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Preface 

The aim of this book is to provide a concise introduction to algebraic ge-
ometry and to algebraic moduli theory. In so doing, I have tried to explain 
some of the fundamental contributions of Cayley, Hilbert, Nagata, Grothendieck 
and Mumford, as well as some important recent developments in moduli the-
ory, keeping the proofs as elementary as possible. For this purpose we work 
throughout in the category of algebraic varieties and elementary sheaves (which 
are simply order-reversing maps) instead of schemes and sheaves (which are 
functors). Instead of taking GIT (Geometric Invariant Theory) quotients of pro-
jective varieties by P GL(N), we take, by way of a shortcut, Proj quotients of 
affine algebraic varieties by the general linear group G L(N)• In constructing the 
moduli of vector bundles on an algebraic curve, Grothendieck's Quot scheme is 
replaced by a certain explicit affine variety consisting of matrices with polyno-
mial entries. In this book we do not treat the very important analytic viewpoint 
represented by the Kodaira-Spencer and Hodge theories, although it is treated, 
for example, in Ueno [113], which was in fact a companion volume to this book 
when published in Japanese. 

The plan of the first half of this book (Chapters 1-5 and 7) originated from 
notes taken by T. Hayakawa in a graduate lecture course given by the author in 
Nagoya University in 1985, which in turn were based on the works of Hilbert 
[20] and Mumford et al. [30]. Some additions and modifications have been 
made to those lectures, as follows. 

(1) I have included chapters on ring theory and algebraic varieties accessible 
also to undergraduate students. A strong motivation for doing this, in fact, 
was the desire to collect in one place the early series of fundamental results 
of Hilbert that includes the Basis Theorem and the Nullstellensatz. 

(2) For the proof of linear reductivity (or complete reductivity), Cayley's 
c-process used by Hilbert is quite concrete and requires little background 

xi 
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knowledge. However, in view of the importance of algebraic group repre-
sentations I have used instead a proof using Casimir operators. The key to 
the proof is an invariant bilinear form on the Lie space. The uniqueness 
property used in the Japanese edition was replaced by the positive definite-
ness in this edition. 

(3) I have included the Cayley-Sylvester formula in order to compute explic-
itly the Hilbert series of the classical binary invariant ring since I believe 
both tradition and computation are important. I should add that this and 
Section 4.5 are directly influenced by Springer [8]. 

Both (2) and (3) took shape in a lecture course given by the author at Warwick 
University in the winter of 1998. 

(4) I have included the result of Nagata [11], [12] that, even for an algebraic 
group acting on a polynomial ring, the ring of invariants •need not be finitely 
generated. 

(5) Chapter 1 contains various introductory topics adapted from lectures given 
in the spring of 1998 at Nagoya and Kobe Universities. 

The second half of the book was newly written in 1998-2000 with two main 
purposes: first, an elementary invariant-theoretic construction of moduli spaces 
including Jacobians and, second, a self-contained proof of the Verlinde formula 
for S L(2). For the first I make use of Gieseker matrices. Originally this idea was 
invented by Gieseker [72] to measure the stability of the action of P G L(N) on 
the Quot scheme. But in this book moduli spaces of bundles are constructed 
by taking quotients of a variety of Gieseker matrices themselves by the gen-
eral linear group. This construction turns out to be useful even in the case of 
Jacobians. For the Verlinde formula, I have chosen Zagier's proof [115] among 
three known algebraic geometric proofs. However, Thaddeus 's proof [112] uses 
some interesting birational geometry, and I give a very brief explanation of this 
for the case of rank 2 parabolic bundles on a pointed projective line. 
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Introduction 

(a) What is a moduli space? 

A moduli space is a manifold, or variety, which parametrises some class of 
geometric objects. The j-invariant classifying elliptic curves up to isomorphism 
and the Jacobian variety of an algebraic curve are typical examples. In a broader 
sense, one could include as another classical example the classifying space of a 
Lie group. In modem mathematics the idea of moduli is in a state of continual 
evolution and has an ever-widening sphere of influence. For example: 

• By defining a suitable height function on the moduli space of principally po-
larised abelian varieties it was possible to resolve the Shafarevich conjectures 
on the finiteness of abelian varieties (Fallings 1983). 

• The moduli space of Mazur classes of 2-dimensional representations of an 
absolute Galois group is the spectrum of a Hecke algebra. 

The application of these results to resolve such number-theoretic questions as 
Mordell's Conjecture and Fermat's Last Theorem are memorable achievements 
of recent years. Turning to geometry: 

• Via Donaldson invariants, defined as the intersection numbers in the moduli 
space of instanton connections, one can show that there exist homeomorphic 
smooth 4-manifolds that are not diffeomorphic. 

Indeed, Donaldson's work became a prototype for subsequent research in this 
area. 

Here's an anology. When natural light passes through a prism it separates into 
various colours. In a similar way, one can try to elucidate the hidden properties 
of an algebraic variety.. One can think of the moduli spaces naturally associated 
to the variety (the Jacobian of a complex curve, the space of instantons on a 
complex surface) as playing just such a role of 'nature's hidden colours'. 

XV 
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Manifold 

Red 
Yellow 
Blue 
Violet 

Moduli prism 

The aim of this book is to explain, with the help of some concrete examples, 
the basic ideas of moduli theory as they have developed alongside algebraic 
geometry — in fact, from long before the modern viewpoint sketched above. 
In particular, I want to give a succinct introduction to the widely applicable 
methods for constructing moduli spaces known as geometric invariant theory. 

If a moduli problem can be expressed in terms of algebraic geometry then 
in many cases it can be reduced to the problem of constructing a quotient of 
a suitable algebraic variety by an action of a group such as the general linear 
group G Um). From the viewpoint of moduli theory this variety will typically 
be a Hilbert scheme parametrising subschemes of a variety or a Quot scheme 
parametrising coherent sheaves. From a group-theoretic point of view it may 
be a finite-dimensional linear representation regarded as an affine variety or a 
subvariety of such. To decide what a solution to the quotient problem should 
mean, however, forces one to rethink some rather basic questions: What is an 
algebraic variety? What does it mean to take a quotient of a variety? In this sense 
the quotient problem, present from the birth and throughout the development 
of algebraic geometry, is even today sadly lacking an ideal formulation. And 
as one sees in the above examples, the 'moduli problem' is not determined in 
itself but depends on the methods and goals of the mathematical area in which 
it arises. In some cases elementary considerations are sufficient to address the 
problem, while in others much more care is required. Maybe one cannot do 
without a projective variety as quotient; maybe a stack or algebraic space is 
enough. In this book we will construct moduli spaces as projective algebraic 
varieties. 

(b) Algebraic varieties and quotients of algebraic varieties 

An algebraic curve is a rather sophisticated geometric object which, viewed 
on the one hand as a Riemann surface, or on the other as an algebraic function 
field in one variable, combines analysis and algebra. The theory of meromorphic 
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functions and abelian differentials on compact Riemann surfaces, developed by 
Abel, Riemann and others in the nineteenth century, was, through the efforts 
of many later mathematicians, deepened and sublimated to an 'algebraic func-
tion theory'. The higher dimensional development of this theory has exerted 
a profound influence on the mathematics of the twentieth century. It goes by 
the general name of 'the study of algebraic varieties'. The data of an algebraic 
variety incorporate in a natural way that of real differentiable manifolds, of 
complex manifolds, or again of an algebraic function field in several variables. 
(A field K is called an algebraic function field in n variables over a base field 
k if it is a finitely generated extension of k of transcendence degree n.) In-
deed, any algebraic variety may be defined by patching together (the spectra of) 
some finitely generated subrings R1, , RN of a function field K This will 
be explained in Chapter 3. 

This ring-theoretic approach, from the viewpoint of varieties as given by 
systems of algebraic equations, is very natural; however, the moduli problem, 
that is, the problem of constructing quotients of varieties by group actions, 
becomes rather hard. When an algebraic group G acts on an affine variety, 
how does one construct a quotient variety? (An algebraic group is an alge-
braic variety with a group structure, just as a Lie group is a smooth manifold 
which has a compatible group structure.) It turns out that the usual quotient 
topology, and the differentiable structure on the quotient space of a Lie group 
by a Lie subgroup, fail to work well in this setting. Clearly they are not suf-
ficient if they fail to capture the function field, together with its appropriate 
class of subrings, of the desired quotient variety. The correct candidates for 
these are surprisingly simple, namely, the subfield of G-invariants in the orig-
inal function field K, and the subrings of G-invariants in the integral domains 
R c K (see Chapter 5). However, in proceeding one is hindered by the following 
questions. 

(1) Is the subring of invariants R G  of a finitely generated ring R again finitely 
generated? 

(2) Is the subfield of invariants K G  c K equal to the field of fractions of R G ? 

(3) Is K G  c K even an algebraic function field? — that is, is K G  finitely 
generated over the base field k? 

(4) Even if the previous questions can be answered positively and an algebraic 
variety constructed accordingly, does it follow that the points of this variety 
can be identified with the G-orbits of the original space? 

In fact one can prove property (3) quite easily; the others, however, are not true 
in general. We shall see in Section 2.5 that there exist counterexamples to (1) 
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even in the case of an algebraic group acting linearly on a polynomial ring. 
Question (2) will be discussed in Chapter 6. 

So how should one approach this subject? Our aim in this book is to give 
a concrete construction of some basic moduli spaces as quotients of group 
actions, and in fact we will restrict ourselves exclusively to the general linear 
group GL(m). For this case property (1) does indeed hold (Chapter 4), and 
also property (4) if we modify the question slightly. (See the introduction to 
Chapter 5.) A correspondence between G-orbits and points Of the quotient is 
achieved provided we restrict, in the original variety, to the open set of stable 

points for the group action. Both of these facts depend on a representation-
theoretic property of GL(m) called linear reductivity. 

After paving the way in Chapter 5 with the introduction of affine quotient 
varieties, we `globalise' the construction in Chapter 6. Conceptually, this may 
be less transparent than the affine construction, but essentially it just replaces 
the affine spectrum of the invariant ring with the projective spectrum (Proj) 
of the semiinvariant ring. This 'global' quotient, which is a projective variety, 
we refer to as the Prof quotient, rather than 'projective quotient', in order to 
distinguish it from other constructions of the projective quotient variety that 
exist in the literature. 

An excellent example of a Proj quotient (and indeed of a moduli space) is the 
Grassmannian. In fact, the Grassmannian is seldom considered in the context 
of moduli theory, and we discuss it here in Chapter 8. This variety is usually 
built by gluing together affine spaces, but here we construct it globally as the 
projective spectrum of a semiinvariant ring and observe that this is equivalent to 
the usual construction. For the Grassmannian G(2, n) we compute the Hilbert 
series of the homogeous coordinate ring. We use this to show that it is generated 
by the Pliicker coordinates, and that the relations among these are generated by 
the Pliicker relations. 

In general, for a given moduli problem, one can only give an honest construc-
tion of a moduli space if one is able to determine explicitly the stable points of 
the group action. This requirement of the theory is met in Chapter 7 with the nu-
merical criterion for stability and semistability of Hilbert and Mumford, which 
we apply to some geometrical examples from Chapter 5. Later in the book we 
construct moduli spaces for line bundles and vector bundles on an algebraic 
curve, which requires the notion of stability of a vector bundle. Historically, 
this was discovered by Mumford as an application of the numerical criterion, 
but in this book we do not make use of this, as we are able to work directly 
with the semiinvariants of our group actions. Another important application, 
which we do not touch on here, is to the construction of a compactification of 
the moduli space of curves as a projective variety. 
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(c) Moduli of bundles on a curve 

In Chapter 9 algebraic curves make their entry. We first explain: 

(1) what is the genus of a curve? 
(2) Riemann's inequality and the vanishing of cohomology (or index of spe-

ciality); and 
(3) the duality theorem. 

In the second half of Chapter 9 we construct, as the projective spectrum of the 
semiinvariant ring of a suitable group action on an affine variety, an algebraic 
variety whose underlying set of points is the Picard group of a given curve, and 
we show that over the complex numbers this is nothing other than the classical 
Jacobian. 

In Chapter 10 we extend some essential parts of the line bundle theory of 
the preceding chapter to higher rank vector bundles on a curve, and we then 
construct the moduli space of rank 2 vector bundles. This resembles the line 
bundle case, but with the difference that the notion of stability arises in a natural 
way. The moduli space of vector bundles, in fact, can be viewed as a Grass-
mannian over the function field of the curve, and one can roughly paraphrase 
Chapter 10 by saying that a moduli space is constructed as a projective variety 
by explicitly defining the Plticker coordinates of a semistable vector bundle. 
(See also Seshadri [77].) One advantage of this construction — although it has 
not been possible to say much about this in this book — is the consequence that, 
if the curve is defined over a field k, then the same is true, a priori, of the moduli 
space. 

In Chapter 11 the results of Chapters 9 and 10 are reconsidered, in the fol-
lowing sense. Algebraic varieties have been found whose sets of points can be 
identified with the sets of equivalence classes of line bundles, or vector bun-
dles, on the curve. However, to conclude that 'these varieties are the moduli 
spaces for line bundles, or vector bundles' is not a very rigorous statement. 
More mathematical would be, first, to give some clean definition of 'moduli' 
and 'moduli space', and then to prove that the varieties we have obtained are 
moduli spaces in the sense of this definition. One answer to this problem is 
furnished by the notions of representability of a functor and of coarse moduli. 
These are explained in Chapter 11, and the quotient varieties previously con-
structed are shown to be moduli spaces in this sense. Again, this point of view 
becomes especially important when one is interested in the field over which the 
moduli space is defined. This is not a topic which it has been possible to treat in 
this book, although we do give one concrete example at the end of the chapter, 
namely, the Jacobian of an elliptic curve. 
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Introduction 

In the final chapter we give a treatment of the Verlinde formulae for rank 2 
vector bundles. Originally, these arose as a general-dimension formula for ob-
jects that are somewhat unfamiliar in geometry, the spaces of conformal blocks 
from 2-dimensional quantum field theory. (See Ueno [113].) In our context, 
however, they appear as elegant and precise formulae for the Hilbert polynomi-
als for the semiinvariant rings used to construct the moduli of vector bundles. 
Various proofs are known, but the one presented here (for odd degree bundles) 
is that of Zagier [1151, making use of the formulae for the intersection num-
bers in the moduli space of Thaddeus 11111. On the way, we observe a curious 
formal similarity between the cohomology ring of the moduli space and that of 
the Grassmannian G(2, n). 

Convention: Although it will often be unnecessary, we shall assume throughout 
the book that the field k is algebraically closed and of characteristic zero. 
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Invariants and moduli 

This chapter explores some examples of parameter spaces which can be con-
structed by elementary means and with little previous knowledge as an intro-
duction to the general theory developed from Chapter 3 onwards. To begin, we 
consider equivalence classes of plane conics under Euclidean transformations 
and use invariants to construct a parameter space which essentially corresponds 
to the eccentricity of a conic. 

This example already illustrates several essential features of the construction 
of moduli spaces. In addition we shall look carefully at some cases of finite 
group actions, and in particular at the question of how to determine the ring 
of invariants, the fundamental tool of the theory. We prove Molien's Formula, 
which gives the Hilbert series for the ring of invariants when a finite group acts 
linearly on a polynomial ring. 

In Section 1.3, as an example of an action of an algebraic group, we use classi-
cal invariants to construct a parameter space for GL(2)-orbits of binary quartics. 

In Section 1.4 we review plane curves as examples of algebraic varieties. A 
plane curve without singularities is a Riemann surface, and in the particular case 
of a plane cubic this can be seen explicitly by means of doubly periodic complex 
functions. This leads to another example of a quotient by a discrete group action, 
in this case parametrising lattices in the complex plane. The group here is the 
modular group S L(2, Z) (neither finite nor connected), and the Eisenstein series 
are invariants. Among them one can use two, g2 and g 3 , to decide when two 
lattices are istithorphic. 

1.1 A parameter space for plane conics 
Consider the curve of degree 2 in the (real or complex) (x, y) plane 

ax2  + 2bxy + cy 2  2dx 2ey f = 0. 	(1.1) 

1 
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If the left-hand side factorises as a product of linear forms, then the curve is 
a union of two lines; otherwise we say that it is nondegene rate (Figure 1.1). 

Nondegenerate 
conics Line pair Double line 

Degenerate conics 

Figure 1.1 

Let us consider the classification of such curves of degree 2, up to Euclidean 
transformations, from the point of view of their invariants. The Euclidean trans-
formation group G contains the set of translations 

x 	x 	, 

as a normal subgroup and is generated by these and the rotations. Alternatively, 
G can be viewed as the group of matrices 

P q 
X = (—q p m) , 

0 0 1 
±q2 

 (1.2) 

Curves of degree 2 correspond to symmetric 3 x 3 matrices by writing the 
equation (1.1) as 

( a b d 	x = 0,  
(x , y , 1) b c 

e 
fe) (y 

d 	 1 

and then under the Euclidean transformation (1.2) the symmetric matrix of the 
curve transforms by 

a 
b 

( d 

b 
c 
e 

d 
e) 
f 

a 
(b 

d 

b 
c 
e 

d 
e) X . 
f 

In other words, the 6-dimensional vector space V of symmetric 3 x 3 matri-
ces is a representation of the Euclidean transformation group G (see Section 
1.21.10). Now, geometry studies properties which are invariant under groups 
of transformations, so let us look for invariants under this group action, in the 
form of polynomials F(a,b, , f). 
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The transformation matrix (1.2) has determinant 1, and so the first invariant 
polynomial we encounter is 

a b d 
D = det (b c e) . 

d e f 

Here D 0 0 exactly when the degree 2 curve is nondegenerate, and for this 
reason D is called the discriminant of the curve. Next we observe that the 

(

trace and determinant of the 2 x 2 submatrix b  c 
a b 

are also invariant; we 

will denote these by T = a + e and E = ac — b2 . Moreover, any invariant 
polynomial can be (uniquely) expressed as a polynomial in D, T, E. In other 
words, the following is true. 

Proposition 1.1. The set of polynomials on V invariant under the action 
of G is a subring of C[a, b, c, d, e, f] and is generated by D, T, E. More-
over, these elements are algebraically independent; that is, the subring is 
C[D, T, E]. 

Proof Let Go c G be the translation subgroup, with quotient G/ Go 0(2), 
the rotation group of the plane. We claim that it is enough to show that the 
subring of polynomials invariant under Go is 

	

C [a, b, c, d, e, f]G° = C[a, b, c, D]. 	 (1.3) 

This is because the polynomials in C [a, b, c] invariant under the rotation group 
0(2) are generated by the trace T and discriminant E. 

We also claim that if we consider polymonials in a,b,c,d,e, f and 1/E, 
then 

Go 	 1 
=C a, b, c, D, E  . 	(1.4) 

It is clear that this implies (1.3), and so we are reduced to proving (1.4). The 
point here is that the determinant D can be written 

D = Ef + (2bde — ae2  — cd 2), 

so that 

D + ae2  + cd2  2bde 
I= 	  

and hence 
11 

f, 	 D, 
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So a polynomial F in this ring (that is, a polynomial in a, b, c, d, e, f with 
coefficients which may involve powers of 1/E) which is invariant under Go has 
to satisfy 

F(a,b,c,d ± al -1-bm,e bl + cm, D)= F(a, b, c, d, e, D) 

for arbitrary translations (1,m). Taking (1,m). (—bt, at) shows that F cannot 
have terms involving e, while taking (1,m) = (—ct,bt) shows that it cannot 
have terms involving d; so we have shown (1.4). 	 El 

Remark 1.2. One can see that Proposition 1.1 is consistent with a dimension 
count as follows. First, V has dimension 6. The Euclidean group G has dimen-
sion 3 (that is, Euclidean motions have 3 degrees of freedom). A general curve 
of degree 2 is preserved only by the finitely many elements of G (namely, 1800 

 rotation about the centre and the trivial element), and hence we expect that 'the 
quotient V IG has dimension 3'. Thus we may think of the three invariants 
D, T, E as three 'coordinate functions on the quotient space'. LI 

The space of all curves of degree 2 is V 2-1_ C6 , but here we are only concerned 
with polynomials, viewed as functions, on this space. Viewed in this sense the 
space is called an affine space and denoted A6 . (See Chapter 3.) We shall denote 
the subset corresponding to nondegenerate curves by U c V. This is an open 
set defined by the condition D 0. The set of 'regular functions' on this open 
set is the set of rational functions on V whose denominator is a power of D, 
that is, 

1 

Up to now we have been thinking not in terms of curves but rather in terms 
of their defining equations of degree 2. In the following we shall want to think 
in terms of the curves themselves. Since two equations that differ only by a 
scalar multiple define the same curve, we need to consider functions that are 
invariant under the larger group G generated by G and the scalar matrices X = 
rI. The scalar matrix rl multiplies the three invariants D,E,T by r6 , r4, r2, 
respectively. It follows that the set 
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of G-invariant polynomial functions on U is generated by 

E3 	T 3 	ET 
A = ' B=— , = — . 

