that there is a rank d vector
bundle J on X equipped with a left action by A which becomes isomorphic to
O(−1)⊕d after pullback to X K . The decomposition is then induced (from right
to left) by the map (u0, . . . , ud ), where u j : P(A⊗ j ) → P(X ) maps a projective
A⊗ j -module M to J ⊗ j ⊗A⊗ j M . This decomposition is best explained in §12
of Swan [3]; see also the other references cited above.

In the split case X ∼= Pd−1
k the decomposition reduces to

Kn(X ) ∼=
d⊕

j=0

Kn(k), (8)

the isomorphism being induced (from right to left) by the map (v0, . . . , vd ),
where v j : P(k) → P(X ) maps a k-vector space V to O(− j) ⊗ V . To see that
this is a special case of the previous construction one uses an easy case of
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Morita equivalence (Rowen [2]) which shows that the module categories of k
and Md (k) are equivalent.

Corollary 8.3.10 Assume A is a division algebra of prime degree p, and let
N ⊂ k× be the image of the reduced norm map Nrd : A× → k×. Then for n = 1
the isomorphism (7) becomes K1(X ) ∼= N ⊕d .

Proof By the last fact in 8.3.3, on the right-hand side of (7) we are dealing with
the groups of Chapter 2 in the case n = 1. For each j we may find i with i j ≡ 1
mod p, so that A⊗i j is Brauer equivalent to A, and hence K1(A) ∼= K1(A⊗i j ) by
Lemma 2.8.6. There are injective base change maps A → A⊗ j → A⊗i j whose
composite induces the isomorphism, so K1(A) ∼= K1(A⊗ j ). Finally, the reduced
norm map gives rise to an isomorphism K1(A) ∼→ N by Wang’s theorem
(Theorem 2.8.12).

To attack the proof of Proposition 8.3.8, we first rewrite the isomorphism (8)
for X K in another way. Consider first the case n = 0, and denote by γ the class
ofO(−1) in K0(X K ). The decomposition for K0(X K ) is then just the direct sum
⊕Zγ j . But according to the description of (8), the case of general n reduces to
n = 0, for it is induced by a product K0(X K ) ⊗Z Kn(K ) → Kn(X K ). Thus we
may write

Kn(X K ) ∼=
d⊕

j=0

Kn(K )γ j .

Lemma 8.3.11 The filtration by codimension of support on Kn(X ) is described
by

Fi Kn(X K ) ∼=
d⊕

j=i

Kn(K )(γ − 1) j .

Proof Let H be a hyperplane in X K
∼= Pd−1

K . The exact sequence

0 → O(−1) → O → OH → 0

shows that the class of OH in K0(X K ) is precisely γ − 1. It generates
gr1 K0(X K ) ∼= Z, and its powers [OH ] j generate gr j K0(X ) ∼= Z (see the proof
of Lemma 8.3.6), whence the case n = 0. To treat the general case, we exploit
the isomorphism K0(X K ) ⊗Z Kn(K ) ∼→ Kn(X K ). In fact, it is induced by a
product map on K-groups coming from tensoring vector bundles on X with
trivial bundles coming from Spec (K ) (Swan [3], §8 or Suslin [1], §6). As such,
it preserves filtration by codimension of support, and the result follows from
the case n = 0.
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For the proof of Proposition 8.3.8 we need one last fact from Quillen
K-theory: any proper morphism of finite dimensional noetherian schemes
φ : S → T gives rise to pushforward maps φ∗ : Gn(S) → Gn(T ) for all n,
induced by taking higher direct images of coherent sheaves (Suslin [1], §6). It
yields the norm map when n = 1 and S = Spec (E), T = Spec (F) for a finite
extension E |F of fields, and satisfies the projection formula φ∗(x · φ∗(y)) =
φ∗(x)y with respect to the product encountered in the last proof.

Proof of Proposition 8.3.8 We may assume A is a division algebra, for other-
wise it is split and the claim is obvious. The pullback map π∗:K1(X )→ K1(X K )
respects the decompositions (8) and (7), and moreover using Morita equivalence
and Wang’s theorem may be identified on the components with the inclusion
N ↪→ K ×. Hence it is injective, and its image may be described as the subgroup

d⊕
j=0

Nγ j ⊂
d⊕

j=0

K ×γ j .

The intersection of this subgroup with Fi K1(X K ) is given by(
d⊕

j=0

Nγ j

)
∩
(

d⊕
j=i

K ×(γ − 1) j

)
=

d⊕
j=i

N (γ − 1) j

by virtue of the previous lemma, so to conclude the proof it remains to show
that N (γ − 1) j ⊂ π∗(Fi K1(X )) for i ≤ j . Pick α ∈ N and x ∈ A satisfying
Nrd(x) = α. As A is a division algebra of degree p, Proposition 2.6.4 shows
that α = NL|k(x) for a degree p subfield L ⊂ A which is moreover a splitting
field for A. Apply the pushforward map φ∗ : K1(X L ) → K1(X ) coming from
φ : X L → X to x(γ − 1) j , and consider the decomposition (8) for X L . Since
the class γ is the pullback of the class of the vector bundle J on X by the
construction of Fact 8.3.9, the projection formula for the pushforward map
implies α(γ − 1) j = φ∗(x(γ − 1) j ). But by its construction φ∗ preserves fil-
tration by codimension of support, which proves the proposition, and thereby
Theorem 8.3.1.

8.4 Hilbert’s Theorem 90 for K2

Recall from Example 2.3.4 that the classical form of Hilbert’s Theorem 90 is
the following statement: In a cyclic Galois extension K |k of fields each element
of norm 1 can be written in the form σ (a)a−1, where a ∈ K × and σ is a fixed
generator of Gal (K |k). In other words, the complex

K × σ−1−→ K × NK |k−→ k×
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is exact. In this section we prove an analogue of this statement for the group K M
2 ,

which is the crucial ingredient in the proof of the Merkurjev–Suslin theorem.
Let K |k be a cyclic extension as above, and consider the sequence of maps

K M
2 (K )

σ−1−→ K M
2 (K )

NK |k−→ K M
2 (k).

Here σ acts on K × ⊗Z K × by σ (a ⊗ b) = σ (a) ⊗ σ (b), and K M
2 (K ) carries

the induced action. The sequence is a complex, because the norm map satisfies
NK |k(σ (α)) = NK |k(α) for all α ∈ K M

2 (K ) (Corollary 7.3.3).
Now the promised result is:

Theorem 8.4.1 (Hilbert’s Theorem 90 for K2) Let K |k be a cyclic Galois
extension of prime degree p, and let σ be a generator of Gal (K |k). Then the
complex

K M
2 (K )

σ−1−→ K M
2 (K )

NK |k−→ K M
2 (k) (9)

is exact.

Remark 8.4.2 The theorem in fact holds for arbitrary cyclic extensions (see
Exercise 5), but the prime degree case is the crucial one.

First we establish the theorem in an important special case.

Proposition 8.4.3 Let K |k be a cyclic Galois extension of degree p as above.
Assume that

� k has no nontrivial finite extensions of degree prime to p;
� the norm map NK |k : K × → k× is surjective.

Then Theorem 8.4.1 holds for the extension K |k.

Before starting the proof, we introduce some notation. Let K |k be a cyclic
extension of degree p as above, and let F ⊃ k be a field. If K ⊗k F is not a
field, then it splits into a direct sum K ⊗k F ∼= F⊕p of copies of F . In this
last case we shall use the notation K M

2 (K ⊗k F) for K M
2 (F)⊕p and denote by

NK ⊗k F |F : K M
2 (K ⊗k F) → K M

2 (F) the map K M
2 (F)⊕p → K M

2 (F) given by
the sum of the identity maps.

Proof Consider the map

N K |k : K M
2 (K )/(σ − 1)K M

2 (K ) → K M
2 (k)

induced by the norm NK |k . The idea of the proof is to construct an inverse

ψ : K M
2 (k) → K M

2 (K )/(σ − 1)K M
2 (K )
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for the map N K |k . To do so, we first define a map

ψ̃ : k× × k× → K M
2 (K )/(σ − 1)K M

2 (K )

as follows. Let a, b ∈ k×. By assumption a = NK |k(c) for some c ∈ K ×, and
we set

ψ̃(a, b) := {c, bK } ∈ K M
2 (K )/(σ − 1)K M

2 (K ),

where bK means b viewed as an element of K . To see that ψ̃ is well defined,
take another element c′ ∈ K × with NK |k(c′)=a. Then c′c−1 has norm 1, so it
is of the form σ (e)e−1 by the original Theorem 90 of Hilbert recalled above.
As σ (bK ) = bK , we have

{c′, bK } − {c, bK } = {σ (e)e−1, bK } = (σ − 1){e, bK } ∈ (σ − 1)K M
2 (K ).

The map ψ̃ is manifestly bilinear, so it extends to a map

ψ̃ : k× ⊗Z k× → K M
2 (K )/(σ − 1)K M

2 (K ).

We next check that ψ̃ respects the Steinberg relation, i.e. ψ̃(a ⊗ 1 − a) = 0
for a �= 0, 1. Set L = k(α) for some α ∈ k̄ satisfying α p = a if a /∈ k×p, and
set L = K otherwise. The tensor product M = K ⊗k L is a field for L �= K ,
and a direct sum of p copies of K for L = K . We have H 1(G, M×) = 0 for
G = Gal (K |k), in the first case by Hilbert’s Theorem 90, and in the second
one because the group of invertible elements M× is a co-induced G-module.
Observe that

1 − aK = NM |K (1 − αM ). (10)

Indeed, if the extension L|k is purely inseparable, so is M |K , and we have
NM |K (1 − αM ) = (1 − αM )p = 1 − aK . Otherwise, L|k is a cyclic Galois
extension generated by some automorphism τ (as by our first assumption k
contains the p-th roots of unity), so in L we have a product decomposition

x p − a =
p−1∏
i=0

(x − τ i (α)).

Setting x = 1 we get 1 − a = ∏
(1 − τ i (α)) = NL|k(1 − α). Since M |K is

either a degree p cyclic Galois extension, or a direct sum of p copies of K , this
implies (10). We now compute using the projection formula

{c, 1 − a}= NM |K ({cM , 1−αM})= NM |K ({cMα−1
M , 1−αM}+{αM , 1−αM}).

Here NM |L (cMα−1
M ) = a(α p)−1 = 1, because σ (αM ) = αM . By the vanishing

of H 1(G, M×) we may thus write cMα−1
M = σ (d)d−1 for some d ∈ M using

Example 3.2.9 (this is just the classical Hilbert 90 if L �= K ), and conclude that

{c, 1 − a} = NM |K ({σ (d)d−1, 1 − αM}) = (σ − 1)NM |K ({d, 1 − αM}),
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noting that NM |K commutes with the action of σ and σ (αM ) = αM . This is an
element lying in (σ − 1)K M

2 (K ), which finishes the verification.

We have now shown that the map ψ̃ induces a map

ψ : K M
2 (k) → K M

2 (K )/(σ − 1)K M
2 (K ).

Moreover, for all a, b ∈ k× one has

NK |k(ψ({a, b})) = NK |k({c, b}) = {NK |k(c), b} = {a, b}
by the projection formula, which implies in particular that ψ is injective. For
surjectivity, note that thanks to the first assumption of the proposition we may
apply the corollary to the Bass–Tate lemma (Corollary 7.2.10) according to
which the symbol map K × ⊗Z k× → K M

2 (K ) is surjective. Hence so is ψ , and
the proof is finally finished.

The idea of the proof of Theorem 8.4.1 is then to embed k into some (very
large) field extension F∞ ⊃ k satisfying the conditions of the proposition above,
so that moreover the induced map between the homologies of the complex (9)
and the similar one associated with the extension F∞K |F∞ is injective. The
proposition will then enable us to conclude. The required injectivity property
will be assured by the two propositions below.

Denote by V (F) the homology of the complex

K M
2 (K ⊗k F)

σ−1−→ K M
2 (K ⊗k F)

NK ⊗k F |F−−−−−−→ K M
2 (F),

where we keep the notation introduced before the previous proof, the automor-
phism σ acts on K ⊗k F via the first factor, and K M

2 (K ⊗k F) is equipped
with the induced action. For a tower of field extensions E |F |k, we have natural
morphisms V (k) → V (F) → V (E). We can now state:

Proposition 8.4.4 Let k ′|k be an algebraic extension of degree prime to p.
Then the map V (k) → V (k ′) is injective.

Here in the case of an infinite algebraic extension we mean an extension
whose finite subextensions all have degree prime to p.

Proof Let L|k be a finite extension. The diagram

K M
2 (K ⊗k L)

σ−1−−−−→ K M
2 (K ⊗k L)

NK ⊗k L|L−−−−→ K M
2 (L)

NK ⊗k L|K

� NK ⊗k L|K

� NL|k

�
K M

2 (K )
σ−1−−−−→ K M

2 (K )
NK |k−−−−→ K M

2 (k)

gives rise to a norm map NL|k : V (L) → V (k). It follows from the results

of Chapter 7, Section 7.3 that the composite V (k) → V (L)
NL|k−→ V (k) is
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multiplication by the degree [L : k]. In particular, for L = K we get that the

composite V (k) → V (K )
NK |k−→ V (k) is multiplication by p. On the other hand,

notice that V (K ) = 0. Indeed, by Galois theory K ⊗k K splits as a direct product
of p copies of K , and σ acts trivially on each component, because we defined
its action on K ⊗k K via the first factor. From this the vanishing of V (K ) is
immediate.

Putting the above together we get that pV (k)=0. On the other hand, if
L =k ′ for a finite extension k ′|k of degree prime to p, the composite map
V (k)→ V (k ′)→ V (k) is multiplication by [k ′ :k], and therefore the map
V (k)→ V (k ′) must be injective. To pass from here to the general case of an
algebraic extension k ′|k of degree prime to p, we write k ′ as a direct limit of
its finite subextensions. The claim than follows from the fact that the functor
L →V (L) commutes with direct limits (because so do tensor products and exact
sequences).

The second injectivity property, which is the main step in the proof of
Theorem 8.4.1, is given by the following proposition.

Proposition 8.4.5 Let X be a Severi–Brauer variety split by the degree p cyclic
extension K |k. Then the map V (k) → V (k(X )) is injective.

Proof An element of ker(V (k) → V (k(X ))) is given by some α ∈ K M
2 (K )

of trivial norm such that there exists β ∈ K M
2 (K (X )) satisfying αK (X ) =

(σ − 1)β. We would like to prove that β may be chosen in K M
2 (K ). Consider

the commutative diagram

K M
2 (K )

σ−1−−−−→ K M
2 (K )

NK |k−−−−→ K M
2 (k)� � �

β ∈ K M
2 (K (X ))

σ−1−−−−→ K M
2 (K (X ))

NK |k−−−−→ K M
2 (k(X )),

∂M

� ∂M

� ∂M

�⊕
P∈X1

K

κ(P)× σ−1−−−−→ ⊕
P∈X1

K

κ(P)× NK |k−−−−→ ⊕
P∈X1

κ(P)×

whose rows and columns are complexes. The lower right square commutes by
Proposition 7.4.1; commutativity of the other squares is straightforward. The
lower left square shows that (σ − 1)∂M (β) = 0, so ∂M (β) is fixed by the action
of Gal (K |k), i.e. it comes from an element of

⊕
P∈X1 κ(P)×. Moreover, the

valuations of this element coming from points of X2 must be trivial, as so are
those of ∂M (β). This means that there is an element γ0 in

Z (X ) := ker
(⊕

P∈X1

κ(P)× −→
⊕
P∈X2

Z
)
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such that ∂M (β) = γ0,K . Now look at the commutative diagram

0 0� �
K M

2 (k(X ))/K M
2 (k)

∂M−−−−→ Z (X ) −−−−→ Ad−1(X, K M
2−d ) −−−−→ 0� � �

K M
2 (K (X ))/K M

2 (K )
∂M−−−−→ Z (X K ) −−−−→ Ad−1(X K , K M

2−d ) −−−−→ 0.

The exact rows of this diagram are given by the definition of the group
Ad−1(X, K M

2−d ). Injectivity of the second vertical map is obvious, and that
of the third comes from the case i = 1 of Theorem 8.3.1. It follows from
the diagram that there exists β0 ∈ K M

2 (k(X )) such that ∂M (β0) = γ0. We may
therefore replace β by β − β0,K without affecting the relation α = (σ − 1)β,
so that ∂M (β) = 0. This means that β lies in Ad (X K , K M

2−d ) ⊂ K M
2 (K (X )). As

X K is a projective space over K , we get from Example 8.2.7 that β lies in
K M

2 (K ), which is what we wanted to show.

We finally come to the

Proof of Theorem 8.4.1 Define a tower of fields

k = F0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ F∞ =
⋃

n

Fn

inductively as follows:

1. The field F2n+1 is a maximal prime to p extension of F2n;
2. the field F2n+2 is the compositum of all function fields of Severi–Brauer

varieties associated with cyclic algebras of the form (χ, b), where χ is a
fixed character of Gal (F2n+1 K |F2n+1) ∼= Gal (K |k) and b ∈ F×

2n+1.

Here some explanations are in order. Concerning the maximal prime to p
extension, see Remark 7.2.11. By the compositum of all function fields of a
family {Xi : i ∈ I } of varieties we mean the direct limit of the direct system of the
function fields of all varieties Xi1× · · · × Xir for finite subsets {i1, . . . , ir } ⊂ I ,
partially ordered by the natural inclusions. Finally, the extensions K Fj |Fj are
all cyclic of degree p. Indeed, this property is preserved when passing to an
extension of degree prime to p, and also when taking the function field of a
product of Severi–Brauer varieties, as these varieties are geometrically integral,
and hence the base field is algebraically closed in their function field.

Now Proposition 8.4.4 shows that V (F2n) injects into V (F2n+1) for n ≥ 0, and
an iterated application of Proposition 8.4.5 implies that V (F2n+1) injects into
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V (F2n+2). Therefore V (k) = V (F0) injects into V (F∞). We now show that the
field F∞ satisfies the conditions in Proposition 8.4.3, which will conclude the
proof. Indeed, it has no algebraic extension of degree prime to p by construction.
To verify the surjectivity of the norm map NK F∞|F∞ , use Corollary 4.7.3 which
states that under the isomorphism F×

∞/NK F∞|F∞ ((K F∞)×) ∼= Br (K F∞|F∞)
the classes of all elements b ∈ F×

∞ are mapped to the classes of the algebras
(χ, b). But each b comes from some F2m+1, and hence the class of the algebra
(χ, b) in Br (K F2m+2|F2m+2) is trivial by Châtelet’s theorem. As Br (K F∞|F∞)
is the direct limit of the Br (K Fj |Fj ) by Lemma 4.3.3, this concludes the veri-
fication of the assumptions of Proposition 8.4.3, and therefore the proof of the
theorem.

Remark 8.4.6 The technique of building towers of fields like the one in the
proof above has turned out to be useful in other situations as well. Merkurjev [3]
used such a technique for constructing fields of cohomological dimension 2
over which there exist division algebras of period 2 and index 2d for d arbitrary
large (this is to be compared with the discussion of Remark 4.5.15). In the
same paper, Merkurjev gave a counterexample to a conjecture of Kaplansky’s
in the theory of quadratic forms. Colliot-Thélène and Madore [1] (see also
Colliot-Thélène [5]) constructed by means of the above technique a field k of
cohomological dimension 1 and characteristic 0 over which there exist smooth
projective varieties that are birational to projective space over k̄ but have no
rational point (note that Severi–Brauer varieties always do, by Theorem 6.1.8).

The theorem has the following important application.

Theorem 8.4.7 Let m > 1 be an integer invertible in k, and assume that k
contains a primitive m-th root of unity ω. Then the m-torsion subgroup m K M

2 (k)
consists of elements of the form {ω, b}, with b ∈ k×.

Proof We begin with the crucial case when m = p is a prime number. Let K be
the Laurent series field k((t)), and consider the cyclic Galois extension K ′|K
given by K ′ = k((t ′)), where t = t ′ p. Let σ be the generator of Gal (K ′|K )
satisfying σ (t ′) = ωt ′, and let α = �{ai , bi } be an element of p K M

2 (k). We
compute

NK ′|K (αK ′ )= NK ′|K
(∑

{ai , bi }
)

=
∑

{NK ′|K (ai ), bi }=
∑

{a p
i , bi }= pα=0

using the projection formula. Hilbert’s Theorem 90 for K M
2 then implies

that there exists β ∈ K M
2 (K ′) such that αK ′ = (σ − 1)β. We denote by

∂ ′ : K M
2 (K ′) → k× the tame symbol associated with the canonical valua-

tion of K ′ and set γ := ∂ ′(β). The element β̃ := β − {t ′, γ } then satisfies
∂ ′(β̃) = 0. Since (σ − 1){t ′, γ } = {σ (t ′)t ′−1

, γ } = {ω, γ }, replacing β by β̃
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and α by α − {ω, γ } we may assume ∂ ′(β) = 0. By definition we have
α = st ′ (αK ′ ) = st ′ ((σ − 1)β), where st ′ is the specialization map associated with
t ′. But ∂ ′(β) = 0 implies, by the first part of Proposition 7.1.7, that β is a sum of
symbols of the form {ui , vi } with some units ui , vi in k[[t ′]]×. As the extension
K ′|K is totally ramified, ui and σ (ui ) have the same image modulo (t ′), and sim-
ilarly for the vi . Thus st ′ ((σ − 1){ui , vi }) = 0, so that α = st ′ ((σ − 1)β) = 0,
which concludes the proof in the case m = p.

Next assume that m = pr is a prime power with r > 1, and that the statement
is already known for all m = p j with 0 < j < r . Given α ∈ prK M

2 (k), we have
pα = {ωp, b} = p{ω, b} for some b ∈ k× by induction, as ωp is a primitive
pr−1-st root of unity. Therefore α − {ω, b} = {ωpr−1

, c} for some c ∈ k× by
the case m = p, which proves the theorem in this case. Finally, the general
case follows by decomposing each m-torsion element in K M

2 (k) into a sum of
pi -primary torsion elements for the prime divisors pi of m.

Theorem 8.4.8 Assume that char (k) = p > 0. Then p K M
2 (k) = 0.

Proof We now exploit the Artin–Schreier extension K ′ of K = k((t)) given
by t ′ p − t ′ = t−1, and denote by σ the generator of Gal (K ′|K ) mapping t ′ to
t ′ + 1. Let α ∈ p K M

2 (k). By the same argument as in the previous proof, we
find β ∈ K M

2 (K ′) satisfying ∂ ′(β) = 0 and γ ∈ k× such that

αK ′ = (σ − 1)(β + {t ′, γ }) = (σ − 1)β + {t ′ + 1, γ } − {t ′, γ }.
As above, we use the specialization map st ′ and note that ∂ ′(β) = 0 implies
st ′ ((σ − 1)β) = 0. Hence α = st ′ (αK ′ ) = st ′ ((σ − 1)β) + {1, r} − {1, r} = 0,
as was to be shown.

8.5 The Merkurjev–Suslin theorem: a special case
In this section we prove the injectivity part of the Merkurjev–Suslin theorem for
some special fields. Namely, fix a prime number p, and let k0 be a finite extension
of Q, or else an algebraically closed field or a finite field of characteristic prime
to p. The fields k we shall consider in this section will be extensions of k0

of the following type: there exists a subfield k0 ⊂ kp ⊂ k which is a finitely
generated purely transcendental extension of k0, and moreover k|kp is a finite
Galois extension whose degree is a power of p.

Theorem 8.5.1 Let k be a field of the above type. Then the Galois symbol

h2
k,p : K M

2 (k)/pK M
2 (k) → H 2(k, µ⊗2

p )

is injective.
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The proof will be by induction on the transcendence degree, so the case of a
base field has to be considered first. The case of a finite extension of Q results
from Theorem 7.6.1. For k algebraically closed, the statement is obvious, as
H 2(k, µ⊗2

p ) is then trivial and K M
2 (k) is divisible by p (since k×p = k×). For k

finite, both K M
2 (k) and H 2(k, µ⊗2

p ) are trivial, the first one by Example 7.1.3,
and the second because cd(k) ≤ 1 in this case.

Thus we can turn to extensions of the base field. The core of the argument is
the following proposition due to Merkurjev.

Proposition 8.5.2 Let k be an arbitrary field containing a primitive p-th root
of unity ω, and let K = k( p

√
a) be a cyclic extension of degree p. Assume that

the Galois symbol h2
k,p : K M

2 (k)/pK M
2 (k) → H 2(k, µ⊗2

p ) is injective. Then the
complex

K M
2 (k)/pK M

2 (k)
iK |k ⊕h2

k,p−−−−−−−−→K M
2 (K )/pK M

2 (K ) ⊕ H 2(k, µ⊗2
p )

h2
K ,p−ResK

k−−−−−−−−→H 2(K , µ⊗2
p )

is exact.

For the proof we need some preliminary lemmas. The first is a well-known
one from group theory.

Lemma 8.5.3 Let G be a group and p a prime number. In the group algebra
Fp[G] we have an equality

(σ − 1)p−1 = σ p−1 + · · · + σ + 1

for all σ ∈ G, where 1 is the unit element of G.

Proof By Newton’s binomial formula

(σ − 1)p−1 =
p−1∑
i=0

(
p − 1

i

)
σ i (−1)p−1−i ,

where (
p − 1

i

)
= (p − 1) . . . (p − i)

1 · · · i
≡ (−1)i mod p,

and it remains to use the congruence (−1)p−1 ≡ 1 mod p.

Lemma 8.5.4 For k and K as in the proposition, the natural map

ker(ιK |k) → ker(ResK
k )
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induced by the commutative diagram

K M
2 (k)/pK M

2 (k)
h2

k,p−−−−→ H 2(k, µ⊗2
p )

iK |k

� �ResK
k

K M
2 (K )/pK M

2 (K )
h2

K ,p−−−−→ H 2(K , µ⊗2
p )

is surjective.

Proof Let c be a class in the kernel of ResK
k . Since µp ⊂ k, we may identify c

with an element in the kernel Br (K |k) of the map Br (k) → Br (K ), and hence
with the class of a cyclic algebra (a, b)ω for appropriate b ∈ k×, by Corollar-
ies 4.4.10 and 4.7.4. By Proposition 4.7.1 we therefore obtain c = h2

k,p({a, b}).
But {a, b} goes to 0 in K M

2 (K )/pK M
2 (K ) as a is a p-th power in K . The lemma

follows.

Note that in the above proof we did not use the assumed injectivity of h2
k,p.

Under this hypothesis, the lemma (and its proof) yields:

Corollary 8.5.5 Assume moreover that h2
k,p is injective. Then the natural map

ker(ιK |k) → ker(ResK
k )

an isomorphism, and each element of ker(ιK |k) can be represented by a symbol
of the form {a, b} with some b ∈ k×.

Proof of Proposition 8.5.2 Take β ∈ K M
2 (K )/pK M

2 (K ) and c ∈ H 2(k, µ⊗2
p )

such that the pair (β, c) lies in the kernel of h2
K ,p − ResK

k . It will be enough
to find α ∈ K M

2 (k)/pK M
2 (k) for which ιK |k(α) = β. Indeed, for such an α the

commutative diagram of the previous lemma shows that h2
k,p(α) differs from c

by an element of ker(ResK
k ). But by the lemma we may modify α by an element

of ker(ιK |k) so that h2
k,p(α) = c holds.

