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Preface

This book provides a comprehensive and up-to-date introduction to the theory
of central simple algebras over arbitrary fields, emphasizing methods of Galois
cohomology and (mostly elementary) algebraic geometry. The central result is
the Merkurjev—Suslin theorem. As we see it today, this fundamental theorem is
at the same time the culmination of the theory of Brauer groups of fields initiated
by Brauer, Noether, Hasse and Albertin the 1930s, and a starting point of motivic
cohomology theory, a domain which is at the forefront of current research
in algebraic geometry and K-theory — suffice it here to mention the recent
spectacular results of Voevodsky, Suslin, Rost and others. As a gentle ascent
towards the Merkurjev—Suslin theorem, we cover the basic theory of central
simple algebras, methods of Galois descent and Galois cohomology, Severi—
Brauer varieties, residue maps and finally, Milnor K-theory and K-cohomology.
These chapters also contain a number of noteworthy additional topics. The last
chapter of the book rounds off the theory by presenting the results in positive
characteristic. For an overview of the contents of each chapter we refer to their
introductory sections.

Prerequisites The book should be accessible to a graduate student or a non-
specialist reader with a solid training in algebra including Galois theory and
basic commutative algebra, but no homological algebra. Some familiarity with
algebraic geometry is also helpful. Most of the text can be read with a basic
knowledge corresponding to, say, the first volume of Shafarevich’s text. To help
the novice, we summarize in an appendix the results from algebraic geometry
we need. The first three sections of Chapter 8 require some familiarity with
schemes, and in the proof of one technical statement we are forced to use tech-
niques from Quillen K-theory. However, these may be skipped in a first reading
by those willing to accept some ‘black boxes’.
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1

Quaternion algebras

As a prelude to the book, we present here our main objects of study in the
simplest case, that of quaternion algebras. Many concepts that will be ubiquitous
in what follows, such as division algebras, splitting fields or norms appear
here in a concrete and elementary context. Another important notion we shall
introduce is that of the conic associated with a quaternion algebra; these are the
simplest examples of Severi—Brauer varieties, objects to which a whole chapter
will be devoted later. In the second part of the chapter two classic theorems
from the 1930s are proven: a theorem of Witt asserting that the associated conic
determines a quaternion algebra up to isomorphism, and a theorem of Albert
that gives a criterion for the tensor product of two quaternion algebras to be
a division algebra. The discussion following Albert’s theorem will lead us to
the statement of one of the main theorems proven later in the book, that of
Merkurjev concerning division algebras of period 2.

The basic theory of quaternion algebras goes back to the nineteenth century.
The original references for the main theorems of the last two sections are
Witt [1] and Albert [1], [5], respectively.

1.1 Basic properties
In this book we shall study finite dimensional algebras over a field. Here by an
algebra over a field k we mean a k-vector space equipped with a not necessar-
ily commutative but associative k-linear multiplication. All k-algebras will be
tacitly assumed to have a unit element.

Historically the first example of a finite dimensional noncommutative alge-
bra over a field was discovered by W. R. Hamilton during a walk with his
wife (presumably doomed to silence) on 16 October 1843. It is the algebra of
quaternions, a 4-dimensional algebra with basis 1, i, j, k over the field R of
real numbers, the multiplication being determined by the rules

i’=—1, j’=-1, ij=—ji=k.

This is in fact a division algebra over R, which means that each nonzero element
x has a two-sided multiplicative inverse, i.e. an element y with xy = yx = 1.
Hamilton proved this as follows.



2 Quaternion algebras

For a quaternion ¢ = x + yi + zj + wk, introduce its conjugate
qg=x—yi—zj —wk

and its norm N(q) = qq. A computation gives N(q) = x> + y> + z> + w?, so
if g # 0, the quaternion g/N(q) is an inverse for q.

We now come to an easy generalization of the above construction. Henceforth
in this chapter, unless otherwise stated, k will denote a field of characteristic
not 2.

Definition 1.1.1 For any two elements a, b € k* define the (generalized)
quaternion algebra (a, b) as the 4-dimensional k-algebra with basis 1, i, j, ij,
multiplication being determined by

i’=a, j>=b, ij =—ji.

One calls the set {1, i, j, ij} a quaternion basis of (a, b).

Remark 1.1.2 The isomorphism class of the algebra (a, ) depends only on the
classes of @ and b in k> / k2, because the substitution i — ui, j — vj induces
an isomorphism

(a,b) = (u’a, v’b)

forall u, v € k™. This implies in particular that the algebra (a, ) is isomorphic
to (b, a); indeed, mapping i +— abj, j > abi we get

(a,b) = (@b, a*b*) = (b, a).

Given an element ¢ = x + yi 4 zj 4+ wij of the quaternion algebra (a, b),
we define its conjugate by

g =x—yi—2zj — wij.

The map (a, b) — (a, b) given by g — ¢ is an anti-automorphism of the k-
algebra (a, b), i.e. it is a k-vector space automorphism of (a, b) satisfying
(¢192) = 4,q,. Moreover, we have g = ¢; an anti-automorphism with this prop-
erty is called an involution in ring theory.

We define the norm of ¢ = x + yi 4+ zj + wij by N(q) = qq. A calculation
yields

N(g) = x* — ay? — bz* + abw? €k, @))
so N : (a,b) — k is a nondegenerate quadratic form. The computation

N(q192) = 1929,91 = q1N(q2)q, = N(q1)N(q2)
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shows that the norm is a multiplicative function, and the same argument as for
Hamilton’s quaternions yields:

Lemma 1.1.3 An element q of the quaternion algebra (a, b) is invertible if and
only if it has nonzero norm. Hence (a, b) is a division algebra if and only if the
norm N : (a, b) — k does not vanish outside 0.

Remark 1.1.4 In fact, one can give an intrinsic definition of the conjugation
involution (and hence of the norm) on a quaternion algebra (a, b) which does not
depend on the choice of the basis (1, 7, j, ij). Indeed, call an element g of (a, b)
a pure quaternion if g> € k but g ¢ k. A straightforward computation shows
that anonzero g = x + yi + zj + wij is a pure quaternion if and only if x = 0.
Hence a general ¢ can be written uniquely as ¢ = q; + ¢» with g¢; € k and ¢»
pure, and conjugation is given by ¢ = g1 — g». Moreover, a pure quaternion g
satisfies N(g) = —¢q>.

Example 1.1.5 (The matrix algebra M, (k))
Besides the classical Hamilton quaternions, the other basic example of
a quaternion algebra is the k-algebra M,(k) of 2 x 2 matrices. Indeed, the

assignment
1 0 0 b
i—1:= , J=J =
0 -1 1 0

defines an isomorphism (1, b) = M,(k), because the matrices

|:1 O] [1 0:| |:0 b:| [0 b:|
Id= L= L J = and IJ = 2)
0 1 0 —1 1 0 -1 0

generate M;(k) as a k-vector space, and they satisfy the relations
I’=1d, J*=bld, I1J=-JI.

Definition 1.1.6 A quaternion algebra over k is called split if it is isomorphic
to M, (k) as a k-algebra.

Proposition 1.1.7 For a quaternion algebra (a, b) the following statements are
equivalent.

The algebra (a, b) is split.

The algebra (a, b) is not a division algebra.

The norm map N : (a, b) — k has a nontrivial zero.

The element b is a norm from the field extension k(/a)|k.

A~
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Of course, instead of (4) another equivalent condition is that a is a norm from
the field extension k(v/b)|k.

Proof The implication (1) = (2) is obvious and (2) = (3) was proven in
Lemma 1.1.3. For (3) = (4) we may assume a is not a square in k, for otherwise
the claim is obvious. Take a nonzero quaternion g = x + yi + zj + wij with
norm 0. Then equation (1) implies (z> — aw?)b = x> — ay?, and so in particular
22 —aw? = (z + Jaw)(z — Jaw) # 0, for otherwise a would be a square in
k. Denoting by N the field norm from K = k(y/a) we get

b = Ngu(x + vay)Ngp(z + Vaw)™,

whence (4) by multiplicativity of Ng . Finally, we shall show assuming (4)
that (a, b) = (1, 4a?), whence (1) by the isomorphism in Example 1.1.5. To
see this, we may again assume that a is not a square in k. If b is a norm from
K, then so is b1, so by (4) and our assumption on a we find r, s € k satisfy-
ing b~ =12
Moreover, one verifies that ui = —iu, which implies that the element
v=_04a)i + (1 —a)ui satisfies uv =1+ a)ui + (1 —a)i = —vu and
v? = (1 +a)’a — (1 — a)*a = 4a’. Passing to the basis (1, u, v, uv) thus gives
the required isomorphism (a, b) = (1, 4a>). a

— as®. Putting u = rj + sij thus yields u?> = br> — abs® = 1.

Remark 1.1.8 Over a field of characteristic 2 one defines the generalized
quaternion algebra [a, b) by the presentation

la,b)y= (i, jli*+i=a, j2=b,ij = ji+j)

where a € k and b € k*. This algebra has properties analogous to those in the
above proposition (see Exercise 4).

1.2 Splitting over a quadratic extension
We now prove a structure theorem for division algebras of dimension 4. Recall
first that the centre Z(A) of a k-algebra A is the k-subalgebra consisting of
elements x € A satisfying xy = yx for all y € A. By assumption we have
k C Z(A); if this inclusion is an equality, one says that A is central over k. If
A is a division algebra, then Z(A) is a field. We then have:

Proposition 1.2.1 A 4-dimensional central division algebra D over k is iso-
morphic to a quaternion algebra.

We first prove:

Lemma 1.2.2 [f D contains a commutative k-subalgebra isomorphic to a non-
trivial quadratic field extension k(/a) of k, then D is isomorphic to a quaternion
algebra (a, b) for suitable b € k*.
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Proof A k-subalgebra as in the lemma contains an element g withg> = a € k.
By assumption, g is not in the centre k of D and hence the inner automorphism
of D given by x — ¢~ 'xq has exact order 2. As a k-linear automorphism of
D, it thus has —1 as an eigenvalue, which means that there exists r € D such
that gr 4+ rq = 0. The elements 1, g, r, gr are linearly independent over k, for
otherwise left multiplication by ¢ would show that gr = —rg lies in the k-span
of 1 and g, but then it would commute with g, whereas they anticommute. The
relation gr + rq = 0 then implies that the k-linear automorphism x > r~2xr2
leaves all four basis elements 1, ¢, r and gr fixed. Thus r* belongs to the centre
of D which is k by assumption. The lemma follows by setting 7> = b € k*.

O

Proof of Proposition 1.2.1  Let d be an element of D \ k. As D is finite
dimensional over k, the powers {1, d, d?, ...} are linearly dependent, so there
is a polynomial f € k[x] with f(d) = 0. As D is a division algebra, it has no
zero divisors and we may assume f irreducible. This means there is a k-algebra
homomorphism k[x]/(f) — D which realizes the field k(d) as a k-subalgebra
of D. Now the degree [k(d) : k] cannot be 1 as d ¢ k, and it cannot be 4 as D
is not commutative. Hence [k(d) : k] = 2, and the lemma applies. m|

The crucial ingredient in the above proof was the existence of a quadratic
extension k(/a) contained in D. Observe that the algebra D ®; k(i/a) then
splits over k(y/a). In fact, it follows from basic structural results to be proven
in the next chapter (Lemma 2.2.2 and Wedderburn’s theorem) that any 4-
dimensional central k-algebra for which there exists a quadratic extension of k
with this splitting property is a division algebra or a matrix algebra.

It is therefore interesting to characterize those quadratic extensions of k over
which a quaternion algebra splits.

Proposition 1.2.3 Consider a quaternion algebra A over k, and fix an element
a € kX \ k*2. The following statements are equivalent:

1. A isisomorphic to the quaternion algebra (a, b) for some b € k*.
2. The k(\/a)-algebra A ®; k( /a) is split.

3. A contains a commutative k-subalgebra isomorphic to k(/a).

Proof To show (1) = (2), note that (a, b) ® k(4/a) is none but the quater-
nion algebra (a, b) defined over the field k(y/a). But a is a square in k(/a),
so (a,b) = (1, b), and the latter algebra is isomorphic to Mj(k(s/a)) by
Example 1.1.5. Next, if A is split, the same argument shows that (1) always
holds, so to prove (3) = (1) one may assume A is nonsplit, in which case
Lemma 1.2.2 applies.

The implication (2) = (3) is easy in the case when A = M;(k): one chooses
an isomorphism M;(k) = (1, a) as in Example 1.1.5 and takes the subfield
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k(J), where J is the basis element with J> = a. We now assume A is non-
split, and extend the quaternion norm N on A to A ®; k(+/a) by base change.
Applying part (3) of Proposition 1.1.7 to A ®; k(i/a) one gets that there
exist elements qg, 1 € A, not both 0, with N(go + +/aq;) = 0. Denote by
B : A ®; k(y/a) x A @ k(y/a) — k(i/a) the symmetric bilinear form associ-
ated with N (recall that B(x, y) = (N(x +y) — N(x) — N(y))/2 by definition,
hence B(x, x) = N(x)). We get

0 = B(qo + vaq, qo + vaq1) = N(qo) + aN(q1) + 25/aB(qo. q1).

Now note that since g, q; € A, the elements B(qo, ¢;) and N(qo) + aN(q)
both lie in k. So it follows from the above equality that

N(qo) = —aN(q1) and 2B(qo,q1) = 90q; + 914 = 0.
Here N(qo), N(q1) # 0 as A is nonsplit. The element g, := gog, € A satisfies

4 = 404,909, = —q0d0919;1 = —N(qo)N(q1) = aN(q1)*.

The square of the element ¢ := g2 N(g;)~" is then precisely a, so mapping /a
to ¢ embeds k(,/a) into A. |

‘We conclude this section by another characterization of the quaternion norm.

Proposition 1.2.4 Let (a, b) be a quaternion algebra over a field k, and let
K = k(s/a) be a quadratic splitting field for (a, b). Then for all q € (a, b) and
all K -isomorphisms ¢ : (a,b) @ K = M,(K) we have N(q) = det(¢(q)).

Proof First note that det(¢(q)) does not depend on the choice of ¢. Indeed,
if ¥ : (a,b) ® K = M,(K) is a second isomorphism, then ¢ o ¢! is an
automorphism of M,(K). But it is well known that all K-automorphisms of
M,(K) are of the form M — CMC~! for some invertible matrix C (check
this by hand or see Lemma 2.4.1 for a proof in any dimension), and that the
determinant map is invariant under such automorphisms.

Now observe that by definition the quaternion norm on (a, b) ®; K restricts
to that on (a, b). Therefore to prove the proposition it is enough to embed (a, b)
into M>(K) via ¢ and check that on M,(K) the quaternion norm (which is
intrinsic by Remark 1.1.4) is given by the determinant. For this, consider a
basis of M,(K) as in (2) with b = 1 and write

AR CDIRNECS N
el e ]
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Then equation (1) yields
N a a =<a1+a4>2_ <a1 —a4>2_<a2+a3)2+(a2—a3)2
a; ag 2 2 2 2
a a
= ajas — araz = det .
as  da

1.3 The associated conic

We now introduce another important invariant of a quaternion algebra (a, b),
the associated conic C(a, b). By definition, this is the projective plane curve
defined by the homogeneous equation

ax® + by2 =7 3)

where x, y, z are the homogeneous coordinates in the projective plane P?. In
the case of (1, 1) = M,(k) we get the usual circle

24y =22

Remark 1.3.1 In fact, the conic C(a, b) is canonically attached to the algebra
(a, b) and does not depend on the choice of a basis. To see why, note first that the
conic C(a, b) is isomorphic to the conic ax? + by* = abz? via the substitution
X +— by, y > ax, z — abz (after substituting, divide the equation by ab). But
ax® + by* — abz? is exactly the square of the pure quaternion xi + yj + zij
and hence is intrinsically defined by Remark 1.1.4.

This observation also shows that if two quaternion algebras (a, b) and (c, d)
are isomorphic as k-algebras, then the conics C(a, b) and C(c, d) are also iso-
morphic over k. Indeed, constructing an isomorphism (a, b) = (c, d) is equiv-
alent to finding a k-basis in (a, b) that satisfies the multiplicative rule in (c, d).

Recall from algebraic geometry that the conic C(a, b) is said to have a
k-rational point if there exist xg, yo, 2o € k, not all zero, that satisfy equation
(3) above.

We can now give a complement to Proposition 1.1.7.

Proposition 1.3.2 The quaternion algebra (a, b) is split if and only if the conic
C(a, b) has a k-rational point.

Proof If (xo, Yo, 20) is a k-rational point on C(a, b) with yy # 0, then
b = (z0/y0)> — a(x0/yo)*> and part (4) of Proposition 1.1.7 is satisfied. If yy
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happens to be 0, then x¢ must be nonzero and we get similarly that a is a norm
from the extension k(+/b)|k. Conversely, if b = r> — as> for some r, s € k,
then (s, 1, r) is a k-rational point on C(a, b). a

Remark 1.3.3 Again, the proposition has a counterpart in characteristic 2; see
Exercise 4.

Example 1.3.4 For a # 1, the projective conic ax? + (1 — a)y? = z? has the
k-rational point (1, 1, 1), hence the quaternion algebra (a, 1 — a) splits by the
proposition. This innocent-looking fact is a special case of the so-called Stein-
berg relation for symbols that we shall encounter later.

Remark 1.3.5 It is a well-known fact from algebraic geometry that a smooth
projective conic defined over a field k is isomorphic to the projective line P!
over k if and only if it has a k-rational point. The isomorphism is given by taking
the line joining a point P of the conic to some fixed k-rational point O and then
taking the intersection of this line with P! embedded as, say, some coordinate
axis in P?. In such a way we get another equivalent condition for the splitting
of a quaternion algebra, which will be substantially generalized later.

In the remainder of this section we give examples of how Proposition 1.3.2
can be used to give easy proofs of splitting properties of quaternion algebras
over special fields.

Example 1.3.6 Let £ be the finite field with g elements (¢ odd). Then any
quaternion algebra (a, b) over k is split.

To see this, it suffices by Proposition 1.3.2 to show that the conic C(a, b)
has a k-rational point. We shall find a point (xg, yo, z0) With zo = 1. As the
multiplicative group of k is cyclicof orderg — 1, thereareexactly 1 + (g — 1)/2
squares in k, including 0. Thus the sets {ax? | x € k}and {I — by? | y € k}both
have cardinality 1 4 (¢ — 1)/2, hence must have an element in common.

The next two examples concern the field k(¢) of rational functions over a
field k, which is by definition the fraction field of the polynomial ring k[¢].
Note that sending ¢ to 0 induces a k-homomorphism k[¢] — k; we call it the
specialization map attached to 7.

Example 1.3.7 Let (a, b) be a quaternion algebra over k. Then (a, b) is split
over k if and only if (a, b) ®; k(¢) is split over k(¢).

Here necessity is obvious. For sufficency, we assume given a point (x;, y;, z;)
of C(a, b) defined over k(¢). As the equation (3) defining C(a, b) is homoge-
neous, we may assume after multiplication by a suitable element of k() that
Xty Vi, Z¢ all lie in k[#] and one of them has a nonzero constant term. Then
specialization gives a k-point (x,(0), y,(0), z;(0)) of C(a, b).
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Finally we give an example of a splitting criterion for a quaternion algebra
over k(t) that does not come from k.

Example 1.3.8 For a € k™ the k(¢)-algebra (a, t) is split if and only if @ is a
square in k.

Here sufficiency is contained in Example 1.1.5. For necessity, assume given
a k(t)-point (x;, y;, z;) of C(a, b) as above. Again we may assume x,, y;, Z; are
all in k[¢]. If x; and z, were both divisible by ¢, then equation (3) would imply
the same for y,, so after an eventual division we may assume they are not. Then
setting t = 0 gives ax?(0) = z,(0)* and so @ = x?(0)~'z,(0)* is a square.

1.4 A theorem of Witt

In this section we prove an elegant theorem which characterizes isomorphisms
of quaternion algebras by means of the function fields of the associated conics.
Recall that the function field of an algebraic curve C is the field k(C) of rational
functions defined over some Zariski open subset of C. In the concrete case of a
conic C(a, b) as in the previous section, the simplest way to define it is to take
the fraction field of the integral domain k[x, y]/(ax> + by? — 1) (this is also
the function field of the affine curve of equation ax> + by?> = 1).
A crucial observation for the sequel is the following.

Remark 1.4.1 The quaternion algebra (a, b) ®; k(C(a, b)) is always split over
k(C(a, b)). Indeed, the conic C(a, b) always has a point over this field, namely
(x, y, 1) (where we also denote by x, y their images in k(C(a, b))). This point
is called the generic point of the conic.

Now we can state the theorem.

Theorem 1.4.2 (Witt) Let Q1 = (ay, by), Q2 = (a2, by) be quaternion alge-
bras, and let C; = C(a;, b;) be the associated conics. The algebras Q| and Q,
are isomorphic over k if and only if the function fields k(Cy) and k(C,) are
isomorphic over k.

Remark 1.4.3 Itis known from algebraic geometry that two smooth projective
curves are isomorphic if and only if their function fields are. Thus the theorem
states that two quaternion algebras are isomorphic if and only if the associated
conics are isomorphic as algebraic curves.

In Chapter 5 we shall prove a broad generalization of the theorem, due to
Amitsur. We now begin the proof by the following easy lemma.

Lemma 1.4.4 If (a, b) is a quaternion algebra and c € k™ is a norm from the
field extension k(\/a)\k, then (a, b) = (a, bc).
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Proof By hypothesis, we may write ¢ = x> — ay? with x, y € k. Hence we
may consider ¢ as the norm of the quaternion ¢ = x + yi + 0j + 0ij and set
J =¢qj = xj + yij. Then J is a pure quaternion satisfying

iJ+Ji=0, J>=—-N(J)=—-N(@)N(j) = be,

and 1,4, J,iJ is a basis of (a, b) over k (by a similar argument as in the proof
of Lemma 1.2.1). The lemma follows. a

Proof of Theorem 1.4.2  Necessity follows from Remark 1.3.1, so it is enough
to prove sufficiency. If both Q; and Q, are split, the theorem is obvious. So
we may assume one of them, say Q1, is nonsplit. By Remark 1.4.1 the algebra
01 ®¢ k(Cy) is split, hence so is the algebra Q1 ®; k(C,) by assumption. If O,
is split, then k(C,) is a rational function field, and therefore Q; is also split by
Example 1.3.7.

So we may assume that both algebras are nonsplit. In particular a; is not a
square in k, and the algebra Q; ®; L becomes split over the quadratic extension
L := k(/a1). For brevity’s sake, we write C instead of C; in what follows.
The field L(C) = L ® k(C) is the function field of the curve C obtained by
extension of scalars from C; this curve is isomorphic to the projective line
over L, and hence L(C) is isomorphic to the rational function field L(¢). As
07 ® L(C) is split over L(C) by assumption, Example 1.3.7 again yields that
0> ®; L must be split over L. Proposition 1.2.3 then implies that Q> = (ay, c)
for some ¢ € k*. As O, ®; k(C) is split over k(C) (again by assumption and
Remark 1.4.1), it follows from Proposition 1.1.7 that ¢ = Ny(c)/kc)(f) for
some f € L(C)*.

Our goal is to identify the function f in order to compute c. Recall (e.g.
from Section A.4 of the Appendix) that the group Div(C}) of divisors on Cy,
is defined as the free abelian group generated by the closed points of C; (in
this case they corrrespond to irreducible polynomials in L(#), plus a point
at infinity). There is a divisor map div: L(C)* — Div(C}) associating to a
function the divisor given by its zeros and poles, and a degree map given by
> mi Py > Y m;[k(P;) : L], where k(P;)is the residue field of the closed point
P;. The two maps fit into an exact sequence

0— LC)*/L* 2% Div(c) 25 7 - o, 4)

corresponding in our case to the decomposition of rational functions into prod-
ucts of irreducible polynomials and their inverses.

The Galois group Gal (L|K) = {1, o} acts on this exact sequence as follows
(see Remark A.4.5 of the Appendix). On L(C) it acts via its action on L (but
note that under the isomorphism L(C) = L(¢) this action does not induce the
similar action on the right-hand side!). On Div(C}) it acts by sending a closed
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point P to its conjugate o (P). Finally, it acts trivially on Z, making the maps
of the sequence Gal (L|K)-equivariant.

Now consider the map (1 + o) : Div(C.) — Div(C}). By additivity of the
divisor map, we have

(1 4+ o)div(f) = div(fo(f)) = div(c) = 0,

as c is a constant. On the other hand, as o has order 2, we have a natural direct
sum decomposition

Div(Cy) = ( P ZP) ea( P ZP),
P=c(P) P+#0(P)

where o acts trivially on the first summand, and exchanges P and o (P) in the
second. Writing div(f) = E| + E; according to this decomposition, we get

0= (1 +o)div(f) = 2E; + (1 + 0)E>.

This implies that £y = 0 and E; is of the form Y (m; P; — m;o (P;)) for some
closed points Py, ..., P, and m; # 0. Setting D = Y m; P;, we may therefore
write

div(f) = (1 — o)D.

Let d be the degree of D. The point Py := (1 : 0 : ,/a;) is an L-rational point of
our conic C;, whose equationis a; x> + by y> = z2. Exact sequence (4) therefore
shows that there exists g € L(C)* such that

D — d Py = div(g).
It follows that

div(f) = div(go(g)™) +d(1 — o) Py.

Replacing f by fo(g)g™!

but with

, we get a function still satisfying ¢ = Ny cyxc)(f)s

div(f) = d(1 — o) P,. 5)

We are now able to identify the function f up to a constant. We first claim
that the rational function & := (z — /aix)y~' € L(C)* satisfies

divih)=(1:0:/a))—(1:0: —/a)) = —o)P. (6)

Indeed, let P = (xq : yo : zo) be a pole of & (over an algebraic closure k). Then
we must have yo = 0 and hence P = (1:0:%,/ay); in particular, P is an
L-rational point. But by the equation of C we have i = by y(z + /a;z)~", so
(1:0: /a;)is azero of h and not a pole. Therefore (1 : 0 : —,/ay) is the only
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pole of i and similarly (1 : 0 : \/a;) is its only zero. Comparing formulae (5)
and (6), we get from the left exactness of sequence (4) that f = coh¢ for some
constant ¢p € L*. We compute

2 _ gx?

d 2 d d
¢ = Nroyko)(f) = Nr(co)Nroywe)(h)* = NL\k(CO)(T) = Npp(co)bi.
So Lemma 1.4.4 implies

0, = (ay,c) = (al,bjl).

By our assumption Q, is nonsplit, so d is odd and Q; = (aj, b)), as
desired. O

1.5 Tensor products of quaternion algebras
Now we step forward and consider higher dimensional k-algebras, where k
is still assumed to be a field of characteristic not 2. The simplest of these
are biquaternion algebras, which are by definition those k-algebras that are
isomorphic to a tensor product of two quaternion algebras over k.
We begin with two lemmas that are very helpful in calculations. The first is
well-known:

Lemma 1.5.1 The tensor product of two matrix algebras M, (k) and M,,(k)
over k is isomorphic to the matrix algebra M, (k).

Proof Perhaps the simplest proof is to note that given k-endomorphisms
¢ € Endi (k") and i € End;(k™), the pair (¢, ¥) induces an element ¢ ® yr of
Endi (k" ®; k™). The resulting map Endi (k") @ End; (k") — Endi (k" ®; k™)
is obviously injective, and it is surjective e.g. by dimension reasons. O

Lemma 1.5.2 Given elements a, b, b’ € k*, we have an isomorphism

(a,b) @ (a,b') =(a, bb") @ Ma(k).

Proof Denoteby (1,1, j,ij)and (1,i’, j’,i’j’) quaternion bases of (a, b) and
(a, b'), respectively, and consider the k-subspaces

Al=k(1@D®kiD®Lk(j®j)BkijQ j),
A=kl D®k(l®jN®ki®i'j)®k(=bi)®i)

of (a, b) ® (a, b’). One checks that A; and A, are both closed under multi-
plication and hence are subalgebras of (a, b) ®; (a, b’). By squaring the basis
elementsi ® 1, j ® j/and 1 ® j', i ® i’ j’ we see that A and A, are isomorphic
to the quaternion algebras (a, bb') and (b', —a®b’), respectively. But this latter
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algebra is isomorphic to (b, —b’), which is split because the conic C(b’, —b)
has the k-rational point (1, 1, 0).

Now consider the map p : A; ®; A, — (a, b) ®; (a, b') induced by the k-
bilinear map (x, y) — xy. Inspection reveals that all standard basis elements
of (a, b) ®; (a, b’) lie in the image of p, so it is surjective and hence induces
the required isomorphism for dimension reasons. |

Corollary 1.5.3 For a quaternion algebra (a, b) the tensor product algebra

(a, b) ®y (a, b) is isomorphic to the matrix algebra My(k).

Proof The case b = b’ of the previous lemma and Example 1.1.5 give
(@, b) @ (a, b) = (a, b*) @ Ma(k) = (a, 1) @ Ma(k) = My(k) @ Ma(k),
and we conclude by Lemma 1.5.1. ad

A biquaternion algebra A = Q| ®; O, is equipped with an involution o
defined as the product of the conjugation involutions on Q| and Q5, i.e. by
setting 0(q; ® ¢2) = q; ® q, and extending by linearity. We remark that the
involution o is not canonical but depends on the decomposition A = Q1 ®; Q».
For i =1,2 denote by Q; the subspace of pure quaternions in Q; (cf.
Remark 1.1.4).

Lemma 1.5.4 Let V be the k-subspace of A consisting of elements satisfying
o(a) = —a, and W the subspace of those with o (a) = a. One has a direct sum
decomposition A =V @& W, and moreover one may write

V=00, xk)D*k® 0,) and W =kd(Q] &% 0;).

Proof Onehas V N W = 0. Moreover, there are natural inclusions
(Q, kD kR 0,)CV and k®(Q, ® 0,) CW.

For dimension reasons these must be isomorphisms and V @& W must be the
whole of A. O

Denote by N; and N, the quaternion norms on 9 and Q5, respectively, and
consider the quadratic form

¢(x,y) = Ni(x) — Na(y) (N

on V, called an Albert form of A. Again it depends on the decomposition
A= 0 Q 0o
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Theorem 1.5.5 (Albert) For a biquaternion algebra A = Q1 Qi O, overk,
the following statements are equivalent:

1. The algebra A is not a division algebra.
2. There exista, b, b’ € k* such that Q1 = (a, b) and Q» S (a, b).
3. The Albert form (7) has a nontrivial zero on A.

Proof For the implication (2) = (3), note that the assumption in (2) implies
that there exist pure quaternions g; € Q; with qi2 =—N;(g)=afori=1,2,
and hence ¢(q1, ¢2) = 0. For (3) = (1), assume there is a nontrivial relation
¢(q1, g2) = 0 in pure quaternions. Note that ¢; and g, commute, because the
components Q and Q, centralize each other in the tensor product Q1 ®; Q».
Hence we have 0 = ¢(q1, ¢2) = ¢7 — q5 = (q1 + q2)(q1 — g2), which implies
that A cannot be a division algebra.

For the hardest implication (1) = (2) assume (2) is false, and let us prove
that A = Q| ®; QO is a division algebra. If (2) is false, then both O and Q,
are division algebras (otherwise say b’ = 1 and suitable a, b will do). Denote by
K; a quadratic extension of K contained in Q; fori = 1, 2. By our assumption
that (2) is false, Proposition 1.2.3 implies that K; splits Q; but not Q,, and
similarly for K,. Therefore both K| ®; O, and K, ®; Q; are division algebras.
It will suffice to show that each nonzero @ € A has a left inverse «;, for then
the conjugate «, := o(o(a);) is a right inverse for ¢, and o; = oy, = ;.
Moreover, it is enough to find &* € A such that «*« is a nonzero element lying
in either K| ®; O, or Q1 ®; K>, for then a*« has a left inverse, and so does
«. Fix a quaternion basis {1, i, j, ij} for O, such that K, = k(j). We can then
write

o = (B1+ B2j) + (B3 + Baj)ij

with suitable 8; € Q. We may assume that y := 3 + B4 # 0, for otherwise
o lies in O ®; K, already. Then y’l exists in Q1 ®; K>, and after replacing
a by y~'a we are reduced to the case when « = B, + Boj +ij. If B, and B,
commute, then k(8;, B>) is either k or a quadratic extension K |k contained in
Q). Thus o € Q; or ¢ € K ®; Q», and we are done in this case. So we may
assume S8, — B2B1 # 0. We then contend that o™ := B — Bj — ij is a good
choice. Indeed, we compute

oo = (B1 — Boj —i))B1 + Baj +ij) = (B — Boi)(B1 + Baj) — (i))*
= B — B3* — (i) + (BiB2 — BaB)i.
where the second equality holds since ij commutes with 8;, 8, (for the same

reason as above), and anticommutes with j. Since j2 and (ij)? lie in k and
B1B2 — B2B1 # 0, this shows a*a € (Q ®; K») \ {0}, as required. O
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Remark 1.5.6 The above proof, taken from Lam [1], is a variant of Albert’s
original argument. For other proofs of the theorem, valid in all characteristics,
see Knus [1] as well as Tits [1] (for the equivalence (1) < (2)).

The theorem makes it possible to give concrete examples of biquaternion
division algebras, such as the following one.

Example 1.5.7 Let k be a field of characteristic # 2 as usual, and let F be the
purely transcendental extension k(t, ,, t3, t4). Then the biquaternion algebra

(t1, 1) @F (13, 14)

is a division algebra over F.

To see this, we have to check that the Albert form has no nontrivial zero.
Assume it does. Then by formula (1) for the quaternion norm we have a non-
trivial solution of the equation

—t1x12 — tzxg + l]tgxlz’z + t3x32 + 2‘4)@% — I3I4X§,4 =0 (8)

in the variables x;, x, x; 2, X3, X4, X3 4. By multiplying with a rational function
we may assume X, X2, X1 2, X3, X4, X3 4 are all in k(#1, 2, 3)[4] and one of them
is not divisible by #4.

Assume that xi, xp, X1 2, x3 are all divisible by #;. Then tf must divide
14X; — 1314X3 4, 50 14 divides xj — 13x3 ,. Setting #, = 0 produces a solution of
the equation x> — 3> = Owithx, y € k(t;, 1, t3) notboth 0, which implies that
t3 is a square in k(¢ t,, t3); this is a contradiction. So one of the x;, x;, x1 2, X3
is not divisible by #4, and by setting 74 = 0 in equation (8) we get a nontrivial
solution of the equation

—hy} — hy; + flfzyl2,z +13y; =0

with entries in k(t1, t2, t3). A similar argument as before then shows that there
is a nontrivial solution of the equation

—tiz} —hz3 + iz, =0
over the field k(#;, ;). Applying the same trick one last time, we see that the
equation
h w12 =0
has a nontrivial solution in k(#), which finally yields a contradiction.

In general, we say that a finite dimensional division algebra D over a field k
has period 2 if D ®; D is isomorphic to a matrix algebra over k. Quaternion
algebras have this property by Corollary 1.5.3. Also, applying Lemma 1.5.1 we
see that tensor products of division algebras of period 2 are again of period 2.

According to Proposition 1.2.1, a 4-dimensional central division algebra
over k is in fact a quaternion algebra. Moreover, in 1932 Albert proved that a
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16-dimensional central division algebra of period 2 is isomorphic to a biquater-
nion algebra. Thus it was plausible to conjecture that a central division algebra of
period 2 and dimension 4™ is always a tensor product of m quaternion algebras.
However, in 1979 Amitsur, Rowen and Tignol [1] produced a 64-dimensional
central division algebra of period 2 which is not a tensor product of quaternion
algebras.

Therefore the following theorem of Merkurjev [1], which is one of the high-
lights of this book, is all the more remarkable.

Theorem 1.5.8 (Merkurjev) Let D be a central division algebra of period 2
over a field k. There exist positive integers my, my, n and quaternion algebras
01, ..., Q, over k such that there is an isomorphism

D @i My, (k) = Q1 ®; Q2 Q- @ On ® My, (k).

Exercises

1. Let Q be a quaternion algebra over k. Show that the conjugation involution is the
only linearmapo : Q — Q suchthato(l) =1ando(g)q € k forallg € Q.

2. Show that a quaternion algebra is split if and only if it has a basis (e, f, g, k) in
which the norm is given by (xe + yf + zg + wh) > xy — zw. (In the language of
quadratic forms, this latter property means that the norm form is hyperbolic.)

3. Let Q be a quaternion algebra over k, and let K |k be a quadratic extension embedded
as a k-subalgebra in Q. Verify that one has N(g) = Ngy(q) forall g € K, where N
is the quaternion norm and Nk is the field norm. [Hint: Extend a suitable k-basis
of K to a quaternion basis of Q.]

4. Let k be a field of characteristic 2, and let [a, b) be the quaternion algebra of
Remark 1.1.8. Show that the following are equivalent:

e [a,b) = My(k).

. [a, b) is not a division algebra.

®  The element b is a norm from the extension k(w)|k, where « is a root of the
equation x> + x = a.

®  The projective conic ax? + by* = z*> + zx has a k-rational point.

5. Determine those prime numbers p for which the quaternion algebra (—1, p) is split
over the field Q of rational numbers.

6. (Chain lemma) Assume that the quaternion algebras (a, b) and (c, d) are isomorphic.
Show that there exists an e € k* such that

(a,b) = (e, b) = (e,d) = (¢, d).

[Hint: Consider the symmetric bilinear form B(q, q2) := %(qﬁz + ¢»>q,) on the
subspace By C (a,b) of elements g € (a, b) satisfying g + g = 0. Note that
i,j,I,J € By, where 1,1, j,ij and 1, I, J, IJ are the standard bases of (a, b) =
(c,d)withi’ =a, j>=b,ij=—jiand I> =c, J> =d, IJ = —JI. Take an ele-
ment ¢ € By \ {0} with B(e, j) = B(e, J) = 0 and set e = £2.]
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Central simple algebras and
Galois descent

In this chapter we treat the basic theory of central simple algebras from a modern
viewpoint. The main point we would like to emphasize is that, as a consequence
of Wedderburn’s theorem, we may characterize central simple algebras as those
finite dimensional algebras which become isomorphic to some full matrix ring
over a finite extension of the base field. We then show that this extension can in
fact be chosen to be a Galois extension, which enables us to exploit a powerful
theory in our further investigations, that of Galois descent. Using descent we can
give elegant treatments of such classical topics as the construction of reduced
norms or the Skolem—Noether theorem. The main invariant concerning central
simple algebras is the Brauer group which classifies all finite dimensional central
division algebras over a field. Using Galois descent, we shall identify it with a
certain first cohomology set equipped with an abelian group structure.

The foundations of the theory of central simple algebras go back to the great
algebraists of the dawn of the twentieth century; we merely mention here the
names of Wedderburn, Dickson and Emmy Noether. The Brauer group appears
in the pioneering paper of the young Richard Brauer [1]. Though Galois descent
had been implicitly used by algebraists in the early years of the twentieth cen-
tury and Chatelet had considered special cases in connection with Diophantine
equations, it was André Weil who first gave a systematic treatment with applica-
tions to algebraic geometry in mind (Weil [2]). The theory in the form presented
below was developed by Jean-Pierre Serre, and finally found a tantalizing gen-
eralisation in the general descent theory of Grothendieck ([1], [2]).

2.1 Wedderburn’s theorem

Let k be a field. We assume throughout that all k-algebras under consideration
are finite dimensional over k. A k-algebra A is called simple if it has no (two-
sided) ideal other than 0 and A. Recall moreover from the previous chapter that
A is central if its centre equals k.

Here are the basic examples of central simple algebras.

Example 2.1.1 A division algebra over k is obviously simple. Its centre is a
field (indeed, inverting the relation xy = yx gives y~'x~! = x~'y~! for all
y € D,x € Z(D)). Hence D is a central simple algebra over Z(D).
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As concrete examples (besides fields), we may cite nonsplit quaternion
algebras: these are central over k by definition and division algebras by Propo-
sition 1.1.7.

The next example shows that split quaternion algebras are also simple.

Example 2.1.2 If D is a division algebra over k, the ring M,(D) of n x n
matrices over D is simple for all n > 1. Checking this is an exercise in matrix
theory. Indeed, we have to show that the two-sided ideal (M) in M,,(D) gener-
ated by a nonzero matrix M is M, (D) itself. Consider the matrices E;; having
1 as the j-th element of the i-th row and zero elsewhere. Since each element of
M, (D) is a D-linear combination of the Ejj, it suffices to show that E;; € (M)
for all i, j. Butin view of the relation Ey; E;; E;; = E}; we see that it is enough
to show Ej; € (M) for some i, j. Now choose i, j so that the j-th element in
the i-th row of M is a nonzero element m. Then m’lE,-[MEjj = E;;, and we
are done.

Noting the easy fact that in a matrix ring the centre can only contain scalar
multiples of the identity matrix, we get that M, (D) is a central simple algebra
over Z(D).

The main theorem on simple algebras over a field provides a converse to the
above example.

Theorem 2.1.3 (Wedderburn) Let A be a finite dimensional simple algebra
over afield k. Then there exist an integern > 1 and a division algebra D D k so
that A is isomorphic to the matrix ring M, (D). Moreover, the division algebra
D is uniquely determined up to isomorphism.

The proof will follow from the next two lemmas. Before stating them, let us
recall some basic facts from module theory. First, a nonzero A-module M is
simple if it has no A-submodules other than 0 and M.

Example 2.1.4 Let us describe the simple left modules over M,, (D), where
D is a division algebra. For all 1 < r < n, consider the subring I, C M, (D)
formed by matrices M = [m;;] with m;; = 0 for j # r. These are left ideals in
M, (D) and a simple argument with the matrices E;; of Example 2.1.2 shows
that they are also minimal with respect to inclusion, i.e. simple M,,(D)-modules.
Moreover, we have M, (D) = € I, and the I, are all isomorphic as M,,(D)-
modules. Finally, if M is a simple M,(D)-module, it must be a quotient of
M, (D), but then the induced map € I, — M must induce an isomorphism
with some /,. Thus all simple left M,,(D)-modules are isomorphic to (say) I;.

Next, an endomorphism of a left A-module M over a ring A is an A-
homomorphism M — M; these form a ring End4 (M) where addition is given
by the rule (¢ + ¥)(x) = ¢(x) + ¥ (x) and multiplication by composition of
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maps. If A is a k-algebra, then so is End4 (M), for multiplication by an ele-
ment of k defines an element in the centre of End,(M). In the case when A
is a division algebra, M is a left vector space over A, so the usual argument
from linear algebra shows that choosing a basis of M induces an isomorphism
End, (M) = M, (A), where n is the dimension of M over A.

The module M is equipped with a left module structure over End (M),
multiplication being given by the rule ¢ - x = ¢(x) forx € M, ¢ € Ends(M).

Lemma 2.1.5 (Schur) Let M be a simple module over a k-algebra A. Then
End (M) is a division algebra.

Proof The kernel of a nonzero endomorphism M — M is an A-submodule
different from M, hence it is 0. Similarly, its image must be the whole of M.
Thus it is an isomorphism, which means it has an inverse in End4(M). a

Now let M be a left A-module with endomorphism ring D = Ends(M). As
remarked above, M is naturally a left D-module, hence one may also con-
sider the endomorphism ring Endp(M). One defines a ring homomorphism
Ay @ A — Endp(M) by sending a € A to the endomorphism x — ax of M.
This is indeed a D-endomorphism, forif ¢ : M — M is an element of D, one
has ¢ - ax = ¢p(ax) = ap(x) = a¢ - x forallx € M.

Lemma 2.1.6 (Rieffel) Let L be a nonzero left ideal in a simple k-algebra A,
and put D = Ends(L). Then the map A; : A — Endp(L) defined above is an
isomorphism.

Note thatin aring A aleft ideal is none but a submodule of the left A-module A.

Proof Since Ay # 0, its kernel is a proper two-sided ideal of A. But A is
simple, so Ay is injective. For surjectivity, we show first that Az (L) is a left
ideal in Endp(L). Indeed, take ¢ € Endp(L) and [ € L. Then ¢ - A (1) is the
map x — ¢(Ix). But for all x € L, the map y — yx is an A-endomorphism of
L,i.e. an element of D. As ¢ is a D-endomorphism, we have ¢(Ix) = ¢(I)x,
and s0 ¢ - A.(I) = A.(p(])).

Now observe that the right ideal LA generated by L is a two-sided ideal,
hence LA = A. In particular, we have 1 = ) /;a; with [; € L, a; € A. Hence
for ¢ € Endp(L) we have ¢ = ¢ - 1 = ¢pAr(1) = > pAr(l;)Ar(a;). But since
Ar(L) is a left ideal, we have here ¢Ap(l;) € A (L) for all i, and thus
¢ € A (A). |

Proof of Theorem 2.1.3 As A is finite dimensional, a descending chain of
left ideals must stabilize. So let L be a minimal left ideal; it is then a simple
A-module. By Schur’s lemma, D = End4(L) is a division algebra, and by
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Rieffel’s lemma we have an isomorphism A = Endp(L). The discussion before
Lemma 2.1.5 then yields an isomorphism Endp(L) = M,(D), where n is the
dimension of L over D (it is finite as L is already finite dimensional over k).
For the unicity statement, assume that D and D’ are division algebras for
which A = M, (D) = M,,(D’) with suitable integers n, m. By Example 2.1.4,
the minimal left ideal L then satisfies D" = L = D', whence a chain of iso-
morphisms D = End4(D") = Ends(L) = Endy(D'™) = D'. O

Corollary 2.1.7 Let k be an algebraically closed field. Then every central sim-
ple k-algebra is isomorphic to M, (k) for some n > 1.

Proof By the theorem it is enough to see that there is no finite dimensional
division algebra D D k other than k. For this, let d be an element of D \ k. As
in the proof of Corollary 1.2.1 we see that there is an irreducible polynomial
f € k[x]and ak-algebrahomomorphismk[x]/(f) — D whose image contains
d. But k being algebraically closed, we have k[x]/(f) = k. O

2.2 Splitting fields

The last corollary enables one to give an alternative characterization of central
simple algebras.

Theorem 2.2.1 Let k be a field and A a finite dimensional k-algebra. Then A
is a central simple algebra if and only if there exist an integer n > 0 and a finite
field extension K |k so that A ®; K is isomorphic to the matrix ring M,(K).

We first prove:

Lemma 2.2.2 Let A be a finite dimensional k-algebra, and K |k a finite field
extension. The algebra A is central simple over k if and only if A ®; K is
central simple over K.

Proof 1If I is a nontrivial (two-sided) ideal of A, then I ®; K is a nontrivial
ideal of A ®; K (e.g. for dimension reasons); similarly, if A is not central, then
neither is A ®; K. Thus if A ®; K is central simple, then so is A.

Using Wedderburn’s theorem, for the converse it will be enough to consider
the case when A = D isadivision algebra. Under this assumption, if wy, ..., w,
isak-basisof K,then 1 ® wy, ..., 1 ® w, yields a D-basis of D ®; K as aleft
D-vector space. Given an element x = ) «;(1 ® w;) in the centre of D ®; K,
for all d € D the relation x =(d '@ Dx(d ® 1) = Y (d'o;d)(1 ® w;)
implies d ~'a;d = «a; by the linear independence of the 1 ® w;. As D is central
over k, the o; must lie in k, so D ®; K is central over K. Now if J is a nonzero
ideal in D ®; K generated by elements z, . .., z,, we may assume the z; to be
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D-linearly independent and extend them to a D-basis of D ®; K by adjoining
some of the 1 ® w;, say 1 ® w,41,...,1 ® w,. Thus for 1 <i <r we may
write

n
l®@w = Z a;;(1®@w;)+ yi,
Jj=r+1
where y; is some D-linear combination of the z; and hence an element of J. Here
yi, ..., yr are D-linearly independent (because soare 1 ® wy, ..., 1 ® w,), so
they form a D-basis of J. As J is a two-sided ideal, for all d € D we must have
d='y,d € J for 1 <i <r, so there exist B;; € D withd~'y;d = > Biy;. We
may rewrite this relation as

A@w)— Y @ 'ayd1@w) =Y Bl ®w)
=1

j=r+1
=Y Ba Y i @w),
=1  j=r+l
from which we get as above, using the independence of the 1 ® wj, that 8;; = 1,

B =0forl #iand d'a;jd = ;j, i.e. a;; € k as D is central. This means
that J can be generated by elements of K (viewed as a k-subalgebra of D ®; K
via the embedding w — 1 ® w). As K is a field, we must have J N K = K,
so J = D ®; K. This shows that D ®; K is simple. O

Proof of Theorem 2.2.1  Sufficiency follows from the above lemma and Exam-
ple 2.1.2. For necessity, note first that denoting by k an algebraic closure of k,
the lemma together with Corollary 2.1.7 imply that A ®; k = M,, (k) for some
n. Now observe that for every finite field extension K of k contained in k,
the inclusion K C k induces an injective map A ®; K — A ®; k and A ®; k
arises as the union of the A ®; K in this way. Hence for a sufficiently large
finite extension K |k contained in k the algebra A ®; K contains the elements
el,...,ep € A®; kcorresponding to the standard basis elements of M,, (k) via
the isomorphism A ®y, k = M, (k), and moreover the elements a; j occurring in
the relations e;e; = ) a;je; defining the product operation are also contained
in K. Mapping the e; to the standard basis elements of M, (K) then induces a
K -isomorphism A ®; K = M, (K). a

Corollary 2.2.3 If A is a central simple k-algebra, its dimension over k is a
square.

Definition 2.2.4 A field extension K |k over which A ®; K is isomorphic to
M, (K) for suitable n is called a splitting field for A. We shall also employ the
terminology A splits over K or K splits A.

The integer +/dim ;A is called the degree of A.



22 Central simple algebras and Galois descent

The following proposition, though immediate in the case of a perfect base
field, is crucial for our considerations to come.

Proposition 2.2.5 (Noether, Kothe) A central simple k-algebra has a splitting
field separable over k.

Proof Assume there exists a central simple k-algebra A which does not split
over any finite separable extension K |k. Fix separable and algebraic closures
k® C k of k. By the same argument as at the end of the proof of Theorem 2.2.1,
the k®-algebra A ®; k* does not split over k*, hence by Wedderburn’s theorem
it is isomorphic to some matrix algebra M, (D), where D is a division algebra
over k* different from k°. Let d > 1 be the dimension of D over k*. Then by
Corollary 2.1.7 we have D ® k = M (k). Regarding the elements of M (k)
as k-points of affine d?-space Adz, elements of D correspond to the points of
A? defined over k*. As D is a division algebra, its nonzero elements give rise to
invertible matrices in M,(k); in particular, they have nonzero determinant. Now
the map which sends an element of My(k) viewed as a point of Adz(lE) to its
determinant is given by a polynomial P in the variables x, ..., x,2; note that
P e k’[xy, ..., xz2] as its coefficients are all 1 or —1. Hence our assumption
means that the hypersurface H C A? defined by the vanishing of P contains
no points defined over k° except for the origin. But this contradicts the basic
fact from algebraic geometry (see Appendix, Proposition A.1.1) according to
which in an algebraic variety defined over a separably closed field k£* the points
defined over k° form a Zariski dense subset; indeed, such a subset is infinite if
the variety has positive dimension. O

Corollary 2.2.6 A finite dimensional k-algebra A is a central simple algebra
if and only if there exist an integer n > 0 and a finite Galois field extension K |k
so that A ®; K is isomorphic to the matrix ring M, (K).

Proof This follows from Theorem 2.2.1, Proposition 2.2.5 and the well-known
fact from Galois theory according to which every finite separable field extension
embeds into a finite Galois extension. |

Remarks 2.2.7

1. It is important to bear in mind that if A is a central simple k-algebra
of degree n which does not split over k but splits over a finite Galois
extension K |k with group G, then the isomorphism A ®; K = M, (K) is
not G-equivariant if we equip M,,(K) with the usual action of G coming
from its action on K. Indeed, were it so, we would get an isomorphism
A = M, (k) by taking G-invariants.
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2. In traditional accounts, Proposition 2.2.5 is proven by showing that the
separable splitting field can actually be chosen among the field extensions
of k that are k-subalgebras of A. We shall prove this stronger fact later in
Proposition 4.5.4. However, it is not always possible to realize a Galois
splitting field in such a way, as shown by a famous counterexample by
Amitsur (see Amitsur [2] or Pierce [1]; see also Brussel [1] for counterex-
amples over Q(¢) and Q((#))). Central simple algebras containing a Galois
splitting field are called crossed products in the literature.

We finally discuss a method for finding Galois splitting fields among k-
subalgebras of A. The basic idea is contained in the following splitting criterion,
inspired by the theory of maximal tori in reductive groups.

Proposition 2.2.8 A central simple algebra A of degree n over a field k is
split if and only if it contains a k-subalgebra isomorphic to the direct product
k' =k x---xk.

For the proof we need a well-known property of matrix algebras.

Lemma 2.2.9 The k-subalgebras in M, (k) that are isomorphic to k" are
conjugate to the subalgebra of diagonal matrices.

Proof Giving a k-subalgebra isomorphic to k" is equivalent to specifying n
elements ey, .. ., e, that form a system of orthogonal idempotents, i.e. satisfy
e} =1 forall i and e;e; = 0 for i # j. Identifying M, (k) with the endomor-
phism algebra of an n-dimensional k-vector space V, we may regard the e;
as projections to 1-dimensional subspaces V; in a direct product decomposi-
tion V=V, &---@V, of V. Choosing a vector space isomorphism V = k"
sending V; to the i-th component of k" =k @ - - - @ k gives rise to the required
conjugation. O

Proof of Proposition 2.2.8 Of course M, (k) contains subalgebras isomor-
phic to k", whence the necessity of the condition. Conversely, assume given
a k-algebra embedding i : k" — A, and let e, ..., e, be the images of the
standard basis elements of k. By Rieffel’s Lemma it will be enough to show
that Ae; is a simple left A-module and that the natural map k& — End(Ae;)
is an isomorphism. If & is algebraically closed, then A = M, (k) by Corollary
2.1.7. Lemma 2.2.9 then enables us to assume that i is the standard diago-
nal embedding k" C M, (k), for which the claim is straightforward. If k is not
algebraically closed, we pass to an algebraic closure and deduce the result by
dimension reasons. O
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Corollary 2.2.10 Let A be a central simple k-algebra of degree n containing
a commutative k-subalgebra K which is a Galois field extension of k of
degree n. Then K is a splitting field for A.

Proof By Galois theory, the K-algebra K ®; K is isomorphic to K" (see
the discussion after the statement of Lemma 2.3.8 below), and thus it is a
K -subalgebra of A ®; K to which the proposition applies. |

2.3 Galois descent

Corollary 2.2.6 makes it possible to classify central simple algebras using meth-
ods of Galois theory. Here we present such a method, known as Galois descent.

We shall work in a more general context, that of vector spaces V equipped
with a tensor ® of type (p, q). By definition, ® is an element of the tensor
product V®? ®; (V*)®4, where p, g > 0 are integers and V* is the dual space
Homy(V, k). Note the natural isomorphism

VEP @ (V¥)®1 2 Homy (VE4, V&)
coming from the general formula Homy(V, k) ®; W = Homy(V, W).
Examples 2.3.1 The following special cases will be the most important for us:

e The trivial case ® = 0 (with any p, ¢). This is just V with no additional
structure.

* p=1,q = 1.Inthis case ® is given by a k-linear endomorphism of V.

e p=0,g=2.Then ® is a sum of tensor products of k-linear functions,
i.e. a k-bilinear form V ®; V — k.

* p=1,q = 2. This case corresponds to a k-bilinear map V ®; V — V.

Note that the theory of associative algebras is contained in the last exam-
ple, for the multiplication in such an algebra A is given by a k-bilinear map
A ®; A — A satisfying the associativity condition.

So consider pairs (V, ®) of k-vector spaces equipped with a tensor of fixed
type (p, q) as above. A k-isomorphism between two such objects (V, @) and
(W, W) is given by a k-isomorphism f : V' = W of k-vector spaces such that
F1 QR (f* 1% : VO @ (V¥)® — WO @, (W*)® maps & to W. Here
f*: W* 3 V*is the k-isomorphism induced by f.

Now fix a finite Galois extension K|k with Galois group G = Gal (K |k).
Denote by Vi the K-vector space V ®; K and by ®k the tensor induced on
Vi by ®. In this way we associate with (V, ®) a K-object (Vi , ® k). We say that

(V, ®) and (W, W) become isomorphic over K if there exists a K -isomorphism
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between (Vi , ®x) and (Wg, Wk). In this situation, (W, W) is also called a
(K |k)-twisted form of (V, ®) or a twisted form for short.

Now Galois theory enables one to classify k-isomorphism classes of twisted
forms as follows. Given a k-automorphism o : K — K, tensoring by V gives
a k-automorphism Vg — Vi which we again denote by o. Each K -linear map
f: Vg — Wk induces a map o(f): Vxk — W defined by o(f)=
oo foo L If fisa K-isomorphism from (Vi, ® ) to (Wg, W), then so is
o(f). Themap f — o(f) preserves composition of automorphisms, hence we
get a left action of G = Gal (K |k) on the group Autg (®) of K-automorphisms
of (Vk, ®g). Moreover, given two k-objects (V, ®) and (W, W) as well as a
K -isomorphism g : (Vg, ®g) = (Wg, k), one gets a map G — Autg(P)
associating a, = g7 0 0(g) to 0 € G. The map a, satisfies the fundamental
relation

s = dy -0(a;) forall o,7 €G. (1)
Indeed, we compute

1

e =g 'oo(t(g) =g "oo(g)oo(g ) oa(t(g) = a, - o(ar).

Next, let h: (Vk, ®x) S (Wg, Wk) be another K -isomorphism, defining
by == h~' oo (h) for o € G. Then a, and b, are related by

ay = ¢ 'by0(c), @
where c is the K -automorphism 2! o g. We abstract this in a general definition:

Definition 2.3.2 Let G be a group and A another (not necessarily commutative)
group on which G acts on the left, i.e. there is a map (o, a) — o (a) satisfying
o(ab) = o(a)o(b) and ot(a) = o(t(a)) forall 0,7 € G and a, b € A. Then
a I-cocycle of G with values in A is a map o — a, from G to A satisfy-
ing the relation (1) above. Two 1-cocycles a, and b, are called equivalent or
cohomologous if there exists ¢ € A such that the relation (2) holds.

One defines the first cohomology set H'(G, A) of G with values in A as the
quotient of the set of 1-cocycles by the equivalence relation (2). It is a pointed
set, i.e. a set equipped with a distinguished element coming from the trivial
cocycle o +— 1, where 1 is the identity element of A. We call this element the
base point.

In our concrete situation, we see that the class [a, ] in H!'(G, Autg (P)) of the
1-cocycle a, associated with the K-isomorphism g : (Vg, ®x) = (Wi, Wg)
depends only on (W, W) but not on the map g. This enables us to state the main
theorem of this section.



26 Central simple algebras and Galois descent

Theorem 2.3.3 For a k-object (V, ®) consider the pointed set T Fg(V, ®) of
twisted (K |k)-forms of (V, @), the base point being given by (V, ®). Then the
map (W, V) — [a,] defined above yields a base point preserving bijection

TFx(V, d) < H'(G, Autg (d)).

Before proving the theorem, we give some immediate examples, leaving the
main application (that to central simple algebras) to the next section.