D2  

Among these three expressions there is a relation 

AB — C 3  = 0, 

so that: 

a moduli space for nondegenerate curves of degree 2 in the Euclidean plane is 
the affine surface in A 3  defined by the equation xz — y 3  = 0. 

(The origin is a singular point of this surface called a rational double point of 
type A2.) 

One can also see this easily in the following way. By acting on the defining 
equation (1.1) of a nondegenerate degree 2 curve with a scalar matrix r I for 
a suitable r E C we can assume that D(a,b, , f) = 1. The set of curves 
normalised in this way is then an affine plane with coordinates T, E. Now, the 
ambiguity in choosing such a normalisation is just the action of col, where co E C 
is an imaginary cube root of unity, and so the parameter space for nondegenerate 
degree 2 curves is the surface obtained by dividing out the (T, E) plane by the 
action of the cyclic group of order 3, 

(T ,‘ E) 	(coT , w 2  E). 

The origin is a fixed point of this action, and so it becomes a quotient singularity 
in the parameter space. 

Next, let us look at the situation over the real numbers r We note that here 
cube roots are uniquely determined, and so by taking that of the discriminant 
D of equation (1.1) we see that for real curves of degree 2 we can take as 
coordinates the numbers 

In this way the curves are parametrised simply by the real (a, fi) plane: 

(i) Points in the (open) right-hand parabolic region /3 2  <4a and the (closed) 
4th quadrant a > 0, 13 < 0 do not correspond to any curves over the real 
numbers. (It is natural to refer to the union of these two sets as the 'imag-
inary region' of the (a, 13) plane. See Figure 1.2.) The points of the pa-
rameter space are real, but the coefficients of the defining equation (1.1) 



Acute 
angled 

Imaginary 
region 

Obtuse 
angled 
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always require imaginary complex numbers. For example, the origin (0,0) 
corresponds to the curve 

V-1(x 2  — y2) + 2xy = 2x. 

(ii) Points of the parabola 8 2  = 4a in the 1st quadrant correspond to circles 
of radius .V2//3. 

(iii) Points of the open region fi 2  > 4a > 0 between the parabola and the 
/3-axis parametrise ellipses. 

(iv) Points of the positive /3-axis a = 0, fi > 0 parametrise parabolas. 
(v) Points in the left half-plane a < 0 parametrise hyperbolas. Within this 

region, points along the negative a-axis parametrise rectangular hyper-
bolas (the graph of the reciprocal function), while points in the 2nd and 
3rd quadrants correspond respectively to acute angled and obtuse angled 
hyperbolas. 

Figure 1.2: The parameter space of real curves of degree 2 

Let us now follow a rotation of this figure in the positive direction about the 
origin. 

Beginning with a circle (eccentricity e = 0), our curve grows into an ellipse 
through a parabolic phase (e = 1) before making a transition to a hyperbola. 
The angle between the asymptotes of this hyperbola is initially close to zero and 
gradually grows to 180 0 , at which point (e = oo) the curve enters the imaginary 
region. After passing through this region it turns once again into a circle. (This 
is Kepler's Principle.) 



(e = 1) 
Parabola 

Acute angled 
hyperbola 

e = 
Right angled 

hyperbola 

Obtuse angled 
hyperbola 

Ellipse 

Circle (e = 0) 

(e = ) 
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Figure 1.3: Transmigration of a conic 

Remark 1.3. In the case of an ellipse, our curve has a (Euclidean invariant) area 
which is equal to 7/1,/ii. In particular, this area increases as the curve approaches 
the fl-axis, and one may think of a parabola, corresponding to a point on the 
axis, as having infinite area. Taking this point of view a step further, one may 
think of a hyperbola as having imaginary area. 0 

We have thus established a correspondence between real curves of degree 2 
up to Euclidean transformations and points of the (a, 0) plane. The group G 
does not have the best properties (it is not linearly reductive — this will be 
explained in Chapter 4), but nevertheless in this example we are lucky and 
every point of the (a, fi) plane corresponds to some curve. 

Plane curves of degree 2 are also called conics, as they are the curves obtained 
by taking plane cross sections of a circular cone (an observation which goes 
back to Apollonius and Pappus). From this point of view, the eccentricity e of 
the curve is deterinined by the angle of the plane (Figure 1.4). 

To be precise, let 0 be the angle between the axis of the cone and the circular 
base, and let t, be the angle between the axis and the plane of the conic. If we 
now let 

sin 
e = 	 

sin 0 
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Parabola 

Figure 1.4: Plane sections of a cone 

then for e < 1, e = 1 and e > 1, respectively, the conic section is an el-
lipse, a parabola or a hyperbola. As is well known, the eccentricity can also be 
expressed as 

distance from the focus 
e = 

	

	  
distance to the directrix 

(For a curve with equation (x / a) 2  ±(y /b)2  = 1, where a < b, we find that e 
\ 	(a 102 .) This is not an invariant polynomial function, but it satisfies an 
algebraic equation whose coefficients are invariants. Namely, it is the invariant 
multivalued function satisfying the quartic equation 

1 
(e 2  — 1) + 

Although e is properly speaking multivalued, we can take advantage of the fact 
that we are considering conics over the real numbers. In this case it is possible 
to choose a branch so that the function is single-valued for conics with real 
coefficients. 

Suppose we extend the Euclidean transformation group to include also sim-
ilarities (dilations and contractions). Transforming a conic by a scale factor k 
multiplies a by 4Yi-j and multiplies 8 by „37-k. So the 'moduli space' is now the 

T2  

2E 
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(a, f3) plane, minus the origin, divided out by the action of scalars 

(a, 	e■fija, Ark f3). 

In other words, it is a projective line (more precisely, the weighted projective 
line P(1 : 2); see Example 3.46 in Chapter 3). The one dimensional parameter 
that we obtain in this way is essentially the eccentricity e. 

The aim of the first part of this book is to generalise the construction of this sort 
of parameter space to equivalence classes of polynomials in several variables 
under the action of the general linear group. In geometric language, our aim is 
to construct parameter spaces for equivalence classes of general-dimensional 
projective hypersurfaces with respect to projective transformations. 

1.2 Invariants of groups 

To say that a polynomial f (xi, . .. , x n ) in n variables is an invariant with respect 

to an n x n matrix A = (au ) can have one of two meanings: 

(i) f is invariant under the coordinate transformation determined by A. That 
is, it satisfies 

f (Ax) := f Eauxi,...,Eanixi = f (x). ( 	 (1.5) 
i 

(ii) f is invariant under the derivation 

a 
VA = E au  xi — ax;  

determined by A. In other words, it satisfies 

DA  f = 	af  0. auxi 	 (1.6) 
dx j  

In both cases, the invariant polynomials under some fixed set of matrices form 
a subring of C[xi , , xn ]. The idea of a Lie group and of a Lie algebra, 
respectively, arises in a natural way out of these two notions of invariants. 

(a) Hilbert series 

To begin, we review the first notion 1.2(i) of invariance. (The second will 
reappear in Chapter 4.) Given a set of nonsingular matrices T c GL(n), we 
consider the set of all invariant polynomials 

If E C[Xi, 	, xn]I f(Ax) = f(x) for all A E T}. 
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Clearly this is a subring of C[xi , 	, xd, called the ring of invariants of T. 
Notice that if f (x) is an invariant under matrices A and B, then it is an invariant 
under the inverse A -1  and the product AB. It follows that in the definition 
of the ring of invariants we may assume without loss of generality that T is 
closed under taking products and inverses. This is just the definition of a group; 
moreover, in essence we have here the definition of a group representation. 

Definition 1.4. Let G c G L(n) be a subgroup. A polynomial f E 

C[Xi, 	xd satisfying 

f (Ax) = f (x) for all A G 

is called a G-invariant. 

We shall write S =C[xi, 	, x n ] for the polynomial ring and S G  for the 
ring of invariants of G. Let us examine some cases in which G is a finite group. 

Example 1.5. Let G be the symmetric group consisting of all n xn permutation 
matrices - that is, having a single 1 in each row and column, and 0 elsewhere. 
The invariants of G in C [xi , ... , xd are just the symmetric polynomials. These 
form a subring which includes the n elementary symmetric polynomials 

0-1(x) = Ei xi 

• • • 

a(x) = 	. • • Xn 

and it is well known that these generate the subring of all symmetric 
polynomials. 	 0 

Example 1.6. Suppose G is the alternating group consisting of all even permu-
tation matrices (matrices as in the previous example, that is, with determinant 
+1). In this case a G-invariant polynomial can be uniquely expressed as the 
sum of a symmetric and an alternating polynomial: 

{

invariant 1  Jsymmetric I EB  alternating 
polynomials  polynomials polynomials • 
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Moreover, the set of alternating polynomials is a free module over the ring of 
symmetric polynomials with the single generator 

6.(x) 	n (xi  xi) . 

0 

Example 1.7. Let G = {+In } c G L(n), the subgroup of order 2, where In  is 
the identity matrix. This time the set of invariant polynomials is a vector space 
with basis consisting of all monomials of even degree. As a ring it is generated 
by the monomials of degree 2; in the case n = 2, for example, it is generated 
by x?', xix2, 

Let S = C[xi, 	, xn]. Any polynomial f (x) = f(xi, . , x n) can written 
as a sum of homogeneous polynomials: 

f (x) = fo + fi(x) + f2(x) + • • • + ftc,„(x) with deg fi (x) = 

Invariance of f (x) is then equivalent to invariance of all the summands f1  (x). 
Denoting by Sd C S the subspace of homogeneous polynomials of degree d, it 
follows that there are direct sum decompositions 

S = Sd, 
	sG = 	sG n  sd.  

d>0 
	

d>0 

(S and S G  are graded rings. See Section 2.5(a).) We can introduce a generating 
function for the dimensions of the homogeneous components of S G . This is the 
formal power series in an indeterminate t, called the Hilbert series (also called 
the Poincare series, or the Molien series) of the graded ring SG :  

P(t) := 	(dim  SG CI Sd)t d  E Mtn- 
c/-0 

Example 1.8. The Hilbert series of the matrix groups in Examples 1.5 and 1.6 
are given, respectively, by the generating functions: 

1 

(1 — t)(1 — t 2) • • (1 — t n) ' 

 1 + tn(n-1)12 

— t)(1 — t 2) 	(1 — tn)• 



12 	 I Invariants and moduli 

One sees this in the following way. First, if we expand the expression 

1 
(1 — 0-0(1 — 0-2)- • (1 — an) 

as a formal series, the terms form a basis of the infinite-dimensional vector 
space of symmetric polynomials. So, substituting ti for ai  we obtain (i) for the 
Hilbert series of Example 1.5. For Example 1.6, a similar argument gives (ii) 
after noting that 

S G  = C[ai, 	ani 	 , 

where deg A = n(n — 1)/2. 

Note that by a similar argument the full polynomial ring S = 	Sd has 
Hilbert series P(t) = (1 — t)n. In particular, this gives the familiar fact that 
dim Sd = . We will make more systematic use of this idea in the proof 
of Molien's Theorem below. 

The Hilbert series is a very important invariant of the ring S G  which, as these 
examples illustrate, measures its 'size and shape': 

Proposition 1.9. If S G  is generated by homogeneous polynomials 11, . . . ,fr  of 
degrees d1, d,-, then the Hithert series of S G  is the power series expansion 
at t = 0 of a rational function 

F(t)  
P(t) = 

(1— td1)- • (1 — tdr) 

for some F(t) E Z[t]. 

Proof We use induction on r, observing that when r = 1 the ring S G  is just 
C[h] with the Hilbert series 

P(t) = 1 + tdi  t2d1  + • • • = 
1 — td -1  

For r > 1 we consider the (injective complex linear) map S G  --> SG defined 
by h 1-± f — rh. We denote the image by R C S G  and consider the Hilbert 
series for the graded rings R and S G /R. These satisfy 

1 

PSG (t ) = PR(t) + PsG/R(t). 
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On the other hand, dim(S G  fl SL ) = dim(R n sd+d,), so that PR(t) = t dr  PSG (0, 
and hence 

PSG/R(t)  
PSG (t) = 

1 - idr • 

But S G /R is isomorphic to the subring of S generated by the polynomials 
. - • , fr-t, and hence by the inductive hypothesis PsG /R (t) = F(t)1(1 — 

td1 ) • • • (1 — td- -1 ) for some F(t) E Z[t]. 	 El 

(b) Molien's formula 

There is a formula which gives the Hilbert series explicitly for the ring of 
invariants of any finite group. Given an n x n matrix A, we call the polynomial 

det(in  — t A) E C[t] 

the reverse characteristic polynomial of A. Its degree is equal to n minus the 
multiplicity of 0 as an eigenvalue of A. Note that since its constant term is 
always 1, it is invertible in the formal power series ring C[Nl. 

Molien's Theorem 1.10. The ring of invariants S G  C S = C[xi, 	, x,i] of 

any finite group G c GL(n) has a Hilbert series given by: 

1 	1 
	 E CUtit P(t) = 	devn  — t A) 

Before proving this we recall some facts from the representation theory of 
finite groups. First, a linear representation of a group G is a homomorphism 

p : G GL(V) 

from G to the automorphism group G L (V) of a vector space V. (One could also 
allow the case where p is an antihomomorphism. Then the composition with 
the antiautomorphism G --> G, g g-1  is a homomorphism. However, in this 
book we are cotiOerned mainly with invariant elements, so we will not worry 
about the distinction between left- and right-actions.) In our situation, where 
G is a subgroup of GL(n), each homogeneous summand Sa of the polynomial 
ring S becomes such a finite-dimensional representation of G. If V is a finite-
dimensional representation, its character is the map 

g t—> tr p(g). 
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One may consider the invariant subspace: 

V G :-_ {v E V p(g)v = v forall g E G}. 

The dimension of this subspace is precisely the average value of the character: 

Dimension Formula 1.11. 
1 •t--, 

dim V G  =  
'GI gEG  

Proof Consider the averaging map 

1 
E : V —> V , v — Ep(g) v. 

I G I gEG 

This is a linear map which restricts to the identity map on V G  c V and whose 
image is V G . It follows from this that dim V G  = tr E = — x(g). (See 
Exercise 1.1 at the end of the chapter.) 

Proof of Molien's Theorem 1.10. Pick an element A E G, and let {xi, . • • , xn 
be a basis of eigenvectors of A in S i , belonging to eigenvalues al , . . . , an . Note 
that A is diagonalisable since it has finite order (G is finite!). (In fact, for the 
present proof it would be enough for A to be upper triangular.) The reverse 
characteristic polynomial of A is then 

det(in  — t A) = (1 — ait)(1 a2t) • • • (1 — a n t). 

Now consider the formal power series expansion of 

1 
(1— xi)(1 — x2) • • • (1— xn) 

whose terms are precisely the monomials of the ring S. without multiplicity. 
The action of A on this series gives 

1 
(1 — aixi)(1 — a2x2) • • • (1 — anxn) 

from which the trace of A acting on Sd may be read off as the sum of the 
coefficients in degree d. So if we make the substitution x 1  = • = xn = t, we 
see that the character xd(A) of A on Sd is precisely the coefficient of tcl  in the 
expansion of 

1 
(1 — ait)(1 	a2t) • • (1 — ant) 
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In other words, we obtain 

det(in  — tA) 

If we now take the average over G and apply the Dimension Formula 1.11, we 
obtain Molien's formula. 

Example 1.12. The Hilbert series of the invariant ring of Example 1.7 is 

1  
P(t) = 1  I 	1  

2 1 (1 — on 
+ (1 + I. 

When n = 2 this reduces to 

1+t2 	1 - i4  
P(t) = 

(1 — t 2)2 	(1 — t 2)3  

The last expression can also be deduced (see Proposition 1.9) from the fact that 
the invariant ring S G  has three generators, A = x , B = x1x2, C = 4, and one 
relation in degree 4, AC — B 2  = 0. 

(c) Polyhedral groups 

We will consider some examples where G is the symmetry group of a regular 
polyhedron. 

Example 1.13. The quaternion group. The two matrices of order 4 

0 1 
( o i —i) 	( -1 0 ) 

generate a subgroup G c S L(2, C) of order 8, consisting of ±12 and six 
elements of order 4. (These are isomorphic to ±1, ±i, ±j, ±k obeying the rules 
of quatemion multiplication — hence the terminology.) By Molien's Theorem, 
therefore, the invariant ring of G has a Hilbert series equal to 

ii 	 1 	1 	6  1 	1 +  t 6 	1— i' 12  
P(t) = 	 + 

8 (1 — t)2 	(1 + t)2 	1 + t 2  j 	(1 _ 0)2 	(1 _ 0)2(1 _ t6) .  

We can use this fact to determine the structure of the invariant ring. First 
(suggested by the denominator on the right-hand side) we observe two in-
variants of degree 4: 

A = x4  + y4 , 	B = x2 y2 . 

E xd(A)td = 	1 
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These elements generate a subring C[A, B] c SG  with the Hilbert series 

1 
(1 — t4)2.  

Next we observe an invariant of degree 6: 

C = xy(x 4  — y 4). 

Although C is not in C[A, B], its square C2  is, since 

C2  = A2 B —4B 3 . (1.7) 

In fact, by Proposition 1.9, this relation in degree 12 shows that the subring 
C[A, B] ED CC[A, B] C S G  has the same Hilbert series as S G  — so the two 
rings coincide, and we have shown: 

Proposition 1.14. The quaternion group G c SL(2, C) has an invariant 

ring 

S G  = C[A, B, CJ/(C 2  — A 2  B + 4B 3 ), 

where A = x 4  + y4 , B = x 2y 2 , C = xy(x 4  — y 4) E C[X, y]. 	 I: 

00 

0 

Figure 1.5: The degree 6 invariant and the octahedron 
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This example, the quaternion group of order 8, is also the binary dihedral 
group of the 2-gon. The zeros of the degree 6 invariant C, viewed as points of 
the Riemann sphere, are the vertices of a regular octahedron. 

One may consider, in the space with coordinates A, B, C, the surface with 
equation (1.7): the origin is a singular point of this surface, called a rational 
double point of type D4- 

Let us examine these ideas for the case of the binary group of a regular 
icosahedron. 

Figure 1.6: The icosahedron 

Remark 1.15. One can show that every finite subgroup of SL(2, C) is conjugate 
to a subgroup of the special unitary group SU(2). On the other hand, there is 
a natural double cover S U (2) —> S 0 (3) , and it is well known that every finite 
subgroup of S0(3) is cyclic, dihedral or the symmetry group of a Platonic 
solid. We therefore have a nice classification of finite subgroups of SL(2, C), 
of which Examples 1.13 and 1.16 are examples. 0 

Example 1.16. The binary icosahedral group. This is the group G120 C 
SU(2) containing 	whose quotient 

G60 = G120/{± 12} C SU(2)/{±12} = S0(3, R) 

is the rotation group of a regular icosahedron (recall that G60L'j  A5, the alter- 
nating group which permutes five embedded octahedra). The orders of elements 
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in the group G120 are distributed as follows: 

order 1 2 3 4 5 6 10 
no. of elements 1 1 20 30 24 20 24 

Using Molien's Theorem, the Hilbert series is 

p  = 1 	1 	1 
) 120 1 (1 — 	(1 + 
	+ E t2 2t cos 61  + 1 

where the summation is over N = 30 edge rotations with U = 12, N = 20 face 
rotations with U = 7r/3 and another N = 20 with 27/3, and N = 12 vertices 
rotations each, with U = 7/5, 27r/5, 37/5 and 47r/5, respectively. This gives 
an expression 

111 1 	20 	30  
P (t)  = 120 I (1 — 0 ± 2  (1+ 02  1+ t + t2 

+
1 + t 2  

24(t 2  + t/2 + 1) 	20 	24(t2  — t/2 + 1) 

	

+ 
 1 + t + t2  + t3  +t4 	1 — t + t2 	1 - t t2  t3  t4  

which simplifies to 

1 -1- t 3° 	 1 — t 6°  
P(t) = 	  _ t 12)(1 	t20) 	( 1 — t 12)(1 	 t20)(1 	130)* 

Remark 1.17. As in the previous example, the significance of the right-hand 
side is that it suggests the existence of generators of the invariant ring of degrees 
12, 20 and 30 satisfying a single algebraic relation in degree 60. Geometrically, 
we do not have far to look: if we inscribe the icosahedron in a sphere S 2 , 
viewed as the Riemann number sphere CP 1  = C U {oe}, then its vertices will 
determine 12 points of C U {oo}, which are the roots of a polynomial 112 of 
degree 12. Similarly, the midpoints of the edges and the faces are the zero-
sets of polynomials J30 and H20, respectively. This is a general recipe for the 
binary polyhedral groups; for the icosahedron we construct these polynomials 
algebraically next. (See also Klein [4], [5], Schur [26] Chapter II §5 or Popov 
and Vinberg [6].) 

Let ai , 	, cei2 be the coordinates of the 12 vertices, then, in S 2  = C U fool. 
Then the homogeneous polynomial 

12 

f12(X, y) = n(X 	Y) 



1.3 Classical binary invariants 	 19 

is an invariant of G120, its linear factors permuted by the rotations of the icosa-
hedron. By choosing coordinates suitably, in fact, we can write 

fiAx, y) = xy(x l°  + 11x5  y 5  — y 10) .  