Next, denote by σ the generator of G = Gal (K |k) mapping p
√

a to ω p
√

a. The
idea of the proof is to construct inductively for each i = 1, . . . , p − 1 elements
αi ∈ K M

2 (k)/pK M
2 (k) and βi ∈ K M

2 (K )/pK M
2 (K ) satisfying

β = ιK |k(αi ) + (σ − 1)i (βi ). (11)

This will prove the proposition, because for i = p − 1 we may write using
Lemma 8.5.3

(σ − 1)p−1(βp−1) =
p−1∑
j=0

σ i (βp−1) = iK |k(NK |k(βp−1))

in K M
2 (K )/pK M

2 (K ), and hence α = αp−1 + NK |k(βp−1) will do the job.
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We begin the construction of the elements αi and βi by the case i = 1. Using
the compatibility of the Galois symbol with norm maps (Proposition 7.5.5), we
may write

0 = pc = CorK
k (ResK

k (c)) = CorK
k (h2

K ,p(β)) = h2
k,p

(
NK |k(β)

)
.

By the assumed injectivity of h2
k,p, we find α1 ∈ K M

2 (k) with NK |k(β) = pα1.
Since NK |k(α1,K ) = pα1 by Remark 7.3.1 (here as always the subscript K
means image by iK |k), an application of Hilbert’s Theorem 90 for K2 shows
that

β − α1,K = (σ − 1)β1

for some β1 ∈ K M
2 (K ), whence the case i = 1 of the required identity. In partic-

ular, in the case p = 2 this concludes the proof, so in what follows we assume
p > 2.

Now assume that the elements α j and β j have been constructed for all j ≤ i .
Making the element (σ − 1)p−1−i ∈ Z[G] act on both sides of the identity (11)
we obtain

(σ − 1)p−1−i (β)= (σ − 1)p−1−i (ιK |k(αi ))+(σ − 1)p−1(βi )= (σ − 1)p−1(βi ),

because σ acts trivially on αi,K .
Consider now the group H 2(K , µ⊗2

p ) equipped with its natural G-action
and apply h2

K ,p to both sides. Using the compatibility of the Galois sym-
bol with the action of G (an immediate consequence of Lemma 3.3.13 and
Proposition 3.4.10 (4)), we get

(σ − 1)p−1−i ResK
k (c) = (σ − 1)p−1−i h2

K ,p(β) = h2
K ,p

(
(σ − 1)p−1(βi )

)
.

Here the left-hand side is 0, because the image of the map ResK
k is fixed by G

(this follows from the constructions of the conjugation action and the restriction
map in Chapter 3), and p − 1 − i ≥ 1. Using Lemma 8.5.3 we get from the
above

0 = h2
K ,p

(
NK |k(βi )K

) = ResK
k

(
h2

k,p

(
NK |k(βi )

))
.

Applying Corollary 8.5.5 we infer

h2
k,p(NK |k(βi )) = h2

k,p({a, bi })
for some bi ∈ k×, and from the injectivity of h2

k,p we conclude that

NK |k(βi ) − {a, bi } = pδi

for some δi ∈ K M
2 (k). Using the equality NK |k( p

√
a) = a, we may rewrite this

as

NK |k
(
βi − { p

√
a, bi }

) = pδi
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using the projection formula. Therefore, taking the identity NK |k(δi,K ) = pδi

into account, we get that βi − { p
√

a, bi } − δi,K is an element of trivial norm.
Hence Hilbert’s Theorem 90 for K M

2 implies

βi − { p
√

a, bi } − δi,K = (σ − 1)βi+1

for some βi+1 ∈ K M
2 (K ). Applying (σ − 1)i yields

(σ − 1)i (βi ) = (σ − 1)i ({ p
√

a, bi }) + (σ − 1)i+1βi+1.

Since bi ∈ k, here for i = 1 we have (σ − 1)({ p
√

a, b1}) = {ω, b1}K by defini-
tion of σ , and therefore (σ − 1)i ({ p

√
a, bi }) = 0 for i > 1. All in all, putting

α2 := α1 + {ω, b1} and αi+1 := αi for i > 1 completes the inductive step.

Notice that the commutative diagram of Lemma 8.5.4 induces a natural map
coker (h2

k,p) → coker (h2
K ,p).

Corollary 8.5.6 Under the assumptions of the previous proposition, the Galois
symbol h2

K ,p is injective, and so is the map coker (h2
k,p) → coker (h2

K ,p) just
defined.

Proof For the first statement, take a class β ∈ ker(h2
K ,p) and a class c in the

kernel of the restriction map H 2(k, µ⊗2
p ) → H 2(K , µ⊗2

p ). By the proposition
above, there is a class α ∈ K M

2 (k)/pK M
2 (k) with ιK |k(α) = β and h2

k,p(α) = c.
Moreover, such an α is unique by injectivity of h2

k,p. On the other hand, by
Lemma 8.5.4 our c comes from an element in the kernel of ιK |k , so the above
unicity yields α ∈ ker(ιK |k) and β = 0, as desired. The second statement is an
immediate consequence of the proposition.

We can now proceed to:

Proof of Theorem 8.5.1 To begin with, a restriction-corestriction argument
as in the proof of Proposition 7.5.9 shows that for a finite extension L|K of
fields which has degree prime to p the natural maps ker(h2

K ,p) → ker(h2
L ,p) and

coker (h2
K ,p) → coker (h2

L ,p) are injective. By virtue of this fact we may enlarge
k0 so that it contains a primitive p-th root of unity.

We then proceed by induction on the transcendence degree. As noted after
the statement of the theorem, the statement holds for k0. Next choose a tower of
field extensions k0 ⊂ kp ⊂ k as at the beginning of this section. As the Galois
symbol h1

F,p is bijective for all fields by virtue of Kummer theory (Theorem
4.3.6), an iterated application of Proposition 7.5.6 (1) shows that the injectivity
of h2

k0,p implies that of h2
kp,p. Finally, we write the Galois extension k|kp as

a tower of Galois extensions of degree p, and obtain injectivity of h2
k,p by an

iterated application of the first statement in Corollary 8.5.6.
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To conclude this section, we note that the above arguments also yield the
following interesting consequence.

Proposition 8.5.7 Assume that k is a field having the property that the Galois
symbol h2

L ,p is injective for all finite extensions L|k. Then h2
k,p is surjective.

Proof As in the previous proof, we may assume that k contains a primitive
p-th root of unity. Take an element c ∈ H 2(k, µ⊗2

p ). There exists a finite Galois
extension L|k such that c restricts to 0 in H 2(L , µ⊗2

p ). Let P be a p-Sylow
subgroup of Gal (L|k) and L P its fixed field. The extension L P |k has prime to
p degree, so the remark at the beginning of the previous proof shows that the
natural map coker (hk,p) → coker (hL P ,p) is injective. We may then replace k
by L P , and assume that the degree [L : k] is a power of p. Thus, just like in
the previous proof, an iterated application of the second statement of Corollary
8.5.6 shows that the restriction map coker (h2

k,p) → coker (h2
L ,p) is injective,

which implies that c ∈ Im (h2
k,p).

Thus in order to complete the proof of the Merkurjev–Suslin theorem, it
remains to establish the injectivity of the Galois symbol for arbitrary fields.
This is the content of the next section.

8.6 The Merkurjev–Suslin theorem: the general case
Following Merkurjev, we shall now use the results of the previous section to
prove the following crucial fact. The general case of the Merkurjev–Suslin
theorem will then be an easy consequence.

Theorem 8.6.1 Let k be a field containing a primitive p-th root of unity ω, and
let K = k( p

√
a) be a Galois extension of degree p. The kernel of the natural

map

K M
2 (k)/pK M

2 (k) → K M
2 (K )/pK M

2 (K )

consists of images of symbols of the form {a, b} with some b ∈ k×.

Note that this result was established in Corollary 8.5.5 under the assump-
tion that h2

k,p is injective. Thus it can be also viewed as a consequence of the
injectivity part of the Merkurjev–Suslin theorem. In particular, it holds for fields
of the type considered in Theorem 8.5.1.

The idea of the proof is to reduce the statement to the case of the particular
fields considered in Theorem 8.5.1 via a specialization argument. Recall that
in Chapter 7 we constructed for a field K equipped with a discrete valuation v

with residue field κ specialization maps sM
t : K M

n (K ) → K M
n (κ) for all n ≥ 0,

depending on the choice of a local parameter t for v. Whe shall use these maps



8.6 The Merkurjev–Suslin theorem: the general case 251

here for n = 1 or 2, employing the more precise notations s1
t and s2

t , respectively.
Note that they satisfy the formula s2

t {x, y} = {s1
t (x), s1

t (y)} for all x, y ∈ k. The
strategy of the proof is then summarized by the following proposition, which
immediately implies Theorem 8.6.1.

Proposition 8.6.2 Under the assumptions of the theorem, let

α = {a1, b1} + · · · + {an, bn} ∈ K M
2 (k)

be a symbol satisfying ιK |k(α) ∈ pK M
2 (K ). Then there exist a subfield k0 ⊂ k

containing the elements ω, a, a1, . . . , an, b2, . . . , bn, an integer d > 0 and an
iterated Laurent series field kd := k0((t1)) . . . ((td )), so that for suitable B ∈ k×

d

the element

b := (s1
t1 ◦ s1

t2 ◦ · · · ◦ s1
td )(B) ∈ k0 ⊂ k

satisfies {a, b} = α modulo pK M
2 (k), where

sti : k0((t1)) . . . ((ti )) → k0((t1)) . . . ((ti−1))

is the specialization map associated with ti .

To ensure the existence of a suitable B ∈ kd , the idea is to find elements
Ai , Bi ∈ kd specializing to ai and bi , respectively, so that moreover the elements
A1, . . . , An, B1, . . . , Bn, a and ω all lie in a subfield of kd which is of the type
considered in Theorem 8.5.1, and the symbol

∑{Ai , Bi } becomes divisible
by p after we adjoin the p-th root p

√
a. Once this is done, Theorem 8.5.1 and

Corollary 8.5.5 will guarantee the existence of the required B.
This argument prompts the necessity of finding a general criterion for ele-

ments a1, . . . , an, bn, . . . , bn in a field F which forces the p-divisibility of the
symbol

∑{ai , bi } in K M
2 (F). The next proposition, due to Merkurjev, gives

such a criterion.
First some notation: given an integer N > 0, denote byAN the set of nonzero

functions α : {1, 2, . . . , N } → {0, 1, . . . , p − 1}. For a field F containing a
primitive p-th root of unity and elements a1, . . . , aN ∈ F× set

aα :=
N∏

i=1

aα(i)
i and Fα := F( p

√
aα),

and denote by Nα the norm map NFα |F : F×
α → F×.

Proposition 8.6.3 Let F be a field containing a primitive p-th root of unity,
and let a1, . . . , an be elements in F× whose images are linearly independent in
the Fp-vector space F×/F×p. Then for all b1, . . . , bn ∈ F× the symbol

n∑
i=1

{ai , bi } ∈ K M
2 (F)
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lies in pK M
2 (F) if and only if there exist an integer N ≥ n and elements

an+1, . . . , aN , c1, . . . , cN ∈ F× and wα ∈ F×
α for each α ∈ AN satisfying

cp
i bi =

∏
α∈AN

Nα(wα)α(i) (12)

for all 1 ≤ i ≤ N, where we set bi = 1 for n < i ≤ N.

Note that although formula (12) does not involve the ai , the wα depend on
them. For the proof we need:

Lemma 8.6.4 Let N be the subgroup of F× ⊗Z F× generated by those ele-
ments a ⊗ b for which b is a norm from the extension F( p

√
a)|F. The natural

map F× ⊗Z F× → K M
2 (F) induces an isomorphism

(F× ⊗Z F×/N ) ⊗ Z/pZ ∼→ K M
2 (F)/pK M

2 (F).

Proof Denote by Fa the extension F( p
√

a). If a ⊗ b ∈ N , then by definition
b = NFa |F (b′) for some b′ ∈ Fa , so that in K M

2 (F) we may write using the
projection formula

{a,b}={a,NFa |F (b′)}= NFa |F ({a,b′})= NFa |F {( p
√

a)p, b′})= pNFa |F ({ p
√

a, b′}).
This shows that the natural surjection F× ⊗Z F× → K M

2 (F)/pK M
2 (F) fac-

tors through (F× ⊗Z F×/N ) ⊗ Z/pZ. Finally, if some a ⊗ b maps to 0 in
K M

2 (k)/pK M
2 (k), then it is congruent modulo p to a sum of elements of the

form c ⊗ (1 − c). But the equality NFc|F (1 − p
√

c) = 1 − c (obtained as in the
proof of Proposition 8.4.3) shows that these elements lie in N , and the proof is
complete.

Proof of Proposition 8.6.3 We first prove sufficiency, which does not require
the independence assumption on the ai . Equation (12) yields an equality
bi = ∏

α∈AN
Nα(wα)α(i) in F×/F×p, so that using bi = 1 for i > n we get

n∑
i=1

{ai , bi } =
N∑

i=1

{ai , bi } =
N∑

i=1

∑
α∈AN

{ai , Nα(wα)α(i)} in K M
2 (F)/pK M

2 (F).

But here

N∑
i=1

{ai , Nα(wα)α(i)} = {aα, Nα(wα)}

by bilinearity of symbols, and {aα, Nα(wα)} ∈ pK M
2 (F) by Lemma 8.6.4.

For the converse, assume that
∑{ai , bi } lies in pK M

2 (F). By Lemma 8.6.4,
we may then find elements e1, . . . , er ∈ F× and w j ∈ F( p

√
e j ) for 1 ≤ j ≤ r
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so that we have an equality

n∑
i=1

ai ⊗ bi =
r∑

j=1

e j ⊗ NF( p
√

e j )|F (w j ) in F× ⊗Z ⊗F× ⊗Z Z/pZ.

We may assume the e j map to independent elements in F×/F×p. Let V be
the Fp-subspace of F×/F×p generated by the images of a1, . . . , an, e1, . . . , er ,
and choose elements an+1, . . . , aN ∈ F× so that a1, . . . , aN modulo F×p yield
a basis of V . For each j we may then find α j ∈ AN so that the images of aα j

and e j in V are the same. For each α ∈ AN write wα := w j if α = α j for one of
the α j s just defined, and wα := 1 otherwise. In F× ⊗Z F× ⊗Z Z/pZ we may
then write

n∑
i=1

ai ⊗ bi =
r∑

j=1

e j ⊗ NF( p√e j )|F (w j )=
∑
α∈AN

aα ⊗ Nα(wα)=
∑
α∈AN

( N∏
i=1

aα(i)
i

)
⊗ Nα(wα).

Introducing bi = 1 for i > n and using bilinearity, we rewrite the above as

N∑
i=1

ai ⊗ bi =
N∑

i=1

ai ⊗
( ∏
α∈AN

Nα(wα)α(i)
)

in F× ⊗Z F× ⊗Z Z/pZ.

As the images of the ai mod F×p are linearly independent, this is only possible
if bi = ∏

α∈AN
Nα(wα)α(i) mod F×p, whence the existence of the required ci .

We now turn to the proof of Proposition 8.6.2. Our proof is a variant of that
of Klingen [1], itself a simplification of Merkurjev’s original argument.

Proof of Proposition 8.6.2 Consider the element α = ∑{ai , bi } of the propo-
sition. Without loss of generality we may assume that the images of a, a1, . . . , an

are linearly independent in k×/k×p, and therefore the images of a1, . . . , an

are linearly independent in K ×/K ×p. We may then apply Proposition 8.6.3, of
which we keep the notations. We find elements an+1, . . . , aN , c1, . . . , cN ∈ K ×

as well as wα ∈ K ×
α satisfying (12). Introduce the notations u := p

√
a and

uα := p
√

aα for all α ∈ AN . The u j for 0 ≤ j ≤ p − 1 form a k-basis of K ,
and the ui u j

α for 0 ≤ i, j ≤ p − 1 form a k-basis of Kα for each α. Thus we
find elements ai j ∈ k for 0 ≤ j ≤ p − 1 and n + 1 ≤ i ≤ N , as well aswi jα ∈ k
with 0 ≤ i, j ≤ p − 1 and α ∈ AN satisfying

ai =
p−1∑
j=0

ai j u
j

(
resp. wα =

p−1∑
i, j=0

wi jαui u j
α

)
for all n + 1 ≤ i ≤ N (resp. α ∈ AN ).
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Now let f0 be the subfield of k generated over the prime field by a and the
p-th root of unity ω. Introduce independent variables

Ai , Bi (1 ≤ i ≤ n), Ai j (n + 1 ≤ i ≤ N , 0 ≤ j ≤ p − 1)

and

Wi jα (0 ≤ i, j ≤ p − 1, α ∈ AN ),

and take the purely transcendental extension

F0 := f0(Ai , Bi , Ai j , Wi jα).

We first construct a field extension L0|F0 containing an element B for which∑{Ai , Bi } = {a, B} holds modulo an element in pK M
2 (L0). To do so, for each

1 ≤ i ≤ N introduce elements Di ∈ F0(u) via the formula

Di := B−1
i

∏
α∈AN

Nα(Wα),

where the Wα and the norm maps Nα are defined by setting

Aα :=
N∏

i=1

Aα(i)
i ,Uα := p

√
Aα, Wα :=

p−1∑
i, j=0

Wi jαuiU j
α and Nα := NF0(u,Uα )|F0(u),

with the conventions Ai := ∑
Ai j u j and Bi := 1 for i > n. Denoting by σ the

generator of the Galois group Gal (F0(u)|F0) ∼= Z/pZ sending u to ωu, pick
elements Ci,l in some fixed algebraic closure of F0(u) satisfying C p

i,l = σ l(Di )
for 1 ≤ i ≤ N and 0 ≤ l ≤ p − 1.

Let L be the finite extension of F0(u) obtained by adjunction of all the
Ci,l . Observe that the choice of the Ci,l among the roots of the polynomials
x p − σ l(Ci ) defines an extension ofσ to an automorphism in Gal (L|F0); we call
it againσ , and denote by L0 := Lσ ⊂ L its fixed field. Note that L = L0(u). The
construction together with Proposition 8.6.3 show that the symbol

∑{Ai , Bi }
lies in K M

2 (L0) and its image in K M
2 (L) is divisible by p. On the other hand, the

field L0 is a p-power degree Galois extension of the purely transcendental field
F0, hence by Theorem 8.5.1 the Galois symbol h2

L0,p is injective. An application
of Corollary 8.5.5 then allows one to find B ∈ L0 with

∑{Ai , Bi } = {a, B}
modulo pK M

2 (L0).
To complete the proof, we embed L0 into a field kd =k0((t1)) . . . ((td )) so

that k0 is a subfield of k containing the elements ai , bi , which are moreover
exactly the images of the Ai and Bi in k0. Define an f0-algebra homomorphism
f0[Ai ,Bi ,Ai j ,Wi jα]→k by sending Ai �→ai ,Bi �→bi ,Ai j �→ai j ,Wi jα �→wi jα .
Its kernel is a prime ideal P in the polynomial ring f0[Ai , Bi , Ai j , Wi jα]; denote
by OP the associated localization. The local ring OP is regular (being the local
ring of a scheme-theoretic point on affine space), hence by the Cohen structure
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theorem (see Appendix, Theorem A.5.4 (2)) its completion ÔP is isomorphic
to a formal power series ring of the form κ0[[v1, . . . , vd ]], where κ0 ⊂ k is the
residue field of OP . Its fraction field naturally embeds into the iterated Laurent
series field κd := κ0((v1)) . . . ((vd )). In particular, we have a natural embedding
F0 ↪→ κd , since F0 is the fraction field of OP .

Write Kd for the composite Lκd , where L|F0 is the extension constructed
above. The automorphism σ ∈ Gal (L|F0) induces an element in Gal (Kd |κd )
which we again denote by σ . Let kd := K σ

d be its fixed field; note that
L0 ⊂ kd and Kd = kd (u). Extending the discrete valuation defined by vd to
the finite extension kd |κd we again get a Laurent series field of the form
kd−1((td )), where kd−1 is a finite extension of κ0((v1)) . . . ((vd−1)). This in
turn becomes equipped with the unique extension of the valuation defined by
vd−1, and so is a Laurent series field kd−2((td−1)) for suitable td−1. Continu-
ing this process, we may finally write kd = k0((t1)) . . . ((td )) with some finite
extension k0|κ0.

It remains to show that the field k0 may be embedded into k. For this observe
first that the elements di := b−1

i

∏
α∈AN

Nα(wα) of K considered at the begin-
ning of the proof all lie in κ0(u) by construction, and they are precisely the
images of the elements Di in κ0(u) (which are units for all valuations con-
cerned). The elements σ l(Di ) map to σ̄ l(di ) in κ0(u), where σ̄ is the gener-
ator of Gal (κ0(u)|κ0) sending u to ωu. Extending σ̄ to the automorphism in
Gal (K |k) with the same property, we see that denoting by C̄i,l the image of Ci,l

in the residue field k0(u) of Kd the map C̄i,l �→ σ̄ l(ci ) induces an embedding
k0(u) ↪→ K compatible with the action of σ̄ . We conclude by taking invariants
under σ̄ .

We have finally arrived at the great moment when we can prove in full
generality:

Theorem 8.6.5 (Merkurjev–Suslin) Let k be a field, and m > 0 an integer
invertible in k. Then the Galois symbol

h2
k,m : K M

2 (k)/mK M
2 (k) → H 2(k, µ⊗2

m )

is an isomorphism.

Proof By virtue of Proposition 7.5.9 it is enough to treat the case when m = p
is a prime number, and in view of Proposition 8.5.7 it suffices to prove injectivity.
As in the proof of that proposition, we may assume that k contains a primitive
p-th root of unity. Take a symbol α = {a1, b1} + · · · + {an, bn} in K M

2 (k)
whose mod p image lies in the kernel of h2

k,p. We have to prove α ∈ pK M
2 (k).

We proceed by induction on n, the case n = 1 being Lemma 7.6.3. If an ∈ k×p,
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we are done by the case of symbols of length n − 1. Otherwise, set K = k( p
√

an).
Then iK |k(α) = iK |k({a1, b1} + · · · + {an−1, bn−1}) in K M

2 (K )/pK M
2 (K ), and it

lies in the kernel of h2
K ,p by compatibility of the Galois symbol with restriction

maps. Hence by induction we may assume iK |k(α) ∈ pK M
2 (K ). But then by

Theorem 8.6.1 the image of α in K M
2 (k)/pK M

2 (k) equals that of a symbol of
the form {an, b} for some b ∈ k×. We conclude by the case n = 1.

Remark 8.6.6 The above proof of the theorem relies on Theorem 8.5.1, and
hence in characteristic 0 on Tate’s result for number fields, which has a
nontrivial input from class field theory. Note however that this arithmetic
input is not necessary in positive characteristic, or for fields containing an
algebraically closed subfield. The original proof of injectivity in Merkurjev–
Suslin [1] did not use a specialization argument, but a deep fact from the
K-theory of central simple algebras which amounts to generalizing the iso-
morphism Ad (Pd , K M

2−d ) ∼= K M
2 (k) of Example 8.2.7 to arbitrary Severi–Brauer

varieties of squarefree degree. They however used a specialization technique
for proving surjectivity of the Galois symbol, which could later be elimi-
nated by the method of Proposition 8.5.2. All in all, there exists a proof of
the theorem which uses no arithmetic at all, at the price of hard inputs from
K-theory.

Exercises

1. (Colliot-Thélène, Raskind) Let X be a smooth variety of dimension d over a field
k, and let K |k be a finite Galois extension with group G. Denote by X K the base
change of X to K , and by Z (X ) the kernel of the map⊕

P∈X1

κ(P)× →
⊕
P∈X2

Z.

(a) Show that the natural map Z (X ) → Z (X K )G is an isomorphism.
(b) Establish an exact sequence

Ad−1(X, K M
2−d )→ Ad−1(X K , K M

2−d )G δ−→ H 1(G, K M
2 (K (X ))/Ad (X K , K M

2−d ))

→ ker(C H 2(X ) → C H 2(X K )) → H 1(G, Ad−1(X K , K M
2−d )).

2. Let � be the Galois group Gal (C|R).
(a) Show that 2 K M

2 (R) is a cyclic group of order 2 generated by {−1,−1}.
(b) Show that K M

2 (R)/NC|R(K M
2 (C)) is also the cyclic group of order 2 generated

by {−1,−1}.
(c) Let X be the projective conic of equation x2

0 + x2
1 + x2

2 = 0 in P2
R. Show that

H 1(�, K M
2 (C(X ))/K M

2 (C)) ∼= Z/2Z. [Hint: Use the previous exercise.]
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(d) Conclude that H 1(�, K M
2 (C(X ))) ∼= Z/2Z, and try to find an explicit

generator.
3. Assume that k is a field having no nontrivial finite extension of degree prime to p,

and that K M
2 (k)/pK M

2 (k) = 0. Let K |k be a cyclic extension of degree p.
(a) Show that the norm map NK |k : K × → k× is surjective.
(b) Conclude that K M

2 (K )/pK M
2 (K ) = 0. [Hint: Use Proposition 8.4.3 and

Lemma 8.5.3.]
(c) Show that cd(k) ≤ 1.

4. Let p be a prime number invertible in k, and let K |k be a cyclic Galois extension of
degree pr for some r ≥ 1. Denote by σ a generator of Gal (K |k). Define a tower of
fields

k = F0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ F∞ =
⋃

n

Fn

inductively as follows:
� the field F2n+1 is a maximal prime to p extension of F2n ;
� the field F2n+2 is the compositum of all function fields of Severi–Brauer varieties

associated with cyclic algebras of the form (a, b), where a, b ∈ F×
2n+1.

(a) Show that F∞ has no nontrivial prime to p extension and that

K M
2 (F∞)/pK M

2 (F∞) = 0.

(b) Show that the sequence

K M
2 (K F∞)

σ−1−→ K M
2 (K F∞)

NK F∞|F∞−−−−−−−−→ K M
2 (F∞)

is exact.
[Hint: Argue as in the proof of Proposition 8.4.3 using step (b) of the previous
exercise.]

5. (Hilbert’s Theorem 90 for K2 in the general case) Let m be an integer invertible in
k, and let K |k be a cyclic Galois extension of degree m. Denote by σ a generator of
Gal (K |k). Show that the sequence

K M
2 (K )

σ−1−→ K M
2 (K )

NK |k−→ K M
2 (k)

is exact. [Hint: First use a restriction-corestriction argument as in the proof of Propo-
sition 8.4.4 to reduce to the case when m = pr is a prime power. Then mimic the
proof of Theorem 8.4.1 using the previous exercise.]

6. Let k be a field of characteristic �= 2, K = k(
√

a) a quadratic extension, and
G = Gal (K |k) its Galois group.
(a) Construct an exact sequence of Gal (k)-modules

0 → Z/2Z −→ MG(Z/2Z)
�−→ Z/2Z → 0.

(b) Show that the associated long exact sequence takes the form

· · · → H i (k,Z/2Z)
Res−→ H i (K ,Z/2Z)

Cor−→ H i (k,Z/2Z) → · · ·
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(c) Show that the boundary maps H i (k,Z/2Z) → H i+1(k,Z/2Z) in the above
sequence are given by cup-product with the class of a in the group
H 1(k,Z/2Z).