Example 2.3.4 (Hilbert’s Theorem 90) Consider first the case when V has
dimension n over k and @ is the trivial tensor. Then Autg (®) is just the group
GL,(K) of invertible n x n matrices. On the other hand, two n-dimensional
vector k-spaces that are isomorphic over K are isomorphic already over k, so
we get:

H'(G,GL,(K)) = {1}. 3)

This statement is due to Speiser. The case n = 1 is usually called Hilbert’s
Theorem 90 in the literature, though Hilbert only considered the case when
K |k is a cyclic extension of degree n. In this case, denoting by ¢ a generator of
G = Gal (K |k), every 1-cocycle is determined by its value a, on o. Apply-
ing the cocycle relation (1) inductively we get a,i = a,0(a,)---o'~(ay) for
all 1 <i < n. In particular, for i = n we get a,0(a,) - 0" Ya,)=a; =1
(here the second equality again follows from the cocycle relation applied with
o =1 =1).Buta,o(a,)--0""!(a,) is by definition the norm of a, for the
extension K |k. Now formula (3) together with the coboundary relation (2) imply
the original form of Hilbert’s Theorem 90:

In a cyclic field extension K |k with Gal (K |k) = (o) each element of norm 1 is
of the form o (c)c™" with some ¢ € K.

Example 2.3.5 (Quadratic forms) As another example, assume £ is of char-
acteristic different from 2, and take V to be n-dimensional and ® a tensor of
type (0,2) coming from a nondegenerate symmetric bilinear form (,) on V.
Then Autg (@) is the group O, (K) of orthogonal matrices with respect to (, )
and we get from the theorem that there is a base point preserving bijection

TFx(V,{.)) < H'(G,0,(K)).
This bijection is important for the classification of quadratic forms.

To prove the theorem, we construct an inverse to the map (W, V) — [a,].
This is based on the following general construction.

Construction 2.3.6 Let A be a group equipped with a left action by another
group G. Suppose further that X is a set on which both G and A act in a
compatible way, i.e. we have o (a(x)) = (o(a))(o(x)) forallx € X,a € A and
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o € G. Assume finally given a 1-cocycle o +— a, of G with values in A. Then
we define the twisted action of G on X by the cocycle a, via the rule

(0, %) = ag(0(x)).
This is indeed a G-action, for the cocycle relation yields

aJT(U‘E()C)) = a(,a(af)(or(x)) = ago(afr(x)).

If X is equipped with some algebraic structure (e.g. it is a group or a vector
space), and G and A act on it by automorphisms, then the twisted action is also
by automorphisms. The notation ,X will mean X equipped with the twisted
G-action by the cocycle a, .

Remark 2.3.7 Readers should be warned that the above construction can only
be carried out on the level of cocycles and not on that of cohomology classes:
equivalent cocycles give rise to different twisted actions in general. For instance,
take G = Gal (K |k), A = X = GL,(K), acting on itself by inner automor-
phisms. Then twisting the usual G-action on GL,(K) by the trivial cocycle
o +— 1 does not change anything, whereas if o — a, is a 1-cocycle with a,, a
noncentral element for some o, then a_ 'o(x)a, # o(x) for a noncentral x, so
the twisted action is different. But a 1-cocycle G — GL,(K) is equivalent to
the trivial cocycle by Example 2.3.4.

Now the idea is to take a cocycle a, representing some cohomology class
in H'(G, Autg(®)) and to apply the above construction with G = Gal (K |k),
A = Autg(®) and X = Vi. The main point is then to prove that taking the
invariant subspace (, Vx)© under the twisted action of G yields a twisted form
of (V, ).

We show this first when & is trivial (i.e. we in fact prove Hilbert’s
Theorem 90). The statement to be checked then boils down to:

Lemma 2.3.8 (Speiser) Let K |k be a finite Galois extension with group G,
and V a K -vector space equipped with a semi-linear G-action, i.e. a G-action
satisfying

o(A)=0R)o(v) forall o €e G,veV and X € K.
Then the natural map
A VO K -V
is an isomorphism, where the superscript G denotes invariants under G.

Before proving the lemma, let us recall a consequence of Galois theory. Let
K |k be a Galois extension as in the lemma, and consider two copies of K, the
first one equipped with trivial G-action, and the second one with the action of
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G as the Galois group. Then the tensor product K ®; K (endowed with the
G-action given by o (a ® b) = a ® o(b)) decomposes as a direct sum of copies
of K:

K @K =P Ke,.

oeG
where G acts on the right-hand side by permuting the basis elements e, . To see
this, write K = k[x]/(f) with f some monic irreducible polynomial f € k[x],
and choose aroot « of f in K. As K |k is Galois, f splits in K[x] as a product
of linear terms of the form (x — o(«)) for o € G. Thus using a special case of
the Chinese Remainder Theorem for rings (which is easy to prove directly) we
get

K ® K = K[x]/(f) = K[x]/ <l_[<x - a(a)) =~ (P Klxl/x — o(@)).

oeG oceG

whence a decomposition of the required form.

Proof Consider the tensor product V ®; K, where the second factor K carries
trivial G-action and V the G-action of the lemma. It will be enough to prove that
the map Ag : (V ®x K ® K — V@ Kisan isomorphism. Indeed, by our
assumption about the G-actions we have (V ®; K )¢ = VS ®; K, and hence
we may identify Ag with the map (V¢ ®; K) @ K — V ®; K obtained by
tensoring with K. Therefore if A had a nontrivial kernel A (resp. a nontrivial
cokernel B), then Ax would have a nontrivial kernel A ®; K (resp. a nontrivial
cokernel B ®; K).

Now by the Galois-theoretic fact recalled above, the K ®; K-module
V @ K decomposes as a direct sum V ®; K = @ We,, with o(e;) = ¢,
for 0 € G. It follows that (V ®; K)¢ = We;, whence we derive the required
isomorphism (V ®; K)° @ K =@ We, =V @ K. O

Remark 2.3.9 We could have argued directly for A, by remarking that K
decomposes as a product K = P ke, with o (e;) = e, according to the normal
basis theorem of Galois theory. The above proof, inspired by flat descent theory,
avoids the use of this nontrivial theorem.

Proof of Theorem 2.3.3 As indicated above, we take a 1-cocycle a, repre-
senting some cohomology class in H'(G, Autg(®)) and consider the invariant
subspace W := (,Vk)®. Next observe that o(®g) = ®x for all o € G (as
O comes from the k-tensor ®) and also a,(Pg) = $k for all o € G (as
a, € Autg(®)). Hence a,0(®g) = Ok for all o € G, which means that ®g
comes from a k-tensor on W. Denoting this tensor by W, we have defined
a k-object (W, W). Speiser’s lemma yields an isomorphism W ®; K = Vg,
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and by construction this isomorphism identifies Wx with ®x. Thus (W, V)
is indeed a twisted form of (V, ®). If a, = ¢~'b, 0 (c) with some 1-cocycle
o + by and ¢ € Autg (D), we get from the definitions (, Vx )¢ = c(W), which
is a k-vector space isomorphic to W. To sum up, we have a well-defined map
HY (G, Autg (®)) = T Fg(V, ®). The kind reader will check that this map is
the inverse of the map (W, W) +— [a,] of the theorem. O

Remark 2.3.10 There is an obvious variant of the above theory, where instead
of a single tensor ® one considers a whole family of tensors on V. The K-
automorphisms to be considered are then those preserving all tensors in the
family, and twisted forms are vector spaces W isomorphic to V over K such
that the family of tensors on Wk goes over to that on Vg viathe K -isomorphism.
The descent theorem in this context is stated and proven in the same way as
Theorem 2.3.3.

2.4 The Brauer group

Now we come to the classification of central simple algebras. First we recall a
well-known fact about matrix rings:

Lemma 2.4.1 Over a field K all automorphisms of the matrix ring M,,(K) are
inner; i.e. given by M +— CMC™! for some invertible matrix C.

Proof Consider the minimal leftideal /; of M, (K ) described in Example 2.1.4,
and take an automorphism A € Aut(M,(K)). Replacing A by a conjugate with a
suitable matrix, we may assume A(/;) = I;. Letey, ..., e, be the standard basis
of K. Mapping a matrix M € I; to Me; induces an isomorphism /; = K" of
K -vector spaces, and thus A induces an automorphism of K”. As such, itis given
by an invertible matrix C. We get that for all M € M, (K), the endomorphism
of K" defined in the standard basis by A(M) has matrix CMC~', whence the
lemma. O

Corollary 2.4.2 The automorphism group of M,,(K) is the projective general
linear group PGL,, (K).

Proof There is a natural homomorphism GL,(K) — Aut(M,(K)) mapping
C € GL,(K) to the automorphism M > CMC~'.Itis surjective by the lemma,
and its kernel consists of the centre of GL,(K), i.e. the subgroup of scalar
matrices. O

Now take a finite Galois extension K |k as before, and let CSA g (n) denote
the set of k-isomorphism classes of central simple k-algebras of degree n split
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by K. We regard it as a pointed set, the base point being the class of the matrix
algebra M, (k).

Theorem 2.4.3 There is a base point preserving bijection

CSAk(n) < H'(G,PGL,(K)).

Proof By Corollary 2.2.6 the central simple k-algebras of degree n are
precisely the twisted forms of the matrix algebra M, (k). To see this, note
that as explained in Example 2.3.1, an n’-dimensional k-algebra can be
considered as an n?-dimensional k-vector space equipped with a tensor of
type (1,2) satisfying the associativity condition. But on a twisted form of
M, (k) the tensor defining the multiplication automatically satisfies the asso-
ciativity condition. Hence Theorem 2.3.3 applies and yields a bijection of
pointed sets CSAg(n) < H'(G, Aut(M,(K)). The theorem now follows by
Corollary 2.4.2. O

Our next goal is to classify all central simple k-algebras split by K by means
of a single cohomology set. This should then carry a product operation, for
tensor product induces a natural commutative and associative product operation
on the set of isomorphism classes of central simple algebras, as shown by the
following lemma.

Lemma 2.4.4 If A and B are central simple k-algebras split by K, then so is
A ®; B.

Proof Inview of the isomorphism (A ®; K) ®k (B ®x K)=(A Qr B) ® K
and Theorem 2.2.1, it is enough to verify the isomorphism of matrix algebras
M,(K)®k M,,(K) = M,,,(K). This was done in Lemma 1.5.1. a

By the lemma, we have a product operation
CSAk(n) x CSAx(m) - CSAk(mn)

induced by the tensor product. Via the bijection of Theorem 2.4.3, this should
correspond to a product operation

H'(G,PGL,(K)) x H'(G,PGL,,(K)) - H'(G,PGL,,(K)) (4
on cohomology sets. To define this product directly, note that the map
Endg(K") ® Endg(K™) — Endg (K" ® K™)
given by (¢, V) — ¢ ® ¥ restricts to a product operation

GL,(K) x GL,,(K) — GL,,,(K)
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on invertible matrices which preserves scalar matrices, whence a product
PGL,(K) x PGL,,(K) — PGL,,,(K).

This induces a natural product on cocycles, whence the required product
operation (4).

Next observe that for all n, m > 0 there are natural injective maps GL,,(K) —
GL,,;»(K) mapping amatrix M € GL,,(K) to the block matrix given by m copies
of M placed along the diagonal and zeros elsewhere. As usual, these pass to
the quotient modulo scalar matrices and finally induce maps

Amn © H'(G,PGL,,(K)) — H'(G, PGL,,,(K))

on cohomology. Via the bijection of Theorem 2.4.3, the class of a central simple
algebra A in HY(G,PGL,,(K)) is mapped to the class of A ®; M, (k) by Apy,.

Lemma 2.4.5 The maps M\, are injective for allm,n > 0.

Proof Assume A and A’ are central simple k-algebras with A ®, M, (k) =
A’ ®; M, (k). By Wedderburn’s theorem they are matrix algebras over division
algebras D and D’, respectively, hence so are A ®; M, (k) and A’ ®; M, (k).
But then D = D’ by the unicity statement in Wedderburn’s theorem, so finally
A = A’ by dimension reasons. O

The lemma prompts the following construction.

Construction 2.4.6 Two central simple k-algebras A and A’ are called Brauer
equivalent or similarif A ®; M,,(k) = A’ ® M, (k) for some m, m’ > 0. This
defines an equivalence relation on the union of the sets CSAg (n). We denote
the set of equivalence classes by Br (K |k) and the union of the sets Br (K |k)
for all finite Galois extensions by Br (k).

Remarks 2.4.7 Brauer equivalence enjoys the following basic properties.

1. One sees from the definition that each Brauer equivalence class contains
(up to isomorphism) a unique division algebra. Thus we can also say that
Br (K |k) classifies division algebras split by K.

2. It follows from Wedderburn’s theorem and the previous remark that if A
and B are two Brauer equivalent k-algebras of the same dimension, then
A= B.

The set Br (K |k) (and hence also Br (k)) is equipped with a product operation
induced by tensor product of k-algebras; indeed, the tensor product manifestly
preserves Brauer equivalence.

Proposition 2.4.8 The sets Br (K |k) and Br (k) equipped with the above prod-
uct operation are abelian groups.
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Before proving the proposition, we recall a notion from ring theory: the
opposite algebra A° of a k-algebra A is the k-algebra with the same underlying
k-vector space as A, but in which the product of two elements x, y is given by
the element yx with respect to the product in A. If A is central simple over k,
then so is A°.

Proof Basic properties of the tensor product imply that the product operation
is commutative and associative. Now let A represent a class in Br (K |k); we
show that the class of A° yields an inverse. To see this, define a k-linear map
A ®; A° — End;(A) by sending ) a; ® b; to the k-linear map x — Y a;xb;.
This map is manifestly nonzero, and hence injective, because A ®; A° is simple
by Lemma 2.4.4. Thus it is an isomorphism for dimension reasons.

O

Definition 2.4.9 We call Br (K |k) equipped with the above product operation
the Brauer group of k relative to K and Br (k) the Brauer group of k.

Now define the set H'(G,PGLy) as the union for all n of the sets
H'(G, PGL,(K)) via the inclusion maps A,,,, equipped with the product oper-
ation coming from (4) (which is manifestly compatible with the maps A,,;,).
Also, observe that for a Galois extension L|k containing K, the natural surjec-
tion Gal (L|k) — Gal (K |k) induces injective maps

H'(Gal (K |k), PGL,(K)) — H'(Gal(L|k), PGL,(K))
for all n, and hence also injections
1k © H'(Gal(K|k), PGLy) — H'(Gal (L|k), PGLy).

Fixing a separable closure k; of k, we define H I(k, PGL4,) as the union over
all Galois extensions K |k contained in k; of the groups H'!(Gal (K |k), PGL)
via the inclusion maps ¢, . The arguments above then yield:

Corollary 2.4.10 The sets H' (G, PGLy,) and H' (k, PGLy) equipped with the
product operation coming from (4) are abelian groups, and there are natural
group isomorphisms

Br(K|k)= H'(G,PGLy) and Br(k) = H'(k,PGL4).

Remark 2.4.11 The sets H'(G, PGL,,) are not cohomology sets of G in the
sense defined so far, but may be viewed as cohomology sets of G with values in
the direct limit of the groups PGL,,(K) via the maps A,,,. Still, this coefficient
group is fairly complicated. Later we shall identify Br (K |k) with the second
cohomology group of G with values in the multiplicative group K*, a group
that is much easier to handle.
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2.5 Cyclic algebras

We are now in the position to introduce a class of algebras that will play a
central role in this book.

Construction 2.5.1 (Cyclic algebras) Let K |k be a cyclic Galois extension
with Galois group G = Z/mZ. In the sequel we fix one such isomorphism
x : G 5 Z/mZ,; it is a character of G. Furthermore, let b € k* be given. We
associate with these data a central simple algebra over k which is a K |k-twisted
form of the matrix algebra M,,(k). To do so, consider the matrix

00 --- 0 b
10 - 00
Foy=|0 1

0 0| eGL,®.
00 --- 10
We denote by F(b) its image in the group PGL,, (k). A computation shows that
F®b)" =b - I,,and hence F(b)" = 1;infact, the element F(b) has exact order
m in PGL,, (k).
Now consider the homomorphism Z/mZ — PGL,, (k) defined by sending 1

to F(b). Embedding PGL,, (k) into PGL,,(K) and composing by x we thus get
a l-cocycle

z(b) : G — PGL,,(K).

We now equip the matrix algebra M,,(K) with the twisted G-action
«6yM,» (K) coming from z(b) (see Construction 2.3.6) and take G-invariants. By
Theorem 2.4.3 (and its proof), the resulting k-algebra is a central simple algebra
splitby K. We denote it by (x, b), and call it the cyclic algebra associated with
x and b.

We now come to the definition of cyclic algebras originally proposed by
Dickson.

Proposition 2.5.2 The algebra (x, b) can be described by the following pre-
sentation. There is an element y € (x, b) such that (x, b) is generated as a
k-algebra by K and y, subject to the relations

y'=b, Aiy=yo(}) ®)
forall . € K, where o is the generator of G mapped to 1 by .

In particular, we see that K is a commutative k-subalgebra in (x, b) which
is not contained in the centre.
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Proof Denote by A the k-algebra given by the presentation of the proposition
and define a k-algebra homomorphism j : A — M,,(K) by setting

jiy) = f(b) and j(A) =diag(A,o(X), - - ,o™'(r) forreK.

(where diag(...) means the diagonal matrix with the indicated entries), and
extending k-linearly. To see that this is indeed a homomorphism, one checks
by direct computation that the relation

JOYE(b) = F(b)j(o (L) (6)

holds for all A € K; the relation F (b)™ = b has already been noted above.
Next we check that the image of j lands in (x, b). For this, recall that by
definition the elements of ;) M,,(K)® are those matrices M which satisfy
If’;(b)cr(M)l‘?(b)’1 = M. This relation is obviously satisfied by j(y) = F(b)
as it is in M,,(k), and for the j(A) it follows from relation (6) above, which
proves the claim. Finally, we have to check that j is an isomorphism. For
dimension reasons it is enough to check surjectivity, which in turn can be done
after tensoring by K. The image of j ® idg in (x, b) ® K = M,,(K)is the K-
subalgebra generated by F (b) and the diagonal subalgebra K @ --- @ K. If E; ;
is the usual basis of M,,(K), it therefore remains to check that the E; ;s belong
to this subalgebra fori # j. This is achieved by computing E; ; = F (b)Y E;
fori # j. O

The following proposition provides a kind of a converse to the previous one.

Proposition 2.5.3 Assume that A is a central simple k-algebra of degree m
containing a k-subalgebra K which is a cyclic Galois field extension of degree
m. Then A is isomorphic to a cyclic algebra given by a presentation of the
form (5).

The crucial point in the proof is the following statement.

Lemma 2.5.4 Under the assumptions of the proposition there exists y € A
such that

ylxy =o)
forall x € K, where o is a generator of G = Gal (K |k).

Proof In order to avoid confusing notation we take another extension K of
k 1somorph1c to K and put G := Gal (K |k). By Proposmon 2 2.8 the algebra
A ®y K is spht as it contalns the K - -subalgebra K D K=Km The embed-
ding K ®; K— A Rk K is G- -equivariant, where G acts on K B K via the
second factor. On the other hand, the group G acts on K ®; K via the first
factor, and the two actions commute. As seen before the proof of Lemma 2.3.8,
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under the isomorphism K ®y K = K" the action of G corresponds to per-
mutlng the components on the rlght -hand side. Under the diagonal embedding
K@K > A K = M, (K ) we may identify permutation of the compo-
nents of the diagonal with conjugation by a permutation matrix, so we find an
element y € GLm(IF{V) = (A Qr E)X satisfying

o(x)=y 'xyforallx € K ® K. 7

We now show that we may choose y in the subgroup A* C (A ® K ), which
will conclude the proof of the lemma.

ForallT e Gandx € K (where we view K embedded into K ®; K via the
first factor), we have

o(x) = o(T(x) = To(x) = Ty HT)T(y) = T(») ' x T(),

using that the two actions commute and that G acts trivially on K. Thus
7z = yT(y)~' satisfies z;l x zz = x for all x € K. It follows that zz lies in
ZA(K) ®p K , where Z4(K) stands for the centralizer of K in A. The natu-
ral embedding K — Z4(K) is an isomorphism, as one sees by passing to the
split case and counting dimensions. Thus the function T+ zz has values in
(K ® K )*, and moreover it is a 1- cocycle for G by construction.

Now observe that the group H' (G (K ®y K )*) is trivial. Indeed, the group
(K ®x K)X is the automorphism group of the K ®; K- -algebra K ®; K SO
by Theorem 2.3.3 the group H' (G, (K Q¢ K )*) classifies those K—algebras
B for which B ®; K=K R K. But these K -algebras must be isomorphic
to K by dimension reasons, whence the claim. In view of this claim we find
yo € (K ®; K)* such that yZ(y)~! = yoT(yo)~! forall T € G. Up to replacing
yby y, 'y in the equation (7), we may thus assume that T(y) = y for all 7, i.e.
y € A%, as required. |

Proof of Proposition 2.5.3  We first prove that the element y of the previous
lemma satisfies y”* € k. To see this, apply formula (7) to o(x) in place of
x, with x € K. It yields o>(x) = y~2xy?, so iterating m — 1 times we obtain
x =0™(x) = y "xy™. Thus y™ commutes with all x € K and hence lies in K
by the equality Z4(K) = K noted above. Now apply (7) with x = y™ to obtain
o(y™) =y" ie. y" €k.

Setting b := y™, to conclude the proof it remains to show that the elements of
K and the powers of y generate A. For this it suffices to check that the elements
1,y,...,y" ! are K-linearly independent in A, where K acts by right multi-
plication. If not, take a nontrivial K -linear relation ¥ y'A; = 0 with a minimal
number of nonzero coefficients. After multiplying by a power of y we may
assume that Ay and some other A; are not 0. Choose ¢ € K* with ¢ # o(c).
Using equation (7) and its iterates we may write £y'o’(c)A; = c(Zy'A;) = 0.
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It follows that Xy’ (cA; — o’ (c)X;) = 0 is a shorter nontrivial relation, a contra-
diction. o

In special cases one gets even nicer presentations for cyclic algebras. One of
these is when m is invertible in k, and k contains a primitive m-th root of unity
o. In this case, for a, b € k* define the k-algebra (a, b),, by the presentation

(a,b)p = (x,y|x" =a, y" =b, xy=wyx).

In the case m = 2, w = —1 one gets back the generalized quaternion algebras
of the previous chapter.

Another case is when k is of characteristic p > 0 and m = p. In this case for
a € k and b € k* consider the presentation

[aab)=<xay|xp_-x=av yp:bv xy:y(x+1)>

Note that the equation x” — x = a defines a cyclic Galois extension of degree p
whose Galois group is given by the substitutions ¢ > a +i (0 <i <p—1)
for some root «. In the case p = 2 this definition is coherent with that of
Remark 1.1.8.

Corollary 2.5.5

1. Assume that k contains a primitive m-th root of unity and that we may write
K in the form K = k(%/a) with some m-th root of an element a € k. Let
X : Gal(K|k) = Z/mZ be the isomorphism sending the automorphism
o: ¥ar> wa to 1. Then for all b € k* there is an isomorphism of
k-algebras

(a,b), = (x,b).

2. Similarly, assume that k has characteristic p > 0, m = p and K|k is
a cyclic Galois extension defined by a polynomial x? — x + a for some
ack. Fixarooto of x? —x —a and let x : Gal(K|k) = Z/pZ be the
isomorphism sending the automorphism o : « +— o + 1 to 1. Then for all
b € k> there is an isomorphism of k-algebras

la, D) = (., b).
In particular, (a, b),, and [a, b) are central simple algebras split by K.
Proof 1In (1), one gets the required isomorphism by choosing as generators of

(x, b) the element x = %/a and the y given by the proposition above. In (2),
one chooses x = « and y as in the proposition. O

Remark 2.5.6 In fact, we shall see later that according to Kummer theory
(Corollary 4.3.9) in the presence of a primitive m-th root of unity one may write
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an arbitrary degree m cyclic Galois extension K |k in the form K = k(/a), as
in the corollary above. Similarly, Artin—Schreier theory (Remark 4.3.13 (1))
shows that a cyclic Galois extension of degree p in characteristic p > 0 is
generated by a root of some polynomial x” — x — a.

In the previous chapter we have seen that the class of a nonsplit quaternion
algebra has order 2 in the Brauer group. More generally, the class of a cyclic
division algebra (a, b),, as above has order m; we leave the verification of this
fact as an exercise to the reader. Thus the class of a tensor product of degree m
cyclic algebras has order dividing m in the Brauer group. The remarkable fact
is the converse:

Theorem 2.5.7 (Merkurjev—Suslin) Assume that k contains a primitive m-th
root of unity w. Then a central simple k-algebra whose class has order dividing
m in Br (k) is Brauer equivalent to a tensor product

(ar, b1)w Bk -+ - B (ai, bi)w
of cyclic algebras.

This generalizes Merkurjev’s theorem from the end of Chapter 1. In fact,
Merkurjev and Suslin found this generalization soon after the first result of
Merkurjev. It is this more general statement whose proof will occupy a major
part of this book.

Remark 2.5.8 One cannot replace ‘Brauer equivalence’ with ‘isomorphism’
in the theorem. We have quoted a counterexample with m = 2 at the end of
Chapter 1; for examples with m an odd prime and i = 2, see Jacob [1] and
Tignol [1].

Here is an interesting corollary of the Merkurjev—Suslin theorem of which
no elementary proof is known presently.

Corollary 2.5.9 For k and A as in the theorem above, there exist elements
ai, ..., a; € k™ such that the extension k({/a, ..., {/Ei)|k splits A. In partic-
ular, A is split by a Galois extension with solvable Galois group.

2.6 Reduced norms and traces

We now discuss a construction which generalizes the quaternion norm encoun-
tered in the previous chapter.

Construction 2.6.1 (Reduced norms and traces) Let A be a central simple
k-algebra of degree n. Take a finite Galois splitting field K |k with group G, and
choose a K -isomorphism ¢ : M, (K) = A ®; K.Recall that the isomorphism
¢ is not compatible with the action of G. However, if we twist the usual action of
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G on M,,(K) by the 1-cocycle o — a, witha, = ¢~ o o(¢) associated with A
by the descent construction, then we get an isomorphism ,M,(K) = A ®; K
that is already G-equivariant, whence an isomorphism (, M,,(K))¢ = A.

Now consider the determinant map det : M,(K) — K.Forallo € G, lifting
a, to an invertible matrix C, € GL,(K) we get

det (C,o(M)C; ") = det(o (M) = o (det(M))

by multiplicativity of the determinant and its compatibility with the usual
G-action. Bearing in mind that the twisted G-action on ,M,,(K) is given by
(o, M) — a(,o(M)a;I, this implies that the map det : ,M,(K) — K is com-
patible with the action of G. So by taking G-invariants and using the isomor-
phism above we get amap Nrd : A — k, called the reduced norm map. On the
subgroup A* of invertible elements of A it restricts to a group homomorphism
Nrd: A — k*.

The above construction does not depend on the choice of ¢, for changing ¢
amounts to replacing a, by an equivalent cocycle, i.e. replacing the matrix C
above by some D —1C D, which does not affect the determinant. The construction
does not depend on the choice of K either, as one sees by embedding two Galois
splitting fields K, L into a bigger Galois extension M |k.

By performing the above construction using the trace of matrices instead of
the determinant, one gets a homomorphism Trd : A — k of additive groups
called the reduced trace map.

The reduced norm map is a generalization of the norm map for quaternion
algebras, as one sees from Proposition 1.2.4. Just like the quaternion norm, it
enjoys the following property:

Proposition 2.6.2 In a central simple k-algebra A an element a € A is invert-
ible if and only if Nrd(a) # 0. Hence A is a division algebra if and only if Nrd
restricts to a nowhere vanishing map on A\O.

Proof If a is invertible, it corresponds to an invertible matrix via any isomor-
phism ¢ : A ®x K = M, (K), which has nonzero determinant. For the con-
verse, consider ¢ as above and assume an element a € A maps to a matrix with
nonzero determinant. It thus has an inverse b € M,(K). Now in any ring the
multiplicative inverse of an element is unique (indeed, if 4’ is another inverse,
one has b = bab’ = b’), so for an automorphism o4 € Aut;(A ®; K) coming
from the action of an element o € Gal (K |k) on K we have o4(b) = b. As A
is the set of fixed elements of all the o4, this implies b € A. O

We now elucidate the relation with other norm and trace maps. Recall that
given a finite dimensional k-algebra A, the norm and the trace of an element
a € A are defined as follows: one considers the k-linear mapping L, : A — A
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given by L,(x) = ax and puts
Na(a) := det(L,), trap(a) :=tr(L,).

By definition, these norm and trace maps are insensitive to change of the base
field.

Proposition 2.6.3 Let A be a central simple k-algebra of degree n.

1. Onehas Ny = (Nrdn)" and tr g = n Trdy.
2. Assume that K is a commutative k-subalgebra of A which is a degree n
field extension of k. For any x € K one has

NrdA(x) = NK‘]((X) and TrdA(x) = trmk(x).

Proof To prove (1) we may assume, up to passing to a splitting field of A,
that A = M,,(k). The required formulae then follow from the fact that for
M € M,(k), the matrix of the multiplication-by-M map Lj; with respect to
the standard basis of M, (k) is the block diagonal matrix diag(M, ..., M).

To check (2), note first that as a K -vector space the algebra A is isomorphic
to the direct power K". For x € K we thus have Ny(x) = (Ngp(x))" and
trae(x) = ntr gk (x). By part (1) there exists an n-th root of unity w(x) such
that Nrd4 (x) = w(x) Nk (x). To show that w(x) = 1 we use the following trick.
Performing base change from k to k(¢) and applying the previous formula to
t +x € K(t)* yields the equality

Nrda(f + x) = ot + x)Ngp(t + x).

Since Nrd4(t + x) and Nk (¢ + x) are monic polynomials in 7, we obtain
w(t +x) =1, and therefore Nrd(t 4+ x) = Ngi(t +x). We then get the
desired formula Nrd4 (x) = Nk x(x) by specializing this polynomial identity to
t = 0. To handle the trace formula Trd 4 (x) = trgx(x), it then suffices to look at
the coefficients of 7 in the polynomial identity Nrd4(1 + tx) = Ng (1 4 tx).
O

We conclude by the following result that we shall need later. For a general-
ization, see Exercise 8.

Proposition 2.6.4 Let k be a field, and let A be a central division algebra of
prime degree p over k. An element ¢ € k™ is a reduced norm from A if and
only if c € Ng(K™) for some k-subalgebra K C A which is a degree p field
extension of k and moreover a splitting field for A.

Proof Sufficiency follows from part (2) of the previous proposition. To check
necessity, take a € A* suchthatc = Nrd(a).Ifa ¢ k,let K be the k-subalgebra
generated by a, which is necessarily a degree p field extension of k since A is
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a division algebra of degree p. If a € k, take K to be any degree p subfield of
A obtained in the above way. Since A ®; K contains K ®; K which is not a
division algebra, A ®; K itself is not a division algebra and thus can only be
isomorphic to the matrix algebra M, (K) by Wedderburn’s theorem. Thus K is
a degree p splitting field for A, and we again conclude by part (2) of the above
proposition. O

2.7 A basic exact sequence

In this section we first establish a formal proposition which, combined with the
descent method, is a main tool in computations.

Proposition 2.7.1 Let G be a group and
l1>A—>B—>C—1

an exact sequence of groups equipped with a G-action, the maps being G-
homomorphisms. Then there is an exact sequence of pointed sets

1> A - B - cY - HYG, A) > HG, B) > H'(G, O).

By definition, an exact sequence of pointed sets is a sequence in which the
kernel of each map equals the image of the previous one, the kernel being the
subset of elements mapping to the base point.

Proof The only nonobvious points are the definition of the map § : C¢ —
H'(G, A) and the exactness of the sequence at the third and fourth terms.
To define 8, take an element ¢ € CY and lift it to an element b € B via the
surjection B — C. For all o € G the element bo'(b)~! maps to 1 in C because
¢ = o(c) by assumption, so it lies in A. Immediate calculations then show that
the map o + bo(b)~! is a 1-cocycle and that modifying b by an element of A
yields an equivalent cocycle, whence a well-defined map § as required, sending
elements coming from BY to 1. The relation §(c) = 1 means by definition
that bo (b)~! = a~'o(a) for some a € A, so c lifts to the G-invariant element
ab in B. This shows the exactness of the sequence at the third term, and the
composition C¢ — H'(G, A) — H'(G, B)is trivial by construction. Finally,
that a cocycle o +> a, with values in A becomes trivial in H'(G, B) means that
a, = b~'a(b) forsome b € B, and modifyingo + a, by an A-coboundary we
may choose b so that its image c in C is fixed by G; moreover, the cohomology
class of o — a, depends only on c. |

As a first application, we derive a basic theorem on central simple algebras.

Theorem 2.7.2 (Skolem—Noether) All automorphisms of a central simple
algebra are inner, i.e. given by conjugation by an invertible element.
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Proof Let A be a central simple k-algebra of degree n and K a finite Galois
splitting field of A. Denoting by A* the subgroup of invertible elements of A
and using Lemma 2.4.1 we get an exact sequence

1 > KX = (A®; K)* — Autg(A®; K) — 1

of groups equipped with a G = Gal (K |k)-action, where the second map maps
an invertible element to the inner automorphism it defines. Proposition 2.7.1
then yields an exact sequence

1 > kX - A — Aut(A) - HY(G, K*),

where the last term is trivial by Hilbert’s Theorem 90. The theorem follows.
O

As another application, we derive from Proposition 2.7.1 a useful cohomo-
logical characterization of reduced norms. First a piece of notation: for a central
simple algebra A, we denote by SL; (A) the multiplicative subgroup of elements
of reduced norm 1.

Proposition 2.7.3 Let A be a central simple k-algebra split by a finite Galois
extension K |k of group G. There is a canonical bijection of pointed sets

H'(G, SLi(A ®; K)) <> k> /Nrd(A™).
For the proof we need a generalization of Example 2.3.4.

Lemma 2.7.4 For A, K and G as above, we have H' (G, (A ®; K)*) = 1.

Proof Let M be a left A-module with dim;M = dim;A. Then M is iso-
morphic to the left A-module A. Indeed, since A = M, (D) by Wedderburn’s
theorem, it is isomorphic to a direct sum of the minimal left ideals /, introduced
in Example 2.1.4; these are all isomorphic simple A-modules. As M is finitely
generated over A, there is a surjection AV — M for some N > 0, so M must
be isomorphic to a direct sum of copies of I, as well and hence isomorphic to
A for dimension reasons.

On the other hand, multiplication by an element of A is an endomorphism of
M as a k-vector space. By the second example in Example 2.3.1 combined with
Remark 2.3.10, the module M can thus be considered as a k-object (M, ®) to
which the theory of Section 2.3 applies. Now M ®; K is an A ®; K-module
of rank 1, and hence isomorphic to A ®; K as above. An automorphism of
A ®; K as a left module over itself is given by right multiplication by an
invertible element, thus Autg (M ®; K) = (A ®; K)*. The lemma then follows
from Theorem 2.3.3 (more precisely, from its variant in Remark 2.3.10). |



42 Central simple algebras and Galois descent

Proof of Proposition 2.7.3  Applying Proposition 2.7.1 to the exact sequence

1 > SLIA® K) = (A® K)* X kx5 1

we get an exact sequence
A% N % HY(G. SLi(A @ K)) — H' (G, (A & K)¥).

where the last term is trivial by the lemma above. |

2.8 K, of central simple algebras

The main result of this section is a classical theorem of Wang on commutator
subgroups of division algebras. Following the present-day viewpoint, we dis-
cuss it within the framework of the K-theory of rings. Therefore we first define
the group K for a ring.

Construction 2.8.1 Given a not necessarily commutative ring R with unit and
a positive integer n, consider the group GL,(R) of n x n invertible matrices
over R. For each n there are injective maps i, ,4+1 : GL,(R) — GL,4;(R) given

by
A 0
innt1(A) = . (8)
0 1

Let GL(R) be the union of the tower of embeddings
GL|(R) C GLy(R) CGL3(R) C - - -,

given by the maps i, ,+1. (Note that this definition of GL, is not compatible
with the definition of PGL,, introduced in Section 2.4.)

We define the group K;(R) as the quotient of GL,,(R) by its commutator
subgroup [G L (R), GL«(R)]. This group is sometimes called the Whitehead
group of R. It is functorial with respect to ring homomorphisms, i.e. a map
R — R’ of rings induces a map K{(R) — K{(R').

For calculations the following description of the commutator subgroup
[GLs(R), GL(R)] is useful. A matrix in GL,(R) is called elementary if all
of its diagonal entries are equal to 1 and moreover it has at most one nonzero
off-diagonal entry. We denote by E;;(r) the elementary matrix with r in the
i-th row and j-th column and by E, (R) the subgroup of GL,(R) generated
by elementary matrices. The maps i, ,4+; preserve these subgroups, whence a
subgroup Eo(R) C GLy(R).

Proposition 2.8.2 (Whitehead’s Lemma) The subgroup E.(R) is precisely
the commutator subgroup [GLy(R), GLx(R)] of GLoo(R).
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The proof uses the following lemma.

Lemma 2.8.3 Any upper triangular n x n matrix with 1’s in the diagonal is a
product of elements of E,(R). A similar statement holds for lower triangular
matrices.

Proof It suffices to treat the case of an upper triangular matrix A = [a;;].
Multiplication on the right by the elementary matrix Ejy(—ajz) produces
a matrix A’ = [alfj] with aj, = 0. Then multiplication by E»3(—a»3) pro-
duces A” = [a];] with af, = ay; = 0. Continuing the process we get a matrix
B = [b;;] which is still upper triangular with 1s in the diagonal but has 0’s in
the subdiagonal j = i + 1. Then multiplication by E3(—b;3) annihilates the
first element of the subdiagonal j = i + 2. Continuing the process we finally
arrive at the identity matrix. O

Proof of Theorem 2.8.2  The relation E;;(r) = [Ey(r), Ex;j(1)] for dis-
tinct i, j and k is easily checked by matrix multiplication and shows that
E«(R) is contained in [Ex(R), Exo(R)] C [GLx(R), GLy(R)]. To show
[GLs(R), GLy(R)] C Ex(R), we embed GL,(R) into GL,,(R) and for
A, B € GL,(R) compute

ABA~'B~1 0 AB 0 A7l 0 B! 0
0 1| | o B a7 0 A 0 B

All terms on the right are of similar shape. Denoting by I, the identity matrix,
another computation shows that

A 0 I, A L, 0711 A1[0 -—I, .
0o A o ,||l=a" 15,|lo 5,1, o ©

and similarly for the other terms. The first three terms on the right-hand side
are upper or lower triangular matrices with 1s in the diagonal, so the lemma
applies. For the fourth, notice that

0 _In In _In In 0 In _In
L, ol o 5 |lL Lllo L]
so the lemma applies again. O

Using Whitehead’s lemma we may easily calculate K-groups of fields.

Proposition 2.8.4 For a field k the natural map k* = GL;(k) - GL (k)
induces an isomorphism k* = K, (k).
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Proof We first show surjectivity. It is well known from linear algebra that
a matrix in M, (k) may be put in diagonal form by means of elementary row
and column operations, i.e. by multiplication with suitable elementary matrices.
Thus by Whitehead’s lemma each element of K| (k) may be represented by some
diagonal matrix. But any diagonal matrix may be expressed as a product of a
diagonal matrix of the form diag(b, 1, ..., 1) and diagonal matrices of the form
diag(1, ..., 1, a, a=',1,...,1). The same matrix calculation that establishes
formula (9) shows that the latter are products of elementary matrices, so the class
in K(k) is represented by diag(b, 1, ..., 1), whence the required surjectivity.
To show injectivity one considers the determinant maps GL,, (k) — k*. They
are compatible with the transition maps i, ,+;, and therefore they define a
homomorphism dety, : GLo (k) — k> which is a splitting of the the surjection
k> — K(k) studied above. The proposition follows. O

Remarks 2.8.5
1. More generally, for a division ring D one can consider the map
D*/[D*, D*] — K(D)

induced by the map D* = GL (D) - GL (D) and show that it is an
isomorphism. The proof of surjectivity goes by the same argument as
above (since diagonalization of matrices by elementary row and column
transformations also works over a division ring). The proof of injectivity is
also the same, except that one has to work with the Dieudonné determinant,
a noncommutative generalization of the usual determinant map (see e.g.
Pierce [1], §16.5).

2. Another, much easier, generalization is the following: the isomorphism of
the proposition also holds for finite direct products k; x - - - x k, of fields.
This follows from the proposition and the general formula

Ki(R x R) = K((R) x K{(R)),

valid for arbitrary rings R and R’, which is a consequence of the definition
of K 1.

Consider now for n, m > 1 the maps iy, ,;u : M,(R) = M,,(R) given by

A 0
in,nm(A) = .
0 ILun—n

By functoriality, the map i, ,, induces a map K;(R) — K;(M,,(R)).

Lemma 2.8.6 The above map K|(R) — K|(M,,(R)) is an isomorphism.
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This map is sometimes called the Morita isomorphism because of its relation
with Morita equivalence in ring theory. In the case of a central simple algebra
A it shows that the isomorphism class of K;(A) only depends on the Brauer
class of A.

Proof For all n > 1, the diagram

GL,(R) —2°s  GL,(My(R)) = GLy(R)

lmmlll ln,mnl lnm,nmzl

i1 me

commutes, so the map GLy(R) — GLy(M,,(R)) is an isomorphism. This
isomorphism preserves the commutator subgroups, whence the lemma. O

The lemma enables us to construct a norm map for K of k-algebras.

Construction 2.8.7 Let A be a k-algebra and K |k a field extension of degree
n. Denote by Ak the base change A ®; K. We construct a norm map
Nk : Ki(Ag) — Ki(A) as follows. Fixing an isomorphism ¢ : Endi(K) =
M, (k) gives rise to a composite map

b1 Ax = A® K > A®; Endi(K) —=25 A @ My(k) = M,(A).

We then define the norm map N as the composite

Ki(Ax) B K\(M,(A) S K\(A),

where the second map is the inverse of the isomorphism of the previous lemma.
Since the conjugation action of the group GL, (k) (and even of GL,(A)) on
M, (A) induces a trivial action on K;(M,(A)), we conclude that the map above
is independent of the choice of ¢.

Proposition 2.8.8 In the situation above the composite map

Ki(A) — Ki(Ax) 25 Ky(A)

is multiplication by n = [K : k].

Proof The composite K{(A) - K (Agx) = K{(M,(A)) is induced by the
map A — A ®; M, (k) sending a matrix M to the block diagonal matrix
diag(M, ..., M). The same argument with formula (9) as in the proof of Propo-
sition 2.8.4 shows that the class of diag(M, ..., M) in K;(A) equals that of
diag(M", 1, ..., 1), whence the claim. O
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We now focus on the case of a central simple k-algebra A and construct
reduced norm maps on Kj-groups. Given an integer n > 1, we denote by
Nrd, : GL,(A) — k* the composite

Nrdag, (4)

GL,(A) = GL{(M,(A)) ———— k™.

Lemma 2.8.9 For all integers n > 1, the diagram

Inn1

GLn (A) — GLn+1 (A)

Nrdnl Nrd,,Hl

k>< id k)(

commutes.

Proof By the construction of reduced norm maps, it is enough to check com-
mutativity after base change to a Galois splitting field of A. There the diagram
becomes

Lnm,(n+-lym

GLym (k) GL(14-1ym (k)
| |
o sk,
and commutativity is straightforward. |

By the lemma, the collection of reduced norm homomorphisms
Nrd, : GL,(A) — k* gives rise to a map Nrdy : GLo(A) — k* which
induces a map

Nrd: K{(A) = k*

called the reduced norm map for K.

By construction, its composite with the natural map A* — K{(A)induced by
A* = GL {(A) — GL4(A) is the usual reduced norm Nrd : A* — k*. Thus
for all positive n the isomorphism K{(A) = K(M,(A)) of Lemma 2.8.6 yields
the following remarkable fact:

Corollary 2.8.10 (Dieudonné) For a central simple k-algebra A we have
Nrd(A>) = Nrd,(GL,(A))
foralln > 1.

We note the following compatibility property.
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Proposition 2.8.11 Fora central simple k-algebra A and a finite field extension
K |k the diagram

Ki(Ax) —25 Ki(A)

Nrda l NrdAl

KX* Nk k*
commutes.

Proof Again this can be checked after base change to a Galois splitting field
of A. After such a base change the field K may not remain a field any more,
but may become a finite product of fields. Still, the definition of the norm map
Nk : Ki(Ag) — K(A) immediately generalizes to this setting, so we are
reduced to checking the commutativity of the diagram

Ki(M(K)) —2 K y(My(K))

detl detJ'

Nk
K> k>
where m is the degree of A. By Lemma 2.8.6 and Remark 2.8.5 (2) both vertical
maps are isomorphisms. The composite map

= Kl(Mm(K))_)Kl(Mm(k)) =k

is nothing but the composite

K* — Endy(K) 25 &,

which is indeed the norm map Nk . The lemma follows. ]

Denote by SK|(A) the kernel of the reduced norm map Nrd : K{(A) — k*.
The proposition shows that for each finite extension K |k there is a norm map

N[(‘k . SK](A[() — SK](A)
We now come to the main theorem of this section.

Theorem 2.8.12 (Wang) If A is a central simple k-algebra of prime degree p,
then SK{(A) = 0.

Proof The case when A is split is immediate from Lemma 2.8.6 and Proposi-
tion 2.8.4, so we may assume that A is a division algebra. By Remark 2.8.5 (1)
the natural map A*/[A*, A*] - K;(A) is surjective, so each element of
SK(A) may be represented by some element a € A* of trivial reduced norm.
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If a ¢ k, let L C A be the k-subalgebra generated by a; it is a degree p field
extension of k. Otherwise take L to be any degree p extension of k contained in
A. By Proposition 2.6.3 (2) we have Nyx(a) = 1. The algebra A; := A ®; L
contains the subalgebra L ®; L which is not a division algebra, hence neither is
Ap.Since deg; (AL) = p, Wedderburn’s theorem shows that A; must be split.
By the split case we have SK(A) = 0, hence the composite map

SKi(A) — SKi(AL) ~ SK,(A)

is trivial. Proposition 2.8.8 then implies that p SK;(A) = 0. We now distinguish
two cases.

Case 1: The extension L|k is separable. Take a Galois closure Z|k of L and
denote by K|k the fixed field of a p-Sylow subgroup in Gal (L|k) Since
Gal (L|k) is a subgroup of the symmetric group §,, the extension L|K is a
cyclic Galois extension of degree p. By Proposition 2.8.8 the composite

Nk
SK1(A) — SKi(Ax) —5 SK1(A)

is multiplication by [K : k] which is prime to p. But we know that
pSKi(A) =0, so the map SK{(A) — SK;(Ag) is injective. Up to replac-
ing k by K and L by Z, we may thus assume that L|k is cyclic of degree p.
Let o be a generator of Gal (L|k). According to the classical form of Hilbert’s
Theorem 90 (Example 2.3.4), there exists ¢ € L satisfying a = ¢~'o(c). On
the other hand, L is a subfield of A which has degree p over k, so by Lemma
2.54 we find b € A* with b='cb = o(c). Hence a = ¢c'o(c) = ¢ 'b~cb is
a commutator in A, and as such yields a trivial element in SK;(A).

Case 2: The extension L|k is purely inseparable. In this case Ny x(a) = a” =1
and thus (a — 1)? = 0. Since A is a division algebra, we must have a = 1, and
the result follows. a

Remarks 2.8.13

1. With a little more knowledge of the theory of central simple algebras the
theorem can be generalized to division algebras of arbitrary squarefree
degree. See Chapter 4, Exercise 9.

2. In the same paper (Wang [1]) that contains the above theorem, Wang
showed that over a number field the group S K (A) is trivial for an arbitrary
central simple algebra A. However, this is not so over an arbitrary field.
Platonov [1] constructed examples of algebras A of degree p? for all primes
p such that SK;(A) # 0. For further work on SK(A), see Merkurjev [4]
and Suslin [3].
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Exercises

1.

10.

Prove that the tensor product D, ®; D, of two division algebras of coprime degrees
is a division algebra. [Hint: Apply Rieffel’s lemma to a minimal left ideal L in
Dl (S Dz. Then show that dim k(Dl Rk Dz) = dim kL]

. Determine the cohomology set H'(G, SL,(K)) for a finite Galois extension K |k

with group G.

. Let K|k be a finite Galois extension with group G, and let B(K) C GL,(K) be the

subgroup of upper triangular matrices.

(a)  Identify the quotient GL,(K)/B(K) as a G-set with P(K), the set of K -points
of the projective line.

(b)  Show that H'(G, B(K)) = 1. [Hint: Exploit Proposition 2.7.1.]

(c)  Denote by K the additive group of K. Show that H'(G, K*) = 1. [Hint:
Observe that sending an element a € K+ to the 2 x 2 matrix (a;;) with
ajy =apn =1,a; =0 and aj;; =a defines a G-equivariant embedding
K+ — B(K).]

. Let k be a field containing a primitive m-th root of unity . Take a, b € k* satisfying

the condition in Proposition 2.5.5 (1). Prove that the class of the cyclic algebra (a, b),,
has order dividing m in the Brauer group of k.

. Show that the class of the cyclic algebra (a, 1 — a),, is trivial in the Brauer group

for all a € k*.

. Show that the following are equivalent for a central simple k-algebra A:

*  Aissplit.
. The reduced norm map Nrd : (A ®; F)* — F* issurjective for all field exten-
sions Flk.

. t is a reduced norm from the algebra A ®; k((¢)).

. Let A be a central simple k-algebra of degree n. Assume that there exists a finite

extension K |k of degree prime to n that is a splitting field of A. Show that A is split.
[Hint: Use the last statement of the previous exercise.]

. Let A be a central simple k-algebra, and let K |k be a finite field extension which

splits A. Show that N ;(K*) C Nrd(A*). [Hint: Use Propositions 2.8.4 and 2.8.11
2.1

. Let k be an infinite field, and A a central simple k-algebra of degree n.

(a)  Show that the set kX[A*, A*] is Zariski dense in A viewed as an n?-dimen-
sional affine space. [Hint: Argue as in the proof of Proposition 2.2.5.]

(b) Givena € A%, show that there exist x, y € A* such that the k-subalgebra of
A generated by a[x, y] is of dimension 7.

Show that for a central simple algebra over an infinite field k the subgroup

Nrd(A*) C k* is generated by the subgroups N (K*) with K|k running over

the finite field extensions which split A. [Hint: Reduce to the case of a division

algebra and use the previous exercise.]
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Techniques from group cohomology

In order to pursue our study of Brauer groups, we need some basic notions from
the cohomology theory of groups with abelian coefficient modules. This is a
theory which is well documented in the literature; we only establish here the
facts we shall need in what follows, for the ease of the reader. In particular,
we establish the basic exact sequences, construct cup-products and study the
maps relating the cohomology of a group to that of a subgroup or a quotient. In
accordance with the current viewpoint in homological algebra, we emphasize
the use of complexes and projective resolutions, rather than that of explicit
cocycles and the technique of dimension-shifting (though the latter are also
very useful).

As already said, the subject matter of this chapter is fairly standard and almost
all facts may already be found in the first monograph written on homological
algebra, that of Cartan and Eilenberg [1]. Some of the constructions were first
developed with applications to class field theory in view. For instance, Shapiro’s
lemma first appears in a footnote to Weil [1], then with a (two-page) proof in
Hochschild—Nakayama [1].

3.1 Definition of cohomology groups

Let G be a group. By a (left) G-module we shall mean an abelian group A
equipped with a left action by G. Notice that this is the same as giving a left
module over the integral group ring Z[G]: indeed, for elements > " n,0 € Z[G]
and a € A we may define (}_n,o)a := ) ns,o(a) and conversely, a Z[G]-
module structure implies in particular the existence of “multiplication-by-o”
maps on A for all 0 € G. We say that A is a trivial G-module if G acts trivially
on A,ie.ca =aforallo € G and a € A. By a G-homomorphism we mean
a homomorphism A — B of abelian groups compatible with the G-action.
Denote by Homg (A, B) the set of G-homomorphisms A — B; it is an abelian
group under the natural addition of homomorphisms. Recall also that we denote
by AC the subgroup of G-invariant elements in a G-module A.

We would like to define for all G-modules A and all integers i > 0 abelian
groups H'(G, A) subject to the following three properties.

1. HY%G, A) = AC for all G-modules A.
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2. For all G-homomorphisms A — B there exist canonical maps
H (G, A) — H'(G, B)

foralli > 0.
3. Given a short exact sequence

0>-A—-B—->C—0
of G-modules, there exists an infinite long exact sequence
... —> H(G,A)— H(G,B)— H'(G,C) > H*(G,A) > ...
of abelian groups, starting from i = 0.

In other words, we would like to generalize the H (G, A) introduced in
the previous chapter to higher dimensions, and in particular we would like to
continue the long exact sequence of Proposition 2.7.1 to an infinite sequence.
This is known to be possible only when A is commutative; for non-commutative
A reasonable definitions have been proposed only for i = 2 and 3, but we shall
not consider them here.

To construct the groups H'(G, A) we begin by some reminders concerning
left modules over a ring R which is not necessarily commutative but has a
unit element 1. Recall that a (cohomological) complex A® of R-modules is a
sequence of R-module homomorphisms

AT A pin L g
for all i € Z, satisfying d’*! o d’ = 0 for all i. For i < 0 we shall also use the
convention A_; := A’. We introduce the notations

ZI(A®) :=ker(d’), B'(A®):=Im(d'"!) and H'(A®):= Z'(A®)/B'(A*).

The complex A*® is said to be acyclic or exact if H'(A®) = 0 for all .
A morphism of complexes ¢ : A* — B* is a collection of homomorphisms
¢' : A — B’ for all i such that the diagrams

Ai Ai+1

1

Bi B i+1
commute for all ;. By this defining property, a morphism of complexes A* — B*

induces maps H'(A*) — H'(B*)foralli. A short exact sequence of complexes
is a sequence of morphisms of complexes

0—>A*"—>B*"—>C*"—>0
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such that the sequences

0>A-B - C -0
are exact for all i. Now we have the following basic fact which gives the key to
the construction of cohomology groups satisfying property 3 above.

Proposition 3.1.1 Let

00— A*—>B*—-C*"—=0
be a short exact sequence of complexes of R-modules. Then there is a long exact
sequence

oo HI(A*) > HI(B*) —» HI(C*) > HI*'(A*) > HYY(B*) — ...
The map 9 is usually called the connecting homomorphism or the (co)-

boundary map.
For the proof of the proposition we need the following equally basic lemma.

Lemma 3.1.2 (The Snake Lemma) Given a commutative diagram of R-
modules

A B c 0
L
0 A B’ c’

with exact rows, there is an exact sequence

ker(o) — ker(B8) — ker(y) — coker (o) — coker (8) — coker (y).

Proof The construction of all maps in the sequence is immediate, except for
the map o : ker(y) — coker (). For this, lift ¢ € ker(y)tob € B. By commu-
tativity of the right square, the element B(b) maps to 0 in C’, hence it comes
from a unique a’ € A’. Define d(c) as the image of a’ in coker (). Two choices
of b differ by an element a € A which maps to 0 in coker (), so 9 is well
defined. Checking exactness is left as an exercise to the readers. O

Proof of Proposition 3.1.1 Applying the Snake Lemma to the diagram
A'/Bi(A*) —— B'/B'(B*) —— C!/B'(C*) —— 0
L 2 b
0 —— ZItW(A®) —— ZitI(B%) — Zitl(C?)
yields a long exact sequence
H'(A*) — H'(B*) — H'(C*) - H'"'(A®) — H™(B*) — H™(C*),

and the proposition is obtained by splicing these sequences together. |
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We also have to recall the notion of projective R-modules. By definition,
these are R-modules P for which the natural map Hom(P, A) — Hom(P, B)
given by A — « o A is surjective for every surjection o : A — B.

Lemma 3.1.3

1. The R-module R is projective.
2. Arbitrary direct sums of projective modules are projective.

Proof For the first statement, given an R-homomorphism A : R — B and a
surjection A — B, lift A to an element of Hom(R, A) by lifting A(1) to an
element of A. The second statement is immediate from the compatibility of
Hom-groups with direct sums in the first variable. |

Recall also that a free R-module is by definition an R-module isomorphic to
a (possibly infinite) direct sum of copies of the R-module R. The above lemma
then yields:

Corollary 3.1.4 A free R-module is projective.

Example 3.1.5 Given an R-module A, define a free R-module F(A) by taking
an infinite direct sum of copies of R indexed by the elements of A. One has a
surjectiony : F(A) — Ainduced by mapping 1, to a, where 1, is the element
of F(A) with 1 in the component corresponding to a € A and 0 elsewhere.

As a first application of this example, we prove the following lemma:

Lemma 3.1.6 An R-module P is projective if and only if there exist an R-
module M and a free R-module F with P ® M = F.

Proof For sufficiency, extend a map A : P — B to F by defining it to be 0
on M and use projectivity of F. For necessity, take F to be the free R-module
F(P) associated with P in the above example. We claim that we have an
isomorphism as required, with M = ker(wp). Indeed, as P is projective, we may
lift the identity map of P toamap n : P — F(P) withmp o w = idp. O

For each R-module A there exist projective resolutions, i.e. infinite exact
sequences

o> P> P> P> A—>0

with P; projective. One may take, for instance, Py to be the free R-module F'(A)
defined in the example above; in particular, we get a surjection pg : Py — A.
Once P; and p; : P, — P;_; are defined (with the convention P_; = A), one
defines P;; and p;1 by applying the same construction to ker(p; ) in place of A.
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Now the basic fact concerning projective resolutions is:

Lemma 3.1.7 Assume given a diagram

P2 P1 Po

P, P P, A 0
la
B, - B -, B -, B 0

where the upper row is a projective resolution of the R-module A and the lower
row is an exact sequence of R-modules. Then there exist maps «; : P; — B;
for alli > 0 making the diagram

p2

Pi Po

P, P, P A 0
laz lal la(} la
B, -2 B -, B —". B 0

commute. Moreover, if (o;) and (B;) are two collections with this property,
there exist maps y; : P; — By foralli > —1 (withthe conventions P_; = A,
o_1 = B_| = «) satisfying

a; — Bi =vi—10pi +biy1 0. (D

Proof To construct «;, assume that the «; are already defined for j < i, with
the convention o_; = «. Observe that Im («;_; o p;) C Im (b;); this is imme-
diate for i = 0 and follows from b;_j oo;_1 0 p; = aj_p 0 p;_1 o p; = 0 for
i > 0 by exactness of the lower row. Hence by the projectivity of P; we may
define «; as a preimage in Hom(P;, B;) of the map «;_; o p; : P, — Im(b;).
For the second statement, define y_; = 0 and assume y; defined for j < i
satisfying (1) above. This implies Im(o; — B; — (-1 0 pi)) C Im (b;1)
because

bio(ai = Bi — (Vi1 0 pi)) = (i1 — Bi—1) o pi —bi oyi—1 0 pi
=Yi—20pi-10pi =0,
so, again using the projectivity of P;, we may define y; as a preimage of
o — Bi — (¥i—1 o pi) € Hom(P;, Im (b; 1)) in Hom(P;, B;+1). O
Now we can construct the cohomology groups H(G, A).

Construction 3.1.8 Let G be a group and A a G-module. Take a projective res-
olution P, =(--- —> P, AN P, AN Py) of the trivial G-module Z. Consider
the sequence Homg (P,, A) defined by

Homg(Py, A) > Homg(P;, A) — Homg(P>, A) — ...