The Hessian determinant of f = f1 2 , 

1 
H20(x, y) = 	 121 

fx x fx y 

fyX fyY 

 

= _x20 ± 228 15 5 An A 10 10 x y — 41-V4+X y — 228x 5  y 15  — y20 , 

is then an invariant of degree 20. Moreover, the Jacobian determinant of f = 112 

and H = H20, 

hax, y) = —20 
fx fy 
Hx  Hy  

 

= X" 522x 25 y5  10005x20 y 10  10005x 10y20  522x5  y25  ± y30 , 

is an invariant of degree 30. The polynomials 112, 1120, J30 are pairwise alge-
braically independent but together satisfy the relation 

J2  + H3  = 1728f5 . 

It follows from these computations (i.e. from comparison with our expression 
for the Hiffiert series) that the invariant ring C[x ,120 371 G  is generated by f, H, J. 
To say this in other language, the quotient space A 2 / G120 is isomorphic to the 
surface in A3  with equation 

w2  = 1728u5  — v3 . 

(This is made precise in the discussion of Section 5.1, and in particular in 
Corollary 5.17.) The origin is a singular point of this surface called a rational 
double point of type Eg. In the minimal resolution of this singular point the 
exceptional set is a configuration of eight intersecting IF 1 s whose dual graph is 
the Dynkin diagram Eg. (See Figure 1.7.) 

1.3 Classical binary invariants 

(a) Resultants and discriminants 

Given polynomials of degrees d, e, 

	

(x) = aoxd  aixd-1  + • • • + ad_ix +ad = 	— Ai) 

	

g(x) = box' + b1xe-1  + • • • + be_ix + be = 	— 
(1.8) 



R( f, g) = 

a0 

bo 

a1 

ao 

b1 
1)0  

• • 	• 

al 

• • 	• 
b1 

• • 	• 

• 

ao 

• • 	• 
" • 

• 

bo  

ad 
• • 	• 

al 

be  

• • 

b1 

ad 

• • • • " ad 
, 

be  

- - • 	• • • 	be 
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1_, Dynkin 
diagram 

  

• 

  

Rational 
A21G120  double 

point 

 

Figure 1.7 

 

with aobo 0 0, we set 

R( f, g) = ailbg, no„,_,,,, i ). 

The vanishing of R( f, g) is the condition for the equations f (x) = 0, g(x) = 0 
to have a common root. It follows from Example 1.5 (applied to permutations 
of the variables in the polynomial rings C[Xi, . • • , Xcil and C[pti, • • • , PT]) that 

R( f , g) can be expressed as a polynomial in the coefficients of f and g: 

Lemma-Definition 1.18. The R(f, g) is equal to the (d + e) x (d + e) 

determinant 

and is called the resultant of f and g. 
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Proof First we observe: 

Claim: f, g E C[X] possess a nonconstant common factor if and only if there 
exist nonzero polynomials u, v E C[X], with deg u < deg f and deg v < deg g, 
such that vf + ug:---..-  0. 

One direction is trivial: if f, g have a nonconstant common factor, then we can 
write f = uh, g = vh for some u, v, h E C[X], and these u, v have the required 
properties. In the other direction, let f = p ri i . . . psrs be the unique factorisation 
of f into irreducibles. Then each pli.' divides ug, so pi divides u or g. Since 
deg u < deg f,  some pi  must divide g, and this proves the claim. 

Let C[x], denote the subset of polynomials of degree at most r; this is a 
finite-dimensional vector space with basis 1, x, . . . , xr. The preceding claim 
can be interpreted in terms of a C-linear map: 

pfg  . C[X]11-1 ED C[Xlm-1 -± C[X]n+m-11 	(u, v) i-± vf + ug, 

and says that f, g have a nonconstant common factor if and only if this linear 
map has nonzero kernel. Since it maps between spaces of equal dimension 
n+ m, this is equivalent to the vanishing of det p fg. Now use the standard basis 
of each space to write p Lg as a matrix, to deduce that the determinant of p f,g 

is that given in the lemma. This shows that f and g have a common root if and 
only the resultant vanishes, and the lemma follows easily from this. 0 

Given a single polynomial f (x) as in (1.8), the expression 

D(f)  = ao2d-i n (Ai  

iio.,<, 

ki ) 

is called its discriminant. 

Lemma 1.19. The discriminant of f(x) is equal to the resultant of f(x) and 
its derivative f l(x), 

_ 

D(f)= R(f; 1'). 

Proof Consider the polynomial 

g(x) := f (x  ± 8)  = acil x d ± cod-i +...  ± a di 
ix + ad' ,

I ao -= ao. 



• • • 	• • • ad  

ad  • • • al  
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By Lemma 1.18 we have 

ao al • • • • • • ad 

	

ao ai 	- • • • • • ad 

. 	. 

	

' 
	 • 

ao 	al 	• • • • • - ad 
1 

ao di  • • • - - • ad  

ao ai 	- - • • • • ad' 

• 
' 

ao 	di 	• • • • • • a' d 

	

ao ai 	• • " • • ad 

	

ao 	al • . • 	ad  

• . 	. 	 . 

2d  a TI 0 A i: j X. +8 — A . j ) = 

  

o = Ed  X , al —al 
S 

0 

ao al  
aid —ad 

S 
ai —al  

S 

• • • • 	ad 

ad
,  —ad 

S 

• • .. 

0 dcal 	. • • • • • aid—ad 

e 

Cancelling aoed  and letting s -± 0 now shows that 

ao2d- 1 Fl (x i  ___ A, j  ) = 
dao (d — 1)ai 	• • • 

ao 	al 	- • • • • • ad  

ad-i 

dao 	(d — 1)ai • • - 	ad- i 

dao (d — 1)ai - - 

= R(f, f). 

0 



4..i (d. )x(' y  

i=o 
f 	= (6, • • - , 4.dfiX Y) (1.9) 
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It will be convenient to consider projective coordinates (x : y) E P1  and 
homogeneous polynomials 

f(x, y) = Eai(.)xd 	= d +d  d-1 +(d 
y aox 	aix y 

2)avc

d—  
2  y 2  + -+adyd 

. 

(It is traditional, and useful, to include the binomial coefficients in our forms.) 
Note that cto = 0 is now allowed: in this case, cc = (1: 0) is a zero of f (x, y). 
A multiple root of the equation f(x, y) = 0 is now a common root of the 
equations 

8f 
— (x, y) = —

81

(x, y) = 0, 
8x 	ay 

and so the necessary and sufficient condition for the existence of a multiple root 
is the vanishing of the resultant of the partials: 

R 	, —af ) = o. 
ax ay 

	

We introduce d 1 independent variables 6, 	, 4'd  for the coefficients of 
a general form and write, in the classical notation of Cayley and Sylvester, 

i=0 

Definition 1.20. The resultant 

(

18f 18f'\ 
D(4.) := R 	, ay  

6 (d — 1)41 

4.43 (d — 1)6 	• 

• • • 	• • • 

	

6 (d — 1)6 	• • 	• • • 
1)4.2 	••• 	••• 	 4.(1 

— 	• 	• 	4'd 

• 

	

(d — 1)2 	• 	• • • 

is called the discriminant of the form 0 x, y). 	 0 
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Example 1.21. For the quadratic form 

f(x, y) = 4'0x2  41XY ± 4.2)12  

we get the familiar discriminant 

D(0 

  

41 4.2 
.2 

=O2 - Si • 

   

Example 1.22. The discriminant of the cubic form 

f (x y) = 0x 3  + 36x2Y + 34.2xY 2  + 4.3 y 3  

is 

o gi 4.2 0 
0 	4.0 	4'2 

	

g2 	0 
0 	24'2 4.3 

=(?4?-wq-34.06243+44.?4,-1-46q. 

 

This is equal, in fact, to the discriminant of the quadratic Hessian form 

1 

62  
fxx fxy  

fyx fYY 
= 	- 404'2)x 2  + (64.2 — 4.04.3)XY (41 416)Y 2  

  

We consider next the action of matrices 

g = 	E GL(2) 

on forms (4')x, y) in (1.9). That is, under the coordinate transformation 
(x, y) i-÷ (ax fly,  y x Sy) we obtain a new form, 

(4' gx) = (4-  ax 13y, y x 3y). 

One can expand this and rewrite it as 

gox)  = E 	 (d. )xd _i yi  

i=o 

The coefficients 4i (g) can be written 

4.i (g) = 	A y, 

where is homogeneous of degree d in a, 13, y, 3. 



	
1.3 Classical binary invariants 

	 25 

Proposition 1.23. For all g E GL(2) the discriminant satisfies 

D(g) = (det g)d(d-1)  X D(0. 

Proof Viewing 

d 

	

 
(4' Ox, 1) = 	

(A)

= 

	

i=0 	1  

as an equation of degree d over the rational function field C(40 , . . . , 4.(1), we can 
denote its roots (in a splitting field) by Ai, • • , A. Thus 

(a,  C 1 ) = 0 11(x 	i )7 ) 
i= 1 

and the discriminant is 

= 4e-2  fl (Ai -Ai). 
i, j-5_d 

Transforming by the matrix g 
= ( aY P8) 

E GL(2) gives 

	

(4' ax 13y, yx 3y) = 	 fly — A i (yx + 3y)) 

At 	 3Xi — p 
= (40a, 

—y X i  ay  ) • 

It follows that g transforms the differences (X i  — X j) to 

SAi — 	8Xi fi 	(018  — PY)(Ai — Ai)  

— YAi + a 	+ a (Y Xi — 0(/Ai — a)' 

and hence 

D(4.0  = 	a,  y)2d_2  n  (a8 — PY)(Xi — Xi)  = D(4 )(det g)d(d-1) . 
1,f<d (Y Xi  - a)(Y 	a)  

0 

More generally, we can consider arbitrary homogeneous polynomials in the 
coefficients 4.0 , 	, 

	

Definition 1.24. If a homogeneous polynomial F(40 , 	, 4.d ) satisfies 

	

F (4' g) = F (4) , 	for all g E S L(2), 

then F is called a classical binary invariant. 
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The set of binary forms of degree d is a vector space Vd of dimension 
d + 1 on which the general linear group G L(2) acts by 4 1—* 4. g. (The spaces 
Vo, V1, V2, ... are all the irreducible linear representations of G L(2) and will 
reappear in Chapter 4; see Section 4.4.) This induces an action of G L(2) on 
the polynomial ring S = C[6, • •• , di, and a classical binary invariant (of 
degree e) is an invariant homogeneous polynomial for the restriction of this 
action to S L (2); that is, it is an element of SesL(2) . Proposition 1.23 says that the 
discriminant is a classical binary invariant of degree 24 — 2. 

(b) Binary quartics 

The general binary quartic form, with variable coefficients 6, 4 .1, 2, 3, 49 

looks like: 

(40x, Y) = 40x 4  + 44'ix 3 y + 64.2x2y2 46xy3 4.4y4 	(1.10) 

As we shall see in Chapter 4 (see Proposition 4.69), the classical invariant ring 
C[6, 4.1, 4.2, 6, 44] 51(2)  has the Hilbert series 

1 
P(t) = 

(1 — t 2)(1 — t 3 ) .  

In particular, this indicates (see Proposition 1.9) the existence of invariants of 
degree 2 and 3; we can verify this as follows. We make a change of variables 
U = x2, V = 2xy, W = y2  and note that 

x4 = —2 ,  U 2x 3  y = UV, 4x 2  y 2  = V2  = 4U W , 2xy 3 VW, y4  = W2 . 

It follows that the quartic equation (4 Ox, y) = 0 transforms to a pair of simul-
taneous quadratic equations in U,V,W: 

4U W — V 2  = O. 

These two quadratic forms are represented, respectively, by the symmetric 
matrices 

( 4o 41 4'2 
4.1 6 4.3 ) 

3 44 
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which have relative characteristic polynomial 

(

4o 41 42 
41 42 43 ) + x 	—1 
42 43 44 	( 2  

4o 	41 	42 + 2A, 
i 	4'2 — X 43 

+ 2X 4'3 	44 

det 

) 

= 4x3  — g2 ()A. — g3(4'). 

Proposition 1.25. The coefficients 

g2() = 
4 42 
42 44 

—4 4 1 42 

42 43 
= 444 — 464.3  ± 341 ,  

     

g3(4') = 
4o 41 42 
6 42 43 
42 43 44 

t t2 4.t 	t t t 	t 3 = 64244 — 	2 _L l 505 3  — 1.,4 i h-s1s23 — 5 2 , 

   

are classical invariants of binary quartics. 

(For an interpretation of g2 and g3, see Remark 1.29 at the end of this section.) 

Proof A matrix 

g = (Y ) E SL(2) 

transforms U, V ,W into 

a2 U +apV ± 02 W, 2ayU -I- (0- 4 - 13y)V +213SW, y 2 U +y817  +32 W, 

leaving the quadratic 4U W — V 2  invariant (it gets multiplied by (det g)2  = 1). 
In other words, S L(2) acts by orthogonal transformations of (U, V, W)-space — 
that is, S L(2) -÷ S 0 (3) — with respect to the inner product 

( 2 —1 2  ) ' 

In particular, it acts with determinant 1. (Not —1, since SL (2) is connected.) 
The matrix 

4 
T (X) = (4i 	4' 2, — X 43 

42 + 2X 3 	44 
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transforms to 

	

( a2 	La y 
a a3 ± 13y 

	

p2 	208 

y 2 	 a2 

vs ) T (X) (2ay 
82 	 y 2 

p2 

253 . 
82 

It follows that the transformation leaves the relative characteristic polynomial, 
the determinant of T (?), invariant. 	 0 

Remarks 1.26. 
(i) Geometrically, the characteristic equation 4X 3  — g2()X — g3(4) = 0 de-

termines the three reducible elements (line pairs) in the pencil of plane 
conics 

6U2  + 2i UV 	— )00 	2X)UW 26V W 44W2  = 

— corresponding, in other words, to the linear combinations T(X) of the 
two quadratic forms. 

Figure 1.8: Reducible elements in the pencil of conics 

(ii) Taking a root X of the cubic characteristic polynomial, the corresponding 
quadratic form factorises as a product of linear forms. The simultane-
ous quadratic equations for U, V, W therefore reduce to a pair of inde-
pendent quadratic equations, which can be solved. This gives a method of 
solution of the general quartic equation. 
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(iii) In Chapter 11 we will show that the Jacobian of the elliptic curve 

r 2  = f (x, y) 

determined by the binary quartic f (x , y) = (40x, y) has the equation 

r2 = 4x3 _ g2(0,  _ g3  (4. ) .  

(See Section 11.3(c). Another good reference is Cassels [1].) 

The discriminant of the quartic form (1.10) can be expressed in terms of the 
invariants g2 (4) and g3(4): 

6 341 36 43 
6 3 1 34.2 43 

6 341 32, 6 
1 34.2 36 	4 

D(0 = 

4. 1 34'2 36 	44 
4. 1 3 2 36 4.4 

= g2(4)3  — 27g3(4) 2 . 

Note that under the action of a scalar matrix E GL(2) the expres- 

sions g2(4), g3() are multiplied by a 8 , a 12 , respectively. Consequently, the 
expression 

g2(03  
J(4)= D(4. ) 

is invariant under the action of GL(2) and is finite-valued on binary quartics 
with no multiple factors. GL(2)-invariance means that the function 

I quartics without} 	
3 -->- J: 

multiple factors 
-± C, 	(a 0 x, y),- g2(a)1D(a), 

is constant on the orbits of GL(2), that is, it maps each orbit to a single point 
of the line. Conversely (and as we would expect, since the space of quartics is 
5-dimensional and GL(2) is 4-dimensional): 

Proposition 1.27. The fibres of J are precisely the orbits of GL(2). 

Proof We observe that every binary quartic without multiple factors is equiv-
alent under GL(2) to the form 

(x2 + y2)2 _ 4x2 _ y2)2 
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for suitable choice of X E C. To see this, one can first change coordinates so 
that the four zeros of the quartic are 0, oo and some b, b-1  E C. Next, applying 
the Cayley transformation, z (z — 1)/(z ± 1), these four zeros become 
-1, 1, c, -c E C. The quartic has therefore been transformed to 

(x2 y2)(x2 c2 y2) .  

Finally, this can be brought to the form (1.11) by resealing y suitably. 
For the quartic form (1.11), the function J takes the value 

4(X2  - X + 1)3 
 27X2 (X - 1)2  

and this expression has the property that 

+ 1)3 	4(X2  - X ± 1)3  
2711201  1)2 — 27x2(A ___ 1)2 

for precisely the six values 

1 	1 	1 
itt 	 1 	

X 	
1 

1 - X •
X, 	 (1.12) 

To complete the proof it therefore suffices to show that for each of these au, the 
form  (x2+ y2)2_ ia(x2_ 2\2 y ) is equivalent under G L (2) to (1.11). For example, 
the transformation 

takes (1.11) to 

(x 2 + y2)2 	(x2 y2)2 .  

Likewise, 

1 
x 

V1-2 (  

transforms (1.11) to 

1 
y± —(x - y) 

Ni2 

(A  1)(x2 ± y2)2 x(x2 

The remaining cases are similar. (See Exercise 1.3). 	 fl 

What we have shown here is that the affine line A l-  C (see Section 3.1(a)) 
is a parameter space for GL(2)-equivalence classes of binary quartics without 
repeated factors. However, this was possible because we had a particularly 
concrete description of the invariant ring, and such cases are rare. Indeed, the 
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above proof is also very special to the case of binary quartics. Nevertheless, 
it is still possible to construct moduli spaces in much more general situations, 
and it will be our aim to show this in the rest of this book. 

It is also important to understand the orbits under S L(2). Consider the map 

{binary quartics} 	A2 , 	(a 0x , y) 	(g2(a), g3 (a)). 

Since g2 and g3 are classical invariants, tlf maps SL(2)-equivalence classes to 
points of the plane, and conversely each fibre is a single orbit (as before, this is 
suggested by a dimension count: dim(quartics) — dim SL(2) = 5 — 3 = 2): 

Proposition 1.28. Two binary quartics (a x, y), (b x, y) without multiple 
factors are equivalent under the action of S L(2) if and only if (g2(a), g3(a)) = 

(g2(b), g3(b)). 0 

This follows from Proposition 1.27 together with the general theory of 
Chapter 5 (see Example 5.25). However, if both (a x, y) and (b x, y) have re-
peated factors, then Proposition 1.28 no longer holds. For example, the quartics 
x2 y2  and x 2 (y2  — x 2) both map to the point (3, 1), although they are inequiva-
lent under S L(2). Similarly the three forms, x 3  y , x 4  and 0 all map to the origin 

g2 = g3 = 0 but belong to distinct orbits. 

2 	2 
)( 	 
211  )( 

3 	1 
4 )( 	 

x2y2 =0 

x2(y2 _ x2) =0 

x3y = 
x4 =0 
0=0 

Figure 1.9 

  

This phenomenon too will be explained in a more general setting in Chapter 5. 

Remark 1.29. Here is one interpretation of the invariants g2 and g3. Iden- 

tify a binary quartic, up to scalar, with its (unordered) zero set of four points 
Z2, z3, z4 in the projective line TP = C U fool. Then the number ?k, appearing 



J = j o 
(cross ratio) 
function 	' 

j : Pl  -- Pl , X 1---> 27 x 2 ( x _ 1)2 
4(X2  — X + 1)3  
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in the proof of Proposition 1.27 is — up to the ordering of the points — just the 
classical cross-ratio function 

= 
(Z 1 - Z 3 ) ( Z 2 - Z4)  

A, 	 . 
(Z1 - Z4)(Z2 - Z3) 

When the points are reordered, X is invariant under the Klein subgroup of the 
permutation group S4, and its orbit under the quotient S 4/Klein:',' S3 is the 
set (1.12). We can express this by saying that the function J on binary quartics 
factorises as 

where 

is a Galois extension with Galois group S3. This map j has three branch points 
0, 1, 00 E Pl . We see that j = oo if and only if two of zi, z2, z3, z4 coincide, 
while: 

j = 1 < 	> g2 = 0 

(that is, the cross ratio is —1,2 or 1 and zi, z2, z3, z4 are said to be anharmonic), 
and 

j = 0 < 	> g3 = 0 

(the cross ratio is —a) or —(2)2  where (,o3  = 1, and zi , z2, z3, z4 are said to be 
equianharmonic). 	 0 

1.4 Plane curves 

While polynomials are algebraic objects, they acquire geometrical shape from 
their interpretation as plane curves, surfaces and hypersurfaces. 