(d) Establish an exact sequence

K M
2 (K )

NK |k−→ K M
2 (k)

φ−→ H 3(k,Z/2Z)
Res−→ H 3(K ,Z/2Z),

where φ(β) = h3
2,k

({a, β}).
[Remark: The exercise gives a presentation of the kernel of the restriction map
H 3(k,Z/2Z) → H 3(K ,Z/2Z). For a more general statement involving µ⊗2

m -
coefficients, see Merkurjev–Suslin [1], Corollary 15.3.]



9

Symbols in positive characteristic

In the preceding chapters, when working with Galois cohomology groups or
K-groups modulo some prime, a standing assumption was that the groups under
study were torsion groups prime to the characteristic of the base field. We
now remove this restriction. In the first part of the chapter the central result
is Teichmüller’s theorem, according to which the p-primary torsion subgroup
in the Brauer group of a field of characteristic p > 0 is generated by classes
of cyclic algebras – a characteristic p ancestor of the Merkurjev–Suslin theo-
rem. We shall give two proofs of this statement: a more classical one due to
Hochschild which uses central simple algebras, and a totally different one based
on a presentation of the p-torsion in Br (k) via logarithmic differential forms.
The key tool here is a famous theorem of Jacobson–Cartier characterizing log-
arithmic forms. The latter approach leads us to the second main topic of the
chapter, namely the study of the differential symbol. This is a p-analogue of
the Galois symbol which relates the Milnor K-groups modulo p to a certain
group defined using differential forms. As a conclusion to the book, we shall
prove the Bloch–Gabber–Kato theorem establishing its bijectivity.

Teichmüller’s result first appeared in the ill-famed journal Deutsche Math-
ematik (Teichmüller [1]); see also Jacobson [3] for an account of the original
proof. The role of derivations and differentials in the theory of central simple
algebras was noticed well before the Second World War; today the most
important work seems to be that of Jacobson [1]. This line of thought was
further pursued in papers by Hochschild [1], [2], and, above all, in the thesis of
Cartier [1], which opened the way to a wide range of geometric developments.
The original references for the differential symbol are the papers of Kato [2] and
Bloch–Kato [1]; they have applied the theory to questions concerning higher
dimensional local fields and p-adic Hodge theory.

9.1 The theorems of Teichmüller and Albert
In what follows k will denote a field of characteristic p > 0, and ks will be a
fixed separable closure of k. According to the Merkurjev–Suslin theorem, the
m-torsion subgroup of Br (k) is generated by classes of cyclic algebras for all
m prime to p, provided that k contains the m-th roots of unity. For m a power
of p, the statement is still valid (without, of course, the assumption on roots
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of unity); it was proven by Teichmüller as early as 1936. But around the same
time Albert obtained an even stronger result: each class of p-power order in the
Brauer group can actually be represented by a cyclic algebra. In this section we
prove these classical theorems.

First recall some facts that will be used several times below. For all integers
r > 0, classes in H 1(k,Z/pr Z) correspond to characters χ̃ of the absolute
Galois group Gal (ks |k) of order dividing pr . We shall always denote by χ the
character induced by χ̃ on the finite quotient of Gal (ks |k) defined by the kernel
of χ̃ . We have a natural pairing

jr : H 1(k,Z/pr Z) × H 0(k, k×
s ) → pr Br (k)

sending a pair (χ̃ , b) to δ(χ̃ ) ∪ b, where δ : H 1(k,Z/pr Z) → H 2(k,Z) is the
coboundary coming from the exact sequence 0 → Z → Z → Z/pr Z → 0.
According to Proposition 4.7.3, the element jr (χ̃ , b) equals the class of the
cyclic algebra (χ, b) in Br (k). As a consequence, bilinearity of the cup-product
implies that

[(χ, pb)] = [(pχ, b)] in Br (k). (1)

Also, recall from Chapter 2 that in the important case when χ defines a degree p
Galois extension of k, the algebra (χ, b) has a presentation of the form

(χ, b) = [a, b) = 〈x, y | x p − x = a, y p = b, y−1xy = x + 1〉 (2)

for some a ∈ k, and conversely a k-algebra with such a presentation is cyclic.
Another frequently used fact will be the following. Given positive integers

r, s > 0, consider the short exact sequence

0 → Z/pr Z −→ Z/pr+sZ
pr

−→ Z/psZ → 0.

Since cdp(k) ≤ 1 (Proposition 6.1.9), the associated long exact sequence ends
like this:

H 1(k,Z/pr Z) → H 1(k,Z/pr+sZ)
pr

−→ H 1(k,Z/psZ) → 0. (3)

Armed with these facts, we now begin the proof of Teichmüller’s theorem
using a method of Hochschild. The key statement is the following.

Theorem 9.1.1 (Hochschild) Let K = k( pr1
√

b1, . . . ,
prn√bn ) be a purely

inseparable extension. For each class α ∈ Br (K |k) we may find characters
χ̃i ∈ H 1(k,Z/pri Z) so that

α =
n∑

i=1

[(χi , bi )] in Br (k),

whereχi is the injective character induced by χ̃i on a finite quotient of Gal (ks |k).
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We start the proof by extending Proposition 4.5.6 to the case of purely insep-
arable extensions.

Lemma 9.1.2 Let K |k be a purely inseparable field extension of degree n = pr .
Then the boundary map δn : H 1(k,PGLn(ks)) → Br (k) induces a bijection

ker(H 1(k,PGLn(ks)) → H 1(K ,PGLn(K ks))) ∼= Br (K |k).

Moreover, if A|k is a central simple algebra of degree n split by K , then K
embeds as a commutative k-subalgebra into A.

Proof We have already shown in the proof of Theorem 4.4.5 the injectivity
of δn (even of δ∞), so it suffices to see surjectivity. Denoting by G the Galois
group Gal (ks |k), consider the short exact sequence of G-modules

1 → k×
s → (K ks)× → (K ks)×/k×

s → 1,

where G naturally identifies to Gal (K ks |K ), because the composite K ks is a
separable closure of K . As H 1(G, (K ks)×) = 0 by Hilbert’s Theorem 90, we
get isomorphisms

H 1(G, (K ks)×/k×
s ) ∼= ker

(
H 2(G, k×

s ) → H 2(G, (K ks)×)
) ∼= Br (K |k).

On the other hand, the choice of a k-basis of K provides an embedding
K ↪→ Mn(k), whence a G-equivariant map ρ : K ks

∼= K ⊗k ks → Mn(ks),
and finally a map ρ̄ : (K ks)×/k×

s → PGLn(ks). Arguing as in the proof of
Theorem 4.4.5, we obtain a commutative diagram:

H 1(G, (K ks)×/k×
s )

φ−−−−→ H 2(G, k×
s )� �id

H 1(G,PGLn(ks))
δn−−−−→ H 2(G, k×

s ).

Since Im (φ) = Br (K |k) by the above, the diagram tells us that each element
α in Br (K |k) ⊂ H 2(G, k×

s ) comes from some element β in H 1(G,PGLn(ks)).
But α restricts to 0 in H 2(G, (K ks)×), so the commutative diagram

H 1(G,PGLn(ks))
δn,k−−−−→ H 2(G, k×

s )� �
H 1(G,PGLn(K ks))

δn,K−−−−→ H 2(G, (K ks)×).

and the injectivity of δn,K imply that β maps to 1 in H 1(G,PGLn(K ks)), as
required.

For the last statement, assume that the class α ∈ Br (K |k) considered above
is the class of a degree n algebra A. Since β comes from an element of
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H 1(G, (K ks)×/k×
s ), we get that A is isomorphic to the twisted form of Mn

by a 1-cocycle z with values in the subgroup ρ̄((K ks)×/k×
s ) of PGLn(ks)

(see Chapter 2, Section 2.3). Therefore the twisted algebra A ∼= (z Mn)G con-
tains (zρ(K ks))G . But (zρ(K ks))G = (ρ(K ks))G ∼= K , because the conjugation
action of (K ks)× on K ks is trivial, and ρ is G-equivariant.

We shall also need the following easy lemma.

Lemma 9.1.3 Let k be a field of characteristic p > 0, and let A be a not
necessarily commutative k-algebra. For y ∈ A consider the k-vector space
endomorphism Dy : A → A defined by v �→ vy − yv, and let D[p]

y be its p-th
iterate. Then D[p]

y = Dy p .

Proof Consider the maps L y : v �→ yv and Ry : v �→ vy, and write
Dy = Ry − L y . As L y and Ry commute in the endomorphism ring of the
k-vector space A, the binomial formula implies D[p]

y = (Ry − L y)[p] =
R[p]

y + (−1)p L [p]
y = Dy p , as p divides the binomial coefficients

(p
i

)
for all

0 < i < p.

Proof of Theorem 9.1.1 We start with the case of degree p, i.e. K = k( p
√

b).
Let α be a nonzero class in Br (K |k). Lemma 9.1.2 shows that there exists
a central simple k-algebra A of degree p containing K with [A] = α; it is a
division algebra as α �= 0. As K ⊂ A, we find y ∈ A with y p = b. Consider
the k-endomorphism Dy : A → A of the lemma above. As b is in the centre
of A, we get D[p]

y = Dy p = Db = 0 using the lemma. Since y is not central in
A, we find w ∈ A with z := Dy(w) �= 0 but Dy(z) = 0, i.e. yz = zy. Setting
x = z−1 yw we obtain xy − yx = z−1 y(wy − yw) = z−1 yz = y, and hence
y−1xy = x + 1. As A is a division algebra, the k-subalgebra k(x) generated
by x is a commutative subfield nontrivially containing k, so [k(x) : k] = p by
dimension reasons. Moreover, the formula y−1xy = x + 1 implies that con-
jugation by y equips the extension k(x)|k with a nontrivial k-automorphism
of order p, so k(x)|k is a cyclic Galois extension of degree p, and x p − x =
x(x + 1) . . . (x + p − 1) lies in k. Setting a := x p − x we see that A contains
a cyclic subalgebra (χ, b) with presentation (2), and this inclusion must be an
isomorphism for dimension reasons. This settles the degree p case.

To treat the general case, we use induction on the degree [K : k]. Denote
by E ⊂ K the subfield k( pr1

√
b1, . . . ,

prn −1√
bn). Then K is a degree p purely

inseparable extension of E generated by p
√

un , where un := prn −1√
bn . Given

α ∈ Br (K |k), we have ResE
k (α) ∈ Br

(
K |E), so by the degree p case we

find χ̃ ∈ H 1(k,Z/pZ) ∼= H 1(E,Z/pZ) with ResE
k (α) = [(χ, un)]. By exact

sequence (3) we find a character χ̃n ∈ H 1(k,Z/prn Z) with prn−1χ̃n = χ̃ . In
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Br (E) we have

[(χ, un)]=ResE
k (δ(χ̃ )) ∪ un =(

prn−1 ResE
k (δ(χ̃n))

) ∪un =ResE
k

(
δ(χ̃n)

) ∪ bn = [(χn, bn)]

by bilinearity of the cup-product. Hence β := α − [(χn, bn)] lies in Br (E |k).
By induction we may write β as a sum of classes of the form [(χi , bi )], and the
proof is complete.

We now come to

Theorem 9.1.4 (Teichmüller) The map

jr : H 1(k,Z/pr Z) ⊗ k× −→ pr Br (k)

is surjective for all r > 0. In other words, every central simple k-algebra of
p-power degree is Brauer equivalent to a tensor product of cyclic algebras.

Remark 9.1.5 Teichmüller’s result holds only up to Brauer equivalence, but
not up to isomorphism. Indeed, McKinnie [1] gave examples of central simple
k-algebras of period p not isomorphic to a tensor product of cyclic algebras of
degree p. This is a characteristic p analogue of the counterexample of Amitsur–
Rowen–Tignol cited at the end of Chapter 1. Non-cyclic division algebras of
p-power degree were known before (see Amitsur–Saltman [1]).

Before starting the proof of Theorem 9.1.4, recall from field theory that
a purely inseparable extension K |k is said to be of height 1 if K p ⊂ k, or
equivalently if K can be generated by p-th roots of elements of k. We shall
need the following easy facts.

Facts 9.1.6 The maximal height 1 purely inseparable extension k̃ of k is
obtained by adjoining all p-th roots of elements of k. The composite k̃ks is none
but the separable closure k̃s of k̃. It is also the maximal height 1 purely insep-
arable extension of ks : indeed, if α p = a for some a ∈ ks , then f (α p) = 0 for
a separable polynomial f ∈ k[x], but then extracting p-th roots from the coef-
ficients of f we get a separable polynomial g ∈ k̃[x] with g(α)p = g(α) = 0,
so that α ∈ k̃s .

Lemma 9.1.7 Every central simple k-algebra of period p is split by a finite
extension K |k of height 1.

Proof Consider the maximal height 1 purely inseparable extension k̃ of
k described above. It will be enough to show that every central simple
k-algebra of period p is split by k̃, for then it is also split by some finite
subextension. As k̃s |ks is the maximal purely inseparable extension of height 1,
raising elements to the p-th power induces an isomorphism k̃×

s
∼→ k×

s . On

the other hand, the composite k×
s → k̃×

s
p→ k×

s is just the multiplication by p
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map on k×
s . Taking Galois cohomology over k (noting that k̃s is a Gal (ks |k)-

module via the isomorphism Gal (ks |k) ∼= Gal (̃ks |̃k)), it follows that the multi-
plication by p map on H 2(k, k×

s ) coincides with the composite H 2(k, k×
s ) →

H 2(k, k̃×
s )

p→ H 2(k, k×
s ). As the last map here is an isomorphism by the above,

it follows that all p-torsion elements in Br (k) ∼= H 2(k, k×
s ) must map to 0 in

H 2(k, k̃×
s ) ∼= H 2(̃k, k̃×

s ) ∼= Br (̃k), as was to be shown.

Proof of Theorem 9.1.4 We prove surjectivity of jr by induction on r . The
case r = 1 follows from Lemma 9.1.7 and Theorem 9.1.1. Now assume that the
statement is known for all integers 1 ≤ i ≤ r , and consider the commutative
diagram

H 1(k,Z/pr Z) ⊗ k× id⊗id−→ H 1(k,Z/pr+1Z) ⊗ k× pr ⊗id−→ H 1(k,Z/pZ) ⊗ k× →0

↓ jr ↓ jr+1 ↓ j1

pr Br (k)
id−→ pr+1 Br (k)

pr

−→ pBr (k)

whose exact upper row comes from (3). In view of the diagram, the surjectivity
of jr+1 follows from that of j1 and jr , which we know from the inductive
assumption.

We now come to the most powerful result of this section.

Theorem 9.1.8 (Albert) Every central simple k-algebra of p-power degree is
Brauer equivalent to a cyclic algebra.

The proof is based on the following proposition which is interesting in its
own right.

Proposition 9.1.9 Let A1, A2 be two cyclic k-algebras of degrees pr1 and pr2 ,
respectively. Then there exists an integer r ≤ r1 + r2 and an element b ∈ k× so
that the extension k( pr√

b) splits both A1 and A2.

Combined with Theorem 9.1.1, the proposition immediately yields:

Corollary 9.1.10 For A1 and A2 as in the proposition, the tensor product
A1 ⊗k A2 is Brauer equivalent to a cyclic algebra of the form (χ, b) for some
character χ of order dividing pr .

Once we have Corollary 9.1.10, we can easily prove Albert’s theorem by
exploiting what we already know. Indeed, by induction we get that tensor prod-
ucts of cyclic algebras of p-power degree are Brauer equivalent to a cyclic
algebra, and so Albert’s theorem follows from that of Teichmüller.
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For the proof of Proposition 9.1.9 we need the following lemma from field
theory.

Lemma 9.1.11 Let K = k( pr√
b)|k be a purely inseparable extension of degree

pr , and let L|k be a finite separable extension. Then there exists an element
v ∈ L K whose norm NL K |K (v) generates the extension K |k.

Proof We may assume [K :k] >1. Setting u = pr√
b we have [K :k(u p)]= p,

so it will be enough to find v ∈ L K with NL K |K (v) �∈ k(u p). Using the theo-
rem of the primitive element, we write L = k(w) for appropriate w ∈ L . Let
f = tm + α1tm−1 + · · · + αm be the minimal polynomial ofw over k. Grouping
exponents into residue classes mod p, we write

f =
p−1∑
i=0

fi (t
p)t i .

Since f is a separable polynomial, we find j �= 0 such that f j �= 0. Then
f j ((ut)p) ∈ K [t] is a nonzero polynomial, and since k is an infinite field
(otherwise it would have no nontrivial inseparable extension), there exists
α ∈ k× such that f j ((αu)p) �= 0. Now put v := w − αu. The minimal poly-
nomial of v over K is f (t + αu) = tm + · · · + f (αu), so NL K |K (v) =
(−1)m f (αu) and

f (αu) =
p−1∑
i=0

fi ((αu)p) αi ui .

This is an expression for f (αu) as a linear combination of the basis elements
1, u, . . . , u p−1 of the k(u p)-vector space K . Since the coefficient f j ((αu)p)α j

is nonzero, we have f (αu) �∈ k(u p) and hence NL K |K (v) �∈ k(u p), as desired.

Proof of Proposition 9.1.9 For i = 1, 2 write Ai = (χi , bi ) with characters χi

of order pri and elements bi ∈ k×. If bi = cp
i for some ci ∈ k×, then formula (1)

shows that Ai is Brauer equivalent to the cyclic algebra (pχi , ci ). So up to replac-
ing Ai by a Brauer equivalent algebra we may assume that [k( pri

√
bi ) : k] = pri

for i = 1, 2. Denote by k2 the cyclic extension of k defined by the kernel of
χ̃2. Lemma 9.1.11 provides v ∈ k2( pr1

√
b1) such that z := Nk2( pr1√b1)|k( pr1√b1)(v)

generates the extension k( pr1
√

b1)|k. Consider now the purely inseparable exten-
sion E = k( pr1

√
b1)( pr2

√
zb2) of k. Since z generates k( pr1

√
b1) over k, the element

y := pr2
√

zb2 generates E over k, and thus we have [E : k] = pr1+r2 . As b1 is a
pr1 -th power in E , the algebra (χ1, b1) ⊗k E is split. To see that E also splits
(χ2, b2), we write

(χ2, b2) ⊗k E ∼= (χ2, y pr2 z−1) ⊗k E ∼= (χ2, y pr2 ) ⊗k( pr1√b1) (χ2, z−1) ⊗k E .
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Since χ2 has order dividing pr2 , the algebra (χ2, y pr2 ) ⊗k E splits. On the other
hand, the algebra (χ2, z−1) splits over k( pr1

√
b1) according to Corollary 4.7.5,

because z is a norm from the extension k2( pr1
√

b1)|k( pr1
√

b1), and therefore it also
splits over E . Hence (χ2, b2) ⊗k E splits, as desired.

9.2 Differential forms and p-torsion in the Brauer group
We now discuss another method for describing the p-torsion part of the Brauer
group of k. The basic idea is the following. For m prime to p, a fundamental
tool for studying mBr (k) was furnished by the exact sequence coming from
multiplication by m on k×

s , which is surjective with kernel µm . In contrast to
this, for m = p the multiplication by p map is injective, and it has a nontrivial
cokernel which can be described using differential forms, via the dlog map.

To define this map, consider for an arbitrary extension K |k the module
�1

K = �1
K/Z of absolute differentials over K . The map dlog : K × → �1

K is
then defined by sending y ∈ K × to the logarithmic differential form dy/y.
This is a homomorphism of abelian groups whose kernel is K ×p; denote by
ν(1)K its image. For K = ks we therefore have an exact sequence

0 → k×
s

p→ k×
s

dlog−→ ν(1)ks → 0. (4)

This is in fact an exact sequence of Gal (ks |k)-modules, so taking the associated
long exact sequence yields an isomorphism

H 1(k, ν(1)) ∼→ pBr (k). (5)

To proceed further, we would like to have a more explicit presentation of
H 1(k, ν(1)). Assume we had a surjective map on �1

ks
whose kernel is precisely

the image ν(1)ks of the dlog map. Then we would have another short exact
sequence of the form

0 → ν(1)ks → �1
ks

→ �1
ks

→ 0,

and by the associated long exact sequence H 1(k, ν(1)) would arise as a quotient
of (�1

ks
)G which in fact equals �1

k , as one sees from Proposition A.8.7 of the
Appendix. Thus all in all we would get a presentation of pBr (k) by differential
forms.

The required map comes from the theory of the (inverse) Cartier operator. To
define it, recall first a construction from linear algebra in characteristic p > 0.
Given a K -vector space V , we may equip the underlying abelian group of V with
another K -vector space structure pV in which a ∈ K acts via a · w := a pw.
A K -linear map V → pW is sometimes called a p-linear map from V to W .
Recall also (from the Appendix) that the subgroup B1

K ⊂ �1
K is defined as the

image of the universal derivation d : K → �1
K . Though d is only a k-linear

map, the induced map d : p K → p�1
K is already K -linear, in view of the
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formula a pdb = d(a pb), where the right-hand side is d applied to the product
of b ∈ p K with a. Thus p Z1

K and p B1
K are K -subspaces of p�1

K .

Lemma 9.2.1 There exists a unique morphism of K -vector spaces

γ : �1
K → p�1

K /p B1
K

satisfying γ (da) = a p−1da mod B1
K for all a ∈ K . Moreover, we have

d ◦ γ = 0, where d : �1
K → �2

K is the differential of the de Rham complex.

Proof Recall from the Appendix that the K -vector space�1
K has a presentation

by symbols of the form da for a ∈ K subject to the relations d(a + b)=da + db
and d(ab)=adb + bda. Define γ on the elements da by the formula above
and extend by linearity. To see that γ is well defined, we have to show that it
annihilates all elements of the form d(a + b)−da−db or d(ab)−adb−dba.
For elements of the second type, we compute

γ (adb + bda) = a pbp−1db + bpa p−1da = (ab)p−1(adb + bda) = γ (d(ab)).

For elements of the first type, we have to see that (a + b)p−1(da + db) −
a p−1da − bp−1db belongs to B1

K . Notice first that the relation

d((x + y)p) = p(x + y)p−1d(x + y) = p(x p−1dx + y p−1dy) +
p−1∑
i=1

(
p

i

)
d(xi y p−i )

holds in the space of absolute differentials of the polynomial ring Z[x, y], which
is the free Z[x, y]-module generated by dx and dy according to Appendix,
Example A.8.2. Since all binomial coefficients in the sum are divisible by p,
after dividing by p it follows that

(x + y)p−1(dx + dy) − x p−1dx − y p−1dy ∈ B1
Z[x,y].

We obtain the required identity in �1
K by specialization via the homomorphism

Z[x, y] → K defined by x �→ a, y �→ b. The last statement follows from the
equality da ∧ da = 0.

For historical reasons, the resulting map is called the inverse Cartier operator.
We now have the following theorem due to Jacobson and Cartier.

Theorem 9.2.2 For every field K of characteristic p > 0 the sequence of maps

1 → K × p→ K × dlog−→ �1
K

γ−1−→ p�1
K /pB1

K

is exact.

We postpone the proof of the theorem to the next section, and now consider its
application to our problem of presenting elements in H 1(k, ν(1)) by differential
forms. The solution is based on the following corollary.
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Lemma 9.2.3 Let k be a field of characteristic p > 0 with separable closure
ks . The sequence

1 → ν(1)ks −→ �1
ks

γ−1−→ �1
ks
/B1

ks
→ 0

is an exact sequence of Gal (ks |k)-modules.

The superscripts p disappeared from the last term because we are not inter-
ested here in its ks-vector space structure.

Proof That the maps dlog and γ − 1 are Galois equivariant follows from
their construction. So in view of Theorem 9.2.2, it remains to prove surjectiv-
ity of γ − 1. Recall first that the Artin–Schreier map ℘ : ks → ks defined by
x �→ x p − x is surjective. Hence given a 1-form adb ∈ �1

ks
, we may find x ∈ ks

with x p − x = ab. Then

(γ − 1)(xb−1db) = x pb−pbp−1db − xb−1db = (x p − x)b−1db = adb

according to the defining properties of the operator γ , whence the required
surjectivity.

We can now prove the following theorem which seems to have been first
noticed by Kato.

Theorem 9.2.4 There exists a canonical isomorphism

�1
k/(B1

k + (γ − 1)�1
k) ∼→ pBr (k).

Proof Denote by G the Galois group Gal (ks |k). The exact sequence of Lemma
9.2.3 gives rise to the long exact sequence

(�1
ks

)G γ−1−→ (�1
ks
/B1

ks
)G → H 1(k, ν(1)) → H 1(k, �1

ks
).

The G-module �1
ks

is a ks-vector space, so H 1(k, �1
ks

) = 0 by the additive form
of Hilbert’s Theorem 90 (Lemma 4.3.11). On the other hand, Proposition A.8.7
of the Appendix implies (�1

ks
)G = �1

k , and hence also (B1
ks

)G = B1
k , since the

differential of the de Rham complex is G-equivariant by construction. It follows
that we get an isomorphism

�1
k/(B1

k + (γ − 1)�1
k) ∼→ H 1(k, ν(1)),

whose composition with the isomorphism (5) yields the isomorphism of the
theorem.

One can make the isomorphism of the above theorem quite explicit.
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Proposition 9.2.5 The isomorphism of Theorem 9.2.4 sends the class of a 1-
form adb ∈ �1

k to the class of the cyclic algebra [ab, b) in pBr (k).

Proof As in the proof of Lemma 9.2.3 we find x ∈ ks with x p − x = ab
and a 1-form xb−1db satisfying (γ − 1)(xb−1db) = adb. The image of adb
by the coboundary map (�1

ks
/Bn

ks
)G → H 1(k, ν(1)) is represented by the

1-cocycle cσ : σ �→ σ (xb−1db) − xb−1db = (σ (x) − x)dlog(b). The charac-
ter χ̃ : σ �→ σ (x) − x ∈ Z/pZ is precisely the one defining the extension of k
given by the Artin–Schreier polynomial x p − x − ab, and the cocycle cσ rep-
resents the image of the pair (χ̃ , b) by the cup-product

H 1(k,Z/pZ) × H 0(k, k×
s ) → H 1(k, k×

s ⊗ Z/pZ)

followed by the isomorphism

H 1(k, k×
s ⊗ Z/pZ) ∼→ H 1(k, ν(1)) (6)

coming from exact sequence (4). Writing δ for the coboundary H 1(k,Z/pZ) →
H 2(k,Z) and δ′ for the coboundary H 1(k, k×

s ⊗ Z/pZ) → H 2(k, k×
s ) (which

identifies to a coboundary coming from (4) via the isomorphism (6)), we have
δ′(χ̃ ∪ b) = δ(χ̃ ) ∪ b by Proposition 3.4.8. But the latter class in Br (k) is repre-
sented by the cyclic algebra [ab, b), as recalled at the beginning of the previous
chapter.

Remarks 9.2.6

1. The 1-forms adb generate �1
k as an abelian group, so one may try to define

a map �1
k → pBr (k) by sending a finite sum

∑
ai dbi to

∑
[ [ai bi , bi ) ].

An easy computation shows that this map annihilates all elements of the
form d(a + b) − da − db and d(ab) − adb − bda, so it indeed induces
a well-defined map �1

k → pBr (k). This gives an elementary construction
of the map inducing the isomorphism of Theorem 9.2.4.