3.1 Definition of cohomology groups 55

where the maps Homg(P;, A) — Homg(P; 41, A)aredefinedby A — X o p;41.
The fact that P, is a complex of G-modules implies that Homg(P,, A) is a
complex of abelian groups; we index it by defining Homg(P;, A) to be the term
in degree i. We may now put

H(G, A) := H (Homg(P;, A))
fori > 0.

Proposition 3.1.9 The groups H'(G, A) satisfy properties 1-3 postulated at
the beginning of this section, and their isomorphism class does not depend on
the choice of the resolution P,.

Proof Notice first that Homg(Z, A) = AC, the isomorphism arising from
sending a G-homomorphism ¢ : Z — A to ¢(1). On the other hand, every
G-homomorphism Z — A liftsto A9 : Py — A inducing the trivial homomor-
phism by composition with p;. Conversely, each such Ay defines an element of
Homg(Z, A), whence property 1. Property 2 is immediate from the construc-
tion and property 3 follows from Proposition 3.1.1 applied to the sequence of
complexes

0 - Homg(P,, A) — Homg(P,, B) - Homg(P,, C) — O,

which is exact because the P; are projective. For the second statement,
let Q, be another projective resolution of Z and apply Lemma 3.1.7
with A=7Z, B* = Q, and o =id. We get maps «; : P; — Q; inducing
of 1 H (Homg(Q;, A)) — H'(Homg(P;, A))oncohomology. Exchanging the
roles of the resolutions P, and Q, we also get maps B; : Q; — P; inducing
B : H (Homg(P;, A)) — H'(Homg(Q;, A)). We show that the compositions
af o B and B} o« are identity maps. By symmetry it is enough to do this
for the first one. Apply the second statement of Lemma 3.1.7 with P; in place
of B’ and the maps f; o o; and idp, in place of the o; and B; of the lemma.
We get y;: Pi — Py satisfying B oo; —idp = yi—1 0 pi + piv1 0 Vi,
whence Lo Bjoa; —A =Aoy,_;op; for a map A € Homg(P;, A) satisfy-
ing A o p;y+; = 0. This means precisely that A o §; o a; — A is in the image of
the map Homg(P;_;, A) = Homg(P;, A),i.e. (B; o a;)* = af o B} equals the
identity map of H' (Homg(P;, A)). O

Remarks 3.1.10

1. The above construction is a special case of that of Ext-groups in homo-
logical algebra: for two R-modules M and N these are defined by
Ext'(M, N) := H'(Homg(P,, N)) with a projective resolution P, of M.
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The same argument as above shows independence of the choice of P,. In
this parlance we therefore get H' (G, A) = ExtiZ[G](Z, A).

2. It follows from the definition that cohomology groups satisfy certain nat-
ural functorial properties. Namely, if

A —— B

L

A/ N B/
is a commutative diagram of G-modules, then the associated diagrams

H(G,A) —— H'(G, B)

l l

H(G,A') —— H(G,B’)

commute for all i > 0. Moreover, given a commutative diagram

0 A B C 0
I
0 A B’ c’ 0

of short exact sequences, the diagrams

H(G,C) —— H't'(G, A)

l l

H!(G,C") —— H'tY(G, A))
coming from the functorial property and the long exact sequences commute
foralli > 0.

3.2 Explicit resolutions
To calculate the groups H'(G, A) explicitly, one uses concrete projective res-
olutions. The most useful of these is the following one, inspired by simplicial
constructions in topology.

Construction 3.2.1 (The standard resolution) Consider for each i > 0O the
Z[G]-module Z[G'*'], where G'*! is the (i + 1)-fold direct power of G and
the action of G is determined by o (oy, ..., 0;) = (00yp, ..., 00;). These are
projective (in fact, free) Z[ G]-modules, being isomorphic to Z[G]* . Fori > 0
define G-homomorphisms &' : Z[G'T']— Z[G'] by §' = Zj(—l)fs;, where
s; : ZIG'*'1— Z[G'] is the map determined by sending

(O’Q,...,O’,‘)i-)(U(),...,O’j_l,Uj+1,...,O'i).
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In this way, we get a projective resolution
3, & 2, 8 80
o> Z|G'] — ZIG] — ZIG] — Z. — 0,

where 8° sends each o; to 1. This resolution is called the standard resolution
of Z. To see that the sequence is indeed exact, an immediate calculation shows
first that 8’ o 8*! = 0 for all i. Then fix o € G and define &' : Z[G'*!] —
Z[G't%] by sending (oy, ..., 0;) to (o, 0y, . . ., ;). Another calculation shows
8§ oh' +h'=' 08" = idggi+1y, which implies ker(8') = Im (§').

For a G-module A, one calls the elements of Homg (Z[G'*'], A) i-cochains,
those of Z'*!(Homg(Z[G*], A)) and B+!'(Homg(Z[G"*], A)) i-cocycles and
i-coboundaries, respectively. We shall denote these respective groups by
Ci(G, A), ZI(G, A) and B/(G, A). The cohomology groups H'(G, A) then
arise as the groups H' +1(Homg(Z[G*], A)). We shall see in the example below
that for i = 1 we get back the notions of the previous chapter (in the commu-
tative case).

For calculations, another expression is very useful.

Construction 3.2.2 (Inhomogeneous cochains) In Z[G*!] consider the
particular basis elements

[o1,...,0i]:=(,01,0100,...,01--0;).

From the definition of the G-action on Z[G'*!] we get that Z[Gt1] is none
but the free Z[ G]-module generated by the elements [o7, . . ., 0;]. A calculation
shows that on these elements the differentials §' are expressed by

8(lo1.....o) = ailon, ..o+ Y (~1)[01. ... 0j041..... 0]
j=1

+ (=D oy, ..., 0] )

j=1

The functions a,, .. o, are called inhomogeneous cochains.

yeeey

Here is how to calculate the groups H(G, A) in low dimensions by means
of inhomogeneous cochains.

Examples 3.2.3

1. A l-cocycle is given by a function o + a, satisfying a4, =01ds, + dq, .
It is a 1-coboundary if and only if it is of the form o > oa —a for



58 Techniques from group cohomology

some a € A. We thus get back the first cohomology group defined in
the noncommutative situation in the previous chapter. Note that in the
special case when G acts trivially on A, i.e. 0(a) = a for all a € A, we
have Z!(G, A) = Hom(G, A) and B'(G, A) = 0, so finally H'(G, A) =
Hom(G, A).

2. A 2-cocycle is given by a function (o1, 02) = do, 4, satisfying

014,05 — Qo103,05 T Qoy,0005 — o0 = 0.

It is a 2-coboundary, i.e. an element of Im(3'*) if it is of the form
01bs, — bo,s, + bs, for some 1-cochain o +— b,.

Remark 3.2.4 Using the above description via cocycles one also gets explicit
formulae for the coboundary maps 8’ : H' (G, C) — H'*!(G, A) inlong exact
cohomology sequences. In particular, in the case i = 0 we get the same answer
as in the noncommutative situation (Proposition 2.7.1): given ¢ € CY, we lift it
to an element b € B, and 8°(c) is represented by the map o > ob — b, which
is readily seen to be a 1-cocycle with values in A.

Example 3.2.5 For some questions (e.g. as in the example of group extensions
below) it is convenient to work with normalized cochains. These are obtained
by considering the free resolution

h 8, 8
i > Ly =5 Ly —> Ly —> Z — 0,

where L; is the free G-submodule of Z[G'1!] generated by those [0y, ... 0]
where none of the o; is 1. The morphisms 8. are defined by the same formulae
as for the &' in (2), except that if we happen to have o041 = 1 for some j in
[o1, ...0;], we set the term involving 004 on the right-hand side to 0. This
indeed defines a map L; — L,_, and a calculation shows that we again have
ker(8]) = Im (8'*1). So we have obtained a free resolution of Z and may use
it for computing the cohomology of a G-module A. Elements in Homg(L;, A)
may be identified with inhomogeneous i-cochains a,, 5, which have the value
0 whenever one of the o; equals 1.

Example 3.2.6 (Group extensions) An important example of 2-cocycles aris-
ing ‘in nature’ comes from the theory of group extensions. Consider an exact
sequence of groups0 - A - E — G 5 1, with A abelian. The conjugation
action of E on A passes to the quotient in G and gives A the structure of a
G-module. Now associate with E a 2-cocycle as follows. Choose a normalized
set-theoretic sectionof r,i.e.amaps : G — E withs(l) = landm o s = idg.
For elements oy, 0, € G the element ag, 4, := s(01)s(02)s(o107)7! maps to
1 in G, and therefore defines an element of A. An immediate calculation
shows that (o1, 02) = a,, .+, 1S a 2-cocycle of G with values in A, which is
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in fact normalized, i.e. satisfies a; , = a,1 = 1 for all 0 € G. Another calcu-
lation shows that replacing s by another set-theoretic section yields a 2-cocycle
with the same class in H>(G, A). In this way one associates with E a class
c¢(E) € H*(G, A). Furthermore, we see that in the case when there is a section
s which is a group homomorphism, i.e. the extension E splits as a semidirect
product of G by A, then c(E) = 0.

In fact, once we fix a G-action on A, we may consider the set Ext(G, A)
of equivalence classes of extensions E of G by A inducing the given action
of G on A modulo the following equivalence relation: two extensions E and
E’ are called equivalent if there is an isomorphism A : E = E’ inducing a
commutative diagram

0 A E G 1
b e
0 A E’' G 1

The map E +— c(FE) is easily seen to preserve this equivalence relation, and
in fact induces a bijection between Ext(G, A) — H 2(G, A). The inverse is
constructed as follows: one represents a class in H*(G, A) by a normalized
cocycle ae, », and defines a group E with underlying set A x G and group law
(a1, 01) - (az, 02) := (a1 + 01(a2) + as, 4, 0102). The cocycle relation implies
that this product is associative, and the fact that a,, 5, is normalized implies
that (0, 1) is a unit element. The element (—o ~'(a) — 0~ (ay.5-1), 0 ~!) yields
an inverse for (a, o), therefore E is indeed a group and one checks that it is an
extension of G by A with ¢(E) = [ay, ,]- All this is verified by straightforward
calculations which we leave to the readers to carry out or to look up e.g. in
Weibel [1], Section 6.6.

Remark 3.2.7 Given a homomorphism ¢ : A — B of G-modules, the natural
map ¢, : H*(G, A) — H?*(G, B) induced on cohomology has the following
interpretation in terms of group extensions: the class c(E) of an extension
0>A>E—G-—lis mapped to that of the pushforward extension ¢.(E)
defined as the quotient of B x E by the normal subgroup of elements of the
form (¢(a), t(a)~") fora € A. One verifies that ¢,.(E) is indeed an extension of
G by B, and that c(¢.(E)) = ¢.(c(E)) by the explicit description of the cocycle
class c¢(E) given above.

For special groups other projective resolutions may be useful for computing
cohomology, as the examples of cyclic groups show.

Example 3.2.8 Let G = Z. Then the sequence
0—>Z[Z|—> Z[Z] > Z — 0
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gives a projective resolution of the trivial Z-module Z, where the second map
is given by multiplication by o — 1 for a generator o of Z considered a cyclic
group, and the third one is induced by mapping o to 1. It is immediate to check
the exactness of the sequence, and for a Z[Z]-module A we get

H%Z,A)=A°, HYZ,A)=A/(c —1)A and H(Z,A)=0 for i > 1.
Example 3.2.9 Let now G be a finite cyclic group of order n, generated by an

element o. Consider the maps Z[G] — Z[G] defined by

n—1
N:aw— E c'la and o—1:ar~ oca—a.
i=0

One checks easily that ker(N) = Im (¢ — 1) and Im (N) = ker(c — 1). Hence
we obtain a free resolution

- Bzi61 2 7161 S 72161 22 7161 > 72— 0,

the last map being induced by o — 1.

For a G-module A, define maps N: A— Aando —1: A — A by the
same formulae as above and put yA := ker(N). Using the above resolution,
one finds

HYG, A=A, H* (G, A)=nA/(c — DA and H*T2(G,A)=A°/NA
(3)

fori > 0.

Remark 3.2.10 If K |k is a finite Galois extension with cyclic Galois group G

as above, the above calculation shows H'(G, K*) = yK*/(c — )K*. The

first group is trivial by Hilbert’s Theorem 90 and we get back the original form
of the theorem, as established in Example 2.3.4.

3.3 Relation to subgroups
Let H be a subgroup of G and A an H-module. Then Z[G] with its canonical
G-action is an H-module as well, and we can associate with A the G-module

MG (A) := Homy(Z[G], A)

where the action of G on an H-homomorphism ¢ : Z[G] — A is given by
(0@)(g) := ¢(go) for a basis element g of Z[G]. One sees that ¢ is indeed
an H-homomorphism.

Lemma 3.3.1 Assume moreover given a G-module M. We have a canonical
isomorphism

Homg(M, Hompy (Z[G], A)) = Hompy(M, A)
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induced by mapping a G-homomorphism m — ¢y, in the left-hand side group
to the H-homomorphism m — ¢,,(1).

Proof Given an H-homomorphism A : M — A, consider the map m — A,,,
where A,, € Hompy(Z[G], A) is the map determined by g — A(gm). The kind
reader will check that we get an element of Homg (M, Homg (Z[G], A)) in this
way, and that the two constructions are inverse to each other. m|

Now apply the lemma to the terms of a projective Z[G ]-resolution P, of Z.
Note that this is also a resolution by projective H-modules, because Z[G] is free
as a Z[ H]-module (a system of coset representatives yields a basis). Passing to
cohomology groups, we get:

Corollary 3.3.2 (Shapiro’s Lemma) Given a subgroup H of G and an H-
module A, canonical isomorphisms exist

H'(G, M{j(A) = H'(H, A)
foralli > 0.

The case when H = {1} is particularly important. In this case an H-module
A is just an abelian group; we denote M §(A) simply by MP(A) and call it the
co-induced module associated with A.

Corollary 3.3.3 The group H (G, M®(A)) is trivial for all i > 0.

Proof Inthis case the right-hand side in Shapiro’s lemmais trivial (e.g. because
0 — Z — Z — 0 gives a projective resolution of Z). m|

Remarks 3.3.4

1. Itis important to note that the construction of co-induced modules is func-
torial in the sense that every homomorphism A — B of abelian groups
induces a G-homomorphism MY%(A) — MSY(B). Of course, a similar
property holds for the modules MG (A).

2. For a G-module A there is a natural injective map A — MY(A) given
by assigning to a € A the homomorphism Z[G] — A of abelian groups
induced by the mapping o +— oa.

3. If G is finite, the choice of a Z-basis of Z[G] induces a non-canonical
isomorphism MY (A) = A ® Z[G] for all abelian groups A.

Using Shapiro’s lemma we may define two basic maps relating the cohomol-
ogy of a group to that of a subgroup.
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Construction 3.3.5 (Restriction maps) Let G be a group, A a G-module and
H a subgroup of G. There are natural maps of G-modules

A S Homg(Z[G], A) — Homy(Z[G], A) = MS(A),

the first one given by mapping a € A to the unique G-homomorphism send-
ing 1 to a and the second by considering a G-homomorphism as an H-
homomorphism. Taking cohomology and applying Shapiro’s lemma we thus
get maps

Res: H'(G, A) - H'(H, A)

for all i > 0, called restriction maps. One sees that for i = 0 we get the natural
inclusion A — AH,

When the subgroup H has finite index, there is a natural map in the opposite
direction.

Construction 3.3.6 (Corestriction maps) Let H be a subgroup of G of finite
index n and let A be a G-module.

Given an H-homomorphism ¢ : Z[G] — A, define a new map Z[G] — A
by the assignment

n
o5 x> > pid(p;'x),
=1

where py, ..., p, is a system of left coset representatives for H in G. This
is manifestly a group homomorphism which does not depend on the choice
of the p;; indeed, if we replace the system of representatives (p;) by another
system (p;7;) with some 7; € H, we get pjrj(p(tj_lpj_lx) = ,ojq)(,oj_lx) for all
j» the map ¢ being an H-homomorphism. Furthermore, the map ¢§ is also a
G-homomorphism, because we have for allo € G

Y pidlp;lox) =0 <Z(alpj>¢<<o1p,>1x>) =0 (Z p,»¢(p;‘x)) :
= j=1 j=l
as the 0~ p; form another system of left coset representatives.
The assignment ¢ — ¢g thus defines a well-defined map
Homy (Z[G], A) — Homg(Z[G], A) = A,
so by taking cohomology and applying Shapiro’s lemma we get maps
Cor: H'(H,A) — H'(G, A)

for all i > 0, called corestriction maps.
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An immediate consequence of the preceding constructions is the following
basic fact.

Proposition 3.3.7 Let G be a group, H a subgroup of finite index n in G and
A a G-module. Then the composite maps

CoroRes: H'(G,A) — H' (G, A)

are given by multiplication by n for all i > 0.

Proof Indeed,if ¢ : Z[G] — A is a G-homomorphism, then for all x € Z[G]
we have ¢ (x) = 3 p;¢(0; 'x) = 3 p;p; ' $(x) = nd(x). O

In the case H = {1} we get:

Corollary 3.3.8 Let G be a finite group of order n. Then the elements of
H(G, A) have finite order dividing n for all G-modules A and integersi > 0.

Another basic construction is the following one.

Construction 3.3.9 (Inflation maps) Let G be a group, and H a normal sub-
group. Then for a G-module A the submodule A of fixed elements under
H is stable under the action of G (indeed, foro € G, € H anda € A one
has toa = o (0 ~'t0)a = oa). Thus A carries a natural structure of a G/ H-
module.

Now take a projective resolution P, of Z as atrivial G-module and a projective
resolution Q, of Z as a trivial G/H-module. Each Q; can be considered as
a G-module via the projection G — G/H, so applying Lemma 3.1.7 with
R =Z|[G], B* = Q, and o = idz we get a morphism P, — Q, of complexes
of G-modules, whence also a map Homg(Q., A?) — Homg(P,, A®). Now
since Homg(Q;, A¥) = Homg, 4 (Q;, A™) forall i, the former complex equals
Homg /1 (Q., A™), so by taking cohomology we get maps H'(G/H, A") —
H'(G, A™) which do not depend on the choices of P, and Q, by the same
argument as in the proof of Proposition 3.1.9. Composing with the natural map
induced by the G-homomorphism A7 — A we finally get maps

Inf: H(G/H, A" - H'(G, A),
for all i > 0, called inflation maps.

Remark 3.3.10 Calculating the inflation maps in terms of the standard reso-
lution of Z, we see that inflating an i-cocycle Z[(G/H)'*'] — A" amounts to
taking the lifting Z[G'*'] — A" induced by the projection G — G/H.

Similarly, one checks that the restriction of a cocycle Z[G'*'] — A to a
subgroup H is given by restricting it to a map Z[H*'] — A.
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Remark 3.3.11 Given a normal subgroup H in G and a G-module A with
trivial H-action, the inflation map Inf: H*(G/H, A) — H*(G, A) has the
following interpretation in terms of group extensions: given an extension
0>ASE— (G/H) — 1, its class ¢(E) satisfies Inf(c(E)) = c(p*(E)),
where p : G — G/ H isthe natural projection, and p*(E) is the pullback exten-
sion p*(E) defined as the subgroup of £ x G given by elements (e, g) satisfying
1 (e) = p(g). One verifies that p*(FE) is indeed an extension of G by A, and the
relation c(p*(E)) = Inf(c(E)) holds by the construction of inflation maps and
that of the class c(E) in Example 3.2.6.

We now turn to the last basic construction relative to subgroups.

Construction 3.3.12 (Conjugation) Let P and A be G-modules, and H a
normal subgroup of G. For each 0 € G we define a map

oy : Homy (P, A) — Homy(P, A)

by setting 0.,.(¢)(p) := o ~'¢p(c(p)) for each p € P and ¢ € Homy (P, A). To
see that 0,(¢) indeed lies in Homg (P, A), we compute forr € H

o (p)T(p)=0""¢p(ot(p)=0""p(oto a(p)=0""ot0 " P(0(p)=T0.(B)(P),

where we have used the normality of H in the penultimate step. As o, ! is
obviously an inverse for o, we get an automorphism of the group Hompy (P, A).
It follows from the definition that o, is the identity for o € H.

Now we apply the above to a projective resolution P, of the trivial G-module
Z.. The construction yields an automorphism o, of the complex Homg(P,, A),
i.e. an automorphism in each term compatible with the G-maps in the resolution.
Taking cohomology we thus get automorphisms o! : H'(H, A) — H'(H, A)
in each degree i > 0, and the same method as in Proposition 3.1.9 implies that
they do not depend on the choice of P,. These automorphisms are trivial for
o € H,sowe getan action of the quotient G/ H on the groups H'(H, A), called
the conjugation action.

It is worthwhile to record an explicit consequence of this construction.
Lemma 3.3.13 Let
0-A—-B—>C—0

be a short exact sequence of G-modules, and H a normal subgroup in G. The
long exact sequence

0— H°H, A)— H°(H, B)— H°(H,C) > H'(H, A) > H'(H, B) — ...

is an exact sequence of G/ H-modules, where the groups H'(H, A) are equipped
with the conjugation action defined above.
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Proof This follows immediately from the fact that the conjugation action as
defined above induces an isomorphism of the exact sequence of complexes

0 —- Homg(P,, A) — Homy(P,, B) - Homy(P,, C) — 0O
onto itself. O

This lemma will be handy for establishing the following fundamental exact
sequence involving inflation and restriction maps.

Proposition 3.3.14 Let G be a group, H anormal subgroup and A a G-module.
Thereisanaturalmapt : H'(H, A)°/" — H>*(G/H, A™)fitting into an exact
sequence

0 H'(G/H, A") 25 HY (G, A) 2% H'\(H, A°/H 5
— HXG/H, At 25 H2(G, A).
We begin the proof by the following equally useful lemma.
Lemma 3.3.15 [In the situation of the proposition we have

MO(AH = MM (A) and HI(H,MS(A)=0 forall j>O0.

Proof The first statement follows from the chain of isomorphisms
M (A" = Hom(Z[G], A = Hom(Z[G/H], A) = MS/H(A).

As for the second, the already used fact that Z[G] is free as a Z[ H]-module
implies that MY(A) is isomorphic to a direct sum of copies of M (A).
But it follows from the definition of cohomology that H/(H, @ M (A)) =
@ H/(H, M (A)), which is 0 by Corollary 3.3.3. O

Proof of Proposition 3.3.14 Define C as the G-module fitting into the exact
sequence

0—>A— M%A) — C—0. )
This is also an exact sequence of H-modules, so we get a long exact sequence
0—> A" > MM > ¢ > H'(H, A) »> H'(H, M®(4)),

where the last group is trivial by the second statement of Lemma 3.3.15. Hence
we may split up the sequence into two short exact sequences

0— A" > M9 - B — 0, 5)
0—> B—Cl - HY(H,A) - 0. (6)
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Using Lemma 3.3.13 we see that these are exact sequences of G/H-modules.
Taking the long exact sequence in G/ H-cohomology coming from (5) we get

0— A% - M%) - BYH — HY(G/H, A"y - H(G/H, M° (A1),

where the last group is trivial by Lemma 3.3.15. So we have a commutative
diagram with exact rows

0

l

0 AG MS(AY® ——  BO/H  — HY(G/H,A") -0

bl |

0 AC MS(AS — ce —— HYG,A)— 0

l

H'(H, A%/

l

HY(G/H, B)

where second row comes from the long exact G-cohomology sequence of (4),
and the column from the long exact sequence of (6). A diagram chase shows
that we obtain from the diagram above an exact sequence

0—> H'(G/H, A"y 5 H' (G, A) A H'(H, A" — HY(G/H, B).

Here we have to identify the maps o and 8 with inflation and restriction maps,
respectively. For a, this follows by viewing A and B as G-modules via the
projection G — G/H and considering the commutative diagram

BG/H id BG c6

l ! l

HY(G/H, A"y —— H\(G,A") —— H'(G, A)

where the composite of the maps in the lower row is by definition the inflation
map. Here A is given by viewing a 1-cocycle G/H — A¥ as a 1-cocycle
G — A", and the diagram commutes by the functoriality of the long exact
cohomology sequence. As for 8, its identification with a restriction map follows
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from the commutative diagram

c’ —— HYG, A)

| [

cl — 5 HY(H, A

where the left vertical map is the natural inclusion.
Now the remaining part of the required exact sequence comes from the
commutative diagram

H'(H, A" — H'G/H,B) — H'G/H,c"y — "+ H'Y(G,C)

lg E

HX(G/H, A") LI H(G, A)
where the top row, coming from (6), is exact at H'(G/H, B), and the vertical
isomorphisms are induced by the long exact sequences coming from (5) and
(4), using again that M©(A) and M®(A)" have trivial cohomology. Commu-
tativity of the diagram relies on a compatibility between inflation maps and
long exact sequences which is proven in the same way as the one we have just
considered for H'. Finally, the exactness of the sequence of the proposition
at H>(G/H, B™) comes from the exactness of the row in the above diagram,
together with the injectivity of the inflation map H'(G/H, C") — H'(G, C)
that we have already proven (for A in place of C). |

Remark 3.3.16 The map 7 of the proposition is called the transgression map.
For an explicit description of 7 in terms of cocycles, see Neukirch-Schmidt-
Wingberg [1], Proposition 1.6.5.

Proposition 3.3.17 In the situation of the previous proposition, let i > 1 be
an integer and assume moreover that the groups H'(H, A) are trivial for
1 < j <i — 1. Then there is a natural map

T4 H'(H, A" - HTYG/H, AT)

fitting into an exact sequence

Ti,A

0 HI(G/H, A") S HI(G, A) 2% Hi(H, A0/ 24
= HY(G/H, AT 2L g6, A).

Proof Embed A into the co-induced module M ¢ (A) and let C 4 be the cokernel
of this embedding. The G-module M (A) is an H-module in particular, and the
assumption that H'(H, A) vanishes implies the exactness of the sequence 0 —
A" — MG (A" — CI — 0by the long exact cohomology sequence. This is
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a short exact sequence of G/H-modules, so taking the associated long exact
sequence yields the first and fourth vertical maps in the commutative diagram

0 —— HI7'(G/H,Cl) —= & HI"\(G,Cy) —=— HI"\(H,C,)%/H —

l l l

Inf Res

0 —— H/(G/H,A") —— HI(G,A) —=s HI(H, A" -

Tji—1,Cy Inf
e

H/(G/H,Cl) ——— HI(G,C,)

l l

— I, HITW(G/H, AT) — s HIYY(G, A)
where the other vertical maps come from long exact sequences associ-
ated with 0 > A — MSY(A) - C4 — 0, and the maps 7; 4 and 7,y ¢, are
yet to be defined. The second and fifth vertical maps are isomorphisms
because H/ (G, M°(A)) = Ofor j > 0according to Corollary 3.3.3. Moreover,
Lemma 3.3.15 shows that the groups H/(G/H, MY(A)")and H/(H, M%(A))
are also trivial for j > 0, hence the first and fourth vertical maps and the
map H/~'(H, C,) — H/(H, A) inducing the third vertical map are isomor-
phisms as well. In particular, the assumption yields that H/(H, C,) = 0 for all
1 < j < i — 1. By induction starting from the case i = 1 proven in the previ-
ous proposition, we may thus assume that the map 7;_ ¢, has been defined and
the upper row is exact for j = i. We may then define t; 4 by identifying it to
7,_1.c, viathe isomorphisms in the diagram, and from this obtain an exact lower
TOW. O

Remarks 3.3.18

1. The proposition is easy to establish using the Hochschild—Serre spectral
sequence for group extensions (see e.g. Shatz [1] or Weibel [1]).

2. The argument proving Proposition 3.3.17 is an example of a very useful
technique called dimension shifting, which consists of proving statements
about cohomology groups by embedding G-modules into co-induced mod-
ules and then using induction in long exact sequences. For other examples
where this technique can be applied, see the exercises.

3.4 Cup-products

In this section we construct an associative product operation

H (G, A) x H (G, B) > H (G, A® B), (a,b)— aUb
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which is graded-commutative, i.e. it satisfies
aUb= (=D Ua). (7)

Here A ® B is the tensor product of A and B over Z, equipped with the G-
module structure given by o(a ® b) = o(a) ® o(b). Note that in general this
is different from the tensor product of A and B over Z[G].

We begin the construction with general considerations on complexes. We
restrict to the case of abelian groups, the only one we shall need.

Construction 3.4.1 Let A® and B* be complexes of abelian groups. We define
the tensor product complex A® ® B*® by first considering the double complex

! i T

. Ai-l @ Bi+! Al @ B/+! Al Bitt — 5 |

| I I

. —> A'®@B — A'®QB — Af'@B/ ——— ...

| I |

. Ai71 ® ijl Ai ® ijl 5 Ai+l ® Bj*l _ ..

I I |

®)

where the horizontal maps 8/} : A’ ® B/ — A™™! @ B/ are given by 9} ® id
and the vertical maps 9 : A®@B/ - AA® B/t by id® (-1)!‘3{5. In this
way, the squares anticommute, i.e. one has

8h

v __ _qu
ij1 00 =~

h
it1,j © 81.]..

Now take the total complex associated with this double complex. By defini-
tion, this is the complex 7'* with

T" = @ Al ® B’
i+j=n

and 0" : T" — T"*! given on the component A’ ® B/ by 9/; 4 0};. The above
anticommutativity then implies 8"! 0 8" = 0, i.e. that T* is a complex. We

define T'* to be the tensor product of A® and B® and denote it by A®* ® B°.

We now proceed to the second step of the construction.
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Construction 3.4.2 In the situation of the above construction, assume fur-
ther given abelian groups A and B. Consider the complexes Hom(A*®, A) and
Hom(B*, B) whose degree i terms are Hom(A~, A) and Hom(B~/, B), respec-
tively, with differentials induced by those of A® and B*. We construct a product
operation

H'(Hom(A®, A)) x H/(Hom(B*, B)) — H'*/(Hom(A* ® B*, A® B)) (9)

as follows. Given homomorphisms « : A~ — A and B: B~/ — B with
i + j =n, the tensor product & ® B is ahomomorphism A~ ® B~/ — A ® B,
and hence defines an element of the degree i + j termin Hom(A®* ® B*, A ® B)
via the diagonal embedding

Hom(A" ® B/, A®B) > Hom( @) A*®B . A® B).
k-H=i+j

Here if a € Z/(Hom(A®, A)) and 8 € Z/(Hom(B*, B)), then by construc-
tion of A* ® B* wehavea ® 8 € ZI*/(Hom(A®* ® B*, A ® B)). Moreover, if
a € B'(Hom(A®, A)), then @ ® B € B'*/(Hom(A®* ® B*, A ® B)) (use again
the diagonal embedding), and similarly for 8. This defines the required map
9).

We note that if here all abelian groups carry a G-module structure for some
group G and «, § are G-homomorphisms, then sois & ® B, hence by restricting
to G-homomorphisms we obtain a product

Hi(Homg(A®, A)) x H/(Homg(B®, B)) — H'*/(Homg(A®* ® B*, A ® B)),

where A ® B and A®* ® B*® are endowed with the G-module structure defined
at the beginning of this section.

The next step is the following key proposition. Recall that the lower num-
bering in a projective resolution P, is defined by P, := P~'.

Proposition 3.4.3 Let G be a group, and let P, be a complex of G-modules
which is a projective resolution of the trivial G-module Z.. Then P, ® P, is a
projective resolution of the trivial Z|G x Gl-module Z.

Here the terms of P, ® P, are endowed by a G x G-action coming from
(01, 02)(p1 ® p2) = 01(p1) ® 02(p2).
The proof is based on the following lemma.

Lemma 3.4.4 If A® and B* are acyclic complexes of free abelian groups, then
so is the complex A®* @ B°.

Similarly, if A® and B*® are complexes of free abelian groups concentrated
in nonpositive degrees, acyclic in negative degrees and having a free abelian
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group as 0-th cohomology, then so is the complex A* @ B®. Moreover, we have
HO(A* @ B*) = H(A*) ® H(B®).

Proof As tensor products and direct sums of free abelian groups are again
free, we get that the terms of A®* ® B* are free. The proof of acyclicity is based
on the fact that a subgroup of a free abelian group is again free. This implies that
for all i, the subgroups B(A®) are free, and in particular projective. Consider
for all i the short exact sequences

0— Z'(A®) > A" > B''(A*) > 0.

The terms here are free abelian groups, so the sequence splits. Moreover, we
have Z'(A*®) = B'(A®) by the acyclicity of A®, therefore we may rewrite the
above exact sequence as

0— B'(A" -5 Bi(Am @ B'(4%) 22 BiT(4%) - 0,
Hence the complex A® decomposes as an infinite direct sum of complexes of
the shape

---—>0—>0—>AE>A—>0—>O—>...,
and similarly, the complex B*® decomposes as a direct sum of complexes

505 05B8 B 050 ...

As the construction of tensor products of complexes manifestly commutes with
arbitrary direct sums, we are reduced to check acyclicity for the tensor product
of complexes of this type. But by definition, these are complexes of the form

050> ABYY UeBdAB H AgB

- 0—->0—..

[

or similar ones with the second identity map replaced by —id. The first statement
is then obvious. The second one is proven by the same argument, and the
description of the O-th cohomology follows from right exactness of the tensor
product. |

Proof of Proposition 3.4.3 By definition, the P; are direct summands in
some free G-module, which is in particular a free abelian group, so they are
also free abelian groups. Hence the second statement of the lemma applies.
Therefore the corollary is proven if we show that the terms of P, ® P, are pro-
jective as Z[G x G]-modules. For this, notice first the canonical isomorphism
Z[G x G] = Z[G] ®z Z[G]: indeed, both abelian groups are free on a basis
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corresponding to pairs of elements in G. Taking direct sums we get that ten-
sor products of free Z[G]-modules are free Z[G x G]-modules with the above
G x G-action. Finally, if P; (resp. P;) are projective Z[G]-modules with direct
complement Q; (resp. Q) in some free Z[G]-module, the isomorphism

(POON)RPDOHN=E(PQRPN)DPRQ)D(Q:iR®P)HD(0:;®Q))

shows that P; ® P; is a direct summand in a free Z[G x G]-module, and hence
it is projective. Projectivity of the terms of P, ® P, follows. O

Putting everything together, we can finally construct the cup-product.

Construction 3.4.5 Let A and B be G-modules, and P, a projective resolution
of the trivial G-module Z. Applying Construction 3.4.2 with A®*=B*= P, we
get maps

H(Hom(P,, A)) x H/(Hom(P.,, B)) - H'*/(Hom(P, ® P., A ® B)).

By the proposition above, the complex P, ® P, is a projective resolution of Z
as a G x G-module, so by definition of group cohomology we may rewrite the
above as

H (G, A) x H (G, B) »> H'" (G x G, A® B).

On the other hand, the diagonal embedding G — G x G induces a restriction
map

Res: H'(G x G,A® B) > H'7/ (G, A® B).
Composing the two, we finally get an operation
H(G,A) x H (G, B) > H'"/(G, A ® B),

which we call the cup-product map. We denote the image of two elements
a € H(G,A)and b € H/(G, B) by a U b. The kind reader will check that this
construction does not depend on the chosen projective resolution P,.

Remarks 3.4.6

1. The construction is functorial in the sense that for a morphism A — A’ of
G-modules the diagram

H(G,A)x H/(G,B) —— H'"/(G,AQ® B)

l l

HI(G, A x HI(G, B) —— H*I(G, A’ ® B)

commutes, and similarly in the second variable.
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2. Given a morphism of G-modules A x B — C, we get pairings
H'(G, A) x H/(G, B) > H'"/(G, C)
by composing the cup-product with the natural map
H"(G,A® B) > H' (G, C).

We shall also refer to these more general pairings as cup-products.
3. It follows from the construction that for i = j = 0 the cup-product

H(G, A) x H(G, B) — H%(G,A® B)
is just the natural map A® ® B¢ — (A ® B)°.

Proposition 3.4.7 The cup-productis associative and graded-commutative, i.e.
it satisfies the relation (7).

Proof One checks associativity by carefully following the construction. It
ultimately boils down to the associativity of the tensor product; we leave the
details to the reader. For graded-commutativity, we first work on the level of
tensor products of complexes and compare the images of the obvious maps

A'® B/ — @ A*@B' and B/ ®@ A’ — EB B ® AF
kHl=i+j k+l=i+j

in the complexes A®* ® B* and B* ® A*, respectively. Givena ® b € A’ ® B/,
the differential in A®* ® B* acts on it by 32 ®idpg + (—=1iid4 ® 37 , Whereas the
differential of B* ® A® actson b @ a by 8{; ®ids + (—1)/idp ® 9',. Therefore
mapping a ® b to (—1) (b ® a) induces an isomorphism of complexes

~

A*® B* - B*® A°.

Applying this with A®* = B®* = P, and performing the rest of the construction
of the cup-product, we get that via the above isomorphism the elements a U b
and (—1)" (b U a) get mapped to the same element in H'7/(G, A ® B). O

The cup-product enjoys the following exactness property.
Proposition 3.4.8 Given an exact sequence
0> A - Ay —> A3 >0 (10)
of G-modules such that the tensor product over Z

0> A ®B— A ®B—> A;® B — 0 (11)
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with a G-module B remains exact, we have for all elements a € H' (G, As) and
b € H/(G, B) the relation

8(a)Ub =68(aUb)

in HT1T1(G, A\ @ B), where the § are the connecting maps in the associated
long exact sequences.
Similarly, if

00— B — B — B;—0
is an exact sequence of G-modules such that the tensor product over Z
0> A®B - A®B,—> A®B;— 0

with a G-module A remains exact, we have for all elements a € H' (G, A) and
b € H/(G, B3) the relation

aUsb) = (—=1)8(a Ub)

in H+1(G, A ® B)).

Proof For the first statement, fix an element b € H/(G, B). Take a projective
resolution P, of the trivial G-module Z and consider the sequences

0 — Hom(P,, A;) - Hom(P,, A;) - Hom(P,, A3) — 0 12)

and

0 - Hom(P, ® P,, Ay ® B) > Hom(P, ® P,, A, ® B)
— Hom(P, ® P,, A3 ® B) — 0.

These are exact sequences of complexes by virtue of the projectivity of the
P; and the exactness of sequences (10) and (11). Lifting b to an element
B € Hom(P;, B), tensor product with 8 yields maps

Hom(Pi, Ak) — HOI’II(PI' ® Pj, Ak ® B)

fork = 1, 2, 3. Hence proceeding as in Construction 3.4.2 we obtain maps from
the terms in the first sequence to those of the second (increasing degrees by
J), giving rise to a commutative diagram by functoriality of the cup-product
construction. The connecting maps § are obtained by applying the snake lemma
to the above sequences as in Proposition 3.1.1, and one gets the first statement
from the aforementioned commutativity by following the image of the element
a € H'(G, A). The proof of the second statement is similar, except that one has
to replace the differentials in the complexes Hom*(P,, B;) by their multiples by
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(—1) in order to get a commutative diagram, by virtue of the sign convention
we have taken in Construction 3.4.1. m|

We shall also need another exactness property of the cup-product.
Proposition 3.4.9 Assume given exact sequences
0—>A ->A,—>A;—>0 and 00— B, > B, > B3 >0

of G-modules and a Z-bilinear pairing A, x By — C into some G-module
C, compatible with the action of G. Assume further that the restriction of this
pairing to Ay X By is trivial. Then it induces pairings

A1 xBy—C and A3 x B —> C
such that the induced cup-products satisfy the compatibility
Sa@) U B = (=1"aUss(B)

for o€ H(G,A3) and B e H/(G,B;), where §84: H(G, A3) >
H*Y(G, A)) and 8p: H/(G, B3) - H/TY(G, B)) are boundary maps
coming from the above short exact sequences.

Proof Take again a projective resolution P, of the trivial G-module Z, giving
rise to an exact sequence of the form (12) and a similar one with the B;. These
are linked by a pairing

Hom(P,, A,) x Hom(P,, B,) - Hom(P, ® P,, C)

trivial on Hom(P,, A;) x Hom(P,, B;). Represent « and B by cocycles
a3 € Z{(Hom(P,, A3)) and B3 € Z/(Hom(P,, B3)), respectively. Recall from
the proof of Proposition 3.1.1 that the class §4(«) is constructed as follows.
We first lift o3 to an element o, € Hom(P;, A,), and then take 82(0{2) in
B*1(Hom(P,, Ay)). Thisis an element mapping to 0in Z'*!(Hom(P,, A3))and
hence coming from some «; € Z'+'(Hom(P,, A1)), and we define §4(c) to be
its class in H'*!(Hom(P,, A1)). By definition of our pairing, 4 () U B is con-
structed by lifting B3 to some B, € Hom(P;, B) and then taking the image of
9% (a2) ® Br inHom(P; 11 ® P;, C). Since o comes from Z* ! (Hom(P,, A+)),
this does not depend on the choice of the lifting 8, and moreover it yields a cocy-
clein Z*/*'(Hom(P, ® P,, C)).In a similar way, one represents o U 8z(8)
by the image of o ® Bé(ﬂg) in Z*/*(Hom(P, ® P,, C)). Now viewing
3% (c2) ® B2 + (=1 ay ® 8%(B,) as an element in Z/ 7+ (Hom(P, ® P., C)),
we see that it is none but 37/ (e, ® B,), where 3'1/ is the total differential of
the complex. Hence it becomes 0 in H+/*!(Hom(P, ® P,, C)), which yields
the required formula. |
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Finally, given a subgroup H of G (normal or of finite index if needed), the
cup-product satisfies the following compatibility relations with the associated
restriction, inflation and corestriction maps.

Proposition 3.4.10 Given G-modules A and B, the following relations hold.
1. Forae H(G,A)andb € H/(G, B) we have
Res(a U b) = Res(a) U Res(b).

2. Assume H is normal in G. Then we have for a € H'(G/H, A") and
be H(G/H, BY)

Inf(a U b) = Inf(a) U Inf(b).

3. (Projection Formula) Assume that H is of finite index in G. Then for
aec H(H,A)and b € H (G, B) we have

Cor(a U Res(b)) = Cor(a) U b.

4. Assume H is normal in G. Then for all 0 € G/H, a € H'(H, A) and
b € H/(H, B) we have

o.(a Ub) = o.(a)Ua,(b).

Proof According to the definition of restriction maps, the first statement fol-
lows by performing the cup-product construction for the modules Mg(A) =
Hompy(Z[G], A) and Mg(B) = Homy(Z[G], B), and using functoriality of
the construction for the natural maps A — Mg(A) and B — MS(B). Simi-
larly, the second statement follows by performing the cup-product construction
simultaneously for the projective resolutions P, and Q, considered in the def-
inition of inflation maps, and using functoriality. For the projection formula
consider the diagram

Hompy(Z[G], A) x Homy(Z[G], B) > Hompyxy(Z|G x G], A® B)

\ 0 J
Homg(Z[G], A) x Homg(Z[G], B) — Homg(Z[G x G], A ® B),

where the horizontal maps are induced by the tensor product, the middle vertical
map is the one inducing the restriction and the two others are those inducing the
corestriction maps. The diagram is commutative in the sense that starting from
elements in Homg (Z[G], A) and Homg(Z[G], B) we get the same elements in
Homg«g(Z[G x G], A ® B) by going through the diagram in the two possible
ways; this follows from the definition of the maps. The claim then again follows
by performing the cup-product construction for the pairings in the two rows of
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the diagram and using functoriality. Finally, part (4) follows from the fact that
the action of o on Homg(P*, A) for a projective resolution P* of the trivial
G-module Z defined in the construction of the map o, is compatible with taking
tensor products of resolutions. O

We close this section with an important compatibility relation which
complements the calculation of the cohomology of finite cyclic groups in
Example 3.2.9.

Proposition 3.4.11 Let G be a finite cyclic group of order n, and let x be the
element of the group H'(G,Z/nZ) = Hom(G, Z/nZ) corresponding to the
identity map.

1. Denotebys : H'(G,Z/nZ) — H*(G, Z) the boundary map coming from
the short exact sequence

0>2Z52—>7Z/nZ 0. (13)

The element 8(x) is a generator of the cyclic group H*(G, 7).
2. If A is a G-module, the isomorphisms

H (G, A) = H(G, A)

of Example 3.2.9 are induced by cup-product with 6(x) for alli > 0.
3. The isomorphism

AS/NA = H*(G, A)

is induced by mapping an element of A® = H%(G, A) to its cup-product
with §(x).

Proof Recall the free resolution
s 72161 2 2161 X 7161 22 216G — Z - 0 (14)

used to calculate the cohomology of G. To prove the first statement, it will suffice
to check that the element () € H*(G, Z)is represented by the homomorphism
X : ZIG] — Z given by sending a generator o of G to 1, with Z[G] placed
in degree —2 in the above resolution. This is done by carefully going through
the construction of 8, given by applying Proposition 3.1.1 to the short exact
sequence of complexes arising from homomorphisms of the above resolution
to the sequence (13). It yields the following: first we lift x to the element
¥ € Hom(Z[G], Z) sending a fixed generator o € G to 1. We then compose
Y by N : Z[G] — Z[G] to get a homomorphism with values in nZ. The class
8(x) is then represented by any map A : Z[G] — Z satisfying nA = o N;
the map A = ) manifestly has this property.
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This being said, the calculation of the cup-product with §( ) is shown by the
diagram

Hom(Z[G], A) —Y % Hom(Z[Gl,A) - Hom(Z[G],A) > ...

o1 o1 o1
Hom(Z[G xG], A) —— Hom(Z[G x G], A) —— Hom(Z[G x G], A)— ...

Resl Resl Resl

Hom(Z[G], A) —Y— Hom(Z[Gl,A) - Hom(Z[G],A)—> ...

where the maps in the bottom line are the same as in the top one except that the
whole complex is shifted by degree 2. But the resolution (14) is periodic by 2,
whence the second statement.

The last statement is proven by a similar argument: here we represent
a € H°(G, A) by the homomorphism @ : Z[G] — A sending o to a, with
Z[G] placed in degree O this time. Then it remains to observe that tensoring
with a and taking restriction along the diagonal yields the natural diagram

(o—1)*
—

Hom(Z[G], Z) —Y— Hom(Z[G], Z) Hom(Z[G],Z) — ...

l l l

Hom(Z[G], A) —Y— Hom(Z[G], A) —2—2*» Hom(Z[G], A) —> ...

corresponding to the map Z — A given by sending 1 to a. |

Exercises

1. Let ¢ : Gy — G, be a homomorphism of groups, and equip each G,-module A
with the G-action induced by ¢. Show that there exists a unique family of homo-
morphisms

¢ : H(G,, A) — H' (G, A)
for each i > 0 such that for every short exact sequence
0—-A—->B—->C—0
of G,-modules the arising diagrams
H'(Gy, A) —— H'(G3, B) ——— H'(G»,C) ——— H'*'(Gy, A)
d»;\l ¢gl ¢"Cl W‘l
H'(G\, A) — H'(G\,B) —— H'(G,,C) ——— H'*'(G\, A)

commute. [Note: This gives in particular another construction of restriction and
inflation maps.]
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2. Let H be a subgroup of G of finite index n, and let py, ..., p, be a system of left
coset representatives.

(a) Check that the map Cor’: A" — AC given by x — >, pjx does not
depend on the choice of the p;.

(b)  Show that the corestriction maps H(H, A) — H(G, A) are the only maps
which coincide with the above Cor? for i = 0 and satisfy a property analogous
to that of the maps ¢, of the previous exercise.

3. With notations as in the previous exercise, assume moreover that H is normal in
G. Define for all i > 0 norm maps Ng,i : H'(H, A) — H'(H, A) by the formula
Nem =3 i Pjs-

(a)  Check that the above definition does not depend on the choice of the p;.

(b)  Verify the formula Res o Cor = Ng/p.

4. Show that using the standard resolution one can give the following explicit
description of the cup-product using cocycles: if a € H'(G, A) is represented

by an i-cocycle (oy,...,0i) = aq,.. . and b€ H(G, B) is represented by a
j-cocycle (a1, ..., 0;) > by, ..o, thena Ub € H/ (G, A ® B)is represented by
the (i + j)-cocycle (o1, ..., 0i1j) F> doy,.0; @01 ... 0i(boy,y o1y ;)-

5. Give an explicit interpretation of the piece

H'(H, A" 5 HXG/H, A"y ™5 HG, A)

of the exact sequence of Proposition 3.3.14 in terms of classes of group extensions.
(You may assume for simplicity that H acts trivially on A.)

6. Let G be a finite cyclic group generated by o € G and let A, B be G-modules.
(a)  Describe directly the pairing

(A°/NA) x (yB/(c — 1)B) > n(A® B)/(c — 1)(A® B)
induced by the cup-product
HY*X(G, A) x HY*Y(G, B) > H¥**Y*(G, A® B)

via the formulae of Example 3.2.9.
(b)  Similar question for the pairings

(A°/NA) x (B°/NB) - (AQ B)°/N(A® B)
and

(vA/(6 —1)A) x (yB/(6 = 1)B) = (A® B)°/N(A® B).
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The cohomological Brauer group

We now apply the cohomology theory of the previous chapter to the study of the
Brauer group. However, we shall have to use a slightly modified construction
which takes into account the fact that the absolute Galois group of a field is
determined by its finite quotients. This is the cohomology theory of profinite
groups, which we develop first. As a fruit of our labours, we identify the Brauer
group of a field with a second, this time commutative, cohomology group of
the absolute Galois group. This makes it possible to give an easy proof of basic
facts about the Brauer group, e.g. that it is a torsion group. We also treat the
foundations of the theory of index and period for central simple algebras with
the help of cohomology. Last but not least, one of the main objects of study in
this book makes its appearance: the Galois symbol.

The cohomology theory of profinite groups was introduced in the late
1950s by John Tate, motivated by sheaf-theoretic considerations of Alexan-
der Grothendieck. His original aim was to find the appropriate formalism for
developing class field theory. Tate himself never published his work, which thus
became accessible to the larger mathematical community through the famous
account of Serre [4], which also contains many original contributions. It was
Brauer himself who described the Brauer group as a second cohomology group,
using his language of factor systems. We owe to Serre the insight that descent
theory can be used to give a more conceptual proof. The Galois symbol was
defined by Tate in connection with the algebraic theory of power residue sym-
bols, a topic extensively studied in the 1960s by Bass, Milnor, Moore, Serre
and others.

4.1 Profinite groups and Galois groups

It can be no surprise that the main application of the cohomological techniques
of the previous chapter will be in the case when G is the Galois group of a
finite Galois extension. However, it will be convenient to consider the case of
infinite Galois extensions as well, and first and foremost that of the extension
ky|k, where k; is a separable closure of k.

Recall that a (possibly infinite) algebraic field extension K|k is a Galois
extension if it is separable (i.e. the minimal polynomials of all elements of K
have distinct roots in an algebraic closure) and if for each element x € K \ k



4.1 Profinite groups and Galois groups 81

a field automorphism o of K exists fixing k elementwise such that o(x) # x.
We denote the group of k-automorphisms of K by Gal (K |k) as in the finite
case, and call it the Galois group of K |k. A basic example of a Galois extension
is given by a separable closure &, of k. Its Galois group is called (somewhat
abusively) the absolute Galois group of k.

A Galois extension K |k is a union of finite Galois extensions, because we may
embed each simple extension k() C K into the splitting field of the minimal
polynomial of «, which is a finite Galois extension contained in K. This fact
has a crucial consequence for the Galois group Gal (K |k), namely that it is
determined by its finite quotients. We shall prove this in Proposition 4.1.3 below,
in a more precise form. To motivate its formulation, consider a tower of finite
Galois subextensions M|L|k contained in an infinite Galois extension K |k.
The main theorem of Galois theory provides us with a canonical surjection
omr - Gal (M|k) — Gal (L|k). Moreover, if N|k is yet another finite Galois
extension containing M, we have ¢y = @y o ¢y Thus one expects that if
we somehow “pass to the limit in M, then Gal (L|k) will actually become a
quotient of the infinite Galois group Gal (K |k) itself. This is achieved by the
following construction.

Construction 4.1.1 A (filtered) inverse system of groups (G, ¢qp) consists of:

e a partially ordered set (A, <) which is directed in the sense that for all
(o, B) € A thereissome y € A witha <y,B8 <y;

e foreacha € A agroup Gg;

* foreacha < Bahomomorphism @y : Gg — G, such that we have equal-

ities ¢uy = Pop 0 Ppy, fora < g < y.

The inverse limit of the system is defined as the subgroup of the direct product
[1,ca Go consisting of sequences (g) such that ¢,s(gs) = g« for all & < B.
It is denoted by 1i<r_n G; we shall not specify the inverse system in the notation
when it is clear from the context. Also, we shall often say loosely that liin Gy

is the inverse limit of the groups G, without special reference to the inverse
system.

Plainly, this notion is not specific to the category of groups, and one can
define the inverse limit of sets, rings, modules, even of topological spaces in an
analogous way.

We can now define a profinite group as an inverse limit of a system of finite
groups. For a prime number p, a pro-p-group is an inverse limit of finite p-
groups.
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Examples 4.1.2

1. A finite group is profinite; indeed, it is the inverse limit of the system
(G, Qup) for any directed index set A, with G, = G and ¢p = idg.

2. Given a group G, the set of its finite quotients can be turned into an inverse
system as follows. Let A be the index set formed by the normal subgroups
of finite index partially ordered by the following relation: U, < Ug iff
Uy, D Ug.Thenif U, < Ug are such normal subgroups, we have a quotient
map ¢qp : G/Ug — G/U,. The inverse limit of this system is called the
profinite completion of G, customarily denoted by G. There is a canonical
homomorphism G — G.

3. Take G = Z in the previous example. Then A is just the set Z.(, since
each subgroup of finite index is generated by some positive integer m. The
partial order is induced by the divisibility relation: m|n iff mZ O nZ. The
completion Zis usually called zed hat (or zee hat in the US).

4. In the previous example, taking only powers of some prime p in place of
m we get a subsystem of the inverse system considered there; in fact it is
more convenient to index it by the exponent of p. With this convention
the partial order becomes the usual (total) order of Z. o. The inverse limit
is Z,, the additive group of p-adic integers. This is a commutative pro-p-
group. The Chinese Remainder Theorem implies that the direct product
of the groups Z,, for all primes p is isomorphic to Z.

Now we come to the main example, that of Galois groups.

Proposition 4.1.3 Let K|k be a Galois extension of fields. Then the Galois
groups of finite Galois subextensions of K |k together with the homomorphisms
omL : Gal (M|K) — Gal (L|k) form an inverse system whose inverse limit is
isomorphic to Gal (K |k). In particular, Gal (K |k) is a profinite group.

Proof Only the isomorphism statement needs a proof. For this, define a group
homomorphism ¢ : Gal (K |k) — [ Gal (L|k) (where the product is over all
finite Galois subextensions L|k) by sending a k-automorphism o of K to the
direct product of its restrictions to the various subfields L indexing the product.
This map is injective, since if an automorphism o does not fix an element
o of kg, then its restriction to a finite Galois subextension containing k() is
nontrivial (as we have already remarked, such an extension always exists). On
the other hand, the main theorem of Galois theory assures that the image of ¢ is
contained in liin Gal (L|k). It is actually all of liin Gal (L|k), which is seen as

follows: take an element (o) of lim Gal (L|K) and define a k-automorphism o

of K by putting o (o) = o7 (c) with some finite Galois L containing k(c). The
fact that o is well defined follows from the fact that by hypothesis the o form a
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compatible system of automorphisms; finally, o maps to (o) € lim Gal (L|K)

by construction. |

Corollary 4.1.4 Projection to the components of the inverse limit of the pro-
position yields natural surjections Gal (K |k) — Gal (L|k) for all finite Galois
subextensions L|k contained in K.

Example 4.1.5 (Finite fields) Let F be a finite field and F; a separable clo-
sure of F. It is well known that for each integer n > 0 the extension Fj|F
has a unique subextension F,|F with [F, : F] = n. Moreover, the extension
F,|F is Galois with group Gal (F,|F) = Z/nZ, and via this isomorphism the
natural projections Gal (F,,,|F) — Gal (F,|F) correspond to the projections
Z/mnZ — Z./nZ. It follows that Gal (F,|F) = Z.

Example 4.1.6 (Laurent series fields) As another example of a field with
absolute Galois group 2, we may consider the formal Laurent series field k((¢))
over an algebraically closed field k of characteristic 0.

Here is a sketch of the proof of this fact. Take a finite extension
L|k((t)) of degree n. As we are in characteristic 0, we may write
L = k((t))(«) with some o € L. Multiplying o by a suitable element of
k[[t]] we may assume « satisfies an irreducible monic polynomial equation
fl@)=a"+a, 1" ' +---+ay =0 with a; € k[[¢]] and f'(a) # 0. Then
by the implicit function theorem for formal power series (which can be easily
proven by Newton’s method) we may express ¢ as a formal power series
t =bo+ b+ ba® + - € k[[a]]. In particular, plugging this expression
into the power series expansions of the a; and using the above equation for
a we get that b; = 0 for j < n. Next, we may find a formal power series
T =cio + ca? + - - - € k[[«]] with " = t. Indeed, comparing power series
expansions we get ¢{ = by, nc?*lcz = b, and so on, from which we may
determine the ¢; inductively. Finally, we may also express « as a power series
a =dt +dpt? + - € k[[7]], withd, = cfl, d) = —cch3 and so on. Hence
we may embed L into the Laurent series field k((t)), but this field is none but
the degree n cyclic Galois extension k((#))(t) of k((z)). We conclude as in the
previous example.

Profinite groups are endowed with a natural topology as follows: if G is the
inverse limit of a system of finite groups (G, ¢ug), endow the G, with the
discrete topology, their product with the product topology and the subgroup
G C [] G with the subspace topology. It immediately follows from this con-
struction that the natural projection maps G — G, are continuous and their
kernels form a basis of open neighbourhoods of 1 in G (for the last statement,
note that the image of each element g # 1 of G must have nontrivial image in
some G, by definition of the inverse limit).

To state other topological properties, we need a lemma.
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Lemma 4.1.7 Let (G, ¢pup) be an inverse system of groups endowed with the
discrete topology. Then the inverse limitlim G, is a closed topological subgroup

of the product [ | G.

Proof Take an element g = (g4) € [[ Gq- If g ¢ lim G, we have to show
that it has an open neighbourhood which does not meet lim G,. By assumption

for some o and B we must have ¢op(gs) # 8o Now take the subset of [[ G,
consisting of all elements with a-th component g, and S-th component gg.
It is a suitable choice, being open (by the discreteness of the G, and by the
definition of the topological product) and containing g but avoiding ligl G,.O

Corollary 4.1.8 A profinite group is compact and totally disconnected (i.e.
the only connected subsets are the one-element subsets). Moreover, the open
subgroups are precisely the closed subgroups of finite index.

Proof Recall that finite groups are compact, and so is a product of compact
groups, by Tikhonov’s theorem. Compactness of the inverse limit then follows
from the lemma, as closed subspaces of compact spaces are compact. Complete
disconnectedness follows from the construction. For the second statement, note
that each open subgroup U is closed since its complement is a disjoint union
of cosets gU which are themselves open (the map U +— gU being a homeo-
morphism in a topological group); by compactness of G, these must be finite
in number. Conversely, a closed subgroup of finite index is open, being the
complement of the finite disjoint union of its cosets which are also closed. O

Remark 4.1.9 In fact, one may characterize profinite groups as being those
topological groups which are compact and totally disconnected. See e.g.
Shatz [1] for a proof.

We may now state and prove the main theorem of Galois theory for possibly
infinite extensions. Observe first that if L is a subextension of a Galois extension
K |k, then K is also a Galois extension of L and Gal (K |L) is naturally identified
with a subgroup of Gal (K |k).