(a) Affine plane curves 

For example, the zero-set of f (x , y) = y2 ... x2 _ .X3  (Figure 1.10) highlights 
at once certain features. First, one observes that there is a singular point. Recall 
the following well-known fact. 
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Figure 1.10: The affine plane curve y2  – x2  – x 3  = 0 

Implicit Function Theorem 1.30. If f (a, b) = 0 and g(a, b) 0, then the 
condition f (x , y) = 0 expresses y locally as a function of x. That is, there exist 
positive real numbers E, 8 > 0 and an analytic function 

Y Da,E  

where Da , E 	{z E C 1 1Z - al < E}, satisfying f (z, Y(z)) = 0 and such that 
the map 

Da , E 	Da  , c  x 
	 z 	(z, Y(z)) 

is an isomorphism to a neighbourhood of the point (a, b) in the curve C: 
f (x, y) = O. 

If the other partial derivative (a, b) is nonzero, then similarly x can be 
expressed locally as a function of y. If in this way one of x or y can be taken as 
a local coordinate on the curve, then the point (a, b) is said to be a nonsingular 
point; otherwise it is said to be a singular point of the curve. 

Definition 1.31: -A Point (a, b) on the plane curve f (x , y) = 0 is called a 
singular point if 

af 	af 
, b) = —(a, b) = O. 

ay 
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By definition, the set of singular points of the curve is the set of common 
zeros of the three polynomials f (x , y), afiax, v ./ ay . 

y2 Example 1.32. In the case f (x , y) = 	___ x2 x3 of Figure 1.10, the simul- 
taneous equations 

y2 _ x2 _ x3 = —2x — 3x 2  = 2y = 0 

have only one solution (0, 0), which is the unique singular point of the 
curve. 	 0 

Consider the Taylor expansion at (a, b) of the polynomial in Definition 1.31: 

f (x , y) = f (a, b) 

+(x — a)-air  (a, b) (y — b)—
af  
ay (a, b) ax 

((x— a)2 	b) + 2(x — a)(y b)  a2  f   (a, b) 
2 	8x2 	 ax ay 

(y b) 2  a2f2  (a, t)) 
ay  

• . 

The point (a, b) is a singular point when the terms up to degree 1 in this 
expansion vanish. This has the following generalisation. 

Definition 1.33. A point (a, b) on the curve C : f (x , y) = 0 is said to have 
multiplicity m on C if the partial derivatives of f (x , y) all vanish at (a, b) up 
to degree m — 1, 

al-FJ f  

+9 xi ayi 
(a, b) = 0, 0 < 	j < m — 1, 

but there exists a partial derivative of order m which is nonzero at (a, b). 

The simplest kind of singular point is a point of multiplicity 2. In this case 
we can consider the quadratic equation 

a2f 	a2f 	
82  - x  a ,0 +207 	(am 	2 1 +77 ,(a, b) = 0 

ax ay 	ayL 

with coefficients as in the (nonvanishing) degree 2 term in the Taylor expansion. 
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Definition 1.34. A point (a, b) at which the curve C has multiplicity 2 and the 
quadratic equation above does not have a repeated root is called an ordinary 
double point. 	 El 

Example 1.32 has an ordinary double point at the origin. An example of 
a curve with a double point (that is, a point of multiplicity 2) which is not 
ordinary is 

y2 = xn+1 	n > 2. 

This is called a simple singularity of type A. When n = 2 it is called a cusp. 

(b) Projective plane curves 

Next, instead of a polynomial in two variables f (x, y), we shall consider the 
geometry of a homogeneous polynomial in three variables 

f (x, y, z) = E k 
aijkX X X , 

id-j+k=d 

aijk E C. 

If f (a, b, c) = 0, then f (aa, ab, ac) = 0 for any nonzero scalar a E C. It is 
therefore natural, given a homogeneous polynomial, to consider the zero-set 

C : f (x , y, z) = 0 

as defining a subset of the projective plane 

P2  = {(a b : c) I (a, b, c) 	(0, 0, 0)1. 

The projective plane P 2  is covered by three affine planes 

= {(1 b : c)}, 	U2 = {(a : : c)} , 	U3 = {(a : b : 1 )}. 

Consequently, the projective plane curve C C P2  is obtained by gluing the three 
affine plane curves 

	

A2  U1 	C1: f (1, y , z) = 0 
,A 2  U2 D C2: f (x , 1, z) = 0 
A 2  L' U3 D C3: f (x , y , 1) = 0. 

(Gluing, in general, will be explained in Chapter 3.) 

y=  2z  _ x 2z  

	

Example 1.35. Let f (x , y, z) 	 — x 3 . The projective plane curve 

C: y2  z — x 2  z — x 3  = 0 



u2  = P2  - Ly  u3  = IP2  - Lz  

36 	 1 Invariants and moduli 

does not pass through the point (1: 0 : 0) and is therefore obtained by gluing 
the two affine curves 

U2 D C2: 	X 2Z - x 3  = 0 
D  c3 y 2 x2 x3 = 0 

via the isomorphism 

C2 - {R} 	C3 - {P, Q} , 
	(x, Z) I--> (X/Z, 1/Z), 

where P = fx = y = 	Q = {x = —1, y 0} , R = {x = z = 0}. (See 
Figure 1.11.) 

Figure 1.11: The projective plane curve y2 z — x2 z — x 3  = 0 

The singular points of the projective curve C c P2  are just the singular points 
of the affine curves Ci . As we have seen in Example 1.32, C3 has the origin as its 
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only singular point. The curve C2 is nonsingular. So in this example, C is a cubic 
curve with an ordinary double point at (0: 0: 1) and nonsingular elsewhere. 

The following fact is very convenient for locating the singular points of a 
projective plane curve directly from the homogeneous polynomial f (x , y, z). 

Proposition 1.36. The singular points (a : b : c) of the plane curve C : 

f (x , y, z) = 0 are the common zeros of the three partial derivatives: 

af y-x (a,b,c). —
af

(a, b, c) = —(a, b, c) = 0. 
ay 	az 

Proof Suppose that the polynomial f (x , y, z) has degree d. Then f satisfies 

Euler's identity: 

af 	af 	af 
x -a  —x  + y—ay  + z—az  = d • f (x, y, z). 

It follows that the zero-set of the partials in the proposition coincides with the 
zero-set of the polynomials 

	

a f 	af 
f(x, y, z), 	' ' —(x, y z) 	—(x, y, z). 

	

ax 	ay  
In the affine plane U3, this is just the set of singular points of the curve 

C3 = C 11 U3. Similarly, the zeros in 1/1 and U2 are the singular points of C1 

and C2. 	 0 

In the example f (x , y, z) = y 2z — x 2z — x 3 , the singular points are found 

by solving the simultaneous equations 

—2x z — 3x2 = 2yz  = y2 x2 = 0,  

and the only solution is (0 : 0: 1). 
The following can be proved in much the same way. 

Proposition 1.37. A point (a : b : c) E P2  has multiplicity > m on the curve 

C: f (x, y, z) = 0 if and only if all partials of order m —I vanish at (a : b: c), 

am-i f  

axtayi-azk
(a, b, c) = 0, i+j-1-k=m —1. 

CI 

Just as in Euclidean geometry one investigates properties of figures which are 
invariant under rotations and translations, so in projective geometry one studies 
properties that are invariant under projective transformations, or, to say the same 
thing, properties which do not depend on a choice of projective coordinates. 
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In the case of a projective plane curve C : f(x, y, z) = 0, performing a 
projective transformation — or, equivalently, changing to a different system of 
homogeneous coordinates — gives a curve with defining equation 

f m  (x, y, z) = f(ax + by + cz, a' x + LI)) + c' z, a" x + b"y + c" z) 	(1.13) 

for some invertible matrix 

( a 	c 
M = a b' c' E G L(3, C). 

a" b" b c " 

Thus, the projective geometry of plane curves amounts to the study of properties 
of homogeneous polynomials which are invariant under transformations coming 
from invertible matrices in this manner. A typical example of such a property is 
singularity. Another example is irreducibility: a curve is said to be irreducible 
if its defining equation does not factorise into polynomials of lower degree. 

Definition 1.38. Two plane curves are said to projectively equivalent if their 
defining equations are transformed into each other by some invertible matrix 
M E GL(3, C). 	 fl 

Clearly projective equivalence is an equivalence relation, and in fact the 
classification of plane curves of degree 2 up to this equivalence is rather simpler 
than the problem of Section 1.1. A projective plane curve of degree 2 can be 
written 

C : anx2  a22Y 2 a 7  + -33- 2  + 2a12xy 2a13xz 2a23yz 0. 

If we take the coefficients as entries of a symmetric matrix 

( an ail a13 
A = a21 an a23 / 

a3 1  an a33 
= aji, 

then the defining equation of the curve can be expressed in matrix form: 

(x , y , z)A (y) = 0. 

The change of coordinates (1.13) transforms the matrix A to 

	

( a al aft 	a 	b 	c 
Mt  AM = b b' b" A a' b' c' 

	

c c l cII 	al,

) 

 b ff c” 
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Consequently, we obtain the following from well-known facts of linear algebra. 

Proposition 1.39. Over the complex field C the projective equivalence class of 
a plane conic is determined by the rank of its defining symmetric matrix. 	0 

This means that in projective geometry there are only three equivalence 
classes of conic, of ranks 3, 2 and 1. A rank 3 conic is projectively equivalent 
to xz — y 2  = 0. Rank 2 is equivalent to xz = 0 and is therefore a union of two 
distinct lines. The rank 1 case is equivalent to y 2  = 0 and is therefore a double 
line. 

Rank 3 Rank 2 

Figure 1.12: Conics over C 

Rank! 

In particular we see that, for degree 2 curves, being reducible is equivalent 
to being singular — however, this is a feature special to conics. Let us classify 
singular irreducible plane curves of degree 3. One has already been seen in 
Example 1.35, and there exists one other type. 

Proposition 1.40. An irreducible plane cubic curve which has a singular point 
is projectively equivalent to one of the following: 

(i) y2z  = x 3 ;  

(ii) y2z  = x3 _ x2z.  

Proof Choose homogeneous coordinates so that the singular point is (0: 0: 1). 
Then the defining equation f (x , y, z) of the curve C cannot include the mono-
mials Z 3 , XZ 2 , yZ2  and so is of the form 

- f(x, y, z) = zq(x, y)+ d(x, y) 

for some forms q of degree 2 and d of degree 3. By irreducibility, the quadratic 
form q(x , y) is nonzero, and hence by making a linear transformation of the 
coordinates x, y it can be assumed to be one of 

q(x, y) = xy, y 2 . 
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In the first case the cubic form d(x, y) must contain both monomials x 3 , y 3  
(otherwise C is reducible). Making a coordinate change z F--- z -I- ax + by gives 

f(x, y, z) = xyz + (d(x , y) + ax 2y + bxy 2). 

By choosing the coefficients a, b suitably we can bring the bracket to the cube 
of a linear form, and hence the curve is projectively equivalent to type (ii). 

In the second case, d(x, y) must include the monomial x 3 . Changing coor-
dinates by x I--> X ± ky for a suitable choice of coefficient k, one can kill the 
term x 2y in d(x, y) and so obtain 

f(x,y,z)= zy 2  + (ax3  + bxy2  + cy3) = y2(z + bx + cy) + ax3  . 

If we now take as new coordinates ,N3iiix, y and z + bx + cy, then the equation 
takes the form (i). 	 0 

U3  = P2  - 4 	\ 
	

U2 = P2  - Ly  
R 

Figure 1.13: The projective curve y 2z — x 3  = 0 



A > 0 	 A=O 

wi + 0)2 

W2 
co l  
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Case (i) is the gluing of two affine cubics 

112 3 C2: = 

U33 C3 y2  = x 3  

via the isomorphism 

C2 — {R} 	C3 — {P}, 	(x, z) 	(x/z, 1 /z), 

where P = = y = 01 and R = {x = z = 0}. 

1.5 Period parallelograms and cubic curves 

The first plane curves one encounters which have moduli in a meaningful sense 
are the cubics. Changing our point of view somewhat, we shall approach these 
in this section from the direction of doubly periodic complex functions. 

(a) Invariants of a lattice 

Consider a parallelogram in the complex plane C with one vertex at the origin. 
The four vertices are then 0, (01, (02, CO1 ± CO2 E C. 

Figure 1.14: Oriented area 

The area of this parallelogram is equal to the absolute value of the number 

(01(02 — (01(02 
A = Im(Coico2) = 

called the oriented area. The set of parallelograms with positive oriented area 
is parametrised by 

'26 = t((01, (02) I A(coi , (02) > 0} c C2 . 

When A 0 0 the complex plane is tesselated by the parallelogram and its 
translates by integer multiples of co l  and co2. The set of vertices of all the 



• 

• Origin 

• 
• 

• • 
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translated parallelograms then form a rank 2 free abelian subgroup of C called a 
lattice. This lattice is uniquely determined by the parallelogram, but the converse 
is not true. For a given lattice, giving a tesselating parallelogram is equivalent 
to specifying a Z-basis. 

• 
• 

• 	 • 
• 	 • 

• 

• 
• 

• 
• 

• 
• 

Figure 1.15: Fundamental domains of a lattice. 

To say this another way, lattices in C are parametrised by the quotient space 
of the action of G L(2, Z) on C2  by 

b 
(col, co2) 	(awi  bw2, coh dw 	

( a 
2), 	 E G L(2, Z). 

d 

If we restrict to parallelograms with positive oriented area, that is, to the open 
set i c C 2, then we have an action of the modular group S L(2, Z), and the 
quotient .b 1 S L(2, Z) is a parameter space for lattices. 

S L(2, Z) is an infinite discrete group, neither finite nor connected. Neverthe-
less, the quotient S5/SL(2, Z) can be constructed using invariant forms — that is, 
invariant analytic functions — on The most basic of these are the Eisenstein 
series, for each even number 2k> 4, 

G2k (col , (02) = E (n, 1 
(n,n)(0,0)\,..(014-tuo2)2k 

• 

One can write this as a function of the lattice F C C as 

1 
G2k(n=  

00yEF 

(This series is absolutely convergent as soon as 2k > 3. Note, moreover, that if 
2k is replaced by an odd number, then G2k vanishes identically.) 
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Definition 1.41. An SL(2, Z)-invariant holomorphic function F(co i  , ar2) on b 
which satisfies, for all a 

F(occoi , aco2) = a w  F(0)1, (02) 

is called an automorphic function of weight w (in homogeneous form). 	0 

Remarks 1.42. 
(i) Multiplication of a lattice r by a nonzero complex number a e C cor-

responds to making a rotation together with a dilation (or contraction). 
The action of C* by r f---> ar commutes with that of the modular group 
SL(2, Z). 

(ii) By restricting to w i  = 1, co2 = v, an automorphic function of weight w 
determines a holomorphic function f (t) on the upper half-plane 

b = fr I Inrr >01 

which satisfies 
± bt 

f (r) = (c ± dr)-w f 
(a \ 

c ± dr ) . 

Conversely, given a function f(r) satisfying this relation, the function 

F(a)i , 0)2) = wi w  f ( w2  0)1 ) 

is an automorphic function of weight w. The definition above is therefore 
equivalent to the notion of a (nonhomogeneous) automorphic form in one 
variable. 

(iii) The first examples of automorphic forms are the Eisenstein series G2k, of 
weight 2k. One can show (see, for example, Serre [7], chapter 7) that the 
ring of all automorphic forms (that is, the ring of all invariant holomorphic 
functions on .b) has a Hilbert series equal to 

1 

(1— t4)(1 — t 6) . 

 It follows from Proposition 1.9 that the ring is generated by G4 and 
G6 . 	

.....,, 	 - - ' N 	 E 

Consider now the holomorphic map 

(0)1, 0)2) 1--> (60G4 (0)1, 0)2), 1 40G6(04, (02)). 

Clearly this map factors through the quotient space (that is, the quotient complex 
manifold) b/ SL(2, Z). 
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Theorem 1.43. The holomorphic map 

'-'1 ,9L(2, Z) -->- C 2  , 	[11 1---> (u, v) = (60G4(F), 140G6(n) 

is a bijection to the open set u 3  — 27v2  0 0. 

(b) The Weierstrass pfunction 

To prove Theorem 1.43 we shall make use of the Weierstrass 9 function 

P(z) = P(z; wi , (02) 

or, alternatively, 

= 
1 

--i+ E 
Z 	(m,n)0(0,0) 

1 1 1 (z — mot — n(02)2 (mcoi ± nc02)2 	' 

1 	 1 	1  
y21 Z 	00y€1-  vs' 

p(z) is a doubly periodic meromorphic function, that is, 

gd(z ± toi) = P(z +6)2) = 

with a double pole at each lattice point and regular elsewhere. Moreover, its 
Laurent expansion at the origin is given by 

1 
p(z) = —2- + 2(2n -I- 1)G272+2(r)z2n  • 

Z 	n=1 

(Thus, as a generating function for the Eisenstein automorphic forms, 
p(z; w1, co2) ties together the moduli r plane and the doubly periodic z plane.) 

The following properties of doubly periodic functions are fundamental. 

Liouville's Theorem 1.44. Let f(z) be a doubly periodic meromor -phic func-
tion on the complex plane. 

(i) If f (z) is holomorphic everywhere, then it is constant. 
(ii) The sum of the residues of f (z) over any period parallelogram is zero. 
(iii) Over any period parallelogram f (z) has the same number of poles as 

zeros. 
(iv) In a given period parallelogram, suppose that f (z) has zeros ui, . • • , un 

and poles v1, ... , vn . Then 

ui+•-•+un+vi+•••+vn e r. 
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Note that in parts (iii) and (iv), poles and zeros are to be counted with their 
multiplicities. 

Proof For (i), observe that an entire doubly periodic function is bounded, and 
therefore constant. Statements (ii), (iii) and (iv) are obtained by integrating 

fi(z) 	zf'(z)  
f (z), 

f (z) 	1(z)'  

	

respectively, around the boundary of a period parallelogram. 	 0 

The derivative of p(z) is 

p'(z) = —2  (7
1  ) 

, E _ y)3 
()AtEr 

= — — 	2n(2n 1)G2,4-2(nz2n-1. 
Z 3  

This is a doubly periodic meromorphic function with a triple pole at each lattice 
point and regular elsewhere. Let g 2(F) = 60G4(F), g3 (F) = 140G6(F), and 
let f(z) = p/ (z) 2  — 4p(z)3  g2(F)p(z) g 3 (F). Then, if one computes the 
Laurent expansion of (z) at the origin, one finds that (z) is holomorphic at 
the origin and vanishes there. But (z) is doubly periodic and holomorphic 
away from the lattice points, so by Liouville's Theorem 1.44(i) we obtain the 
identity 

= 4p(z)3  - g2(np(z) - g3(r). 	 (1.14) 

Lemma 1.45. If f (X , Y) is a polynomial in two variables which vanishes when 

X = p(z), Y = p'(z), then f (X, Y) is divisible by Y2 — 4X3 —g2(F)X —g3 (F). 

Proof Viewing f (X, Y) as a polynomial in Y, let r(X, Y) be the remainder on 
division by Y2  — 4X3  g2(F)X — g3 (F). This has degree at most 1 in Y and 
has the property that r,(9(z), '(z))-= 0. On the other hand, p'(z) is an odd 
function and so cannot be expressed as a rational function of the even function 
p(z). Hence r(X, Y) is zero. 

Lemma 1.46. The cubic equation 4X3  — g2X — g3 = 0 corresponding to the 

right-hand side of (1.14) has no repeated root. In particular, its discriminant 

— 27g3 is nonzero. 

n=1 
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Proof If a E C were a repeated root, then we could write (1.14) as 

pi(z)2  = 4(p(z) — a)2(p(z) + 2a), 

and hence 

p'(z)  ) 2 

 

4(6o(z) + 2a). 

This implies that the function 9'(z)/(tp(z)— a) is doubly periodic with a simple 
pole at lattice points and regular elsewhere; but this contradicts part (ii) of 
Liouville's Theorem. 

Proof of Theorem 1.43. Differentiating both sides of (1.14) gives 

911 (z) = 6p(z)2  — 	 (1.15) 

Computing the Laurent expansion at the origin of each side of this equation, 
we obtain 

2 

	

+ 	) 

k=2 	3 	
G2kZ 	=

2k-4 ( 	(2k — 1)G2kz 2" — 5G4, 
1  t°  

Z2 k=2 

cc  12k — 1 1 

and comparing coefficients yields a recurrence relation: 

3 

	

G2k = 	 E (2i — 1)(2j — 1)G2iG2i, k > 4. 
(2k — 1)(2k ± 1)(k — 3) ,,,=„ 

(1.16) 

It follows from this that all G2k for k > 4 can be expressed as polynomials in 
G4 and G6. For example, 

G8 = 	 Gm = A.G4G6. 

Now, given two lattices F, r, if 

G4(r) = G4(r), 	G6(r) = 

then by the identity theorem it follows that tp(z; r) = tp(z; int) on the whole 
complex plane. The Weierstrass function determines the lattice as the set of its 
poles, and so F = F'. This shows that the map in Theorem 1.43 is injective. 
That its image is in the complement of the curve u 3  — 27v 2  = 0 follows from 
Lemma 1.46. Surjectivity on this open set follows from results of Chapter 9 (see 
Section 9.6). 
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(c) The pfunction and cubic curves 

Let us consider the holomorphic map 

p2 , 	z 	(tp(z) : p'(z) : 1). 	 (1.17) 

Double periodicity means that this map factors down to the Riemann surface 
C/ F. Moreover, (1.14) implies that the image is contained in the cubic curve 

Y2 Z = 4X 3  — g2XZ 2  — g3Z 3 	 (1.18) 

The origin z = 0 is a double pole of p(z) and a triple pole of p'(z), and so it 
maps to the point (0 : 1: 0) e P 2 . Moreover, this point is an inflection point 

of the curve; that is, its tangent line Z = 0 meets the curve with multiplicity 3 
here and has no further intersection points. 