2. Theorem 9.2.4 and Proposition 9.2.5 together give another proof of
Teichmüller’s theorem in the case r = 1. But we have seen in the pre-
vious section that the general case follows from this by an easy induction
argument. So we obtain a proof of Teichmüller’s theorem which does not
use the theory of central simple algebras – but relies, of course, on the
nontrivial theorem of Jacobson and Cartier.

9.3 Logarithmic differentials and flat p-connections
In this section we prove Theorem 9.2.2. Following Katz, our main tool in
the argument will be the study, for a differential form ω ∈ �1

K , of the map
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∇ω : K → �1
K defined by

∇ω(a) = da + aω. (7)

It follows from this definition that the 1-form ω is logarithmic if and only
if ∇ω(a) = 0 for some a ∈ K ×; indeed, the latter condition is equivalent to
ω = −a−1da = dlog(a−1).

The map ∇ω is a basic example for a connection on K . For later purposes, we
introduce this notion in a more general context. We shall work in the following
setup: K will be a field of characteristic p > 0, and k a subfield of K containing
K p. The extension K |k is then a purely inseparable extension of height 1. The
most important case will be when k = K p, for then we have �1

K |k = �1
K .

Now define a connection on a finite dimensional K -vector space V to be a
homomorphism ∇ : V → �1

K |k ⊗K V of abelian groups satisfying

∇(av) = a∇(v) + da ⊗ v

for all a ∈ K and v ∈ V .
A connection ∇ gives rise to a K -linear map ∇∗ : Derk(K ) → Endk(V ) send-

ing a derivation D to the map ∇∗(D) obtained as the composite

∇∗(D) : V
∇−→ �1

K |k ⊗K V
D⊗id−→ K ⊗K V ∼= V,

where D is regarded as a K -linear map �1
K |k → K via the isomorphism

Derk(K ) ∼= HomK (�1
K |k, K ). Note that though ∇∗ is K -linear, the element

∇∗(D) is only a k-endomorphism in general (by the defining property of con-
nections), but not a K -endomorphism. A straightforward computation yields
the formula

∇∗(D)(av) = D(a)v + a∇∗(D)(v) (8)

for all v ∈ V and a ∈ K .

Example 9.3.1 Given ω ∈ �1
K |k , the map ∇ω : K → �1

K |k defined by (7) is a
connection on the 1-dimensional K -vector space K . To see this, we compute

∇ω(ab) = adb + bda + abω = a(db + bω) + bda = a∇ω(b) + da ⊗ b,

as required. The induced map ∇ω∗ : Derk(K ) → Endk(K ) sends D to the map
a �→ D(a) + aD(ω).

Now recall the following facts from the Appendix. The K -vector space
Endk(V ) carries a Lie algebra structure over k, with Lie bracket defined by
[φ,ψ] = φ ◦ ψ − ψ ◦ φ. This Lie bracket and the p-operation sending an
endomorphism φ to its p-th iterate φ[p] equip Endk(V ) with the structure of a
p-Lie algebra over k (see the Appendix for the precise definition). The K -vector
space Derk(K ) is a k-subspace of Endk(K ) preserved by the Lie bracket and the
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p-operation of Endk(K ), therefore it is a p-Lie subalgebra. It is then a natural
condition for a connection to require that the map ∇∗ respects the p-Lie algebra
structures on Derk(K ) and Endk(V ). Accordingly, we say that the connection
∇ is flat or integrable if ∇∗ is a homomorphism of Lie algebras over k, i.e. if
∇∗([D1, D2]) = [∇∗(D1),∇∗(D2)] for all D1, D2 ∈ Derk(K ), and that ∇ is a
p-connection if ∇∗(D[p]) = (∇∗(D))[p] for all D ∈ Derk(K ).

Remark 9.3.2 One may introduce important invariants which measure the
defect for a connection ∇ from being flat or a p-connection. The first of these is
its curvature K∗(∇), defined as the map Derk(K ) × Derk(K ) → Endk(V ) send-
ing the pair (D1, D2) to [∇∗(D1),∇∗(D2)] − ∇∗([D1, D2]). One may check that
K∗(∇)(D1, D2) equals the composite

V
∇−→ �1

K |k ⊗K V
∇1−→ �2

K |k ⊗K V
(D1∧D2)⊗id−→ K ⊗K V ∼= V,

where ∇1(ω ⊗ v) := dω ⊗ v − ω ∧ ∇(v). Therefore K∗(∇) is the map induced
on derivations by ∇1 ◦ ∇ : V → �2

K |k ⊗K V ; one often defines the curvature
as being the latter map. The second invariant is the p-curvature ψ∗(∇), defined
as the map Derk(K ) → Endk(V ) sending D to ∇∗(D[p]) − (∇∗(D))[p]. We shall
not investigate any case where one of these invariants is nonzero.

It turns out that when the differential form ω is logarithmic, the connection
∇ω on K is a flat p-connection. We shall prove this as part of the following
theorem, which is the main result of this section.

Theorem 9.3.3 Given an extension K |k of fields of characteristic p > 0 with
K p ⊂ k, the following are equivalent for a differential form ω ∈ �1

K |k:

1. The 1-form ω is logarithmic, i.e. ω = dlog(a) for some a ∈ K ×.
2. We have γ (ω) = ω mod B1

K |k .
3. The connection ∇ω is a flat p-connection.

In order to give a sense to statement (2), we have to extend the definition of
the inverse Cartier operator to relative differentials for the extension K |k. To
do so, apply Corollary A.8.10 of the Appendix with k0 = K p to obtain a split
exact sequence of K -vector spaces

0 → K ⊗k �1
k → �1

K → �1
K |k → 0. (9)

The composite map�1
K

γ−→ �1
K /B1

K → �1
K |k/B1

K |k vanishes on K ⊗k �1
k , and

hence the operator γ induces a relative operator �1
K |k → �1

K |k/B1
K |k which we

again denote by γ .
Of course, for k = K p we get back the γ of the previous section. In this

case the equivalence (1) ⇔ (2) is a restatement of Theorem 9.2.2. Indeed, the
implication (1) ⇒ (2) yields that the sequence of Theorem 9.2.2 is a complex,
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and it is obviously exact at the first term. Exactness at the second term follows
from implication (2) ⇒ (1).

For the proof we first investigate the implication (2) ⇒ (3). It will result from
the following slightly more general proposition:

Proposition 9.3.4 Let ω ∈ �1
K |k be a differential form.

1. If dω = 0, then the connection ∇ω is flat.
2. If γ (ω) = ω mod B1

K |k , then ∇ω is a p-connection.

Note that the condition in part (2) implies dω = 0 as well, in view of the last
statement of Proposition 9.2.1. For the proof we need the following lemma on
derivations.

Lemma 9.3.5 Let ω ∈ �1
K |k be a differential form.

1. For all derivations D1, D2 ∈ Derk(K ) we have

(D1 ∧ D2)(dω) = D1(D2(ω)) − D2(D1(ω)) − [D1, D2](ω).

2. If ω ∈ B1
K |k , we have

D[p](ω) − D[p−1](D(ω)) = 0.

3. For general ω and all derivations D ∈ Derk(K ) we have

D(ω)p = D[p](γ (ω)) − D[p−1](D(γ (ω))).

Note that the right-hand side of the formula in part (3) is well defined in view
of part (2).

Proof It is enough to check (1) on generators of �1
K |k , so we may assume

ω = adb, so that dω = da ∧ db. Therefore on the one hand we have

(D1 ∧ D2)(dω) = D1(da)D2(db) − D2(da)D1(db) = D1(a)D2(b) − D2(a)D1(b),

where we first regard the Di as linear maps �1
K |k → K , and then as derivations

K → K . On the other hand, we compute

D1(D2(adb)) − D2(D1(adb)) − [D1, D2](adb)

= D1(aD2(b)) − D2(aD1(b)) − a[D1, D2](b),

which may be rewritten as

D1(a)D2(b)+aD1(D2(b))−D2(a)D1(b) − aD2(D1(b)) − a
(
D1(D2(b)) − D2(D1(b))

)
,

so that after cancelling terms we again get D1(a)D2(b) − D2(b)D1(a), as
desired.
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To check (2), one simply remarks that for ω = da one has

D[p](ω) − D[p−1](D(ω)) = D[p](a) − D[p−1](D(a)) = 0.

For (3), we may assume by p-linearity of γ that ω = da for some a ∈ K , and
so we have to check

(D(a))p = D[p](a p−1da) − D[p−1](D(a p−1da)).

As already remarked, D[p] is a derivation, so that D[p](a p−1da) = a p−1 D[p](a).
After this substitution, the formula reduces to Hochschild’s formula (Proposi-
tion A.7.1 of the Appendix).

For the proof of the proposition it is convenient to introduce for a ∈ K the
notation La for the element in Endk(K ) given by multiplication by a, as in the
Appendix. Recall also that for D ∈ Derk(K ) we have the equality

[D, La] = L D(a) (10)

in Endk(K ) because of the computation [D, La](x)= D(ax)−aD(x)= D(a)x .

Proof of Proposition 9.3.4 In the notation above, the formula for ∇ω∗ in
Example 9.3.1 reads ∇ω∗(D) = D + L D(ω). Hence to prove (1) we may write

[∇ω∗(D1),∇ω∗(D2)] = [D1, D2] + [D1, L D2(ω)] − [D2, L D1(ω)] − [L D1(ω), L D2(ω)].

Here the last term vanishes as the elements D1(ω), D2(ω) ∈ K commute, so
using equality (10) we may write

[∇ω∗(D1),∇ω∗(D2)] = [D1, D2] + L D1(D2(ω)) − L D2(D1(ω)),

or else

[∇ω∗(D1),∇ω∗(D2)] = ∇ω∗([D1, D2]) − L [D1,D2](ω) + L D1(D2(ω)) − L D2(D1(ω)).

But according to Lemma 9.3.5 (1) we have

L D1(D2(ω)) − L D2(D1(ω)) − L [D1,D2](ω) = L (D1∧D2)(dω),

which is zero by our assumption dω = 0.
To handle part (2), we compute (∇ω∗(D))[p] − ∇ω∗ (D[p]) as

(D + L D(ω))
[p] − (D[p] + L D[p](ω)) = D[p] + L D(ω)p + L D[p−1](D(ω)) − (D[p] + L D[p](ω))

using Proposition A.7.2 from the Appendix. But by Lemma 9.3.5 (2) and our
assumption we may write

L D(ω)p−D[p](ω)+D[p−1](D(ω)) = L D(ω)p−D[p](γ (ω))+D[p−1](D(γ (ω))),

which vanishes by Lemma 9.3.5 (3).
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We now turn to implication (3) ⇒ (1) in Theorem 9.3.3. Recall that we are
working over a field extension K |k with K p ⊂ k. Given a K -vector space V
equipped with a connection ∇ : V → �1

K |k ⊗K V , set

V ∇ := {v ∈ V : ∇(v) = 0}.
The defining property of connections implies that V ∇ is a k-subspace of V . In
geometric language, it is the space of ‘horizontal sections’ of the connection ∇.
In accordance with the remarks at the beginning of this section, our goal is to
prove that for a flat p-connection we have V ∇ �= 0.

In the case when the extension K |k is finite, this is assured by the following
descent statement which can be regarded as an analogue of Speiser’s lemma
(Lemma 2.3.8) for finite purely inseparable extensions of height 1.

Theorem 9.3.6 Let K |k be a finite extension with K p ⊂ k, and let V be
a K -vector space equipped with a flat p-connection ∇. Then the natural
map

K ⊗k V ∇ → V

is an isomorphism.

The following proof is taken from the book of Springer [1].

Proof Take a p-basis a1, . . . , am of the extension K |k. Then the dai form a
basis of the K -vector space �1

K |k (by Proposition A.8.8 of the Appendix). Let
∂i be the derivation defined by sending dai to 1 and da j to 0 for i �= j , and set
Di := ai∂i . By construction, the Di satisfy

[Di , D j ] = 0 for all i �= j, and D[p]
i = Di for all i.

Now consider the elements ∇∗(Di ) ∈ EndK (V ) for 1 ≤ i ≤ m. Since ∇ is
a flat connection, we have [∇∗(Di ),∇∗(D j )] = ∇∗([Di , D j ]) = 0 for i �= j ,
since [Di , D j ] = 0. This means that the endomorphisms ∇∗(Di ) pairwise com-
mute, and hence they are simultaneously diagonalizable by a well-known
theorem of linear algebra. Moreover, since ∇ is a p-connection, we have
∇∗(Di )[p] = ∇∗(D[p]

i ) = ∇∗(Di ), which implies that the eigenvalues of the
∇∗(Di ) all lie in Fp. Represent elements of Fm

p by vectors (λ1, . . . , λm), and for
each (λ1, . . . , λm) put

Vλ1,..,λm = {v ∈ V : ∇∗(Di )v = λiv for 1 ≤ i ≤ m}.
By our remark on simultaneous diagonalization, we may write V as the direct
sum of the Vλ1,...,λm , and moreover V ∇ = V0,...,0 by definition. On the other
hand, as the ai form a p-basis of K |k, we have a direct sum decomposition
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K ⊗k V ∇ ∼= ⊕
aλ1

1 · · · aλm
m V ∇ . But aλ1

1 · · · aλm
m V ∇ is none but Vλ1,...,λm , and the

theorem follows.

Remarks 9.3.7

1. Given a k-vector space W with V ∼= K ⊗k W , one may define a connec-
tion ∇W on V by setting ∇W (a ⊗ w) := da ⊗ w and extending K -linearly.
Then for all D ∈ Derk(V ) the K -endomorphism ∇W∗(D) sends a ⊗ w

to D(a) ⊗ w. Using this formula one immediately checks that ∇W is a
flat p-connection. Moreover, in the case W = V ∇ one checks easily that
∇V ∇ = ∇. So we may rephrase the theorem by saying that the functor
W �→ (W,∇W ) induces an equivalence of categories between the cate-
gory of k-vector spaces and that of K -vector spaces equipped with a flat
p-connection, the inverse being given by the functor V �→ V ∇ .

2. A direct ancestor of the above descent statement is the following analogue
of the Galois correspondence for finite purely inseparable extensions K |k
of height 1 due to Jacobson. For a Lie subalgebra g ⊂ Derk(K ) let K g ⊂ K
be the intersection of the kernels of the derivations in g. Then the map
g �→ K g induces a bijection between the Lie subalgebras of Derk(K ) stable
under D �→ D[p] and the subextensions of K |k, and moreover [K : K g] =
pdim K g. The proof is similar to that of Theorem 9.3.6; see Jacobson [2],
Theorem 8.43 or Springer [1], Theorem 11.1.15. Gerstenhaber [1] has
extended this correspondence to infinite purely inseparable extensions of
height 1, by defining an analogue of the Krull topology.

We now come to:

Proof of Theorem 9.3.3 The implication (1) ⇒ (2) follows from the easy
calculation γ (a−1da) = a−pa p−1da = a−1da for all a ∈ K ×. As already
remarked, the implication (2) ⇒ (3) follows from Proposition 9.3.4, so it
remains to see (3) ⇒ (1). This we first prove in the case when K |k is a finite
extension. Indeed, applying Theorem 9.3.6 we conclude that K ∇ω is a k-vector
space of dimension 1; in particular, it is nonzero. Therefore we find a nonzero y
in K with ∇ω(y) = 0. But as already remarked at the beginning of the section,
∇ω(y) = 0 is equivalent to ω = dlog(y−1). To treat the general case, write K as
a direct limit of subfields Kλ finitely generated over Fp and set kλ := k ∩ Kλ.
Given ω ∈ �1

K |k , we find some Kλ as above so that ω comes from an element
ωλ ∈ �1

Kλ|kλ
. If ∇ω is a flat p-connection on K , then so is ∇ωλ

on Kλ. As Kλ

is finitely generated and K p
λ ⊂ kλ, the extension Kλ|kλ is finite, and therefore

the previous case yields y ∈ Kλ ⊂ K with ωλ = dlog(y) in �1
Kλ|kλ

. But then
ω = dlog(y) in �1

K |k .
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9.4 Decomposition of the de Rham complex
As a preparation for our study of the higher dimensional differential symbol,
we now discuss properties of the de Rham complex over fields of characteristic
p > 0. Let K |k be again a field extension with K p ⊂ k. Recall from the
Appendix that the de Rham complex is a complex of the shape

�•
K |k = (K

d→ �1
K |k

d→ �2
K |k

d→ �3
K |k

d→ . . . ).

Assume moreover that K |k is finite of degree pr , and choose a p-basis
b1, . . . , br . According to Proposition A.8.8 of the Appendix, the elements
db1, . . . dbr form a K -basis of the vector space �1

K |k , and hence the i-fold
exterior products dbλ1 ∧ · · · ∧ dbλi form a K -basis of �i

K |k . In particular, this
implies that �i

K |k = 0 for i > r . According to the Appendix, the differential

d : �i
K |k → �i+1

K |k coincides with the universal derivation d for i = 0, and satis-
fies d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)iω1 ∧ dω2 for ω1 ∈ �i

K |k and ω2 ∈ �
j
K |k .

The products bα1
1 · · · bαr

r with 0 ≤ αi ≤ p − 1 form a basis of the k-vector
space K . This implies K ∼= k(b1) ⊗k · · · ⊗k k(br ), as the extensions k(bi )|k are
linearly disjoint. On the other hand, the elements bα1

1 · · · bαr
r dbλ1 ∧ · · · ∧ dbλi

form a k-basis of�i
K |k , so the above description of differentials and the definition

of tensor products of complexes (Chapter 3, Section 3.4) imply:

Proposition 9.4.1 For K |k and b1, . . . , br as above, the de Rham complex�•
K |k

considered as a complex of k-vector spaces decomposes as a tensor product

�•
K |k ∼= �•

k(b1)|k ⊗k · · · ⊗k �•
k(br )|k .

This decomposition will be one of our main tools in the study of the de Rham
complex. The other one is the following general lemma on tensor products of
complexes which is a special case of the Künneth formula.

Lemma 9.4.2 Let A• and B• be complexes of vector spaces over the same field
k, concentrated in nonnegative degrees. Then for all i ≥ 0 the natural maps⊕

p+q=i

H p(A•) ⊗k Hq (B•) → Hi (A• ⊗k B•)

are isomorphisms.

Proof Denote by Z•(A) (resp. B•(A)) the subcomplexes of A• obtained by
restricting to the subspaces Zi (A) (resp. Bi (A)) of Ai in degree i ; note that
all differentials in these complexes are zero. Denoting by B•(A)[1] the shifted
complex with Bi (A)[1] = Bi+1(A), one has an exact sequence of complexes

0 → Z•(A) → A• → B•(A)[1] → 0.
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Tensoring with B• yields

0 → Z•(A) ⊗k B• → A• ⊗k B• → B•(A)[1] ⊗k B• → 0. (11)

This sequence is again exact, by the following argument. For each n ≥ 0
we define the truncated complex B•

≤n by setting all terms of degree > n
in B• to 0. A straightforward induction on n using the exact sequences
0 → B•

≤n−1 → B•
≤n → Bn[−n] → 0 (where Bn[−n] has a single nonzero term

in degree n) then implies that the sequences

0 → Z•(A) ⊗k B•
≤n → A• ⊗k B•

≤n → B•(A)[1] ⊗k B•
≤n → 0

are exact for all n, whence the exactness of (11). Now part of the long exact
sequence associated with (11) reads

Hi (B•(A) ⊗k B•) → Hi (Z•(A) ⊗k B•) → Hi (A• ⊗k B•) →
→ Hi+1(B•(A) ⊗k B•) → Hi+1(Z•(A) ⊗k B•). (12)

As B•(A) → Z•(A) is an injective map of complexes with trivial differen-
tials, so is the map B•(A) ⊗k B• → Z•(A) ⊗k B•. Thus the last map in (12) is
injective, whence the exactness of the sequence

Hi (B•(A) ⊗k B•) → Hi (Z•(A) ⊗k B•) → Hi (A• ⊗k B•) → 0.

Again using the triviality of differentials in the complexes Z•(A) and B•(A),
we may identify the the first map here with the map⊕

p+q=i

B p(A•) ⊗k Hq (B•) →
⊕

p+q=i

Z p(A•) ⊗k Hq (B•),

whence the lemma.

We now come to applications of the above observations. The first one is
another basic result of Cartier concerning the operator γ , usually called the
Cartier isomorphism in the literature. To be able to state it, we first extend the
definition of γ to higher differential forms by setting

γ (ω1 ∧ · · · ∧ ωi ) := γ (ω1) ∧ · · · ∧ γ (ωi ),

where on the right-hand side the maps γ are defined as in Proposition 9.2.1
(and extended to the relative case as in the previous section). For i = 0 we put
γ (a) := a p. In this way we obtain K -linear maps

γ : �i
K |k → p Z i

K |k/
p Bi

K |k

for all i ≥ 0. Note that the differentials of the complex p�•
K are K -linear by a

similar argument as in degree 0, so p Bi
K |k ⊂ p Z i

K |k is a K -subspace.
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Theorem 9.4.3 (Cartier) For all extensions K |k as above and all i ≥ 0 the
map γ is an isomorphism.

Proof Assume first K |k is a finite extension of degree pr , and fix a p-basis
b1, . . . , br of K |k as above. Using the above explicit description of �•

K |k and
the construction of γ we see that it is enough to check the following:

� H 0(�•
K |k) is the 1-dimensional k-vector space generated by 1;

� H 1(�•
K |k) is the r -dimensional k-vector space generated by the bp−1

i dbi ;
� Hi (�•

K |k) ∼= �i H 1(�•
K |k) for i > 1.

Now using Proposition 9.4.1, Lemma 9.4.2 and induction on r we see that
it is enough to check these statements for r = 1, i.e. K = k(b) with bp ∈ k.
In this case, K and �1

K |k are p-dimensional k-vector spaces with bases
{bi : 0 ≤ i ≤ p − 1} and {bi db : 0 ≤ i ≤ p − 1}, respectively. Moreover, one
has �i

K |k = 0 for i > 1, and the differential d : K → �1
K |k sends bi to ibi−1db.

It follows that H 0(�•
K |k) and H 1(�•

K |k) are 1-dimensional over k, generated by
1 and bp−1db, respectively, and �i H 1(�•

K |k) = 0 for i > 0, which shows that
the three required properties are satisfied.

For the general case, write K as a direct limit of subfields Kλ finitely generated
over Fp. Each Kλ is a finite extension of K p

λ and therefore also of k ∩ Kλ, so
that the case just discussed applies, and the theorem follows by passing to the
limit.

The theorem enables us to define for all i ≥ 0 the Cartier operator
C : p Z i

K |k/
p Bi

K |k → �i
K |k as the inverse of γ . It is also customary to regard it

as a linear map C : p Z i
K |k → �i

K |k defined on closed differential forms. With
these notations, Theorem 9.4.3 and Theorem 9.2.2 respectively yield the fol-
lowing characterization of exact and logarithmic differential forms, which is
the form of Cartier’s results often found in the literature.

Corollary 9.4.4

1. An i-formω ∈ �i
K |k is exact, i.e. lies in Bi

K |k , if and only if dω = C(ω) = 0.
2. A 1-form ω ∈ �1

K |k is logarithmic, i.e. lies in the image ν(1)K |k of the dlog
map, if and only if dω = 0 and C(ω) = ω.

Remark 9.4.5 The definition of the inverse Cartier operator γ works over an
arbitrary integral domain A of characteristic p > 0 in exactly the same way.
One can then prove that if A is a finitely generated smooth algebra over a
perfect field k of characteristic p > 0, i.e. it arises as the coordinate ring of a
smooth affine k-variety, then the map γ induces an isomorphism of A-modules
�i

A
∼→ p Hi (�•

A) for all i ≥ 0. The idea (due to Grothendieck) is to treat first
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the case of the polynomial ring k[x1, . . . , xr ] which is similar to the case of
fields treated above, the module �1

k[x1,...,xr ]|k being a free k[x1, . . . , xr ]-module
over the dxi and the xi forming a ‘p-basis’ of k[x1, . . . xr ] over k[x p

1 , . . . x p
r ].

The general case then follows from the well-known fact of algebraic geometry
(Mumford [1], III.6, Theorem 1) according to which on a smooth k-variety
each point has an open neighbourhood equipped with an étale morphism to
some affine space over k, together with the fact an étale morphism induces an
isomorphism on modules of differentials. See Katz [1] or Illusie ([1], [2]) for
details and a globalization for smooth varieties.

Another consequence of the tensor product decomposition of the de Rham
complex is a direct sum decomposition we shall use later. We consider
again an extension K |k and a p-basis b1, . . . , br as at the beginning of this
section, and fix a multiindex α := (α1, . . . , αr ) with 0 ≤ αi ≤ p − 1. For
each i ≥ 0 consider the k-subspace �i

K |k(α) ⊂ �i
K |k generated by the ele-

ments bα1
1 . . . bαr

r (dbλ1/bλ1 ) ∧ · · · ∧ (dbλi /bλi ) for 1 ≤ λ1 ≤ · · · ≤ λi ≤ r ; for
i = 0 this just means the 1-dimensional subspace generated by bα1

1 . . . bαr
r .

Since the (dbλ1/bλ1 ) ∧ · · · ∧ (dbλi /bλi ) form a K -basis of �i
K |k just like the

dbλ1 ∧ · · · ∧ dbλi , the k-vector space �i
K |k decomposes as a direct sum of the

subspaces �i
K |k(α) for all possible α. The case α = (0, . . . , 0) is particularly

important; we shall abbreviate it by α = 0.

Proposition 9.4.6 Let K |k and α be as above.

1. The differentials d : �i
K |k → �i+1

K |k map each �i
K |k(α) to �i+1

K |k(α), giving
rise to subcomplexes �•

K |k(α) of �•
K |k .

2. One has a direct sum decomposition �•
K |k ∼= ⊕

α �•
K |k(α).

3. The complex �•
K |k(0) has zero differentials, and the complexes �•

K |k(α)
are acyclic for α �= 0.

Proof Using Proposition 9.4.1 (and Lemma 9.4.2 for the third statement) we
reduce all three statements to the case r = 1. In this case the first two statements
are immediate, and the third one follows by the same calculation as at the end
of the proof of Theorem 9.4.3.

9.5 The Bloch–Gabber–Kato theorem: statement
and reductions

As a field K of characteristic p has p-cohomological dimension ≤ 1, the Galois
symbol hn

K ,p is a trivial invariant for n > 1. However, the discussion of Sec-
tion 9.2 suggests the investigation of another invariant, the differential symbol.
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To define it, introduce for all n ≥ 0 the notation

ν(n)K := ker(γ − id : �n
K → �n

K /Bn
K ).

We shall omit the subscript K if clear from the context. Note that ν(0) ∼= Fp

as we defined γ to be p-th power map for 0-forms, and for n = 1 we get back
the ν(1)K of Section 9.2. Since γ takes its values in Zn

K /Bn
K , it follows that

ν(n)K ⊂ Zn
K . Moreover, since γ is defined for n > 1 as the n-th exterior power

of the operator γ on �1
k , one has a natural map ν(1)⊗n → ν(n). This allows one

to define

dlog : (K ×)⊗n → ν(n)

for n > 1 by taking the n-th tensor power of the map dlog : K × → ν(1)K and
then composing with the map above.