Theorem 4.1.10 (Krull) Let L be a subextension of the Galois extension K |k.
Then Gal (K |L) is a closed subgroup of Gal (K |k). Moreover, in this way we get
a bijection between subextensions of K |k and closed subgroups of Gal (K |k),
where open subgroups correspond to finite extensions of k contained in K.

Proof Take first a finite separable extension L |k contained in K. Recall that
we can embed it in a finite Galois extension M |k contained in K (use the theo-
rem of the primitive element to write L = k(o) and take the associated splitting
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field). Then Gal (M |k) is one of the standard finite quotients of Gal (K k),
and it contains Gal (M|L) as a subgroup. Let U, be the inverse image of
Gal (M|L) by the natural projection Gal (K |k) — Gal (M |k). Since the pro-
jection is continuous and Gal (M |k) has the discrete topology, Uy, is open. It
thus suffices to show U; = Gal (K|L). We have U, C Gal (K |L), for each ele-
ment of U, fixes L. On the other hand, the image of Gal (K |L) by the projection
Gal (K |k) — Gal (M|k) is contained in Gal (M|L), whence the reverse inclu-
sion. Now if L|k is an arbitrary subextension of K |k, write it as a union of
finite subextensions L, |k. By what we have just proven, each Gal (K |L,,) is an
open subgroup of Gal (K |k), hence it is also closed by Corollary 4.1.8. Their
intersection is precisely Gal (K|L) which is thus a closed subgroup; its fixed
field is exactly L, for K is Galois over L.

Conversely, given a closed subgroup H C G, it fixes some extension L|k
and is thus contained in Gal (K'|L). To show equality, let o be an element of
Gal (K|L), and pick a fundamental open neighbourhood Uy, of the identity
in Gal (K|L), corresponding to a Galois extension M|L. Now H C Gal (K |L)
surjects onto Gal (M|L) by the natural projection; indeed, otherwise its image
in Gal (M |L) would fix a subfield of M strictly larger than L according to finite
Galois theory, which would contradict our assumption that each element of
M \ L is moved by some element of H. In particular, some element of H must
map to the same element in Gal (M|L) as 0. Hence H contains an element of
the coset o Uy, and, as Uy, was chosen arbitrarily, this implies that o is in the
closure of H in Gal (K|L). But H is closed by assumption, whence the claim.
Finally, the assertion about finite extensions follows from the above in view of
Corollary 4.1.8. |

Remark 4.1.11 The group Gal (X |k) contains many nonclosed subgroups if
K|k is an infinite extension. For instance, cyclic subgroups are usually non-
closed; as a concrete example, one may take the cyclic subgroup of Z generated
by 1. In fact, a closed subgroup of a profinite group is itself profinite, but it can
be shown that an infinite profinite group is always uncountable. Thus none of
the countable subgroups in a profinite group are closed.

4.2 Cohomology of profinite groups
Let G = 1121 G, be a profinite group. In this section we attach to G another
system of cohomology groups, different from that of the previous chapter for
infinite G, which reflects the profiniteness of G and which is more suitable for
applications.
By a (discrete) continuous G-module we shall mean a G-module A such
that the stabilizer of each a € A is open in G. Unless otherwise stated, we shall
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always regard A as equipped with the discrete topology; continuous G-modules
are then precisely the ones for which the action of G (equipped with its profi-
nite topology) is continuous. If G, = G/ U, is one of the standard quotients
of G, the submodule AU« is naturally a G,-module. The canonical surjection
¢up : Gg — G, between two of the standard quotients induces inflation maps
Inf? : H(G,, AY) — H'(Gg, AY) for all i > 0. Furthermore, the compati-
bility condition @y, = Pup © ¢p, implies that the groups H (G, A) together
with the maps Infg form a direct system in the following sense.

Construction 4.2.1 A (filtered) direct system of abelian groups (By, Vup)
consists of:

¢ adirected partially ordered set (A, <);
e foreach o € A an abelian group By;
» foreacha < fahomomorphism s : B, — Bg suchthat we have equal-

ities gy = g, 0o Yyp fora < g < y.

The direct limit of the system is defined as the quotient of the direct sum
D, Ba by the subgroup generated by elements of the form bg — ep(be). It
is denoted by lim B, . Direct limits of abelian groups with additional structure

(e.g. rings or modules) are defined in an analogous way.

Also, given direct systems (B, ¥4p) and (Cq, p4p) indexed by the same
directed set A, together withmaps A, : By, — Cg satisfying g o ¥gp = pup 0 Ao
for all « < B, we have an induced map A : liin B, — liin C,, called the direct

limit of the maps A, .
We can now define:

Definition 4.2.2 Let G = lim G, be a profinite group, and A a continuous

G-module. For all integers i > 0, we define the i-th continuous cohomology
group H! (G, A) as the direct limit of the direct system (H'(G,, AY~), Inf?)
constructed above. In the case when G = Gal (k,|k) for some separable closure
ky of a field k, we also denote H! (G, A)by H'(k, A), and call it the i-th Galois
cohomology group of k with values in A.

Example 4.2.3 Consider Z with trivial action by a profinite group G. Then
H! (G,Z) = 0. Indeed, by definition this is the direct limit of the groups
HI(G/ U,Z) =Hom(G/U, Z) for U open and normal in G, which are trivial,
as the G/ U are finite and Z is a torsion free abelian group.

Remark 4.2.4 It follows from the definition that Hcoom(G, A) = H%G, A) for

all continuous G-modules A, and that H (G, A) = H'(G, A) if G is finite.
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However, for i > 0 and G infinite the two groups are different in gen-
eral. Take, for instance, i = 1, G = Z and A = Q with trivial Z-action. Then
Hclom(Z, Q) = lim Hom(Z/nZ, Q) = 0, because Q is torsion free.

On the other hand, H 1(2, Q) is the group of Z-module homomorphisms
7Z— Q. But as Q is a divisible abelian group (i.e. the equation nx =y is
solvable in Q for all n € Z), one knows that a homomorphism C — Q from a
subgroup C of an abelian group B extends to ahomomorphism B — Q (seee.g.
Weibel [1], p. 39; note that the proof of this fact uses Zorn’s lemma). Applying
this with C =Z, B = Z and the natural inclusion Z — Q we get a nontrivial
homomorphism 7 Q.

Convention 4.2.5 From now on, all cohomology groups of a profinite group
will be understood to be continuous, and we drop the subscript cont from the
notation.

We now come to a basic property of the cohomology of profinite groups.

Proposition 4.2.6 For a profinite group G and a continuous G-module A the
groups H'(G, A) are torsion abelian groups for all i > 0. Moreover, if G is a
pro-p-group, then they are p-primary torsion groups.

Proof This follows from the definition together with Corollary 3.3.8. |
Corollary 4.2.7 Let V be a Q-vector space equipped with a continuous action

by a profinite group G. Then H (G, V) =0 for all i > 0.

Proof 1t follows from the construction of cohomology that in this case the
groups H'(G, V) are Q-vector spaces; since for i > 0 they are also torsion
groups, they must be trivial. O

Recall that Corollary 3.3.8 was obtained as a consequence of a statement
about restriction and corestriction maps. We now adapt these to the profinite
situation.

Construction 4.2.8 Let G be a profinite group, H a closed subgroup and A a
continuous G-module. Define continuous restriction maps

Res: H'(G,A) — H(H, A)
as the direct limit of the system of usual restriction maps
H'(G/Uq, A™) — H'(H/(H N Uy), A”),

where the U,, are the standard open normal subgroups of G.
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In the case when H is open in G, one defines continuous corestriction maps
Cor: H(H,A) — H'(G, A) in a similar way. Finally, when H is a closed
normal subgroup in G, one defines inflation maps

Inf: H(G/H, A") - H(G, A)
as the direct limit of the system of inflation maps
H'((G/Uy)/(H N Uy), A""Y) — H'(G/U,, A%).

Manifestly, in the case of a finite G we get back the previous restriction, core-
striction and inflation maps.

Remark 4.2.9 In the above situation, one may define the module Mg(A) to be
the direct limit ligq Homy;nnu,(ZIG/ U], AY«), where the U, are the stan-
dard open normal subgroups of G. We have a continuous G-action defined by
8(Pa(x4)) = ¢o(xaga), Where g, is the image of g in G/ U, ; one checks that this
action is well defined and continuous. (Note that in the spirit of the convention
above we employ the notation MS(A) for another G-module as before; the one
defined in Chapter 3 is not continuous in general.) Then we have M g (A=A
and the Shapiro isomorphism H'(G, MG(A)) = H'(H, A) holds with a similar
proof as in the non-continuous case. In particular, one has the vanishing of the
cohomology H (G, M%(A)) of (continuous) co-induced modules for i > 0.
One may then also define the continuous restriction and corestriction maps
using this Shapiro isomorphism, by mimicking the construction of Chapter 3.

As in the non-continuous case, we have:

Proposition 4.2.10 Let G be a profinite group, H an open subgroup of index
n and A a continuous G-module. Then the composite maps

CoroRes: H'(G,A) — H' (G, A)
are given by multiplication by n for all i > 0. Consequently, the restriction

H (G, A) — H'(H, A)is injective on the prime-to-n torsion part of H'(G, A).

Proof Each element of H'(G,A) comes from some H'(G/U,, AY%),
and Proposition 3.3.7 applies. The second statement follows because the
multiplication-by-» map is injective on the subgroup of elements of order prime
to n. O

A refined version of the last statement is the following.

Corollary 4.2.11 Let G be a profinite group, p a prime number and H a
closed subgroup such that the image of H in each finite quotient of G has
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order prime to p. Then for each continuous G-module A the restriction map
H(G, A) — H'(H, A) is injective on the p-primary torsion part of H' (G, A).

Proof Assume that an element of H'(G, A) of p-power order maps to 0
in H'(H, A). It comes from an element of some H'(G,, AY*) of which we
may assume, up to replacing U, by a smaller subgroup, that it maps to O in
H!(H/(H N U,), AY). By the proposition (applied to the finite group G/U,)
is must then be 0. O

The main application of the above corollary will be to pro- p-Sylow subgroups
of a profinite group G. By definition, these are subgroups of G which are pro-
p-groups for some prime number p and whose images in each finite quotient
of G are of index prime to p.

Proposition 4.2.12 A profinite group G possesses pro-p-Sylow subgroups for
each prime number p, and any two of these are conjugate in G.

The proof uses the following well-known lemma.

Lemma 4.2.13 An inverse limit of nonempty finite sets is nonempty.

Proof The proof works more generally for compact topological spaces. Given
an inverse system (X, @) of nonempty compact spaces, consider the subsets
X C [ Xo consisting of the sequences (x,) satisfying ¢;,(x,) = x, for a
fixed pair A < p. These are closed subsets of the product, and their intersection
is precisely ligl Xo. Furthermore, the directedness of the index set implies

that finite intersections of the X, are nonempty. Since [ X, is compact by
Tikhonov’s theorem, it ensues that lim X, is nonempty. |
<~

Proof of Proposition 4.2.12  Write G as an inverse limit of a system of finite
groups G,. For each G, denote by §, the set of its p-Sylow subgroups (for the
classical Sylow theorems, see e.g. Lang [3]). These form an inverse system of
finite sets, hence by the lemma we may find an element S in the limit li(r_n Se-
This S corresponds to an inverse limit of p-Sylow subgroups of the G, and
hence gives a pro-p-Sylow subgroup of G. If P and Q are two pro-p-Sylow
subgroups of G, their images in each G, are p-Sylow subgroups there and
hence are conjugate by some x, € G, by the finite Sylow theorem. Writing X,
for the set of possible x,s, we get again an inverse system of finite sets, whose
nonempty inverse limit contains an element x with x ' Px = Q. O

Corollary 4.2.11 now implies:
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Corollary 4.2.14 If P is a pro-p-Sylow subgroup of a profinite group G, the
restriction maps Res : H'(G, A) — H'(P, A) are injective on the p-primary
torsion part of H' (G, A) for all i > 0 and continuous G-modules A.

To conclude this section, we mention another construction from the previous
chapter which carries over without considerable difficulty to the profinite case,
that of cup-products.

Construction 4.2.15 Given a profinite group G and continuous G-modules A
and B, define the tensor product A ® B as the tensor product of A and B over Z
equipped with the continuous G-action inducedby o(a ® b) = o(a) @ o(b).In
the previous chapter we have constructed for all i, j > 0 and all open subgroups
U of G cup-product maps

H(G/U, AY) x H/(G/U, BYY - H*/(G/U, AY @ BY), (a,b)r>aUb
satisfying the relation
Inf (a U b) = Inf (a) U Inf (b)

for the inflation map arising from the quotient map G/V — G/U for an open
inclusion V C U. Note that by the above definition of the G-action we have a
natural map AY ® BY — (A ® B)Y, so by passing to the limit over all inflation
maps of the above type we obtain cup-product maps

H'(G,A) x H(G,B) - H'Y/(G,A® B), (a,b)+>aUb
for continuous cohomology.

It follows immediately from the non-continuous case that this cup-product is
also associative and graded-commutative, and that moreover it satisfies compat-
ibility formulae with restriction, corestriction and inflation maps as in Propo-
sition 3.4.10. It also satisfies the exactness property of Proposition 3.4.8, but
for this we have to establish first the long exact cohomology sequence in the
profinite setting. We treat this question in the next section.

4.3 The cohomology exact sequence

We now show that the analogues of exact sequences established for usual coho-
mology groups also hold for continuous ones. We begin with the long exact
cohomology sequence.

Proposition 4.3.1 Given a profinite group G and a short exact sequence

0>A—-B—->C—=0
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of continuous G-modules, there is a long exact sequence of abelian groups
---— H'(G,A) — H'(G,B) — H'(C,C) —» H(G,A) — ...
starting from H(G, A).
For the proof we need two formal statements about direct limits.

Lemma 4.3.2 Let (Ay, @up), (By, Vo) and (Cq, pap) be three direct systems
indexed by the same directed set A. Assume moreover given exact sequences

Ao Ha
Ay —> By —> Cq

for each o € A such that the diagrams

Ay —> B, - C,

%ﬂl Vap l Pap l
A

Ap —2— By —'> ¢y

commute for all @ < B. Then the limit sequence
. A oo
lim A, — lim B, — lim C,
— — —

is exact as well.

Proof Anelement of ker(u) is represented by some b, € B, with the property
that peg(te(by)) = g(Yap(by)) = 0 for some B > «. But then there is some
ag € Aﬂ with kﬁ(aﬁ) = Iﬂaﬂ(ba). O

Lemma 4.3.3 Consider a profinite group G and a direct system (Aq, Pup) Of
continuous G-modules (in particular, the ¢og are G-homomorphisms). Then the
G-module lim A, is also continuous, the groups H' (G, Ay) with the induced

maps form a direct system, and there exist canonical isomorphisms
lim H(G, A,) = H(G,lim A,)
— —

foralli > 0.

Proof The first statement follows from the construction of direct limits, which
also shows that for each open subgroup U the G/U-module (lim A,)Y is the

direct limit of the G/ U-modules AY. Hence it suffices to show the isomorphism
statement for the cohomology of the latter. Taking a projective resolution P*®
of the trivial G/U-module Z, we are reduced to establishing isomorphisms of
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the form
lim Hom(P', A,) = Hom(P', lim A,)

compatible with coboundary maps. Such isomorphisms again follow from the
construction of direct limits (for instance, one may observe that the canonical
isomorphisms @ Hom(P!, A,) = Hom(P’, ®A,) preserve the relations defin-
ing the direct limit). |

Proof of Proposition4.3.1 ~ The homomorphisms H (G, A) — H'(G, B) and
H(G, B) = H'(G, C) arise from the finite case by passing to the limit. To
define the connecting homomorphism 38 : H' (G, C) — H*'(G, A), consider
first an open subgroup U of G and define Ky as the cokernel of the map
BY — CV (this is a nontrivial group in general). As the map B — C is surject-
ive, we get that the direct limit of the groups Ky with U running over all open
subgroups is trivial. Therefore the last term in the sequence

lim H(G/U, (BY/AY)) — lim H(G/U,CY) — lim H(G/U, Ky)

is trivial by Lemma 4.3.3 (note that each Ky, is also a G-module via the natural
projection). The sequence is exact by Lemma 4.3.2, hence we may always lift
an element y of the middle term, which is none but H (G, C), to an element
in some H'(G/U, (BY /AY)). The usual long exact sequence coming from the
sequence of G /U -modules

0— AY - BY - BY/AY 0 (D

then yields an element in H'*'(G/U, AY), and hence in H'T!(G, A), which
we define to be d(y). This definition manifestly does not depend on the choice
of U, and furthermore, the long exact sequence coming from

0— BY/AY - ¢cY - Ky - 0

shows that any two liftings of y into H'(G/U, (BY /AY)) differ by an element
of H=Y(G/U, Ky), which then maps to0in H~'(G/V, Ky ) forsome V C U.
This shows that the map d is well defined. Exactness of the sequence at
the terms H'(G, A) and H'(G, C) now follows from that of the long exact
sequence associated with (1) and exactness at the terms H' (G, B) follows from
Lemma 4.3.2. a

Remarks 4.3.4

1. A more elegant way for establishing the above proposition is by construct-
ing continuous cohomology groups directly as Ext-groups in the category
of continuous G-modules; the long exact sequence then becomes a for-
mal consequence, just as in the previous chapter (see e.g. Weibel [1],
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Section 6.11). We have chosen the above more pedestrian presentation in
order to emphasize the viewpoint that all basic facts for the cohomology
of profinite groups follow from the finite case by passing to the limit.

2. Itis important to note that if the exact sequence

0>A—-B-5Cc=0

has a splitting, i.e. a map of G-modules i : C — B with poi =idc,
then the induced maps p, : H'(G, B) - H'(G, C)andi, : H(G,C) —
H(G, B) also satisfy p, oi, =id by the functoriality of cohomology.
Therefore the long exact sequence splits up into a collection of (split)
short exact sequences

0— H'(G,A) — H'(G,B)— H'(G,C) — 0,
a fact we shall use many times later.

The inflation-restriction sequences of the last chapter also carry over to the
profinite setting:

Corollary 4.3.5 Let G be a profinite group, H a closed normal subgroup. Then
the statements of Propositions 3.3.14 and 3.3.17 remain valid in the continuous
cohomology.

Proof This follows from loc. cit. via Lemma 4.3.2. O

We conclude this section with a first application of the cohomology of profi-
nite groups which will be invaluable for the sequel.

Proposition 4.3.6 (Kummer Theory) Let k be a field, and m > 0 an integer
prime to the characteristic of k. Denote by (1, the group of m-th roots of unity
in a fixed separable closure of k, equipped with its Galois action. There exists
a canonical isomorphism

~

kx/kxm = Hl(k, /'Lm)

induced by sending an element a € k* to the class of the I-cocycle
o +— o(@)a”!, where a is an m-th root of a.

For the proof we need the continuous version of Hilbert’s Theorem 90:

Lemma 4.3.7 The Galois cohomology group H'(k, k) is trivial.

Proof This follows from Example 2.3.4 after passing to the limit. O

Proof of Proposition4.3.6  Consider the exact sequence of Gal (k;|k)-modules

1= iy = kB k-1, 2)
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where the third map is given by raising elements to the m-th power. This map
is surjective because the polynomial x”* — a is separable for all a € k;, in view
of the assumption on m. A piece of the associated long exact sequence reads

HOUk, k) — H(k, k) — H'(k, ) — H'(k, k),

where the last group s trivial by the lemma. Noting that H°(k, k) = k* and that
the first map is multiplication by m, by construction of cohomology, we obtain
the required isomorphism. Its explicit description follows from the construction
of the coboundary map in cohomology (see Remark 3.2.4). O

Remark 4.3.8 Note that it was crucial here to work with k; and Galois coho-
mology, for we do not dispose of the analogue of exact sequence (2) at a finite
level.

The proposition has the following consequence (which is the original form
of Kummer’s theorem):

Corollary 4.3.9 For k and m as above, assume moreover that k contains a
primitive m-th root of unity w. Then every finite Galois extension of k with
Galois group isomorphic to Z/mZ is of the form k(a)|k with some o € k
satisfying o™ € k*.

Proof The Galois group of an extension as in the corollary is a quotient
of Gal (ks|k) isomorphic to Z/mZ, and thus corresponds to a surjection
x : Gal (ky|k) — Z/mZ. But since by assumption wu, C k, we have iso-
morphisms Hom(Gal (k|k), Z/mZ) = H'(k, Z/mZ) = H'(k, j1,,) (the sec-
ond one depending on the choice of w). By the proposition x corresponds
to the class of some a € k* modulo £*™”, and moreover the kernel of y is
precisely Gal (k(«)|k), where « is an m-th root of a. O

In positive characteristic we have the following complement to Kummer
theory.

Proposition 4.3.10 (Artin—Schreier Theory) Let k be a field of characteristic
p > 0. Denote by g : k — k the endomorphism mapping x € k to x? — x.
Then there exists a canonical isomorphism

k/p(k) = H'(k,Z/pZ)

induced by mapping a € k to the cocycle o +— o (o) — o, where o is a root of
the equation x? — x = a.

The proof is based on the following lemma. It is sometimes called the additive
version of Hilbert’s Theorem 90, as it concerns the additive group of k; viewed
as a Gal (k,|k)-module instead of the multiplicative group.
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Lemma 4.3.11 For an arbitrary field k the groups H'(k,k) are trivial for all
i>0.

Proof We prove the triviality of H'(G, K) for all Galois extensions K |k with
group G and all i > 0. According to the normal basis theorem of Galois theory
(see e.g. Lang [3], Chapter VI, Theorem 13.1), we may find an element x € K
such that oi(x),...,0,(x) form a basis of the k-vector space K, where
1 =o0y,...,0, are the elements of G. This means that K is isomorphic to
K ®z Z[G] as a G-module. The latter is a co-induced G-module by Remark
3.3.4 (3), so its cohomology is trivial by Corollary 3.3.3. |

Remark 4.3.12 In characteristic O the lemma is easy to prove: the coefficient
module k; is a Q-vector space, hence Corollary 4.2.7 applies. However, we are
about to apply the positive characteristic case.

Proof of Proposition 4.3.10  The endomorphism g extends to the separable
closure k; with the same definition. Its kernel is the prime field F,, which is
isomorphic to the trivial Gal (k, |k)-module Z/ pZ as a Gal (k|k)-module. More-
over, the map g : k; — k; is surjective, because for each a € k; the polynomial
xP? — x — ais separable. We thus have an exact sequence of Gal (k|k)-modules

0— Z/pZ — k, —2> k, — 0, 3)
from which we conclude as in the proof of Proposition 4.3.6, using Lemma
4.3.11 in place of Hilbert’s Theorem 90. m|
Remarks 4.3.13

1. In asimilar way as in Corollary 4.3.9 above, one derives from the propo-
sition that every finite Galois extension of k£ with Galois group Z/pZ is
generated by a root of some polynomial x” — x — a, witha € k.

2. There is a generalization of Artin—Schreier theory to powers of the prime
p due to Witt. The principle of the proof is the same as above, but instead
of the additive group of k; one has to use so-called Witt vectors (see e.g.
Serre [2]).

4.4 The Brauer group revisited
The main goal of this section is to identify the Brauer group of a field
k with the Galois cohomology group H?(k, k), which is more tractable
than the group H'(k,PGL.) encountered in Chapter 2. To this aim,
we first have to extend the non-commutative cohomology sequence of
Proposition 2.7.1.
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Proposition 4.4.1 Let G be a group, and
l1>-A—>B—>C—1

an exact sequence of groups equipped with a G-action, such that B and C are
not necessarily commutative, but A is commutative and contained in the centre
of B. Then there is an exact sequence of pointed sets

1-A°-> B> Cc%— H'(G,A) — H'(G,B) > H'(G,C) - H*G, A).

Proof The sequence was constructed until the penultimate term in Propo-
sition 2.7.1. To define the map 8 : H'(G, C) — H*(G, A), take a 1-cocycle
o — ¢, representing aclassin H'(G, C), and lifteach ¢, to anelement b, € B.
The cocycle relation for o +— ¢, implies that for all o, T € G the element
bso (b, )b;r1 maps to 1 in C, hence comes from an element a, , € A. The func-
tion (o, T) — a, . depends only on the class of o — ¢, in HY(G, C). Indeed,
if we replace it by an equivalent cocycle o > ¢~ !c,0(c), lifting ¢ to b € B
replaces a,; by (bilb(,o(b))(o(b”)o(bt)ot(b))(or(b)*lb;lrb) =b"la, b,
which equals a, . because A is central in B. A straightforward calcula-
tion, which we leave to the readers, shows that (o, T) — a,. satisfies the
2-cocycle relation U(a(,,r)a;rl’vag,wa; l = 1 that we made explicit in Exam-
ple 3.2.3 (2). Finally, replacing b, by another lifting a, b, replaces a, . by
aabao(atbt)bgtlagfl = ay,0(a, )a;rlag,f, which has the same class in H*(G, A)
(notice that we have used again that A is central in B). This defines the map 9,
and at the same time shows that it is trivial on the image of H'(G, B).
Finally, in the above notation, a class in H G, 0) represented by o + ¢, is
in the kernel of 9 if the 2-cocycle (o, 7) > bga(b,)b(;r1 equals a 2-coboundary
(0,7) = a,0(a;)a, . Replacing b, by the equivalent lifting a,'b, we may
assume b, o (b,)b;! = 1, which means thato +> b, is a 1-cocycle representing
a cohomology class in H'(G, B). O

Remarks 4.4.2

1. Readers should be warned that the proposition does not hold in the above
form when A is not contained in the centre of B. Instead, one has to work
with twists of A as in Serre [4], §1.5.6.

2. When B and C are commutative, the exact sequence of the proposi-
tion is of course part of the long exact sequence for group cohomol-
ogy. This follows from the cocycle descriptions of Example 3.2.3 and
Remark 3.2.4.

Now let K|k be a finite Galois extension of fields with group G, and m a
positive integer. Applying the previous proposition to the exact sequence of
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G-groups
l—- K* - GL,(K)— PGL,(K) — 1
we get an exact sequence of pointed sets
HY(G, GL,(K)) — H'(G.PGL,(K)) -2 H2(G, K*). )

Now recall the maps A, : HY(G,PGL,(K)) - H'(G, PGL,,,(K)) intro-
duced in Chapter 2, Section 2.4.

Lemma 4.4.3 The diagram

H'(G,PGL,(K)) —" HXG,K*)

Amn l lid

HY(G,PGL,,,(K)) —2> HXG,K*)

commutes for allm,n > 0.

Proof A 1-cocycle o — c, representing a class in H'(G, PGL,,(K)) is
mapped by §,, to a 2-cocycle a, ; = bao(b,)b;f' by the construction of the
previous proof, where b, is given by some invertible matrix M,, and a, ; is the
identity matrix /,, multiplied by some scalar i, ; € K*. Performing the same
construction for the image of o — ¢, by A, means replacing M, by the block
matrix with n copies of M, along the diagonal, which implies that the scalar
matrix we obtain by taking the associated 2-cocycle is [ty 7 Ly - |

By the lemma, taking the union of the pointed sets H'(G, PGL,,(K)) with
respect to the maps A, yields a map

8o : H'(G,PGLy) — H*(G, K*).

Lemma 4.4.4 Equip the set H' (G, PGLy,) with the product operation defined
in Chapter 2, Section 2.4. Then the map 8o, is a group homomorphism.

Proof We have already checked in Chapter 2, Section 2.4 that H'(G, PGL4)
equipped with the product operation is a group. To show that &, pre-
serves multiplication, take cohomology classes c,, € H'(G, PGL,,(K)) and
¢, € H'(G,PGL,(K)). With notations as in the previous proof, the classes
8m(cy) and §,(c,) are represented by 2-cocycles of the form (o, 7) = e I
and (o, 1) = v, . I,, respectively. From the fact that the product c,, of
Jmn (C) and A,,,, (c,) in H'(G, PGL,,,,(K)) is induced by tensor product of lin-
ear maps we infer that §,,,(c,,,) is represented by a 2-cocycle mapping (o, T) to
the tensor product of the linear maps given by multiplication by (i, ; and v, -,
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respectively. But this tensor product is none but multiplication by e Vo,
which was to be seen. O

Now we come to the main result of this section.
Theorem 4.4.5 The map S, defined above induces an isomorphism
H'(G,PGLy) = H*(G,K>)

of abelian groups.

Proof Since 8 is a group homomorphism and H'!(G, PGL,,) is the union of
the pointed sets H'(G, PGL,,(K)), for injectivity it is enough to show that the
map §,, in exact sequence (4) has trivial kernel for all m. This follows from the
exact sequence in view of the triviality of H'(G, GL,,(K)) (Example 2.3.4).

For surjectivity we show much more, namely that the map §, is surjec-
tive, where n is the order of G. For this, consider K ®; K as a K-vector
space. Multiplication by an invertible element of K ®; K is a K-linear auto-
morphism K ®; K — K ®; K. In this way we get a group homomorphism
(K ®r K)* — GL,(K) which we may insert into a commutative diagram with
exact rows

1 K~ (K @ K) —— (K@ K)* /KX —— 1
o | |
1 K* GL,(K) ——  PGLJ(K) — 1,

where all maps are compatible with the action of G if we make G act on
K ®; K via the right factor and on the other terms by the standard action.
Hence by taking cohomology we get a commutative diagram

HY G, (K ® K)*/K*) —— H*G,K*) —— HXG, (K & K)¥)

| o
HY(G,PGL,(K)) —>— HXG,K*)

where the upper row is exact. Recall now the G-isomorphism K ®; K =
P Ke; explained before the proof of Lemma 2.3.8. In other words, it says
that K ®; K is isomorphic as a G-module to K ®z Z[G], which implies that
(K ®; K)* is isomorphic to the G-module K* ®z Z[G], because the invert-
ible elements in €P Ke; are exactly those with coefficients in K*. Now by
Remark 3.3.4 (3) the G-module K* ®z Z[G] is co-induced, hence the group
H*(G, (K ®; K)*) is trivial. This yields the surjectivity of the map « in the
diagram, and hence also that of §, by commutativity of the diagram. |
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The above proof shows much more than the assertion of the theorem. Namely,
the fact that we have at our disposal both the injectivity of §,, for all m and the
surjectivity of §, has the following remarkable consequences.

Corollary 4.4.6 Let K |k be a finite Galois extension of degree n and group G.
Then the maps Any : H' (G, PGL,(K))— H'(G, PGL,,,(K)) are bijective for
all m.

Furthermore, the pointed set H'(G, PGL,(K)) is equipped with a group
structure via

HY(G,PGL,(K)) x H'(G,PGL,(K)) - H'(G,PGL,2(K)) < H'(G, PGL,(K))

and the map 8, : H'(G,PGL,(K)) — H*(G, K*) is an isomorphism of
abelian groups.

Proof 1In the first assertion only surjectivity requires a proof, and this follows
from the surjectivity of §, together with Lemma 4.4.3. The second assertion
then follows from the theorem. O

Combining the theorem with Proposition 2.4.10 we get:

Theorem 4.4.7 Letk be afield, K |k a finite Galois extension and ks a separable
closure of k. There exist natural isomorphisms of abelian groups

Br(K|k) = H*(G,K*) and Br(k) = H*(k, k).

The theorem has a number of corollaries. Here is a first one which is quite
cumbersome to establish in the context of central simple algebras but is almost
trivial once one disposes of cohomological techniques.

Corollary 4.4.8 Let K |k be a Galois extension of degree n. Then each element
of the relative Brauer group Br (K |k) has order dividing n. Consequently, the
Brauer group Br (k) is a torsion abelian group.

Proof This follows from Corollary 3.3.8. |

One also has the following cohomological interpretation of the m-torsion
part ,,Br (k) of the Brauer group.

Corollary 4.4.9 For each positive integer m prime to the characteristic of k
we have a canonical isomorphism

wBr (k) = H2(k, fim).

Recall that p,, denotes the group of m-th roots of unity in k; equipped with
its canonical Galois action.
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Proof We again exploit the exact sequence (2). A piece of the associated long
exact sequence is

H'(k, k) — H*(k, jw) — H*(k, k) — H*(k, k),

where the first group is trivial by Hilbert’s Theorem 90 (Lemma 4.3.7). The
corollary follows by noting that the last map is multiplication by m. |

As another corollary, we have a nice description of the relative Brauer group
in the case of a cyclic extension.

Corollary 4.4.10 For a cyclic Galois extension K|k there is a canonical
isomorphism

Br(K|k) = k™ /N (K ™).

Proof This follows from the theorem in view of the calculation of the coho-
mology of cyclic groups (Example 3.2.9). |

4.5 Index and period

In this section we use the cohomological theory of the Brauer group to derive
basic results of Brauer concerning two important invariants for central simple
algebras. We shall assume throughout that the base field & is infinite; indeed,
we shall see in Chapter 6 that the Brauer group of a finite field is trivial, so the
discussion to follow is vacuous in that case.

The first of the announced invariants is the following.

Definition 4.5.1 Let A be a central simple algebra over a field k. The index
ind;(A) of A over k is defined to be the degree of D over k, where D is the
division algebra for which A = M,,(D) according to Wedderburn’s theorem.
We shall drop the subscript k£ from the notation when clear from the context.

Remarks 4.5.2

1. For a division algebra index and degree are one and the same thing.

2. The index of a central simple k-algebra A depends only on the class of A
in the Brauer group Br (k). Indeed, this class depends only on the division
algebra D associated with A by Wedderburn’s theorem, and the index is
by definition an invariant of D.

3. Wehave ind(A) = 1 if and only if A is split.

We begin the study of the index with the following elementary proposition
which could have figured in Chapter 2.
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Proposition 4.5.3 Let D be a central division algebra over k. If D contains a
subfield K which is of degree ind(D) over k, then D splits over K.

Proof Let D° be the opposite algebra to D. We have established during the
proof of Proposition 2.4.8 an isomorphism D ®; D° = Endi(D). If K is as
above, the inclusion K C D induces an inclusion K C D° by commutativ-
ity of K, whence also an injection ¢ : D ®; K — Endy(D). Viewing D as a
K -vector space with K acting via right multiplication, we see that the image
of ¢ lies in Endg(D). By definition, we have Endg (D) = M,(K), where
n = indg(D); in particular, it has dimension n? over K. On the other hand, we
have dim x(D ®; K) = dim (D) = n?, so the map ¢ : D ®; K — Endg(D)
is an isomorphism. O

We can now prove the following basic fact.

Proposition 4.5.4 Every central simple k-algebra A is split by a separable
extension Kk of degree ind(A) over k. Moreover, such a K may be found
among the k-subalgebras of A.

The proof is based on the following lemma, which uses the notion of the
reduced characteristic polynomial P,(T) of an element @ € A. This is defined
as the polynomial Nrd(7T — a) € k[T], where Nrd is the reduced norm map
introduced in Construction 2.6.1. Note that if we choose an algebraic closure k of
k and an isomorphism A ®; k = M, (k), then P,(T) becomes the characteristic
polynomial of the matrix M, corresponding to a. In particular, its coefficients
are polynomials in the entries of M,,.

Lemma 4.5.5 For A as above, we may find a € A so that its reduced charac-
teristic polynomial P,(T) has distinct roots.

Proof The polynomial P,(T) has distinct roots if and only if its discriminant
D, is nonzero. It is known from algebra that D, is a polynomial in the coef-
ficients of P,(T). Now choose an isomorphism A ®; k = M, (k) and view the
elements M,, (k) as points of affine n>-space over k. By the above discussion, the
points corresponding to matrices whose characteristic polynomial has nonzero
discriminant form a Zariski open subset in Agz. A k-rational point in this open
subset corresponds to an element a € A with the required property. m|

Proof of Proposition 4.5.4 By Wedderburn’s theorem we may assume that A
is a division algebra. By the lemma we find a € A so that P,(T) has distinct
roots. As P,(T) is the characteristic polynomial of a matrix M, over k, this
implies that M, has distinct eigenvalues, and hence P,(T) is also its minimal
polynomial. In particular, P,(T) is irreducible over k and hence also over k, so
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the ring K := k[T]/(P,(T)) is a separable field extension of k. Therefore the
homomorphism k[T] — A sending T to a embeds K as a subfield in A which
is of degree deg P,(T) = deg (A) = ind,(A) over k (as A is assumed to be a
division algebra). We conclude by the previous proposition. O

To proceed further, we need the following refinement of Theorem 4.4.5.
Proposition 4.5.6 Let K |k be a separable field extension of degree n. Then the
boundary map 8, : H'(k, PGL,(k,)) — Br (k) induces a bijection

ker(H'(k, PGL,(k;)) — H'(K,PGL,(k))) = Br(K k).

The proof uses a lemma from Galois theory.

Lemma 4.5.7 Let K be the Galois closure of K, and denote the Galois groups

Gal (I? |k) and Gal (I?IK) by G and H, respectively. Making G act on the tensor
product K ®; K via the second factor, we have an isomorphism of G—modules

(K ® K)* = MS(K*).

Proof According to the theorem of the primitive element, we may write
K = k(a) for some o € K with minimal polynomial f € k[x], so that K is
the splitting field of f. By Galois theory, if 1 = oy, ..., 0, is a system of left
coset representatives for H in G, the roots of f in K are exactly the o;(«) for
1 <i < n.Sowe get, just like before the proof of Speiser’s lemma in Chapter 2,
a chain of isomorphisms

K ® K = K[x)/ [ [(x — 01(e)) = Homy (Z[G]. K) = M§(K).
i=1

The lemma follows by restricting to invertible elements. O

Proof of Proposition 4.5.6 ~ We have already shown in the proof of Theo-
rem 4.4.5 the injectivity of §, (even of §), so it suffices to see surjectivity.
With the notations of the lemma above, consider the short exact sequence of
G-modules

1> KX > (K& K)* — (K& K) /KX — 1,

where G acts on K ® K via the second factor. Part of the associated long exact
sequence reads

H'(G, (K & K)*/K*) — HXG,K*) — HXG, (K ® K)*). (5

Using the previous lemma, Shapiro’s lemma and Theorem 4.4.5, we get a chain
of isomorphisms

H*G, (K & K)*) = H*G, M§(K*)) = H*(H, K*) = Br(K|K).
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We also have H*(G, Ex) = Br (E|k), so all in all we get from exact sequence
(5) a surjection

&: HYG, (K ® K)/K*) — Br(K|k).

On the other hand, the choice of a k-basis of K pr0v1des an embedding K —
M, (k), whence a G- equlvarlant map K ®; K — M, (K ), and finally a map
(K ®y K)X — GL,,(K). Arguing as in the proof of Theorem 4.4.5, we get a
commutative diagram:

H'(G, (K & K)*/K*) —— HG, k)

1 b
H'(G,PGL,(K)) —*— HYG,K*)

Therefore by the surjectivity of & each element of Br (K |k) C H*(G, K )

comes from some element in H'(G, PGL,(K)). By the injectivity of §, and

its obvious compatibility with restriction maps, this element restricts to 1 in

H'(H,PGL,(K)), as required. |

We can now prove the following characterizations of the index.

Proposition 4.5.8 Let A be a central simple k-algebra. The index ind(A) is the
greatest common divisor of the degrees of finite separable field extensions K |k
that split A.

Proof 1In view of Proposition 4.5.4 it is enough to show that if a finite sep-
arable extension K |k of degree n splits A, then ind(A) divides n. For such a
K, the class of A in Br (K |k) comes from a class in H'(k, PGL,(k,)) accord-
ing to Proposition 4.5.6. By Theorem 2.4.3 this class is also represented by
some central simple k-algebra B of degree n, hence of index dividing n. But
ind(A) equals ind(B) by Remark 4.5.2 (2). |

Combining with Proposition 4.5.4 we get:

Corollary 4.5.9 The index ind(A) is the smallest among the degrees of finite
separable field extensions K |k that split A.

Here are some other easy corollaries.

Corollary 4.5.10 Let A and B be central simple k-algebra that generate the
same subgroup in Br (k). Then ind(A) = ind(B).
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Proof The proposition implies that for all i we have ind (A®") | ind (A). But
for suitable i and j we have [A®] = [B] and [B®/] = [A] in Br (k) by assump-
tion, so the result follows, taking Remark 4.5.2 (2) into account. a

Corollary 4.5.11 Let K |k be a finite separable field extension.
1. We have the divisibility relations
indg (A ®; K) | indg(A) | [K : k]indg (A ®; K).

2. If indg(A) is prime to [K : k], then indy(A) = indg (A ®; K). In partic-
ular, if A is a division algebra, then so is A Q; K.

Proof 1t is enough to prove the first statement. The divisibility relation
indg (A ®; K) | indi(A) is immediate from the proposition. For the second
one, use Proposition 4.5.4 to find a finite separable field extension K'|K split-
ting A ®; K with [K’ : K] = indx (A ®; K). Then K’ is also a splitting field
of A, so Proposition 4.5.8 shows ind;(A) | [K' : k] = indg (A ®; K)[K : k].
O

Now we come to the second main invariant.

Definition 4.5.12 The period (or exponent) of a central simple k-algebra A is
the order of its class in Br (k). We denote it by per(A).

The basic relations between the period and the index are the following.
Proposition 4.5.13 (Brauer) Let A be a central simple k-algebra.

1. The period per(A) divides the index ind(A).
2. The period per(A) and the index ind(A) have the same prime factors.

For the proof of the second statement we shall need the following lemma.

Lemma 4.5.14 Let p be a prime number not dividing per(A). Then A is split
by a finite separable extension K |k of degree prime to p.

Proof Let Lk be a finite Galois extension that splits A, let P be a p-Sylow
subroup of Gal (L|k) and K its fixed field. Then Br(L|K) = H?(P,L*)is a
p-primary torsion group by Corollary 4.4.8, so the assumption implies that the
image of [A] by the restriction map Br (L|k) — Br(L|K) is trivial. This means
that A is split by K. O

Proof of Proposition 4.5.13  According to Proposition 4.5.4, the algebra A
is split by a separable extension K |k of degree ind(A) over A. By Proposi-
tion 4.5.6, the class [A] of A in Br (k) is then annihilated by the restriction
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map Br (k) — Br(K). Composing with the corestriction Br (K) — Br (k) and
using Proposition 4.2.10, we get that [A] is annihilated by multiplication by
[K : k] = ind(A), whence the first statement. For the second statement, let p
be a prime number that does not divide per(A). By the lemma above, there
exists a finite separable splitting field K |k with [K : k] prime to p. Hence by
Proposition 4.5.8, the index ind(A) is also prime to p. O

Remark 4.5.15 It is an interesting and largely open question to determine
the possible values of the integer ind(A)/per(A) for central simple algebras
over a given field k. For instance, it is conjectured by Michael Artin [1]
that for C,-fields (see Remark 6.2.2 for this notion) one should always have
per(A) = ind(A). The conjecture is now known to hold for F,((z)) and F,(t)
(see Corollary 6.3.10 as well as Remark 6.5.5), function fields of complex
surfaces (de Jong [1]), and completions of the latter at smooth points (Colliot-
Thélene/Ojanguren/Parimala [1]). Another interesting recent result on this topic
is that of Saltman [4], who proves that for an algebra A over the function field
of a curve over a p-adic field Q,, the ratio ind(A)/per(A) is always at most 2,
provided that per(A) is prime to p.

As an application of the above, we finally prove the following decomposition
result.

Proposition 4.5.16 (Brauer) Let D be a central division algebra over k. Con-
sider the primary decomposition

ind(D) = p{"' py* - pJ".
Then we may find central division algebras D; (i = 1, ..., r) such that
D =D ®& D ® -+ ® D,
andind(D;) = p!" fori = 1,...,r. Moreover, the D; are uniquely determined

up to isomorphism.

Proof The Brauer group is torsion (Corollary 4.4.8), so it splits into p-primary
components:

Br(k) = @Br(k){p}.
P

In this decomposition the class of D decomposes as a sum
[D]=[D1]+[D2]+---+[D/]

where the D; are division algebras with [D;] € Br (k){p;} for some primes p;.
By Proposition 4.5.13 (2) the index of each D; is a power of p;. The tensor
product A = D; ® D, ®y -+ - Q D, has degree [[, ind(D;) over k and its
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index equals that of D by Remark 4.5.2 (2), so ind(D) divides [ [; ind(D;). A
repeated application of Proposition 4.5.4 shows that for fixed i one may find
a finite separable extension K;|k of degree prime to p; that splits all the D;
for j #i. Then D ®; K; and D; ®; K; have the same class in Br(K;), and
thus indg, (D; ®« K;) | ind(D) by Corollary 4.5.11 (1). The algebras D; Q@ K;
are still division algebras of index ind(D;) over K; by Corollary 4.5.11 (2). To
sum up, we have proven that ind(D;) divides ind(D) for all i, so we conclude
that ind(D) = ]_[i ind(D;). The k-algebras D and D ®; D; ®y - - - @ D, thus
have the same Brauer class and the same dimension, hence they are isomorphic
as claimed. The unicity of the D; holds for the same reason. O

4.6 The Galois symbol

It is time to introduce one of the main protagonists of this book, the Galois
symbol. To construct it, consider an integer m > 0 and a field k of characteristic
prime to m. Recall that i, denotes the group of m-th roots of unity in a fixed
separable closure k; of k, equipped with its canonical action by G = Gal (k; |k).
Kummer theory (Proposition 4.3.6) then defines a map

0: k* — Hl(ky Mm)’

which is surjective with kernel k*. On the other hand, for an integer n > 0 we
may take n copies of H'(k, i,,) and consider the cup-product

H' (K, 1) ® - @ H'(k, ) — H"(k, u&"),

where according to the convention taken in Chapter 3 the G-module p2" is
the tensor product over Z of n copies of u,,, equipped with the Galois action
definedby c(w; ® - - Qw,) = 0(w)) Q@ -+ - Q@ o (wy).

Putting the two together, we obtain a homomorphism from the n-fold tensor
product

3" kX @z @z k* — H"(k, u2").
We now have the following basic fact due to Tate.

Proposition 4.6.1 Assume thatay, ..., a, € k* is a sequence of elements such
that a; +aj = 1 for some 1 <i < j < n. Then

"a ®---®a,) =0.

The proof uses some simple compatibility statements for the Kummer map.
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Lemma 4.6.2 Let K |k be a finite separable field extension. Then the diagrams

Bk aK

kK —— Hl(k,,l,Lm) KX —— H](K,/L,n)
l lRes and lNK\k lCor
KX —" H'(K, i) K " Hk, )

commute, where in the first diagram the left vertical map is the natural inclusion.

Proof 1t follows from the construction of restriction and corestriction maps
and Remark 3.1.10 (2) that they are compatible with the boundary maps on
cohomology. It therefore remains to see that the maps Res : H'(k, k) —
HY(K, k) and Cor : HOK, kX)) — HOk, k) are given by the inclusion
k* — K> andthenorm N, : K> — k>, respectively. The first of these state-
ments is obvious, and the second comes from the fact that if we embed K |k into
a finite Galois extension L |k, the norm of an element « € K is given by the
product [ [ o;(x), where 1 = o1, ..., 0; is a system of left coset representatives
of Gal (L|k) modulo Gal (L|K). m]

Proof of Proposition 4.6.1 By graded-commutativity and associativity of the
cup-product we may assume i = 1 and j = n = 2, and use the notation a; = a,
a; = 1 — a. Take an irreducible factorisation

xm—azl_[f[
!

in the polynomial ring k[x], for each [ let o; be a root of f; in k; and define
K; = k(o). We then have

l—a=[]A0D=]]Neud - )
[ l

by definition of the field norm. Therefore, as 9? is a group homomorphism,

@@ (1 —a)= Z 3% (a ® Ni,u(1 — o).
7

Here

9%(a ® Ngu(1 — o)) = 0(a) U d(Ng,u(1 — o)) =
= 3(a) U Cory (8(1 — o)) = Corp(Resy' (8(a)) U d(1 — o)),

where we have used the definition of 3%, the above lemma and the projection
formula (Proposition 3.4.10 (3)), respectively. But (again using the lemma)

Resy' (3(a)) = dk,(a) =0,
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because by definition we have ¢ = «" in K;, and so a lies in K;*", which is
the kernel of dk,. This proves the proposition. |

The proposition prompts the following definition.

Definition 4.6.3 Let k be a field. For n > 1 we define the n-th Milnor K-group
KM (k) to be the quotient of the n-fold tensor product k* ®z - - - ®z k* by the
subgroup generated by those elementsa; ® - - - ® a, witha; + a; = 1 for some
1 <i < j < n.By convention, we put Kog(k) := Z and K (k) := k*.

Forelementsay, ..., a, € k*,wedenote theclassofa; ® - - - ® a, in K,i”(k)
by {ai, ..., a,}. We usually call these classes symbols.

By the proposition, the map 9" factors through K (k) and yields a map
hp ot KNG — H"(k, p2"),
which makes sense even for n = 0.
Definition 4.6.4 The above map &}, is called the Galois symbol.
We now have the following basic conjecture.
Conjecture 4.6.5 (Bloch—-Kato) The Galois symbol yields an isomorphism
K () /m = H"(k, uf")
foralln > 0, all fields k and all m prime to the characteristic of k.

The case when m is a power of 2 is usually known as Milnor’s Conjecture;
the attribution of the general case to Bloch and Kato is not sure but generally
accepted.

The current status of the conjecture is as follows. For n = 0 the statement is
trivial, and for n = 1 it is none but Kummer theory (Proposition 4.3.6).
The case n = 2 is what will occupy us in Chapter 8 of this book.

Theorem 4.6.6 (Merkurjev—Suslin) The Bloch—Kato conjecture is true for
n = 2 and all m invertible in k.

We shall explain in the next section the relation of this statement to the one
given in Chapter 2, Section 2.5.

Returning to the general Bloch—Kato conjecture, the case when m is a power
of 2 and n is arbitrary was proven by Voevodsky [1]. A proof in the general
case has been announced by Rost and Voevodsky, but at the time of writing
only parts of this work are available to the mathematical community.
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4.7 Cyclic algebras and symbols
Continuing the discussion of the previous section, let us now focus on the case
n = 2. Assume first that k has characteristic prime to m and contains a primitive
m-th root of unity w. The symbol h% then has as target H>(k, 1 &%), but choosing

an isomorphism u,, = Z/mZ by sending w to 1 we get isomorphisms
H2(k, n3?) = H?(k, Z/mZ) = H*(k, juy) = ,Br (k),

the last one by Corollary 4.4.9. We emphasize that this chain of isomorphisms
depends on the choice of w. We then have:

Proposition 4.7.1 Let a, b € k*. Then under the above isomorphisms the ele-
ment hi({a, b}) € H?(k, n&?) goes to the Brauer class of the cyclic algebra
(a, b),, defined in Chapter 2, Section 2.5.

Remarks 4.7.2

1. The statement makes sense because we have seen in Chapter 2, Section 2.5
that the algebra (a, b),, is split by an extension of degree m, therefore it
has period dividing m.

2. The proposition implies that the form of the Merkurjev—Suslin theorem
stated in Theorem 2.5.7 is equivalent to the surjectivity of h,% under the
assumption w € k. Henceforth, by ‘Merkurjev—Suslin theorem’ we shall
mean this most general form, i.e. Theorem 4.6.6.

Before embarking on the proof, recall from the construction of the Kummer
map d : k* — H'(k, j1,,) that under the identification

H'(k, i) = H'(k, Z/mZ) = Hom(Gal (k|k), Z/mZ)

induced by sending w to 1 the element d(a) is mapped to the character sending
the automorphism o : %/a + w/a to 1, where %/a is an m-th root of a in
k. The kernel of this character fixes the cyclic Galois extension K = k(%/a)
of k, whence an isomorphism x : Gal (K |k) — Z/mZ. In Corollary 2.5.5 we
have shown that (a, b),, is isomorphic to the more general cyclic algebra (x, b)
introduced in Construction 2.5.1, the isomorphism depending, as always, on
the choice of w.

We shall derive Proposition 4.7.1 from the following more general one which
is valid without assuming m prime to the characteristic of k.

Proposition 4.7.3 Let k be a field and m > 0 an integer. Assume given a degree
m cyclic Galois extension K |k with group G, and let x : G = Z/mZ be an
isomorphism. Take a lifting { of x to a character Gal (ky|k) — Z./mZ, and fix an
elementb € k*. Denoting by 8 the coboundary map H'(k, Z/mZ) — H*(k, Z)
coming from the exact sequence 0 — Z => 7. — Z/mZ — 0, the cup-product
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map

H?(k, Z) x H(k, k) — H*(k, k) = Br (k)
sends the element §(X) U b to the Brauer class of the cyclic algebra (x, b).
Proof Recall from Chapter 2, Section 2.5 that we have constructed the algebra
(x, b) via Galois descent, by twisting the standard Galois action on the matrix

algebra M,, (k) by the 1-cocycle z(b) : G — PGL,,(K) given by applying first
x and then sending 1 to the class F(b) of the invertible matrix

o0 --- 0 b
1 0 --- 0 0
F(b): o1 --- 00
o0 --- 10

in PGL,,(K). Recall also that F(b)" = b - I,,.
Consider now the commutative diagram of G-groups

1l —s 7z 2 — Z/mZ —— 1

Z
bl F(b)l F(b)l
] —— K* —— GL,(K) —— PGL,,(K) —— 1,

where the maps denoted by b, F(b), F (b) mean the map induced by sending
1 to the corresponding element. The commutativity of the left square follows
from the equality F(bY" = b - 1,,, and that of the right one is straightforward.
Taking cohomology we obtain the commutative diagram

HYG,Z/mZ) —— H*G,Z)

(F(b))*l b*l
HY(G,PGL,(K)) —2> HXG,K*),

where the horizontal arrows are boundary maps. The character x is naturally
an element of Hom(G,Z/mZ) = H G, Z/mZ) and, as explained above, it
is mapped by F(b), to the class of the l-cocycle z(b). By definition, we
have therefore 6,,((F (b))« x) = [(x, b)], so by commutativity of the diagram
[(x, b)] = b.(5(x)). But one checks from the definition of cup-products that
the map b, is given by cup-product with the class of b in H(G, K*), so
we get [(x,b)] = 8(x)Ub. Moreover, we defined the character ¥ as the
image of x by the inflation map H'(G,Z/mZ) — H'(k, Z/mZ), and the
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inflation map H%(G, K*) — HO(k, k) is obviously the identity. We finally
get [(x, b)] = 8()X) U b by compatibility of the cup-product with inflations. O

Before moving on to the proof of Proposition 4.7.1, we note some interesting
consequences.

Corollary 4.7.4 For K|k, G and y as above, the isomorphism
H*(G, K*) =k /Ng(K*) ©)

of Corollary 4.4.10 is induced by the map k* — H*(G, K*) sending an
element b € k* to the class of the cyclic algebra (x, b).

Proof By Proposition 3.4.11, the isomorphism (6) is induced (from right to
left) by cup-product with 8(x), as it is a generator of the group H*(G, Z) =
Z/mZ. On the other hand, the previous proposition implies that §(x) U b is
exactly the class of (x, b) in Br(K|k) = H*G,K*). |

This immediately yields the following criterion for the splitting of cyclic
algebras, which will be used many times in what follows.

Corollary 4.7.5 The class of the cyclic algebra (x, b) in Br (K |k) is trivial if
and only if b is a norm from the extension K |k.

Another consequence is the following characterization of cyclic algebras.

Corollary 4.7.6 Let K|k, m and G be as above, and let A be a central simple
k-algebra split by K.

1. There exist an isomorphism x : G = Z/mZ and an element b € k such
that the cyclic algebra (x, b) is Brauer equivalent to A.
2. Ifmoreover A has degree m, then we have actually (x, b) = A.

Proof The first statement is an immediate consequence of Corollary 4.7.4. The
second follows from the first, since we are then dealing with Brauer equivalent
algebras of the same degree. O

We now finally prove Proposition 4.7.1.

Proof of Proposition 4.7.1  In view of Proposition 4.7.3 and the discussion
preceding it, all that remains to be seen is the equality

S Ub =Y Uab),

where §(X) U b € H*(k, k) is the element considered in Proposition 4.7.3, the
map 0 : k* — H!(k, ju,,) is the Kummer coboundary and the cup-product on
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the left is that between H'(k, Z/mZ) and H'(k, 11,,). This follows from (the
profinite version of) of Proposition 3.4.9, with the exact sequences

052532 —>2/mL—0, |- p,—>k*—k—>1,

the pairing Z x k;* — k (which is trivial on mZ x ,,), and the elements
X € H'(k,Z)and b € H (k, k). |

Putting together Proposition 4.7.1 and Corollary 4.7.5 we get:

Corollary 4.7.7 Assume k contains a primitive m-th root of unity w, and let
a,b € k*. Then the following statements are equivalent.

1. The symbol hi({a, b}) is trivial.
2. The cyclic algebra (a, b),, is split.
3. The element b is a norm from the extension k(/a)|k.

Note that the equivalence (2) < (3) generalizes the equivalence (1) < (4)
in Proposition 1.1.7.

Remark 4.7.8 Since the first two conditions of the corollary are symmetric in
a and b, we get that b is a norm from the extension k(/a)|k if and only if a is
a norm from the extension k(/b)|k. This type of statement is usually called a
reciprocity law in arithmetic.

Exercises

1. Show thatin the correspondence of Theorem 4.1.10 Galois extensions L |k contained
in K correspond to closed normal subgroups of Gal (K |k).
2. (Continuous cochains) Let G be a profinite group and A a continuous G-module.

i
cont

Define the group C: (G, A) of continuous i-cochains as the subgroup of those
maps in Homg(Z[G'*'], A) whose restriction to G'*! is continuous when G'*! is
equipped with the product topology. Show that the boundary maps §’* of the complex
C*(G, A) introduced in Construction 3.2.1 map C! (G, A) into Citl(G, A), and
that the cohomology groups of the arising complex C; (G, A) are isomorphic to
the continuous cohomology groups H. (G, A).

3. Let m > 0 be an integer, and k a field containing a primitive m-th root of unity w.
Consider a degree m cyclic extension K = k( %/a)|k with Galois group G.

(a)  Show that the group (K*/K>*™)Y is generated by k* and %/a. [Hint: Use
Proposition 3.3.14].
(b)  Determine explicitly the cokernel of the map

kX/kxm N (KX/me)G.

4. Give a new proof of Lemma 2.7.4 based on the injectivity of the group homomor-
phism 84, : H'(G,PGLy) — H*(G, K*).
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. (Theorem of Frobenius) Prove that Br (R) = Z/2Z, the nontrivial class being that

of the Hamilton quaternions.

. Let k be a field of characteristic 0 such that Gal (k|k) = Z/pZ for some prime

number p.

(@) Show that Br(k) = Br(k)/pBr(k) = k*/k*?. [Hint: Use the Kummer
sequence and the periodicity of the cohomology of cyclic groups.]

(b) By computing Br (k) in a different way, show that N,;|k(lEX) =k*P,

(c)  Conclude that the above is only possible for p = 2 and k = k(~/—1).

(d)  Show that moreover in the above case k may be equipped with an ordered
field structure. [Hint: Declare the squares to be the positive elements.]

. Using the previous exercise, prove the following theorem of E. Artin and O. Schreier:

If & is a field of characteristic O whose absolute Galois group is a nontrivial finite
group, then k = k(»/—1) and k has an ordered field structure. [Hint: Begin by taking
a p-Sylow subgroup in the Galois group and recall that p-groups are solvable.]

[Remark: In fact, Artin and Schreier also showed that in positive characteristic the
absolute Galois group is either trivial or infinite.]

. Let k be a field of characteristic 0, and A a central simple algebra over k of degree

n. Denote by [A] the class of A in H?(k, u,) = ,Br(k), and consider the map

H'(k, iu,) — H3(k, n®*) given by cup-product with [A].