FCC 

Figure 1.16: A complex cubic curve 

The cubic curve (1.18) is nonsingular by Proposition 1.36 and Lemma 1.46. 
Both the quotient CL F and the cubic are compact Riemann surfaces, and so 
the map is an isomorphism. 

Example 1.47. Let col = 1. If co2 = 	then G6(r) = o; so the 
Riemann surface C/ r is isomorphic to the curve Y 2 Z = 4X3  — X Z2. If 
(02 = (-14- —N/)/2, then G4(F) = 0, and it is isomorphic to the curve Y 2 Z = 
4X3  — Z3. 
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The curve (1.18) can also be viewed as the Riemann surface of the multivalued 
function V4z3  — g2z g3. By considering (elliptic) integrals 

dz 

V4z3  g2z — g3 

along closed paths a on the surface we recover our lattice in the complex plane. 

Figure 1.17: The Riemann surface of .V4z 3  — g2z — g3 . el , e2 , e3  are the three roots 
of 4z 3  g2z — g3  = 0. 

This is the subgroup F c C consisting of values of the integral taken along 
all (homology classes of) loops a and defines a mapping (g2, g3 ) which is 
the inverse map of the map of Theorem 1.43. Indeed, this is a strengthening of 
the theorem, linking in a very pretty way automorphic functions with periodic 
maps. Extensions of this sort of discussion to more general algebraic varieties 
are one of the themes at the heart of moduli theory. 

Finally, let us look at the relationship of the go function with functions on 
degenerations of the cubic curve. First, consider a complex multiple al' of the 
lattice F and its limit as la! -± cc. The Eisenstein constants g(F) tend to zero, 
and the p function and its derivative approach 

1 	 2 
p(z) ---> -7, 	p'(z) 

Thus, in the limit, the holomorphic map (1.17) becomes 

z3). 

The image of this map is the singular cubic curve 

Y2 Z = 4X3  

with its singular point (0: 0: 1) removed. 



	
1.5 Period parallelograms and cubic curves 	 49 

Next, we consider the effect of fixing one period, say, col = Tr, and letting 

the other go to infinity, that is, 0)2 1--> kco2, and we take the limit as k —)- co. 

The behaviour of the 9 function and its derivative is then: 

1 	 1 	1 

z 	nez (z — n7)2 
	

(n7r)2  ' 

1 	1 
= 

sin2  z 3  

9i(z) ---> 
—2 cos z 

 

sin3  z ' 

and the map (1.17) becomes 

[ 1 	1 —2 cos z 

sin2  z 	3 	sin3  z 

This map descends to the quotient C/Zin - l',' C*, and its image is the singular 

cubic curve 

y2 z  = 4  (x  + ji_ z) (x  iz) 

with its singular point (-1/3 : 0: 1) removed. 
In Proposition 1.40 the curve of part (i) corresponds to the origin of the (g2 , g3) 

plane, while the curve of part (ii) corresponds to the curve gi — 27gi = 0. The 
preceding discussion shows that in addition the 9 function behaves well under 

degeneration to these cases. 

Remark 1.48. A nonsingular cubic curve always has exactly nine points of 
inflection. If we choose projective coordinates so that one of these is (0: 1: 0) 

with tangent line Z = 0, then the defining equation of the curve takes the form 
(1.18). On the other hand, it is also possible to choose coordinates in such a 

way that the nine inflection points are 

(-1 :01, : 0), 	(0 : —1: (II), 	(al : 0 : —1), 

for i = 0, 1, 2, where co = 2e  n--,,i--1,(3. For these coordinates the equation of the 

curve takes the form 

X3  ± Y3  ± Z 3  — 3AXYZ = 0, 	A 0 1, co, co2 , co. 

This is called the Hessian cubic. 	 El 
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Exercises 

1. A linear map E : V -± V from a vector space to itself which satisfies 
E2  = E is called a projection. Show that the dimension of the image is 
equal to the trace of E. 

2. Show that the determinant 

O 1 42 6 

41 42 6 4 

42 6 4-4 45 

6 44 6 4•6 

is a classical invariant for sextic binary forms 

Ox, y) = 0x 6  + 61.x 5 y 1542x 4y2  + 206x3 y 3  

+1544x 2y4 64.5xy 5 46y6 .  

3. (i) Show that the six linear fractional transformations defined by (1.12) form 
a group, and that this group is isomorphic to the symmetric group S3. 

(ii) Show that, under the action of this group on the field of rational functions 
C(A), the field of invariants is generated by 

(A2  —A+ 1)3 

x2(x 	1)2 • 



2 
Rings and polynomials 

The aim of this chapter is to give a very brief review of the basic algebraic 
techniques which form the foundation of invariant theory and of algebraic 
geometry generally. Beginning in Section 2.1 we introduce Noetherian rings, 
taking as our point of departure Hilbert's Basis Theorem, which was discovered 
in the search for a proof of finite generation of rings of invariants. (This result 
will appear in Chapter 4). In Section 2.2 we prove unique factorisation in 
polynomial rings, by induction on the number of variables using Gauss's lemma. 
In Section 2.3 we prove the important fact that in a finitely generated algebra 
over a field an element contained in all maximal ideals is nilpotent. As we 
will see in Chapter 3, this observation is really nothing other than Hilbert's 
Nullstellensatz. 

A power series ring in one variable is an example of a valuation ring, and 
we discuss these in Section 2.4. A valuation ring (together with its maximal 
ideal) is characterised among subrings of its field of fractions as a maximal 
element with respect to the dominance relation. This will be used in Chapter 3 
for proving the Valuative Criterion for completeness of an algebraic variety. 

In the final section we discuss Nagata's example of a group action under which 
the ring of invariants which is not finitely generated — that is, his counterexample 
to Hilbert's 14th problem. This is constructed by taking nine points in general 
position in the projective plane and considering the existence and non-existence 
of curves of degree d with assigned multiplicity m at each of the points, and 
making use of Litiuville's Theorem on elliptic functions. 

2.1 Hilbert's Basis Theorem 

We begin with a discussion of the Basis Theorem, which is the key to Hilbert's 
theorem of finite generatedness that we will meet in Chapter 4. In Hilbert's 
original paper [19] the word ideal is not used; and we would like to state the 
Basis Theorem in a form close to that expressed by Hilbert. Today we learn that 

51 
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an ideal of a ring S is a subset J c S satisfying: 

x E S, y E ./ 	X Y E J 
y,zE./y±zE J. 

The following definition, however, is closer to the spirit of the original notion: 

Definition 2.1. Given a subset Y = fyx  I X E Al of a ring S, the set of all linear 
combinations 

ExAy, 

.A.E.,, 

(where the sum is finite — that is, xA  = 0 for all but finitely many X E A) with 
coefficients xx  E S is an ideal of S, called the ideal generated by Y. 	0 

This is completely analogous to the idea of a subspace spanned by some set of 
vectors in a vector space. If Y is a finite set y i  , .. . , yrn , then we denote the ideal 
generated by Y by (y i  , .. . , y,n ). Any ideal that can be expressed in this way is 
said to be finitely generated. 

Theorem 2.2. Let S = k[x l , .. . , xn ] be a polynomial ring over an arbitrary 

(commutative) field k, and let J be an ideal generated by a subset Y c S. Then 

there exists a finite subset y i , . . . , ym  E Y which generates J. 

(This is similar to the definition of a compact topology: that for an arbitrary 
open cover there can be found a finite subcover.) We shall prove the theorem in 
the following well-known (and equivalent) form: 

Theorem 2.3. In the polynomial ring k[xi, . . . , x n ] every ideal is finitely 

generated. 

In the case of a single variable the following stronger result is true, which 
we shall prove as preparation for the theorems above. 

Theorem 2.4. In the polynomial ring in one variable k[x], every ideal is gen-

erated by a single element. 

Proof We may assume that the ideal I C k[x] is nonzero, and we let f (x) be 
a nonzero polynomial in I with minimal degree. It is then enough to show the 
following: 
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Claim: Every g(x) E / is divisible by f (x). 

We assume that g(x) 0 0, and we shall prove the claim by induction on 
the degree d = deg g(x). (The case d = 0 is trivial since g E I implies 
g = 0 if I is a proper ideal.) By the way in which f (x) was chosen we have 
m := d — deg f (x) > 0. Thus, for a suitable choice of constant a E k, the 
polynomial g i  (x) --= g(x) — axm f(x) has degree strictly less than d. On the 
other hand, gi(x) E 1, so by the inductive hypothesis it is divisible by f (x). 
Hence so is g(x). 0 

We can extract from this proof the 'principle of the leading term'. For any 
commutative ring R we denote by R[x] the ring of polynomials in one variable 
x with coefficients in R. 

Definition 2.5. 

(i) Given a polynomial 

f (x) = ao ± aix -I- • • • + ax' E R[X], 

we denote by Lt f (x) the leading term ax where an  0 0. If f (x) is 
identically zero, then we define Lt f (x) = 0. 

(ii) If 1 is an ideal in R[x], then we define Lt 1 to be the ideal generated by 
the set 

{Lt f (x) I f (x) E 11 

of all leading terms of polynomials in I. 	 0 

For an ideal 1 c R[x] let I<k C I be the subset consisting of polynomials 
in 1 with degree at most k, and let ak C R be the set of coefficients of X k  in all 
polynomials f (x) E .i<k. Then Lt / can be expressed as 

E akx k  = ao -I- aix -I- a2x 2  -I- • • • c MX]. 
k 

That is, Lt / consists' 'of all polynomials for which the coefficient of each X k  

belongs to ak. 

Lemma 2.6 (Principle of the leading term). Let 1 be an ideal in R[x], 
and suppose that fi(x), • • • , fN(x) E 1. If the leading terms Lt fi(x), ... , 
Lt fN (x) E Lt I generate Lt 1, then the polynomials f'  (x), . . . , fN(x) gener-
ate I. 
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Proof We shall show by induction on deg g(x) that, if g(x) E I, then it is 
contained in the ideal J = • • • fN(x)). (As before, if d = 0, then 
g = 0.) By hypothesis, the leading term of g(x) can be expressed in terms of 
Lt fi(x), , Lt fN (x): 

Lt g(x) = E ai xmiLt fi (x) 

for suitable ai  E R, and where we have set m i  = deg g(x) — deg fi (x). This 
means that the polynomial 

gi(x) = g(x) — E ai xmi fi(x) 

has strictly lower degree than g(x) and so by the inductive hypothesis belongs 
to J. This implies that g(x) it belongs to J. 

A ring R in which every ideal is finitely generated is called a Noetherian 
ring. 

Theorem 23. If R is a Noetherian ring, then the polynomial ring in one vari-
able R[x] over R is also Noetherian. 

Proof Let I be an ideal in R[x]. The ideals an  c R defined above form an 
increasing sequence a n  C an-F1, and we set 

a  = U an' 
n>0 

It is clear that a is an ideal in R. By hypothesis, then, a is finitely generated. 
This means that we can find a finite number of polynomials fi(x), f2(x), • - • , 
fm(x) E I whose leading coefficients generate a. Denote by e the maximum 
degree of the polynomials fi (x). This implies that ae  = ae+1 = - • • = a (the 
ascending chain condition). 

Using the Noetherian property of R again, we can choose some more 
polynomials fm+i(x), 	, fN (x) E 1 whose leading terms Lt fm+i(x), 	, 
Lt fN (x) provide generators for act, aix, . • , a e _ixe-1 . Then Lt fi (x), , 
Lt fm (x), Lt fm+i (x), .. . , Lt fN (x) is a finite set of generators for Lt I, and 
hence by Lemma 2 6 the polynomials f i  (x), . . . , f N (x) generate I. 

If we repeat n times the operation of passing from the ring R to the polynomial 
ring R[xj, then we obtain the polynomial ring in n variables R[xi, , x n ]. It 
follows that if we apply Theorem 2.7 n times, starting from the field k, then we 
obtain Theorem 2.3. 0 
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2.2 Unique factorisation rings 

It is well known that every integer m has a prime factorisation 

m = 	1  p2n 2 	pin' where p i  , p2 , 	, pi are distinct primes, 

and that this factorisation is unique. Polynomials in the polynomial ring 
k[xi, , x n ] have a similar property; first we shall collect together some ideas 
that we need. 

Definition 2.8. 

(i) A ring R in which uv = 0 (for u, v, E R) only if one of u, v = 0 is called 
an integral domain. 

(ii) An element u E R for which there exists some v E R satisfying uv = 1 is 
called an invertible element. 

(iii) An element u E R with the property that u = vw only if one of v, w is an 
invertible element is called an irreducible element. 

(iv) An element p E R is called a prime element if the ideal (p) c R that it 
generates is a prime ideal. In other words, if a product v w is divisible by 
p, then one of v, w is divisible by p. 

(Recall that a prime ideal is an ideal p c R with the property that, if ab E p 
for some a, b E R, then at least one of a, b is contained in p. Equivalently, an 
ideal p c R is prime if and only if the residue ring Rip is an integral domain.) 

The ring of rational integers Z is an integral domain, and its invertible el-
ements are 1 and —1. Up to sign, therefore, the irreducible elements in Z are 
exactly the prime numbers. When R is the polynomial ring k[x] in one variable 
over a field k, the invertible elements are the nonzero constant polynomials and 
the irreducible elements are the irreducible polynomials in the usual sense. In 
each of these cases, it follows from the Euclidean algorithm that every element 
is prime. In general, every prime element is irreducible, but the converse is not 
true. (See Exercise 2.1.) 

Definition 2.9. An integral domain R is called a unique factorisation domain 

if the following two_conditions are satisfied. 

(i) Every irreducible element is prime. 
(ii) An arbitrary element of R can be expressed as a product of (a finite number 

of) irreducible elements. 	 0 

Theorem 2.10. The polynomial ring k[xi, 	, xn ] over a field k is a unique 

factorisation domain. 
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As in the previous section, this will follow inductively from: 

Theorem 2.11. If R is a unique factorisation domain, then the polynomial ring 
R[x] is also a unique factorisation domain. 

In the polynomial ring R[x] there are two kinds of prime elements. Let us 
begin with the simpler kind: 

Lemma 2.12. A prime element in the ring R is also prime in the ring R[x]. 

The proof of this follows easily from Exercise 2.2. 

Definition 2.13. A polynomial in R[x] is said to be primitive if it is not divisible 
by any prime element of R. 	 0 

Lemma 2.12 implies the following. 

Gauss's Lemma 2.14. A product of primitive polynomials is again primitive. 

From now on, R will be a unique factorisation domain and K will be its field 
of fractions. We shall view R and Rix] as subrings of K and K[x]: 

K (---> K[x] 
U 	U 
R c-÷ R[x] 

Note that a polynomial q(x) in K [x] can always be expressed as a product 
of a primitive polynomial in R[x] with an element of K; moreover, such a 
representation is unique up to multiplication by invertible elements of R. 

Lemma 2.15. Suppose that q(x) E K[x] and that f (x) E R[x] is primitive. 
Then f (x)q(x) E R[x] implies q(x) E R[x]. 

Proof As just noted, we can write q(x) = cq' (x), where q' (x) is a primitive 
polynomial and c E K. By hypothesis, cq' (x) f (x) E R[x], and by the Gauss 
Lemma 2.14 the product ql (x) f (x) is a primitive polynomial. It follows that 
c E R and so q(x) E R[x]. 0 

In other words, the property of a polynomial g(x) E R[x] being divisible by 
a primitive polynomial f (x) is the same in the ring K[x] as in the ring R[x]. 
From this observation we deduce the following. 
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Proposition 2.16. For a primitive polynomial f (x) E R[x] the following three 

conditions are equivalent. 

(i) f (x) is an irreducible element in R[x]. 

(ii) f (x) is an irreducible polynomial in K[x]. 

(iii) f (x) is a prime element in R[x]. 

Together with Lemma 2.12, this exhausts all the prime elements of the 
ring R[x. ]. 

Proof of Theorem2.11. That an irreducible element in R[x] is prime we have 
seen in Proposition 2.16. What remains is to show that an arbitrary f (x) E R[x] 

can be expressed as a product of irreducible polynomials in R[x]. First of all, 
we can do this in K[x] and write 

f (x) = gi(x) • • • g Ax) 

for gi (x), . . . , g N(x) E K[x]. Now, if we take a primitive polynomial hi(x) E 

R[x] which equals g1 (x) up to multiplication by an element of K, then f (x) is 
divisible by each h i (x) and we obtain 

f (x) = cht(x) • • 

for some c E R. Now, by decomposing c into primes in R, we get a prime 
decomposition of f (x) in R[x]. 

Later on we shall make use of the following property of unique factorisation 
domains. 

Proposition 2.17. Let R be a unique factorisation domain and p c R be 

a nonzero prime ideal containing no other prime ideals q c p of R except 

q = 0, p. Then p is generated by a single element. 

(A prime ideal containing no other prime ideals q c p except q = 0, p is 
said to be of height 1.) 

Proof Pick any nonzero element u E p and decompose it into primes in R. 

Since p is a prime ideal, it must contain one of the factors in this decomposition. 
Call this element v. Then v generates a prime ideal (v), but by hypothesis this 
coincides with p. LII 
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2.3 Finitely generated rings 

We begin by noting the following fact. 

Lemma 2.18. The polynomial ring laxi, ... , x n ] contains infinitely many ir- 
reducible polynomials. 	 1=1 

Indeed, if the field is infinite, it is enough to take the linear polynomials x l —a 
for a E k. The case of a finite field is left to Exercise 2.6. 

Definition 2.19. Let S c R be a subring. An element b E R is said to be 
integral over S if it satisfies an equation f (b) = 0 for some monic polynomial 
with coefficients in S: 

f (x) = xn + aif -1  + • • - + an _ i x -1- an  E S[x]. 

R is integral over S if every element of R is integral over S. 	 El 

Lemma 2.20. Suppose that R is integral over a subring S C R and that a c S 
is an ideal. if a generates R, that is aR = R, then a = S. 

Proof Since 1 E aR, we can write 1 = atri -I- • • . anirni  for some ai E a and 

Ti E R. It is now enough to prove the result in the subring R' = S[ri, . .. , rin ] C 
R, since aR = R implies aR' = R'. Since R' is integral over S, it is finitely 
generated as an S-module; so let Lob . . . , bN  E R' be generators. By hypothesis 
there exist coefficients aij  E a such that 

bi = alibi + ai2b2 + • " + aiNbN 
b2 = anbi ±a22b2 + " • --i- a2NbN 

• • 	• 

bN = 

Let A be the determinant 

A = det 

aNibi ± aN2b2 -4- - • 

	

 all 	a12 

a 	a22 n 
IN — 

	

( 

aNt 	aN2 

•+ aNNbN • 

. 

. • . 	a2N 

al 
• • • 	aNN 

Then A — I_ E a while Abi = Ab2 = • • • = AbN = 0 (multiply both sides of the 
matrix equation by the adjugate matrix, noting that adj M x M = det M x 0. 

Hence A = 0 and so 1 E a. 	 D 
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Lemma 2.21. If R is integral over S and R is afield, then S is also afield. 

Proof Let a E S be a nonzero element. Then a-1  E R is integral over S, so there 
exists some monic polynomial f (x) = xn + aixn -1  ± - • - + an _ix + an  E AS[X] 

satisfying 

1 	1 	al 	a2 	an-1 
± 	-1- 	 + • + 	+ an  = 0. 

an an-1 	an-2 	 a 

Multiplying through by an -1  gives 

1 
— — = ai ± a2a ....}_. . . ± an_lan-2 + an al"- , 

a 

from which we see that a -1  E S. 	 111 

Lemma 2.22. Suppose that an integral domain B is algebraic and finitely 

generated over a subring A c B. Then there exists a nonzero element a E A 

such that Bra-1 ] is integral over A[a-1 ]. 

Proof Any element b E B is algebraic over A; this means that it satisfies an 
equation f (b) = 0 for some nonzero polynomial f (x) with coefficients in A. 
Denote by 0 0 L(b) E A the coefficient of the leading term, so we can write 

f (x) = L(b)x 1  + aixn-1  4- • • • ± an_ix + an  E A[x]. 

Consequently b is integral over A[L(b) -1 ]. Given generators b (1) , ... , b(N )  of 
B I A, the product a = L(b(1) ) • • • L(b (N) ) now has the required property. 	El 

Proposition 2.23. Let K be a field which is finitely generated as an algebra 

over afield k. Then the degree of the extension K I k is finite. 