Lemma 9.5.1 The map dlog factors through the quotient K M
n (K )/pK M

n (K ),
and thus defines a map

ψn
K : K M

n (K )/pK M
n (K ) → ν(n)K

sending {y1, y2, . . . , yn} to (dy1/y1) ∧ · · · ∧ (dyn/yn) for all y1, . . . , yn ∈ K ×.

Proof As pν(n) = 0, the only point to be checked is the Steinberg relation. It
holds because for y �= 0, 1

dlog(y) ∧ dlog(1 − y) = 1

y(1 − y)
dy ∧ d(1 − y) = − 1

y(1 − y)
dy ∧ dy = 0.

The remainder of this chapter will be devoted to the following basic theorem,
whose surjectivity statement is due to Kato, and whose injectivity statement was
proven independently by Bloch–Kato and Gabber (unpublished).

Theorem 9.5.2 (Bloch–Gabber–Kato) Let K be a field of characteristic
p > 0. For all integers n ≥ 0, the differential symbol

ψn
K : K M

n (K )/pK M
n (K ) → ν(n)K

is an isomorphism.

Remarks 9.5.3

1. The surjectivity statement of the theorem generalizes Theorem 9.2.2 to
higher differential forms.

2. Using the theorem above, Bloch and Kato proved the bijectivity of the
Galois symbol hn

k,p for n arbitrary and k a complete discrete valuation
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field of characteristic 0 with residue field of characteristic p (Bloch–Kato
[1], §5; see also Colliot-Thélène [4] for a detailed survey),

3. Building upon Theorem 9.5.2, Bloch and Kato also proved that for a field
K of characteristic p the p-primary torsion subgroup of K M

n (K ) is divis-
ible for all n > 0 (Bloch–Kato [1], §2.8). Then Izhboldin [1] proved that
K M

n (K ) has actually no p-torsion at all (see also Friedlander–Weibel [1]
for an exposition). For n = 2 this gives back Suslin’s theorem (Theo-
rem 8.4.8), but Izhboldin’s proof is different, the main ingredient being
the result of Bloch and Kato.

In the remaining of this section we perform some preliminary constructions
and reductions to be used in the proof.

First we define trace maps tr K ′|K : �n
K ′ → �n

K for finite separable exten-
sions K ′|K (they also exist for inseparable extensions, but the construc-
tion is more complicated and will not be used). The construction is based
on the fact that for K ′|K separable one has �n

K ′ ∼= K ′ ⊗K �n
K by Proposi-

tion A.8.7 of the Appendix. Hence the field trace tr : K ′ → K induces a trace
map tr = tr ⊗ id : K ′ ⊗K �n

K → �n
K which is the map we were looking for.

The composite tr ◦ id : �n
K → �n

K ′ → �n
K is multiplication by [K ′ : K ], and

one has the projection formula tr (ω1 ∧ (ω2)K ′ ) = tr (ω1) ∧ ω2 for ω1 ∈ �n
K ′ ,

ω2 ∈ �m
K . Moreover, the trace map commutes with differentials and the Cartier

operator by construction, so it restricts to a trace map tr : ν(n)K ′ → ν(n)K .

Lemma 9.5.4 Given a finite separable extension K ′|K , the diagram

K M
n (K ′)/pK M

n (K ′)
ψn

K ′−−−−→ ν(n)K ′

NK ′ |K

� tr

�
K M

n (K )/pK m
n (K )

ψn
K−−−−→ ν(n)K

commutes.

Proof Let us consider first the case n = 1. Let y ∈ K ′×, and let Ks be a
separable closure of K . As the maps K × → K ×

s and �1
K → �1

Ks
are injective,

we may reason in Ks . There the element NK ′|K (y) decomposes as a product
NK ′|K (y) = ∏

σ (y), where the product is taken over the K -embeddings of K ′

into Ks . As these embeddings commute with the dlog map, it follows that inside
�1

Ks
one has dlog(NK ′|K (y)) = ∑

σ (dlog(y)), which is none but tr (dlog(y)). In
the case n > 1 we consider a maximal prime to p extension K (p)|K (which is
of course separable). The tensor product K (p) ⊗K K ′ is a finite direct product
of extensions Ki |K (p), and the induced norm map on K M

n is the sum of the
norm maps for these extensions by Lemma 7.3.6. Similarly, the trace map on



282 Symbols in positive characteristic

differentials becomes the sum of the traces for the Ki |K (p). Since moreover
the map �n

K → �n
K (p) is injective, we are reduced to the case K = K (p). But

then according to the Bass–Tate lemma (Corollary 7.2.10) it is enough to treat
symbols of the form {a1, . . . , an} with a1 ∈ K ′ and ai ∈ K for i > 1, and the
statement reduces to the case n = 1 by the projection formula.

The trace construction implies the following reduction statement.

Proposition 9.5.5 Let K ′|K a finite extension of degree prime to p. Then the
natural map ker(ψn

K ) → ker(ψn
K ′ ) is injective, and the trace map induces a

surjection coker (ψn
K ′ ) → coker (ψn

K ).
In particular, if ψn

K ′ is injective (resp. surjective), then so is ψn
K .

Proof The statement about the kernel follows from the injectivity of the map
K M

n (K )/pK M
n (K ) → K M

n (K ′)/pK M
n (K ′) already noted during the proof of

Proposition 7.5.9. That about the cokernel comes from the previous lemma,
noting that the trace map is surjective, as so is the composite [K ′ : K ] = tr ◦ id,
the degree [K ′ : K ] being prime to p and ν(n)K being p-torsion.

On the other hand, the following reduction statement is immediate by writing
K as a union of its finitely generated subfields.

Lemma 9.5.6 If the differential symbol ψn
F is injective (resp. surjective) for all

subfields F ⊂ K which are finitely generated over Fp, then so is ψn
K .

9.6 Surjectivity of the differential symbol
In this section we prove the surjectivity of the differential symbol. Recall the
statement:

Theorem 9.6.1 (Kato) For all n > 0, the map dlog : (K ×)⊗n → ν(n) is sur-
jective, i.e. the group ν(n) is additively generated by the elements of the shape
dx1/x1 ∧ · · · ∧ dxn/xn.

Remark 9.6.2 In the case when K is separably closed this was proven earlier
by Bloch (unpublished). See Illusie [1], Theorem 2.4.2 for an exposition of his
proof.

Before embarking on the proof, we establish an innocent looking result of
linear algebra that will be needed later.

Proposition 9.6.3 Let E be a field of characteristic p, and let F = E(b) be a
purely inseparable extension of degree p. Consider an E-linear map g : F → E.
Then up to replacing E by a finite extension E ′|E of degree prime to p, F by
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F E ′ and g by the induced map, there exists c ∈ F× satisfying g(ci ) = 0 for
1 ≤ i ≤ p − 1.

We begin the proof of the proposition with:

Lemma 9.6.4 Let F |E be a field extension as in Lemma 9.6.3. Then up to
replacing E by E ′ and F by F E ′ as above we may write each element of
�1

F |E \ d F in the form udy/y with suitable u ∈ E× and y ∈ F×.

Proof One may write each element ω ∈ �1
F |E as ω = a(db/b) for suit-

able a, b ∈ E×. As the E-vector space �1
F |E/d F is 1-dimensional (see the

proof of Theorem 9.4.3), the condition ω /∈ d F implies that its image spans
�1

F |E/d F . In particular, there exists ρ ∈ E× with a p(db/b) = ρa(db/b) in
�1

F |E/d F. Up to replacing E by the prime-to-p extension E(u) for some
u with ρ = u p−1, we may assume that such an u exists in E×, so divi-
sion by u p yields (u−1a)p(db/b) = u−1a(db/b) in �1

F |E/d F. In other words,
u−1ω = u−1a(db/b) lies in the kernel of γ − 1, and therefore u−1ω = dy/y
according to Theorem 9.3.3. The lemma follows.

Proof of Proposition 9.6.3 Take an isomorphismφ between the 1-dimensional
F-vector spaces F and �1

F |E . The E-subspaces ker(g) ⊂ F and d F ⊂ �1
F |E

are both of codimension 1, hence up to modifying φ by multiplication with
an element in F× we may assume that φ(ker(g)) = d F (this is immediately
seen by looking at the dual spaces). Let a be an element of F \ ker(g). Then
φ(a) generates �1

F |E as an F-vector space, and its mod d F class generates
the E-vector space �1

F |E/d F . By the lemma above we have φ(a) = udy/y for
suitable y ∈ F× and u ∈ E×; up to modifying a we may assume u = 1. Now
by the above choice of φ we have the equivalences g(x) = 0 ⇔ xa ∈ ker(g) ⇔
xdy/y ∈ d F for all x ∈ F . On the other hand, we have seen during the proof of
Theorem 9.4.3 that the elements yi dy for 0 ≤ i ≤ p − 2 span d F . Thus c = y
is a good choice.

Now return to the field K of Theorem 9.6.1, and let k ⊂ K be a subfield
containing K p. Assume moreover that K |k is a finite extension of degree pr ,
and take a p-basis {b1, . . . , br } of K |k. Then for 1 ≤ i ≤ r the dbi/bi form a
K -basis of �1

K |k . For n > 1 we shall use the explicit basis of �n
K |k given as

follows. Denote by Sn the set of strictly increasing functions from {1, . . . , n}
to {1, . . . , r}, and for all s ∈ Sn set

ωs = dbs(1)/bs(1) ∧ · · · ∧ dbs(n)/bs(n).

Then the ωs for s ∈ Sn form a K -basis of �1
K |k . Equip the set Sn with the lex-

icographic ordering, i.e. for s, t ∈ Sn set t < s if there exists m in {1, . . . , n}
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so that t(i) = s(i) for all i < m and t(m) < s(m). Denote by �n
K |k,<s the

K-subspace of �n
K |k generated by the ωt with t < s, and put Bn

K |k,<s :=
d(�n−1

K |k,<s). We shall adopt analogous notations for subfields of K .
We may now state the key proposition which will be also useful for proving

the injectivity of the differential symbol.

Proposition 9.6.5 Let K |k be a finite extension of degree pr as above. Fix
s ∈ Sn and (with the notations above) assume a ∈ K satisfies

(a p − a)ωs ∈ �n
K |k,<s + Bn

K |k . (13)

Then up to replacing K by a finite extension of degree prime to p we have

aωs ∈ �n
K |k,<s + Im (dlog).

Before proving the proposition, we derive Theorem 9.6.1.

Proof of Theorem 9.6.1 By Lemma 9.5.6 we may assume K is finitely gen-
erated over Fp, so that setting k = K p the extension K |k is finite. Assume
ω ∈ ν(n)K is not in the image of the dlog map. Since �n

K is the direct sum of the
�n

K ,s , we may then find a smallest s (with respect to the lexicographic order) so
that ω = ω′ + η, with ω′ ∈ �n

K ,<s+1 and η ∈ Im (dlog). Write ω′ = aωs + ω′′

with suitable a ∈ K and ω′′ ∈ �n
K ,<s . As by construction γ maps �n

K ,<s to
its image in �n

K /Bn
K , applying γ − 1 yields (a p − a)ωs ∈ �n

K ,<s + Bn
K , noting

that (γ − 1) η and (γ − 1)ω both lie in Bn
K . By Proposition 9.6.5 after passing

to a finite prime to p extension K ′|K we have aωs ∈ �n
K ′,<s + Im (dlog), so

that ω ∈ �n
K ′,<s + Im (dlog) as well. Since a p-basis of K |k provides a p-basis

of K ′|K ′ p as well, by taking traces and using the formula tr ◦ id = [K ′ : K ]
in a by now familiar way we see that the minimal s for K ′ cannot be greater
than for K , and the above argument shows that it is actually strictly smaller.
Thus after taking finitely many finite prime to p extensions we arrive at an
extension where the dlog map is surjective, and then the theorem follows from
Proposition 9.5.5.

We now come to the proof of the proposition, which is a fairly long calcula-
tion. The exposition is largely based on the notes of Colliot-Thélène [4].

Proof of Proposition 9.6.5 With the notations adopted before the proposition
define subfields k0, k1 and k2 of K by

k0 := k(b1, b2, . . . , bs(1)−1), k1 := k0(bs(1)), and k2 := k0(bs(1), bs(1)+1, . . . , bs(n)).

We have [k2 : k0] = pN , where N stands for the number of integers j such that
s(1) ≤ j ≤ s(n).

We first show that under the assumption of the proposition the element a
belongs to k2. To see this, denote by m(1) < · · · < m(N − n) those integers
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in the interval [s(1), s(n)] which are not of the shape s( j), and introduce the
elements

ωm :=dbm(1)/bm(1) ∧ · · · ∧ dbm(N−n)/bm(N−n) ∈ �N−n
K andωmax :=ωm ∧ ωs ∈ �N

K

(for n = 1 write simply ωm = 1 and ωmax = ωs). Applying d to the equation
(13) yields da ∧ ωs ∈ Bn+1

K ,<s . But the set ωm ∧ Bn+1
K ,<s ⊂ �N+1

K maps to 0 in
�N

K |k0
, because the components of an element in Bn+1

K ,<s are either of the form

db j/b j ∧ w′ with j < s(1) and hence have trivial image in �n+1
K |k0

, or contain

some dbm(i)/bm(i). In particular, da ∧ ωmax = 0 in �N+1
K |k0

. Now if a were not
in k2, then bs(1), . . . , bs(n) and a would form part of a p-basis of K |k0, which
would contradict da ∧ ωmax = 0.

So we have a ∈ k2, and hence by the choice of k2 we may consider aωs as
an element of �n

k2|k0
. We may thus rewrite our assumption (13) as

(a p − a)ωs = ω + dω1 with ω ∈ �n
k2|k0,<s, ω1 ∈ �n−1

k2|k0
. (14)

The next step is to replace bs(1) by another generator c of the extension
k1|k0 which has a useful additional technical property. For this we first take the
wedge product of both sides by ωm , whence using ω ∧ ωm = 0 in �N

k2|k0
(same

argument as in the previous paragraph) we obtain

(a p − a)ωmax = dω1 ∧ ωm = d(ω1 ∧ ωm) (15)

(recall that dωm = 0 because ωm is logarithmic), so that (a p − a)ωmax ∈ B N
k2|k0

.
Consider now the k0-linear map k1 → �N

k2|k0
/B N

k2|k0
sending x ∈ k1 to the

class of xaωmax. As [k2 : k0] = pN , the space �N
k2|k0

/B N
k2|k0

is 1-dimensional
over k0 and moreover generated by the class of ωmax (recall again the proof of
Theorem 9.4.3). Thus by applying Proposition 9.6.3 to E = k0, F = k1 and the
above k0-linear map we find c ∈ k×

1 with

ci aωmax ∈ B N
k2|k0

for all 1 ≤ i ≤ p − 1 (16)

up to replacing k0 (and hence ultimately K ) by a finite prime to p exten-
sion. Moreover, the c we found does not lie in k0. Indeed, if it did, then
caωmax ∈ B N

k2|k0
would imply aωmax ∈ B N

k2|k0
. Taking (15) into account, we

would then get a pωmax ∈ B N
k2|k0

and finally ωmax ∈ B N
k2|k0

, which is impossible.
Thus the above c generates the extension k1|k0. Henceforth we use c together

with the set {bi : i > s(1)} as a p-basis of k2|k0. Using this p-basis we may
rewrite aωs in the following way. For n = 1 we have aωs = a′dc/c for suit-
able a′ ∈ k1. For n > 1 we define s ′ ∈ Sn−1 by setting s ′(i) = s(i + 1) for
1 ≤ i ≤ n − 1. Then for suitable a′ ∈ k2 we have

aωs = a′(dc/c) ∧ ωs ′ ∈ �n
k2|k0

. (17)
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In the case n = 1 we shall show that a′ ∈ Fp, which will conclude the proof.
For n > 1 our goal is to show that ωs ′ satisfies

(a′ p − a′)ωs ′ ∈ �n−1
K |k,<s ′ + Bn−1

K |k . (18)

Once this is established, we can apply induction on n to find

a′ωs ′ = v′ + x ′ (19)

for suitable v′ ∈ �n−1
K |k,<s ′ and x ′ ∈ Im (dlog). Note that dc/c ∧ v′ ∈ �n

K |k,<s

because c and bs(1) differ only by a constant in k1 ⊂ K . On the other hand, the
kernel of the projection �n

K |k → �n
K |k0

lies in �n
K |k,<s by definition of k0, so

that (17) may be rewritten as

aωs = a′(dc/c) ∧ ωs ′ + ω1 ∈ �n
K |k with ω1 ∈ �n

K |k,<s .

In view of this formula the proposition will follow from (19) after wedge product
with dc/c.

In the direction of (18) we first investigate what additional property the special
choice of c implies for a′. For this, write k2 as a direct sum k2 = k1 ⊕ V , where
V ⊂ k2 is the natural complement of k1 generated by nontrivial products of
the basis elements in {bi : i > s(1)}. Write a′ = ∑p−1

j=0 α j c j + a′
1 with a′

1 ∈ V ,
αi ∈ k0. We contend that here α j = 0 for j > 0. Indeed, if α j �= 0 for some
j > 0, consider the element

cp− j a′(dc/c) ∧ ωs ′ ∧ ωm ∈ �N
k2|k0

(20)

and apply the decomposition of Proposition 9.4.6 (2) to the extension k2|k0 and
the p-basis {c, bi : i > s(1)}. By our assumption on α j the element (20) has
a nontrivial component in �N

k2|k0
(0). On the other hand, (16) with i = p − j

together with (17) imply that the element (20) lies in B N
k2|k0

. This however
contradicts the first part of Proposition 9.4.6 (3) according to which �N

k2|k0
(0)

has trivial differentials. We have thus proven that

a′ = α0 + a′
1 with α0 ∈ k0, a′

1 ∈ V . (21)

This being said, we apply γ − 1 : �n
k2|k0

→ �n
k2|k0

/Bn
k2|k0

to the equation (17)
and obtain

(a p − a)ωs = (a′ p − a′)(dc/c) ∧ ωs ′ mod Bn
k2|k0

,

whence by comparison with (14)

(a′ p − a′)(dc/c) ∧ ωs ′ ∈ �n
k2|k0,<s mod Bn

k2|k0
. (22)

Wedge product with ωm therefore shows that the element

(a′ p − a′)(dc/c) ∧ ωs ′ ∧ ωm (23)
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lies in Bn
k2|k0

, since ωm ∧ �n
k2|k0,<s = 0 as already noted. In the decomposition

of Proposition 9.4.6, the component of the element (23) lying in �N
k2|k0

(0) is

(a′ p − α0)(dc/c) ∧ ωs ′ ∧ ωm,

with α0 as in (21). But by Proposition 9.4.6 (3) we have �N
k2|k0

(0) ∩ B N
k2|k0

= 0.
Since (dc/c) ∧ ωs ′ ∧ ωm generates the 1-dimensional k2-vector space �N

k2|k0
,

we conclude that a′ p − α0 must be 0. Comparison with (21) yields

a′ p − a′ = −a′
1. (24)

All the above holds in the case n = 1 as well, with the modification that one
should omit the component ωs ′ everywhere. Since for n = 1 we have k2 = k1

and hence V = 0, equation (24) then reads a′ p − a′ = 0, i.e. a′ ∈ Fp, as
required.

We return to the case n > 1. Applying the differential d to (22) and taking
(24) into account we obtain

d(a′
1ωs ′ ) ∧ (dc/c) ∈ Bn+1

k2|k0,<s .

Since dc/c differs from dbs(1)/bs(1) by a constant in k1 ⊂ k2, we have

�n
k2|k0,<s ⊂ �n−1

k2|k0,<s ′ ∧ (dc/c).

Thus we find ω ∈ �n−1
k2|k0,<s ′ such that d(a′

1ωs ′ ) ∧ (dc/c) = dω ∧ (dc/c), or in
other words

d(a′
1ωs ′ − ω) ∧ (dc/c) = 0.

As dc/c is part of a basis of �1
k2|k0

, this is only possible if

d(a′
1ωs ′ − ω) = (dc/c) ∧ ω1 ∈ �n

k2|k0

for a suitable ω1 ∈ �n−1
k2|k0

(see the end of the proof of Proposition 9.7.2 below
for details on this type of argument). So since c ∈ k1, the element d(a′

1ωs ′ − ω)
vanishes in �n

k2|k1
.

Consider the decomposition of�n−1
k2|k1

coming from the p-basis {bi : i > s(1)}
as in Proposition 9.4.6. Since a′

1 /∈ k1, we see that a′
1ωs ′ has trivial projection to

�n−1
k2|k1

(0). This may not be the case for ω, but since d(�n−1
k2|k1

(0)) = 0 by Propo-

sition 9.4.6 (3), we may modify ω by an element of �n−1
k2|k1

(0) without affecting
the condition d(a′

1ωs ′ − ω) = 0. Thus we may assume that a′
1ωs ′ − ω avoids

�n−1
k2|k1

(0), and therefore a′
1ωs ′ − ω ∈ Bn−1

k2|k1
by the statement of Proposition 9.4.6

(3) about the other components. Since ω ∈ �n−1
k2|k0,<s ′ , we obtain

a′
1ωs ′ ∈ �n−1

k2|k1,<s ′ + Bn−1
k2|k1

,

so by (24)

(a′ p − a′)ωs ′ ∈ �n−1
k2|k1,<s ′ + Bn−1

k2|k1
.
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As the kernel of the projection �n−1
K → �n−1

K |k1
is contained in �n−1

K ,<s ′ , this
implies (18) and concludes the proof.

Remark 9.6.6 We record for later use the following by-product of the above
proof. Under the assumption of Proposition 9.6.5 there exist elements a′ ∈ K ,
τ ∈ �n

K ,<s and c ∈ k1 such that up to replacing K by a finite extension K ′ of
degree prime to p we have

aωs = a′ωs ′ ∧ (dc/c) + τ and (a′ p − a′)ωs ′ ∈ �n−1
K ,<s ′ + Bn−1

K

for n > 1, and for n = 1 we have aωs = a′(dc/c) + τ with a′ ∈ Fp. This comes
from (17) and (18), the element τ being an element in the kernel of�n

K → �n
K |k0

which is a subset of �n
K ,<s by definition of k0.

Note moreover that the finite extension K ′|K we allow may be chosen to be
a tower of Galois extensions. This is seen as follows: K ′|K arises by adjoining
the (p − 1)-st root u of an element in K in the proof of Proposition 9.6.3. This
may not be Galois over K , but embeds in K (ζ )(u)|K , where ζ is a primitive
(p − 1)-st root of unity. The latter extension still has prime to p degree and is
a tower of Galois extensions.

9.7 Injectivity of the differential symbol
Now that the surjectivity statement of Theorem 9.5.2 is established, we turn to
injectivity. For brevity’s sake introduce the notation

kn(K ) := K M
n (K )/pK M

n (K ).

We then have to prove:

Theorem 9.7.1 The differential symbol ψn
K : kn(K ) → ν(n)K is injective.

The first step in the proof is the following analogue of Proposition 7.5.6 (1).

Proposition 9.7.2 Assume that the differential symbols ψn
K : kn(K ) → ν(n)K

and ψn−1
L are injective, where L|K is an arbitrary finite extension. Then so is

ψn
K (t) : kn(K (t)) → ν(n)K (t) for a purely transcendental extension K (t).

Proof We first construct a commutative diagram

0 −−−−→ kn(K ) −−−−→ kn(K (t))
⊕ ∂P−−−−→ ⊕

P∈(A1
K )0

kn−1(κ(P)) −−−−→ 0

ψn
K

� ψn
K (T )

� ⊕ iP

�
0 −−−−→ �n

K [t] −−−−→ �n
K (t) −−−−→ ⊕

P∈(A1
K )0

�n
K (t)/�

n
K [t]P

.
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Here the upper row is the Milnor exact sequence modulo p (Theorem 7.2.1),
and the lower row comes from the localization property of differentials
(Appendix, Proposition A.8.3 (2)), noting that K [t] is the intersection of the
K [t]P . The maps iP are defined as the composite of ψn−1

κ(P) with the map

jP : �n−1
κ(P) → �n

K (t)/�
n
K [t]P

given by

jP (x0 dx1 ∧ · · · ∧ dxn−1) = x̃0 dx̃1 ∧ · · · ∧ dx̃n−1 ∧ π−1
P dπP ,

where πP is a local parameter at P and the x̃ i are arbitrary liftings of the xi

to K [t]P . The map does not depend on the choice of the liftings x̃ i , since
an easy calculation shows that changing x̃ i to x̃ i + uπP with some unit in
K [t]P changes the right-hand side by an element in �n

K [t]P
(the factor π−1

P gets
cancelled). Another easy calculation shows that the right-hand square commutes
up to a factor (−1)n−1; commutativity of the left square is straightforward.

Now the left vertical map is injective by assumption; if we show injectivity
of the maps iP , that of ψn

K (T ) will follow. As ψn−1
κ(P) is injective by assumption, it

remains to establish the injectivity of jP . By definition, this is equivalent to the
injectivity of the map x0 dx1 ∧ · · · ∧ dxn−1 �→ x̃0 dx̃1 ∧ · · · ∧ dx̃n−1 ∧ dπP .
By Proposition A.8.11 of the Appendix �1

K [t]P
is a free K [t]P -module on a

basis consisting of dπP and some other elements dai ; a basis of �n
K [t]P

is
then given by n-fold exterior products of these forms. Hence for an element
ω ∈ �n−1

K [t]P
the relation ω ∧ dπP = 0 can only hold if when writing ω as a

linear combination of basis elements only those involving dπP have nonzero
coefficient. But then the image of ω in �n−1

κ(P) is 0, as required.

The idea of the proof of Theorem 9.7.1 in the general case is now the fol-
lowing. By Lemma 9.5.6 it is enough to consider the case of a field F finitely
generated over Fp. We apply induction on n, the case n = 0 being obvious.
If d denotes the transcendence degree of F , then by Corollary A.3.6 of the
Appendix there exists a scheme-theoretic point of codimension 1 on the affine
space Ad+1

Fp
whose local ring R has residue field isomorphic to F . Note that R is

a discrete valuation ring (being integrally closed of Krull dimension 1) whose
fraction field is purely transcendental over Fp. To proceed further, we need:

Construction 9.7.3 Let K be the fraction field of the above R, and M its max-
imal ideal. Define kn(R) to be the kernel of the residue map ∂M : kn(K ) →
kn−1(F); note that it is generated by symbols whose entries are units in
R by Proposition 7.1.7. It follows that the differential symbol ψn

K restricts
to a map ψn

R : kn(R) → ν(n)R , where ν(n)R is the kernel of the operator
γ − 1 : �n

R → �n
R/Bn

R (see Remark 9.4.5). Denote by kn(R, M) the kernel of
the specialization map s M

R : kn(R) → kn(F) (which does not depend on gen-
erators of M by Remark 7.1.9), and by ν(n)R,M that of the reduction map
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ρR : ν(n)R → ν(n)F . The easy compatibility ψn
R ⊗R F = ψn

F ◦ s M
R implies

that ψn
R restricts to a map ψn

R,M : kn(R, M) → ν(n)R,M .

Lemma 9.7.4 With notations as above, assume that the differential symbol
ψn

R,M : kn(R, M) → ν(n)R,M is surjective. Then the symbol hn
F is injective.

Proof We have the commutative diagram with exact rows

0 −−−−→ kn(R, M) −−−−→ kn(R) −−−−→ kn(F) −−−−→ 0

ψn
R,M

� ψn
R

� ψn
F

�
0 −−−−→ ν(n)R,M −−−−→ ν(n)R −−−−→ ν(n)F .