(@ If x € Nrd(A™), show that §(x) U[A] =0 in H3(k, u®*), where § is the
Kummer coboundary map. [Hint: Use Exercise 10 of Chapter 2.]

(b)  Give an example of k, A and x € k* such that §(x) U [A] # O.

. (Wang’s theorem in the general case) Let D be a central division algebra over k.

(@)  Consider the primary decomposition
D=D ® D;®; - QD

of Proposition 4.5.16. Show that
SK (D) = EB SK (D).
i=1

(b)  Assume that ind(D) is squarefree, i.e. a product of distinct primes. Show that
SK(D) = 0. [Hint: Reduce to Theorem 2.8.12.]

. (@) Verify the relations (x, b;) ® (x, b)) = (x, bib>) and (x, b)® = (x, b~") for

cyclic algebras.
(b)  Deduce that the cyclic algebras (), 1) and (x, b,) are isomorphic if and only
if bib; ! is a norm from the cyclic extension of the base field determined

by x.

. Let n be a positive integer, and let k£ be a field containing a primitive n-th root of

unity w. Consider a purely transcendental extension k(x, y) of dimension 2. Given
integers i, j prime to n, show that the cyclic k(x, y)-algebras (x, y),; and (x, ),
are isomorphic if and only if i — j is divisible by n.
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Severi—Brauer varieties

In Chapter 1 we associated with each quaternion algebra a conic with the
property that the conic has a k-point if and only if the algebra splits over k. We
now generalize this correspondence to arbitrary dimension: with each central
simple algebra A of degree n over an arbitrary field k we associate a projective
k-variety X of dimension n — 1 which has a k-point if and only if A splits.
Both objects will correspond to a class in H'(G, PGL,(K)), where K is a
Galois splitting field for A with group G. The varieties X arising in this way
are called Severi—Brauer varieties; they are characterized by the property that
they become isomorphic to some projective space over the algebraic closure.
This interpretation will enable us to give another, geometric construction of the
Brauer group. Another central result of this chapter is a theorem of Amitsur
which states that for a Severi—Brauer variety X with function field k(X) the
kernel of the natural map Br (k) — Br (k(X)) is a cyclic group generated by
the class of X. This seemingly technical statement (which generalizes Witt’s
theorem proven in Chapter 1) has very fruitful algebraic applications. At the
end of the chapter we shall present one such application, due to Saltman, which
shows that all central simple algebras of fixed degree n over a field k containing
the n-th roots of unity can be made cyclic via base change to some large field
extension of k.

Severi—Brauer varieties were introduced in the pioneering paper of
Chatelet [1], under the name ‘variétés de Brauer’. Practically all results in the
first half of the present chapter stem from this work. The term ‘Severi—Brauer
variety’ was coined by Beniamino Segre in his note [1], who expressed his
discontent that Chatelet had ignored previous work by Severi in the area. Indeed,
in the paper of Severi [1] Severi—Brauer varieties are studied in a classical
geometric context, and what is known today as Chatelet’s theorem is proven
in some cases. As an amusing feature, we may mention that Severi calls the
varieties in question ‘varieta di Segre’, but beware, this does not refer to
Beniamino but to his second uncle Corrado Segre. The groundbreaking paper by
Amitsur [1] was the first to emphasize the importance of the birational viewpoint
on Severi—Brauer varieties in the study of central simple algebras. This obser-
vation was a milestone on the road leading to the proof of the Merkurjev—Suslin
theorem.
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5.1 Basic properties

In Chapter 2 we have seen that as a consequence of Wedderburn’s theorem
one may define a central simple algebra over a field k as a finite dimensional
k-algebra that becomes isomorphic to some full matrix algebra M,,(K) over
a finite extension K|k of the base field. As a consequence of descent the-
ory, we have seen that when K |k is Galois, the central simple k-algebras split
by K can be described by means of the automorphism group PGL,(K) of
M,(K). But PGL,(K) is also the automorphism group of projective (n — 1)-
space P’I‘{' (considered as an algebraic variety), which motivates the following
definition.

Definition 5.1.1 A Severi—Brauer variety over a field k is a projective alge-
braic variety X over k such that the base extension Xg := X x; K becomes
isomorphic to P’I’(_l for some finite field extension K |k. The field K is called a
splitting field for X .

Remarks 5.1.2

1. A k-variety X is a Severi—Brauer variety if and only if X; = PZ’l for
an algebraic closure k of k. Indeed, necessity is obvious and sufficiency
follows from the fact that the coefficients of the finitely many polynomials
defining an isomorphism X; = P’E"l are all contained in a finite extension
of k.

2. Itfollows from general considerations in algebraic geometry that a Severi—
Brauer variety is necessarily smooth. Also, the assumption that X be pro-
jective is also superfluous: it can be shown that an algebraic variety (i.e.
separated scheme of finite type) over k that becomes isomorphic to a pro-
jective variety over a finite extension of k is itself projective.

As examples of Severi—Brauer varieties we may cite the projective plane
conics encountered in Chapter 1. The next section will describe a general method
for constructing examples.

We now come to the fundamental result about Severi—Brauer varieties. Before
stating it, let us introduce some (non-standard) terminology: we say that a closed
subvariety ¥ — X defined over k is a twisted-linear subvariety of X if Y is a
Severi—Brauer variety and moreover over k the inclusion Y; C X; becomes
isomorphic to the inclusion of a linear subvariety of P;-:_l.

Theorem 5.1.3 (Chételet) Let X be a Severi—Brauer variety of dimension
n — 1 over the field k. The following are equivalent:

1. X is isomorphic to projective space PZfl over k.
2. X is birationally isomorphic to projective space PZ_I over k.
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3. X has a k-rational point.
4. X contains a twisted-linear subvariety D of codimension 1.

It is usually the equivalence of statements (1) and (3) that is referred to
as Chatelet’s theorem. The only implication which is not straightforward to
establish is (3) = (4); we owe the beautiful proof given below to Endre Szabé.
This proof uses some elementary notions from algebraic geometry; however,
for the less geometrically minded, we note that in Section 5.3 another proof
will be given, under the assumption that X has a Galois splitting field. We shall
see in Corollary 5.1.5 below that this condition is always satisfied.

Proof Theimplication (1) = (2)isobvious. If (2) holds, then X and P,ZH have
k-isomorphic Zariski open subsets, but a Zariski open subset of P,ffl contains a
k-rational point, whence (3). Next we prove (4) = (1). The subvariety D whose
existence is postulated by (4) is a divisor, so we may consider the associated
complete linear system |D| (see the Appendix) which defines a rational map
¢p into some projective space. Over k the divisor D becomes a hyperplane
by assumption, so the rational map it defines is in fact an isomorphism with
projective (n — 1)-space P}:*l . Hence the target of ¢, must be P,’j*] and it must
be an everywhere defined isomorphism.

It remains to prove the implication (3) = (4). Let P be a k-rational point and
denote by 7 : ¥ — X the blow-up of X at P (see Appendix, Example A.2.3).
As X (and in particular P) is smooth, the exceptional divisor E is isomor-
phic to P,f_z. Pick a hyperplane L C E. Over the algebraic closure k our Yz is
isomorphic to the blow-up of Plg‘_l in P, hence itis a subvariety of P£_1 x P/ -2,
The second projection induces a morphism v : Yi — PI’;’_Z, mapping Ej
isomorphically onto Pg_z. As the fibres of v are projective lines and nz is an
isomorphism outside P, we see that the subvariety Dy := mz (Y Y(Wr(Lp))) of
Xt is a hyperplane in Pg_l. We want to define this structure over k, i.e. we are
looking for a morphism ¢ : ¥ — Z defined over k which becomes v after
base extension to k.

Let A C X be an ample divisor, and let d denote the degree of A; in the
projective space Xz = P]-Z’_l. The divisor (7*A — dE); has degree 0 on the
fibres of Yz and has degree d on Ej. Hence the morphism Y; — PIIEV associated
with the corresponding linear system factors as the composite

Y; ﬂ) Z; ﬁ) P]%V,
where @, is the d-uple embedding. The linear system |[7* A — d E| defines (over
k) arational map ¢ : ¥ — P,’C" . By construction this i becomes the above ;
after base extension to k, hence it is is actually an everywhere defined morphism
Y — Z, where Z := ¥/(Y). Then the subvariety D := 7 (¢ ' (¥/(L))) C X is
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defined over k, and becomes Dj after extension to k. This is the D we were
looking for. O

Corollary 5.1.4 A Severi—Brauer variety X always splits over a finite separa-
ble extension of the base field k.

Proof By a now familiar argument, it is enough to show that X becomes
isomorphic to projective space over a separable closure k; of k. This follows
from the theorem, for X, always has a rational point over k; (see Appendix,
Proposition A.1.1). |

By embedding a separable splitting field into its Galois closure, we get:

Corollary 5.1.5 A Severi—Brauer variety X always splits over a finite Galois
extension of the base field k.

5.2 Classification by Galois cohomology

Let X be a Severi—Brauer variety of dimension n — 1 over a field k, and let K |k
be a finite Galois extension with group G which is a splitting field of X. We
now associate with X a 1-cohomology class of G with values in PGL,(K) by
a construction analogous to that in the theory of central simple algebras.

First some conventions. Given quasi-projective varieties Y, Z over k, denote
by Yk, Zk the varieties obtained by base extension to K, and make G act on
the set of morphisms Yx — Zg by ¢ + o(¢) := ¢ o o~!. In particular, for
Y = Z we obtain a left action of G on the K -automorphism group Autg (Y).

Given a K -isomorphism ¢ : P,”{l S5 X x, define for each elemento € G a
K -automorphism a, € Autg (P?l) by

ay == ¢~ oo(e).

Exactly the same computations as in Chapter 2, Section 2.3 show that the map
0 — a, is a 1-cocycle of G with values in Autg (P["{_l), and that changing ¢
amounts to changing a, by a I-coboundary. Therefore we have assigned to
X aclass [a,] in H'(G, Autg (P}’(_l)). Fixing an isomorphism Autg (P}“{l) =
PGL,(K) (see Appendix, Example A.2.2), we may consider it as a class in
H'(G,PGL,(K)). Using the boundary map H'(G, PGL,(K)) — Br(K |k) we
can also assign to X aclass [X] in Br (K |k).

Denote by S B, (k) the pointed set of isomorphism classes of Severi—Brauer
varieties of dimension n — 1 over k, the base point being the class of P,’:_l.

Theorem 5.2.1 Themap SB,(k) — H'(k, PGL,) givenby X + |[a,]isabase
point preserving bijection.
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Combining the theorem with Theorem 2.4.3 we thus get a base point pre-
serving bijection

CSA, (k) < SB,(k).

Given a central simple k-algebra A of degree n, we shall call (somewhat abu-
sively) a Severi—Brauer variety X whose isomorphism class corresponds to that
of A by the bijection above a Severi—Brauer variety associated with A.

We now prove Theorem 5.2.1 using a construction due to Kang [1]. The proof
will at the same time yield the following important property.

Theorem 5.2.2 Let X be a Severi—Brauer variety of dimension n — 1 over k,
and let d be the period of X, i.e. the order of [ X] in the Brauer group Br (K |k).
Then there exists a projective embedding

o Xf—>P,f*1, N=<n+j_1)

such that px : Xg — P;'(_l is isomorphic to the d-uple embedding ¢ .

Proof of Theorems 5.2.1 and 5.2.2 'We begin by proving the injectivity of the
map SB,(k) - H Y(k,PGL,). Let X and Y be Severi—Brauer varieties split
by K and having the same class in H!(G, PGL,). Take trivialization isomor-
phisms ¢ : P,”{l = Xgand : P;’(_l — Yg.Our assumption that the cocycles
¢~ ' oo(¢) and ¥~ o o () have the same class in H'(G, PGL,(K)) means
that there exists & € PGL,,(K) such that

ploo@)=h" oy oa()oa(h)
for all 0 € G. We then have
Yoho¢p ' =a(ohog™") e Homg(Xg, Yk),

so the K-isomorphism ¥ o ho ¢! : Xx — Yg is G-equivariant. It follows
that v o h o ¢! is defined over k, and hence yields a k-isomorphism between
Xand?Y.

Let now o = [a,] be a class in H'(G, PGL,(K)). We show that o can be
realized as the cohomology class of a Severi—Brauer variety of dimensionn — 1
which becomes isomorphic over K to ¢, (P’]{l). This will prove the surjectivity
statement in Theorem 5.2.1 and at the same time Theorem 5.2.2.

Consider the boundary map 6 : H'(G, PGL,(K)) — H?*(G, K*). By def-
inition, a 2-cocycle representing 8(«) is obtained by lifting the elements
a, € PGL,(K) to elements a, € GL,(K) and setting

bd,‘[ 250 O-(af)a‘;‘[l (1)
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Let d be the order of §(«) in Br(K|k) (which is a torsion group by Corol-
lary 4.4.8). In terms of the cocycle b, , this means that (b, . )¢ is a 2-coboundary,
i.e. there is a 1-cochain o — ¢, with values in K * such that

(bo.r)" = co0(c) eyl 2)

Now consider the natural left action of the group GL,(K) on V := K" which
is compatible with that of G in the sense of Construction 2.3.6. This action
extends to the symmetric powers V; := V® /S, by setting

AV ® - Q) =a()® - ®a(v).

Note that V; is none but the space of homogeneous polynomials of degree i
over K. We extend the action of G to the V; in a similar way. Now consider the
case i = d, and for each o € G define an element v, € Autg (V) by

R
Vo i=C, dg,

where c;l acts as constant multiplication and @, via the action of GL,(K) on
V., described above. We contend that the map o — v, is a 1-cocycle. Indeed,
for o, T € G, we compute using (1)

Vor = C;g Ear = C(;l(b;’l 5(7 U(Et)) = (Cilbid)(a‘aod(af))a

T T oto,t

where in the second step we considered b, ; as a scalar matrix in GL,(K) and
in the third just as a scalar. Hence using (2) we get

Vor = C;tl (6610(61)716;1)(500'(2;,)) = (Czr U(Cr))_lzaa(ar) = V50 (Vy),
so that we have indeed defined a 1-cocycle.

Now equip V,; with the twisted G-action defined by v, (see Construc-
tion 2.3.6 for the definition). Let W := (,V;)© be the invariant subspace under
this twisted action. By Speiser’s lemma (Lemma 2.3.8), this is a k-vector
space such that W ®; K = V;. Let k[X] be the graded k-subalgebra of
Klxg,...,x,1]1 = @i V; generated by W. Choosing a k-basis vg, ..., Uy_1

of W we get a natural surjection of graded k-algebras k[xy, ..., xy—1] = k[X]
induced by sending x; to v;. The kernel of this surjection is a homogeneous
ideal in k[xo, ..., xy—1] defining a closed subset X C P,]:] ~!. Moreover, the

isomorphism W ®; K = V; implies that k[X] ®; K becomes isomorphic to
the graded K -subalgebra of K[xo, ..., x,—] generated by V. But this is none
but the homogeneous coordinate ring of qbd(P’}(_l) (see Appendix, Example
A.2.1), hence X @, K = ¢d(P'1'<_l). This shows that X is a Severi—Brauer
variety, and at the same time that Theorem 5.2.2 holds. By construction the
class in H'(G, PGL,(K)) associated with X is indeed . a
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Remark 5.2.3 It should be noted that the embedding X — P,]cv ~! constructed
in the above proof is not canonical, but depends on the choice of the cocycle
o Co-

Example 5.2.4 Theorem 5.2.1 shows that the 1-dimensional Severi—Brauer
varieties are exactly the smooth projective conics. Indeed, such a variety X
defines a class in H'(k, PGL;) which also corresponds to a central simple
algebra of degree 2 by Theorem 2.4.3. By the results of Chapter 1, this must
be a quaternion algebra (a, b), whose class has always order 2 in the Brauer
group. By Theorem 5.2.2, we can embed X as a smooth subvariety in P} which
is isomorphic to the conic x7 = xox, over the algebraic closure. It is a well-
known fact from algebraic geometry that then X itself is a conic. In Section 5.4
we shall prove that X is in fact the conic C(a, b) associated with the quaternion
algebra (a, b) in Chapter 1.

Remark 5.2.5 In the literature one finds other approaches to the construction
of Severi—Brauer varieties. The classical approach, going back to Chételet, is to
construct the Severi—Brauer variety associated with a degree n algebra A as the
variety of left ideals of dimension n in A, by embedding it as a closed subvariety
into the Grassmannian Gr(n, n?) (see e.g. Saltman [3] or Knus—Merkurjev—
Rost-Tignol [1]). This construction has the advantage of being canonical, but
the projective embedding it gives is far from being the most ‘economical’
one. For instance, Severi—Brauer varieties of dimension 1 are realized not as
plane conics, but as curves in P° defined by 31 (non-independent) equations;
see Jacobson [3], p. 113. Another approach is that of Grothendieck, which is
based on general techniques in descent theory. It has similar advantages and
disadvantages: it is more conceptual than the one above and works in a much
more general situation, but it does not give explicit information on the projective
embedding. See Jahnel [1] for a very detailed exposition of Grothendieck’s
construction.

5.3 Geometric Brauer equivalence

In the previous section we have shown that isomorphism classes of Severi—
Brauer varieties of dimension n — 1 correspond bijectively to elements in the
pointed set H'(k, PGL,). They therefore have a class in Br (k). Defining this
class involves, however, the consideration of an equivalence relation on the
disjoint union of the sets H'(k, PGL,) for all n, which corresponds to Brauer
equivalence on central simple algebras. We now show that Brauer equivalence
is quite easy to define geometrically on Severi—Brauer varieties, using closed
embeddings of twisted-linear subvarieties.
The first step in this direction is:
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Proposition 5.3.1 Let X be a Severi—Brauer variety, and Y a twisted-linear
subvariety of X. Then X and Y have the same class in Br (k).

Proof Letn — 1 be the dimension of X, andd — 1 that of Y. Let V; C k" be
the linear subspace generated by the first d standard basis vectors, and ;d(k)
the subgroup of GL, (k) consisting of elements leaving V; C k" invariant. In
other words, TJd(k) is the subgroup

GL, (k) *
0 GLn —d (k )

:| C GL, (k).

We denote by P,(k) its image in PGL, (k). Note that restriction to the subspace
V, yields a natural map T’d(k) — GL,4(k), and hence a map P,(k) — PGL;(k).

Now by definition of a twisted-linear subvariety (taking Corollary 5.1.5 into
account), there exists a finite Galois extension K |k of group G and a commu-
tative diagram of trivializations

X xx K <P pr xi K

I [

Y xi K <2 — Pi-1 %, K,

where the right vertical map is the inclusion of a projective linear subspace.
Since PGL, (k) acts transitively on the (d — 1)-dimensional projective lin-
ear subspaces of PZ_I, we may assume that this map actually is the pro-
jectivization of the inclusion map V,; ®; K — K". Therefore the cocycle
ay : 0+ Y oo (') defining the class of ¥ in H'(G, PGL,(K)) takes its
values in the subgroup P;(K) C PGL,(K). In other words, the class of [Y] is
in the image of the map H'(G, Py(K)) — H'(G, PGL,(K)). The commutative
diagram

1 K~ GL,(K) — PGL,(K) —> 1
of I I
1 KX PyK) —— PuK) — 1

q l l

1 K* GLy(K) —— PGLy(K) — 1
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yields the commutative diagram of boundary maps

[X] € H'(G,PGL,(K)) —— H?*(G,K>)

[ d

las] € HYG, Py(K)) —— H*G,K*) 3)

l !

[Y] € HY(G,PGLy«(K)) —— H*(G,K*).

Here the commutativity of the upper square is obvious and that of the lower
one is proven by an argument similar to that of Lemma 4.4.3. We conclude that
[Y] =[X] € Br (k). O

Proposition 5.3.2 Let B be a central simple algebra, and let A = M, (B) for
some r > 0. Denote by X and Y the Severi—Brauer varieties associated with
A and B, respectively. Then Y can be embedded as a twisted-linear subvariety
into X.

The proof below is due to Michael Artin.

Proof We keep the notations from the proof of Proposition 5.3.1; in partic-
ular, let d be the degree of B, and n = rd that of A. It will be enough to
show that the class of B in H'(G, PGLy(K)) lies in the image of the natural
map

H'(G, Py(K)) — H'(G,PGL4(K)).

Indeed, then diagram (3) shows that [X] and [Y] are both images of the same
class in H'(G, P;(K)), and the construction of Severi—Brauer varieties out of
I-cocycles given in the previous chapter implies that ¥ embeds as a twisted-
linear subvariety into X. To see this, consider the natural projection; : K" —
K¢ given by mapping the last n — d basis elements to 0. In the construction
of the varieties X and Y we twisted the G-action on a symmetric power of
these vector spaces by the action of PGL,,, resp. PGL,. These twisted actions
are compatible with each other under the maps PGL, < P; — PGL,. The
induced map on G-invariants is surjective, because so is the map given by base
change to K, which is just the above r; by Speiser’s lemma. The construction of
X and Y then shows that this surjection of k-vector spaces induces a surjection
of homogeneous coordinate rings k[ X] — k[Y], which corresponds to a closed
embedding of Y into X as a twisted-linear subvariety.
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Now to prove our claim about the class [B], consider the commutative dia-
gram with exact rows and columns

l l

o l l

| >K* ——  GL#«(K)xGL,_4(K) ——— (GL4#«(K)xGL,_4(K))/K*— 1

l l

PGL,(K)xPGL, 4(K) —%—  PGLy(K)xPGL,_4(K)

l l

1 1

1 —->K* —A> K*xK*

where A is the diagonal map, and (+, —) is the map (a, b) — a — b. Thisis a
diagram of groups equipped with a G-action, so by taking cohomology we get
a commutative diagram of pointed sets with exact columns

H'(G,GL«(K))x H'(G,GL,_4(K)) — H'(G,GL4(K)xGL,_4(K))/K*)

| l

H'(G,PGLy(K)) x H'(G, PGL,_4(K)) 9 H'(G,PGL4(K)) x H' (G, PGL,_4(K))

l l

H*(G,K*)x H*G, K*) - H*(G, K*).

Wehaven —d = (r — 1)d, so M_1)4(B) is a central simple algebra of degree
n — d satisfying

[M(B)] = [M¢—na(B)] = [B] — [B] = 0 € H*(G, K*).

The diagram then shows that the pair ([M,(B)], [M(—1a(B)]) defines an ele-
ment of H'(G, PGL4(K)) x H'(G, PGL,_4(K)) which is in the image of the
map

H'(G, (GL4(K)xGL,_4(K))/K*)— H'(G, PGL4(K)) x H'(G, PGL,_4(K)).
In particular, the class [ B] is in the image of the map

A: H'(G, (GLy(K) x GL,_4(K))/K*) = H'(G, PGL4(K))
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obtained from the previous one by composing with the natural projection. Now
observe that the natural surjection

a: Py(K) — (GLy(K) x GL,—4(K)) /K™
induced by the mapping
GL4(K) * GL4(K) 0
—
0 GL,—4(K) 0 GL,—4(K)

hasasection 8 : (GL4(K) x GL,_4(K)) /K* — P;(K)satisfyingo o g = id,
which is induced by the obvious map in the reverse direction. Consequently,
the natural map

H'(G, Py(K)) = H'(G, (GL4(K) x GL,_(K))/K*)

induced on cohomology is surjective, so we conclude that the class [ B] lies in
the image of the composite map

roay,: HY(G, Py(K)) — H'(G,PGLy(K)),
as was to be shown. O

We can sum up the two previous propositions in the following statement.

Theorem 5.3.3 (Chételet) Two Severi—Brauer varieties X and Y over k have
the same class in Br (k) if and only if there exists a Severi—Brauer variety Z over
k into which both X and Y can be embedded as twisted-linear subvarieties.

Remark 5.3.4 Chatelet formulated this statement in a different but equivalent
way: he stated that two Severi—Brauer varieties are Brauer equivalent if and only
if they have isomorphic twisted-linear subvarieties. (Indeed, the corresponding
central simple algebras are then matrix algebras over the same division algebra,
by Wedderburn’s theorem.)

The theorem has several interesting consequences. First some terminology:
we call a Severi—Brauer variety minimal if it has no proper twisted-linear sub-
varieties.

Corollary 5.3.5 A central simple algebra A is a division algebra if and only if

the associated Severi—Brauer variety is minimal.

Proof This follows from the theorem and the fact that division algebras are
the central simple algebras of lowest dimension in their Brauer class. O

Next recall that we have defined the index of a central simple algebra A to
be the degree of the division algebra D for which A = M, (D) according to
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Wedderburn’s theorem. In other words, the index ind(A) is the degree of the
unique division algebra in the Brauer class of A. Hence:

Corollary 5.3.6 (Chatelet) Let A be a central simple algebra, and let X be
the Severi—Brauer variety associated with A. Then all minimal twisted-linear
subvarieties of X have the same dimension d, satisfying the equality

d =ind(A) — 1.
We thus get a geometric definition of the index.
Remarks 5.3.7

1. Recall that A is split if and only if it has index 1. According to the propo-
sition, this happens if and only if the minimal twisted-linear subvarieties
have dimension 0. The subvarieties of dimension 0 defined over k are
precisely the k-rational points, and conversely these are trivially twisted-
linear subvarieties (if they exist). We thus get another proof of Chételet’s
theorem (assuming the existence of a separable splitting field, which was
used in the proof of Theorem 5.3.3).

2. One can construct the correspondence between central simple algebras and
Severi—Brauer varieties in a purely geometric way. This makes it possible to
obtain the results in this section without the use of cohomology. It is also
feasible to introduce geometrical operations on Severi—Brauer varieties
which correspond to multiplication and the inverse map in the Brauer
group; they are, however, more complicated to define than the operations
on central simple algebras. For all these constructions we refer to the paper
of Endre Szabd [1].

5.4 Amitsur’s theorem
Let V be a variety over a field k. The natural inclusion k C k(V) induces a map

ry : Br(k) — Br(k(V))

given by mapping the class of a Severi—Brauer variety X over k to the class
of the variety Xy, obtained by base extension. In particular, this applies to
V = X. In this case, the base extension Xy (x) has a k(X)-rational point coming
from the generic point of X. Hence by Chatelet’s theorem the class of X in
Br (k) lies in the kernel of the map ry. The following famous theorem shows
that this construction already describes the kernel.

Theorem 5.4.1 (Amitsur) Let X be a Severi—Brauer variety defined over a
field k. Then the kernel of the restriction map rx : Br(k) — Br(k(X)) is a
cyclic group generated by the class of X in Br (k).
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An immediate corollary is:

Corollary 5.4.2 Let X and Y be Severi—Brauer varieties that are birational
over k. Then their classes [ X] and [Y] generate the same subgroup in Br (k).

Remark 5.4.3 Amitsur’s conjecture predicts that the converse to the above
corollary should be true: if [X] and [Y] generate the same subgroup in Br (k),
and they have the same dimension, then X should be birational to Y over k. See
Roquette [1] and Tregub [1] for partial results in this direction.

Note, however, that a weaker result is quite easy to prove: If [X] and [Y] gen-
erate the same subgroup in Br (k), then X and Y are stably birational overk, i.e.
there exist positive integers m, n such X x; P™ is birational to Y x; P" over k.
Indeed, the assumption implies that X x; k(Y)andY x; k(Y) generate the same
subgroup in Br (k(Y)). But Y x; k(Y) has a k(Y)-rational point (coming from
the generic point of Y), so by Chatelet’s theorem its class in Br (k(Y)) is trivial.
Hence so is that of X x; k(Y), which means that X x; k(Y) = P" x; k(Y).
In particular, these varieties have the same function field, which by definition
equals k(X x; Y) for the left-hand side and k(P" x; Y) for the right-hand side.
Thus X x; Y is birational to P" x; Y, and the claim follows by symmetry.

The main ingredient in the proof of Amitsur’s theorem is the following propo-
sition. Before stating it, we recall from Proposition A.4.4 (2) of the Appendix
that the Picard group of projective space P’ over a field K is isomorphic to Z,
generated by the class of a K -rational hyperplane. We call the map realizing the
isomorphism Pic (P% ) = Z the degree map, and define the degree of a divisor
on P% to be the image of its class by the degree map. This map is not to be
confused with the degree map defined for curves.

Proposition 5.4.4 Let K |k be a finite Galois extension with group G that is a
splitting field for X. There is an exact sequence

0 — Pic(X) % 2 5 H2(G, K*) — H(G, K(X)X),
where the map deg is given by composing the natural map Pic (X)— Pic (Xg)
with the degree map.
Proof By definition of the Picard group, we have an exact sequence of G-
modules
0—> K(X)*/K* — Div(Xg) — Pic(Xg) — 0. )
The beginning of the associated long exact cohomology sequence reads

0 — (K(X)*/K*)% — Div(Xx)¢ — Pic(Xg)¢ —
— HY(G, K(X)*/K*) — HY(G,Div(Xg)).
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The group G acts by permutation on Div(Xg ), hence this G-module is none
but the co-induced G-module coming from Div(X). Corollary 3.3.3 therefore
implies H'(G, Div(Xg)) = 0.

Next, a piece of the long exact sequence coming from the sequence of G-
modules

0—> K* > K(X)* > K(X)*/K* = 0 3)
reads
HYG, K(X)) - HY(G, K(X)*/K*) - H*(G,K*) - H*G, K(X)X).

Here the group H'(G, K(X)*) is trivial by Hilbert’s Theorem 90 (applied to
the extension K (X)|k(X)). Therefore by splicing the two long exact sequences
together we get

0— (K(X)*/K*)% — Div(Xx)¢ — Pic(Xg)¢ —
— H*(G,K*) > H*G, K(X)*).

To identify this sequence with that of the proposition we make the following
observations. First, we have (Div(X))¢ = Div(X) (again because Div(X ) is
the co-induced module associated with Div(X)). Next, the beginning of the long
exact sequence associated with (5) and the vanishing of H'(G, K *) (again by
Hilbert’s Theorem 90) yields the isomorphism k(X)* /k* = (K(X)*/K*)°.
So we may replace the first two terms in the sequence above by Pic (X).
Finally, we have Xg = P’}{l, whence an isomorphism Pic (Xg) = Z given
by the degree map. To finish the proof, we have to show that Pic (X g ) is a trivial
G-module. Indeed, the group G can only act on Z by sending 1 to 1 or —1. This
action, however, comes from the action of G on line bundles on P’,’{l and the
line bundles in the class of —1 have no global sections, whereas those in the
class of 1 do. (In terms of linear systems, the complete linear system associated
with the class of 1 is that of hyperplanes in P!, whereas that associated with
the class of —1 is empty.) This implies that 1 can only be fixed by G. m|

Now it is easy to derive the following basic exact sequence.
Theorem 5.4.5 There is an exact sequence
0 = Pic(X) <% Z > Br(k) — Br(k(X)),
with deg : Pic (X) — Z the same map as above.
For the proof of the theorem we need the following lemma.

Lemma 5.4.6 Let V be a k-variety having a smooth k-rational point. Then the
restriction map Br (k) — Br (k(V)) is injective.
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Proof If P is a smooth k-point on V, the local ring Ox p embeds into the
formal power series ring k[[7y, ..., #,]], where n is the dimension of V (see
Appendix, Theorem A.5.4). Passing to quotient fields we get an injection
k(V) C k((t1,...,t,)). This field in turn can be embedded into the iterated
Laurent series field k((#1))((%2)) ... ((z,)). All in all, we have an induced map
Br (k(V)) — Br(k((t;)) ... ((t,))). We show injectivity of the composite map
r: Br(k) — Br(k((#))...((#,))). For this it will be enough to treat the case
n = 1, i.e. the injectivity of r : Br(k) — Br(k((z))), as the general case then
follows by a straightforward induction.

Represent a class in the kernel of » by a Severi—Brauer variety X defined
over k. Regarding it as a variety defined over k((¢)), Chatelet’s theorem implies
that it has a k((¢))-rational point. If X is embedded into projective space PV,
this point has homogeneous coordinates (xo, ..., xy). Viewing k((z)) as the
quotient field of the ring k[[#]], we may assume that each x; lies in k[[#]] and
not all of them are divisible by ¢. Setting ¢ = 0 then defines a rational point of
X over k, and we conclude by Chatelet’s theorem that the class of X in Br (k)
is trivial. a

Proof of Theorem 5.4.5 By Theorem 4.4.7 we have isomorphisms
H*(G,K*)ZBr(K|k) and H*(G, K(X)*) = Br(K(X)k(X)).

Now the definition of relative Brauer groups gives a commutative diagram with
exact rows:

0 —— Br (K |k) ——> Br(k) —— Br(K)

l | |

0 —— Br(K(X)|k(X)) —— Br k(X)) —— Br(K(X))

Here the third vertical map is injective by the lemma above. Hence the snake
lemma gives an isomorphism

ker(Br (K |k) — Br(K(X)|k(X))) = ker(Br (k) — Br(k(X)),
and the theorem results from the previous proposition. O

Remark 5.4.7 The exact sequence of the theorem is easy to establish using the
Hochschild—Serre spectral sequence in étale cohomology (see e.g. Milne [2]).

We can now prove Amitsur’s theorem.

Proof of Theorem 5.4.1 The exact sequence of the theorem shows that the
kernel of the map ry : Br(k) — Br(k(X))iscyclic, soitis a finite cyclic group,
because Br (k) is a torsion group. By the remarks at the beginning of this section,
the class of X is contained in ker(ry), so if d denotes the order of this class,
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we see that ker(ry) has order divisible by d. On the other hand, by the exact
sequence of the theorem the group ker(ry) is the quotient of Z by the image
of the map deg : Pic(X) — Z. Theorem 5.2.2 implies that there is a divisor
class on X which becomes the d-th power of the class of a hyperplane over the
algebraic closure. This means that Im (deg) C Z contains d, therefore ker(ry)
must have exact order d and the class of X must be a generator. O

Our next goal is to show that Witt’s theorem (Theorem 1.4.2) follows from
that of Amitsur. First a corollary already announced before:

Corollary 5.4.8 Assume that the base field k is not of characteristic 2. Let (a, b)
be a quaternion algebra over k. Then the Severi—Brauer variety associated with
(a, b) is the conic C(a, b) introduced in Chapter 1.

Proof The conic C := C(a, b) is a Severi—Brauer variety of dimension 1,
so it defines a class [C] in Br (k). The conic has a point over some quadratic
extension L|k, so by Chatelet’s theorem [C] restricts to the trivial class in Br (L).
By the restriction-corestriction formula (Corollary 4.2.10) [C] therefore lies in
the 2-torsion of Br (k). By Amitsur’s theorem, this 2-torsion class generates the
kernel of the map Br (k) — Br (k(C)). On the other hand, by Proposition 1.3.2
the algebra (a, b) ®; k(C) splits, so [(a, b)] = [C] or [(a, b)] = 0. If (a, b) is
split, C has a k-point by loc. cit. and Chatelet’s theorem implies that [C] = 0 as
required. In the other case, [(a, b)] must be the nontrivial element in the kernel
which is [C], and we are done again. O

Remarks 5.4.9

1.  Now we see how Witt’s Theorem follows from Amitsur’s theorem above:
by the above proof, for a quaternion division algebra (a, b) the only non-
trivial class in the kernel of the map Br (k) — Br (k(C)) is that of (a, b).
Butif two division algebras of the same degree have the same Brauer class,
they are isomorphic by Wedderburn’s theorem.

2. The corollary also holds in characteristic 2, for the quaternion algebras
[a, b) and the associated conics defined in Exercise 4 of Chapter 1.

We conclude this section by the following refinement of Theorem 5.4.5 which
incorporates most of the results obtained so far.

Theorem 5.4.10 (Lichtenbaum) Let X be a Severi—Brauer variety over a field
k. In the exact sequence

0 — Pic(X) = Z > Br(k) — Br(k(X))

the map § is given by sending 1 to the class of X in Br (k).
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Proof Let K |k be a Galois extension splitting X. By the proof of Proposition
5.4.4, the map § arises as the composition of the coboundary maps

Pic (Xx)° — HY(G, K(X)*/K*) and HY(G, K(X)*/K*)— H*G,K*)

coming from the short exact sequences (4) and (5), respectively. In view of the
construction of these coboundary maps (see the proofs of Proposition 2.7.1 and
Proposition 4.4.1), we can therefore describe §(1) as follows. One takes first a
divisor D representing the divisor class 1 € Z = Pic (X k). Here the divisor D is
not G-invariant in general but its class is (see the end of the proof of Proposition
5.4.4), soone finds a function f, withdiv(f,) = o (D) — D.The K (X)*-valued
map o — f, is the lifting of a 1-cocycle with values in K(X)* /K>, and the
image of this cocycle by the second coboundary map is by definition the 2-
cocycle (o, ) = foo(fr) f(,_rl. This is the 2-cocycle representing 5(1).

Now since D is of degree 1, the linear system |D| defines an isomor-
phism X = P’}{l, where n = dim X. This isomorphism arises by taking the
associated projective space to an isomorphism of vector spaces L(D) = K".
Let go,...,gu—1 be a basis of the left-hand side mapping to the standard
basis eg, ..., e,—1 of K". Denote by A the inverse isomorphism sending e;
to g;. In terms of linear systems, the map A sends e; to the positive divi-
sor (g;) + D. So for o € G, the isomorphism o (A) sends e; to the divisor
(0(g))+0o(D)=(0(g)+ (fs)+ D = (f,0(gi)) + D. This last divisor is
also an element of | D|, therefore f,o(g;) € L(D). We may therefore write

foo(gi) = Zaijagi (6)

with some a;j, € K. The matrix A, := [a;j,] is therefore the matrix of the
K -automorphism o (1) o A~!. Comparing with the definition at the beginning
of Section 5.2, we see that this is exactly the matrix defining the class of X in
H'(G,PGL,(K)), and the class in Br (k) is therefore given by the 2-cocycle
(0,7) > A0 (A)ASL

To compare these two 2-cocycles, we perform the following computation in
the function field K (X):

ot(g) =0(t(g) = o(f; 'Argi) = o(f, o (Ao (g) =
o(fi Yo (ANf " Avg) = o () 0 (AD) As g

Comparing with equation (6) applied to o T gives

g = foro (i f A o (A As g

for all i, and therefore

fro(f) fo = (A o (A7H A
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It remains to observe that the 2-cocycle (o, 7) > (A;lU(At_l )A, ;) represents
the class —[X] in Br (k). O

Remarks 5.4.11

1. Lichtenbaum’s theorem immediately implies Amitsur’s, and therefore
yields a proof which does not use the results of Section 2, just the con-
struction of the Brauer class associated with X.

2. We also get a second (less explicit) proof of Theorem 5.2.2: if the class
of X has order d in the Brauer group, then there exists a divisor class of
degree d on X. The associated linear system defines the d-uple embedding
over a splitting field K.

5.5 An application: making central simple algebras cyclic
We give now the following nice application of Amitsur’s theorem, whose
statement is purely algebraic and apparently does not involve Severi—Brauer
varieties.

Theorem 5.5.1 (Saltman) Assume that k contains a primitive n-th root of unity
w, and let A be a central simple algebra of degree n over k. There exists a field
extension F|k such that

*  the algebra A ®; F is isomorphic to a cyclic algebra;
*  the restriction map Br (k) — Br (F) is injective.

Saltman himself did not publish this result (but see Berhuy—Frings [1],
Theorem 4 for a slightly more general statement).

Remark 5.5.2 Aniterated application of the theorem (possibly infinitely many
times) shows that there exists a field extension K |k such that the map Br (k) —
Br (K) is injective, and all central simple k-algebras of degree n become cyclic
over K.

For the proof of Saltman’s theorem we need the following lemma.

Lemma 5.5.3 Consider a purely transcendental extension k(x, y)|k generated
by the independent variables x and y. The degree n cyclic algebra (x, y),, over
k(x, y) has period n.

Proof We prove slightly more than required, namely that the algebra
(X, ¥)w ®k(x,y) K has period n, where K denotes the field k((x))((y)). The exten-
sion L := K(/y) is cyclic of degree n and splits (x, y), ®x(,y) K. By Corol-
lary 4.7.4, the isomorphism K* /Ny x(L*) = Br(L|K) is given by mapping



132 Severi—Brauer varieties

a € K> to the class of the cyclic algebra (a, y), over K, therefore the period of
the K -algebra (x, y),, equals the order of x € K in the group K™ /Ny x(L>).

Denoting this order by e, we thus have by definition some z € L* with
x¢ = N k(). By the general theory of formal power series, L is the formal
Laurent series ring in one variable /y over k((x)). If z viewed as a Laurent
series in y/y had a nonzero term of negative degree, the same would be true
of x¢ viewed as a (constant) Laurent series in the variable y, which is not
the case. Therefore z € k((x))[[+/y]], and taking its image by the natural map
k((eDIL/y1] — k((x)) sending /Yy to O we getan element Z € k((x)) satisfying
x¢ = (2)". Writing 7 as a power series in x, we see that n must divide e. On the
other hand, e divides n, because quite generally the period divides the degree
(even the index; see Proposition 4.5.13 (1)). Therefore e = n, and the lemma
is proven. O

Proof of Theorem 5.5.1 Define the field F to be the function field of a Severi—
Brauer variety associated to the central simple algebra

B = (A ®i k(x,y)) Qrx.y) (X, Yo

defined over the field k(x, y). By Chételet’s theorem (see the discussion before
Theorem 5.4.1), the algebra

B Qixy) F = (A F) ®r ((xX, )o ®kix.y) F)

splits. This implies that A ®; F and the opposite algebra of (x, y), ®i F have
the same class in Br (F). As they both have degree n, they must be isomorphic.
But the latter algebra is isomorphic to the F-algebra (x, y~!),,, as one sees from
their presentation. We conclude that A ®; F is isomorphic to a cyclic algebra.

We now show that Br (k) injects into Br(F'). Let o be an element in the
kernel of the map Br(k) — Br(F). For a field K containing k, we denote
by ak the image of « in Br(K). According to Amitsur’s theorem, the group
ker(Br (k(x, y)) — Br (F)) is the cyclic subgroup generated by the class of B,
so there exists an integer m > 0 for which the equality

Qpe,yy =M [A Qi k(x, V)] +m [(x, ¥)w] 7

holds in Br (k(x, y)). By passing to the field k;(x, y) we obtain

0= Uk (x,y) =M [(xv y)a)] € Br(ks(xv Y)),

because A and « split over k;. By Lemma 5.5.3, the k;(x, y)-algebra (x, y),
has period n, so n divides m. But since both A and (x, y),, have degree n and
the period divides the degree, we have n[A] = 0 in Br (k) and n [(x, ¥),] =0
in Br (k(x, y)). Therefore we get from the identity (7) that o, ,) = 0, whence
o = 0 by Lemma 5.4.6, as desired. a
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Exercises

1. Let k be a field containing a primitive n-th root @ of unity, and let K =k(/a) be
a cyclic extension of degree n. Given b € k*, consider the closed subvariety Y, of
A" defined by the equation

n—1

bx = N (Z(%)i)’i),
i=0

where we denoted the coordinates by (x, yo, Y1, » Yu_1)-

(a)  Verify that Y, (k) # ¢ if and only if the cyclic algebra (a, b), is split.

(b) IfY,(k) # @, show that Y is a k—rational variety.

(c)  Show that Y, is stably birational to the Severi—Brauer variety associated to
the cyclic algebra (a, b),,. [Hint: Argue as in Remark 5.4.3.]

2. (Heuser) Let A be a central simple algebra of degree n over k, and letey, ..., e,2 be a
k-basis of A. Consider the reduced characteristic polynomial Nrd,(x — )" ¢;x;) asa
polynomial in the variables x, x1, ..., x,2,andlet X C AZZH be the associated affine
hypersurface. Moreover, let Y C PZZ’I be the projective hypersurface associated to
the homogeneous polynomial Nrd, (Y e;x;); it is called the norm hypersurface of A.
(a) Show that the function field k(X) of X is a splitting field of A. [Hint: Observe

that k(X) is a degree n extension of k(x1, ..., x,2) that may be embedded into
AQp k(xy,...,x,2).]

(b)  Show that the function field k(Y) of Y is a splitting field of A. [Hint: Let
Y C A” be the affine cone over Y, i.e. the affine hypersurface defined by
NrdA (Y e;x;) = 0. Show that k(X)[k(Y) and k(Y)[k(Y) are purely transcen-
dental extensions, and specialize.]

3. Letk be afield, and let A}, A, be central simple algebras over k. Denote by X, resp.
X, the associated Severi—Brauer varieties. Compute the kernel of the natural map
Br (k) — Br(k(X; x X»,)). [Hint: Mimic the proof of Amitsur’s theorem, and use
the isomorphism Pic (P" x P") = Z & Z (Shafarevich [2], III.1.1, Example 3).]

4. Letk be a field of characteristic different from 2, and let C be a projective conic over
k without k-rational points. Construct a field F D k and a central simple algebra A
over F such that 1 < indp)(A ®F F(C)) < indr(A).

5. Let¢ : C; — C, be anonconstant morphism of projective conics defined over a field
k. Denote by d the degree of ¢, i.e. the degree of the induced extension k(C;)|¢p*k(C,)
of function fields.

(a)  Show that ¢ induces a commutative diagram

Pic (C,)° —— Br(k)

il [
Pic (C1)¢ —— Br(k),
where G is the absolute Galois group of k, and § is the map of Theorem 5.4.5.

(b)  Conclude that if d is even, then C; has a k-rational point. [Hint: Use Lichten-
baum’s theorem. ]



134 Severi—Brauer varieties

6. Let k be a field of characteristic 0, A a central simple algebra over k and X the asso-
ciated Severi-Brauer variety. Denote by Nx (k) C k* the subgroup of k* generated
by the subgroups Nk (K*) C k* for those finite field extensions K |k for which
X(K) # (. Prove that Nrd(A*) = Nx(k).

[Remark: The group Ny (k) is called the norm group of X.]
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Residue maps

Residue maps constitute a fundamental technical tool for the study of the coho-
mological symbol. Their definition is not particularly enlightening at a first
glance, but the reader will see that they emerge naturally during the compu-
tation of Brauer groups of function fields or power series fields. When one
determines these, a natural idea is to pass to a field extension having trivial
Brauer group, so one needs some sufficient condition that ensures this prop-
erty. The C; condition introduced by Emil Artin and baptized by Serge Lang
furnishes such a sufficient condition via the vanishing of low-degree polynomi-
als. There are three famous classes of C;-fields: finite fields, function fields of
curves and Laurent series fields, the latter two over an algebraically closed base
field. Once we know that the Brauer groups of these fields vanish, we are able to
compute the Brauer groups of function fields and Laurent series fields over an
arbitrary perfect field. The central result here is Faddeev’s exact sequence for
the Brauer group of a rational function field. We give two important applications
of this theory: one to the class field theory of curves over finite fields, the other
to constructing counterexamples to the rationality of the field of invariants of
a finite group acting on some linear space. Following this ample motivation,
we finally attack residue maps with finite coefficients, thereby preparing the
ground for the next two chapters.

Residue maps for the Brauer group first appeared in the work of the German
school on class field theory; the names of Artin, Hasse and F. K. Schmidt are the
most important to be mentioned here. It was apparently Witt who first noticed
the significance of residue maps over arbitrary discretely valued fields. Residue
maps with finite coefficients came into the foreground in the 1960s in the context
of étale cohomology; another source for their emergence in Galois cohomology
is work by Arason [1] on quadratic forms.

6.1 Cohomological dimension
Before embarking on the study of fields with vanishing Brauer group it is
convenient to discuss the relevant cohomological background: this is the theory
of cohomological dimension for profinite groups, introduced by Tate.
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Recall that for an abelian group B and a prime number p, the notation B{p}
stands for the p-primary torsion subgroup of B, i.e. the subgroup of elements
of p-power order.

Definition 6.1.1 Let G be a profinite group, p a prime number. We say that G
has p-cohomological dimension < n if H (G, A){p} = 0 for all i > n and all
continuous forsion G-modules A. We define the p-cohomological dimension
cd,(G) to be the smallest positive integer n for which G has cohomological
dimension < # if such an n exists, and set cd,(G) = oo otherwise.

One may wonder why we restrict to torsion G-modules in the definition and
why not take all G-modules. This is solely for technical convenience; the anal-
ogous notion defined using all G-modules is called the strict p-cohomological
dimension of G in the literature. In fact, there is not much difference between
the two concepts, as the following proposition shows.

Proposition 6.1.2 Assume that cd,(G) < n. Then H (G, A){p} =0 for all

i > n+ 1 and all continuous G-modules A.

Proof Let A be a continuous G-module, and consider the multiplication-by-p
map p: A — A. Its kernel ,A and cokernel A/pA are torsion G-modules
fitting into the exact sequence

0> ,A> AL A A/pA—0,
which may be split into two short exact sequences
()—>pA—>A—p>C—>O and 0—-C— A— A/pA— 0,

with C := Im (p). By assumption, the groups H'(G, ,A) and H'(G, A/pA)
vanish for i > n, so the associated long exact sequences induce isomorphisms

H(G,A) = H(G,C) and H™Y'(G,C)= HY'(G, A)

fori > n. Thus fori > n + 1 the induced map p, : H'(G, A) — H!(G, A) is
an isomorphism. But by the construction of cohomology, the map p, is also
given by multiplication by p, soifitis an isomorphism, then the group H'(G, A)
cannot have p-primary torsion. The claim follows. O

As a first example, we have:

Proposition 6.1.3 We have cd,,(Z) = 1 for all primes p.

Proof Note first that cd,,(Z) # 0, because
HY(Z,Z/pZ) = lim Hom(Z/nZ,Z/pZ) = 7/ pZ.
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Next we show the vanishing of H2(Z, A) for all torsion Z-modules A. By def-
inition, this group is the direct limit of the groups HZ(Z/nZ A”Z) via the infla-
tionmapsInf : H2(Z/nZ, A"%) — H>(Z/mnZ, A™Z), which by construction
are induced by the natural map between the projective resolutions of Z con-
sidered as a trivial (Z/mnZ)- and (Z/nZ)-module, respectively. On the special
projective resolution of Example 3.2.9 all of whose terms equal Z[Z/mnZ]
and Z[Z/nZ], respectively, this map is given by mapping a generator o of
Z./mnZ to the generator mo of Z/nZ. Hence the above inflation map is noth-
ing but multiplication by m. In particular, it annihilates all m-torsion elements
of H*(Z/nZ, A”Z), which implies the claim because m was arbitrary here.

Finally, we prove the vanishing of H i(Z,A) fori>?2 by dimension shift-
ing as follows. Given a continuous torsion Z-module A, we may embed
it to the co-induced module M®(A) which is torsion by construction (see
Remark 4.2.9). Hence so is the quotient MY(A)/A, and so Corollary 4.3.1
gives H'(Z, MG (A)/A) = H'*(Z, A), which is trivial for i > 1 by induction,
starting from the case i = 2 treated above. |

Next a general lemma about cohomological dimension.

Lemma 6.1.4 Let G and p be as above, and let H be a closed subgroup of G.
Thencd,(H) < cd,(G). Here equality holds in the case when the image of H in
all finite quotients of G has index prime to p. In particular, cd,(G) = cd,(G)p)
for a pro-p-Sylow subgroup G, of G.

Proof Let B be a continuous torsion H-module. Then the continuous G-
module M G(B) introduced in Remark 4.2.9 is also torsion and satisfies
H(H, B) = H(G, M§ p(B)) for all i > 0 by Shapiro’s lemma, whence the
inequality c¢d,(H) < cd,(G). The opposite inequality in the case when H sat-
isfies the prime-to-p condition of the lemma follows from Corollary 4.2.11.

O

In the case of pro-p-groups there is a very useful criterion for determining
the p-cohomological dimension.

Proposition 6.1.5 Let G be a pro-p-group for some prime number p. Then
cd,(G) < nifand only if H"™(G, Z/ pZ) =

For the proof we need the following lemma from module theory.

Lemma 6.1.6 The only simple G-module of p-power orderis 1/ pZ with trivial
action.

Proof If Aisafinite G-module of p-power order, then AS must be a nontrivial
G-submodule. Indeed, the complement A \ AY is the disjoint union of G-orbits
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each of which has p-power order and thus A cannot consist of the unit element
only. Now if moreover we assume A to be simple, we must have A = A% ie.
triviality of the G-action. But then A must be Z/pZ, because a subgroup of a
trivial G-module is a G-submodule. O

Proof of Proposition 6.1.5 Necessity of the condition is obvious. For suffi-
ciency, note first that H/(G, A{p}) = H/(G, A) for all torsion G-modules A
and all j > 0; indeed, decomposing A into the direct sum of its p-primary com-
ponents, we see that for a prime £ # p the group H/(G, A{¢}) is both £-primary
torsion (by definition of cohomology) and p-primary torsion (by Proposition
4.2.6), hence trivial. Thus we may restrict to p-primary torsion modules. Next
observe that it is enough to prove H"*!(G, A) = 0 for all p-primary torsion
G-modules A, by a similar dimension shifting argument as at the end of the
proof of Proposition 6.1.3. Writing A as the direct limit of its finitely generated
G-submodules, we may assume using Lemma 4.3.3 that A is finitely generated,
hence finite of p-power order. Then by general module theory A has a compo-
sition series whose successive quotients are simple G-modules. The long exact
cohomology sequence and induction on the length of the composition series
implies that it is enough to consider these. We have arrived at the situation of
the above lemma, and may conclude from the assumption. O

Now we come to the cohomological dimension of fields.

Definition 6.1.7 The p-cohomological dimension cd,(k) of a field k is the
p-cohomological dimension of the absolute Galois group Gal (k|k) for some
separable closure k. Its cohomological dimension cd(k) is defined as the supre-
mum of the cd, (k) for all primes p.

For us the most interesting case is that of fields of p-cohomological dimen-
sion 1, for this is a property that can be characterized using the Brauer group.

Theorem 6.1.8 Let k be a field, and p a prime number different from the
characteristic of k. Then the following statements are equivalent:

1. The p-cohomological dimension of k is < 1.

2. For all separable algebraic extensions K |k we have Br (K){p} = 0.

3. Thenormmap Ny : L™ — K™ is surjective for all separable algebraic
extensions K |k and all Galois extensions L|K with Gal (L|K) = Z./ pZ.

Proof For the implication (1) = (2), choose a separable closure k; of k con-
taining K. Then Gal (k;|K) identifies with a closed subgroup of Gal (k|k),
and hence we have cd,(K) < cd,(k) < 1 using Lemma 6.1.4. In particular,
the group H*(K, n pi) is trivial for all i > 0, but this group is none but the
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p'-torsion part of Br (K) according to Corollary 4.4.9. For (2) = (3), note first
that for L|K as in (3) we have Br(L|K) = K> /Ny x(L™) thanks to Corollary
4.4.10. But Gal (L|K) = Z/ pZ also implies that Br (L|K) is annihilated by p,
so Br(L|K) C Br(K){p} = 0, whence the claim.

Finally, for (3) = (1) let G, be a pro-p-Sylow subgroup of Gal (k|k).
Lemma 6.1.4 implies that it is enough to prove c¢d,(G,) < 1, and moreover
for this it is enough to show HZ(G,,, Z/pZ) = 0 by Proposition 6.1.5. As
the extension k(i )|k has degree p — 1, the fixed field k, of G, contains the
p-th roots of unity, hence we have a chain of isomorphisms H*(G L/ pL) =
Hz(k,,, p) = pBr(kp). Let K|k, be a finite extension contained in k; and
denote by P the Galois group Gal (K ,|k,). As Br (K ,|k,) injects into Br(k,),
we are reduced to showing ,Br(K,|k,) = 0. The group P, being a finite p-
group, is solvable, i.e. there exists a finite chain

P=PDP D---DP ={l}

of normal subgroups such that P;/ P,y = Z/ pZ. These subgroups correspond
to field extensions

ky=KoCK C---CK,=K,

such that Gal (K;|k,) = P/P;. We now show ,Br (K;|k,) = 0 by induction on
i, the case i = 0 being trivial. Assuming the statement for i — 1, consider the
exact sequence

0— H*(P/Pi_1,K}))— H*(P/P;,K}) — H*(Pi_1/Pi, K[)

coming from Proposition 3.3.17 applied with G = P/P;, H = P,_;/P; and
A = K;*, noting that H'(P;/P;_i, K.) = 0 thanks to Hilbert’s Theorem 90.
Restricting to p-torsion subgroups, we get

0— pBI'(Ki_1|kp) g pBI'(Ki|kp) d pBI'(Ki|Kl‘_1).

Here the right-hand side group is trivial by (3) applied with K = K;_; and
L = K; (and noting Corollary 4.4.10 again), and the left-hand side group is
trivial by induction. Hence so is the middle one, which completes the proof of
the inductive step. i

We have the following complement:
Proposition 6.1.9 Let k be a field of characteristic p > 0. Then cd,(k) < 1.
Proof By Lemma 6.1.4, we may replace k by the fixed field of some

pro-p-Sylow subgroup of Gal(ks|k). Hence we may assume that k is a
field of characteristic p whose absolute Galois group is a pro-p-group. By
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Proposition 6.1.5, it suffices therefore to establish the vanishing of
H?(k, 7./ pZ). For this, recall the exact sequence

O—>Z/pZ—>ksi>ks—>0

from the proof of Proposition 4.3.10, where e : k; — k; is given by
©(x) = xP — x. Part of the associated long exact sequence reads

H'(k, k) - H?*(k,Z/pZ) — H*(k, ky),

from which we get the required vanishing, the two extremal terms being trivial
by Lemma 4.3.11. O

Remark 6.1.10 According to the proposition, the higher Galois cohomology
groups with p-torsion coefficients are trivial invariants for fields of characteristic
p > 0. In the study of these other cohomology theories have been helpful. One
approach, proposed by Milne [1] and Kato [2], is to use the modules v(n) of
logarithmic differentials that we shall discuss later in Section 9.5, and consider
the groups H;,“H(k) = H(k, v(n),) forn > 1. As we shall see in Section 9.2,
for n = 1 one has H[%(k) = ,Br(k), which is a nontrivial group in general for
non-perfect k, in contrast to the situation of Theorem 6.1.8.

This phenomenon is related to the problem of defining the ‘right’ notion of
p-cohomological dimension for fields of characteristic p. In Serre [2], §11.3
such a field k is defined to be of p-dimension < 1 if ,Br(K) = 0 for all finite
extensions K |k. In Kato [2] and Kato—Kuzumaki [1] a generalization of this
condition is proposed: k is said to be of p-dimension n if n is the smallest
integer with [k : k] < p" and HI’,‘“(K) = 0 for all finite extensions K |k.

We conclude this chapter by two examples of fields of cohomological dimen-
sion 1. For the moment, we have at our disposal only the ones with absolute
Galois group Z; we shall see more examples in the next section.

Examples 6.1.11 Finite fields and Laurent series fields over an algebraically
closed field of characteristic 0 have absolute Galois group isomorphic to Z,
by Examples 4.1.5 and 4.1.6, respectively. They therefore have cohomological
dimension 1 by Proposition 6.1.3.

6.2 C,-fields

The pertinence of the following condition to our subject matter has been first
observed by Emil Artin.

Definition 6.2.1 A field £ is said to satisfy condition C| if every homogeneous
polynomial f € k[xy, ..., x,] of degree d < n has a nontrivial zero in k".

We briefly call such fields C-fields.
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Remarks 6.2.2

1. More generally, a field & satisfies condition C, for an integer r > 0 if every
homogeneous polynomial f € k[xy, ..., x,] of degree d with d” < n has
a nontrivial zero in k". This condition was introduced and first studied by
Lang [1].