Proof It is enough to show that the extension K/k is algebraic. Let yi, ..., y N  

be generators of K as a k-algebra, ordered in such a way that: 
._, 

(i) Yi , • • . , ym are algebraically independent; and 
(ii) ym+ i , .. . , yN are algebraic over k(yi, . .. , ym). 

Our aim is to show that M = 0. In the previous lemma, take B = K and 
A = k{y 1 , . . . , y m }: this gives a nonzero polynomial f (yi, .. . , y) such that 
K is integral over k{yi, . .. , ym, f(yi, ... , y1j)-1}.  By Lemma 2.21 this im-
plies that k[yi, • • • , ym, f(Yi, • - • , Ym) 1 ] is a field. So for any polynomial 
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g(yi, 	y m) we have 

1 	h(Yi, • • • , Y m) 

g(yi, • • • , ym) 	f(yi, • - • , ym)n 

for some natural number n and polynomial h(yi, 	, ym). In other words, g 

divides a power of f.  But by Lemma 2.18 there are infinitely many choices for 
irreducible g, if M > 0, and this forces M = 0. 	 LI 

By a k-algebra we will mean a commutative ring containing the field k as a 
subring. 

Corollary 2.24. If R is afinitely generated k-algebra and m C R is a maximal 

ideal, then the composition 

k —> ? R 

is a finite (algebraic) field extension. 

(Recall that an ideal m c R is maximal if there are no ideals between m and 
R, or, equivalently, if the residue ring Rim is a field.) 

Corollary 2.25. Let R be a finitely generated k-algebra and Sc Ra subring 

containing k. If m c R is a maximal ideal, then m n S is a maximal ideal 

in S. 

Proof By the previous corollary k 	R Im is a finite extension of fields; hence 
by Lemma 2.21 the intermediate residue ring Sim n S is a field. 	LI 

Proposition 2.26. Let R be an integral domainfinitely generated over a subring 

S. Then there exists an ideal I c R such that S n I = 0 and the ring extension 

S Rh is algebraic. 

Proof Let K be the field of fractions of R, let k be the field of fractions of S 

and let R C K be the subring generated by R and k. This is a finitely generated 
k-algebra, and, if we choose any maximal ideal m c R, then k c--->- R/m is 
an algebraic extension of fields. It follows that / = m n R has the required 
properties. 

Theorem 2.27. Let R be a finitely generated k-algebra and a E R an element 

contained in all maximal ideals of R. Then a is nilpotent. 
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Proof We consider the linear polynomial 1 — ax in R[x]. Let m c R[x] be an 
arbitrary maximal ideal; by Corollary 2.25, the intersection m fl R is a maximal 
ideal in R. Therefore m contains a, and this implies that it cannot contain 1 —ax. 
It follows (since m is arbitrary) that 1 ax is an invertible element: that is, there 
exists a polynomial co + cix + ••• + crixn such that 

(1 — ax)(co cix 	- 	cnxn) = 1. 

From this it follows easily that an+1  = 0 (Exercise 23). 	 0 

This last result will be the key to Hilbert's Nullstellensatz in the next chapter. 

2.4 Valuation rings 
(a) Power series rings 

A complex function f (z), regular in a neighbourhood of the origin, has a Taylor 
expansion of the form 

f (z) — 	an zn , 	llii / 	<+00. 
n 

n=0 

The set of all power series En°° 0  an zn of this form, equipped with the usual 
rules of addition and multiplication, forms a ring, called the convergent power 
series ring and denoted by C{z). 

A meromorphic function on a neighbourhood of the origin has a Laurent 
expansion of the form 

00 

f (z) = E anzn, 
n= AT 

   

linl 	<+00. 
n- 00 

The set of these Laurent series, again with the usual algebraic operations, is a 
field; moreover, this field is exactly the field of fractions of C{z}. 

These two examples are the prototype for the valuation rings and valuation 
fields that we will discuss in the following. In our discussion, however, the 
topology of the complex number field C will play no part, and accordingly we 
can view the convergence conditions in the definitions above as dispensable; 
these definitions then make sense over an arbitrary field k. To emphasise this 
change of viewpoint we shall replace the analytic coordinate z by the formal 
symbol t. We then consider the set of formal power series 

00 

f (t) E an tn  , 	a, E k. 
n=0 
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With the usual rules of addition and multiplication this set becomes a ring, 
called the formal power series ring over k and denoted by k{[t]]. In contrast to 
the case of a convergent power series, f (t) is not to be interpreted as a function. 
Only at t = 0 is evaluation of f allowed, and this determines a surjective ring 
homomorphism 

sp k[[tl] 	k, 	f (t) 	f(0) = ao. 

This is called the specialisation map, or reduction of the ring. Its kernel, ker sp, is 
the maximal ideal generated by t. If f (0) 0 0, then f (t) is an invertible element 
of 14[0. Moreover, although f (t) is not a function, one can nonetheless define 
the multiplicity of t = 0 as a zero: this is the unique integer n > 0 for which 
there exists a nonzero element u(t) E kW]] such that 

f (t) = tn  u(t), 	u(0) 0 0. 

Laurent series can also be considered formally. We consider the set of all 
formal series, allowing only finitely many nonzero negative powers: 

f (t) = Eanzn, 	an  E k, a{ri <01 an  0 0} < oo. 
nEZ 

This set becomes a field under the usual algebraic operations, called the field 

of formal Laurent series and denoted by k((t)). This is the field of fractions of 
the formal power series ring kW]] and can be expressed as: 

k((t)) = Jim t-Nkat}} 	r N  kat]]. 
N-±oo 

In fact, a nonzero element f (t) in k((t)) can be written uniquely as 

f (t) = tn  u(t), 	u(t) E 	 u(0) 0 0. 

This integer n E Z is called the valuation of f (t) (with respect to the variable 
t) and is written v(f ). Thus we have a map 

v : k((t)) — 0 	Z, 	f F--> 

also called the valuation. At 0 E k((t)) the valuation v(0) is not defined, but this 
will cause no problems; when necessary it is convenient to adopt the convention 
that v(0) = 

It is easy to verify the following properties of the valuation. 

• v( fg) v(f) v(g); 

• v(f g) > minty( f), v(g)); 

• if v(f) v(g), then equality holds. 
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(b) Valuation rings 

In analysis one has notions of limits, such as the limit limn,,,„ an  of a sequence 
{an  ), and limits of functions, such as 

, 	sin t 
'dm — 
t--+o 	t 

In algebra the notions that correspond to such limiting processes are valuation 
rings and their specialisations. 

Definition 2.28. Let R be an integral domain with field of fractions K. If, for 
every x E K, either x E R or 1/x E R, then R is called a valuation ring. 	LI 

If R is an integral domain with field of fractions K, then the set R* of 
invertible elements in R forms a subgroup of the multiplicative group K* of 
nonzero elements of K. We denote by 

A = K* I R* 

the (abelian) quotient group. Following the usual custom we shall write the 
group operation in A additively. Note in particular that the residue class of 
1 E K* is denoted 0 E A. 

Definition 2.29. For x, y E K* with residue classes Y. , y E A, we define 

x a y if x/y E R. 

This defines a partial ordering on the group A and is a total ordering if R 
is a valuation ring. In this case A, together with the ordering >, is called the 
valuation group, and the natural homomorphism 

v: K* —>- A, 	x 

is called the valuation of K with respect to the ring R. 
Depending on the case being considered, it may also be convenient to in-

troduce a maximal element +co to A and to define v(0) = d-oo. Then the 
valuation extends to the whole field K by 

v : K 	U 	v(x) =TX 	x  ° 
-Foo if x = O. 
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Example 2.30. The ring of formal power series R = kW]] is a valuation ring 
with valuation group isomorphic to the infinite cyclic group Z. The valuation 
v : K* = k((t)) — Z then coincides with that described in the previous 
section. 

Example 2.31. The collection of rational functions 

If(t) 
j--76 I f(t), g(t) E k[t], f(0) 0 01 c k(t), 

allowing only denominators which are nonzero at t = 0, is a valuation ring, 
again with valuation group Z. 	 El 

A valuation ring whose valuation group is infinite cyclic as in these examples 
is called a discrete valuation ring. Another typical example is the ring Zp of 
p-adic integers. 

Valuations have the following properties (already seen for the formal power 
series ring). 

Proposition 2.32. Let x, y E K. 

(i) v(xy) = v(x) + v(y). 

(ii) v(x + y) minfv(x), v(y)}. 

Proof We only need to prove (ii). It is sufficient to assume that both x and y 
are nonzero. By definition of a valuation ring, one of xly or ylx belongs to R; 

since the statement is symmetric in x, y, we may assume that ylx c R. Then 
by definition v(y) v(x), while (since 1 (y I x) E R) v(1 y/x) v(1) = 0. 
Hence 

v(x y) = v (x(1 + 	v(x) + v (1 + 	v(x) = minfv(x), v(y)}. 

0 

The next fact is an easy exercise. 

Proposition 2.33. Let R be a valuation ring with field offractions K and define 

1 
€ RI VRIU{O}c K. 

Then m is the unique maximal ideal in R. In particular, every valuation ring is 

a local ring. 	 LI 



2.4 Valuation rings 	 65 

Example 2.34. The formal power series ring R = k[[t]] is a local ring with 
maximal ideal m generated by t, and the quotient R/m is isomorphic to k. 

We next clarify the position occupied by the valuation rings among all local 
integral domains (Theorem 2.36 below). 

Definition 2.35. Let A, B be rings and m c A, n c B be maximal ideals. We 
say that (A, m) dominates (B, n) if B A is a subring such that m n B = n. 
The relation of dominance is written 

(A, 	B, n). 

0 

Note that a ring/maximal ideal pair (A, m) is always dominated by its 
localisation 

= Ix  I x, y E A, y m} . 

This shows that a maximal element with respect to dominance is always a local 
ring. Moreover, the following is true. 

Theorem 2.36. Let K be afield and R C K be a subring with maximal ideal 

in c R. If the pair (R, m) is maximal among subrings of K (and maximal 
ideals in them) with respect to dominance, then R is a valuation ring with field 

of fractions equal to K. 

(The converse is also true — see Exercise 2.9.) 

Proof Pick an element x E K. We will show that either x or 1/x E R. These 
inclusions will follow, respectively, from the following two possibilities for x. 

(1) x is integral over R. 
In this case let R,= R[x] c K be the subring generated by R and x, and 
let ni c R be an arbitrary maximal ideal. Then the intersection p = R n ii 

is a prime ideal in R and there exists a natural inclusion 

R/p 

Here k/fii is a field and is integral over R/p, so by Lemma 2.21 p is a 
maximal ideal. Since R is a local ring, this implies p = m. But this says 
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that (I?, tii) dominates (R, m), so, by the maximality hypothesis with respect 
to dominance, equality holds. Thus x E R. 

(2) x is not integral over R. 

In this case we let -14. R[1/ x] C K be the subring generated by R and 1/x. 

Claim: 1/x is not an invertible element in R. 

For otherwise we would have an element 

al a2x -1  + • • • + adx -d+1  ad+ix -d  E R[lix] 

equal to x. Multiplying this equality through by the denominator we obtain an 
equation 

X
d+1 

— aixd 
— a2xd-1 	

• • — ax — ad+1 = 0, a E R, 

contrary to hypothesis. 
It follows from the claim that there exists a maximal ideal it c it*  containing 

1/x. As before, we consider the prime ideal p = R n 'n't and the natural inclusion 

R/p c--> R/m. 

But this map is surjective since 1/x E ITI; so in this case also p is a maximal 
ideal and hence equal to m. As in case (1), we now argue from the maximality 
hypothesis that 1/x E R. 

From this theorem one can deduce the existence, for any field K, of valuation 
rings with field of fractions K. (More precisely, K is any field that contains a 
subring which is not a field. A finite field, for example, does not satisfy this 
requirement.) For in the set of all pairs (B, n), where B c K is a subring and 
n c B is a maximal ideal, ordered by dominance, one notes that every chain 
has an upper bound (for this it is enough to take unions); then by Zorn's Lemma 
and Theorem 2.36, we see that every (B, n) is dominated by some valuation 
ring (A, m) in K. 

This is already a strong result. However, by thinking more carefully about 
the residue fields involved we can give a more precise formulation. Note that 
whenever (A, m) dominates (B, n) there is an induced inclusion of residue fields 
Bin c---* A/m. 

Theorem 2.37. Let B be a subring of a field K and n C B be a maximal 

ideal. Then there exists a valuation ring (R, in) dominating (B, n) whose field 
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offractions is K and such that the field extension 

Bin c--* Rim 

is algebraic. 

Proof Let k be the algebraic closure of the residue field Bin and fix an em-
bedding Bin 	k. Then denote by 

h : B 	k 

the composition B —> Bln 	k. We now define an order relation on the set of 
pairs (A, g), where A is a subring of K and g : A —> k is a ring homomorphism, 
as follows. We set (A 1 , gi) > (A2, g2) if and only if (Al, ker g1) dominates 
(A2, ker g2) in the sense of Definition 2.35 and gi : A1 	k restricts on A2 
to g2 : A2 	k. On this partially ordered set every chain has an upper bound. 
Consequently, there exists a maximal element (R, g) which dominates (B, h). 
It is now enough to show that the pair (R, m), where in = ker g, is a valuation 
ring. 

For this, we look again at the proof of Theorem 2.36. Although the property 
of being a valuation ring followed from maximality, there were two cases to be 
considered. In case (1) the field extension 

R /m 

was algebraic since the element x E K was integral. This means that the 
embedding of R/m in k induced by g extends to an embedding of Rifiri in k. 

Hence the homomorphism g : k extends to a homomorphism : R --->- k. 
In case (2) we no longer have the extension of residue fields, but we nevertheless 
construct an extension. For this, one can see that the maximal element (R, ker g) 
for the new order relation is a valuation ring. 

Here is an example of a case in which the extension of residue fields is 
transcendental and at the same time of a valuation ring which is not discrete. 

Example 2.38. Let K = k(x, y) be the field of fractions of the polynomial ring 
in two variables krx, y]. The subring 

If (x)  
B = 	f (x), g(x) E k[x], g(0) 01 

g(x) 
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is a discrete valuation ring with residue field k and field of fractions k(x). The 
subring 

A = f Y)  
f (x , y), g(x , y) E krx , y], g(0, y) 	01 

g(x , y) 

is a discrete valuation ring, with field of fractions k(x , y), which dominates 
B. Its residue field is k(y) and is a transcendental extension of the residue 
field k of B. 

Take a valuation ring C whose field of fractions is equal to the residue field 
of A: for example, 

d(y)  
C = 

e(y) 
I d(y), e(y) E k[y], e(0) 0 01, 

and define 

R 
 = I

f(x, y) 
 f(x , y), g(x , y) E k[x , yi, g(0, y) E CO} . 

g(x , y) 

(This is called the composition of the valuation rings A and C.) This is (an 
example of) the valuation ring whose existence is guaranteed by Theorem 
2.37. R has the same residue field as B, but note that it is no longer discrete. 
In fact, the valuation group of R is Z EE Z equipped with the lexicographic 
ordering. 

2.5 A diversion: rings of invariants which are not finitely generated 
At the International Congress of Mathematicians at Paris in 1900, David Hilbert, 
who had proved the finite generation of classical rings of invariants, posed the 
following question. 

Hilbert's 14th Problem: If an algebraic group acts linearly on a polyno-

mial ring in finitely many variables, is the ring of invariants always finitely 

generated? 

Although it inverts the historical order of events, we will explain in the 
remainder of this chapter the counterexample to this question due to Nagata [11]. 

Remark 2.39. The fundamental result which we will prove in Chapter 4 (see 
Theorem 4.53) is that the answer to Hilbert's problem is yes if the group G 
is linearly reductive. In fact, the answer is also yes if G is the additive (non-
reductive) group C (or, more generally, of the field k. See Weitzenbock [16] or 
Seshadri [15]). What about the additive group CS for s > 2? Nagata found a 
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counterexample for s = 13, and below we improve this to s = 6 (Corollary 2.46 
below). (Since writing this book, the author has found counterexamples for 
s = 3 (Mukai [10]), but the case s = 2 remains open!) 	 LI 

(a) Graded rings 

Definition 2.40. A ring R with direct sum decomposition R = EDeEZ R(e) 
satisfying R(e)R(e) C R(e-fer) is called a graded ring. 	 El 

The following fact is obvious, but is of fundamental importance because of 
its role in the proof of Hilbert's Theorem 4.51 later on (see Exercise 2.10). 

Proposition 2.41. Suppose that R is a graded ring for which R(e) = 0 for all 

e < 0. If the ideal R± = IEDe>0 R(e) is finitely generated, then R is finitely 
generated as an algebra over R(o). 	 LI 

More generally one can replace Z, indexing the summands in the definition of 
a graded ring, by any group or semigroup. But note that in the above proposition, 
conversely, if the semigroup (or that part of it supporting the grading) is not 
finitely generated, then the ring R will also not be finitely generated. 

First, two examples. 

Example 2.42. Consider the set of all polynomials f (x, y) in two variables, 
whose restriction to the x-axis is constant. This defines a subring R C k[x , yl. 

A polynomial in R can be written 

f (x, y) = constant + yg(x, y). 

Thus, as a vector space over k, the ring R has a basis consisting of monomials 
xm yn such that n> 1 or (m, n) = (0, 0) (see Figure 2.1). In other words, R is 
a semigroup ring, graded by the semigroup G c Z2  consisting of such pairs 
(m, n): 

R = ED k{x? n yn}. 
(m,n)EG 

It is clear that G is not finitely generated, and hence R also fails to be finitely 
generated. 

Example 2.43. The vector subspace of k[x , y, y -1 ] spanned by monomials 

{xmyn  



n = 1/Tm 
n 

o 

O 0 

O 0 

O 0 0 

O 0 0 0 

O 0 0 0 

O 0 0 

O 0 0 

O 0 

o 

70 	 2 Rings and polynomials 

is also a subring. Again, this is a semigroup ring graded by a semigroup which 
is not finitely generated. 	 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

n = —1/fm 

Figure 2.1: Two examples of infinitely generated rings 

These examples can be generalised in the following way. Suppose that a ring 
R is bigraded, that is, 

R = ED Ron , n) 
(m,n)EZ2  

such that the product of R( n ,,i) and R(,n,  , n , ) is contained in R(,n+m%n±n1 ). Define 
the support of R to be 

Supp R := {(m, n) E Z2  1 R( m , n ) 0). 

If R is an integral domain, then Supp R is a subsemigroup of Z2 . 

Proposition 2.44. If R is a bigraded integral domain and Supp R is not finitely 

generated as a semigroup, then R is not finitely generated as a ring. 	El 

(b) Nagata's trick 

Let A2N c-`----' C2N  be a 2N-dimensional complex affine space with coordinates 

(P1, • • • , Pm ql, • • • , Tv), where we will assume that N > 3. (For the definition 
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of affine space, see Section 3.1(a) in the next chapter.) We define an action of 
CN  on A2N  by 

Pi 	Pi, 
qi 	si pi 	qi, 

for (Si, 	, sN) E CN , and an action of (C*)N on A 2N  by 

Pi 	tiPi, 
qi 	ti qi , 

for (t 1 , . . . , tN) E C* x • • • x C* = (C*)N. Note that these two actions commute. 
The ring of invariants for the action of C N  is C[pi, , pN], while the ring of 
invariants for the action of (C* )N is C, the constant functions only. 

We now pick N points w1 = (al, b1), , wN = (am bN) in the affine 
plane A2 . With respect to these points, we consider the subset G c CN of 
transformations s E CN  which leave invariant the three rational forms 

qi 
 A 	
qN 

= 	• • • + aN 	, 
P1 	 PN 

qi 	 qN B = bl— 4- • • • ± bN 
PN 

ql 	qN  
C = - + • • 	. 

P1 	PN 

Thus G c EN  is a vector subspace of dimension N — 3. 
Similarly, the set of transformations t E (C* )N  which leave invariant the 

product D = p1 . . . pN is a subgroup of codimension 1, which we shall denote 
by T C (C*) N  

Theorem 2.45. Let N = 9. If the points 	, w9 E A2  are sufficiently 

general, then the ring of invariants for the action of G T 	C6  (C*)8  c 
GL(18, C) on the polynomial ring C[pi, 	, pm qi, 	, (IN] is not finitely 

generated. 

The following corollary follows from Hilbert's Theorem 4.53 in Chapter 4, 
since the invariant ring is 5T,  where S is the ring of G-invariants, acted on by 
the (linearly reductive) group T. 

Corollary 2.46. If N = 9 and the points w 1 , . . . , W9 E A2  are sufficiently gen-

eral, then the ring of invariants C[pi, , pm qi, • • • , (IN]
G  under the action 

of G C6  fails to be finitely generated. 
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First of all, it is clear that the field of rational functions invariant under the 
action of the group G . T is generated by A, B, C and D. Consequently, the 
ring of invariants consists of those rational functions in A, B,C,D which are 
polynomials in ph . . . , pN , q i , . . . , qn : 

R :.= C[pi,  . . . , pN, qi  , . . . , qN] G. T 

= C(A, B, C, D)nC[pi .., • • • , pmqi, • • • 5 gni 

C (0(p15 • • • 5 pN, (h., • • • , (in). 