By Proposition 9.7.2 and our inductive assumption on n the middle vertical
map is injective, so the lemma follows by diagram chase.

Thus in order to prove Theorem 9.7.1 it suffices to prove the surjectivity of
kn(R, M) → ν(n)R,M . In the course of the proof we shall be forced to make
finite extensions of the fraction field of R, and the integral closure of R in these
extensions will not be local any more, but in general only a semi-local Dedekind
ring, i.e. a Dedekind ring with finitely many maximal ideals. We therefore have
to extend the statement to these.

Construction 9.7.5 If R is a semi-local Dedekind ring with maximal ideals
M1, . . . , Mr , denote by I = ∩Mi its Jacobson radical. By the Chinese Remain-
der Theorem R/I ∼= ⊕

R/Mi ; in particular, it is a direct sum of fields. There-
fore we may define K M

n (R/I ) as the direct sum of the K M
n (R/Mi ) and denote

its mod p quotient by kn(R/I ). The group kn(R) ⊂ kn(K ) is defined as the
intersection of the kernels of the residue maps kn(K ) → kn−1(R/Mi ) associ-
ated with the localizations Ri := RMi of R; it is generated by symbols coming
from the units of R. The group kn(R, I ) is defined as the kernel of the direct
sum of specialization maps ⊕s M

Ri
: kn(R) → ⊕

kn(R/Mi ). As in the case of
discrete valuation rings, the symbol ψn

K restricts to a symbol kn(R) → ν(n)R ;
it is compatible with the direct sum of the symbols ψn

R/Mi
via the specializa-

tion maps. Hence it restricts to a symbol ψn
R,I : kn(R, I ) → ν(n)R,I , where the

latter group is the kernel of the map ν(n)R → ⊕ν(n)R/Mi .

Therefore the statement to be proven is:

Proposition 9.7.6 Let k be a perfect field of characteristic p > 0, and R a
semi-local Dedekind domain which is obtained as a localization of a finitely
generated k-algebra. Then the differential symbol

ψn
R,I : kn(R, I ) → ν(n)R,I

is surjective.

We first prove some preliminary lemmas.
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Lemma 9.7.7 For R as in the proposition the R-module �1
R = �1

R|k is free of
finite rank.

Proof For each maximal ideal M of R the localization RM is a discrete valua-
tion ring, hence�1

RM |k is free of finite rank by Proposition A.8.5 of the Appendix.
It follows that �1

R|k is a finitely generated projective R-module, by Matsumura
[1], 7.12 together with Proposition A.8.3 (2) of the Appendix. But then it must
be free, since R is semi-local (see Matsumura [1], Theorem 2.5 for the local
case; the same proof works in general).

Lemma 9.7.8 Let K be the fraction field of R, and let K ′|K be a finite extension
of degree prime to p which is a tower of Galois extensions. Let R′ be the
normalization of R in K , and denote by I ′ the Jacobson radical of R′. If the
differential symbol ψn

R′,I ′ is surjective, then so is ψn
R,I .

Proof This will follow by the same norm argument as in Proposition 9.5.5,
once we show that the norm and trace maps of Lemma 9.5.4 restrict to kn(R′, I ′)
and ν(n)R′,I ′ , giving rise to a commutative diagram

kn(R′, I ′)
ψn

R′ ,I ′−−−−→ ν(n)R′,I ′

NR′ |R

� tr

�
kn(R, I )

ψn
R,I−−−−→ ν(n)R,I .

(25)

To check this, note first that the norm map NK ′|K : kn(K ′) → kn(K ) restricts to
a norm map kn(R′) → kn(R) by Proposition 7.4.1 applied to the finitely many
residue maps coming from the maximal ideals of R′. It further restricts to a
map kn(R′, I ′) → kn(R, I ) using Corollary 7.4.2 (note that it applies since the
ramification is tame at each maximal ideal of R by our assumption on K ′|K
and Corollary A.6.6 of the Appendix). On the other hand, consider the diagram

kn(R′)
ψn

R′−−−−→ �n
R′ −−−−→ �n

K ′

NR′ |R

� tr

�
kn(R)

ψn
R−−−−→ �n

R −−−−→ �n
K

where the outer rectangle commutes by virtue of Lemma 9.5.4. It follows from
Lemma 9.7.7 that �n

R′ and �n
R are free of finite rank, and therefore the hori-

zontal arrows in the right half of the diagram are injective. From this we obtain
that the trace map on �n

K ′ restricts to a map Im(ψn
R′ ) → Im(ψn

R). Using com-
patibilities with specialization maps one checks that this map sends Im(ψn

R′,I ′ )
into Im(ψn

R,I ). By our assumption we have Im(ψn
R′,I ′ ) = ν(n)R′,I ′ , whence the

existence of the commutative diagram (25).
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Another important ingredient in the proof will be the following integral ver-
sion of Theorem 9.2.2.

Lemma 9.7.9 Let R ⊃ T be an extension of semi-local Dedekind rings which
arise as localizations of finitely generated algebras over a perfect field k of
characteristic p > 0. Assume that the arising extension K |K0 of fraction fields
is finite, and moreover R p ⊂ T . Then the sequence

0 → R×/T × dlog−→ �1
R|T

γR−1−→ �1
R|T /B1

R|T

is exact, where R× (resp. T ×) denotes the units in R (resp. T ).

Proof Given ω ∈ ker(γR − 1), we have ω = dlog( f ) in �1
K |K0

for some f in
K × by Theorem 9.3.3. Note that R is a principal ideal domain, with prime
elements the generators ti of the finitely many maximal ideals M1, . . . , Mr (see
Matsumura [1], Ex. 11.7). Up to multiplying f with a sufficiently high power of
(t1 . . . tr )p we may assume f ∈ R. We now show that f ∈ R×, which is equiva-
lent to showing that f /∈ Mi for all i . Assume f ∈ Mi for some i . Then f = utm

i

for some m > 0 with some u ∈ R \ Mi ; up to dividing f by a power of t p
i

we may assume (m, p) = 1. But then dlog( f ) = (du/u) + m(dti/ti ) in �1
K |K0

.
Now notice that dti/ti does not lie in �1

RMi |(RMi ∩K0). Indeed, applying Proposi-
tion A.8.3 (4) of the Appendix with A = k, B = RMi and I = Mi RMi yields that
�1

RMi |k ⊗RMi
R/Mi has a basis consisting of dti and a basis of �1

(R/Mi )|k . Hence
by Nakayama’s lemma (Lang [3], Chapter X, Lemma 4.3) these elements gener-
ate �1

RMi |k and a fortiori �1
RMi |(RMi ∩K0). If dti/ti were an element of this module,

then writing it in terms of the above basis we would get dti ∈ Mi�
1
RMi |(RMi ∩K0),

a contradiction. All in all, we obtain that ω and du/u lie in �1
RMi |(RMi ∩K0)

but m(dti/ti ) doesn’t, which contradicts ω = dlog( f ) and thus proves the
lemma.

Finally an easy lemma from Milnor K-theory:

Lemma 9.7.10 Let M be a maximal ideal of R and RM the associated
localization. Then for all integers m,m ′ > 0 the product operation

km(K ) ⊗ km ′ (K ) → km+m ′ (K )

sends km(RM , M RM ) ⊗ km ′ (K ) into km+m ′ (RM , M RM ).

Proof Note that RM is a discrete valuation ring. By induction we may
assume that m ′ = 1. The group k1(K ) is generated by k1(RM ) and a local
parameter π for M . Since km(RM , M RM ) ⊗ k1(RM ) ⊂ km+1(RM , M RM ), it
remains to show that km(RM , M RM ) ⊗ {π} ⊂ km+1(RM , M RM ). Take α in
kn(RM , M RM ). Then ∂M ({π, α}) = sM

−π (α) = 0 in kn(R/M), and therefore
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{π, α} ∈ kn(RM ). But s M
π ({π, α}) = 0 as well, so {α, π} = (−1)m−1{π, α} lies

in kn+1(RM , M RM ).

We now begin the proof of Proposition 9.7.6. The first step is again to choose
a suitable p-basis of K .

Lemma 9.7.11 There exist units b1, . . . , br−1 in R and a generator br of I so
that db1, . . . , dbr form a basis of the free R-module �1

R, and the mod I images
of db1, . . . dbr−1 form a basis of �1

R/I .

Here recall that R/I is a direct sum of fields.

Proof Take a p-basis b1, . . . , br−1 of R/I . By multiplying with a suitable
nonsingular matrix with entries in Fp we may ensure that each bi has nonzero
components in the direct sum decomposition R/I ∼= ⊕R/Mi . This implies that
if we take arbitrary liftings b1, . . . , br−1 of the bi , then the bi are units in R.
Moreover, an argument using the exact sequence

I/I 2 δ→ �1
R|k ⊗R R/I → �1

(R/I )|k → 0

as in the second half of the proof of Lemma 9.7.9 shows that for any generator
br of I the elements db1, . . . , dbr generate �1

R . Note that the map δ in the
above sequence must be injective, for if it were 0, then so would be the map
Mi/M2

i → �1
RMi |k ⊗RMi

R/Mi for any maximal ideal Mi of R, which would
contradict Corollary A.8.6 of the Appendix. Thus db1, . . . , dbr is a minimal
generating system, and hence a basis of the free R-module �1

R .

Fix b1, . . . , br as in the lemma above. By Propositions A.8.3 (2) and
A.8.8 of the Appendix they form a p-basis of the extension K |k. From
now on we take up the notations of the previous section. In particular, we
put ωs = (dbs(1)/bs(1)) ∧ · · · ∧ (dbs(n)/bs(n)) for a strictly increasing function
s : {1, . . . , n} → {1, . . . , r}. Recall that the ws form a k-basis of �n

K . An ele-
ment

∑
asωs ∈ �K lies in ν(n)K if and only if

∑
(a p

s − as)ωs ∈ Bn
K .Moreover,

by our choice of the p-basis b1, . . . br the element
∑

asωs lies in ν(n)R,I if and
only if as ∈ I for all s.

Our goal is then to prove:

Proposition 9.7.12 Fix a ∈ I and s ∈ Sn, and assume that

(a p − a)ωs ∈ �n
K |k,<s + Bn

K |k .

Then up to replacing K by some finite prime to p extension K ′|K which is a
tower of Galois extensions, and R by its normalization in K ′, we have

aωs ∈ �n
K |k,<s + Im (ψn

R,I ).
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This proposition implies Proposition 9.7.6 by exactly the same argument as
Proposition 9.6.5 implies Theorem 9.6.1. So all that remains is to give its proof.

Proof As in the proof of Proposition 9.6.5, write k0 := k(b1, . . . , bs(1)−1)
and k1 := k0(bs(1)). According to Remark 9.6.6, there exist elements a′ ∈ K ,
τ ∈ �n

K ,<s and c ∈ k1 such that up to replacing K by a finite extension of degree
prime to p we have

aωs = a′ωs ′ ∧ (dc/c) + τ (26)

and

(a′ p − a′)ωs ′ ∈ �n−1
K ,<s ′ + Bn−1

K (27)

for n > 1, and for n = 1 we have aωs = a′(dc/c) + τ with a′ ∈ Fp. We
have seen during the proof of Proposition 9.6.5 that this statement implies
aωs ∈ Im (ψn

K ) mod �n
K |k,<s by induction, but in the present case we have to

ensure that aωs ∈ Im (ψn
R,I ) mod �n

K |k,<s . This will be done by suitably modi-
fying the element c.

Write

dc/c =
s(1)∑
i=1

γi (dbi/bi )

in �1
k1

. It follows from (26) that a = (−1)n−1a′γs(1). In particular, since a ∈ I
and a′ ∈ Fp for n = 1, we have γs(1) ∈ I for n = 1. In the general case define
ideals

J =
⋂

γs(1)∈M

M, L =
⋂
J �⊂M

M

in R, where M runs over the maximal ideals of R. Let RJ , RL be the respective
localizations, so that J RJ and L RL are the Jacobson radicals. For n = 1 we
have I = J and L = R. In the general case we have a′ ∈ L RL by construction.

Write T := RJ ∩ k0, and consider the commutative diagram

�1
RJ

−−−−→ �1
K� �

�1
RJ |T −−−−→ �1

K |k0

where the vertical maps are the natural projections and the horizontal maps
are injective by the localization property of differentials. The forms dc/c and
γs(1)(dbs(1)/bs(1)) have the same image in �1

K |k0
; denote it by θ . Since dc/c is

in the kernel of γK − id, this implies that θ lies in the kernel of the operator
γRJ |T − id, the restriction of γK |k0 − id to �1

RJ |T . Now put H = RJ/J RJ and
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P = T/J ∩ T . As γs(1) ∈ J by definition of J , the image of θ in �1
H |P is trivial.

Consider the commutative diagram with exact rows

0�
(1 + J RJ )/(T × ∩ (1 + J RJ )×)�

0 −−−−→ R×
J /T × dlog−−−−→ �1

RJ |T
γ−id−−−−→ �1

RJ |T /B1
RJ |T� �

0 −−−−→ H×/P× dlog−−−−→ �1
H |P

where exactness of the middle row follows from Lemma 9.7.9. As θ is anni-
hilated by both maps starting from �1

RJ |T , the diagram shows that there exists
δ ∈ 1 + J RJ such that θ = dlog(δ) in �1

RJ |T , whence

dc/c = dδ/δ + η (28)

in �1
K with a suitable η ∈ RJ Im (�1

T → �1
RJ

). In particular, η is in the
K -span of the image of �1

k0
and thus lies in �1

K ,<s(1). In the case n = 1 the
proof ends here, because the equality J = I implies that δ mod p lies in k1(R, I )
and so dδ/δ ∈ Im (ψ1

R,I ). In the case n > 1 we only have that δ mod p lies in
k1(RJ , J RJ ). On the other hand, since a′ ∈ L RL as noted before, we may use
(27) to apply induction on n to a′ωs ′ and obtain

a′ωs ′ ∈ Im (ψn−1
RL ,L RL

) + �n−1
K ,<s ′ . (29)

Since η ∈ �1
K ,<s(1), this implies a′ωs ′ ∧ η ∈ �n

K ,<s , so that from (26), (28) and
(29) we obtain

aωs = β ∧ (dδ/δ) mod �n
K ,<s

for some β ∈ Im (ψn−1
RL ,L RL

). Since δ mod p lies in k1(RJ , J ), the proposition
follows if we check that the natural product map kn−1(K ) ⊗ k1(K ) → kn(K )
sends kn−1(RL , L RL ) ⊗ k1(RJ , J RJ ) to kn(R, I ). Writing kn(R, I ) as the inter-
section of the groups kn(RM , M RM ) where M runs over the maximal ideals of
R, it suffices to show that the image is contained in kn(RM , M RM ) for each M .
But by construction each RM contains either RJ or RL , so the claim follows
from Lemma 9.7.10.

In case the reader felt a bit lost among the numerous reduction steps of the
above proof of Theorem 9.7.1, we recapitulate the logical structure of the argu-
ment: Proposition 9.7.12 just proven implies Proposition 9.7.6, which together



296 Symbols in positive characteristic

with Proposition 9.7.2 and induction on n implies Theorem 9.7.1 via Lemma
9.7.4. Thus Theorem 9.7.1 is proven, and with it the theorem of Bloch, Kato
and Gabber.

Exercises

1. Show that Proposition 9.1.2 is true for an arbitrary finite extension K |k, i.e. that the
boundary map δn : H 1(k,PGLn) → Br (k) always induces a bijection

ker(H 1(k,PGLn) → H 1(K ,PGLn)) ∼= Br (K |k),

where n = [K : k].
2. Assume that char(k) = 2. Let A1 = [a1, b1) and A2 = [a2, b2) be two central simple

algebras of degree 2. Construct an explicit simple purely inseparable field extension
K |k which splits both A1 and A2.

3. Let K be a field of characteristic zero complete with respect to a discrete valuation,
with residue field κ of characteristic p > 0. Denote by A the valuation ring of K ,
by Ã the maximal unramified extension of A, and by G the absolute Galois group
Gal (κs |κ).
(a) Construct a natural isomorphism H 2(G, Ã×) ∼→ H 2(G, κ×

s ) ∼= Br (κ) and a
canonical embedding ρ : Br (κ) ↪→ Br (K ). [Hint: Argue as in the proof of
Proposition 6.3.1.]

(b) Show that ρ maps Brauer classes of cyclic κ-algebras to Brauer classes of
cyclic K -algebras.

(c) Assume moreover that K contains the p-th roots of unity. Show without using
the Merkurjev–Suslin theorem that the subgroup ρ(pBr (κ)) lies in the image
of the Galois symbol h2

K ,p : K M
2 (K )/pK M

2 (K ) → pBr (K ).
4. Keeping the assumptions and the notations of the previous exercise, let A1 be a central

simple κ-algebra, and let A2 be a central simple K -algebra such that [A2] = ρ([A1]).
(a) Show that indK (A2) divides indκ (A1). [Hint: Use Hensel’s lemma and Propo-

sition 4.5.8.]
(b) Let K ′|K be a finite Galois extension which splits A2, and let κ ′ be its residue

field. Show that κ ′ is a splitting field of A1.
(c) Conclude that if A2 is isomorphic to a cyclic algebra, then so is A1. [In

particular, if p = 2 or 3 and A1 has degree p, then A1 is cyclic by Proposition
1.2.3 and Chapter 7, Exercise 9.]

5. (Katz) Let assumptions and notations be as in Theorem 9.3.6. This exercise gives an
explicit formula for the projection P : V → V ∇ whose existence is implied by the
direct sum decomposition of V constructed in the proof of that theorem.

Let a1, . . . , am be a p-basis of K |k and ∂i the derivation sending dai to 1 and da j

to 0 for i �= j . Define the map P : V → V by

P =
∑
λ

m∏
i=1

( (−ai )λi

λi !

) m∏
i=1

∇∗(∂i )
λi ,
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where the sum is taken over all m-tuples λ = (λ1, . . . , λm) ∈ Fm
p . Show that

Im (P) ⊂ V ∇ and P induces the identity map on V ∇ .
6. Let K be a field of characteristic p > 0 satisfying [K : K p] = p. Let b be a generator

of the extension K |K p; then db generates the 1-dimensional K -vector space �1
K .

Define a map Cb : �1
K → �1

K as follows. Write ω ∈ �1
K uniquely as ω = f db with

f ∈ K , and let c0, . . . , cp−1 ∈ K be the unique elements with f = ∑p−1
i=0 cp

i bi . Then
put Cb(ω) := cp−1db.
(a) Show that Cb equals the Cartier operator C : �1

K → �1
K . [Note that�1

K = Z 1
K

in this case.]
(b) (Tate) Verify directly that Cb does not depend on the choice of b.

[Remark: The above construction of Tate [1] was the first explicit appearence of the
Cartier operator. Serre [1] showed using this description that in the case when K
is the function field of a curve X over an algebraically closed field, the restriction
of the the map C to global 1-forms identifies to the dual of the Frobenius map on
H 1(X,OX ) via the duality that bears his name.]

7. (suggested by Bouw and Wewers) This exercise gives a simple proof of a special
case of Theorem 9.2.2. Let k be an algebraically closed field of characteristic p > 0,
and consider the rational function field k(t) as a subfield of k((t)). Let f ∈ k(t) be a
rational function with Laurent series expansion f = ∑

ci t i , and put ω = f dt .
(a) Show that the following are equivalent:

i. ω ∈ ker(γ − id);
ii. f p = −∂

p−1
t ( f ), where ∂t is derivation with respect to t ;

iii. cp
i = c(i+1)p−1 for all i ∈ Z.

(b) Deduce that if ω ∈ ker(γ − id), then ci = 0 for i < −1 and c−1 ∈ Fp .
(c) Let a1, . . . , am ∈ k be the finite poles of f and c−1,1, . . . , c−1,m the

corresponding residues. Deduce from (b) that if ω ∈ ker(γ − id), then
ω = ∑

c−1, j (t − a j )−1dt and moreover c−1, j ∈ Fp . [Hint: Use the fact from
algebraic geometry that there are no differential forms which are everywhere
regular on the projective line.]

(d) Conclude that ω ∈ ker(γ − id) if and only if ω = dlog(P) for a suitable poly-
nomial P ∈ k[t].

8. Let k be algebraically closed of characteristic p > 0, and let k(y)|k(x) be the exten-
sion of rational function fields given by the Artin–Schreier equation y p − y = x .
Consider the differential 1-form ω = yx−1dx in �1

k(y).
(a) Show that ω is a logarithmic 1-form.
(b) Find an explicit polynomial P ∈ k[y] such that ω = dlog(P). [Hint: Use the

previous exercise and partial fraction decomposition.]



Appendix: A breviary of algebraic
geometry

This Appendix is strictly utilitarian: we have assembled here some basic notions
from algebraic geometry and related algebra needed in the main text, mostly
with references to standard textbooks. Accordingly, the treatment here is far
from being the most general or elegant one; its sole purpose is to present the
needed facts as quickly as possible. Readers should consult it at their peril.

A.1 Affine and projective varieties
In the present-day literature, by an algebraic variety one usually means a sep-
arated scheme of finite type over a field, together with a possible integrality
condition. In most of this book we only need the notion of affine and projective
varieties, which may be defined in a more elementary way. As in the standard
texts they are usually discussed only over an algebraically closed base field, we
briefly recall the basics.

In what follows k will be a field, and k̄ a fixed algebraic closure of k. Points
of affine n-space An

k̄ over k̄ may be identified with k̄n . An affine closed subset
of An

k̄ is defined as the locus of common zeros of a finite set of polynomials
f1, . . . , fm ∈ k̄[x1, . . . , xn]; we denote it by X = V ( f1, . . . , fm). The fi are
of course not uniquely determined by X . We say that X is defined over k if
there is a representation X = V ( f1, . . . , fm) with fi ∈ k[x1, . . . xn] for all i .
In this case the quotient ring O(X ) := k[x1, . . . , xn]/( f1, . . . , fm) is called the
coordinate ring of X . Moreover, if the ideal I (X ) := ( f1, . . . , fm) is a prime
ideal in k[x1, . . . , xn] and the ring O(X ) ⊗k k̄ has no nilpotent elements, we
say that X is an affine variety defined over k. Note that this does not necessarily
imply that it is also an affine variety over k̄ (think of the ideal (x2 + 1) in R[x]).
Therefore from now on we employ the notation Xk̄ for X considered as an
affine closed set over k̄. More generally, for an algebraic extension k ⊂ L ⊂ k̄
we define the base change X L of X to L as the closed set defined over L by
( f1, . . . , fm), with the fi regarded as polynomials with coefficients in L . This
looks bizarre at first sight, but notice the difference in the coordinate rings:
O(X L ) ∼= O(X ) ⊗k L .

In general the partially ordered set of prime ideals in k[x1, . . . , xn] con-
taining I (X ) has finitely many minimal elements; the varieties determined by
these are called the irreducible components of X over k. Over k̄ the irreducible
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components are irreducible closed subsets in An
k̄ , i.e. they cannot be written as

a union of two proper closed subsets. The system of affine closed sets defined
over k is closed under finite unions and arbitrary intersections, and hence it
defines a topology on An

k called the Zariski topology. Subsets of An
k are always

equipped with the induced topology. If Y ⊂ X are affine varieties and Y is
closed in the Zariski topology of X , we say that Y is a closed subvariety of X .

Over k̄, a point P = (a1, . . . , an) of An
k̄ corresponds to the maximal

ideal (x1 − a1, . . . , xn − an) in k̄[x1, . . . , xn], so it is an affine variety. By
Hilbert’s Nullstellensatz (Matsumura [1], Theorem 5.3) all maximal ideals in
k̄[x1, . . . , xn] are of this form. Now let X be an affine closed set over k. In
the theory of schemes one considers all prime ideals containing I (X ) as points
of X ; we refer to these as scheme-theoretic points. A scheme-theoretic point
P such that (k[x1, . . . , xn]/P) ⊗k k̄ has no nilpotents corresponds to a closed
subvariety Y of X . In this situation we say that P is the generic point of Y .
Scheme-theoretic points correspond bijectively to prime ideals of the coordinate
ring O(X ) of X . Of particular interest are the scheme-theoretic points associ-
ated with maximal ideals; these are called closed points. By a more general
form of the Nullstellensatz (same reference as above), their residue fields are
finite extensions L of k; in this situation we speak of points defined over L . In
the case L = k they are called k-rational points or k-points for short. By the
above, over k̄ all closed points are k̄-rational.

We now move on to projective varieties. Points of projective n-space Pn
k̄ over

k̄ may be identified with the elements in k̄n+1 \ {(0, . . . , 0)} modulo the equiv-
alence relation (a0, . . . , an) ∼ (λa0, . . . , λan) for λ �= 0. A projective closed
subset X = V (F1, . . . , Fm) in Pn

k̄ is defined as the locus of common zeros of a
finite set of homogeneous polynomials F1, . . . , Fm ∈ k̄[x0, . . . , xn]. We say that
X is defined over k if there is a representation with the Fi lying in k[x0, . . . , xn]
for all i ; the quotient O(X ) := k[x0, . . . , xn]/(F1, . . . , Fm) is its homogeneous
coordinate ring. Projective closed subsets define the Zariski topology of P n . If
the ideal I (X ) := (F1, . . . , Fm) is a prime ideal in k[x0, . . . , xn] andO(X ) ⊗k k̄
has no nilpotent elements, we say that X is a projective variety over k. Hence-
forth by a ‘variety’ we shall mean an affine or a projective variety, but in fact
all results stated for varieties will hold with the more general definition alluded
to at the beginning of this section. Also, notice that the spaces An

k̄ and P n
k̄ are

both k-varieties (they are even defined over the prime field of k), so we drop
the subscripts k and k̄ in what follows if clear from the context.

Projective n-space P n has a standard open covering by n + 1 copies of An ,
defined by D+(xi ) := P n \ V (xi ). The inclusions D+(xi ) ↪→ P n are homeo-
morphisms in the Zariski topology. Therefore each projective closed set X has
a standard open covering by affine closed sets X (i) := X ∩ D+(xi ). We define
its scheme-theoretic points (resp. closed points, k-rational points) as the union
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of those of the X (i); one checks that this notion does not depend on the choice of
i . Scheme-theoretic points correspond to closed subvarieties in the projective
case as well (this follows from the easy topological fact that Y ⊂ X is closed
if and only if the Y ∩ D+(xi ) are closed in the X ∩ D+(xi )), so the notion of
generic point extends to the projective case.

Proposition A.1.1 Assume that k is separably closed. Then each variety
defined over k has a k-rational point. Moreover, k-rational points are dense
in the Zariski topology of X.

Proof See Springer [1], Theorem 11.2.7. The learned reader may concoct
another proof using the fact (Mumford [1], Section III.6, Theorem 1) that X
contains a dense open subvariety equipped with an étale morphism onto an open
subset of some affine space (which of course has a dense subset of k-points).