2. Even more generally, a field & is said to satisfy condition C, for some
integer r > 0 if each finite system fi, ..., f,, € k[x1, ..., x,] of homo-
geneous polynomials of respective degrees dj, ..., d, has a nontrivial
common zero in k", provided that d] + - - +d,, < n. For more on this
property, see the book of Pfister [1].

Artin himself called C,-fields quasi-algebraically closed, because they have
the property that there is no nontrivial finite dimensional central division algebra
over them. In fact, one has:

Proposition 6.2.3 Let k be a C-field. Then cd(k) <1, and Br(L) =0 for
every finite extension L|k.

Note that the extension L|k is not assumed to be separable. We prove first
the following lemma which will be also useful later.

Lemma 6.2.4 If K is a C;-field, then so is every finite extension L|K.

Proof Let f € L[xy, ..., x,] beahomogeneous polynomial of degree d < n,
andletvy, ..., v, beabasis of the K -vector space L. Introduce new variables x;;
(1 <i <n,1<j<m)satisfying x;;v; + - -+ 4+ X;;uVUm = X;, and consider the
equation Ny x(f(x1, ..., x,)) = 0. This is then a homogeneous equation over
K of degree md in the mn variables x;;, so by assumption it has a nontrivial
zero (aqq, ..., Qy,) in K™, since md < mn. Whence a nontrivial element
(a1, ..., a,) € L"satisfying Ny g (f (a1, ..., a,)) = 0, which holds if and only
if f(oy,...,0,)=0. ]

Proof of Proposition 6.2.3  If our C;-field k has positive characteristic p, we
have cd,(k) < 1 by the general Proposition 6.1.9. So as far as cohomological
dimension is concerned, we may concentrate on the other primes and conclude
from Theorem 6.1.8 and Lemma 6.2.4 that it is enough to show the second
statement in the case L = k, i.e. that a C;-field has trivial Brauer group.

So consider a division algebra D of degree n over a C;-field k, and denote
by Nrd : D — k the associated reduced norm. Choosing a k-basis vy, ..., v,2
of D considered as a k-vector space, we see from the construction of Nrd in
Chapter 2 that f(xy, ..., x,2) := Nrd(xjv; + - - - + x,2v,2) is a homogeneous
polynomial of degree 7 in the n? variables xp, ..., x,2. Ifheren > 1, then by the
C, property f has a nontrivial zero in k. But this contradicts the assumption
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that D is a division algebra, by Proposition 2.6.2. Therefore n = 1,and D = k
is the trivial division algebra over k. O

Remark 6.2.5 The question arises whether the converse of the proposition
holds true. The answer is no: Ax [1] has constructed a field of cohomological
dimension 1 (and of characteristic 0) which is not a C;-field. See also the book
of Shatz [1] for details.

Here are the first nontrivial examples of C-fields.

Theorem 6.2.6 (Chevalley) Finite fields satisfy the C| property.

Proof Let F, be the field with ¢ elements, where g is some power of a prime
number p. Following Warning, we prove more, namely that the number of
solutions in Fy of a polynomial equation f(xi, ..., x,) = 0 of degree d < n is
divisible by p. If f is moreover homogeneous, it already has the trivial solution,
whence the claim.

For a polynomial g € k[xy, ..., x,] denote by N(g) the number of its zeros
in FZ, and introduce the notation

@)= ), (gl ..

(ar,....an)€Fy
As a?~! =1 for each nonzero o € F,, we see that the element X(g) € F,
actually lies in F,, C F,, and moreover
g"-2@)= Y (I—@@.....a)""")=N(g) modp.
(ai,....an)€Fy

Therefore it is enough to show that X(f) =0 in F, for our particular f
above. For this, write f(x1,...,x,)?"! as a linear combination of monomials
xy' -+ xJr. We show that X(x|" - - - x/") = 0 in F, for all occurring monomials
xi' -+ x/". This is obvious if one of the r; is 0, so we may assume this is not
the case. Then, as f has degree less than n by assumption, we may assume that
one of the r;, say ry, is smaller than ¢ — 1. Then fixing (a5, ..., @) € F;"l and
taking a generator w of the cyclic group F; we get

q—2 (" q—1
. ; oM™ —1
§ r rno_ T2 1, § ir __ r v,
o az ...an" _az ...an" w' _(az ...anﬂ)irl 1 s
. " —
a€F, i=0
which equals 0 in F,. We conclude by making (e, . . ., ;) run over FZ’I. O

Remark 6.2.7 Together with the previous proposition, the theorem gives
another proof of the fact that finite fields have cohomological dimension 1.
Moreover, we also get that finite fields have trivial Brauer group (up to now,
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we only knew that the prime-to-p part is trivial, by Theorem 6.1.8). In other
words, we have proven another famous theorem due to Wedderburn: A finite
dimensional division algebra over a finite field is a field.

Other classic examples of C-fields are given by the following theorem.

Theorem 6.2.8 (Tsen) Let k be an algebraically closed field, and let K be the
function field of an algebraic curve over k. Then K is a C,-field.

Proof Using Lemma 6.2.4 we may assume K is a simple transcendental exten-
sion k(¢) of k. Given a homogeneous polynomial f € k(¢)[xy, ..., x,] of degree
d < n, we may also assume the coefficients to be in k[¢], and we may look for
solutions in k[#]". Choose an integer N > 0 and look for the x; in the form

N
X = E a,-jt],
Jj=0

with the g;; € k to be determined. Plugging this expression into f* and regroup-
ing according to powers of ¢, we get a decomposition

dN+r
0= f(x1,...,x,) = Z filao, - .., apy)t’,

1=0
where r is the maximal degree of the coefficients of f and the f; are homo-
geneous polynomials in the a;; all of which should equal 0. Since d < n by
assumption, for N sufficiently large the number d N + r + 1 of the polynomials
fi is smaller than the number n(N + 1) of the indeterminates g;;, so they define
a nonempty Zariski closed subset in projective (nN + n — 1)-space P*N+~1
(see Appendix, Corollary A.3.3). As k is algebraically closed, this closed set
has a point in P"V*"~1(k), whence the a;; we were looking for. O

Remarks 6.2.9

1. The theorems of Chevalley and Tsen can be sharpened in the sense that
finite fields as well as function fields of curves over algebraically closed
fields (or even C|-fields) satisfy the C| property of Remark 6.2.2 (2). The
proofs are similar to the ones given above and are left as an exercise.

2. Tsen’s theorem has the following geometric interpretation. Let C be a
smooth projective curve with function field K. The homogeneous polyno-

mial f € K[xy, ..., x,]defines an (n — 1)-dimensional projective variety
equipped with a surjective morphism X — C. A nontrivial solution of
f(x1,...,x,) =0in K" defines asection of p,i.e.amorphisms : C — X

with p o s = id¢. In particular, s(C) C X is a closed subvariety of dimen-
sion 1 mapped isomorphically onto C by p.
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As a particular example, consider a degree 2 homogeneous polyno-
mial in three variables with coefficients in k[¢]. It defines a surface fibred
in conics over the projective line. By Tsen’s theorem, there is a curve
on the surface intersecting each fibre in exactly one point. For remark-
able recent generalizations of this fact, see Graber—Harris—Starr [1] and
de Jong—Starr [1].

Before moving over to other classes of C-fields, we point out the following
interesting corollary to Tsen’s theorem.

Corollary 6.2.10 Let C be a smooth projective geometrically irreducible curve
over a finite field F. Every central simple algebra over the function field F(C)
is split by a cyclic field extension, and hence it is Brauer equivalent to a cyclic
algebra.

Proof Let F be an algebraic closure of F. We have Br (F(C) =0 by Tsen’s
theorem, so every central simple algebra over F(C) is split by F'(C) for some
finite extension F’'|F. This is necessarily a cyclic extension as F is finite. The
second statement follows from Proposition 4.7.6. O

The third famous class of C-fields is that of fields complete with respect to
a discrete valuation with algebraically closed residue field. The C; property for
these was established by Serge Lang in his thesis (Lang [1]). In this book we
shall only need the equal characteristic case, which reads as follows. For a field
k consider the field k((¢)) of formal Laurent series, and denote by k((¢)),, the
composite of the separable closure k; of k with k((#)) inside a fixed separable
closure of the latter. This field is the maximal unramified extension of the
discretely valued field k((¢)). It is the union of the fields k'((¢)) for all finite
extensions k’|k inside k;.

Theorem 6.2.11 (Lang) For a perfect field k the field k(()),, is a C,-field. In
particular, if k is algebraically closed, then k((t)) itself is a C-field.

We shall deduce the theorem above from Tsen’s theorem using an approxi-
mation method taken from Greenberg [1]. The crucial statement is:

Theorem 6.2.12 (Greenberg) Let k be a perfect field, and let moreover
S={f1,..., fu} be a system of polynomials in k[[t]][x1, ..., x,]. There is
an integer No(S) > 0, depending on S, such that for all N > Ny(S) the exis-
tence of a common solution (aEN), .oy a'N) of the congruences

filxi,...,x)=0mod(tY), i=1,....m
implies the existence of a common zero (ay, ..., a,) € k[[t]]" of the f; € S.

We first show that Theorem 6.2.12 implies Theorem 6.2.11. Consider a homo-
geneous polynomial f € k((¢)),,[x1, ..., x,] of degree d < n. To prove that f



6.2 C-fields 145

has a zero in k((¢))},, after multiplying with a common denominator we may
assume that f has coefficients in k'[[#]] for a finite extension k’|k. Since the
rings k'[[t]1/(t"V) and k[¢]/(t") are isomorphic for all N > 0, we may find
for each N a degree d homogeneous polynomial f™) e k/[t][xi, ..., x,] with
f™ = f mod (+V). By Tsen’s theorem, after replacing k’ by a finite extension
we see that ) has a zero (a%N), oo, aM) € k'(t)", where we may assume the
aﬁ-N) to lie in k’[t] by homogeneity of f¥). Reducing modulo (¢V) thus yields
a zero of f modulo (tV), and so for N sufficiently large the case m = 1 of
Theorem 6.2.12 applies. O

Proof of Theorem 6.2.12  Consider the affine closed subset V C A" defined
as the locus of common zeros of the f; € S. We prove the theorem by induction
on the dimension d of V, starting from the obvious case d = —1,1i.e. V = (.
We first make a reduction to the case when V is a closed subvariety
of A". For this, let J be the ideal in k((¢))[xi, ..., x,] generated by the
fi € S. Let g be a polynomial with g & J but g" € J for some r > 1. Then if
(ai, ..., ay) € k[[t]]" satisfies fi(ai, ..., a,) = Omod¢" forall i, we conclude
the same for g”, and hence we get g(ay, ..., a,) = 0 mod ¢¥ for all integers
0 < v < N/r. Applying this to a system of generators 7 = {gy, ..., gu} of
the radical of J, we see that if the theorem holds for the system 7" with some
constant No(7T), it also holds for the system S with a sufficiently high multiple
No(S) of No(T). So we may assume J equals its own radical, and hence

is an intersection of finitely many prime ideals P, ..., P.. Now if g; € P;
are such that g; --- g, € J, we see as above that fi(aj,...,a,) =0 mod tV
for all i implies that there is some j with g;(ai, ..., a,) = 0 mod ¢" for all

0 < v < N/r. Reasoning as above, we therefore conclude that it is enough to
prove the theorem for the P;, i.e. we may assume V is a variety.

Now for each subset I C {1, ..., m} of cardinality n — d consider the closed
subset V; defined in A" by the system S; = {f; € S :i € I},andlet VIJr C Vi be
the union of the d-dimensional k((¢))-irreducible components different from V.
The sets V1+ are defined as the locus of zeroes of some finite system S;“ D Syof
polynomials. Consider also the singular locus W C V of V. Propositions A.3.4
and A.3.7 of the Appendix imply that it is a proper closed subset of V, and
as such has dimension < d. Furthermore, it is defined by a system Sy of
polynomials obtained by adding some equations (namely the (n — d) x (n — d)
minors of the Jacobian of the f;) to S. Finally, let P = (ay, ..., a,) € k[[¢]]"
be a point satisfying fi(a, ..., a,) = 0mod (t") for all f; € S, with some N
to be determined later. If P also happens to satisfy all the other equations in Sy
modulo (+V), and if N > Ny(Sy ), we conclude by the inductive hypothesis that
there is some pointin W C V congruent to P modulo (¢V), and we are finished.
Similarly, if P also satisfies the equations in some S modulo (+"), then by the
inductive hypothesis applied to the proper closed subset V N V,;" we geta point
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in V. N V," congruent to P, provided N > No(S U S). So we may choose N
greater than both Ny(Sw) and the Ny(S U S;r), and assume we are not in the
above cases. Then if P is congruent to a k[[¢]]-valued point of V modulo (+V), it
must be a smooth point not contained in any of the other components of the V;,
so it will be enough to assure that P is congruent to some smooth point in V;.

We may assume I = {1,...,n —d}, and we may enlarge the system S;
by adding the linear polynomials x,_44+1 — @y—g+1, - - . » Xn — a,. For ease of
notation we denote this new system again by S. Let Jg be the Jacobian matrix
of the system S, and let & be its determinant evaluated at P. Observe that
since the j-th partial derivatives of the x; — a; equal O for i # j and 1 for
i = j, the subdeterminant formed by the first n — d columns in the Jacobian
of the system S; at P also equals h. Hence A is nontrivial modulo (1) by
assumption; denote by v the highest power of ¢ dividing %, and take N so
large that N > 2v. Under this assumption a refined form of Hensel’s lemma
(cf. Appendix, Proposition A.5.6) implies that there is a point of V; over k[[#]]
congruent to P modulo (+"~"), and we are done. a

Remarks 6.2.13

1. An examination of the above proof shows that even if we only need the
case m = 1 for the application to Lang’s Theorem, in order to prove this
special case we still have to consider systems of polynomials to make
the induction work. Thus working with several polynomials is often more
advantageous than with a single one; in particular, the C| property can
be more handy than just C;. In fact, assuming the C| analogue of Tsen’s
theorem (Remark 6.2.9 (1)), we get from the above proof that the fields
k((t))nr are actually C}-fields.

2. Greenberg’s theorem is more general than the form proven above, and is
very useful for many applications. It states that given a discrete valuation
ring R for which Hensel’s lemma holds and a system of equations with
coefficients in R, then under a separability assumption one may approx-
imate solutions over the completion R by solutions over R arbitrarily
closely in the topology of R. For example, this more general statement
works for the subring R C k[[t]] formed by power series algebraic over
k(t). In the characteristic O case there is also a constructive method for
finding a good approximation (Kneser [1]).

6.3 Cohomology of Laurent series fields

In the next section we shall apply Tsen’s theorem to study the cohomology of
function fields of curves. It will be convenient to look at a local situation first.
Namely, the completion of a local ring at a smooth closed point P of a curve
C over a field k is isomorphic to the formal power series ring «(P)[[t]] (see
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Appendix, Proposition A.5.3). Assume that the residue field «(P) is separable

over k, and take a separable closure k; of k (P). Then the completions of the local

rings of the curve C X k; at the points lying above P are isomorphic to k[[#]].

This ring is equipped with a natural action by the Galois group G := Gal (k, k).
Consider the valuation homomorphism

v k() = Z

sending a Laurent series over k; to the degree of the least nonzero term. This map
is G-equivariant if Z carries the trivial action, and restricts to a G-equivariant
map on the field k((¢)),, of the previous section. Denoting by U, the multi-
plicative group of invertible power series contained in k((¢)),,,, we get an exact
sequence of G-modules

1> U, = k() -7Z—0 (1)

nr

which is split by the map Z — k((¢)),. sending 1 to ¢. Hence for eachi > 0 we
have a split exact sequence of cohomology groups

0— H'(G,U,) — H(G,k((t))})— H(G,Z) — 0

by Remark 4.3.4 (2). For i = 0 this is just the analogue of exact sequence (1) for
k instead of k;, and fori = 1 itis uninteresting because of Hilbert’s Theorem 90.
Fori > 2, we may use the exact sequence

0-Z—-Q—>Q/Z—0
to obtain isomorphisms H(G,Z) = H'"Y(G, Q/Z), as H'(G,Q) =0 for

i > 0 by Corollary 4.2.7. Hence we may rewrite the above sequence as
0 — H'(G,Uy) — H' (G, k(1)) — H'(G,Q/Z) — 0.
The map r, is called the residue map associated to v.

As regards the kernel of the residue map, we have:

Proposition 6.3.1 The natural map U,, — k sending a power series to its
constant term induces isomorphisms

H'(G, U,,) = H'(G, k)
foralli > 0. Therefore we have split exact sequences

0— H (G, kX)— H' (G, k((t)}) = H™(G,Q/Z) — 0.

nr

For the proof we need a formal lemma.

Lemma 6.3.2 Let G be a finite group, and let (Aq)acz, be an inverse system
of continuous G-modules indexed by the directed set Z.. of positive integers.
Assume that i > 0 is an integer such that H (G, Ay) = 0 for allae € Z.. Then
H (G, 11(131 Ay) =0.
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Proof Choose a projective resolution P* of Z, and represent an element of
H'(G,lim A,) by an element ¢ € Hom(P', A) annihilated by the coboundary

map 8. Now ¢ is a collection of homomorphisms ¢, : P' — A, each of which
are mapped to 0 by 8¢, hence are of the form 8.~ (1, ) by assumption. The maps
Yy : PI71 — A, may not be compatible with the maps in the inverse system,
but for a fixed pair A < 1 the image of ¥, by the map p; ., : Hom(P'~!, A,) —
Hom(Pi~!, A;) differs from v, by an element 7, € ker((Si’l). Hence if for fixed
n we replace ¢, by ¢, + 1, forall A < u, we get by induction on u an element
¥ € Hom(P'~1, ligl Ap) with 871 () = ¢. O

Proof of Proposition 6.3.1 In view of the discussion preceding the proposi-
tion it will be enough to prove the first statement. For this it will be enough to
establish isomorphisms H'(Gal (K'|k), k'[[t]]*) ~ H(Gal(k'|k), k'), by defi-
nition of Galois cohomology. For this, consider for all j > 0 the multiplicative
subgroups

U/ =1+ tk[t]]
of k'[[t]]*. Sending ¢ to 0 yields a natural exact sequence
1> U' = K] = K =1

whose associated long exact sequence shows that the proposition follows if we
show H'(Gal (k'|k), U") = Oforalli > 0.Forthis, consider the exact sequences

1>UM S U K =0

obtained by sending a power series in U’/ to the coefficient of #/.
Here we have H'(Gal(K'|k),k’)=0 for i >0 by Lemma 4.3.11, so
H(Gal (K'|k), U’ /U’*") = 0 for i, j > 0. By induction on j using the exact
sequences

1 - U/ > ulyuitt s utyul - 1

we obtain H (Gal (K'|k), U'/U/)=0foralli >0 and j > 0. As U' is the
inverse limit of the U'/ U/, we conclude using the lemma above. |

Remark 6.3.3 For k of characteristic 0 one can give a simpler proof of the
proposition by remarking that U! is a divisible abelian group, and hence a
Q-vector space. This fact can be proven using Hensel’s lemma (see Appendix,
Proposition A.5.5). In characteristic p > 0, the group U' is only divisible by
integers prime to p.

For i = 2 we get the Brauer group of k as the left term in the exact sequence
of the proposition. In fact, in this case the middle term of the sequence is none
but the Brauer group of k((¢)), if we assume moreover that k is perfect. To
show this, let K be a separable closure of k((¢)),,. There is a natural surjection
Gal (K, |k((t))) — G giving rise to inflation maps.
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Proposition 6.3.4 Assume moreover that k is perfect. Then the inflation maps

Inf: H'(G, k((t))*

nr

) = H'(k((1)), KJ)
are isomorphisms for all i > 0.
The key to the proof of the proposition is the following lemma.

Lemma 6.3.5 Under the above assumptions the groups H'(k((1)),,, K ) are
trivial for i > 0. In particular, the Brauer group of k((t)),, vanishes.

Proof Since k(()),, is a C-field by Lang’s theorem (Theorem 6.2.11), the
lemma is a consequence of Propositions 6.2.3 and 6.1.2 for i > 1, and of
Hilbert’s Theorem 90 fori = 1. |

Remarks 6.3.6
1. In characteristic O there is an easier proof of the lemma, because
Gal(K |k((t))pr) =~ 7 by the same arguments as in Example 4.1.6.

2. For two other proofs for the vanishing of Br k((¢)),,, more traditional than
the one given above, consult Serre [2], Chapter XII, §§1, 2.

Proof of Proposition 6.3.4 By the lemma, the condition for the exactness of the
inflation-restriction sequence (Proposition 3.3.17 completed by Corollary 4.3.5)
is satisfied, so we have for each i > 0 an exact sequence

0 — H'(G. k(1)) —> HI(k((1), K}) ~> H'(k((t)r. K).

nr

Again by the lemma, the last group vanishes for i > 0, and the proposition
follows. O

Thus in the exact sequence of Proposition 6.3.1 we may replace the middle
term by H'(k((1)), K). As already indicated, the most important case is when
i = 2, and we record it separately.

Corollary 6.3.7 (Witt) For a perfect field k there is a split exact sequence

0 — Br (k) — Br(k((1))) - Homeon(G, Q/Z) — 0 2
induced by the residue map r, : Br(k((t))) > Hom(G, Q/Z).
Proof The identification with Brauer groups follows from Theorem 4.4.7,

and the isomorphism H'(G, Q/Z) = Homy (G, Q/Z) follows from Exam-
ple 3.2.3 (1) by passing to the limit. O

Remark 6.3.8 In terms of central simple algebras, the last corollary may be
restated as follows: Every central simple algebra over k((t)) is Brauer equiv-
alent to a tensor product of the form (A ®; k((1))) Qi) (X, t), where A is a
central simple algebra over k, and (x, t) is a cyclic algebra over k((t)) for some



150 Residue maps

character x : G — Q/Z. This statement follows from the corollary above and
the observation that the section of exact sequence (2) coming from the splitting
Z — k((t)),., 1 — t of the valuation map is given by x +— (x, ¢). We leave the
easy verification to the readers.

We now focus on the important special case of a finite base field.

Proposition 6.3.9 (Hasse) Let F be a finite field. Then we have a canonical
isomorphism

Br(F((r))) = Q/Z.

Moreover, for a finite separable extension L|F((t)) we have commutative
diagrams

Br(l) —— Q/Z Br(F(1)) —— Q/Z
cOrl lid and Resl l[L:F((t))]
Br(F((1)) ——> Q/Z Br(l) —— Q/Z

where the right vertical map in the second diagram is multiplication by the
degree [L : F((2))].

The map inducing the isomorphism Br (F((¢))) = Q/Z is classically called
the Hasse invariant map.

Proof The first statement results from Corollary 6.3.7, taking into account
that Br (F) = 0 (Example 6.1.11) and Homeon(Z, Q/Z) = Q/Z. For the second
statement, note first that it is enough to verify the commutativity of the second
diagram, in view of the formula Cor o Res = [L : F((¢))] (Proposition 4.2.10).
Next, observe that we may write L in the form L = F'((u)) with some finite
extension F'|F and parameter u. It will then be enough to treat the case of
the extensions F'((¢))|F((z)) and F'((u))|F’'((¢)) separately. This follows from
the fact that the composition of restriction (resp. corestriction) maps is again a
restriction (resp. corestriction) map, as one sees directly from the definition. For
the extension F'((¢))|F((z)), the commutativity of the second diagram follows
from that of the diagram

H'(F,Q/Z) —— Q/Z

cor| i
H\(F,Q/Z) —— Q/Z

whose commutativity results from the definition of corestriction maps. In the
case of the extension F'((u))|F'((¢)), the corestriction map on Brauer groups
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induces the identity on H'(F', Q/Z), whence the required commutativity is
obvious. m|

We finally describe central simple algebras over F((¢)).

Proposition 6.3.10 Every central simple algebra over F((t)) is isomorphic to
a cyclic algebra, and its period equals its index.

Proof Let A be a central simple algebra of degree n over F((r)). By
Remark 6.3.8 and the triviality of Br (F) it is Brauer equivalent to the cyclic
algebra (x, t), where x € Hom(i, Q/Z) = Q/Z is the character defining the
Hasse invariant of A. The order d of x in Q/Z is the period of A, and the fixed
field F,, of ker(y) is a degree d extension of F such that F, ((z)) splits (x., )
and a fortiori A. Thus by Proposition 4.5.8 the index of A divides d, so it must
be actually equal to d by Proposition 4.5.13 (1), whence the second statement.
The first statement then follows from Proposition 4.7.6, for A is split by F'((z)),
where F' D F is a degree n cyclic extension containing F,, .

O

Remark 6.3.11 The results of this section (with basically the same proofs) are
valid more generally for complete discrete valuation fields with perfect residue
field. See Serre [2], Chapter XII, §3.

6.4 Cohomology of function fields of curves

Let k again be a perfect field and C a smooth projective curve over k with
function field K. We choose an algebraic closure k of k, and denote by G the
Galois group Gal (k|k). We denote the curve C x; k (which is assumed to be
connected) by C; its function field is by definition the composite K k.

We shall investigate the cohomology of G with values in the multiplicative
group (Kk)*. As in Chapter 5, Section 5.4, the key tool for this will the exact
sequence of G-modules

0 — kX — (Kk)* v Div(C) — Pic(C) — 0, 3)

but we shall go further in the associated long exact sequences this time. There
is a similar exact sequence over k:

0— kX —> K* d—iV>DiV(C)—>Pic(C)—>0. @)

This sequence exists in arbitrary dimension, but our assumption that C is a
curve makes it possible to define a degree map

deg : Div(C) > Z
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associating to a divisor ) p mp P the integer > pmplk(P) : k] (not to be con-
fused with the degree map used in Chapter 5, Section 5.4). It is a fundamen-
tal fact (see Appendix, Proposition A.4.6) that the image of the divisor map
div: K* — Div(C) is contained in the kernel Div’(C) of the degree map, so
we have an induced map deg : Pic (C) — Z. We denote its kernel by Pic °C).

One can decompose the group Div(C) into G-orbits as follows. For each
closed point P, the group G permutes the closed points lying over P (Appendix,
Proposition A.6.3 (1) and Example A.6.2). Therefore we get a direct sum
decomposition

Div(C) = P ( P Z) : )
PeCy \Q—P
where Cj denotes the set of closed points of C, and the notation Q + P stands
for the closed points Q of C lying over P.
Hence for each i > 0 the divisor map induces maps
H'(G,(Kky*) - H'(G,Div(C)) = @ H' (G, B Z), (6)
PeCy O—P
as cohomology commutes with direct sums (more generally, with direct limits;
see Lemma 4.3.3 and its proof).
To proceed further, we need a lemma. Fix a preimage Qg of P in C, and
denote by G p the stabilizer of Qg in G; it is an open subgroup of G depending
on Q only up to conjugation.

Lemma 6.4.1 We have an isomorphism of G-modules Mgp )= @ Z.
O—P

Proof By definition of M, gp (Z), we have to construct an isomorphism

Homg,(Z[G), Z) = @ Z.

O—P
For this, choose a system of left coset representatives 1 = oy, ...,0, of G
modulo G p. The map ¢ — ¢(ay), ..., ¢(o,) induces an isomorphism

Homg,(Z[G], Z) = @Z

which does not depend on the choice of the system {o, ..., 0,},as ¢ isa G p-
homomorphism. So it will be enough to identify the right-hand side with the
sum indexed by the set {Q > P} of points of C lying above P. But as G acts
transitively on {Q — P} (see Appendix, Proposition A.6.3 (1) and Example
A.6.2), and Gp is the stabilizer of Qg, the map o; > 0;(Q) is a bijection
between the sets {0}, ..., 0.} and {Q — P}. a
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By Shapiro’s lemma (Remark 4.2.9) and the lemma above, we may rewrite
the maps (6) as

H'(G, (Kby) — P H'(Gr. 2).
PEC()
Furthermore, the exact sequence 0 — Z — Q — Q/Z — 0 induces isomor-
phisms H(Gp,Z) = H'~'(Gp, Q/Z) fori > 2, as in the previous section. So
finally we get for eachi > 2 and P € Cp a map

rp: H(G,(Kk)*) — H™(Gp,Q/Z),

called the residue map associated with P. By construction, for fixed i these
maps are trivial for all but finitely many P. In order to get honest maps, we still
have to prove:

Lemma 6.4.2 The maps rp depend only on P, and not on the closed point Q
lying above P used in the previous lemma.

Proof As G acts transitively on the set {Q — P}, if we work with another
point Q’ instead of Qp, we may find an element T € G with Q' = t(Qy).
The stabilizer of Q' then will be TG p7~!. So an inspection of the previous
construction reveals that is enough to see that the maps H'~'(Gp, Q/Z) —
H~'(tGpt~', Q/Z) induced by the natural map Z[Gp] = Z[tGpt~'] on
cohomology became identity maps after identification of Gp with tGpt~!,
which in turn is an immediate consequence of the construction of group

cohomology. m|

The relation of the above residue maps with those of the previous section is
as follows. As C is a smooth curve, the completion of the local ring of C at P is
isomorphic to a formal power series ring «(P)[[¢]] (see Appendix, Proposition
A.5.3). By our assumption that k is perfect, here k is a separable closure of k' (P),
with Gal (k|k(P)) = G p. The construction of the previous section therefore
yields residue maps r, : H'(Gp, k((1)),) — H'"Y(Gp, Q/Z).

Proposition 6.4.3 The diagram
H'(G,(Kk)*) —— H'"Y(Gp.Q/Z)
| T
H(Gp,(KK)*) —— H'(Gp, k(1))

commutes, where the bottom map is induced by the inclusion Kk < k((t))nr
coming from completing the local ring of a point of C above P.
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Proof By Shapiro’s lemma and Lemma 6.4.1, we have a chain of isomor-
phisms

H'(Gp. (Kk)*) = H'(G, ME (KB)*) = €D H'(G.(KK)™).
O—P

and the restriction map in the diagram is induced by taking a component of the
direct sum corresponding to a point above P, say Q. The component of the divi-
sor map associated with Q is none but the discrete valuation vy, : (K N/
corresponding to the local ring Og , of Q. The Proposition now follows from
the isomorphism G p = Gal (k|k(P)) and the obvious fact that the discrete val-
uation induced by v, on the completion k[[¢]1] of OEQO is none but the usual
valuation v of the power series ring. O

The basic fact concerning residue maps is:

Theorem 6.4.4 (Residue Theorem) With notations as above, consider the
corestriction maps

Corp: H Y (Gp,Q/Z) — H' NG, Q/Z)

for each closed point P. The sequence of morphisms

. _ @rp . % Corp .
H'(G, (Kky) — @ H''(Gp,Q/Z) — H'"'(G,Q/Z)
PeCy

is a complex for all i > 1.

Proof The long exact sequence associated with the exact sequence of
G-modules

0 — (Kk)*/k* — Div(C) — Pic(C) — 0 (7
yields exact sequences
H(G,(Kk)*/k*) — H'(G,Div(C)) - H'(G, Pic (C))

for each i. By construction, the direct sum of the maps rp is obtained by
composing the natural map H' (G, (Kk)*) — H'(G, (Kk)* /k*) with the first
map in the above sequence, and then applying the chain of isomorphisms

H'(G,Div(C)) = @ H(Gp,Z)= @ H™'(Gp,Q/Z).

PECQ PGC[)

On the other hand, the degree map deg : Pic(C) — Z induces a map
H(G, Pic (C)) — H'(G, Z). Therefore the theorem follows if we prove that
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the diagram

H(G,Div(C)) —— H(G, Pic(C))

| |

® H(Gr.Z) =  H(G.2Z)

PeCy
commutes. As the degree map Div(C) — Z factors though Pic (0), it will be
enough to show that the composite

H'(G,Div(C) % @D H(Gr.Z) ™% H'(G, Z)
PeCy

equals the map induced by deg : Div(C) — Z, or else, by decomposing Div(C)
as in (5), that the composite

Cor p

H (G, (&) Z) X H(Gp,Z) % HI(G,Z)
Q—P
equals the map induced by (m, ..., m,) — > m;. But by Lemma 6.4.1 we

may rewrite the above composite map as
H'(G, M, (Z)) - H'(G,Z),
the map being induced by summation according to the definition of corestriction

maps. This finishes the verification of commutativity. |

In special cases we can say more. The most important of these is when C
is the projective line. Then K is a rational function field k(#), and we have the
following stronger statement.

Theorem 6.4.5 (Faddeev) Assume that C is the projective line. Then for each
i > 1 the sequence

0— H (G, k*)— H' (G, (Kk)* )—>€BH’ '(GP,Q/Z) SH G,Q/2)—~0

PEP]

is exact.

Proof For C = P! the degree map deg : Pic(C) — Z is an isomorphism,
hence exact sequence (7) takes the form

0 — (Kk)*/k* — Div(C) - Z — 0.

Moreover, the choice of a rational point of C (say co) defines a G-equivariant
splitting Z — Div(C) of the above exact sequence, so that the sequence

0 — H (G, (Kk)*/k*)— H'(G,Div(C)) facy H(G,Z)—> 0 (8)
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is (split) exact for all i (see Remark 4.3.4 (2)). We have seen in the proof of
Theorem 6.4.4 that here for i > 1 the map deg, can be identified with the map

P H'(Gr.Q/2) > HT'(G,Q/Z)
PeCy
given by the sum of corestrictions. Hence to conclude the proof it will be enough
to establish exact sequences
0 — H'(G,k*) - H'(G,(Kk)*) > H'(G,(Kk)*/k*) >0 (9)
for all i > 1. For this, consider the exact sequence
0— k¥ = (Kk)* = (Kk)*/k* = 0
of G-modules. We claim that in the associated long exact sequence

< >HU(G, BB HI(G, (KK = HI(G,(Kk)*/k*) > HT (G, k) — ...
(10)
the maps o; : H'(G, k*) — H(G, (Kk)*) are injective fori > 1. Indeed, the
completion of the local ring at a k-rational point of P}( (say oo) is isomorphic
to k[[f]] as a G-module, whence a sequence of G-equivariant embeddings

k* — Kk* — k((t))*, where the second map factorizes through k((¢)) . The
composite of the induced maps

H(G,k*) 3 H(G, Kk*) — H' (G, k(1))

is injective by Proposition 6.3.1, hence so is the map «;. By this injectivity prop-
erty the long exact sequence splits up into a collection of short exact sequences
(9), as desired. O

The case i = 2 is of particular importance because of the relation with the
Brauer group.

Corollary 6.4.6 (Faddeev) The sequence

@rp X Corp
0 — Br(k) - Br(K) — @ H'(Gp,Q/Z) — H'(G,Q/Z) — 0
PeP)

is exact.

Proof The corollary follows from the case i = 2 of the theorem, once we
show that H*(G, (Kk)*) = Br(K). This is established in the same way as the
isomorphism H*(G, k((1)),.) = Br(k((z))) in Proposition 6.3.4, except that we
use Tsen’s theorem instead of Lemma 6.3.5. a

Remark 6.4.7 One may also derive Faddeev’s exact sequence using methods
of étale cohomology. See Milne [2], Example 2.22.
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6.5 Application to class field theory

We now investigate the particular case when the base field is finite, and combine
the techniques of the last section with some nontrivial facts from algebraic
geometry in order to derive the main results in the class field theory of function
fields over finite fields, first obtained by Hasse using a different method.

Throughout this section, F will denote a finite field, G = Gal (F|F) its abso-
lute Galois group, and K the function field of a smooth projective curve C over F.
We shall continue to use some notations from the previous section.

Theorem 6.5.1 The complex

Srp % Corp
0 — Br(K) —> @ HY(Gp,Q/Z) —> H'(G,Q/Z) — 0
PEC(]

coming from Theorem 6.4.4 is exact. Furthermore, we have H' (G, (KF)*)=0
fori > 3.

Facts 6.5.2 The proof will use the following facts about curves over finite fields
which we quote from the literature:

For a smooth projective curve C over a finite field F, the group Pic°(C) is a
torsion abelian group and the group H'(F, Pic °(C)) vanishes.

The first claim follows from the fact that Pic °(C) can be identified with the
group J (F) of F-points of an abelian variety J defined over F, the Jacobian of
C (see e.g. Milne [4]). Being a projective variety, J has only a finite number
of points over each finite extension F'|F of the finite field F, and the group
J(F) is the union of the J(F’), so it is a torsion abelian group. The second fact
is a theorem of Lang [2]: for an abelian variety A (in fact, for any connected
algebraic group) over a finite field F the group H'(F, A(F)) vanishes. This
holds in particular for J.

As a first step towards the proof of the theorem, we derive the following
classical lemma.

Lemma 6.5.3 (F. K. Schmidt) Let C be a smooth projective curve over a finite
field F. Then the degree map deg : Div(C) — Z is surjective.

Proof As the degree map factors through Pic (C), it will be enough to consider
the induced map Pic (C) — Z. The sequence

0 — Pic(C) —> Pic (C) X5 7 — 0 (11)
is an exact sequence of G-modules. In the piece

Pic (C)° % 7 - H'(G.Pic’(C))
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of the corresponding long exact sequence the last term vanishes by Lang’s
theorem recalled above, so it remains to identify the group Pic (C)¢ with Pic (C).
For this, consider the long exact sequence

0 — (KF)*/F )% = Div(C)® — Pic(C)° - H'(G,(KF)*/F)

coming from (7) applied with k = F. In the long exact sequence (10) (again
with k = F) the terms vanish fori > 1 since cd(F) = 1, and so do the the terms
H'Y(G,F") and H'(G, (KF)*), by Hilbert’s Theorem 90. Therefore the map
K* = ((KF)*/F )¢ is surjective and the group H'(G, (KF)*/F ) is trivial,
so Pic (C)¢ gets identified with the quotient Div(C)° /K*. Now Lemma 6.4.1
gives Div(C) = MY(Div(C)), from which the equality Div(C)® = Div(C)
follows by the case i = 0 of Shapiro’s lemma. O

Proof of Theorem 6.5.1 As cd(F) = 1, the second statement follows from
Proposition 6.1.2. Granted the Facts 6.5.2 above, the proof of the case
i =2 is very similar to that of Theorem 6.4.5. The point is that the groups
Hi(G, Pic°(0)) are trivial for i > 0; fori = 1 this is just Lang’s theorem, and
for i > 1 it results from the fact that Pic °(C) is torsion, in view of cd(F) < 1.
Now in the piece

H'(G, Pic’(C)) - H'(G,Pic(C)) » H(G,Z) - H'T'(G, Pic’(C))

of the long exact sequence associated with (11) the first and last groups are
trivial for i > 0. Hence in the piece

H'(G,Div(C)) 2 H'(G, Pic (C)) — H(G, (KF)*/F*) —
— H*(G,Div(C)) 25 H(G, Pic (C)) — 0

of the long exact sequence associated with (7) we may replace the groups
H(G,Pic(C)) by H(G,Z) for i =1,2. By Lemma 6.5.3 the degree map
Div(C) — Z has a G-equivariant section, so the map H'(G, Div(C)) —
H'(G, Z) is a split surjection. We conclude that f; is surjective, and obtain
an exact sequence

0 — H*(G,(KF)*/F')— H*(G, Div(C)) P G, 7) > 0.

As HI(G, FX) = 0 for i > 0, the long exact sequence (10) yields an isomor-
phism H(G, (KF)*) = H*G, (KF)*/F "), so we may replace (KF)*/F " by
(KF)* in the left-hand side group. Hence we arrive at the Brauer group of K
as in Corollary 6.4.6. To conclude the proof, one identifies the map B, with the
sum of corestrictions @ H'(Gp, Q/Z) — H'(G, Q/Z), in the same way as in
the proof of the Residue Theorem. |
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One can obtain a more classical formulation of the theorem as follows. Take
the completion of the local ring of C at a closed point P and denote by K p
its fraction field. It is a Laurent series field over the residue field «(P), so
Proposition 6.3.9 yields an isomorphism Br (K p) = Q/Z induced by the Hasse
invariant map, which we denote here by invp. The theorem then implies the
following statement, which can be regarded as the main theorem in the class
field theory of curves over finite fields.

Corollary 6.5.4 (Hasse) With assumptions and notations as above, we have
an exact sequence

Yinvp
0 — Br(K) > EB Br(Kp) — Q/Z — 0.
PECO

Proof This follows from the theorem and the discussion above, noting
the compatibility of Proposition 6.4.3 and the first commutative diagram of
Proposition 6.3.9. O

Remark 6.5.5 Using the above corollary and the function field analogue of the
so-called Grunwald—Wang theorem, one proves, following Hasse, that a central
simple algebra A over K is cyclic and its period equals its index (see Weil [3]).
Note a subtle point here: though we know by Corollary 6.2.10 that A is split by
a cyclic extension of the base field F, in general the degree of such an extension
is larger than the degree n of A. But in order to apply Proposition 4.7.6 one
needs a cyclic splitting field of degree n. Therefore in general the required cyclic
extension does not come from the base field, and our method based on Tsen’s
theorem does not apply.

Remark 6.5.6 According to the celebrated theorem of Albert, Brauer, Hasse
and Noether, there is an exact sequence like the one in Corollary 6.5.4 above also
in the case when K is a number field, i.e. a finite extension of Q. Here the fields
K p run over all completions of K with respect to its (inequivalent) valuations.
As opposed to the geometric case discussed above, these may be of two types.
Either they are discrete valuations coming from some prime ideal in the ring
of integers; in these cases an invariant map for the Brauer group similar to that
in Proposition 6.3.9 can be constructed according to a theorem of Hasse. But
there also exist so-called Archimedean valuations, for which the completion is
isomorphic to R or C. The Brauer groups of these fields are respectively Z/2Z
and 0, and thus may be viewed as subgroups of Q/Z, yielding the ‘archimedean
invariant maps’ in the sequence. The proof of this theorem is different from the
one given above, and uses the main results of class field theory for number fields.
See e.g. Tate [2] or Neukirch—Schmidt—Wingberg [1]. Using this result, Brauer,
Hasse and Noether also proved that over a number field every central simple
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algebra is cyclic, and its period equals its index. See Kersten [1], Pierce [1]
or Roquette [4] for recent accounts of the proof.

These famous theorems were found a few years earlier than the geometric
statements we discussed above, but from today’s viewpoint the latter are easier
to establish thanks to the geometric techniques which are unavailable in the
arithmetic case.

6.6 Application to the rationality problem: the method
In this section we show how an application of Faddeev’s exact sequence yields a
simple answer to a long-standing problem in algebraic geometry. The question
may be stated in purely algebraic terms as follows.

Problem 6.6.1 Letk be a field, and k(t,, . . ., t,) a purely transcendental exten-
sion of k. Letk C K C k(t1,...,t,) be a subfield such that k(ty, ..., t,)|K isa
finite extension. Is it true that K |k is a purely transcendental extension?

Remarks 6.6.2

1. In the language of algebraic geometry, the problem may be rephrased as
follows. A k-variety X of dimension n is called rational (over k) if it is
birational over k to projective n-space P}; it is unirational if there exists
a dominant rational map P} — X over k. So the question is: is every
unirational k-variety rational?

2. Positive results. Whenn = 1, the answer is yes, by a classical theorem due
to Liiroth (see e.g. van der Waerden [1], §73). For this reason, the problem
is sometimes called the Liiroth problem in the literature. In the case n = 2
counterexamples can be given if the ground field k is not assumed to be
algebraically closed (see Exercise 10). However, when k is algebraically
closed of characteristic O, it follows from a famous theorem of Castelnuovo
in the classification of surfaces (see e.g. Beauville [1], Chapter V) that the
answer is positive. Zariski showed that the answer is also positive for k
algebraically closed of characteristic p > 0 if one assumes the extension
K| Ky to be separable.

3. Negative results. Castelnuovo’s theorem dates back to 1894. However,
after some false starts by Fano and Roth, the first counterexamples showing
that the answer may be negative over k = C in dimension 3 have only been
found around 1970, by Clemens—Griffiths [1] and Iskovskih—Manin [1],
independently. Immediately afterwards, Artin and Mumford [1] found
counterexamples which could be explained by the nonvanishing of a certain
birational invariant (i.e. an element of some group associated functorially
to varieties and depending only on the birational isomorphism class of the
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variety) which is trivial for projective space. The group in question was
the torsion part of the cohomology group H3(X, Z).

Still, even the counterexamples cited above did not rule out the possibility
that the answer to the following weaker question might be positive. Observe
that a purely transcendental field extension k(t, . . ., t,,) of kK may be identified
with the field of rational functions on an n-dimensional k-vector space V (by
looking at V as affine n-space A" over k, or by passing to the symmetric algebra
of V). If a finite group G acts k-linearly on V, there is an induced action on the
field k(V). The action is called faithful if the homomorphism G — GL(V) is
injective. In this case the field extension k(V)|k(V)C is Galois with group G.

Problem 6.6.3 Let k be an algebraically closed field of characteristic 0, and
let V be a finite dimensional vector space over k. Assume that a finite group G
acts k-linearly and faithfully on V. Is it true that the field of invariants k(V)°
is a purely transcendental extension of k?

In his 1984 paper [2] Saltman showed that the answer to even this weaker
question is negative in general. His approach, which was inspired by that of
Artin and Mumford, but much more elementary, was developed further in works
of Bogomolov ([1] and [2]). Our account below has been influenced by the notes
of Colliot-Thélene and Sansuc [1].

The starting point for the construction of the counterexample is the considera-
tion of the following invariant. Let K |k be an extension of fields of characteristic
0, and A D k a discrete valuation ring with fraction field K. The completion of
K is isomorphic to a Laurent series field x ((t)), where « is the residue field of
A (see Appendix, Proposition A.5.3). Note that if the transcendence degree of
K |k is at least 2, then the extension « |k is transcendental. Let k be an algebraic
closure of k. As in Section 6.3, we have a residue map

ra: HX(Gal(klc), k(1)) — H'(k, Q/Z)

induced by the valuation associated with A. As Br(k((t)),,) is trivial by
Example 6.1.11, the inflation-restriction sequence shows, as in the proof
of Proposition 6.3.4, that we may identify the Brauer group of «((¢)) with

H?*(Gal (x|«), k((2)),.), so we get a composite map

Br(K) — Br(x((t))) = H'(k, Q/Z)
which we also denote by ry4.

Definition 6.6.4 The intersection () ker(r4) C Br(K) of the groups ker(rs)
for all discrete valuation rings of K |k is called the unramified Brauer group of
K |k and denoted by Bry, (K).
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Though not reflected in the notation, one should bear in mind that Br,; (K)
is an invariant which is relative to k. Of course, an analogous definition can be
made for the higher cohomology groups of k*; the proofs of the basic properties
established below carry over without change.

In the case when K is the function field of a variety X defined over k, we
may view Br,, (K) as an invariant attached to X. As it depends only on K, it is
a birational invariant in the sense explained above. We now have the following
functorial property.

Lemma 6.6.5 Given a field extension L|K, the natural map Br(K) — Br(L)
sends the subgroup Bty (K) into Bry, (L).

Proof Let B be a discrete valuation ring of L|k, with residue field «p. Its
completion is isomorphic to kg((#)). If B contains K as a subfield, then we
must have K C kg in «p((¢)) since the elements of K are units, and thus
K C ker(rp) by Corollary 6.3.7. Otherwise the intersection A := BN K is a
discrete valuation ring of K |k. Denoting by « 4 its residue field, we have a natu-
ralinclusion k4 C k. The associated valuations satisfy an equality vy = e - vp
with some integer e > 1, for if 74 generates the maximal ideal of A, we have
t4 = ut® for some unit u in B. The construction of residue maps then implies
the commutativity of the diagram

Br(kp((1)) —— H'(xp, Q/Z)

RCST TaRes

Br(ka((t4))) —2— H'(ka, Q/Z),

whence ker(r4) C ker(rg), and the lemma follows. a

The following crucial proposition implies that purely transcendental exten-
sions have trivial unramified Brauer group.

Proposition 6.6.6 Let K be as above, and let K(t)|K be a purely transcen-
dental extension. Then the natural map Bry, (K) — Bry, (K(2)) given by the
previous lemma is an isomorphism.

Proof ThemapBr (K) — Br(K(¢))isinjective by Corollary 6.4.6, hence so is
the map Bry,, (K) — Bry, (K (2)) of the previous lemma. Therefore it is enough
to check surjectivity. For this take an o € Bry, (K(¢)). As « is in the kernel
of all residue maps coming from valuations trivial on K, we have o € Br(K),
again by Corollary 6.4.6. It therefore remains to be seen that r4 (o) = O for each
discrete valuation ring A of K |k. But for such an A one may find a discrete valu-
ationring B of K (¢)|k with B N K = A, by continuing the discrete valuation v,
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to a discrete valuation vg on K(¢) via setting vg(t) = 0 (see Appendix, Propo-
sition A.6.11). For the associated discrete valuations one has e = 1, and hence
ker(rg) N K C ker(r,) by the diagram of the previous proof. Since o € ker(rg)
by assumption, the claim follows. O

We get by induction starting from the case n = 1 (Faddeev’s theorem):

Corollary 6.6.7 For a purely transcendental extension k(ty, ..., t,) of k one
has

Brnr k(tls AR tm) ; Br (k)‘
In particular, if k is algebraically closed, then Bry k(tq, ..., t,) = 0.

We now turn to the construction of Bogomolov and Saltman. In the rest of
this section we assume that the base field is algebraically closed of cha-
racteristic 0.

As an appetizer, we prove the following classical result of Fischer [1] which
shows that in the counterexample to Problem 6.6.3 G must be noncommutative.

Theorem 6.6.8 (Fischer) Assume that a finite abelian group A acts k-linear-
ly and faithfully on a finite dimensional k-vector space V. Then the field of
invariants k(V)4 is a purely transcendental extension of k.

Proof As we are in characteristic 0, the A-representation on V is semisimple,
i.e. the k[ A]-module V decomposes as a direct sum of 1-dimensional sub-k[A]-
modules V;, such that on V; the A-action is given by o (v) = x;(o)v for some
character x; : A — k. Let v; be anonzero vector in V; for each i, and let X be
the subgroup of k(V)* generated by the v;. As the v; are linearly independent,
X is a free abelian group. Now let A= Hom(A, k*) be the character group of
A, and consider the homomorphism ¢ : X — A given by v; — x;. By con-
struction, we have o (x) = (¢(x)(0))x forx € X and 0 € A. In particular, with
the notation Y := ker(¢) we get ¥ C k(V)“. On the other hand, the index of
Y in X is at most |:4\| = |A|, so the field index [k(V) : k(Y)] is at most |A].
But [k(V) : k(V)4] = |A], as this extension is Galois with group A. Thus we
conclude k(Y) = k(V)A. Now Y is a free abelian group, being a subgroup of X,
and therefore we have k(Y) = k(y1, ..., y») for a basis yy, ..., y, of Y. This
proves the theorem. |

Remark 6.6.9 An examination of the above proof reveals that the theorem is
valid more generally for an arbitrary finite abelian group A of exponent e and
any ground field F of characteristic prime to e and containing the e-th roots of
unity. In the case of arbitrary F the field F(V)* will be the function field of an
algebraic torus, not necessarily rational over F (see Voskresensky [2], §7.2).
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This being said, Corollary 6.6.7 shows that in order to find a counterexample
to Problem 6.6.3 it suffices to find a faithful representation V of a finite group
G with Bry, (k(V)?) # 0. The key to this will be the following basic theorem
characterizing the unramified Brauer group of invariant fields.

Theorem 6.6.10 (Bogomolov) Let V be a finite dimensional k-vector space,
and let G be a finite group acting k-linearly and faithfully on V. Then

Bry: (k(V)%) = ker (Br(k(V)G) — ]_[ Br(k(V)H)> ,

HeB

where B denotes the set of bicyclic subgroups of G.

Recall that a bicyclic group is just a direct product of two cyclic groups.

Proof By Lemma 6.6.5 the image of Br,, (k(V)%) by each restriction map
Br (k(V)%) — Br(k(V)H) lies in Bry, (k(V)*). But since bicyclic groups are
abelian, we have Bry, (k(V)*) = 0 by Fischer’s theorem (Theorem 6.6.8) and
Corollary 6.6.7. So we conclude that the left-hand side is contained in the
right-hand side.

For the reverse inclusion, take an element o € Br (k(V)¢) with r4(a) # 0 for
some discrete valuation ring A of k(V)Y|k. Let B be one of the finitely many
discrete valuation rings of k(V)|k lying above A, let D C G be the stabilizer of
B under the action of G, and let kg and k 4 be the respective residue fields of B
and A. As the finite extension k(V)|k(V)? is Galois, it is known (cf. Appendix,
Proposition A.6.3 (2)) that the extension kpg|k4 is a finite Galois extension as
well, and there is a natural surjection D — Gal (kg |k4). Denote by I the kernel
of this map. As k4 is algebraically closed of characteristic 0, it is also known
(see Appendix, Corollary A.6.10) that I is a central cyclic subgroup in D.
If the image of « by the restriction map Res; : Br(k(V)%) — Br(k(V)') is
nonzero, then so is its image by the map Br (k(V)®¢) — Br (k(V)¥) for abicyclic
subgroup H containing the cyclic subgroup 7, and we are done. So we may
assume Res; (o) = 0. Now consider the commutative diagram with exact rows

0—— Brk(V)Yk(V)9) —o Brk(v)6) —&5 Brk(v))

0——> H'(Gal (kglka). Q/Z) —2s H'(k, Q/Z) —=> H'(xy.Q/Z)

in which the rows are restriction-inflation sequences (Corollary 4.3.5), and
the map r¢ is the residue map associated with the discrete valuation ring
C := BNk(V)" which has the same residue field xz as B. The diagram
shows that « comes from an element of Br (k(V)!|k(V)?), and r4(a) may
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be identified with a homomorphism ¢, : D/I — Q/Z. Let g € D be an
element whose image g in Gal (kp|ks) = D/I satisfies ¢,(g) #0. As [
is a central cyclic subgroup in D, the subgroup H® C D generated by g
and [ is bicyclic. We now show that the image of « by the restriction map
Resye @ Br(k(V)¢) — Br(k(V)#*) is nontrivial. Indeed, if we denote by B¢
the discrete valuation ring B Nk(V)H*, then the same argument as above
with B¢ in place of A shows that the image of Resy:(«) by the associated
residue map rps is a homomorphism H¢/I — Q/Z. By construction, this
homomorphism is none but the restriction of ¢, to the group H¢ /I, and hence
is nonzero. So Resy: (o) itself is nonzero, as required. ]

Remark 6.6.11 The above proof (together with Fischer’s theorem) shows that
instead of B one could take the set of all abelian subgroups of G.

As a consequence of the preceding theorem, Bogomolov was able to give a
purely group-theoretic characterization of Bry, (k(V)%).

Theorem 6.6.12 Let k(V), G and B be as in the theorem above.
The group Bry, (k(V)©) is canonically isomorphic to the group

HX(G) = ker (HZ(G, Q/z) =5 [] HA(H. Q/Z)) .

HeB

Proof The proof is in three steps.

Step 1 'We first establish an isomorphism

Bry (k(V)¢) = ker (HZ(G, (V) — ]_[ H*(H, k(V)X)> )

HeB

For this, consider the exact sequence
0 — Br(k(V)|k(V)®) — Br(k(V)%) —> Br(k(V)).

As Bry (k(V)) =0 by Corollary 6.6.7, we see using Lemma 6.6.5 that
each element of Bry, (k(V)%) comes from Br (k(V)|k(V)%). Using the fact
that the composite map Br (k(V)|k(V)¢) — Br(k(V)¢) — Br(k(V)#) fac-
tors through Br (k(V)|k(V)H) and noting the isomorphism Br (k(V)|k(V)%) =
H*(G, k(V)*), we may rewrite the formula of the previous theorem as stated
above.

Step 2 We next show that we may replace the coefficient module k(V)* by k£*,
i.e. we have an isomorphism

Bry (k(V)%) = ker (HZ(G, k) — ]’[ H*(H, m) .

HeB
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For this we view k(V) as the function field of affine n-space Aj. As the Picard
group of A} is trivial (cf. Appendix, Proposition A.4.4 (1)), we have an exact
sequence of G-modules

0 > k* — k(V)* — Div(A}) — 0. (12)

Denote by W the affine variety with coordinate ring k[7,, ..., t,]°. By exactly
the same argument as in Lemma 6.4.1, we have a direct sum decomposition

Div(A}) = @ Mg (Z),

Pew!

where W! denotes the set of codimension 1 irreducible subvarieties of W, and
G p is the stabilizer of an irreducible component lying over the codimension 1
subvariety P. Therefore using Shapiro’s lemma we get from sequence (12) an
exact sequence

P H'(Gr.2) — HAG. k) S HAG.k(V)*) > €D H*Gp. D).

Pew! Pew!

Here the groups H'(Gp,Z) = Hom(G p, Z) are trivial because the G p are
finite, so the map 7 is injective.

As for the groups H*(Gp, Z) = H'(G p, Q/Z) = Hom(G p, Q/Z), we obvi-
ously have injections tp : Hom(G p, Q/Z) — & Hom(({g), Q/Z), where the
sum is over all cyclic subgroups (g) of Gp. Now if the restrictions of an
element o € H*(G, k(V)*) to all bicyclic subgroups are trivial, the same
must be true for all restrictions to cyclic subgroups, so all components of
p(a) € Hom(G p, Q/Z) are sent to 0 by the various ¢ p. Therefore p(a) = 0
and « comes from H?(G, k*). The claim follows by noting that the maps
H*(G, k*) — H*(H, k(V)*) factor through H?(H, k).

Step 3 In view of the previous step, to prove the proposition it is enough to
establish isomorphisms

HXG,k*)= H*(G,Q/Z) and H*(H,k*)= H*(H,Q/Z)

for all H. Now as k is algebraically closed of characteristic 0, the group k*
is divisible and its torsion subgroup (i.e. the group of roots of unity in k) is
isomorphic to Q/Z. Therefore the quotient k* /(Q/Z) is a Q-vector space, so
the long exact sequence coming from the exact sequence

0—>Q/Z—>k*—k*/(Q/Z)— 0

of trivial G-modules yields the required isomorphisms in view of Corollary
4.2.7. O
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6.7 Application to the rationality problem: the example

Keeping the assumptions and the notations of the previous section, we show at
last:

Theorem 6.7.1 A finite group G exists for which Hé(G) # 0. Therefore
G yields a counterexample to Problem 6.6.3 over k.

The proof below is based on an idea of Shafarevich [1]. The following lemma
from the theory of group extensions will be a basic tool.

Lemma 6.7.2 Let A, B be two abelian groups. Regard A as a B-module with
trivial action.

1. There is a homomorphism
oa: H*(B, A) —> Hom(A’B, A),
functorial in A, sending the class of an extension

0-A—-E—-B—-0

to the map ¢ : by ANby — (b1, bal, where the b; are arbitrary liftings
of the b; to E, and (b1, ba] denotes their commutator. The kernel of pa
consists of extension classes with E commutative.

2. Interms of cocycles, the map p 4 sends the class of a normalized 2-cocycle
Cb,.b, t0 the alternating map by A by > Cp, b, — Chy.b,-

3. Assume moreover that A and B are finite dimensional F ,-vector spaces
for a prime number p > 2. Then p4 has a canonical splitting.

Here A”B denotes the quotient of B ®z B by the subgroup generated by the
elements b @ b for all b € B. Part (1) of the lemma can be proven using the
universal coefficient sequence for cohomology (Weibel [1], Theorem 3.6.5);
we give here a direct argument.