It is not hard to show that an element of R is necessarily a polynomial in 
A, B, C, that is, R c C[A, B, C, D, D-1 ]. The invariant ring R is therefore 
bigraded by the degree in D and the homogeneous degree in A, B, C. We will 
write 

R = ED R(d,m), 
(11-0 
tneZ 

where 

R(d,„,) = {Dd-in f (A, B, C) 1 f homogeneous of degree ci}. 

What is the support of this bigraded ring? Clearly, when m < 0, the homoge-
neous polynomial f is completely arbitrary, while for large m > 0 the condition 
that Dd' f (A, B, C) be a polynomial in pi , qi  becomes nontrivial. Nagata's 
trick is the next lemma, which determines the support of this bigraded invariant 
ring in terms of the geometry of plane curves. 

Lemma 2.47. For a homogeneous polynomial f (x , y, z) of degree d and for a 
positive integer m > 0, the following are equivalent: 

(i) Dd' f (A, B, C) E R(d,m); 

(ii) f (x, y, z) has a zero of multiplicity m at each of the points wi = (ai : bi : 
1), . . . , wN = (aN : bN : 1) E P2 . 

Proof Condition (i) means that the expansion of 

Dd' f (A, B, C) = (pl.. • pN)" f (al .1.-,1, + • • • + a N 4-t , b1 1. ,11  ± ' • • 

± b N
' 

all II  + • — ± gi ) PN  P1 	 PN 

has no denominator. The coefficient of (qi /pi )d  in the expansion of f (A, B, C) 

is f (ai, b1, 1), and so pT fails to appear in the denominator if and only if 
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f (ai, b1, 1) = 0. The coefficient of q( 1  /pi  )d- 1 is 

(12 , 	(IN 	, _t. 1 	1_ 
fx(ai, bi, 1) (a2— -I- • • • + aN — ) -1- f y kai, vi 1 

P2 	 PN 

+ Mai, b1, 1) 

(L  q2 , • • • , L N (IN) 
u2— -1- -r- u — 

P2 	 PN 

	

( 472 	qN 
— + • • • ± —) , 

	

P2 	PN 

1) 

where f, , fy , fz  are the partial derivatives of f. Thus pr-1  fails to appear in the 

denominator if and only if Mai, b1, 1) = fy(al ,  b1 , 1 ) = iz(ai, b1, 1) = 0. 

This proves the lemma for m = 1, 2; the cases m > 3 are similar. 	0 

Remark 2.48. Nagata's strategy (Nagata [11], [121) is now to show that the set 

of pairs (d, m) for which there exists a projective plane curve f (x , y, z) = 0 as 

in Lemma 2.4700 is an infinitely generated sub semigroup of Z 2 , and hence by 
Proposition 2.44 that the ring of invariants is infinitely generated. In fact, this 
works if N = s2  is the square of a natural number s > 4: that is, there exist 

such plane curves only if dlm > s (so the ring is supported on a semigroup 

similar to that of Example 2.43). GI 

In the case N = 9, on the other hand, the supporting semigroup is actually 
finitely generated, but nevertheless the bigraded ring fails to be finitely gener-
ated. This is what we will show next, by exploiting the relationship between 
plane cubics and doubly periodic complex functions. 

(c) An application of Liouville's Theorem 

In order to prove Theorem 2.45 we are going to use the holomorphic map (1.17) 
(see Section 1.5(c)) to build a set of N = 9 points w 1 , .. . , w9 E P2  for which 

the ring of invariants 

-1G-T 
CFA., • • • , PN, ql, - • • 1 qN1 	= IED R(d,m) 

d,mEZ 

fails to be finitely generated. The key to this is the last part of Liouville's Theo- 
rem 1.44. Fix a lattice in the complex plane F c C and a period parallelogram. _.,. 	- ,,... 
Inside this parallelogram we pick nine distinct points 

C mod F, 

and we let 

w 1 = (al :b1 : 1), . • . , w 9 = (a9 :b9 : 1) E A2  c P2 
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be their images under the map (1.17). Theorem 2.45 will follow from the 
following: 

Proposition 2.49. If, for all natural numbers n E N, 

n (iv 1 + • • - + lo 9) 0 F, 

then the ring (Bon  R(dm)fails to be finitely generated. 

The set of homogeneous polynomials f (x, y, z) of degree d is a vector space 
of dimension (d + 1)(d + 2)/2, and the requirement that f vanish with multi-
plicity m at a given point imposes at most m(m + 1)/2 linear conditions on this 
space. Hence: 

dim R(d, m ) 	11(d + 1)(d + 2) — ;m(m -1-- 1) 
(2.1) 

= 1(d — 3m)(d + 3m + 3) ± 1. 

In particular, R(d ,m) 0 0 whenever d > 3m. It turns out, from the way the nine 
points have been chosen, that the converse is also true; and moreover, that when 
d = 3m equality holds in the above estimate. 

Lemma 2.50. Assume that m(i -vi + • • • + ii) 9) 0 F. Then: 

(i) i f d < 3m, then R(d, m ) = 0; 
(ii) if d = 3m, then dim R(d, m) = 1. 

Proof Given f (A, B, C) E kl, m ), we consider the function f (p(z), p' (z), 1). 
This is holomorphic away from lattice points, with a pole of order at most 3d at 
the origin. On the other hand, note that it has a zero of order at least m at each 
of the points WI , . . . , iv9. 

(i) If d < 3m, then it follows from Theorem 1.44(iii) that f (9(z), p'(z), 1) is 
identically zero. By Lemma 1.45, it can therefore be expressed as 

f (x , y, z) = (y2z - 4x 3  — g2xz2  — g3 z 3 )h(x , y, z). 

But then h(x, y, z) E R(d-3,m-1), and we can apply the same reasoning. By 
induction, then, f (x , y, z) = 0. 

(ii) If d = 3m, it is enough to show, again, that f (p(z), p'(z), 1) = 0. If not, 
then by Theorem 1.44 (iii) and (iv) we see that m(i-v1 +...  + li19) E F, 
contrary to hypothesis. 	 0 
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By Lemma 2.50(i) together with (2.1), the bigraded ring ed , rn  R(d, m ) has 
support 

i(c rn) d 3m, d > 0} c Z 2  , 

and this is finitely generated. However, we can show that the ring itself is not 
finitely generated by using (2.1) and Lemma 2.50(ii). 

Proof of Proposition 2.49. Let fo(x , y, z) = y 2  z — 4x 3  — g2xz2  - g3z3  E 
Rom. By Lemma 2.50(ii), fo generates all R(d, m ) along the line d = 3m (see 
Figure 2.2); so if R is finitely generated, then the remaining generators can be 
chosen from the subring 

= 	R(d, m ) 

d>(3-Fs)m 

for some sufficiently small rational number E > 0. For each such (d, m), mul-
tiplication by fo defines a sequence of maps 

x fo 	x fo 	x fo D  
R(d, m ) 	R (c1+3 ,rn +1) -----> 

and these maps must all be surjective if R is generated by fo and R 8 . However, 
this is impossible, as (2.1) gives for the dimensions an estimate 

dim R(d+3a,m+a) 
	fli8(d + 3m + 6a + 3) + 1, 

which tends to infinity as a 	oo. Hence R = ed , rn  R(d, m ) cannot be finitely 
generated. 

Figure 2.2 
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Remark 2.51. In fact, after writing the original version of this book the author 
realised that an alternative argument could be given using the fact that the 
support of the bigraded quotient ring RAM is not finitely generated. This is 
closely related to an example of Rees (Rees [14]). 

Exercises 

1. Show that in the integral domain Z[- ‘/-51 the number 3 is irreducible but 
not prime. Hint: Use, for example, 6 = (1 ± "17-3)(1 — 

2. Show that if R is an integral domain, then the polynomial ring R[x] is also 
an integral domain. 

3. For an element a in a ring R, suppose that the linear polynomial 1 — ax is 
an invertible element in the ring R[x]. Show that a is nilpotent. 

4. Show that an integral domain with only finitely many elements is a field. 
5. Prove that an integral domain which contains a field k and is finite dimen-

sional as a vector space over k is a field. 
6. Prove Lemma 2.18 in the case when k is a finite field. 
7. Show that the formal power series ring k[[t]] over a field k is an integral 

domain. 
8. Show that the only ideals in k[[t]] are the powers of the maximal ideal (0). 

(In particular, every ideal is principal.) 
9. Prove the converse of Theorem 2.36: every valuation ring is maximal in its 

field of fractions with respect to dominance. 
10. By studying the proof of Theorem 4.51, give a proof of Proposition 2.41. 



3 
Algebraic varieties 

In the broadest terms, a manifold means a topological space equipped with a 
sheaf of rings which is locally isomorphic to a given ringed space or spaces, 
its 'local models'. For differentiable manifolds and complex manifolds, respec-
tively, the local models are open sets in R" and C", together with the sheaves 
of differentiable and holomorphic functions on these spaces. Algebraic mani-
folds, or varieties, are defined analogously. We first fix a finitely generated field 
extension K of the ground field k, and then take as our local models the spectra 
Spm R of rings having K as their field of fractions. In other words, an alge-
braic variety is obtained by gluing together ringed affine varieties possessing 
the same algebraic function field. This chapter explains these notions of affine 
varieties, their sheaves of rings and their gluings. 

We begin by defining the n-dimensional affine space An  over the complex 
numbers C as the set C" equipped with the Zariski topology and elementary 
sheaf of rings 0 assigning to a basic open set D(f) c C" the ring of ratio-
nal functions C[xi , . . . , x n , 1/f (x)]. These constructions are easily generalised 
from A" to the set Spm R of maximal ideals in any finitely generated algebra 
R over any algebraically closed field k. One calls Spm R an affine variety, and 
a morphism Spm R Spm S is the same thing as a k-algebra homomorphism 
S R. An algebraic variety is then a ringed topological space obtained by glu-
ing together affine varieties with a common function field, and in good cases are 
separated: the most important examples are projective varieties (Section 3.2). 
Many properties-Of affine varieties can be defined for general algebraic varieties 
using a covering by affine charts. 

Section 3.3 explains categories and functors in elementary terms, and how an 
algebraic variety X determines in a natural way a functor X from the category 
of algebras over the ground field k to the category of sets. From this point of 
view the idea of an algebraic group enters in a natural way: an algebraic group 
is simply an algebraic variety G for which the functor G takes values in the 

77 
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category of groups. In the affine case, G = Spm A, this property is equivalent 
to the existence of a k-algebra homomorphism A —> A A (the coproduct) 
satisfying various conditions. 

A projective variety is a particular case of a complete algebraic variety. An 
variety X is called complete if every projection with X as a fibre is a closed 
map. In practice, however, completeness is usually verified by means of the 
Valuative Criterion. We prove this in the final section and apply it to toric 
varieties: completeness of a tonic variety is equivalent to the property that its 
defining fan covers IR" . 

3.1 Affine varieties 

(a) Affine space 

To begin we will work over the field k = C of complex numbers; this is familiar 
and convenient, though in fact the only property of C that we need is its algebraic 
closure'. By affine space An we shall mean a ringed space consisting of an n-
dimensional complex space Cn as its underlying set, equipped with Zariski 
topology and structure sheaf 0, both of which we shall explain in this section. 

Given an open set U c Cn in the usual Euclidean topology, we denote by 
oan(U)  the ring of holomorphic complex-valued functions on U. This defines 
a sheaf 

{open subsets of 	{rings), 	U 	Oan (U). 	(3.1) 

By the complex analytic space Cnan  we shall mean the topological space 
equipped with the sheaf 0'. The affine space An will be a polynomial version 
of this object. 

First of all, given an ideal a C C[xi , . , xn], we define a subset V(a) c 
consisting of the common zeros of all polynomials in a (or, equivalently, of a 
set of polynomials generating a): 

V(a) = {a E C" I f (a) = 0 for all f E a). 	 (3.2) 

This has the properties that for arbitrary families of ideals {a I  i E I) we have 

nV(ai) = V (E ai) 
iE/ 	 iE/ 

while for finite families {a1, 	, ar ) we have 

	

V(ai) = V ( 	ai) 
1<i<r 	 1<i-<r 
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In other words, the collection of all subsets V(a) c Cn is closed under the 
operations of taking arbitrary intersections or finite unions and contains 0 = 
V (C[xi, , xd) and Cn  = V(0). 

Definition 3.1. The topology on C" with the subsets V(a) c En, over all ideals 
a C C[xi, .. . , xn], as closed sets is called the Zariski topology. We shall denote 
Cn equipped with this topology by CanIg . 

Given a polynomial f E C[Xi, , xd, we consider the complement of 
V((f)) C , 

D(f) = {a E Cri  I  f (a) 0 0}. 	 (3.3) 

This is an open set, which we shall call a basic open set. Given two polynomials 
f, g E C[Xi, 	, X n ], we have 

D(fg) = D(f)1 .1 D(g), 

so that the collection of basic open sets is closed under finite intersections. 
Moreover, for an ideal a C C[xi , . . . , 

Cn  — V(a) = 	D(f), 
fEa 

so the open sets D(f) form a basis for the Zariski topology. 
One can now define a sheaf (3.1) for the Zariski topology on Call [g . This is in 

fact an example of an elementary sheaf: 

Definition 3.2. Let X be a topological space, and let 14 be the set of its 
nonempty open subsets. Let K be a set and 'PK  its power set. A mapping 

	

F 	---> PK 

with the property that, for any collection of nonempty open sets {U J  i E 	C 

LAX, 

(

u u1)= n  F(U), 
iEi 	 iI 

is called an elementary sheaf of subsets of K. 

Note that since F(W) = F(U U W) = F(U) fl F(W), an elementary sheaf 
always has the property that, for open sets U, W E 

U C W 	F(U) D F(W). 



F(U1 ) 	 -1 

F(U3) 

F(U2) 
- _ 

- 
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II 
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Open sets in X 
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	 Subsets of K 

 

Figure 3.1: An elementary sheaf 

The set K may have more structure: if K is a module and every F(U) is 
a submodule, then F is called an elementary sheaf of modules; if K is a ring 
and every F(U) is a subring, then F is called an elementary sheaf of rings, and 
so on. 

In the situation we are considering K will be the field C(xi , ... , x n ) of 
rational functions on X = Clg . This is the field of fractions of Crx1, ... , xd, 
consisting of rational expressions 

g(xi, ••• , xn) , where g , h E C[Xi, ... , Xii i and h 	O. 

The polynomial g(x) is finite-valued at all points of Cn, but the same is not true 
of the function g(x)/ h(x). However, if we allow for h(x) only powers f (x)/ " , 
then we obtain rational functions which are finite-valued at all points of the 
basic open set D(f). We shall write 

h(xi, • • • , xn) 

C[x l  , . . . , xn , 1 /f (x)] I g E C[Xi, ... , xn ], rn > 0 1 

for this set of functions, which is a subring of C(xi , .. • , xn). 
Now, in the spirit of (3.1), we define 

0(D(f)) = C[xi, ... , xn, 1/f (x)]; 	 (3.4) 

and, more generally, since any Zariski-open set U c C g  is a union 

U = 10 — V(a) = U D(f) 
f Ea 
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of such sets, we define 

0(U) = n ow(f)). 	 (3.5) 
fEa 

Proposition 3.3. 0 : U 	0(U) as above defines an elementary sheaf on 

Cnlg of subrings of the rational function field C(xi, . - • , xn)- a 

The proof of this will appear in a more general situation in the next section 
(Proposition 3.16). 

Definition 3.4. The Zariski topological space Cnaig  equipped with the sheaf 0 

is called an n-dimensional affine space, denoted by An . 

Let p c (O[xi, ...,xn ] be a prime ideal. The closed set v(p) c gig , equipped 
with the induced (Zariski) topology and elementary sheaf 0 (defined by U fl 

V(p) 0(U n v(p)) := o(u)/p n 0(0), is called an affine variety. 

Example 3.5. Proposition 2.17, applied to the polynomial ring R = 
C[xl, , xn], can now be expressed in more geometrical language: an affine 
variety X c An of codimension 1 is defined by the vanishing of a single poly-
nomial equation, X = V((f)), f E C[Xi, , XII ]. An affine variety X c An 
of codimension 1 is called an affine hypersurface. When n = 2, this is a plane 
curve. 

(b) The spectrum 

The affine space An  is a triple consisting of an underlying space cn, its Zariski 
topology, and structure sheaf 0. We shall see next that all three of these ele-
ments are determined by the polynomial ring C[xi , .. . , xn] alone. Once this is 
understood it is simple to define affine algebraic varieties more generally. 

Remark 3.6. We could retain the ground field C as in the previous section, 
but since the Euclidean topology is not needed (and in the algebraic setting 
can even be misleading) it will be clearer to return to an arbitrary algebraically 
closed ground field k. 0 

We begin by observing that the ring homomorphism which assigns x i  1--> 
ai E k for each i 	1, . .. , n, that is, 

, xn] -± k, 	f 	f(a1, .. . , an), 
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has kernel equal to the maximal ideal generated by the n linear polynomials 

x1—a1, 	a2, 

Theorem 3.7. Every maximal ideal in the polynomial ring k[xl, 	, xn] is of 

the form (xi — al, • . , xn — an) for some ai, 	, an  E k. 

Proof Let m C k[xi , 	, xn] be an arbitrary maximal ideal. Then the residue 
field K = k[x i , 	, xn ]im can be viewed as a k-algebra and is finitely gener- 
ated. We consider the composition of ring homomorphisms 

k -+ k[xi, 	, xn] 	k[xi, 	, xn]lm = K. 

This expresses K as a field extension of k, which by Proposition 2.23 is finite 
and therefore algebraic. But since k is algebraically closed, this shows that 
k K is an isomorphism. Hence there exist elements ai, , a, E k such 
that 

x i 	ai mod m for i = 1, . , n. 

Therefore each x i  — ai  E m, and since (x1 — a1, . . . , xn — an) is a maximal ideal 
it follows that (xi — ai , . - • , xn — an) = tn. 

Applying Theorem 3.7 and Theorem 2.27 to the quotient ring krxi, . . . , x n1/ a 
we obtain: 

Hilbert's Nullstellensatz 3.8. Let a C k[xi, 	, xn ] be any ideal. If a polyno- 

mial f E k[Xi, 	, xn] vanishes on V(a), then fin E afar some m E N. 	0 

Given a ring R and an ideal a c R we shall write 

,,,i6.--={fERIfi EaforsomemEN}. 

This is an ideal in R, called the radical of a. In this language, Hilbert's 
Nullstellensatz says that, for an ideal a C k[xi, . , xn], the ideal of all poly-
nomials vanishing on V(a) is precisely 

Corollary 3.9. For ideals a, b c k[xi, 	, xi,J, V(a) C V(b) <- 	> 	C 

Definition 3.10. Given a ring R, the set Spm R of its maximal ideals is called 
the (maximal) spectrum of R. 
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The full spectrum of R is the larger space Spec R consisting of all prime 
ideals in R, not just the maximal ideals; but in this book we shall need only the 
maximal spectrum. 

When R is the polynomial ring 14.,c1 , . . . , x,], Theorem 3.7 says that there is 
a bijection between the maximal spectrum Spm R = Spm krxi , . . . , xn ] and the 
underlying space kn of the affine space An over k. Generalising this example, 
we now define the Zariski topology and sheaf of rings 0 on Spm R. First of 
all, given an ideal a c R and an element f E R, we define subsets: 

V(a) = {at I D c Spm R, 

D(f) = Im f ml c Spm R. 
(3.6) 

When R = k[xi, 	, xn] these definitions agree with (3.2) and (3.3). The 
following agrees with Definition 3.1: 

Definition 3.11. The subsets V(a), for arbitrary ideals a c R, are the closed 
sets of a topology on Spm R called the Zariski topology. 

Example 3.12. The•nonempty closed sets in the affine line A 1  are A1  itself 
and all finite sets. In fact, for dimension 1 the Zariski topology is the weakest 
topology for which single points are closed. 

The Zariski topology is characterised by the following property. 

Proposition 3.13. If R is a Noetherian ring, then the topological space Spm R 

is Noetherian. In other words, every descending chain of closed sets 

Spm R Zi D Z2 D • • D Zm  D • • • 

terminates after finitely many terms. 

Proof Let Zi = V(ai ). By the Nullstellensatz we can suppose (since -/4Ta-  = 
jii) that ,/iE17 = ai . Then by Corollary 3.9 these ideals form an ascending chain 

al c a2 C • - • am  C • • C R. 

Since R is Noetherian, the ideal U i o C R is finitely generated, so that the 
chain terminates after finitely many terms. 

Note that the Euclidean topology on Cn, for example, certainly does not have 
this property. 
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Definition 3.14. A topological space is said to be irreducible if it satisfies the 
following equivalent conditions. 

(i) X cannot be expressed as a union X1 U X2, where X1, X2 C X are proper 
closed subsets. 

(ii) Any two nonempty open subsets U1, U2 C X have nonempty intersection 
U1 11 U2 0 0. Otherwise X is said to be reducible. 