The local ring OX,P of a scheme-theoretic point P on an affine variety X is
defined as the localization of O(X ) by the prime ideal P . If Y ⊂ X is the closed
subvariety coming from P , one also speaks of the local ring of the subvariety
Y and uses the notation OX,Y for OX,P . The residue field κ(P) of this local ring
is the residue field of the point P; for closed points it is a finite extension of k.
In the case of a closed point P we say that P is a smooth point if the Jacobian
matrix of a minimal system of generators of P has a maximal subdeterminant
whose image in κ(P) is nonzero; one checks that this does not depend on the
choice of the generators. The non-smooth points are called singular points.
They form a Zariski closed subset in X (meaning that the singular points of Xk̄

form a closed subset defined over k) defined by the vanishing of the maximal
subdeterminants. This subset is the singular locus of X ; if it is empty, we say
that X is smooth over k.

For a projective variety X one defines the local ring of a scheme-theoretic
point P as OX (i),P for an X (i) containing P; one checks that it does not depend
on i . Likewise, the notion of smooth closed points extends to the projective
case. The function field k(X ) of a variety X defined over k is defined as the
common fraction field of its local rings.

A.2 Maps between varieties
A rational function f on a variety X is an element of its function field k(X ).
If P is a closed point and f ∈ OX,P , we may define its evaluation f (P) at
P as the image of f in the residue field κ(P). If P is a k-rational point, then
κ(P) = k and this is an honest evaluation map. Indeed, the local ringOX,P being
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a localization ofO(X ), we may represent f by a quotient of polynomials whose
denominator does not vanish at P , and the maximal ideal of OX,P consists of
functions vanishing at P .

Let X be a variety (affine or projective) over k. A rational map X → P n is
given by an (n + 1)-tupleφ = ( f0, . . . , fn) ∈ k(X )n+1 of rational functions, not
all identically 0. Two (n + 1)-tuples ( f0, . . . , fn) and (g0, . . . , gn) define the
same rational map if there exists a rational function g ∈ k(X ) with fi = ggi for
all i . We say that φ is regular at a closed point P of X if it may be represented by
an (n + 1)-tuple ( f0, . . . , fn) with fi ∈ OX,P for all i and fi (P) �= 0 for some
i . When φ is regular at all closed points of X , we say that φ is a morphism. If
Y ⊂ P n is another variety (in the affine case embed it in P n by identifying An

with D+(x0)), by a rational map (resp. morphism) X → Y we mean a rational
map (resp. morphism) X → P n as above, so that moreover after passing to k̄ we
have ( f0(P), . . . , fn(P)) ∈ Yk̄ for all closed points P ∈ Xk̄ where φ is regular.

In the case when X is projective, we may represent rational functions on X
by quotients of homogeneous polynomials of the same degree (see Shafarevich
[2], Chapter I, Section 4.3). Hence by multiplying with a common denominator,
we may represent rational maps X → P n by an (n + 1)-tuple of homogeneous
polynomials of the same degree d .

Example A.2.1 Fix positive integers n and d , and put N = (n+d
d

)− 1.
We define the d-uple (or Veronese) embedding φd : P n → PN by setting
φd = (xd

0 , . . . , xi0
0 · · ·xin

n , . . . , xd
n ), where we have listed in lexicographic order

all monomials of degree d in x0, . . . , xn . One checks that φd is a morphism
which embeds P n as a closed subvariety into PN (see Shafarevich [2], Chap-
ter I, Section 4.4). The homogeneous coordinate ring ofφd (X ) may be identified
with the free k-algebra generated by monomials of degree d.

In the case when φ : X → Y is a morphism so that there is a morphism
ψ : Y → X with φ ◦ ψ and ψ ◦ φ identity maps, we say that φ is an isomor-
phism between X and Y . Not surprisingly, isomorphisms X → X are called
automorphisms.

Example A.2.2 All automorphisms of P n are linear, i.e. defined by linear poly-
nomials. In other words, we may identify the automorphism group of the projec-
tive variety P n with the group PGLn(k). See Hartshorne [1], Example II.7.1.1
for a proof.

A rational map φ : X → Y is said to be birational if its image in Y is dense in
the Zariski topology (after passing to k̄) and there is a rational map ψ : Y → X
with φ ◦ ψ and ψ ◦ φ identity maps at all points where they are regular. Note
that these points form open subsets in X , resp. Y : they are the complements of
the zero loci of the possible denominators of the rational functions involved.
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Thus a birational map is actually bijective on points in a Zariski open subset.
Another criterion for birationality is that the map φ∗ : k(Y ) → k(X ) induced
by composing rational functions with φ is an isomorphism (see Shafarevich [2],
Chapter II, Section 4.3). We need the simplest nontrivial example of a birational
map, that of blowing up a point in projective space.

Example A.2.3 Assume that k is algebraically closed. Given two integers
m, n > 0, set N := nm + n + m. One defines the product P n × P m of pro-
jective spaces as the closed subvariety in PN obtained as the image of
the Segre embedding Sn,m : P n × P m → PN . By definition, Sn,m sends the
pair ((x0, . . . , xn), (y0, . . . , ym)) of points given in homogeneous coordinates
to (x0 y0, . . . , xi y j , . . . , xn ym) (with the lexicographic order). For the fact
that this is (set-theoretically) an embedding with Zariski closed image we
refer to Shafarevich [2], Chapter I, Section 5.1. We keep the coordinates
(x0, . . . , xn, y0, . . . , ym) for points in the product.

Now set m = n − 1 and P0 = (0, . . . , 0, 1) ∈ P n . The blowup BP0 (P n) of
P n at P0 is the closed subvariety of P n × P n−1 defined by the polynomials
xi y j − x j yi for all possible 0 ≤ i, j ≤ n − 1. The first projection
π : P n × P n−1 → P n restricted to BP0 (P n) is a surjective morphism. It
is also birational, for outside P0 an inverse is given by mapping (x0, . . . , xn) to
(x0, . . . , xn, x0, . . . , xn−1). However, the inverse image π−1(P0) ⊂ BP0 (P n) is
the hyperplane {P0} × P n−1.

Of course, by composition with an automorphism of P n one may define
the blowup BP (P n) at any point P . Given a subvariety X ⊂ P n of dimension
d containing P as a smooth point, one proves (Shafarevich [2], Chapter II,
Section 4.3) that the inverse image of X in BP (P n) consists of two components:
the hyperplane {P} × P n−1 and a projective variety which one defines to be the
blowup BP (X ) of X at P . Moreover, the restriction of π to BP (X ) is a birational
morphism onto X which is an isomorphism outside P , and the preimage of P
is a subvariety isomorphic to P d−1. It is called the exceptional divisor.

For a discussion of blowups valid over a more general base, see Hartshorne
[1], Section II.7.

A.3 Function fields and dimension
Let k be a field and K |k a finitely generated extension. Recall that the transcen-
dence degree tr.deg.(K |k) of K |k is defined as the cardinality of a maximal
subset of elements of K algebraically independent over k; such a maximal
subset is called a transcendence basis of K |k. If K is the function field of a
variety X over k, we define the dimension of X to be tr.deg.(K |k). Varieties of
dimension 0 are points defined over a finite extension of k; those of dimension
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1 are called curves and those of dimension 2 surfaces. For a closed subvariety
Y ⊂ X we define the codimension of Y in X to be dim (X ) − dim (Y ).

On the other hand, for a ring A we have the notion of Krull dimension for A: it
is the maximum of lengths d of strictly decreasing chains P0 ⊃ P1 ⊃ · · · ⊃ Pd

of prime ideals in A. Similarly, one defines the height of a prime ideal P in A
as the maximum of lengths d of strictly decreasing chains P ⊃ P1 ⊃ · · · ⊃ Pd

of prime ideals in A. Note that the height of P equals the Krull dimension of
the localization AP .

Proposition A.3.1 Let X be an affine variety over a field k, and let O(X ) be
its coordinate ring. The dimension of X equals the Krull dimension of O(X ),
and the codimension of each closed subvariety Y ⊂ X equals the height of the
corresponding prime ideal in O(X ).

Proof See Matsumura [1], Theorem 5.6.

The notion of Krull dimension extends to a variety X over k: it is defined as
the maximum of lengths d of strictly decreasing chains of Z1 ⊃ · · · ⊃ Zd of
proper nonempty subvarieties of X . For affine varieties we get back the previous
notion via the dictionary between subvarieties and prime ideals. One may then
derive from the previous proposition:

Corollary A.3.2 The dimension of a k-variety X equals its Krull dimension.

Proof See Mumford [1], I.7, Corollary 2.

We define the dimension of a closed subset in An or P n to be the maximal
dimension of its irreducible components.

Corollary A.3.3 Let f1, . . . , fr be homogeneous polynomials in k[t0, . . . , tn].
If r ≤ n, the closed subset V ( f1, . . . , fr ) ⊂ P n is nonempty.

Proof The previous corollary implies that in the chain

V ( f1) ⊃ V ( f1, f2) ⊃ · · · ⊃ V ( f1, . . . , fr )

of closed subsets of P n the dimension drops by at most 1 in each step. Since P n

is easily seen to have dimension n, the set V ( f1, . . . , fr ) must be nonempty.

Recall that the extension K |k is said to be separably generated if there
exists a transcendence basis {t1, . . . , td} of K |k so that the finite extension
K |k(t1, . . . , td ) is separable. The significance of this property for algebraic
geometry is shown by the following fact.
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Proposition A.3.4 If the function field K of a k-variety X is separably gener-
ated over k, then the smooth locus of X is nonempty.

Proof Write K = k(t1, . . . , td , a) with a separable over k(t1, . . . , td ). Clear-
ing denominators in the minimal polynomial of a we obtain an irreducible
polynomial f ∈ k[t1, . . . , td , t] with ∂t f �= 0. It follows that the proposition
holds for the hypersurface defined by f . As this hypersurface is birational to X
by construction and the smooth locus is open and dense in X , the general case
follows.

The basic theorem on separably generated extensions is the following.

Proposition A.3.5 If k is perfect, then every finitely generated extension K |k
is separably generated.

Proof See van der Waerden [1] §155, or modify the proof of Proposition A.3.7
below.

We need the following consequence of this in the main text.

Corollary A.3.6 Let k be perfect, and let K |k be a finitely generated extension
of transcendence degree d. Then K arises as the residue field of a scheme-
theoretic point of codimension 1 on Ad+1

k .

Proof As in the proof of Proposition A.3.4 we may write K as the fraction
field of k[t1, . . . , td , t]/( f ) for a suitable irreducible polynomial f . The prime
ideal ( f ) ⊂ k[t1, . . . , td , t] defines the required point.

We also need another case of separable generation.

Proposition A.3.7 Let k be a perfect field, and let K be a finitely generated
field extension of k((t)) of transcendence degree d > 0. Then K is separably
generated over k((t)).

Proof In characteristic 0 there is nothing to prove, so assume k has characteris-
tic p > 0. Let n be the minimal number of generators of the extension K |k((t)).
We prove the lemma by induction on n, the case n = d being obvious. Consider
a system u1, . . . , un of generators. We may assume by induction that u1, . . . , ud

are algebraically independent and that the elements ud+2, . . . , un are all sepa-
rable over k((t))(u1, . . . , ud ). If ud+1 is also separable, we are done. Otherwise
take a polynomial f ∈ k((t))[x1, . . . , xd+1] with f (u1, . . . , ud+1) = 0; such an
f exists as the transcendence degree is d . Assume now that f is not a polynomial
in the x p

i . In this case, we see by regrouping the terms that for some 1 ≤ i ≤ d the
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element ui is separable over the field k((t))(u1, . . . , ui−1, ui+1, . . . , ud , ud+1).
This latter field must be purely transcendental over k((t)), for its transcendence
degree is d. On the other hand, the field K is separable over k((t))(u1, . . . , ud+1)
by assumption, so we are done.

It thus remains to see that we may find an f as above which cannot be writ-
ten as f (x1, . . . , xd+1)= F(x p

1 , . . . , x p
d+1) for some F ∈ k((t))[x1, . . . , xd+1].

Suppose this is not the case, and assume that F has minimal degree among
all polynomials with F(u p

1 , . . . , u p
d+1) = 0. We may assume that the coeffi-

cients of F lie in k[[t]], and thus are of the form a0 + a1t + a2t2 + . . . We
may also assume that for some coefficient of F the constant term a0 is nonzero.
Regrouping the relation F(u p

1 , . . . , u p
d+1) = 0 according to powers of t , we see

that the coefficients of t j with p| j only involve ai with p|i , and similarly, the
coefficients of t j with p� | j only involve ai with p� |i . Thus replacing all ai

with p� | i by 0 in the coefficients of F we get a polynomial G which satisfies
G(u p

1 , . . . , u p
d+1) = 0, and moreover only powers of t p occur in its coefficients.

As k is perfect, we have k p = k and we deduce that the coefficients of G are p-th
powers. Hence we may write G = H p for some H with H (u1, . . . , ud+1) = 0.
As G is not identically 0 (recall that some a0 is nonzero), neither is H , and so
by assumption it must be a nontrivial polynomial in the u p

i . This contradicts the
minimality of the degree of F .

A.4 Divisors
Throughout the whole section, X will denote a variety over a field k all of whose
local rings are unique factorization domains. For example, this is the case when
X is smooth over a perfect field, the only one needed in this book.

Denote by Div(X ) the free abelian group with basis the irreducible closed
subvarieties in X that are of codimension 1. The elements of Div(X ) are called
(Weil) divisors, and Div(X ) itself is the group of divisors on X . An element
D ∈ Div(X ) is thus of the form D = �mY Y with some mY ∈ Z and Y irre-
ducible of codimension 1; the union of the Y appearing with nonzero coefficients
is called the support of D.

Given a codimension 1 irreducible subvariety Y ⊂ X , the local ring OX,Y

is of dimension 1 and it is a unique factorization domain by assumption,
so it is a discrete valuation ring (Matsumura [1], Theorem 11.2). Denote by
vY : k(X ) → Z ∪ {∞} the associated discrete valuation.

Lemma A.4.1 For a given nonzero rational function f ∈ k(X )× there are only
finitely many Y ⊂ X as above with vY ( f ) �= 0.

Proof See Hartshorne [1], Lemma II.6.1.
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In view of the lemma, we may define the divisor of the rational function
f ∈ k(X )× by

div( f ) :=
∑

vY ( f ) Y ∈ Div(X ),

where the sum is over all codimension 1 irreducible subvarieties in X . The
additivity of discrete valuations implies that in this way we get a group homo-
morphism div: k(X )× → Div(X ). We denote the cokernel of this morphism by
Pic (X ) and call it the Picard group of X . Two divisors D1 and D2 are said to
be linearly equivalent if they have the same class in the Picard group.

Remark A.4.2 The term ‘Picard group’ is nowadays mostly used for the group
of isomorphism classes of line bundles on a variety, and the group defined
above is sometimes called the divisor class group (e.g. in Hartshorne [1]).
However, under our assumption on X the two notions coincide (see Hartshorne
[1], Prop. 6.11 and 6.13).

Proposition A.4.3 Assume moreover that X is projective. Then the sequence

1 → k× → k(X )× div−→ Div(X ) → Pic (X ) → 0

is exact.

Proof Everything results from the definitions, except exactness at k(X )×,
which is a consequence of the fact that on a projective variety all regular
functions are constant (see Hartshorne [1], Theorem I.3.4 for a proof over
an algebraically closed base field; the general case follows immediately).

The next proposition gives the Picard groups of affine and projective space.
Note that the Picard group of a point is by definition 0.

Proposition A.4.4

1. For any X as above there is an isomorphism Pic (X ) ∼→ Pic (X × A1).
Hence Pic (Ad ) = 0 for all d > 0.

2. For all d > 0 we have Pic (Pd ) ∼= Z, a positive generator being given by
the class of a hyperplane.

Proof See Hartshorne [1], Propositions II.6.6 and II.6.4, or apply Propositions
8.2.5 and 8.2.6 of this book (with i = d − 1 and n = 1 − d).

For a divisor class [D] on Pd one defines its degree as its image in Z by the
isomorphism of statement (2) above.

Remark A.4.5 Assume that k is perfect, k̄ is an algebraic closure of k, and
X := X ×k k̄ is irreducible. The Galois group G := Gal (k̄|k) permutes the
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codimension 1 subvarieties of X , and thus it acts on the group Div(X ). Moreover,
the map div is compatible with the Galois actions on k̄(X )× and Div(X ), so there
is an induced action on Pic (X ). Needless to say, all the above holds at the level
of finite Galois extensions of the base field as well.

For X projective there is a relation between divisors and rational maps via
the notion of a linear system. First some terminology: we say that a divisor is
positive and write D ≥ 0 if D = �mY Y with all mY ≥ 0. The complete linear
system |D| associated with an arbitrary divisor D on X is then defined as the
set of positive divisors linearly equivalent to D. This set carries the structure
of a projective space over k. Indeed, write L(D) for the k-vector space of
functions f ∈ k(X )× satisfying div( f ) + D ≥ 0; it has finite dimension over k
by Shafarevich [2], Chapter VI, Corollary 1 of Section 3.4. For f ∈ L(D) the
element D f = div( f ) + D lies in |D|, and conversely, each element of |D| is
of the above form. Since by Proposition A.4.3 the divisor div( f ) determines f
up to a constant in k×, elements in |D| are in bijection with the projectivization
of the k-vector space L(D).

A linear system D on X is then by definition a projective linear subspace
of some |D| as above; it comes from a subspace MD of L(D). Choosing a
k-basis ( f0, . . . , fm) of MD defines a rational map φD : X → P m ; the choice
of a different basis yields a map which differs by an automorphism of P m . If the
linear system is base point free, i.e. if there is no closed point of X contained
in the support of all divisors in D, then the map is actually a morphism. The
divisors in D are then the pullbacks to X of the divisors on φD(X ) obtained by
intersecting φD(X ) with hyperplanes in P m (see Shafarevich [2], Chapter III,
Section 1.5 or Hartshorne, Remark II.7.8.1 for more details). For instance, given
a hyperplane H on P n and an integer d > 0, the complete linear system |d H | on
P n yields the d-uple embedding of Example A.2.1. A divisor D is called ample
if the linear system |m D| induces a closed embedding into some projective
space for a suitable m > 0.

In the case when X is a curve, divisors on X are finite Z-linear combinations
of closed points on X . Thus it makes sense to define the degree of a divisor
D = �n P P on X as deg (D) := �n P [κ(P) : k]. In this way we obtain a homo-
morphism deg: Div(X ) → Z of abelian groups called the degree map, not to
be confused with the one defined above for projective spaces. The fundamental
fact about it is:

Proposition A.4.6 Let X be a smooth projective curve. Then for each
f ∈ k(X )× one has deg (div( f )) = 0.
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Proof See Hartshorne [1], Corollary II.6.10; the proposition is stated there
under the extra assumption that k is algebraically closed, but the proof works
in general.

As a consequence we obtain that the degree map factors through the Picard
group and induces a map Pic (X ) → Z.

A.5 Complete local rings
Let A be a ring and I ⊂ A an ideal. The I -adic completion Â of A is defined as
the inverse limit of the natural inverse system of quotients A/I n for all n ≥ 0
(see Chapter 4 for basics about inverse limits). More generally, the I -adic
completion of an A-module N is defined as the inverse limit of the A-modules
N/I n N . We say that A is I -adically complete if the natural map A → Â is
an isomorphism. In the case when A is a local ring with maximal ideal M we
simply say completion instead of M-adic completion. Similarly, for semi-local
rings (i.e. rings with finitely many maximal ideals) by completion we mean
completion with respect to the intersection of maximal ideals. In fact, if A is
a semi-local ring with maximal ideals M1, . . . , Mr , then the completion of A
is isomorphic to the direct product of the completions of the localizations AMi

(Matsumura [1], Theorem 8.15).
For a Noetherian local ring the map A → Â is always injective by the Krull

intersection theorem (Matsumura [1], Theorem 8.10). Another useful fact about
Noetherian local rings is:

Lemma A.5.1 If A is a Noetherian local ring and J ⊂ A is an ideal, then
the completion of the A-module J is isomorphic to J Â, and moreover
Â/J A ∼= Â/J Â.

Proof See Matsumura [1], Theorem 8.11.

The following is a delicate relation between integral closure and normal-
ization due to Zariski. Following Grothendieck [4], we formulate it using the
general concept of excellent rings defined in §7.8 of loc. cit., but for our applica-
tions it suffices to know that local rings of varieties over some field are excellent
(Grothendieck [4], (7.8.3) (ii), (iii)).

Theorem A.5.2 If A is an excellent Noetherian local domain, then the com-
pletion Â has no nilpotent elements, and the integral closure Ā of A is a finitely
generated A-module. Moreover, the completion of the semi-local ring Ā is iso-
morphic to the integral closure of Â in its total ring of fractions.
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Proof In the case when A is a local ring of a variety over a perfect field, a proof
is given in the last section of Zariski–Samuel [1]. The general case follows from
Grothendieck [4], (7.6.1) and (7.8.3) (vi).

There is a beautiful structure theory for complete local rings. We first state
the case of equal characteristic discrete valuation rings, which is the one we
used most often.

Proposition A.5.3 Let A be a complete discrete valuation ring with fraction
field K and residue field κ . If char(K ) = char(κ), then A is isomorphic to the
formal power series ring κ[[t]].

Proof See Serre [2], Section II.4 for a direct proof, or the references for
Theorem A.5.4 below.

The general structure theorem is the following.

Theorem A.5.4 (Cohen Structure Theorem) Let A be a complete Noetherian
local domain with residue field κ and fraction field K .

1. There exists a complete discrete valuation ring B with residue field κ and a
power series ring C = B[[t1, . . . , td ]] such that C ⊂ A and A is a finitely
generated C-module.

2. If A is regular of dimension d + 1 and char(K ) = char(κ), then we may
find C as above with C ∼= A. In particular, A is a formal power series ring
in d + 1 variables over κ .

Proof See Matsumura [1], Theorems 29.4 and 29.7; this reference also con-
tains a complete discussion of the mixed characteristic case.

We finally discuss Hensel’s lemma. In the literature various related results
go under this name, of which the most common one is perhaps the following.

Proposition A.5.5 Let A be a complete discrete valuation ring with maximal
ideal M, and let f be a polynomial with coefficients in A. If a ∈ A satisfies
f (a) = 0 mod M and f ′(a) �= 0 mod M, then there exists b ∈ A with f (b) = 0
and a − b ∈ M.

Proof The proof is by Newton’s approximation method; see e.g. Lang [3],
Chap. XII, Prop. 7.6, Serre [2], Chap. II. Prop. 7, or the proof of Proposi-
tion A.5.6 below.

In fact, the proposition holds more generally for an arbitrary complete local
ring. However, in the following more refined version for a system of polynomials
in several variables we need to restrict to discrete valuation rings.
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Proposition A.5.6 Let A be a complete discrete valuation ring with maximal
ideal M, and let f1, . . . , fn ∈ A[x1, . . . , xn] be a system of polynomials. Assume
that P = (a1, . . . , an) ∈ An satisfies

fi (a1, . . . , an) ∈ M N for 1 ≤ i ≤ n

with N > 2ν, where ν ≥ 0 is the valuation of the Jacobian matrix J (P) of the
fi at P. Then one may find (b1, . . . , bn) ∈ An with

fi (b1, . . . , bn) = 0 for all 1 ≤ i ≤ n, and a j − b j ∈ M N−ν for 1 ≤ j ≤ n.

Proof It will be enough to construct vectors P (q) = (b(q)
1 , . . . , b(q)

n ) for all
q ≥ 0 such that b(0)

j = a j for 1 ≤ j ≤ n, and moreover

1. fi (b
(q)
1 , . . . , b(q)

n ) ∈ M N+q for all 1 ≤ i ≤ n,
2. b(q)

j − b(q+1)
j ∈ M N−ν+q for all 1 ≤ j ≤ n, and

3. J (P (q)) has valuation ν.

These then converge in An to a vector (b1, . . . , bn) with the required properties.
Using induction on q and reindexing we reduce to the case q = 1. Write F for
the column vector formed by the fi and F(P) for the column vector of their
evaluations at P = (a1, . . . , an). Look for P (1) in the form P (1) = P + t N−ν Q,
where t is a generator of M and Q ∈ An is a vector to be determined. Taylor’s
formula in several variables yields an equation

F(P (1)) = F(P) + t N−ν J (P)Q + t2N−2ν R (30)

with a suitable column vector R ∈ An . By assumption F(P) = t N S and J (P) =
tνu for some column vector S ∈ An and unit u ∈ A \ M . As u is a unit, we may
choose Q in such a way that all entries of the vector S + uQ lie in M . With
this choice the right-hand side of (30) lies in M N+1, so that condition 1 holds
for q = 1. Condition 2 being automatic, it remains to check condition 3 for
q = 1. For this we take the Jacobian matrix of both sides in equation (30), and
obtain J (P (1)) = J (P) mod M N−ν . As J (P) has valuation ν and ν < N − ν

by assumption, condition 3 follows.

A.6 Discrete valuations
Recall that a discrete valuation on a field K is a map K → Z ∪ {∞} sat-
isfying the conditions (1) v(x) = ∞ ⇔ x = 0, (2) v(xy) = v(x) + v(y), and
(3) v(x + y) ≥ min(v(x), v(y)). The elements x ∈ K with v(x) ≥ 0 form a sub-
ring Av ⊂ K called the valuation ring of v. This is a local ring whose maximal
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ideal Mv consists of the elements of positive valuation. The ideal Mv is princi-
pal, each element of minimal valuation being a generator. We refer to generators
of Mv as local parameters for v. A local ring arising as the valuation ring of
some discrete valuation of its fraction field is called a discrete valuation ring.
Other characterizations of discrete valuation rings are:

Lemma A.6.1 The following are equivalent for an integral domain A.

1. A is a discrete valuation ring.
2. A is a local principal ideal domain which is not a field.
3. A is an integrally closed local domain of Krull dimension 1.

Proof See Matsumura [1], Theorem 11.2.

We collect here some basic results concerning extensions of discrete valu-
ations to finite extensions of the field K . The most important situation where
these facts are applied in this book is the following.

Example A.6.2 Let φ : X → Y be a finite morphism of smooth curves over a
perfect field k. Recall that this means that each closed point Q of Y has a Zariski
open neighbourhood U ⊂ Y so that both U and V := φ−1(U ) are isomorphic
to affine varieties, and the coordinate ring O(V ) becomes a finitely generated
O(U )-module via the map O(U ) → O(V ) induced by pulling back functions
via φ. A nonconstant morphism of smooth projective curves is always finite
(see Shafarevich [2], Section II.5, Theorem 8).

By the finiteness condition on φ the induced extension L|K is finite, and
so is the fibre φ−1(Q) for the point Q above. The local ring OY,Q of Q is a
discrete valuation ring, hence it induces a discrete valuation vQ of the function
field K of Y , and similarly the closed points in the fibre φ−1(Q) induce discrete
valuations on the function field L of X . They are exactly the finitely many
possible extensions of vQ to L . This holds because X is the normalization of
Y in L (see Shafarevich [2], Section II.5, Ex. 1), and on the other hand each
discrete valuation ring with fraction field L containing OY,Q must contain the
integral closure of OY,Q in L , being an integrally closed domain.

In general, given a finite extension L|K , a discrete valuation v on K may
always be extended to a discrete valuation w of L (Matsumura [1], Theo-
rem 9.3 (i)), and there are only finitely many such extensions (loc. cit., Corol-
lary to Theorem 11.7). The maximal ideals of their valuation rings satisfy
Mw ∩ K = Mv , hence there is an induced extension κ(w)|κ(v) of residue fields.
When the extension L|K is Galois, the Galois group acts on the extensions w

of v to L via (σ,w) �→ w ◦ σ .
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Proposition A.6.3 Let L|K be a finite Galois extension with group G, and v

a discrete valuation on K .