Proof For (1), note first that since B acts trivially on A, the extension E is
central, and therefore in the above definition ¢g(by, by) = [by, by] does
not depend of the choice of the liftings by, by. Moreover, ¢p satisfies
¢r(b,b) =0 for all b € B; let us check that it is also bilinear. For this,
let s : B — E be a (set-theoretic) section of the projection E — B satis-
fying s(1) = 1. As in Example 3.2.6 this yields the normalized 2-cocycle
oy .py, = 8(b1)s(by) s(by + by)~! of B with values in A. Recall also the for-
mula [g1 g2, g3] = g1[g2, g3]g1_1[g1, g3] which holds in any group. Since A is
central in E, we have

pE(by + by, b3) = [s(b1 + b2), s(b3)] = [c}, ", s(b1)s(b2), 5(b3)]
= [s(b1)s(b2), s(b3)]=s(b1)[s(b), s(b3)]s(by) ™" [s(by), s(b3)]
= ¢p(ba, b3) + ¢r (b1, b3).
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Similarly, ¢p£(b1, by + b3) = (b1, ba) + ¢e(b1, b3), so ¢r is a well-defined
alternating bilinear map. To finish the proof of (1), it remains to check that py4 is
a group homomorphism, because the second statement in (1) is then immediate
from the definition of p4. For this it is enough to establish (2), because the
map Cp,.b, > Cb,.b, — Cb,.b, 15 manifestly a homomorphism from the group of
normalized 2-cocycles of B with values in A to the group Hom(A2B, A). But
for the 2-cocycle c;, p, associated with E above we have

Ge(b1, by) = s(b)s(b2)s(by) " s(b2) ™" = ¢y p,5(b1 + b2)s(br + b)),

which is indeed cp, 5, — cp,p, in the additive notation.

We finally turn to (3). It will be enough to construct a splitting in the case
A =F,. Recall from linear algebra that the space of bilinear forms splits as
the direct sum of the spaces of symmetric and alternating forms via the map
A= (A4 AT, A — AT), where A" is the bilinear form obtained from A by switch-
ing the entries. Thus given an alternating bilinear form ¢ : A>B — F,, there
exists a bilinear form y : B x B — F, such that

¢(b1 A b2) =y (b1, b2) — y (b2, by).

Notice that the map (by, by) — v (b1, by) is a normalized 2-cocycle, as we
have y(0, b) = y(b,0) = O for all b € B, and the cocycle relation holds by the
calculation

v (b2, b3) — y(b1 + by, b3) + y (b1, by + b3) — v (b1, b2)
= —y(b1,b3) + y(b1,b3) = 0.

The difference of two choices of y is a symmetric bilinear form. But if y is
symmetric, then since p > 2, we may write

1
y(b1, b)) = E(V(bl + b2, by + by) — y (b1, b1) — y (b, bz)) = (df)(b1, by),

where f is the 1-cocycle b — (1/2)y (b, b) of B with values in the trivial
B-module F,. Therefore the class [y] of the 2-cocycle (b1, b2) = y(by, b2)
in H*(B, F,) only depends on the alternating form ¢, and we may define the
map & : Hom(A?B, F,) — H*(B, F,) by sending ¢ to [y]. By (2), the map &
satisfies pr, 0 § = idp,. a

The lemma enables us to construct important examples of nilpotent groups.

Example 6.7.3 Let p > 2 be a prime number, and let V be an n-dimensional
F ,-vector space. Applying the canonical splitting constructed in part (3) of
the above lemma for B = V, A = A?V, we get that the identity map of A2V
gives rise to an extension G, of V by A2V . Here A2V is both the centre and the
commutator subgroup of the group G ,, which is in particular nilpotent of class 2.
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It is the universal nilpotent group of class 2 and exponent p on n generators.
Its elements can be written in the form ]_[l. af"' ]_[K]. [a;, a j]ﬁff, whereay, ..., a,
are liftings of a basis of V to G and «;, B;; € F,,.

Proof of Theorem 6.7.1  Let p > 2 be a prime number, and consider the group
G, of the above example for n > 4. Let ay, ..., a, be a system of generators
as above, and look at the element z = [ay, az][a3, a4]. Note that z lies in the
centre A2V of G, and it has the property that the powers 7 = [ay, a»]"[a3, a4]”
cannot be expressed as commutators [b, b,] of elements by, b, € G, whose
images in V are linearly independent over F,. Indeed, in A%V the z” correspond
to bivectors of the form r(v; A vp) + r(v; A v3), which are either trivial or
indecomposable bivectors, i.e. not of the form w; A w, for independent w;.

Now define G as the quotient of G,, by the central cyclic subgroup (z) gen-
erated by z. The conjugation action of G on (z) is trivial, hence it is isomorphic
to Z/pZ as a G-module. The extension

1> {(z)—> G, —> G —1 (13)

therefore defines a class ¢(G,) € H*(G,Z/pZ) by Example 3.2.6. We may
sendittoaclassin H*(G, Q/Z)viathemap, : H*(G,Z/pZ) — H*(G,Q/Z)
induced by the inclusion ¢ : Z/pZ — Q/Z sending 1 to 1/ p. Let us now show
that t,,(c(G,)) lies in H é(G). For this it will be enough to see that the images of
c(G,) by the restriction maps H*(G,Z/pZ) — H*(H,Z/pZ) are trivial for
each bicyclic subgroup H C G. Such a subgroup necessarily meets the centre
Z(G) of G. Indeed, write H = (h;) x (h) with some generators hj, h,. As
the h; commute, we have [A1, h,] = 1 in G and so [by, b;] = z* in G, for
some k € F, and liftings b; of the 4; in G,. By the choice of z made above,
the images of the b; should be linearly dependentin V = G /Z(G), which means
precisely that H N Z(G) # {1}. Now as Z(G) is the image of A2V in G, this
implies that the inverse image H of H in G, is cyclic modulo H N (A?V), and
thus it is a commutative subgroup. Moreover, it is an F ,-vector space, because
G, is of exponent p. But then the extension 1 — (z) - H — H — 1 is an
extension of F,-vector spaces and therefore a split extension. On the other hand,
its class in H>(H, Z/pZ) is precisely the image of ¢(G,) € H*(G, Z/pZ) by
the restriction map to H, and we are done.

It remains to see that i.(c(G,)) is a nontrivial class. For this, observe first
that the extension (13) is nonsplit. Indeed, if it were, then since it is a central
extension, we would get a direct product decomposition G, = (z) x G, which
is impossible (e.g. because then z would not lie in the commutator subgroup of
G,). Next we show that ¢(G,,) is the image of a class ¢ € H*(V, Z/pZ) by the
inflation map Inf : H*(V,Z/pZ) — H*(G,Z/pZ). For this, decompose A2V
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as a direct sum A%V = (z) @ W, and define c as the class of the extension
1->(z)—>G,—-V—>1 (14)

obtained by pushforward from the extension 1 — A%V — G, — V — 1 via
the map A2V — (z) sending W to 0 and z to itself. We leave it to the readers
to check that the pullback of the extension (14) by the surjection G — V is
indeed (13).

Now consider the commutative diagram

0 —— Hom(W,Z/pZ) —— H*(V,Z/pZ) LN H*(G,Z/pZ)

0 —— Hom(W,Q/Z) ——> H*(V,Q/Z) —"— HG.Q/Z)

whose exact rows come from Proposition 3.3.14 (noting the identifications
H' (W, A)Y = Hom(W, A) for G-modules A with trivial action). Here the left
vertical map is an isomorphism, since W is an F,-vector space. Therefore if
we assume (. (c(G,)) =0, a diagram chase shows that we may replace c by a
class ¢’ still mapping to ¢(G,) in H*(G, Z/ pZ), but with ¢,(c’) = 0. Now using
Lemma 6.7.2 (1) we conclude that ¢’ must be the class of a commutative group
extension. Indeed, one has Hom(A?V, Z/pZ) = Hom(A?V, Q/Z) because V
is an F,-vector space, so we must have pz,,z(c’) = 0 in the notation of the
lemma. Here ¢’ cannot be 0, as it maps to a nonzero class in H 2(G,Z /PpZ), and
so it must come from an abelian group E which has elements of order p”. But
then G,, cannot be obtained by pullback from E, for it has no elements of order
p? in its abelian quotients. This contradiction concludes the proof. |

Remarks 6.7.4

1. For n = 4 the group G considered above is one of the first examples of
Saltman [2]. Bogomolov has given a classification of all finite p-groups
G of nilpotence class 2 and G/Z(G) = F‘}‘, with Hé(G) # 0. He has also
made a thorough study of the unramified Brauer group of invariant fields
under actions of reductive algebraic groups, a topic which has interesting
connections with geometric invariant theory. Besides the original papers
(Bogomolov [1], [2]) one may profitably consult the survey of Colliot-
Théléne and Sansuc [1].

2. One may ask whether the vanishing of the unramified Brauer group is a
sufficient condition for the rationality of a variety. This is not the case:
Colliot-Thélene and Ojanguren [1] gave examples of unirational but non-
rational varieties with trivial unramified Brauer group. Moreover, Peyre [1]
found a finite group G acting faithfully on a C-vector space V with
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Br,, (C(V)%) = 0, but C(V)C not purely transcendental over C. In these
examples, nonrationality is explained by the nonvanishing of an unramified
cohomology group of degree 3.

3. A question closely related to the above is the famous Noether problem. The
issue is the same as in Problem 6.6.3, except that the ground field is k = Q.
Emmy Noether’s interest in the problem stemmed from its connection with
the inverse Galois problem. Namely, it is a consequence of Hilbert’s irre-
ducibility theorem (see e.g. Serre [3], §10.1) that a positive answer to the
problem for a given group G would yield an infinite family of Galois exten-
sions of Q with group G obtained via specializations #; — a;. However,
as opposed to the case of an algebraically closed ground field, the answer
here may be negative even for cyclic G. Swan [1] and Voskresensky [1]
found independently the first counterexample with G = Z/47Z; this is the
smallest group of prime order yielding a counterexample. Later, Lenstra [1]
found a counterexample with G = Z/8Z and gave a necessary and
sufficient condition for the answer to be positive in the case of a general
commutative G. Saltman [1] found a new approach to the counterexam-
ple G = Z/8Z by relating it to Wang’s counterexample to the so-called
Grunwald theorem in class field theory. See Swan [2] or Kersten [2] for
nice surveys of the area including an account of Saltman’s work. See also
Garibaldi—Merkurjev—Serre [1] for a discussion from the point of view of
cohomological invariants. Theorem 33.16 of this reference explains Salt-
man’s approach by showing that in his counterexample a certain element
in Bry,; (Q(V)%) does not come from Br (Q), and hence Q(V)¢ cannot be
purely transcendental by Corollary 6.6.7.

6.8 Residue maps with finite coefficients

This section and the next are of a technical nature; their results will be needed
for our study of the cohomological symbol. Our purpose here is to define and
study residue maps of the form

8 H'(K, u®) — H' ™ '(k(v), U=,

where K is a field equipped with a discrete valuation v with residue field «(v),
m is an integer invertible in x (v) and i, j are positive integers. This is a finite
coefficient analogue of the residue map studied earlier, because for j = 1 we
get maps H (K, i) — H' ™' (k(v), Z/mZ), i.e. instead of the multiplicative
group we work with its m-torsion part. We shall only need the case when K and
k(v) have the same characteristic, so we conduct our study under this restrictive
assumption, but the arguments work more generally.

The basis for our labours is the following construction in homological algebra.
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Construction 6.8.1 Let G be a profinite group, and let H be a closed normal
subgroup in G with cd(H) < 1. We construct maps

9 : H(G,A) — H'"'(G/H, H'(H, A))

for all torsion G-modules A and all integers i > 0 as follows. Embed A into the
co-induced module MY(A), and let C be the G-module fitting into the exact
sequence

0> A4—> MSA) > C > 0. (15)

Observe that here H/(H, C) = 0 for all j > 1. Indeed, by Lemma 3.3.15
we have H/(H, M (A)) = 0 for all Jj =1, so that the long exact sequence
in H-cohomology associated with (15) yields isomorphisms H/(H, C) =
H/*1(H, A) for all j > 1, but the latter groups are all trivial by assumption.

This shows that for i > 2 the assumptions of Proposition 3.3.17 (completed
by Corollary 4.3.5) are satisfied, and therefore the inflation maps

Inf: H-Y(G/H,C") - H'"Y(G, C)

are isomorphisms. We draw a similar conclusion for i = 2 from Proposition
3.3.14. On the other hand, fori > 2 we get from the long exact sequence associ-
ated with (15) isomorphisms H'~'(G, C) = H/(G, A), so finally isomorphisms

H(G,A) = HY(G/H, Cc"). (16)
But from the long exact sequence in H-cohomology coming from (15) we also
obtain a map C# — H'(H, A), which is a morphism of G/H-modules by
Lemma 3.3.13. Hence there are induced maps

H"Y(G/H,Cc") - H"Y(G/H, H'(H, A))

for alli > 1. Composing with the isomorphism (16) we thus obtain a construc-
tion of the maps 9; for i > 1. The case i = 1 was treated in Proposition 3.3.14
(in fact, it is just a restriction map). If p is a fixed prime, and we only assume
cd¢(H) <1 for € # p, the same construction works for prime-to-p torsion
G-modules A.

A fundamental property of the maps 9; is the following.

Proposition 6.8.2 The maps 0; fit into a functorial long exact sequence

...~ H(G/H, AN g6, A)iHH(G/H, HY\(H, A)— H™(G/H, A")y— ...
starting from H'(G, A).
Proof The beginning of the long exact sequence in H-cohomology coming

from exact requence (15) above reads

0—> A" > M%A)" > c? - H'(H,A) — 0.
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We may split this up into two short exact sequences
0— A - MO - T =0, a7
0—->T—CH— HY(H, A) — 0. (18)
The long exact sequence in G/ H-cohomology associated with (18) reads
...-» H™Y(G/H,T)-H"G/H,C"y— H(G/H,H'(H, A)>H (G, T)— ...

Using Lemma 3.3.15 we see that H(G/H, M®(A)") =0 for all i > 0,
hence the long exact sequence associated with (17) yields isomorphisms
H(G/H, A")= H'-Y(G/H, T) for all i > 1. Taking isomorphism (16) into
account we may therefore identify the above long exact sequence with that of
the proposition. The fact that the maps H'(G/H, A") — H!(G, A) are indeed
the usual inflation maps follows from an easy compatibility between inflations
and boundary maps in long exact sequences, which readers may check for
themselves. O

Remark 6.8.3 In the literature the maps 9; are usually obtained as edge mor-
phisms of the Hochschild-Serre spectral sequence for group extensions, and
the exact sequence of the above proposition results from the degeneration of
the spectral sequence. It can be shown that the two constructions yield the same
map.

The maps 9d; enjoy the following compatibility property with respect to cup-
products.

Lemma 6.8.4 In the situation above let A, B be continuous G-modules.
Assume that exact sequence (15) remains exact when tensored over Z by B.
Then the diagram

U

H?(G, A) X HY(G, B) — H"4(G,A® B)
19, 4 Inf b 3p1q
H"Y(G/H, H'(H, A)) x H(G/H, H(H, B)) = H"*""Y(G/H, H'(H, A ® B))

commutes. In other words, for a € H?(G, A) and b € H1(G/H, H°(H, B))
we have

9p1q(a UInf(b)) = 0,(a) Ub.

Proof Observe first that we have M%(A) ®z B = M®(A ® B). To establish
this isomorphism, we may assume G finite, by compatibility of tensor products
with direct limits. Then given ¢ : Z[G] — A sending g; € G to a; € A, we
may define foreachb € Bamap ¢, : Z[G] — A ® B bysending g; toa; ® b.
This construction is bilinear, and defines the required isomorphism. Now the
assumption of the lemma implies exactness of the sequence

0—>A®B—> MS(A®B)—> C®B — 0,
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which we may use to construct the map 9,4, on the right as in Construction 6.8.1.
The compatibility of cup-products with boundary maps (Proposition 3.4.8) and
inflations (Proposition 3.4.10 (2)) gives then rise to the commutative diagram

H?(G, A) x HY(G, B) N H"M(G, A ® B)

= 4 Inf =

U

H""Y(G/H,c") x HYG/H,B") — H'"Y(G/H,(C® B

where the two unnamed vertical maps come from the isomorphism (16), itself
defined as the composite of a boundary map and an inflation. The lemma now
follows from the commutative diagram

H" Y(G/H,CH) x HYG/H,B")y - HPY(G/H,(C® B)Y)
J {id J
H"N(G/H, H'(H, A)) x HY(G/H, H(H, B)) > H"*""\(G/H, H'(H, A ® B))

resulting from the functoriality of cup-products. O

We now turn to the promised construction of residue maps.

Construction 6.8.5 Let k be a field, and k((¢)) the Laurent series field over k.
Choose a separable closure K of k((¢)), and write G and H for the Galois groups
Gal (K |k((¢))) and Gal (K |k((?)),,), respectively, where k((¢)),,, is the maximal
unramified extension as in Section 6.2. Note that the £-Sylow subgroups of H are
isomorphic to Z, for £ prime to char(k) by Proposition A.6.9 of the Appendix.
Therefore cdy(H) < 1 for such ¢ by Proposition 6.1.3 and Lemma 6.1.4, so for
m prime to char(k) Construction 6.8.1 applied with A = w27 and the above G
and H yields maps

H (k((1)), &) — H ™ ky H' (k((t))nr, 127))

foralli, j > 0. As H acts trivially on u,,, we see that there is an isomorphism
of G/H-modules

H k(O 11337) = H K(Oar s ) @ iV,
Now Kummer theory gives an isomorphism
H' k(0)ar 1) Z K05,/ k(@)1

which is also G/ H-equivariant according to Lemma 3.3.13. This may be com-
posed with the (equally G/ H -equivariant) valuation map

k(1)) / k(@) — Z/mZ
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sending ¢ to 1. Putting the above together, we get a map
Hi(k((1)), n®7) — H' "' (k, n0~),

as required.

For a general field K equipped with a discrete valuation v whose residue field
k (v) has characteristic equal to that of K, we first pass to the completion which is
isomorphic to the Laurent series field x (v)((¢)) (Appendix, Proposition A.5.3).
Then we may apply the above construction with k = «(v) to obtain a map

0y 1 H'(K, u3’) = H'™'(k(v), 3V =")

as at the beginning of this section. This is the residue map with S _coefficients
associated with v.

By means of the residue map we may define another useful map in Galois
cohomology.

Construction 6.8.6 (Specialization maps) Consider first the Laurent series
field k((t)) as above with its standard valuation v. Denote by (—¢) the image
of —t by the Kummer map k((t))* — H'(k((¢)), it,n). Using the cup-product
we may associate with each a € H (k((t)), u3’) the element 0:*!((—1) U a)
lying in H'(k, ng ). The choice of the minus sign may have an air of mystery
at the moment, but will be justified in the next chapter (Remark 7.1.6 (1) and
Corollary 7.5.3).
In this way we obtain a map

H' (k((1)), u&7) — H'(k, n&).

As above, given a general discretely valued field K of equal characteristic, we
may embed it into its completion « (v)((¢)) to obtain a map

®j)'

m

st H'(K, u&) — H'(k(v), u

This is the i-th specialization map associated with ¢. It depends on the choice
of the parameter 7.

For Laurent series fields k((¢)) the specialization map enjoys the following
crucial property.

Proposition 6.8.7 The composite maps
i iy Inf i i S i j
H'(k, pugy’) — H'(k((1)), ugy’) —> H'(k, u’)

are identity maps for all i, j > 0.

Proof Apply Lemma 6.8.4 with G and H as in Construction 6.8.5, A = w,,
B =uy, p = 1 and g = i. The condition of the lemma is obviously satisfied,
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as on the level of abelian groups we are just tensoring Z/ mZ-modules by Z/m’Z.
For b € H'(k, u3’) and a = (—1) the lemma then yields

si(Inf(a)) = 8} ((—1)) U b.

But 9!((—t)) = 1, because 3! becomes the mod m valuation map via the
Kummer isomorphism and — has valuation 1. Hence cup-product with Bu' ((—=1))
is the identity, and the proposition is proven. |

Corollary 6.8.8 The sequences
0— H'(k, py)) = H'(k(@). ) = H'™ (e, 39 ™") = 0

are split exact for all i, j > 0.

Proof Apply Proposition 6.8.2 with G, H and A as in Construction 6.8.5. By
the previous proposition, the maps s’ split up the resulting long exact sequence
into a collection of short exact sequences as in the corollary. |

6.9 The Faddeev sequence with finite coefficients

We now come to the main result concerning our freshly constructed residue
maps, namely the analogue of Faddeev’s theorem with finite coefficients.

Theorem 6.9.1 Let k be a field, P' the projective line over k and K its function
field. For each i, j > 0 and m invertible in k the sequence

i j i i @9, : . ¥ Cor, X .
0—H' (k, &)= H' (K, u&)—>DH " (k(P), 29~ ")—=H' ™ (k, n971) -0

PeP)
is exact.

Remark 6.9.2 Note that in contrast to Theorem 6.4.5 we did not assume here
that k is perfect. Therefore we have to explain what we mean by the corestric-
tion maps Corp in characteristic p > 0. For a finite separable extension F’|F of
fields, we define the associated corestriction map as before, using Galois theory.
For a purely inseparable extension F”|F of degree p” we define the corestric-
tion map to be multiplication by p”. In the case of a general finite extension
F”|F,we let F'|F be the maximal separable subextension and define the core-
striction to be the composite of the above two maps. This definition works for
Galois cohomology with coefficients in torsion modules having no nontrivial
elements of order p. In the presence of p-torsion much more sophisticated
constructions should be used (or one should work with a different cohomology
theory; compare Remark 6.1.10).
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Proof of Theorem 6.9.1  Assume first that & is a perfect field. In this case
the proof follows a pattern similar to that of Theorem 6.4.5, with some local
differences. First, using the isomorphism Pic (P]%) = Z we consider the exact
sequence of G-modules

0 — (Kk)*/k* — Div(P}) — Z — 0,

which has a G-equivariant splitting coming from a k-rational point of P'. There-

fore after tensoring with /,L,%(j D we still get a split exact sequence

0— ((KIE)X//EX) ® /,Lfs(j_l) — DiV(P}() ® ,ufs(j_l) — ,u%(j_l) — 0.
For each i > 0 this induces short exact sequences
0—> H 'k, (Kb)*/k*) @ V™) —
— H''(k, DiviPH) @ ") = HI 7k, puinV ™) — 0.

Now exactly in the same way as in the proof of Theorem 6.4.4 we identify
the map « to the map X Corp of the theorem. Furthermore, since k* is an
m-divisible group, the tensor product k* ® M%(J ~Y vanishes, so that tensoring

the exact sequence
0— k* = (Kk)* = (Kk)*/k* = 0

(-1
m

by u yields an isomorphism

(KB @ pp ™0 = (KB /K @ 7.

We may therefore make this replacement in the exact sequence above and thus
reduce to identifying the group H'~'(k, (Kk)* ® ue"~") with the cokernel of
the inflation map

Inf: H'(k, u®) — H'(K, u’). (19)

To this end, we use the long exact sequence of Proposition 6.8.2 with
G = Gal (K |K), H = Gal (K|Kk) and A = u%’. Here cd(H) < 1 by Tsen’s
theorem, so the proposition applies and yields a long exact sequence

o Hik, p®) =5 H(K, 1&) — H 7 (k, (KB* @ u8070) — ..

after making the identification H'(Kk, &) = (Kk)* @ uSY ™" as in Con-

struction 6.8.5 above. Now just like in the proof of Theorem 6.4.5, the point is
that the inflation maps (19) are injective for all i > 0. To see this, it is enough
to show injectivity of the composite maps H'(k, u3’) — Hi(k((t)), u&’)
obtained via the embedding K < k((¢)). But these maps are injective, because
the specialization map yields a section for them by virtue of Proposition 6.8.7.
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Finally, the identification of the resulting maps

H'(K, p3) — @ H'we(P), n39™")
PeP)

with a direct sum of residue maps follows by an argument similar to that in
Proposition 6.4.3.

It remains to reduce the case of a general base field k of characteristic p > 0
to the perfect case. To do so, consider the perfect closure kp~ of k (recall that
this is the perfect field obtained by adjoining all p-power roots of elements in
k). Given a separable closure k; of k, the composite k ,~k; is a separable closure
of kp~, as the extension k = |k is purely inseparable. In this way we may identify
the absolute Galois group of k with that of k ,~, and similar considerations apply
to the absolute Galois groups of k(¢) and k,~(t). As 1, C kg for m prime to p,
the action of these groups on the modules ,uf?,j is the same, so we get natural
isomorphisms on the corresponding Galois cohomology groups. Whence the
isomorphic vertical maps in the commutative diagram

Hi, pSy —2  Hi(k, )

=| E

4 R , 4
Hi(kpo, un’) ——> H'(Kky, ).

Next, consider a closed point P of P} \ {oo}. It corresponds to an irreducible
polynomial f € k[¢], which becomes the p”-th power of an irreducible poly-
nomial in k,~[t], where p” is the inseparability degree of the extension « (P)|k.
This shows that there is a unique closed point P’ of P,'(poc lying above P’, with

[k(P) s kp=] = p~"[k(P) : k]. (20)
Therefore we have a commutative diagram with isomorphic vertical maps

HK W) —s @ H Py pdi ) 2,

1
PeP

i ; @0 ) )
Hl(Kkpoo,’u;?J) _—r @ Ht—l(K(P/)’ M%(J,l)) % Corp

1
Pel’kpoC 0

Hi_l(k, M@(_i—l))

H I (oo, p 070,

Here the left square commutes by the construction of residue maps and our
remarks on the Galois groups of K and Kk,~. Commutativity of the right
square follows from our definition of corestriction maps in Remark 6.9.2 and
the formula (20). This completes the identification of the exact sequence over
k with that over k . O
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Observe that for the point at infinity co of P, we have k(00) = k, and the
corestriction map Cors, : H' " 1(k(00), S’y — H='(k, us’) is the identity
map. Hence we get:

Corollary 6.9.3 In the situation of the theorem there is an exact sequence
i ®jy Inf i ®j &) i—1 ®3i—1)
0— H'(k,u2) = H'(K, u$) — @ H™'w(P). p2V") -0
PeP}\{oo}
split by the specialization map sf,l CHU(K, n&7) — Hik, n&y associated

with the local parameter t~' at oo.

Proof The exact sequence results from that of the theorem, and the statement
about the splitting from Proposition 6.8.7 (after embedding K into the Laurent
series field k((r~"))). O

The split exact sequence of the corollary allows us to define maps
Yp o H (P, ™) > (K, )

satisfying 8}; o Y% = id for each closed point P # oo of P!, which we may call
coresidue maps. We then get the following useful description of corestrictions.

Corollary 6.9.4 The corestriction maps
Corp : H 7' (k(P), pn2U™Dy — H 7 (k, u&=)
satisfy the formula
Corp = —d., o ¥k,

where 3. is the residue map associated with the point cc.

Proof Let a be an element of H' 1w (P), u,%,’(j 71)). In the exact sequence
of Theorem 6.9.1, consider the element of & H =k (P), M%U 71)) given by
« in the component indexed by P, —Corp(«) in the component indexed by
oo, and 0 elsewhere. Since Cor, is the identity map, this element maps to 0
in H-(k, Mff(j 71)) by the sum of corestriction maps, hence it is the residue
of some element in H' («(P), ,ufffj ), which is none but lﬂﬁ,(a). This proves the
corollary. |

Remarks 6.9.5

1. The results of this section generalize in a straightforward way to the case
of an arbitrary Z/mZ-module A equipped with a Gal (k, |k)-action instead
of uy’ (still assuming m prime to the characteristic). The role of the
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Gal (kg |k)-modules ug(j Vs then played by the groups Hom(u,,, A)
equipped with the usual Galois action.

2. It is again possible to obtain the results of this section via methods of
étale cohomology, namely using the localization theory and the so-called
purity isomorphisms (see Milne [2]). But it is not obvious to check that
the residue maps in the two theories are the same up to a sign.

Exercises

1. Let G be a profinite group of finite cohomological dimension, and let H be an open
subgroup of G. Prove that c¢d,(G) = cd,(H) for all primes p.

[Hint: Show that the corestriction map Cor : H"(H, A) — H"(G, A) is surjective
for n = ¢d(G) and a torsion G-module A.]

2. Let G be a finite group. Show that cd,(G) = oo if p divides the order of G, and
cd,(G) = 0 otherwise. [Hint: Use the previous exercise.]

3. (Kato, Kuzumaki) Let k be a perfect field such that the absolute Galois group
I' = Gal (ks |k) has no nontrivial elements of finite order, and let X be a Severi-
Brauer variety over k. Prove that for all primes p not dividing char (k) the product
of restriction maps

H'(k.Z/pZ) — [] H'*(P).Z/pZ)
PeXy
is injective, where the sum is over all closed points of X. [Hint: By the assumption
on I', the subgroup topologically generated by an element o € I' is isomorphic to
7., and hence its fixed field has trivial Braver group.]

[Remark: The condition on I' is not very restrictive, for by Chapter 4, Exercise 7
fields of characteristic 0 having no ordered field structure enjoy this property.]

4. (a)  Show that finite fields satisfy the C; property (Remark 6.2.2 (2)).

(b)  Same question for the function field of a curve over an algebraically closed
field.

5. Let L|K be a purely inseparable extension of fields of characteristic p > 0. Prove
that the natural map Br(K) — Br(L) is surjective, and its kernel is a p-primary
torsion group. [Hint: Take a separable closure K of K, exploit the exact sequence
1 - K — (LK) = (LK,)*/K — 1 and use cd,(K) < 1.]

6. Let k be a field and p a prime invertible in k. Let x € H'(k, Z/pZ) be a surjective
character, and K |k the associated cyclic extension. Let A|k be a central simple
algebra. Over the rational function field k(¢) consider the k(¢)-algebra Ay :=
A ®y k() and the cyclic k(t)-algebra (), t). Finally, define B := Ay Q) (X, 1)
and B := B ®, k(1))

(a) Show that indk((,))(ﬁ) divides p indg (A ®; K). [Hint: Use Corollary 4.5.11.]
(b)  Let L|k be a field extension such that L((¢))|k((¢)) splits B. Show that L
contains K. [Hint: Use Corollary 6.3.7.]
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10.

(¢)  Show that indk((,))(g) = pindg(A ®; K) and indy()(B) = indg (A ®; K).
(d) Conclude that A ®; K is a division algebra if and only if B is a division
algebra.

. (suggested by Colliot-Thélene) Let F = k(x, y) be the rational function field in the

two indeterminates x, y, and let a, b be elements of k*. Prove that the biquaternion
algebra (a, x) ®r (b, y) over F is a division algebra if and only if the images of the
elements a and b in the F,-vector space k* /k*? are linearly independent. [Hint:
Use the previous exercise.]

[Remark: Generalizing the technique of this exercise one may construct algebras
of period 2 and index 2¢ over the purely transcendental extension Q(x1, . . ., x,;) for
alld > 1.]

. Let C be a smooth projective conic over a perfect field k with C(k) = ). Show that

there is an exact sequence

0 — Z/2Z — Br (k) —> Br (k(C) —> @DH' ((P), Q/Z) —3 H'(k, Q/).

PeCy

What can you say about the cokernel of the last map?

. Let K be the function field of a smooth projective curve over a perfect field k. Let

(x, b) be a cyclic algebra over K, where b € K and x defines a degree m cyclic
Galois extension of k with group G. We view yx as an element of H'(G, Z/mZ).
(a)  For aclosed point P of C, show that the residue map rp is given by

rp((x, b)) = Resg ,(x) Uvp(b) € H'(Gp, Z/mZ),

where G p is the stabilizer of P in G, and vp(b) is viewed as an element of
H(Gp, 7).
(b)  Assuming moreover that k is finite, deduce a formula of Hasse:

[k(P) : klvp(b)
— E
m

re((x, b)) = Q/Z.

(c)  Still assuming k finite, show that the Residue Theorem for (), b) is equivalent
to the formula deg (div(b)) = 0.

[Remark: This exercise gives some hint about the origin of the name of the Residue
Theorem, because the formula deg (div( f)) = Ofor an algebraic function f is equiv-
alent (in characteristic 0) to the fact that the sum of the residues of the logarithmic
differential form f~'df equals 0.]

Consider the affine surface X of equation x3 — x = y? + z2 over the field R of real

numbers.

(a)  Show that X unirational over R.
[Hint: Find an extension R(z)|R(x) which splits the quaternion algebra
(—1, x> — x) over R(x), and use Proposition 1.3.2.]
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(b)  Show that X is not rational by examining Br,, (k(X)).

[Hint: Consider the class of the quaternion algebra (—1, x).]
11. (‘No-name lemma’ for finite groups) Let G be a finite group, and let V and W be

vector spaces over a field k, of dimensions n and m, respectively.

(a) Provethat k(V @ W) = k(V)%(t,, ..., t,,) for some independent variables
t;. [Hint: Apply Speiser’s lemma to the extension k(V)|k(V)¢ and the vector
space W ®; k(V).]

(b)  Conclude that k(V)C(ty, ..., t,) = k(W)C(uy, ..., u,) for some indepen-
dent variables #; and u ;, and hence Br,, (k(V)¢) = Br,, (k(W)%).

[Remark: This exercise shows that the answer to Problem 6.6.3 depends only on
the group G, and not on the representation V'.]

12. This exercise gives another proof of the Steinberg relation for Galois cohomology
by using Theorem 6.9.1. Let k be a field, m an integer invertible in k, and k(¢) the
rational function field.

(a)  Verify the relation (f)U(1 —1t)=0 in H?(k(1), uffz) by calculating the
residues of both sides and specializing at 0.

(b) Givena € k*, a # 0, 1, deduce by specialization that (@) U (1 —a) = 0 in
H2(k, n2%).
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Milnor K-theory

In this chapter we study the Milnor K-groups introduced in Chapter 4. There
are two basic constructions in the theory: that of tame symbols, which are
analogues of the residue maps in cohomology, and norm maps that gener-
alize the field norm Nk : K* — k> for a finite extension K|k to higher
K -groups. Of these the first is relatively easy to construct, but showing the
well-definedness of the second involves some rather intricate checking. This
foreshadows that the chapter will be quite technical, but nevertheless it contains
a number of interesting results. Among these, we mention Weil’s reciprocity
law for the tame symbol over the function field of a curve, a reciprocity law of
Rosset and Tate, and considerations of Bloch and Tate about the Bloch—Kato
conjecture.

Most of the material in this chapter stems from the three classic papers of
Milnor [1], Bass—Tate [1] and Tate [4]. Kato’s theorem on the well-definedness
of the norm map appears in the second part of his treatise on the class field
theory of higher dimensional local fields (Kato [1]), with a sketch of the
proof.

7.1 The tame symbol

Recall that we have defined the Milnor K-groups K ¥ (k) attached to a field & as
the quotient of the n-th tensor power (k*)®" of the multiplicative group of k by
the subgroup generated by those elements a; ® - - - ® a, forwhicha; +a; =1
for some 1 <i < j <n. Thus K}(k) =Z and K (k) = k*. Elements of
K,ﬁ” (k) are called symbols; we write {ay, ..., a,} for the image of a; ® - - - ® a,
in K ,f” (k). The relation a; + a; = 1 will be often referred to as the Steinberg
relation.

Milnor K-groups are functorial with respect to field extensions: given an
inclusion ¢ : k C K, there is a natural map ig : KM (k) - KM(K) induced
by ¢. Given o € K,i”(K), we shall often abbreviate i g (o) by .

There is also a natural product structure

K (k) x K, (k) — K, (), (@, B) = {a, B} )]

n+m

coming from the tensor product pairing (k*)®" x (k*)®" — (k*)®"*™ which
obviously preserves the Steinberg relation. This product operation equips the
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direct sum

KMy =Kk

n>0

with the structure of a graded ring indexed by the nonnegative integers. The
ring K (k) is commutative in the graded sense:

Proposition 7.1.1 The product operation (1) is graded-commutative, i.e. it
satisfies

{o, B} = (=D)""{B, o}
fora € KM(k), B € KM (k).
For the proof we first establish an easy lemma:

Lemma 7.1.2 The group K3 (k) satisfies the relations

{x,—x}=0 and {x,x}={x,—1}.

Proof  For the first relation, we compute in K3 (k)
fx, =x}+{x, -1 —x)x " ={x,1 —x} =0,
and so
(x,—x}=—{x, -1 —xx HY=—{x,1—x=x""1-x"1}=0.

The second one follows by bilinearity. O
Proof of Proposition 7.1.1 ~ By the previous lemma, in K}/ (k) we have the
equalities

0= {xy, —xy} = {x, =x} + {x. y} + {y, x} + {y, =y} = {x, y} + {y. x},
which takes care of the case n = m = 1. The proposition follows from this by
a straightforward induction. |

These basic facts are already sufficient for calculating the following example.

Example 7.1.3 For a finite field F the groups K* (F) are trivial for all n > 1.

To see this it is enough to treat the case n = 2. Writing o for a gen-
erator of the cyclic group F*, we see from bilinearity of symbols that it
suffices to show {w, w} = 0. By Lemma 7.1.2 this element equals {w, —1}
and hence it has order at most 2. We show that it is also annihilated by
an odd integer, which will prove the claim. If F has order 2" for some m,
we have 0 = {1, 0} = {0*" ™', w} = 2" — 1){w, w}, and we are done. If F
has odd order, then the same counting argument as in Example 1.3.6 shows
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that we may find elements a, b € F* that are not squares in F which sat-
isfya+b =1.Butthena = ¥, b = &' for some odd integers k, [ and hence
0 = {a, b} = kl{w, w}, so we are done again.

As we have seen in Chapter 6, a fundamental tool for studying the Galois
cohomology of discrete valuation fields is furnished by the residue maps. We
now construct their analogue for Milnor K-theory; the construction will at the
same time yield specialization maps for K-groups.

Let K be a field equipped with a discrete valuation v : K* — Z. Denote by
A the associated discrete valuation ring and by « its residue field. Once a local
parameter 7 (i.e. an element with v(;r) = 1) is fixed, each element x € K*
can be uniquely written as a product uw’ for some unit u of A and integer i.
From this it follows by bilinearity and graded-commutativity of symbols that
the groups K (K) are generated by symbols of the form {r, u, ..., u,} and
{uy, ..., u,}, where the u; are units in A.

Proposition 7.1.4 For each n > 1 there exists a unique homomorphism
M KM(K) — KM (k)
satisfying
MU, uay .. uy)) = i, ..., Uy} 2)

for all local parameters w and all (n — 1)-tuples (u,, ..., u,) of units of A,
where u; denotes the image of u; in k.
Moreover, once a local parameter 7 is fixed, there is a unique homomorphism

sM o KM(K) — KM(k)
with the property
sf({n“ul,...,ni”un})z{ﬁl,...,ﬁ,,} 3)
for all n-tuples of integers (i1, . .., i,) and units (uy, ..., u,) of A.

The map ¥ is called the tame symbol or the residue map for Milnor K-
theory; the maps s are called specialization maps. We stress the fact that the
sM depend on the choice of 7r, whereas 3" does not, as seen from its definition.
Proof Unicity for s¥ is obvious, and that of 3" follows from the above
remark on generators of K ,{” (K), in view of the fact that a symbol of the form
{uy, ..., u,}canbe written as a difference {wu, us, ..., u,} — {mw, us, ..., u,}
with local parameters m and wu, and hence it must be annihilated by oM.

We prove existence simultaneously for 3 and the s via a construction due
to Serre. Consider the free graded-commutative K f («)-algebra K f” (x)[x] on
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one generator x of degree 1. By definition, its elements can be identified with
polynomials with coefficients in K™ (), but the multiplication is determined
by ax = —xa for & € K{(x). Now take the quotient K (k)[£] of KM (x)[x]
by the ideal (x> — {—1}x), where {—1} is regarded as a symbol in K™ («). The
image £ of x in the quotient satisfies £2 = {—1}£. The ring KM (x)[£] has a
natural grading in which & has degree 1: one has

KM 0)lE] = @ La,
n>0

where L, = KX () ® EKM (k) forn > 0and Lo = K} (k) = Z.
Now fix a local parameter = and consider the group homomorphism

di :K* > L=« ®&Z

given by wiu > (u, &i). Taking tensor powers and using the product structure
in KM(k)[£], we get maps

2" (K*)®" — L, = KM () ® K, ).

Denoting by 7 : L, - K)(«x) and 7, : L, — KM (k) the natural projec-
tions, put

M .__ ®n M .__ ®n
0" :==myod;" and s; :=mod;".

One sees immediately that these maps satisfy the properties (2) and (3). There-
fore the construction will be complete if we show that d2" factors through
KM (K), for then so do 8™ and s¥.

Concerning our claim about d®”, it is enough to establish the Steinberg
relation d; (x)d,(1 — x) = 0 in L,. To do so, note first that the multiplication
map L; x L; — L, is given by

(x, Dy, £)) = (fx, ¥}, (=17 y')), “

where apart from the definition of the L; we have used the fact that the multi-
plication map K}/ (k) x K (k) — K (x) is given by (i, x) —> x'.

Now take x = w'u.Ifi > 0, theelement 1 — x is aunit, hence d; (1 — x) =0
and the Steinberg relation holds trivially. Ifi < 0,then 1 — x = (—u + 7~ )n!
and d, (1 — x) = (—u, &i). It follows from (4) that

dr (X)dr (1 — x) = (@, £i)(—T, &) = (@, —a}, E{(= 1) T (=m)'}),

which is 0 in L,. It remains to treat the case i = 0. If v(1 — x) # 0, then
replacing x by 1 — x we arrive at one of the above cases. If v(1 — x) =0, i.e.
x and 1 — x are both units, then d, (x)d,(1 —x) = ({u, 1 —u},0-&) =0, and
the proof is complete. O
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Example 7.1.5 The tame symbol 9" : KM(K) — K} (x) is none but the val-
uation map v : K* — Z. The tame symbol 0¥ : KM(K) — KM (k) is given
by the formula

0¥ ({a, b)) = (=" grbIp—@,

where the line denotes the image in « as usual. One checks this using the
definition of 3™ and the second statement of Lemma 7.1.2.

This is the classical formula for the tame symbol in number theorys; it has its
origin in the theory of the Hilbert symbol.

Remarks 7.1.6

1. The reader may have rightly suspected that tame symbols and specializa-
tion maps are not unrelated. In fact, for {a;,...,a,} € K,’Z"’ (K) one has
the formula

sﬁ"({al,...,an}) = 8M({—7T, ai, ..., a,})

for all local parameters 7.
Indeed, if a; = 7w'u; for some unit u; and integer i, one has

{_n5a15 ""al’l} = i{_JT’jT’az"-'5an}+{_n7ulaa27 -"7al‘l}a

where the first term on the right is trivial by the first statement in Lemma
7.1.2. Continuing this process, we may eventually assume that all the g;
are units, in which case the formula follows from the definitions.

2. The behaviour of tame symbols under field extensions can be described
as follows. Let L|K be a field extension, and v; a discrete valuation of L
extending v with residue field «; and ramification index e. Denoting the
associated tame symbol by 3, one has for all @ € KM (K)

aM(a) =ed™(@).

To see this, write a local parameter 7 for v as w = 7] u;, for some local
parameter 77, and unit u;, for vy. Then for all (n — 1)-tuples (u», ..., u,)
of units for v one gets

o, up} = e{mmp,ug, oo} +{up, un, o und,
where the second term is annihilated by 8}. The formula follows.

We close this section with the determination of the kernel and the cokernel
of the tame symbol.
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Proposition 7.1.7 We have exact sequences

M
0—U, - K,f”(K)a—> K,’l"fl(/()—>0

and
(s ,0M)
0— U'—- KMK) — KM ® KM (k) - 0,
where U, is the subgroup of KM (K) generated by those symbols {u,, ..., u,}
where all the u; are units in A, and U! C KM(K) is the subgroup generated
by symbols {xy, ..., x,} with x; a unit in A satisfying x| = 1.

The proof uses the following lemma, whose elegant proof is taken from
Dennis—Stein [1].

Lemma 7.1.8 With notations as in the proposition, the subgroup U} is con-
tained in U,,.

Proof By writing elements of K* as x = uxr’ with some unit « and prime
element 7 one easily reduces the general case to the case n = 2 using bilinearity
and the relation {rr, —} = 0. Then it suffices to show that symbols of the form
{1 4+ am, w} with some a € A are contained in U,.

Case I aisaunitin A. Then
{1 +an, 7} = {1 +an, —an} + {1 +am, —a""} = {1 +an, —a""}
by the Steinberg relation, and the last symbol lies in U,.

Case 2 a lies in the maximal ideal of A. Then

14+a

1
{1+an,n}={1+l— ta

n,n}+{1—n,n}=[1+l

T, } .
-7

Since here the element (1 + a)(1 — 7r)~! is a unitin A, we conclude by the first
case. O

Proof of Proposition 7.1.7 1t follows from the definitions that " and s
are surjective, and that the two sequences are complexes. By the lemma, for
the exactness of the first sequence it is enough to check that each element in
ker(dM) is a sum of elements from U, and U!. Consider the map

v KM () — KM(K)/U)

defined by {uy,...,up—1}+— {m,uy,..., u,—1} mod U,}, where the u; are
arbitrary liftings of the u;. This is a well-defined map, because replacing some
u; by another lifting «} modifies {7, uy, ..., u,— } by anelement in U,} . Now for

o € U, we have (¢ o 3)(«) = 0, and for an element in ker(3¥) of the form
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B = {m, us, ..., u,} with the u; units we have 0 = (¢ 0 3”)(8) = f mod U,
i.e. B € U}. Since the B of this form generate ker(9) together with U,, we
are done.

We now turn to the second sequence. Define a map KM (x) — U,/U) by
sending {uy, ..., u,} to {uy, ..., u,} mod Un', again with some liftings u; of
the u;. We see as above that this map is well defined, and moreover it is an
inverse to the map induced by the restriction of s,’y to U, (which is of course
trivial on U}}). O

Remark 7.1.9 It follows from the first sequence above (and was implicitly
used in the second part of the proof) that the restriction of s¥ to ker(9™) is
independent of the choice of 7.

Corollary 7.1.10 Assume moreover that K is complete with respect to v, and
let m > 0 be an integer invertible in k. Then the pair (s;, ") induces an
isomorphism

KM (K)/mKMK) — KM () /mKY ()@ KM [ ()/mK M| ().

Proof By virtue of the second exact sequence of the proposition it is enough
to see that in this case mU! = U], which in turn needs only to be checked for
n = 1 by multilinearity of symbols. But since m is invertible in «, for each
unit u € U/ Hensel’s lemma (cf. Appendix, Proposition A.5.5) applied to the
polynomial x™ — u shows that u € mU. 0

7.2 Milnor’s exact sequence and the Bass—Tate lemma

We now describe the Milnor K-theory of the rational function field k(¢), and
establish an analogue of Faddeev’s exact sequence due to Milnor.

Recall that the discrete valuations of k(¢) trivial on k correspond to the local
rings of closed points P on the projective line P,i. As before, we denote by
k(P) their residue fields and by vp the associated valuations. At each closed
point P # oo alocal parameter is furnished by a monic irreducible polynomial
mp € k[t];at P = oo one may take mp = t~1. The degree of the field extension
[k (P) : k] is called the degree of the closed point P; it equals the degree of the
polynomial wp.

By the theory of the previous section we obtain tame symbols

oy + Ky (k) — K (e(P))
and specialization maps

sy KY (k) — K (k(P)).
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Note that since each element in k(7)* is a unit for all but finitely many valuations
vp, the image of the product map

M= @) KN k) > ] KM k(P
PeP)\ (o0}

lies in the direct sum.

Theorem 7.2.1 (Milnor) The sequence
0— KMk — KMk > @ KM w(P) — 0
PeP}\{oo}
is exact and split by the specialization map stl‘fll at Q.

Note that for i = 1 we get the sequence
M
1 =k = k(@) 3—>@Z—>0

which is equivalent to the decomposition of a rational function into a product
of irreducible factors.
The proof exploits the filtration on K (k(7))

KMky=LycL,C---CLsC... 3)

where L, is the subgroup of KM (k(t)) generated by those symbols { fi, ..., f,}
where the f; are polynomials in k[¢] of degree < d.
The key statement is the following.

Lemma 7.2.2 For each d > 0 consider the homomorphism

' KM k)~ P KM (k(P))
deg (P)=d

defined as the direct sum of the maps 3% for all closed points P of degree d.
Its restriction to L, induces an isomorphism

_M ~
ad . Ld/Ld—l g @ Krjlw_](K(P))
deg (P)=d

Proof If P isaclosed point of degree d, the maps 9}/ are trivial on the elements
of L;_1, hence the map 52/[ exists. To complete the proof we construct an inverse
for 52/1.

Let P be a closed point of degree d. For each element a € «(P) there exists
a unique polynomial a € k[¢] of degree < d — 1 whose image in «(P) is a.
Define maps

hp : KM (k(P)) = Ly/Ly_
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by the assignment
hp({@. ....a,)) ={7p,az,...,a,} mod Ly_y.

The maps hp obviously satisfy the Steinberg relation, for a; + a; = 1 implies
a; + a; = 1. Soif we show that they are linear in each variable, we get that each
hp is a homomorphism, and then by construction the direct sum & hp yields
an inverse for 52/1.

We check linearity in the case n = 2, the general case being similar. For
> = by, We compare the polynomials a, and byc,. If they are equal, the
claim is obvious. If not, we perform Euclidean division of byc; by mp to get
bycy = a, — wp f with some polynomial f € k[¢] of degree < d — 1 (note that
the rest of the division must be a, by uniqueness). Therefore

b
wpf —1— 2_02’ )
ay ar
and so in K é” (k(t)) we have the equalities
f by } {npf byco } { f b }
— = — ==

bl - 9
a a a a a @

b
{mp, baca} — {mp, ar} = {ﬂP7 20 }=—{
a
where we used the equality (6) in the last step. The last symbol lies in L;_,

and the claim follows. O

Proof of Theorem 7.2.1  Using induction on d, we derive from the previous
lemma exact sequences
0— Ly— Ly — @ K%I(K(P))—>O
deg (P)<d

foreachd > 0. These exact sequences form a natural direct system with respect
to the inclusions coming from the filtration (5). As Ly = K ,i” (k)yand | JLy =
KM (k(t)), we obtain the exact sequence of the theorem by passing to the limit.
The statement about stl‘fll is straightforward. |

Note that Milnor’s exact sequence bears a close resemblance to Faddeev’s
exact sequence in the form of Corollary 6.9.3. As in that chapter, the fact that
the sequence splits allows us to define coresidue maps

M KM (k(P) — KM(k(1))

for all closed points P # 0o, enjoying the properties 9% o ¥» = id, ) and
' oy =0 for P # Q. We thus obtain the following formula useful in
calculations.

Corollary 7.2.3 We have the equality
a=s1(@n+ Y W 0@

PeA)

foralln > 0andall o € K,f”(k(t)).
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For all P # oo we define norm maps Np : KM(k(P)) — KM (k) by the
formula

Np = -3 oyl
forall n > 0. For P = 0o we define Np to be the identity map of KM (k).
With the above notations, Milnor’s exact sequence implies
Corollary 7.2.4 (Weil reciprocity law) Forall @ € K ,ﬁ” (k(t)) we have
> (Npodf)a)=0.

PeP}
Proof For P # oo we have from the defining property of the maps v p
a}f(a Y Wi aﬁ,”)(a)) = 0¥ (@) — 0¥ (@) = 0,
P00
so by Milnor’s exact sequence

a— Y (o)) =p

P#o0

for some  coming from K,i” (k). We have 8% (B) = 0, so the corollary follows
by applying 9 to both sides. o

Weil’s original reciprocity law concerned the case n = 2 and had the form

Z(NK(P)U( 0 M) (@) =0.

PeP)

Note that in this case the tame symbols 3% have an explicit description by
Example 7.1.5. To relate this form to the previous corollary, it suffices to use
the second statement of the following proposition.

Proposition 7.2.5 For n = 0 the map Np : K} (k(P)) — K}'(k) is given by
multiplication with [k (P) : k], and for n = 1 it coincides with the field norm
NK(p)‘k . K(P)X — k.

The proof relies on the following behaviour of the norm map under extensions
of the base field.

Lemma 7.2.6 Let K|k be a field extension, and P a closed point of P,l(. Then
the diagram

KMw(P) —s KMk

Géix(mel limk

@ KMk(Q) —2% kM(k)
O—P



7.2 Milnor’s exact sequence and the Bass—Tate lemma 193

commutes, where the notation Q + P stands for the closed points of Pk lying
above P, and e is the ramification index of the valuation vy extending vp to
K(1).

Proof According to Remark 7.1.6 (2), the diagram

KM ) — s kM)

l‘mznk(z)l l@egimwwm

KM (K1) N D KM(Q)

O—P
commutes. Hence so does the diagram

KM k) <2 kMGepy)

ik(mk(z)l l@iugwm

n+1(K(t)) D K x(Q)

QP

whence the compatibility of the lemma in view of the definition of the norm
maps Np. m]

Proof of Proposition 7.2.5  Apply the above lemma with K an algebraic
closure of k. In this case the points Q have degree 1 over K, so the maps
Ny are identity maps. Moreover, the vertical maps are injective forn =0, 1.
The statement for n = 0 then follows from the formula ) ey = [k (P) : k]
(a particular case of Proposition A.6.7 of the Appendix), and for n = 1 from
the definition of the field norm N, (p)k(a) as the product of the roots in K
(considered with multiplicity) of the minimal polynomial of «. O

Remark 7.2.7 For later use, let us note that the norm maps Np satisfy the
projection formula: for« € KM (k) and B € K («(P)) one has

Np({awpy, BY) = {o, Np(B)}.
This is an immediate consequence of the definitions.

We conclude this section by a very useful technical statement which is not a
consequence of Milnor’s exact sequence itself, but is proven in a similar vein.
Observe that if K|k is a field extension, the graded ring K (K) becomes a
(left) KM (k)-module via the change-of-fields map KM (k) — KM (K) and the
product structure.
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Proposition 7.2.8 (Bass-Tate Lemma) Ler K = k(a) be a field extension
obtained by adjoining a single element a of degree d to k. Then KM (K) is
generated as a left KM (k)-module by elements of the form

{mi(@), ma(a), ..., Tm(a@)},

where the m; are monic irreducible polynomials in k[t] satisfying
deg(m) < deg(my) < --- <deg(my,) <d— 1.

The proof is based on the following property of the subgroups L, introduced
in Lemma 7.2.2.

Lemma 7.2.9 The subgroup L, C KM (k(1)) is generated by symbols of the
shape

{ar, ..., am, g1, Tt -, Tk, @)

where the a; belong to k™ and the 1; are monic irreducible polynomials in k[t]
satisfying deg (7,41) < deg (T42) < -+ < deg (1,) < d.

Proof By factoring polynomials into irreducible terms and using bilinear-
ity and graded-commutativity of symbols, we obtain generators for the group
Ly of the shape (7), except that the w; a priori only satisfy deg (m,,+1) <

- < deg(m,) < d. The point is to show that the inequalities may be cho-
sen to be strict, which we do in the case n = 2 for polynomials 7|, 7, of the
same degree, the general case being similar. We use induction on d starting
from the case d = 0 where we get constants m; = a;, 7, = a;. So assume
d > 0. If deg () = deg (m2) < d, we are done by induction. It remains the
case deg () = deg(m,) = d, where we perform Euclidean division to get
m, = m; + f withsome f of degree < d — 1.So 1 = m; /7, + f/m, and there-
fore {m, />, f/7m2} = 0in Ké”(k(t)). Using Lemma 7.1.2 we may write

{1, m}={m/m2, mo} {2, =1} =—{m /72, f/mo} {1 /72, f}+ (2, —1},

which equals —({ f, 1} + {— f, m>}) by bilinearity and graded-commutativity.
We conclude by decomposing the polynomial f into irreducible factors. O

Proof of Proposition 7.2.8 Let mp be the minimal polynomial of a over k; it
defines a closed point P of degree d on P,l. It follows from Lemma 7.2.2 that
the tame symbol 3 induces a surjection of L, onto K («(P)). Applying the
previous lemma, we conclude that K («(P)) is generated by symbols of the
form

M
ap {ala ey A, 7Tm+la 7Tm+2’ ceey nn}’

where the a; belong to k* and the m; are monic irreducible polynomials
satisfying deg(m)) < deg(m) < --- < deg(mw,) <d. If m, # mp, all the m;
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satisfy v, (;r;) = 0 and the above symbols are zero. For w, = mp, they equal
{ai,....am, Tpi1(a), muia(a), ..., my,—1(a)} up to a sign by the defining prop-
erty of 9¥, and the proposition follows. O

In what follows we shall use the Bass—Tate lemma several times via the
following corollary.

Corollary 7.2.10 Let K |k be a finite field extension. Assume one of the follow-
ing holds:

. K |k is a quadratic extension,
*  Klkisofprime degree p and k has no nontrivial finite extensions of degree
prime to p.

Then KM(K) is generated as a left KM (k)-module by KM(K) = K*. In
other words, the product maps K nM_ 1) ® K* — K M(K) are surjective.

Proof 1In both cases, K is obtained by adjoining a single element a to k,
and the only monic irreducible polynomials in k[¢] of degree strictly smaller
than [K : k] are the linear polynomials x — a. We conclude by applying the
proposition. O

Remark 7.2.11 A typical case when the second condition of the corollary is
satisfied is when k is a maximal prime to p extension of some field ky C k. This
is an algebraic extension k|ky such that all finite subextensions have degree
prime to p and which is maximal with respect to this property. If k is perfect or
has characteristic p, we can construct such an extension k by taking the subfield
of a separable closure k; of kq fixed by a pro-p Sylow subgroup of Gal (ky|ko).
If ko is none of the above, we may take k to be a maximal prime to p extension
of a perfect closure of k.

7.3 The norm map

Let K|k be a finite field extension. In this section we construct norm maps
Nii : KM(K) — KM (k) for all n > 0 satisfying the following properties:

1. The map Nk : K}'(K) — K}!(k) is multiplication by [K : k].
2. The map Ny : KM(K) — K (k) is the field norm Nk : K* — k*.
3. (Projection formula) Given @ € KM (k) and B € K} (K), one has

Nii({ak, B = {a, Ngir(B)}.
4. (Composition) Given a tower of field extensions K'| K |k, one has

NK/|k == NK|k ONK/lK.
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Furthermore, a reasonable norm map should be compatible (for finite sep-
arable extensions) with the corestriction maps on cohomology via the Galois
symbol. This issue will be discussed in the next section.

Remark 7.3.1 For any norm map satisfying the above properties (1)—(3) the
composite maps Nk 0 ig|k : K,ﬁ” (k) —> K,Zl” (k) are given by multiplication
with the degree [K : k] for all n. This is obvious for n = 0, 1, and the case
n > 1 follows from the case n = 1 by an easy induction using the projection
formula.

In the case when K = k(a) is a simple field extension, the minimal polyno-
mial of a defines a closed point P on P} for which K = «(P). The norm map
Np of the previous section satisfies properties (1) and (2) by virtue of Proposi-
tion 7.2.5, as well as property (3) by Remark 7.2.7, so it is a natural candidate
for Nk k. But even in this case one has to check that the definition depends only
on K and not on the choice of P.

Changing the notation slightly, for a simple finite field extension K = k(a)
define Ny : K,i”(k(a)) — K,’l"’(k) by N« := Np, where P is the closed point
of P; considered above. Given an arbitrary finite field extension K |k, write
K =k(ay,...,a,) for some generators ay, ..., a, and consider the chain of
subfields

k C k(ay) C k(ay,ax) C --- C k(ay,...,a,) =K.

Now put

.....

Remark 7.3.1.

Theorem 7.3.2 (Kato) The maps N, . : KM(K)— KM(k) do not
depend on the choice of the generating system (ay, . .., a,).

The theorem allows us to define without ambiguity

Nkji = Nay...a i K)'(K) > K (k)

for all n > 0. We have the following immediate corollary:
Corollary 7.3.3 Forak-automorphismo : K — K onehas Nkx o 0 = Nkk.

Proof Indeed, according to the theorem N, 41k = No(a)),....0(, )k for every
system of generators (ay, ..., a,). O
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The rest of this section will be devoted to the proof of Kato’s theorem. A
major step in the proof is the following reduction statement, essentially due to
Bass and Tate.

Proposition 7.3.4 Assume that Theorem 7.3.2 holds for all fields k that have
no nontrivial finite extension of degree prime to p for some prime number p.
Then the theorem holds for arbitrary k.

For the proof we need some auxiliary statements.

Lemma 7.3.5 Foranalgebraic extension K |k the kernel of the change-of-fields
map ik K,/l"’(k) — K,’l”(l() is a torsion group. It is annihilated by the degree
[K : k] in the case of a finite extension.

Proof Considering K,’l"’ (K) as the direct limit of the groups K ,{” (K;) for all
finite subextensions k C K; C K we see that it suffices to prove the second
statement. Write K = k(ay, ..., a,) for some generators ;. As noted above,
the normmap N, .. 4, | satisfies the formula N, 4k o igx = [K : k], whence
the claim. O

Before stating the next lemma, recall the following well-known facts from
algebra (see e.g. Atiyah—Macdonald [1], Chapter 8). Given a finite field exten-
sion K|k and an arbitrary field extension L|k, the tensor product K ®; L is
a finite dimensional (hence Artinian) L-algebra, and as such decomposes as
a finite direct sum of local L-algebras R; in which the maximal ideal M; is
nilpotent. Let e; be the smallest positive integer with ij = 0. In the case when
K = k(a) is a simple field extension, the e; correspond to the multiplicities of
the irreducible factors in the decomposition of the minimal polynomial f € k[¢]
of a over L. In particular, for K |k separable all the ¢; are equal to 1.

Lemma 7.3.6 In the above situation, write K = k(ay, ..., a,) with suitable
a; € K. Denote by L ; the residue field R;/M; and by p; : L ® K — L; the
natural projections. Then the diagram

Nay....ar ik

KM(K) K (k)

@iL/\Kl liuk

n ZeiNpiay),..par)L
@ K, (L)) TS KM(L)

Jj=1

commutes.

Proof By the discussion above, for r =1 we are in the situation of
Lemma 7.2.6 and thus the statement has been already proven (modulo a
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straightforward identification of the e; with the ramification indices of the cor-
responding valuations on k(¢)). We prove the general case by induction on r.
Write k(a;) @« L = ®R; for some local L-algebras R;, and decompose the
finite dimensional L-algebra K ®g,) R; as K Q@) Rj = ®R;; for some R;;.
Note that K ®; L = ®; jR;;. Write L; (resp. L;;) for the residue fields of
the L-algebras R; (resp. R;;), and similarly e; and e;; for the corresponding
nilpotence indices. In the diagram

Nay,....ar k() Najk
—

KM(K) KM(k(ay)) KM (k)

@iL,‘/\KJ' @l‘Lj\k(ul)l J,i“k

-1
® (eije; INp;i@y)....pijlariL

HE €jNpj@apiL

DKL)~
j

@ K (Lij) K(L)
LJ

both squares commute by the inductive hypothesis. The lemma follows. O

Proof of Proposition 7.3.4  Write K = k(ay, ...,a,) = k(by, ..., by) in two
different ways. Let A C KM(K) be the subgroup generated by elements of the
form Ny, . q k() — Np, . pk(ce) for some o € K,’Z"’(K). Our job is to prove
A = 0. Consider the diagram of the previous lemma with L = k, an algebraic
closure of k. Then L; = L for all j and in the bottom row we have a sum of
identity maps. Considering the similar diagram for Nj___; x we get an equal-
ity igjk © Nay,...a, ik = ikjk © Nby,...n,k» Whence A C ker(ig). We thus conclude
from Lemma 7.3.5 that A is a torsion group. Denoting by A, its p-primary
component it is therefore enough to show that A, = 0 for all prime numbers p.
Fix a prime p, and let L be a maximal prime to p extension of k (cf.
Remark 7.2.11). As all finite subextensions of L|k have degree prime to p, an
application of Lemma 7.3.5 shows that the restriction of iz to A, is injective.
On the other hand, the assumption of the proposition applies to L and hence the
map X e; Ny (a)).....p;(@,)L Of Lemma 7.3.6 does not depend on the g;. Therefore
ik (A,) = 0, which concludes the proof. O

For the rest of this section p will be a fixed prime number, and k will always
denote a field having no nontrivial finite extensions of degree prime to p.

Concerning such fields, the following easy lemma will be helpful.
Lemma 7.3.7 Let K |k be a finite extension.

1. The field K inherits the property of having no nontrivial finite extension
of degree prime to p.

2. If K # k, there exists a subfield k C K| C K such that K|k is a normal
extension of degree p.
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Proof For the first statement let L|K be a finite extension of degree prime to
p.If L|k is separable, take a Galois closure L. By our assumption on k, the fixed
field of a p-Sylow subgroup in Gal (Z|k) must equal k, sothat L = K. If K|k is
purely inseparable, then L|K must be separable, so L|k has a subfield Ly # k
separable over k unless L = K. Finally, if K|k is separable but L|K is not,
we may assume the latter to be purely inseparable. Taking a normal closure L,
the fixed field of Autk(Z) defines a nontrivial prime to p extension of k unless
L=K.

The second statement is straightforward in the case when the extension K |k
is purely inseparable, so by replacing K with the maximal separable subex-
tension of K|k we may assume that K |k is a separable extension. Consider
the Galois closure X of K. The first statement implies that the Galois group
G = Gal (IN( |k) is a p-group. Now let H be a maximal subgroup of G contain-
ing Gal ([? |K). By the theory of finite p-groups (see e.g. Suzuki [1], Corollary
of Theorem 1.6), it is a normal subgroup of index p in G, so we may take K
to be its fixed field. O

We now start the proof of Theorem 7.3.2 with the case of a degree p extension,
still due to Bass and Tate.

Proposition 7.3.8 Assume that [K : k] = p, and write K = k(a) for some
a € K. Thenormmaps N, K,’Z'/’(k(a)) — K,i”(k) do not depend on the choice

of a.

Proof Let P be the closed point of P} defined by the minimal polynomial of
a. According to Corollary 7.2.10, the group K (K) is generated by symbols
of the form {ag, b}, with o € K,/l"i,(k) and b € K*. We compute using the
projection formula for Np (Remark 7.2.7) and Proposition 7.2.5:

Na({ak, b)) = Np({ak, b}) = {a, Np(b)} = {a, Nk (b)}.

Here the right-hand side does not depend on a, as was to be shown. O

Henceforth the notation Nk : KM(L) — KM (K) will be legitimately used
for extensions of degree p (and for those of degree 1).

Next we need the following compatibility statement with the tame symbol
(which does not concern k, so there is no assumption on the fields involved).
For a generalization, see Proposition 7.4.1 in the next section.

Proposition 7.3.9 Let K be a field complete with respect to a discrete valuation
v with residue field k, and K'|K a normal extension of degree p. Denote by «’
the residue field of the unique extension v' of v to K'. Then for all n > 0O the
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diagram
oY
KM(K') —— KM (k)
NK’\KJ/ lNK,\K
g
KM(K) —— KM ()
commutes.

The notes of Sridharan [1] have been helpful to us in writing up the following
proof. We begin with a special case.

Lemma 7.3.10 The compatibility of the proposition holds for symbols of the
forma ={d’,ay,...,a,} € KM(K'), witha' € K'™ and a; € K*.

Proof Using Lemma 7.1.2, multilinearity and graded-commutativity we may
assume that v(aq;) = O fori > 2and 0 < v(a’), v(ay) < 1. Setting f := [« : k]
and denoting by e the ramification index of v'|v we have the formula

f-v’:voNK/‘K (8)
(see Appendix, Proposition A.6.8 (2)). Now there are four cases to consider.

Case 1 v'(a’") = v(ap) = 0. Then v(Ng/ g (a’)) = 0, so using the projection for-
mula we obtain BI]?(NKqK(a)) = 0, and likewise 8%(0{) =0.

Case 2 v'(a’) = 1, v(ay) = 0. In this case Remark 7.3.1 implies that with the
usual notations N,(r|K(8%(a)) = f{ay, ..., a,}. On the other hand, from (8) we
infer that N/ g (@') = us/ for some unit x and local parameter 7 for v. So using
the projection formula and the multilinearity of symbols we get Ng/ g (o) =
fim,as,...,a,} +{u,as,...,a,}. This element has residue f{ay, ..., a,}as
well.

Case 3 v'(a’) =0, v(ay) = 1. Then a, = u'n’¢ for some unit u’ and local
parameter 7’ for v/, so using graded-commutativity and multilinearity of

symbols we obtain 8%(0{) = —el{d’,as, ..., a,}. This element has norm
—e{N,(a'),as,...,a,} by the projection formula. On the other hand,
311?(1\’1('\1((05)) = —{Nkk(a@'), as, ..., a,}. The claim now follows from the

equality Ng/x(a’) = Ny (@), which is easily verified in both the unramified
and the totally ramified case.

Case 4 V(@) =v(a) = 1. Write ' =7/, ay =, m = u'7w’®, Ny g () =
um/ as above. Then using multilinearity and Lemma 7.1.2 we get
8%(0{) = 8%({7/, w,as,...,a,)+eln',—1,as,...,a,))

= {(_1)3’/_{” 637 e C_ll‘l}
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which has norm {(—l)efNK/|K(12’), as, ..., a,}. On the other hand, using the
projection formula we obtain as above

M (Ngnx (@) = 0 ({un’ a3, ..., a,)) =
= (—(m,u, a3, ...,a,} + flm, 1, a3, ..., a,)={(=D)a" ", a,...,a,).

So it is enough to see (—1)efN,</‘K(ﬁ/) = (—1)/@~". Notice that in the above
computations we are free to modify 7 and 7’ by units. In particular, in the
case when ¢ = 1 and f = p we may take # = 7/, so that ¥’ = u = 1 and the
equality is obvious. In the case ¢ = p, f = 1 the element 7’ is a root of an
Eisenstein polynomial x” +a,_jx”~' + ... +ay and we may take 7 = ay.
Then u = (—1)? and &’ = —1, so we are done again. a

Proof of Proposition 7.3.9 Let a be an element of K(K’), and set
8 := ¥ (Ng/k (@) — N (0% (). We prove § = 0 by showing that § is anni-
hilated both by some power of p and by some integer prime to p.

By Corollary 7.2.10, if K?’ denotes a maximal prime to p extension of K,
the image of « in KM (K'K ) is a sum of symbols of the shape as in Lemma
7.3.10 above (for the extension K K?)|K (")), These symbols are all defined at
a finite level, so the lemma enables us to find some extension L|K of degree
prime to p so that

8" = 0 (N link k(@) — Net o, (0% Gk (@) = 0.

Now since K'| K has degree p, we have LK’ = L ®k K’. This implies that the
valuations v'|v and their unique extensions v} |v; have the same ramification
index e, and hence by Remark 7.1.6 (2) the tame symbol 9/, is the e-th multiple
of 3} on symbols coming from K (L), just like the tame symbol 9%’ is the e-th
multiple of ¥ on ig/x (KM (K)). On the other hand, by Lemma 7.3.6 the norm
map Ny is the base change of Ng/ g to K,f”(LK/). It follows from these
remarks that we have iz x (§) = 8L, and hence irk(8)=0.Thus[L : K]§ =0
by Lemma 7.3.5.

To see that § is annihilated by some power of p, we look at the base change
K’ ®k K’. Assume first that K'| K is separable. Then it is Galois by assumption,
so K’ ®g K’ splits as a product of p copies of K’'. Therefore it is obvious that
the required compatibility holds for « after base change to K’. But now there
is a difference between the unramified and the ramified case. In the unramified
case the residue fields in the copies of K’ all equal «, so the compatibilities of
Remark 7.1.6 (2) and Lemma 7.3.6 apply with all ramification indices equal to
1, and we conclude as above that ix/x(§) = 0, hence pé = 0. In the ramified
case the said compatibilities apply with ramification indices equal to p on the
level of residue fields, so we conclude pig/x(8) = 0 and p28 = 0. Finally, in
the case when K'|K is purely inseparable, the tensor product K’ ®g K’ is a
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local ring with residue field «’ and nilpotent maximal ideal of length p. After
base change to K’ we therefore arrive at a diagram where both norm maps are
identity maps, so the required compatibility is a tautology. Remark 7.1.6 (2) and
Lemma 7.3.6 again apply with ramification indices equal to p, so we conclude
as in the previous case that p>8 = 0. O

Corollary 7.3.11 Let L|k be a normal extension of degree p, and let P be a
closed point of the projective line P,l(. Then the diagram
®dp

K (L@) —— @D KM (k(Q)
QP

NL(:)\k(z)l lf Nep)

KMk(t)) —2— KM (k(P))

commutes for all n > 0.

Proof Denote by K p (resp. ZQ) the completions of k(¢) (resp. L(t)) with
respect to the valuations defined by P and Q. In the diagram
®do

KM(Lt) —— @ KM(Ly) —= @ KM, (xk(Q)
O—P O—P

NL(:)\kml l): Nigikp lz Neoyler) ®)

KMk@) —  KMRp)  — KM e(P)
the right square commutes by the above proposition. Commutativity of the left
square follows from Lemma 7.2.6 (or Lemma 7.3.6), noting that L(¢) Q) Kp
is a direct product of fields according to Proposition A.6.4 (1) of the Appendix
(and the remark following it). The corollary follows. O

Now comes the crucial step in the proof of Theorem 7.3.2.

Lemma 7.3.12 Let L|k be a normal extension of degree p, and let k(a)|k be
a simple finite field extension. Assume that L and k(a) are both subfields of
some algebraic extension of k, and denote by L(a) their composite. Then for
all n > 0 the diagram

KM(L(@) — KM(L)

NL(u)\k(a)l Nukl

KM(k(@) — KM (k)

commutes.
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Proof Let P (resp. Qo) be the closed point of P} (resp. P}) defined by
the minimal polynomial of a over k (resp. L). Given « € K,’,u (L(a)), we
have N,jz(a) = 9 (B) for some B € K\ (L(1)) satistying 87} (B) = « and

3¢ (B) = 0 for Q # Q. Corollary 7.3.11 yields

A (N (B) = Z NK(Q>IK(P>(3QM(/3)) = Neoyk(p)(a),
QP

and, by a similar argument, 8% (Nr@yko(B)) = 0for P # P’. Hence by defini-
tion of N, we get

Naie(N @y (@) = =03 (N Lk (B))-

On the other hand, since the only point of P} above oo is 0o, another application
of Corollary 7.3.11 gives

M (Niwkn(B) = N2 (B)).

Hence finally

Nape(Nr@yjk@) (@) = =N k(32 (B)) = Npg(Nar(@)).

At last, we come to:

Proof of Theorem 7.3.2  As noted before, it is enough to treat the case when k
has no nontrivial extension of degree prime to p for a fixed prime p. Let p™ be
the degree of the extension K |k. We use induction on m, the case m = 1 being
Proposition 7.3.8. Write K = k(ay, ..., a,) = k(by, ..., by) in two different
ways. By Lemma 7.3.7 (2) the extension k(a;)|k contains a normal subfield
k(a) of degree p over k. Applying Lemma 7.3.12 with a = a; and L = k(a;)
yields N,k = Nak © Na,jk@,)- So by inserting @; in the system of the g; and
reindexing we may assume that [k(a;) : k] = p, and similarly [k(b;) : k] = p.
Write K for the composite of k(a;) and k(b;) in K, and choose elements c;
with K = Ky(cy, ..., c;). Note that by Lemma 7.3.7 (1) the fields k(a;) and
k(by) have no nontrivial prime to p extensions, so we may apply induction to
conclude that

On the other hand, Lemma 7.3.12 for a = a; and L = k(b;) implies
N,k © Nkolk@) = Nbyjk © Niolio))-

The above equalities imply Ny, . 4.k = Np, ..., bylk» as desired. ]
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7.4 Reciprocity laws
As an application of the existence of norm maps, we now prove two theorems
which both go under the name ‘reciprocity law’, though they are quite different.
The first one will be the general form of the Weil reciprocity law. For its proof we
need a compatibility between the tame symbol and the norm map (generalizing
Proposition 7.3.9) which we explain first.

Proposition 7.4.1 Let K be a field complete with respect to a discrete valuation
v with residue field k. Let K'| K be a finite extension, and denote by k’ the residue
field of the unique extension v’ of v to K'. Then for all n > 0 the diagram

an
KM(K') —— KM (k)

NK’\Kl lNK,\K
3M
KM(K) —— KM (k)

commutes.

Proof We may split up K'|K into a separable and a purely inseparable exten-
sion. The latter can be written as the union of a tower of radical extensions of
degree equal to the characteristic of K. By applying Proposition 7.3.9 to each
of these extensions we reduce to the case when K’|K is a separable extension.

We next fix a prime number p, and let K» denote a maximal prime to p
extension of K. Then K» @ K’ splits up into a product of finite separable
extensions K;|K® with [K; : K] a power of p. Using Lemma 7.3.7 induc-
tively, we may write K;|K”) as the union of a tower of normal extensions of
degree p. A repeated application of Proposition 7.3.9 therefore implies the claim
for K;|KP). Arguing as in the proof of that proposition, we obtain that for each
o € KM(K') the element § = 3% (Ng/x (@) — Ny (9% () is annihilated by
some integer prime to p. As p was arbitrary here, the proof is complete. O

Corollary 7.4.2 Assume moreover that there exist local parameters 7w and 7’
for v and V', respectively, satisfying (—n') = —m, where e is the ramification
index. Then for all n > 0 the diagram

M
Xﬂ 7

KM(K') —— KM(k')

NK/‘Kl leNKr‘,(
SM
KM(K) —— KM(x)

commutes.
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Note that the assumption of the corollary is satisfied in the cases when the
ramification is tame (see Appendix, Proposition A.6.8 (4)) or the extension is
purely inseparable.

Proof By Remark 7.1.6 (1) and the projection formula we have
s7 (Nig (@) = 3 (=70, Ngix (@))) = 0 (Ngx ({71, @)

for all @« € KM(K'). By our assumption on 7 and Proposition 7.4.1, the last
term here equals e NK/‘K(E)%({—JT,, a})) =e N,{r‘,((sé”,(a)), as desired. a

The proposition has the following globalization.
Corollary 7.4.3 Let K be a field equipped with a discrete valuation v with
residue field k (v), and let K'|K be a finite extension. Assume that the integral
closure of the valuation ring A of v in K’ is a finite A-module, and for an

extension w of v to K’ denote by k(w) the corresponding residue field. Then
forall n > 0 the diagram

KM(K ) @Kn I(K(w))

NK/‘KJ, lENK(1I;)\K(Lr)

KMEK) —% KM ()

commutes, where the sum is over the finitely many extensions w of v.

Proof This is proven by exactly the same argument as Corollary 7.3.11: one
has a diagram analogous to diagram (9) considered there, whose right square
commutes by Proposition 7.4.1, and the left square by Proposition 7.3.6. O

We may now extend the Weil reciprocity law to the case of curves.

Proposition 7.4.4 (Weil reciprocity law for a curve) Let C be a smooth pro-
Jjective curve over k. For a closed point P let 8M KM(k(C)) — KM ((k(P))
be the tame symbol coming from the valuation on k(C) defined by P. Then for
alla € K,i”(k(C)) we have

> (N 0 33)(e) = 0.

PeCy
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Proof Take afinite morphism¢ : C — P! defined over k. Itinduces a diagram

M

KMC) —220 @ KM (e(Q) ZE8 kM (k)

QeCy
Nk(C)\k(r)l Jﬁ? o= p Ne@r® lid
@ =N,
KMk(t) —— @ KM, (k(P)) —2% KM (b,
PeP}

where commutativity of the left square follows from Corollary 7.4.3 (applicable
in view of Remark A.6.5 of the Appendix), and that of the right square from
property (4) of the norm map. According to Corollary 7.2.4, the lower row is a
complex, hence so is the upper row by commutativity of the diagram. O

Remark 7.4.5 A special case of Weil’s reciprocity law often occurs in the
following form. For a divisor D = Y _np P € Div(C) and a rational function
f € k(C) such that np = 0 at all poles of f put

FD) = [ [ N F P,
»

where f(P) is defined as the image of f in k(P).

Now suppose f and g are rational functions on C such that div( f) and div(g)
have disjoint support, i.e. no closed point of C has a nonzero coefficient in both
div(f) and div(g). Then by applying the case n = 2 of the Weil reciprocity law
to the symbol { f, g} and using the explicit description of Example 7.1.5 one
obtains the simple formula

f(div(g)) = g(div(f)).

The second reciprocity law we discuss in this section is due to Rosset and Tate,
and only concerns K. Let f, g € k[t] be nonzero relatively prime polynomials.
Define the Rosset-Tate symbol (f|g) € K} (k) by

(f19) =5 ( > Wi oahds. f})> , (10)

{P: g(P)=0}

where s, is a specialization map at 0 and ¥}/ is the coresidue map introduced
before Corollary 7.2.3. For g constant we set (f|g) := 0.
The symbol is additive in both variables, in the sense that (f|g;g2) =

(flg) + (flg2) and (fif2lg) = (f1lg) + (f2g). The following lemma
describes it explicitly.

Lemma 7.4.6 The Rosset—Tate symbol has the following properties.

1. Ifgisconstant or g =t, then (f|g) = 0.
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2. If g is a nonconstant irreducible polynomial different from t and a is a
root of g in some algebraic closure of k, then

(f18) = Nrwi({—a, f(@)}).

Proof In statement (1) we only have to treat the case g = t. In this case the
sum in (10) defining (f|g) has only one term coming from P = 0. Apply-
ing Corollary 7.2.3 with « = {t, f} yields {z, f} = (1#6” o 86”)({t, f1, so that
1 f)=s(t, f(OD =0.

For (2), the only closed point P of A} contributing to the sum is that defined
by the polynomial g. Let a be the image of g in «(P), so that «(P) = k(a).
Since {—a, f(a)} = s,({t — a, f(a)}) (where the specialization takes place in
k(P)(1)), applying Corollary 7.4.2 to the unramified extension « (P)((¢))|k((t))
yields

Nepyr(—a, f(@)}) = si(Nepyoke{t — a, f(a)})).

Therefore the claim is a consequence of the equality

Nepryowao(t —a, f(@}) = @y o dphdg, f.

This equivalently means Ny pyoykoy({t — a, f(a)}) = 1//}‘,4 (f(a)), which in turn
follows from Corollary 7.2.3 applied to o = Nypyoyxiny({t — a, f(a)}), not-
ing that 93 (Nepyoyrny({t — a, f(@})) = Nepyecp)(f(@)) = f(a) according
to Corollary 7.4.3 applied with K = k(¢), K’ = «(P)(t) and v the valuation
defined by P, and moreover s, (N¢pynyke)({t — a, f(a)})) =0 by Coroll-
ary 7.4.2. |

The second statement of the lemma implies:

Corollary 7.4.7 The symbol ( f|g) depends only on the image of f in the quo-
tient ring k[t]/(g).

Remark 7.4.8 The properties (1) and (2) of the lemma together with the addi-
tivity property characterize the symbol. In fact, Rosset and Tate [1] defined
their symbol in such an explicit way, with a slight difference: according to their
definition, the right-hand side of the formula in property (2) is Ny ({a, f(a)}).

To state the main theorem on the Rosset—Tate symbol, introduce the following
notation for polynomials f € k[¢]: if f = a,t" + Ay 1t" "+ -+ a,t™ with
anay, # 0, put £(f) := a, (the leading coefficient) and c(f) := a,, (the last
nonzero coefficient). They depend multiplicatively on f.

Theorem 7.4.9 (Rosset-Tate reciprocity law) Let f, g € k[t] be nonzero rel-
atively prime polynomials. Then

(f18) +{c(f), c(@)} = (1) + {E(f), £(g)}.
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Proof By Corollary 7.2.3 we have
hey=sUf e+ Y, WHodhdfigh+ Y, @ od){f eh,

{P: f(P)=0} {P:g(P)=0}
so that
Y. W oahig DL g =sadfigho+ D (W o dp)({Af gD
{P:g(P)=0} {P: f(P)=0}

By applying the specialization map s, at O, we obtain

(fle)+s:(f. g) =s~1({f. gD+ (glf).

Finally, writing f = c(f)t" f and g = c(g)t'g with f(0) = g(0) = 1 we get
s;({f, g}) = {c(f), c(g)} by definition of s, (Proposition 7.1.4). A similar com-
putation shows s,-1({ f, g}) = {£(f), €(g)}, and the theorem follows. a

As a corollary, we obtain a bound on the length of the symbol ( f|g).

Corollary 7.4.10 Let f and g be relatively prime polynomials. Then the symbol
(flg) € KzM(k) is of length at most deg (g), i.e. it is a sum of at most deg(g)
terms of the form {a;, b;}.

Proof The proof goes by induction on the degree of g. The degree zero case
means (f|g) = 0, which holds by Lemma 7.4.6 (1). The same statement and
additivity of the symbol allows one to assume in the higher degree case that g is
monic. Corollary 7.4.7 allows us to assume deg () < deg (g), after performing
Euclidean division of g by f.Theorem 7.4.9 then shows (f|g) + {c(f), c(g)} =
(g] f)- By the inductive hypothesis the symbol (g| /) has length at most deg ( f),
so that (f|g) has length at most deg (f) + 1 < deg(g). |

Corollary 7.4.11 Let K|k be a finite field extension, and let a, b be elements
of K*. Then the symbol Nk ({a, b}) € Ké”(k) has length at most [k(a) : k].

Proof By the projection formula, we have
Nk i(fa, b}) = Nk (Nk k@ ({a, b})) = Niwyk({a, Ngka)(D)}.

Let g be the minimal polynomial of —a over k. Then Nk x@)(b) = f(—a)
for some polynomial f €k[t] and Nigi({a, Nkwa(®)}) = (flg) by
Lemma 7.4.6 (2), so the previous corollary applies. O

Remark 7.4.12 The Euclidean division process by which we have proven
Corollary 7.4.10 also provides an explicit algorithm for computing the sym-
bol N[(‘k({a, b})

The main motivation for Rosset and Tate to prove their reciprocity law was
the following application to central simple algebras.
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Proposition 7.4.13 Let p be a prime number, and let k be a field of charac-
teristic prime to p containing a primitive p-th root of unity w. Every central
simple k-algebra A of degree p is Brauer equivalent to a tensor product of at
most (p — 1)! cyclic k-algebras of degree p.

Note that the proposition proves a special case of the (surjectivity part of the)
Merkurjev—Suslin theorem, and moreover it yields a bound on the length of a
symbol of order p.

The proof will use the fact that norm maps on K-theory and corestrictions in
Galois cohomology are compatible via the Galois symbol. Let’s admit this for
the moment; a proof will be given in the next section (Proposition 7.5.5).

Proof 1If A is split, the statement is trivial. If A is nonsplit, then it is a division
algebra split by a degree p extension K |k. As k has characteristic prime to p by
assumption, the extension K |k is separable. Denote by K |k a Galois closure.
Note that Gal (IN( |k) is a subgroup of the degree p symmetric group S, so it has
order dividing p!. In particular, each p-Sylow subgroup P C Gal (IN( |K) has
order p, and its fixed field L := K* has degree at most (p — 1)! over k. Choose
an integer m > 1 with [L : k]Jm = 1 mod p. Since A has period p, the algebra
B := A®" gsatisfies [L : k][B] = [A] in Br (k). Moreover, since A ®; L is split
by the extension K |L, so does B ®; L. Hence by Corollary 4.7.7 there exist
a,b e L* with B®; L = (a, b),,. We have

[A] = [L : k][B] = Cor{ ([B ® L])=Cory (h] ,({a. b))=h; ,(NLi({a. b}))
using Propositions 4.7.1 and 7.5.5. By the previous corollary, the symbol
Npi({a, b}) has length at most [L : k] < (p — 1)!, whence the proposition. O

Remark 7.4.14 The case p = 2 gives back Corollary 1.2.1. In this case, the
bound (p — 1)! is trivially optimal. However, for p > 2 it may be improved to
(p — D!/2 in the presence of a p-th root of unity (see Exercise 10). We know
little about the optimality of the latter bound. In fact, the following famous
question is attributed to Albert: Is every degree p division algebra isomorphic
to a cyclic algebra? A positive answer for p = 3 follows from the above bound
(the result is originally due to Wedderburn [3]; see Exercise 9), but the question
is open for p > 3. Albert proposed conjectural counterexamples for p =5,
which were shown to be actually cyclic in the paper Rowen [3], where new
putative counterexamples are put forward. A positive answer to the question in
characteristic 0 would imply the same in positive characteristic (see Chapter 9,
Exercise 4). Positive answers are known in important special cases, such as
arithmetic fields (see Corollary 6.3.10 as well as Remarks 6.5.5 and 6.5.6).
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7.5 Applications to the Galois symbol

In this section we collect some useful elementary remarks about the Galois sym-
bol and the Bloch—Kato conjecture. To begin with, we examine compatibility
properties for the Galois symbol.

Proposition 7.5.1 Let K be a field equipped with a discrete valuation v with
residue field k. Assume char(K) = char(k), and let m be an integer invertible
in K. Then for all n > 0 the diagram

KME) —— KM ()

h"K,ml h:,*m'l

n

)
v -1 -1
H'(K, p&") —— H" (i, u2"=D)

commutes, where 0} is the residue map introduced in Chapter 6, Section 6.8.

Proof Without loss of generality we may assume K is complete with respect
tov. The casen = 1 follows immediately from the construction of the maps con-
cerned. In the general case it suffices, as usual, to consider symbols of the shape
{a,us, ..., u,} € K,f”(K), where the u; are units for v. Corollary 7.1.10 yields
a well-defined section A, : K,’Z"l )/ m — K,f’l (K)/m to any specialization
map modulo m, sending {u», ..., u,} € K,f/ll(/c) to {us, ..., u,} € K,?'il(K),
where the u; are arbitrary liftings u; of the u; to units in K. Moreover, the
diagram

KM o/m  —s KM (K)/m

i | )
anl(K’ M%(nfl)) Inf N anl(K’ M%(nfl))

commutes, as one verifies using the explicit description of the Kummer maps

h}(’m and h,lc,m in terms of cocycles (see e.g. Remark 3.2.4). The proposition

now follows by induction from the case n = 1 via Lemma 6.8.4 (applied with

p =1,q =n — 1, G the absolute Galois group of K, H the inertia group of v,

A =, and B = p&n-D), ]

Remark 7.5.2 The restriction char(K) = char(k) has been imposed here for
the sole reason that in Chapter 6 we have only defined the maps 9 in this
case. But it is possible to define them for an arbitrary discrete valuation and the
proposition holds in general.
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As a corollary, we get the compatibility between specialization maps.

Corollary 7.5.3 Assume moreover that t is a local parameter for v. Then the
diagram of specialization maps

M

KM(K) ——  KM@)

n

Hn K ®n St Hn ®n
(K, ") —> H"(x, 13,")

commutes, where s;' is the specialization map introduced in Chapter 6,
Section 6.8.

Proof This follows from the proposition in view of Remark 7.1.6 (1) and the
construction of s} in Construction 6.8.6. O

Another immediate corollary is the compatibility between Milnor’s and Fad-
deev’s exact sequences.

Corollary 7.5.4 The diagram with exact rows

0> KMk) — KMk@t) —s @® K", k(P) —0
PEP(I-,\{OO}

-1
h?ml hZ(r).ml J/GB hZ(P)Jn

a"
0— H (k. uS") — H' k(D). 18") — @ H" (P, p3" ) = 0
PeP}\{oo}

commutes, where the upper row is the sequence of Theorem 7.2.1, and the
lower row that of Corollary 6.9.3.

Finally, we give the already announced compatibility between norm maps in
K-theory and corestrictions in cohomology.

Proposition 7.5.5 Let K|k be a finite separable extension, and m an integer
invertible in k. Then for all n > 0 the diagram

KM(K) — KM

Cor
H"(K, p2") —— H"(k, n2")

commutes.
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Proof By property (4) of the norm map and the similar property of corestric-
tions (which follows easily from their construction), we reduce to the case when
K = k(a) is a simple field extension. In this case Nxjx = —8% o Yp, where P
is the closed point P; defined by the minimal polynomial of a. By Corollary
6.9.4, a similar formula holds for the corestriction map. The two are compatible
via the Galois symbol by virtue of Corollary 7.5.4. O

We now turn to applications to the Bloch—Kato conjecture. The first one is
an immediate consequence of Corollary 7.5.4.

Proposition 7.5.6 (Bloch) Let m, n > 0 be integers, with m invertible in k.

1. The Galois symbol

®n
m )

Hym = K k() m — H"(k().
is injective (resp. surjective or bijective) if and only if the Galois symbols

R KM (K)/m — H'(k, n2") and hy,,: KM (L)/m — H" (L, u2"")

have the same property for all finite simple extensions L|k.
2. Assume that h,i_nl, : Kﬁl(L)/mK,’lVil(L) — H" (L, ;Lff?’("’l)) is bijective
for all finite simple extensions L|k. Then

ker(hy ,,) = ker(hy, ) and coker(hy ) = coker (hj, ,)-

This gives a means for proving bijectivity of the Galois symbol for k(t) if the
bijectivity is already known for fields of smaller transcendence degree.

Here is another (unpublished) criterion of Bloch for the surjectivity of the
Galois symbol.

Proposition 7.5.7 (Bloch) Let m,n > 0 be integers, with m invertible in k.
Assume that

*  the Galois symbol h’z_,,ll : KKI(L)/mK,{‘{I(L) — H" (L, ,uff;(”’l)) is an
isomorphism for all finitely generated extensions L|k;
*  the Galois symbol hil ,, : K (k)/mKM (k) — H"(k, n2") is surjective.

Then the following statements are equivalent :

1. The Galois symbol h'y ,, is surjective for all fields K containing k.

2. Forallfield extensions K |k equipped with a discrete valuation v the restric-
tionmap H"(K, p2") — H”(I?U, u®my is surjective, where I?v stands for
the completion of K with respect to v.

In particular, the two statements are equivalent in the case when n = 2 and
cd(k) < 1.
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Proof For (1) = (2) it is enough to establish the surjectivity of the map

(K)/mKM(K) — KM(K )/mKM(K ) induced by ik, |k, which readily
follows by combining the second sequence in Proposition 7.1.7 for K with
Corollary 7.1.10 for K.

For (2) = (1), note first that the first assumption and part (2) of the pre-
vious corollary yield an isomorphism coker (h} ) = coker (hy, ). Apply-
ing statement (2) to the completion K p of k(t) with respect to the dis-
crete valuation defined by a closed point P gives the surjectivity of the map
H"(k(1), u2") — H”(I?p, u2m). By Proposition 6.8.7, the latter group surjects
onto H"(k(P), n&") via every specialization map. Taking Corollary 7.5.3 into
account, we thus get a surjection coker (hy ) — coker (i p, ,,). Proceeding
by induction using this statement and part (2) of the previous corollary, we get
surjective maps coker (hy ) — coker (i ) for all finitely generated exten-
sions K |k. Finally, one may write an arbitrary extension K |k as a direct limit
of finitely generated fields K|k, and obtain coker (b ,) = 11m coker (hg, ,,)-

Thus the surjectivity of 4} ,, implies that of A%, for all extenswns Klk.
The last statement of the proposition is 0bv10us since h K.m 18 an isomor-

phism for all fields K by Kummer theory, and H2(k, #?) vanishes for fields
of cohomological dimension < 1. O

Remark 7.5.8 For fields containing a field of cohomological dimension 1 (in
particular, for fields of positive characteristic) we thus get a purely cohomo-
logical reformulation of the surjectivity part of the Merkurjev—Suslin theo-
rem, which in the case of fields containing a primitive m-th root of unity
reduces to an even more suggestive surjectivity statement about the map
»Br(K) — ,,Br(K,). Bloch found this argument in the 1970s well before
the Merkurjev—Suslin theorem was proven. By a result of Tate, however,
the theorem was already known for number fields (see the next section),
so in fact Bloch’s result rephrased the surjectivity of him for all fields K.
For higher n it gives an inductive strategy for proving the Bloch—Kato
conjecture.

We close this section by an important reduction statement due to Tate, which
reduces the proof of the Bloch—Kato conjecture to the case of p-torsion coeffi-
cients. It will be used in the proof of the Merkurjev—Suslin theorem.

Proposition 7.5.9 (Tate) Let m,n > 0 be integers, with m invertible in k.
Assume that the Galois symbol h”_1 is surjective, and that hy p s bijective

for all prime divisors p of m. Then the Galois symbol h} . is bijective.

k,m

For the proof we need the following lemma.
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Lemma 7.5.10 Assume k contains a primitive p-th root of unity w, where p is
a prime invertible in k. Then for all r > 0 we have a commutative diagram

1y ® KM (k) — 1 KM/ p KM (k)

lw]Uy ! l B o l

H' e pu8) ——  H"(k 1),

where [w] denotes the class of w in H(k, u p), the upper horizontal map asso-
ciates with a pair (w, a) the symbol {w, a} modulo p”, and 8" is a so-called
Bockstein homomorphism, i.e. a boundary map coming from the long exact
sequence associated with the sequence

L—> & — S 5 s — | (11)
of Galois modules.

Proof First a word about exact sequence (11). For n = 0 it is none but the
natural exact sequence

0> 2Z/pZ —Z/p 25 7)p7 — 0,

which can be regarded as an exact sequence of Z/p”+!Z-modules via the nat-
ural maps Z/p"'Z — Z/p"Z and Z/p"*'Z — Z/pZ given by multiplica-
tion by p and p’, respectively. The general sequence is obtained by tensoring
this sequence by 115", over Z/p"*'Z. Given a symbol « € K’ (k), the ele-
ment y := hz;l (a) comes from the element y, | := hz;}.ﬂ(a) via the map
H" Yk, Mf’,(ffl)) — H""'(k, u€“~V) induced by raising the coefficients to
the p”-th power. Similarly, the element y, := hZ_pf () is the image of y,; via
the map that raises coefficients to the p-th power. Now using Proposition 3.4.8
and the preceding discussion, we have

Su([@] U (@) = 8"([w] U y) = 8" ([0] U yr41) = 8' (@) U yr 41
=8 ([wh Uy,

It is immediately seen by examining the Kummer sequence that §'([w]) is none
but h,i p,.([w]). Hence the right-hand side is Ay pr({a), a}) by definition of the
Galois symbol, and the proof is complete. O

Proof of Proposition 7.5.9 By decomposing m into a product of prime powers
we see that it is enough to consider the case m = p”. Moreover, we may and do
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assume that k contains a primitive p-th root of unity w. Indeed, if not, consider
the commutative diagrams

hrf r h" .
KM(o/pr —"—  H'(k, u&) KM()/p — s HO K, 1)
ik("”‘kl lRes and TN}@)\I{ TCO,
h"w,)" n ) hzw.ﬂ .
KM k@)/p" —"= H' k@), 1) KN k)/p” —"= H'(k@), w5,

where the second diagram commutes by Proposition 7.5.5. The composite maps
Cor o Res and Ny(w)jk © Ik« are both multiplication by the degree [k(w) : k]
which is prime to p. As the groups involved are p-primary torsion groups,
these composite maps are isomorphisms, which implies that the vertical maps
are injective in the first diagram and surjective in the second. It follows that the
bijectivity of Ay, - implies that of of Ay ..

For m = p" the proof goes by induction on r using the exact sequence (11).
It induces the bottom row in the exact commutative diagram

KM/ p KM (k) —— KMK)/p K} (k) —— KM (K)/pK) (k) — 0

w | n x|
o l Iy e l hk,pl‘

H"(k, 15" —_— H"(k,ll«fll) —>  H'(k,py").

P

By the inductive hypothesis the left and the right vertical maps are isomor-
phisms. A diagram chase then shows that 7} i is surjective. For injectivity,
we complete the left-hand side of the diagram as

wp ® KM () —Ls KM/ p KM () —L— KM/ p KN (k)

wuh;jﬁll ", l hkwll
H' W pn) ——  H'( S ——  Hk S

using the lemma above, where the upper row is not necessarily exact butis acom-
plexsince p{w, a} = Oforalla € k*.Ifx € K,ﬁ”(k)is suchthathz’p,ﬂ(pa) =0
in H*(k, /L?,’L ), the diagram shows that /], (@) is in the image of §. Now the
left vertical map is surjective, as so is hz;l by assumption, and tensor product
by 1, is the identity map by our assumption that w € k. Thus we may modify o
by a symbol of the form {w, a} to get iy . («) = O without changing p«. Hence
a € p" K (k) by injectivity of h} ., s0 pa € p"T KM (k) i.e. ker(h; ,..) = 0.

O

7.6 The Galois symbol over number fields

In this section we establish the following basic theorem which was the first
substantial result in the direction of the Merkurjev—Suslin theorem.
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Theorem 7.6.1 (Tate) If k is a number field, then the Galois symbol h,%’m is
bijective for all positive integers m.

Remarks 7.6.2

1. It is known that a number field k has p-cohomological dimension 2 if
p > 2,orif p =2 and k is totally imaginary (see Serre [4], [1.4.4), so the
theorem answers (but historically predates) the full Bloch—Kato conjecture
for odd m or totally imaginary k.

2. Surjectivity of the Galois symbol is a consequence of the fact that all
central simple algebras are cyclic over k (Remark 6.5.6). Recall that this
difficult result uses the main theorems of class field theory.

In view of the last remark, we only prove injectivity of the Galois symbol here.
This will also use facts from class field theory, but there are purely algebraic
ideas involved as well, which are interesting in their own right. We begin by
explaining these. From now on, we only consider the case when m = p is a
prime (which is allowed by Proposition 7.5.9).

The starting point is the following easy observation.

Lemma 7.6.3 Let k be a field containing the p-th roots of unity for some
prime p invertible in k, and let a, b be elements in k*. Ifh,%’p({a, b}) =0, then
{a, b} € pK3' (k).

Proof By Proposition 4.7.1 and Corollary 4.7.5 we find ¢ € k(J/a) with
b = Ni(yay(c). Using the projection formula we compute

{a, b} = {a, Ny yayk(©)} = Nyyaa, ¢}) = pNycya({a, e},

whence the lemma. O

Now given a, b, x € k* with h ,({a, b}) = h; ,({b, x}), an application of
the lemma to {a, b} — {b, x} = {a, b} + {x, b} = {ax, b} shows that {a, b} =
{b, x} modulo pK 2M (k). We can then continue this procedure with some y € k*
satisfying hi; ,({b, x}) = h; ,({x, y}), and so on. If every other pair (¢, d) € k*
can be reached by a chain of this type, then injectivity of hi , follows, at least
for symbols of length 1. The following definition formalizes this idea.

Definition 7.6.4 Let k be a field, and p a prime number invertible in k. We
say that the chain lemma holds for k and p if for any two pairs (a, b) and
(c,d) € k* x k* satistying hi ,({a, b}) = h; ,({c,d}) there exist an integer
n >0 and elements x_; =a,xo=b, x(,....,X,—1 =C, X, =d in k* such
that

hi (i, xia ) = B, (xign, Xiga))
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holds for all i = —1,0,...,n — 2. We say that the chain lemma holds with
length N if for all pairs (a, b) and (c, d) € k* x k* we may choose a chain as
above withn < N.

Remarks 7.6.5

1. Itisconjectured that the chain lemma holds for all fields k and all primes p.
For p = 2 we shall prove this in a moment; for p = 3 see Rost [2]. Rost
(unpublished) has also proven that the chain lemma always holds for a
prime p and a field £ having no nontrivial finite extensions of degree
prime to p.

2. Variants of the chain lemma occur in quadratic form theory (see Elman
and Lam [1]), and in a more general context in Rost [4].

Note that the argument after Lemma 7.6.3 yields:

Corollary 7.6.6 Assume that the chain lemma holds for k and p. Then the
identity h%’p({a, b}) = h%‘p({c, d}) implies {a, b} = {c, d} mod pKé”(k)for all
a,b,c,d e k™.

We can now formalize the strategy for proving Theorem 7.6.1.

Proposition 7.6.7 Let k be a field containing the p-th roots of unity and satis-
fying the following two conditions:

*  the chain lemma holds for k;

*  for each finite set of elements ay, by, az, by, ...,a,, b, in kK* we may
find a degree p cyclic extension K |k so that Resf(h%’p({ai, b;:})) =0 for
1<i<r.

Then the Galois symbol hi’ p s injective.

Proof Leta =) :_,{a;, b;} be a symbol in the kernel of h,%, - Take an exten-
sion K |k as in the second condition above, and write it as K = k(/c) for some
¢ € k™ using Kummer theory. By Proposition 4.7.1 and Corollary 4.7.6 we
find elements d; € k> with h%’p({a,-, b)) = h,%,p({c, di}) for 1 <i < r. Corol-
lary 7.6.6 shows that under the first assumption {a;, b;} = {c, d;} mod pKé”(k)
for all i, so setting d = dd> - - - d, yields « = {c, d} mod pKé”(k). The propo-
sition then follows from Lemma 7.6.3. |

We next verify that the chain lemma holds for all primes and all number
fields. The first step in this direction is:
Lemma 7.6.8 If p = 2, the chain lemma holds with length 3 for all fields k.

In Chapter 1 we gave a sketch of a proof by Tate in an exercise. We now give
another proof due to Rost.
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Proof The condition hy ,({a, b}) = h{ ,({c,d}) means that the quaternion
algebras (a,b) and (c,d) are isomorphic over k. We may assume they
are nonsplit (otherwise use the isomorphisms (a,b) = (1,b) and (c,d) =
(c, 1)). Choose X,Y e(a,b)\ k such that X>=b and Y?>=c, and define
Z = XY — Y X. Consider the reduced characteristic polynomial N(t — Z) of Z,
where N is the quaternion norm. It has degree 2, and the coefficient of ¢ is the
quaternion trace T(Z) = Z + Z which is 0. Therefore N(t — Z) =1> — z with
z:=Z%ck. Notice that XZ +ZX = X(XY —YX)+ (XY —YX)X =0
and similarly YZ + ZY = 0. So if Z # 0, then (X, Z) and (Y, Z) are both
quaternion bases of (a, b), and hence (a, b) = (b, 2) = (z,¢) = (c, d) is a suit-
able chain. If Z = 0, then Y lies in the 2-dimensional commutative subalgebra
k[X]. Since moreover its minimal polynomial over k is 1> — ¢, we must have
Y = AX for suitable A € k and hence ¢ = A?b. Thus we have a length 3 chain
(a,b) = (b,a) = (a, c) = (c,d) in this case as well. a

Next we have the following lemma of Tate.

Lemma 7.6.9 If k contains the p-th roots of unity and the p-torsion subgroup
pBr1 (k) is cyclic, the chain lemma holds for k and p with length 4.

Proof Lemma7.6.8 allows us to assume that p is odd. Assume givena, b, ¢, d
suchthat h; ,({a, b}) = h; ,({c, d}). As in the above proof, we may assume that
both sides are nonzero, and therefore yield a generator « of ,Br(k) = F,. Via
this last isomorphism h% , may be identified with a bilinear map of F,-vector
spaces ¢ : k*/k*P x k*/k*P — F,, which is moreover anticommutative by
Proposition 7.1.1. Our task is to find x, y € k> satisfying ¢(b, x) = ¢(x, y) =
¢(y, ¢) = a. The linear forms ¢ — ¢(b, t) and t +— ¢(¢, ¢) are non-zero and
hence surjective. If these forms are either linearly independent or equal, then we
can take y = ¢ and find an x such that ¢(b, x) = o and ¢(x, y) = ¢(x, ¢) = «.
Suppose now that these two linear forms are dependent but not equal. The
forms t — ¢(t,c) and t — ¢(d, t) = ¢(t, d~") are independent of each other
because ¢(d, ¢) = —¢(c, d) # 0. Thus by assumption for y = cd~! the linear
forms t — ¢(b, t) and t — ¢(¢, y) must be linearly independent. As above, we
find x satisfying ¢(b, x) = ¢(x, y) = «. Finally, note that since p is odd, the
anticommutative form ¢ is actually alternating, so that ¢(c, ¢) = 0 and therefore
d(v,c) = p(cd™", c) = ¢p(d™", ¢) = ¢(c, d) = a, which yields the end of the
chain. O

These were the purely algebraic statements involved in the proof of
Theorem 7.6.1. To proceed further, we need some facts from class field theory.
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Facts 7.6.10 Let k be a number field. Denote by 2 the set of all places of k,
and for each v € 2 denote by k, the completion of k at v. For v finite k, is a
finite extension of Q,, for some prime p, and for v infinite k, is isomorphic to
Ror C.

1. For each finite place v there is an isomorphism inv;, : Br(k,) = Q/Z,
and for a finite extension L, |k, one has inv, o Res,fv“’ =[Ly : ky]invy,.
See Serre [2], Chapter XIII, Propositions 6 and 7.

2. The restriction maps Br (k) — Br(k,) are trivial for all but finitely many
v € Q, and the map Br(k) —» @,cqBr(k,) is injective. These state-
ments are contained in the Albert—Brauer—Hasse—Noether theorem already
recalled in Remark 6.5.6.

3. If p is an odd prime, then given a finite set S of places of k and char-
acters x, € H'(k,, Z/pZ) for all v € S, there exists a global character
x € H'(k, Z/ pZ) inducing the ¥, by restriction to k,. This is a particular
case of the Grunwald—Wang theorem (Artin—Tate [1], Chapter X).

4. Letay,...,a, be afinite set of elements in ,Br(k) and ay, ..., a, € k™.
Assume given for each place v of k a character x, € H'(k,, Z/pZ) such
that x, U h,l< p(ai) = Res],?' (a;)forl < i < r.Thenthere exists acharacter
X € H'(k, Z/pZ)suchthat x U h,LP(a,-) = ; for1 <i < r.This follows
from global class field theory: almost the same statement is proven in
Cassels—Frohlich [1], Ex. 2.16, p. 355 (note that condition (i) there follows
from the global reciprocity law and that one may choose x, = 0 for all but
finitely many v). One may also consult Lemma 5.2 of Tate [4].

We can now prove the chain lemma for number fields.

Lemma 7.6.11 If k is a number field containing the p-th roots of unity, then
the chain lemma holds with length 4 for k and p.

Proof Assume givena, b, ¢, d € k* withhy ,({a, b}) = h_,({c, d}). We have
to find x, y € k* such that

h (b, x}) = hi ,({x. y})) = by ,({y. c) = i ,({c. d}). (12)

Let S be the set of places such that Resi“(h,%,p({c, d})) # 0. Foreach v € S the
group ,Br (k,) is cyclic (by Fact 7.6.10 (1) and by Br (R) = Z/27Z), so we may
apply Lemma 7.6.9 to find elements x,, y, € k¢ for each v € § such that

hi (b xo) = hi (x, o) = ke (. ch = hi (fe.d)).  (13)

The last of these equalities implies that h%m ,({dyy, c}) =0, and therefore
dyy = Ny, ok, (ty) for some 1, € k,(/c) according to Proposition 4.7.1 and
Corollary 4.7.5. Fact 7.6.10 (3) together with the Kummer isomorphism
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k()" [ k(Yc)*P = H'(k({/c), Z] pZ) enable us to find ¢ € k({/c) such that
17"t € ky(Yc)*P for all v € S. Put y =d ™" Ny e (1). Then for all v e S
we have h,%,p({y, c)) = h%”,,({d", c)) = h%’p({c, d}) by Proposition 4.7.1, and
moreover

h, (v D) = ki (s eD, (14)

since Ny, yoyr, (t;'1) € ky " by our choice of 7. Fixing this y, it remains to find
x € k> satisfying the first two equalities in (12). According to (13) and (14),
the equations hz’p({b, x}) = h,%’p({y, c}) and h,%’p({x, yh = h,%,p({y, c}) have
simultaneous solutions x, over k, for each v € §, and for v ¢ S they have the
trivial solution by the choice of S. We conclude by Fact 7.6.10 (4), applied with
r=2a1=bay=y,01 =ar = h,%’p({y, c})and x, = h}{mp(xv). O

We finally come to:

Proof of Theorem 7.6.1 By Proposition 7.5.9 it is enough to treat the case
m = p. As in the proof of that proposition, we may also assume that k con-
tains the p-th roots of unity. It then suffices to check the conditions of Proposi-
tion 7.6.7. The first one is the previous lemma. To check the second, it is enough
to find for a given finite set «y, ..., o, of classes in ,Br (k) a cyclic extension
Lk of degree p so that Res,f(a,-) = O foralli. By Fact7.6.10 (2) we find a finite
set S of places so that Resi“ (o;) = Oforalli and all v ¢ S. Choose an element
b € k* which does not lie in &, ” for any v € S. For instance, one may take
b =um -- -, where u is a unit and the 7; are prime elements for the finite
places in S. For p odd this is already sufficient; for p = 2 one uses Dirichlet’s
Unit Theorem (Neukirch [1], Chapter I, Theorem 7.4) to choose u so that b
becomes negative in the completions for the real places in S. The extension
L = k({/b)|k is then cyclic of degree p, and so are the extensions Lk, |k, for
v € S. Using Fact 7.6.10 (1) and the vanishing of Br (C) we therefore see that
Res,fk“ (o;) =0 for all i and all v in S. For the other places we already have
Resllz“ (o0;) = 0 by assumption, so that Fact 7.6.10 (2) implies Res,f(a,-) =0 for
all i, as required. |

Exercises

1. (Bass, Tate) This exercise studies the K-groups of an algebraically closed field k.
(a) Let A, B be two divisible abelian groups. Show that A ®z B is uniquely
divisible, i.e. a Q-vector space.
(b)  Show that K(k) is uniquely divisible. [Hint: Use the presentation
0— R— k*®k*— KM(k) — 0].
(c)  Let K|k be a field extension. Show that the map K31(k) — K#(K) is injec-
tive.
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2. (a) Given a field extension K |k, show that the natural maps K ,i" k) ®zQ —
KM(K) ®z Q are injective for all n > 1. [Hint: First consider the cases K |k
finite and K = k(1).]
(b)  If k is an uncountable field, show that K (k) ®z Q is uncountable for all
n>1.

3. Establish isomorphisms K¥(R)/2KM(R) = Z/2Z for all n > 0.

4. This exercise gives a simpler proof of Theorem 7.3.2 for n = 2 and fields of
characteristic 0. Let k be such a field, and let K|k be a finite field extension.
Let Ny = Ny,,..qc and Ny = N, .« be two candidates for the norm map
K¥(K) — KM(k) . Denote by §, the difference Ny — N,.

(a)  Observe that Im (6;) is a torsion group.
(b)  Show that &) : K (K (1)) - K (k(1)) takes values in K (k), where k(t) |k
is a rational function field.
(¢) Givena,b € k*, show that §({a, (1 —¢t) +tb}) = 0. [Hint: Use the fact
that the evaluation map k[[#]]* — k* has divisible kernel.]
(d)  Conclude by specialization that §;({a, b}) = 0.
5. (Tate) Let m be an integer invertible in k, and assume that k contains a primitive

m-th root of unity w. Denote by A the subgroup of ,, K3? (k) consisting of elements

of the form {w, a} witha € k*.

(a)  Show that the equality A = ,, K} (k) is equivalent to the existence of a homo-
morphism f : mKY (k) — K (k)/A such that f(ma)= a mod A for all
a € KM (k).

(b)  If suchan f exists, show that it is unique.

(c) Givena, b € k*,showthat{a, b} € mK2(k)if and only if there exists a finite
extension K |k and elements «, 8 € K such that ™ = a and Ngy(B) = b.

(d)  Verify that for {a, b} € mK2 (k) the image of Ng;({r, B}) in the quotient
KM(K)/A depends only on the pair a, b.

(¢)  Assume that cd(k) < 1. Conclude from (c) that K37(k) is m-divisible, and
use (a) and (d) to show that A = ,, K2 (k). [Hint: Use that Br (L|k) is trivial
for all finite cyclic extensions L |k of degree m.]

6. Let k be a field, n > 0 an integer and « an element of K,i”(k(t)). For each closed

point P of the affine line A}, write k(P) = k(ap) with suitable ap.

(a)  Check that the norm Ny(pyk)({t — ap, 0p(a)}) is independent of the choice
of ap.

(b)  Establish the following more explicit variant of Corollary 7.2.3:

a = s-1(0)) + Z Nuryoko{t — ap, dp(@)}).

1
PeA

[Remark: The analogous formula for Galois cohomology may be found in
Garibaldi-Merkurjev—Serre [1], Exercise 9.23.]

7. (Optimality of the Rosset—Tate bound) Let p be a prime number, and k a field con-
taining a primitive p-th root of unity w. Consider the purely transcendental exten-
sion E = k(xy, y1, X2, y2, - .., Xp, ¥p) in 2 p indeterminates. Make the cyclic group
Z/pZ = (o) act on E by o(x;) = x;4, and o(y;) = yi4, (Where i + p is taken
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mod p). Let F C E be the fixed field under this action. Prove that Ng z({x, yi})
cannot be represented in K (F) by a symbol of length p — 1. [Hint: Use the Galois
symbol and Exercise 6 of Chapter 6].

8. Letn > 1 be an odd integer, and k a field containing a primitive n-th root of unity
w. Let K|k be a finite Galois extension whose Galois group is the dihedral group
D,, i.e. it has a presentation of the form

(o,1]0"=1,1>=1, ot0 = 1).

Let L be the fixed field of o in K. This exercise shows that a central simple k-algebra

A of degree n split by K is isomorphic to a cyclic algebra.

(a)  Show thatthereisanelementa € L* with K = L(/a)and Ny x(a) € (k*)".
[Hint: if K = L(/c), take a = ¢"].

(b)  Show that A ®; L = (a, b),, for some b € L*.

(¢)  Concludethat[A] = Corf([(a, b),])inBr (k). If b € k*, conclude moreover
that A is isomorphic to a cyclic algebra.

(d) Assume that b € L™ \ k*. Show that there exist a’,b’ € k* such that
aa’ + bb' = 0 or 1, and prove that the relation

[(a, b)(u] + [(av b/)w] + [(a’, bb,)w] =0

holds in Br(L). Conclude that A is isomorphic to a cyclic algebra in this
case as well.

(e)  Adapt the preceding arguments to show that the conclusion also holds in the
case when k is of characteristic p > 3andn = p.[Hint: Show that K = L(c)
for some c such that a := ¢? — c lies in L and Try(a) = u” — u for some
uek.]

[Remark: The theorem of this exercise is due to Rowen—Saltman [1]. The above
proof is that of Mammone-Tignol [1].]

9. (Wedderburn) Show that every central simple algebra of degree 3 over a field k is
isomorphic to a cyclic algebra. [Hint: Use the previous exercise.]

10. Let p > 2 be a prime number, and k a field containing a primitive p-th root of
unity. Improve the bound of Proposition 7.4.13 by showing that every central simple
k-algebra of degree p is Brauer equivalent to the tensor product of atmost (p — 1)!/2
cyclic k-algebras of degree p. [Hint: Use Exercise 8 and the fact that the symmetric
group S, contains D, as a subgroup.]

11. Let k be a field, and m > 0 an integer invertible in k.

(a)  Show that injectivity (resp. surjectivity) of the Galois symbols

ney KM (o /m — H' (k, u&"