1. The Galois group G acts transitively on the set of discrete valuations w

extending v to L.
2. For each w the induced extension of residue fields κ(w)|κ(v) is normal. In

particular, if it is separable, then it is a Galois extension.

Proof See e.g. Serre [2], Chapter I, Propositions 19 and 20.

Given a discrete valuation v on K , the completion Âv of its valuation ring
Av is again a discrete valuation ring by Lemma A.5.1; denote its fraction field
by K̂v and keep the notation v for the canonical extension of v to K̂v . In the
case when K̂v = K we say that K is complete with respect to v.

Proposition A.6.4 In the above situation let L|K be a finite extension, and
assume that the integral closure of Av in L is a finitely generated Av-module.

1. There is a decomposition

L ⊗K K̂v
∼=
⊕
w|v

L̂w,

where w runs over the extensions of v to L.
2. If moreover L|K is Galois with group G, then each L̂w|K̂v is Galois as

well, with Galois group isomorphic to the stabilizer of w under the action
of G on the set of discrete valuations extending v.

Proof See Serre [2], Chapter II, Theorem 1 and its Corollary 4.

Remark A.6.5 The assumption of the proposition is satisfied if L|K is sep-
arable, or if Av is a localization of a finitely generated algebra over a field
(Matsumura [1], Lemmas 1 and 2 of §33 together with Shafarevich [2],
Appendix, §8).

Part (2) of the proposition implies:

Corollary A.6.6 If L|K is a finite extension that can be written as a tower of
Galois extensions and w is an extension of a discrete valuation v of K to L,
then the degree of the field extension L̂w|K̂v divides [L : K ].

The statement of the corollary is not true for an arbitrary finite extension (the
reader may construct a counterexample).

Returning to an arbitrary finite extension L|K and w extending v, the value
group v(K ×) is a subgroup of finite index inw(L×). This index is called the ram-
ification index e(w|v) of w above v. The extension is unramified if e(w|v) = 1
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and the residue field extension κ(w)|κ(v) is separable. More generally, the
ramification is called tame if the extension κ(w)|κ(v) is separable and the char-
acteristic of κ(v) does not divide e(w|v); otherwise it is wild.

Proposition A.6.7 Let K be a field equipped with a discrete valuation v, and
let L|K be a finite extension. Assume that the integral closure of the valuation
ring Av of v in L is a finitely generated Av-module. Then∑

w|v
e(w|v)[κ(w) : κ(v)] = [L : K ],

where w runs over the extensions of v to L.

Proof See Serre [2], Section I.4, Proposition 10.

Proposition A.6.8 Let K be complete with respect to a discrete valuation v,
and L|K a finite extension.

1. There is a unique discrete valuation w of L extending v, L is complete
with respect to w, and its valuation ring Aw is the integral closure of Av

in L.
2. With the notation f := [κ(w) : κ(v)] one has w = (1/ f )(v ◦ NL|K ).
3. If the extension κ(w)|κ(v) is separable, there is a unique unramified exten-

sion N |K contained in L satisfying [N : K ] = f .
4. If moreover the ramification is tame, then L is a radical extension of N

(i.e. it may be obtained by adjoining a root of a polynomial of the form
xm − a).

Proof For (1), see Serre [2], Section II.2, Proposition 3; for (2), Corollary 4
of that proposition; for (3), loc. cit., Section III.5, Corollary 2 to Theorem 2,
and for (4), Neukirch [1], Chapter II, Theorem 7.7 (and its proof).

If in the situation of the proposition we assume moreover that the exten-
sions L|K and κ(w)|κ(v) are Galois, there is a natural group homomorphism
Gal (L|K ) → Gal (κ(w)|κ(v)). This map is surjective (Serre [2], Chapter I,
Proposition 20); its kernel I is called the inertia group of w.

Proposition A.6.9 Assume moreover that the extension L|K is a tamely ram-
ified Galois extension. Then I is a cyclic subgroup isomorphic to the group
µ(κ(w)) of roots of unity contained in κ(w). Explicitly, this isomorphism maps
σ to the image of σ (π )π−1 in κ(w), where π is an arbitrary local parameter
for w.

Proof See Serre [2], Chapter IV, Proposition 7 and its corollaries.
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The proposition implies that for a tamely ramified Galois extension the con-
jugation action of Gal (L|K ) on I induces an action of � := Gal (κ(w)|κ(v))
on I . The explicit description of the isomorphism I ∼= µ(κ(w)) implies:

Corollary A.6.10 The action of � on I corresponds via the isomorphism
I ∼= µ(κ(w)) to the natural �-action on µ(κ(w)). In particular, if µ(κ(w))
is contained in κ(v), then I is central in Gal (L|K ).

We conclude with an extension statement to transcendental extensions.

Proposition A.6.11 Let A be a discrete valuation ring with maximal ideal M
and fraction field K . There is a discrete valuation ring B whose fraction field
is the rational function field K (t), whose maximal ideal is M B, and moreover
B ∩ K = A.

Proof Let M be the maximal ideal of A, and take B to be the localization of
A[t] by the prime ideal M[t]. It is a discrete valuation ring, as it satisfies the
criterion of Lemma A.6.1(3). The other requirements are immediate.

A.7 Derivations
Let A ⊂ B be an extension of rings, and M a B-module. A derivation of B into
M is a homomorphism of abelian groups D : B → M satisfying the Leibniz
rule: D(b1b2) = b1 D(b2) + b1 D(b2) for all b1, b2 ∈ B. The derivation D is an
A-derivation if D(a) = 0 for all a ∈ A; note that this implies D(ab) = aD(b)
for all a ∈ A and b ∈ B by the Leibniz rule. We denote the set of A-derivations
B → M by DerA(B, M); this carries a natural B-module structure given by
(bD)(x) = b · D(x) for all b ∈ B. In the case B = M we shall write DerA(B)
instead of DerA(B, B).

Given a derivation D ∈ DerA(B) and an integer n > 0, we denote by D[n]

the n-th iterate D ◦ · · · ◦ D. Iterating the Leibniz rule then yields

D[n](ab) =
n∑

i=0

(
n

i

)
D[i](a)D[n−i](b).

Assuming pB = 0 for a prime p, the above formula with n = p implies

D[p](ab) = D[p](a)b + aD[p](b), (31)

i.e. that D[p] is again a derivation.
We also need two other important formulae in characteristic p > 0. The

best reference for these are the notes of Seshadri [1]; since they are not easily
accessible, we give details for the ease of the reader.
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Proposition A.7.1 (Hochschild) Let A be an integral domain of characteristic
p > 0. For all derivations D ∈ DerFp (A) and elements a ∈ A we have

D(a)p = a p−1 D[p](a) − D[p−1](a p−1 D(a)).

Proof The idea is to reduce to the universal case. Let A′ = Fp[x0, x1, x2, . . . ]
be the ring of polynomials in infinitely many variables x0, x1, . . . Define a
derivation D′ on A′ by D′(xn) = xn+1 for all n ≥ 0. There exists a unique
morphism φ : A′ → A such that φ(x0) = a and φ(xn) = D[n](a) for all n ≥ 1.
We have D ◦ φ = φ ◦ D′, so it is enough to prove the formula with A = A′,
D = D′ and a = x0. We shall first prove that the element

Q := x p−1
0 D[p](x0) − D[p−1](x p−1

0 D(x0))

lies in Ap. For this, notice first that D(Q) = 0, since

D(x p−1
0 D[p](x0)) = (p − 1)x p−2

0 D(x0)D[p](x0) + x p−1
0 D[p+1](x0) = D[p](x p−1

0 D(x0)),

using the fact that D[p] is a derivation. Now assume Q is not in Ap, and
denote by i the smallest integer such that Q ∈ Fp[x0, . . . , xi , x p

i+1, x p
i+2, . . . ].

Denoting by ∂ j the partial derivation with respect to x j , we have
0 = D(Q) = ∑

j (∂ j Q) D(x j ) = ∑i
j=0(∂ j Q) x j+1. By minimality of i , we

have here ∂i Q �= 0, whence xi+1 ∈ Fp(x0, x1, . . . , xi , x p
i+1, . . . ), which is

impossible, and therefore Q ∈ Ap. Now by definition Q is a homogeneous
polynomial of degree p in the xi . On the other hand, consider the grading on
A = Fp[x0, x1, . . . ] in which xi has degree i . Then D transforms elements of
degree i in elements of degree i + 1, from which it follows that Q has degree p
in this grading as well. Denoting by Q̃ the unique element of A with Q̃ p = Q,
we get that Q̃ has degree 1 for both the traditional and the new grading. This
is only possible if Q̃ = mx1 for some m ∈ Fp. On the other hand, the leading
term of Q as a polynomial in x1 = D(x0) is −(p − 1)! x p

1 , which equals x p
1 by

Wilson’s theorem. So m = 1 and Q = x p
1 = D(x0)p, as desired.

For the next formula we consider elements of DerFp (A) as Fp-linear maps
on A, and for a ∈ A we denote by La : A → A the Fp-linear endomorphism
A → A given by La(x) = ax .

Proposition A.7.2 Given an integral domain of characteristic p > 0, an ele-
ment a ∈ A and a derivation D ∈ DerFp (A), the identity

(D + La)[p] = D[p] + L [p]
a + L D[p−1](a)

holds in EndFp (A).

The proof uses the notion of Jacobson polynomials, which are defined as
follows. Given a not necessarily commutative ring R with unit, for each element
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w ∈ R we may define a map adw : R → R by adw(x) = wx − xw. Applying
the above to the polynomial ring R[t] in place of R (where t is to commute with
all elements of R) and taking two elements u, v ∈ R, we find noncommutative
polynomials in two variables si (U, V ) with Z-coefficients satisfying

(adtu+v)[p−1](u) =
p−1∑
i=1

isi (u, v)t i−1, (32)

where ad[p−1]
tu+v stands for the (p − 1)-st iterate of adtu+v . Working in the free

noncommutative Z-algebra generated by two elements U, V , one sees that the
polynomials si (U, V ) do not depend on the choice of u, v.

Lemma A.7.3 (Jacobson) Assume moreover that pR = 0. Then the identity

(u + v)p = u p + v p +
p−1∑
i=1

si (u, v)

holds for all u, v ∈ R.

Proof For all w ∈ R[t] introduce the endomorphisms Lw, Rw : R[t] → R[t]
defined by Lw(x) = wx and Rw(x) = xw, respectively. We have Rw ◦ Lw =
Lw ◦ Rw and adw = Lw − Rw. Raising to the (p − 1)-st power, we get from
the binomial formula

ad[p−1]
w =

p−1∑
i=0

(−1)p−1−i

(
p − 1

i

)
L [i]

w R[p−1−i]
w =

p−1∑
i=0

L [i]
w R[p−1−i]

w

in EndR , as the binomial coefficient is congruent to (−1)i in characteristic p.
In particular, we have

ad[p−1]
w (u) =

p−1∑
i=0

wi uw p−1−i . (33)

On the other hand, expanding (tu + v)p with respect to t we find non-
commutative polynomials s ′

i (U, V ) ∈ R[U, V ] satisfying the identity

(tu + v)p = t pu p + v p +
p−1∑
i=1

s ′
i (u, v)t i . (34)

Differentiating with respect to t yields

p−1∑
i=0

(tu + v)i u(tu + v)p−1−i =
p−1∑
i=1

is ′
i (u, v)t i−1

(note that the multiplication in R[t] is non-commutative!) Comparing with
formula (33) forw = tu + v and applying the defining identity (32) of Jacobson
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polynomials we get s ′
i (u, v) = si (u, v), so the lemma follows from (34) by

setting t = 1.

Proof of Proposition A.7.2 We shall apply the lemma with R = EndFp (A),
u = D and v = La . The calculation

adD(La)(x) = DLa(x) − La D(x) = D(ax) − aD(x) = D(a)x = L D(a)(x)

shows that adD(La) = L D(a), and therefore

adt D+La (D) = (t D + La)D − D(t D + La) = −adD(La) = −L D(a).

Using the fact that La and L D(a) commute, we obtain from the above

ad[2]
t D+La

(D) = −adt D+La (L D(a)) = −adt D(L D(a)) = −t L D[2](a).

Iterating the argument yields

ad[p−1]
t D+La

(D) = −t p−2L D[p−1](a) = (p − 1)t p−2L D[p−1](a).

A comparison with formula (32) shows that si (D, La) = 0 for i < p − 1 and
sp−1(D, La) = L D[p−1](a), so the proposition follows from the lemma.

Finally we say a few words about the Lie algebra structure on derivations.
Assume k is a field, and V is a k-vector space. Then Endk(V ) carries a Lie
bracket defined by [φ,ψ] = φ ◦ ψ − ψ ◦ φ. This Lie bracket is k-bilinear and
satisfies [φ, φ] = 0 as well as the Jacobi identity [[φ,ψ], ρ]] + [[ψ, ρ], φ]] +
[[ρ, φ], ψ] = 0, so it gives Endk(V ) the structure of a Lie algebra. Given
φ ∈ Endk(V ), the map ad(φ) : ψ �→ [φ,ψ] is a Lie algebra endomorphism.
If k has characteristic p, we also have the p-operation φ �→ φ[p] sending an
endomorphism to its p-th iterate. Obviously (aφ)[p] = a pφ[p] for all a ∈ k,
ad(φ[p]) = ad(φ)[p], and moreover (φ + ψ)[p] = φ[p] + ψ [p] +∑

si (φ,ψ) by
Lemma A.7.3.

In fact, one may check using the definition of Jacobson polynomials that the
si (φ,ψ) lie in the Lie subalgebra of Endk(V ) generated by φ and ψ , i.e. may
be obtained from φ and ψ by means of a formula involving additions and Lie
brackets. For a (rather complicated) explicit formula, see Demazure–Gabriel
[1], II, §7, No. 3. Via this observation one may extend the definition of Jacobson
polynomials to arbitrary Lie algebras of characteristic p. In the literature a Lie
algebra over a field of characteristic p equipped with a p-operation satisfying
the above three properties is called a restricted p-Lie algebra or a p-Lie algebra
for short.

Now consider the case when V = K is a field extension of k. Then every
k-derivation D : K → K is also an element of Endk(K ). The Lie bracket on
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Endk(K ) preserves Derk(K ), in view of the computation

[D1, D2](ab) = D1(D2(ab)) − D2(D1(ab))

= D1(D2(a)b) + D1(aD2(b)) − D2(D1(a)b) − D2(aD1(b))

= (D1 D2(a))b + a(D1 D2(b)) − (D2 D1(a))b − a(D2 D1(b))

= ([D1, D2](a))b + a([D1, D2](b)).

Moreover, the p-th iterate of a derivation is again a k-derivation according to
formula (31), so the p-operation of Endk(K ) also preserves Derk(K ). All in all,
Derk(K ) is a p-Lie subalgebra of Endk(K ).

A.8 Differential forms
One defines differential forms by the following universal property.

Proposition A.8.1 Let A ⊂ B be an extension of commutative rings. There
exist a B-module �1

B|A and an A-derivation d : B → �1
B|A so that for all

B-modules M the map φ → φ ◦ d induces an isomorphism

HomB(�1
B|A, M) ∼→ DerA(B, M),

functorial in M.

Proof Let F(B) be the free B-module generated by symbols db for all b ∈ B.
Define �1

B|A as the quotient of F(B) by the submodule generated by elements
of the form da, d(b1 + b2) − db1 − db2 or d(b1b2) − b1db2 − b2db1 for some
a ∈ A or b1, b2 ∈ B, and define d by sending b to db. Verification of the required
properties is straightforward.

The B-module �1
B|A is called the module of differential forms of B relative

to A. In the case A = Z we set �1
B|Z =: �1

B , and call it the module of absolute
differential forms. As �1

B|A is defined by a universal property, it is unique up to
unique isomorphism. In Matsumura [1] another construction for �1

B|A is given,
which yields the same module by this remark.

Example A.8.2 Assume that B arises as the quotient of the polynomial ring
A[x1, . . . , xn] by an ideal ( f1, . . . , fm). Then �1

B|A is the quotient of the free
B-module generated by the dxi modulo the submodule generated by the ele-
ments

∑
i ∂i f j dxi (1 ≤ j ≤ m), where ∂i denotes the partial derivative with

respect to xi . This follows immediately from the above construction.

Proposition A.8.3 The module of differentials �1
B|A enjoys the following basic

properties.

1. (Base change) For an A-algebra A′ one has �1
B⊗A A′|A′ ∼= �1

B|A ⊗A A′.
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2. (Localization) Given a multiplicative subset S of B, one has

�1
BS |A

∼= �1
B|A ⊗B BS.

3. (First exact sequence) A tower of ring extensions A ⊂ B ⊂ C gives rise
to an exact sequence of C-modules

�1
B|A ⊗B C → �1

C |A → �1
C |B → 0.

4. (Second exact sequence) A short exact sequence 0 → I → B → C → 0
of A-algebras gives rise to an exact sequence

I/I 2 δ→ �1
B|A ⊗B C → �1

C |A → 0

of C-modules, where the map δ sends a class x mod I 2 to dx ⊗ 1. (Note
that the B-module structure on I/I 2 induces a C-module structure.)

Proof For (1) and (2), see Matsumura [1], Ex. 25.4; for (3) and (4), see
Theorems 25.1 and 25.2 of loc. cit.

Corollary A.8.4 If K |k is a finitely and separably generated field extension of
transcendence degree r , then �1

K |k has dimension r over K .

Proof Write K as the fraction field of a quotient k[t1, . . . , td+1]/( f ) with
f separable as in the proof of Proposition A.3.4, and apply part (2) of the
proposition together with Example A.8.2.

The following statement gives a relation between smoothness, differentials
and regularity.

Proposition A.8.5 Let k be a perfect field, A an integral domain which is
a finitely generated k-algebra, and P a prime ideal of A. Denote by d the
Krull dimension of A and by m the height of P. Then the following are
equivalent:

1. The module of differentials �1
AP |k is free of rank d over AP ;

2. AP is a regular local ring (i.e. dim κ(P) P/P2 = m).

For d = m these are both equivalent to the condition that the closed point P is
smooth.

Proof For the first statement, see Matsumura [1], Lemma 1, p. 216 and
Theorem 30.3. The case d = m follows easily from the first part using
Nakayama’s lemma (see Mumford [1], Section III.4).
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Corollary A.8.6 Under the equivalent conditions of the proposition the
sequence

0 → P/P2 → �1
AP |k ⊗AP κ(P) → �1

κ(P)|k → 0

is exact, where κ(P) is the residue field of P.

Proof In view of Proposition A.8.3 (4) only injectivity at the left should be
checked, and this follows from Corollary A.8.4 and a dimension count using
the proposition above.

We now turn to differential forms over fields. The first result is:

Proposition A.8.7 If K |k is an extension of fields and L|K is a finite separable
extension, then �1

L|k ∼= �1
K |k ⊗K L.

Proof See Matsumura [1], Theorem 25.3.

Next we consider an extension K |k of fields of characteristic p > 0 satisfying
K p ⊂ k. In this case there is an interesting relation between generators of �1

K |k
and of the extension K |k. Namely, one calls a system of elements {bλ : λ ∈ �}
a p-basis for the extension K |k if the products bα1

λ1
· · ·, bαm

λm
for all finite subsets

{λ1, . . . , λm} ⊂ � and exponents 0 ≤ αi ≤ p − 1 yield a basis of the k-vector
space K , i.e. they form a k-linearly independent generating system.

Proposition A.8.8 Let K |k be an extension of fields of characteristic p > 0
satisfying K p ⊂ k. A system of elements {bλ : λ ∈ �} is a p-basis of K |k if
and only if the system {dbλ : λ ∈ �} is a basis of the K -vector space �1

K |k .

Proof See Matsumura [1], Theorem 26.5.

Corollary A.8.9 Every finite extension K |k of fields of characteristic p > 0
has a p-basis.

Proof Choose a K -basis for �1
K |k (using Zorn’s lemma).

Corollary A.8.10 Let k0 ⊂ k be a subfield with K p ⊂ k0. Then the sequence
of K -vector spaces

0 → �1
k|k0

⊗k K → �1
K |k0

→ �1
K |k → 0

is exact. Moreover, the choice of a p-basis of K |k induces a splitting of the
exact sequence.
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Proof The only nonobvious points are exactness at �1
K |k0

and the existence of
the splitting. For these choose a p-basis {xλ : λ ∈ �k|k0} of k|k0 and a p-basis
{xλ : λ ∈ �K |k} of K |k. Together they form a p-basis of K |k0, and the corollary
follows from the proposition.

As an application of the above, we compute the module of absolute differen-
tials for local rings of the affine line over a field K of characteristic p > 0. Note
that the case when K is perfect already follows from Example A.8.2 and the
localization property of differentials, so the interesting case is when K �= K p.

Proposition A.8.11 For each closed point P of the affine line A1
K the

K [t]P -module �1
K [t]P

is free on a basis containing dπP , where πP is a local
parameter at P contained in K [t].

Proof We first show the freeness of the K [t]-module �1
K [t], which will imply

the corresponding property over the localization K [t]P by Proposition A.8.3
(2). Applying Proposition A.8.3 (3) with A = Z, B = K and C = K [t] we get
an exact sequence

�1
K ⊗K K [t] → �1

K [t] → �1
K [t]|K → 0.

By Example A.8.2 the K [t]-module �1
K [t]|K is free of rank one generated by

dt , and therefore it identifies to a direct summand of �1
K [t]. It remains therefore

to show the injectivity of the map �1
K ⊗K K [t] → �1

K [t]. As the kernel of
this map is in any case a torsion free module over the principal ideal ring
K [t], this is equivalent to showing the injectivity of the map �1

K ⊗K K (t) →
�1

K [t] ⊗K [t] K (t), which is the same as the natural map �1
K ⊗K K (t) → �1

K (t)

by Proposition A.8.3 (2). The claim then follows from Corollary A.8.10.
Concerning the statement about dπP we distinguish two cases. If πP is a

separable polynomial in K [t], then the derivative ∂tπP is prime to πP in K [t],
and therefore a unit in K [t]P . The formula dπP = (∂tπP )dt then shows that dπP

is a generator of �1
K [t]P |K , so by the above argument it yields a basis of �1

K [t]P

together with a basis of �1
K . In the case when πP is an inseparable polynomial

we may write πP = f (t pr
) for a suitable r > 0 and separable polynomial f .

Applying Proposition A.8.3 (3) with A = Z, B = K [t pr
] and C = K [t] and

noting the isomorphism �1
K [t]|K [t pr ] � �1

K [t]|k we see as above that �1
K [t] is free

on a basis consisting of dt and a basis of �1
K [t pr ]. But by the separable case dπP

may be taken as a basis element in the latter, and the proof is complete.

We finally discuss higher differential forms. For an integer i > 0 the module
of differential i-forms �i

B|A is defined as the i-th exterior power �i�1
B|A; for

i = 0 we put �0
B|A := B by convention. They form the terms of a complex of



322 Appendix

A-modules, the de Rham complex:

�•
B|A = (B

d→ �1
B|A

d→ �2
B|A

d→ �3
B|A

d→ . . . )

For simplicity, we define the differentials d :�i
B|A →�i+1

B|A only in the case when
�1

B|A is freely generated as a B-module by elements dbλ, the only one we need.
In this case, d sends an i-form bdbλ1 ∧ · · · ∧ dbλi to db ∧ dbλ1 ∧ · · · ∧ dbλi .
Note that for i = 0 this gives back the universal derivation d : B → �1

B|A; the
fact that we have a complex is obvious. An easy calculation shows that the
differential d satisfies the identity

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)iω1 ∧ dω2

for ω1 ∈ �i
B|A and ω2 ∈ �

j
B|A; in fact, this identity and the fact that it yields

the universal derivation for i = 0 characterize d . The submodules ker(d)
(resp. Im (d)) of �1

B|A are denoted by Zi
B|A and Bi

B|A, respectively, and are
classically called the module of closed (resp. exact) i-forms. The quotient
Hi (�•

B|A) := Zi
B|A/Bi

B|A is the i -th de Rham cohomology group of B over A.
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[1] Les déterminants sur un corps non commutatif, Bull. Soc. Math. France

71 (1943), 27–45.
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Szabó Endre
[1] Severi–Brauer Varieties, preprint.

Tate, John
[1] Genus change in inseparable extensions of function fields, Proc. Amer. Math.

Soc. 3 (1952), 400–6.
[2] Global class field theory, in Algebraic Number Theory (J. W. S. Cassels and
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Belg. Sér. B 45 (1993), 329–31.

Tregub, Semion L.
[1] Birational equivalence of Brauer-Severi manifolds, Uspekhi Mat. Nauk

46 (1991), 217–18; English translation in Russian Math. Surveys 46 (1992),
229.

Tsen, Chiung-Tse
[1] Divisionsalgebren über Funktionenkörpern, Nachr. Akad. Wiss. Göttingen

Math.-Phys. 1933, 335–9.

Voevodsky, Vladimir
[1] Motivic cohomology with Z/2-coefficients, Publ. Math. Inst. Hautes Études

Sci. 98 (2003), 59–104.
[2] On motivic cohomology with Z/ l-coefficients, 2003, available as preprint

No. 639 at http://www.math.uiuc.edu/K-theory/.

Voevodsky, Vladimir, Suslin, Andrei A., Friedlander, Eric M.
[1] Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Studies,

vol. 143, Princeton Univ. Press, 2000.

Voskresensky, Valentin E.
[1] On the question of the structure of the subfield of invariants of a cyclic

group of automorphisms of the field Q(x1, · · · , xn) (Russian), Izv. Akad.
Nauk SSSR Ser. Mat. 34 (1970), 366–75; English translation in Math. USSR
Izv. 4 (1971), 371–80.

[2] Algebraic Groups and Their Birational Invariants, Translations of Math-
ematical Monographs, vol. 179, American Mathematical Society, Provi-
dence, 1998.



338 Bibliography

Wadsworth, Adrian
[1] Merkurjev’s elementary proof of Merkurjev’s theorem, in Applications of

Algebraic K -Theory to Algebraic Geometry and Number Theory (S. Bloch
et al., eds.), Contemp. Math., vol. 55/2, Amer. Math. Soc., Providence, 1986,
741–76.

van der Waerden, Bartel Leendert
[1] Algebra I (7te Auflage), II (5te Auflage), Springer-Verlag, Berlin, 1966–7.

English translation: Springer-Verlag, New York, 1991.

Wang, Shinghaw
[1] On the commutator group of a simple algebra, Amer. J. Math. 72 (1950),

323–34.

Warning, Ewald
[1] Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math.

Semin. Hamb. Univ. 11 (1935), 76–83.

Wedderburn, Joseph Henry Maclagan
[1] A theorem on finite algebras, Trans. Amer. Math. Soc. 6 (1905), 349–52.
[2] On hypercomplex numbers, Proc. London Math. Soc. 6 (1908), 77–118.
[3] On division algebras, Trans. Amer. Math. Soc. 22 (1921), 129–35.

Weibel, Charles
[1] An Introduction to Homological Algebra, Cambridge Studies in Advanced

Mathematics, vol. 38, Cambridge University Press, 1994.
[2] Introduction to Algebraic K-Theory, book in preparation, parts available at

the author’s homepage.

Weil, André
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