Note that two basic open sets D(f), D(g) c Spm R have intersection 

D(f)11 D(g) = D(f g). 

If R is an integral domain, then f 0 and g 0 together imply fg 0; so 
we obtain: 

Proposition 3.15. If R is an integral domain, then Spm R is irreducible. El 

In this case, just as for affine space An, we can construct an elementary sheaf 
on Spm R. Since R is an integral domain it has a field of fractions K. Given 
a nonzero element f E R we consider the subring R[1/ f] C K generated by 
R and 1/f. This is the set of all elements of K expressible with denominator a 
power of f. 

Proposition 3.16. Let R be an integral domain. Then the map from nonempty 

open sets of X = Spm R to subrings of the field offractions K of R: 

0(X — V(a)) = n  R[1/ f] 
oofEa 

(or, equivalently, 0(D( f)) = R[11 f] on the basic open sets) defines an ele- 

mentary sheaf 0 of subrings of K on X = Spm R. 	 El 

Lemma 3.17. If the ideal a c R is generated by nonzero elements fi E a, 
i E I, then 

n  
Of Ea 	 iE/ 

Proof The inclusion noof. 	c fliEl R[1 /f] is clear; we have to 
prove the converse. By hypothesis, an arbitrary element f E a can be written 

f =Ecti fi, 
JEJ 
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where ai  E R and J c I is a finite subset. Now suppose that x E K belongs to 
the right-hand intersection. Then for sufficiently large n E N we have f7 E R 
for all j E J. It follows that there exists some N E N such that f N x E R, or, 
in other words, x E RR/ft Since f is arbitrary, this shows that x is contained 
in the left-hand intersection. 0 

The following is clear. 

Lemma 3.18. noofEa R[i/f] --= noofes/Tt RPM. 	 El 

Proof of Proposition 3.16. First note that if V(a) = V(b), then, by Hilbert's 
Nullstellensatz, = so that by Lemma 3.18 the mapping 0 is well 
defined. Now suppose that an open set U = X — V(a) is a union U E/  Ui, 
where Ui  = X — V(ai ). Then 

V(a)  n = v (E ai) • 
iEI 	iEI 

The ideal 	a is generated by the a i , so by Lemma 3.17: 

0(U) = n 0(11.1),  
iEI 

which shows that 0 is an elementary sheaf, as asserted. 	 El 

Definition 3.19. Let R be a finitely generated integral k-algebra. Then the 
collection of data consisting of: 

(i) the set Spm R, 

(ii) the Zariski topology on Spm R, 
(iii) the elementary sheaf 0 over Spm R, 

is called an affine algebraic variety. 0 is called the structure sheafof the variety. 
Writing X = Spm R, the k-algebra k[X] := R is called the coordinate ring 
of X, and its field of fractions k(X) := K is called the algebraic function field 
of X. El 

Example 3.20. Let R = k[xi, 	, xn1/p, where p c k(xi, ...,xn] is a prime 
ideal. Then Spm R is precisely the affine subvariety V(p) c An defined in the 
last section. 

Conversely, Spm R is of this form for any finitely generated k-algebra R. To 
see this, suppose that r1, 	, r, E R are generators and consider the surjective 
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homomorphism 

1<i <n. 

The kernel p c k[xi,..., xd of this map is a prime ideal, so that R is of the 
form above and Spm R is isomorphic to the affine subvariety V(p) c An. This 
explains the terminology 'coordinate ring'. 

	

Choosing a different set of generators 	, rn, E R in this example rep- 
resents Spm R as a different subvariety of affine space v(p') c Ain where 
p' c k[x i , Thus Definition 3.19 improves on the ideas of part (a) by 
describing the points of an affine variety only in terms of an integral domain 
R (its coordinate ring), and independently of any particular ambient space A" 
or A. 

We will explain next some important notions connected with this definition. 

(c) Some important notions 

Morphisms By Corollary 2.25, a homomorphism of finitely generated integral 
k-algebras 

: S 	R 

induces a map of maximal spectra 

	

to : Spm R Spm S, 	m  

With respect to the Zariski topology on each side, this map tO is continuous. 
Write X = Spm R and Y =--- Spm S, and consider in turn the structure sheaves 

Ox  and Oy. If U c Y is an open set, then there is a natural induced k-algebra 
homomorphism 

oy (u)-+ ox((0) -1 u). 

Such a continuous map tO : X 	Y together with its induced homomorphism 
of structure sheaves Oy 	Ox is called a morphism from X to Y. 

If 0 is surjective, then tO is a homeomorphism onto the closed subset v(p) c 
Spm S determined by the ideal p = ker C S. In this case tO is called a closed 

immersion. 

Proposition 3.21. If : S 	R is an integral ring extension, then tO is 

surjective. 	
( 
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Proof Let m c S be a maximal ideal. By Lemma 2.20, the ideal mR is not 
the whole of R, and so it is contained in some maximal ideal M c R. Then 
M fl S = m, showing that tO is surjective. 

One should note that the image of a morphism between affine varieties is not 
itself necessarily an affine variety: 

Example 3.22. The morphism 

f  : A2 	A2, 	(x, y) 	(x, xy) 

has an image consisting of the union 

(A2  — V(x)) U {(0, 0)). 

Of these sets, A2  — V(x), the complement of the y-axis, is open and the 
second, the origin, is closed. Each is an affine subvariety of A 2  but their union 
is not. 

	), 	 (x, xy) 

Figure 3.2: The image of a morphism is not necessarily a variety 

0 

Products Let X = V(m) c An and Y = V(q) c Am be affine subvarieties 
defined by prime ideals p c k[xl,..., x n ] and q c k[yi, • .. , yin ]. Then the 
product of X and Y is by definition the affine variety 

x Y = {(a i , 	, a„, 	, bm) f (a)= g(b) 

(x, y) 

= 0 for all f E p and g E q) c An+m. 
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Equivalently, X x Y = Spm R, where R is the quotient ring 

R = k[xi, . • . , xn, yl, • • • ,11(P 	q). 

This is precisely the tensor product of the coordinate rings of X and Y: 

R = k[xi, 	, xn ]lp 	k[yi, . • • , 

(We leave to the reader the verification that the tensor product of integral 
k-algebras is again integral.) 

The product X x X of X with itself contains a distinguished closed subvariety: 

Example 3.23. The diagonal. For any k-algebra R the tensor product R Ok R 

becomes a k-algebra with multiplication law 

(a b)(c d) ac bd. 

With this ring structure there is a surjective homomorphism 

	

m : R Ok R R, 	 ab, 

and this determines a closed immersion 

tin : X -± X x X, 

where X = Spm R. The image of this map is called the diagonal, denoted by 
AcXxX. 

General spectra and nilpotents The construction above of a topological space 
Spm R equipped with a sheaf of rings can be carried out even when the algebra 
R is not an integral domain. 

Definition 3.24. A ring R in which ab = 0, a, b E R, implies that either a = 0 
or b is nilpotent is called primary. 	 LII 

If R is a primary ring over the field k, then the space X = Spm R is irreducible. 
To see this, we observe that the subset it c R consisting of all nilpotent elements 
is a prime ideal, so the residue ring 

Rred := R in 

is an integral domain. As a topological space, X is exactly the same as Xred 
Spm Rred; that is, the quotient map R 	Rred induces a homeomorphism 
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X„d := Spm R„d 	X. However, the structure sheaves Ox and Ox red  are 
distinct. Ox is defined exactly as in Proposition 3.16, and for each open set 
U C X there is a surjective ring homomorphism 

OX 	°Xred 

In this sense Xred is a closed subvariety of X, and one thinks of X as a 'fattening' 
of Xred. Ox is the total fraction ring of R (see Section 8.2(a)). 

Example 3.25. The simplest example of a primary ring that is not integral 
is R = k[c]/(c2 ): the residue class of c is nonzero but its square is zero. 
Thus Rre,d r=j  k and Spm R consists of the single point space Spm Rred 
equipped with the ring R. Similarly, and more generally, one can consider the 
ring k[c]/(0). 

Example 3.26. Let p c R be a prime ideal. For each natural number n E N 
the variety Spm Rip" -  has an underlying space equal to the closed subvariety 
Y = Spm Rip of X = Spm R; but, as in the previous example, its coordinate 
ring Rlpn is a primary ring containing nilpotents. This is called the (n — 1)-st 

infinitesimal neighbourhood of Y c X. 

Spectra of this kind, and their (formal) limits 

lim Spm k[6]/(E n ), lim Spm Rlpn, 
n-->oo 

are very important in deformation theory; the second limit is called the formal 

neighbourhood of Y C X. 
More generally, one can construct the structure sheaf Ox on X = Spm R for 

more general k-algebras R in a similar manner by using the primary decompo-
sition of R. 

Dominant rnifiphi§ins Let 'O. : X 	Y be a morphism of affine varieties 
determined by a k-algebra homomorphism : S 	R. Recall that by definition 
'43 is a closed immersion when 0 is surjective. 

Definition 3.27. If 0 is injective, then t0 : X -->- Y is called a dominant 

morphism. 



90 	 3 Algebraic varieties 

Let p c S be the kernel of 0. This is a prime ideal, and by the isomorphism 
theorem 0 decomposes as a composition: 

S-÷ Sip 	R. 	 (3.7) 

Correspondingly, the morphism t4) decomposes as 

	

X 	W Spm Sip c---> Y, 	 (3.8) 

where the first map is dominant and the second is a closed immersion. 

Theorem 3.28. Let f : X ---> Y be amorphism of affine varieties, and let Z C Y 
be the Zariski closure of the image f (X). Then f (X) contains a nonempty open 
subset of Z. 

Proof First note that by the decomposition (3.8) it is enough to consider the 
case when f is dominant, that is, when 4): S -÷ R is injective. By Proposition 
2.26 there exists some residue ring T? R11 for which the composition S 

R -->- T? is an algebraic ring extension. We can therefore assume that R is 
algebraic over S. Then, by Lemma 2.22, there is a nonzero element a E S such 
that R[1/ a] is integral over S[1/a].  So by Proposition 3.21 the image of f 
contains the open set D(a) c V. 

Open immersions Let R be an extension of S contained in the field of fractions 
K of S. When the morphism '45 : Spm R 	Spm S induced by the inclusion 

: S 	R is a homeomorphism to an open subset, t4) is called an open 
immersion. The following example is typical. 

Example 3.29. Let 

1 
R --= S[- , , --] C K 

 si 	srn  

be the extension obtained by adjoining the inverses of nonzero elements 
s l , 	, sn, E S. Then t4) is a homeomorphism, 

	

Spm R 	Spm S — (V(si) 	• • U V(sm )) , 

and so is an open immersion. 	 El 
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Local properties Suppose that a 1 , 	,a, E R generate R as a module over 
itself. In other words, there exist b 1 , . . . , bn  E R such that 

1 	bicti -I- • • • + bnan• 

Then the sets D(a1 ) form an open cover of X = Spm R. (The set (ai , . • • , an 
is called a partition of unity. See Definition 8.26.) 

A given property 13 of X (or of R) is said to hold locally if, even if not 
satisfied by X (or R) itself, there exists an open cover (Mai), • • • , Man )} of 
the above form such that 93-  holds for each open set D(ai) (or for each R[1 1 ai ]). 

3.2 Algebraic varieties 
Just as a differentiable manifold, or a complex manifold, is obtained by gluing 
together copies of Rn  or Cn, so an algebraic variety is an object obtained by 
gluing together affine varieties. We are going to explain this gluing process next. 

(a) Gluing affine varieties 

Definition 3.30. Let K be a field, finitely generated over k, and let X be a 
topological space equipped with an elementary sheaf Ox  of k-subalgebras of 
K. Then the pair (X, Ox)  is called an algebraic variety — also a model of the 
algebraic function field k(X) := K — if there exists an open cover {U i  } iE/  of X 

with the following properties. 

(1) Each Ui  is an affine variety with function field K. 
(ii) For each pair i, j E I, the intersection U fl U is an open subset of each 

of U1 , U3 . 	 0 

In general, algebraic varieties are constructed by a gluing construction in the 
sense of the following definition. 

Definition 3.31. Let (A, A) and (B, OB ) be two affine varieties with the same 
algebraic function field K. 

(i) If there exists an affine variety C and open immersions 

t A  : C 	A,  

then we shall say that A and B have a common open set C and denote by 
A Uc  B the topological space obtained as the quotient of A U B by the 
equivalence relation 1A  (x) tn(x) for X E C. 
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Spm R. 	Spm Ru 	Spm Ri  

Figure 3.3: Gluing affine varieties 

(ii) Given an affine variety C as in (i), we define an elementary sheaf 0 = 
0Au c s of subalgebras of K by 0(U) = 0 A(LI n A) 11 OB(U n B) C K 
for nonempty open sets U c A Uc  B. 

The ringed space (A Uc B, 0) is called the gluing of A and B along C. 

The space (A U c  B, 0) thus constructed is an algebraic variety. A case that 
often arises is the following. 

Definition 3.32. Let R and S be integral k-algebras with a common field of 
fractions K, and for nonzero elements al, , a, E R and 1)1, , b. E S 
suppose that 

1 	1 	1 	1 
R[—

ai 
..., 

an 
 —]= S[—

bi 	b.
—]=: 

'  

Then the induced maps Spm T c--÷ Spm R and Spm T c---> Spm S are open 
immersions, and the resulting gluing of Spm R and Spm S is called simple and 
written Spm R UT Spm S. 	 E] 

Clearly we do not obtain a new variety when R = S = T and we shall 
disregard this trivial case. 

Definition 333. 

(i) If two affine varieties A, B are glued along a common open set C, then the 
image of the diagonal inclusion 

Open 

C --> A x B 
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is called the graph of the gluing. When this is a closed subset of the product 
the gluing is said to be separated. 

(ii) An algebraic variety X is separated if it is covered by affine open sets 
{Ui  }j E i such that for each i, j E I the union Ui  U Li,/ is a separated gluing. 

El 

Remarks 3.34. 
(i) Separatedness of an algebraic variety is the analogue of the Hausdoilf 

condition for a topological space; it is not related to the separatedness of a 
field extension! 

(ii) An algebraic variety is separated if and only if its algebraic function field 
can be expressed as the field of fractions of a local ring. 	 El 

The following criterion allows one to check Definition 3.33(i) algebraically. 

Proposition 3.35. For a simple gluing Spm R UT Spm S the following condi-

tions are equivalent: 

(i) the gluing is separated; 

(ii) the subalgebra T C K is generated by R and S. 	 Li 

Note that condition (ii) here is not enough on its own to guarantee a gluing, 
as the following example shows. 

Example 3.36. R = k[x, xy] and S = k[xy, y] together generate T = k[x , y], 

but we do not get a gluing. Indeed, each of Spm R, Spm S and Spm T 
is isomorphic to A2 , and the morphism Spm T --> Spm R is that of 
Example 3.22. LI 

Example 3.37. Let K be the rational function field k(t) in one variable. We 
can consider two different models of K, each obtained by gluing two copies of 
the affine line A 1 . 

(1) Take R = S = k[t] and T = k[t, 1/t], the subalgebra of Laurent polyno-
mials. 

(2) Again each of R, S is the polynomial ring in one variable, but this time 
R = k[t], S = k[1/ t] and T = k[t, 1/t]. 

The graphs of these gluings can be pictured as in Figure 3.4. 
What one sees is that in case (1) the origin is missing from the graph, which 

therefore fails to be a closed set. This is therefore a nonseparated gluing. In 
case (2), on the other hand, the graph is closed and the gluing is separated. Both 
cases illustrate Proposition 3.35. 
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Spm S 
	

Spm S 

Spm R 

  

	). Spm R 

  

     

(1) 
	

(2) 

Figure 3.4 

In fact the algebraic variety that one obtains in case (2) in the projective line 
P1  (see below), As already mentioned, separatedness corresponds to the fact 
that (over a subfield k C C) this is Hausdorff in its Euclidean topology (though 
not in the Zariski topology!). (See Exercise 3.5.) Case (I), on the other hand, 
gives an algebraic variety consisting of two lines identified at all points except 
their respective origins. This space therefore fails to be Hausdoiff even in the 
Euclidean topology. ID 

Product varieties X x 17  can be defined by gluing together the products of 
their affine charts. One should note that the Zariski topology on a product of 
algebraic varieties is not the same as the product topology (as the example 
Al  x A1  shows). 

The notion of separatedness of an algebraic variety in part (ii) of Definition 
3.33 does not depend on the choice of open cover; in fact, the following holds. 

Proposition 3.38. For an algebraic variety X the following conditions are 

equivalent: 

(i) X is separated; 

(ii) the diagonal map X --* X x X is a closed immersion. 	 ID 

Finally, we need to define morphisms of algebraic varieties. 

Definition 339. For algebraic varieties X, Y, a morphism f : X - > Y con-

sists of a continuous map of the underlying topological spaces together with a 
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homomorphism Oy 	(9x of the structure sheaves — that is, for every open set 
UcYa ring homomorphism 

(9y  (U) Ox (ri  
such that: 

(i) there exist affine open covers { 	of X and {Ui } of Y with the property 
that each image f(V 1 ) is contained in some U1 , and 

(ii) the restrictions 

fIv1 :V1 — U 

are morphisms of affine varieties. 	 0 

In other words, just as algebraic varieties are constructed by gluing together 
affine varieties, so morphisms between algebraic varieties are defined by gluing 
together morphisms between their affine charts. 

(b) Projective varieties 

We begin with a fundamental example of the gluing construction just described. 

Example 3.40. Projective space. Let K be the rational function field in n vari-
ables k(Xi, . . . , x„), and introduce n + 1 indeterminates X0, Xi, . .. , X n  such 
thatxi = Xi/ X0 for i = 0, 1, . . . , n. Thus K is a subfield of k(X0, X1, . . . , X„). 

Now, for each i = 0, 1, . . . , n let 

i+  

	

[X0 X1 	X_1 X 11  X n l 
Rxi  = k 	, 	, • • - • 

	

X i  X i 	X i 	Xi  

Each polynomial ring Rx,„ Rx„ ... , Rx„ is a subalgebra of K with K as its 
field of fractions. Note that each affine variety Spm Rx, is isomorphic to An . 

For each i, j let Rx i x, = Rx,Rx ;  C K be the subalgebra generated by Rx i  
and Rx i  . Then Spm Rx, and Spm Rx, have Spm Rx,x as a common open set, 
and 

Spm Rx i  URxtx , Spm  Rx, 

is a separated simple gluing. The algebraic variety obtained by gluing all of 
these affine spaces is the projective space? P. 

We now generalise this example to construct an algebraic variety Proj R from 
any graded ring R. Let R = eEz  R(e) be a graded ring which is an integral 
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domain and suppose also that R( e)  = 0 whenever e < 0. An element f g 
of the field of fractions K of R is said to be homogeneous if each of f, g is 
homogeneous in R; in this case we define deg flg = deg f — deg g. 

Definition 3.41. 

(i) We denote by Ko C K the subfield consisting of elements of degree 0, 
including zero: 

Ko  = -

f f, g E R, g 0, deg f = deg g l  U {0}. 

(ii) Given a nonzero homogeneous element h E R, we denote by Rh,0 C Ko 
the subalgebra 

Rko = {—
f IfE R, deg f = n deg hl U {0}. 
hn  

Lemma 3.42. 
(i) For every nonzero homogeneous element h E R, the field of fractions of 

Rh,0 is KO. 

(ii) Given two homogeneous elements h,1 E R, the gluing Spm Rh,0 UT 
Spm R1,0, where T = Rh,01?1,0 C Ko, is simple and separated. 

Proof Part (i) is obvious, and part (ii) follows from Proposition 3.35 once we 
have shown that the gluing is simple. In other words, we have to show that 
T = Rh,0[11 p] for some p E Rh,0 (and similarly that T = Ri 3 O[11q] for some 
q E R1,0). Let e E N be the lowest common multiple of deg h and deg 1, so that 
e = a deg h = b deg 1, say. A general element of T is of the form f/(hrls), or 
F Ah a  l br for sufficiently large m E N and suitable homogeneous F E R with 
deg F = 2me. This can be written 

F 
 (ha 	Or 	h2ma 
(ha ) 111  = 	— 	E Rh ,o[h cl  / lb ], lb 

and hence T = Rh,0[11 p], where p = lb  I ha  E Rh,o, as required. 	fl 

Definition 3.43. 

(i) Given a finitely generated graded ring R = gex±0  R(,), the algebraic variety 
with function field Ko obtained by gluing the maximal spectra Spm Rh,0 

for all nonzer homogeneous elements h E R is denoted by Proj R. 
(ii) If Ro  k, then the variety Proj R is said to be projective. 
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Proposition 3.44. /fh 1 , 	, h m  E R are homogeneous generators, then Proj R 
is covered by the open sets Spm Rh,,o, 	, Spm Rh„„O• 

Proof We have to show, given a homogeneous element h E R, that 

Spm Rh,0 C U Spm Rh i3 O•  

Note that h 1 , 	, hm  are also generators of the ideal R +  =  e>0  R(e) C R. 
Let e E N be the lowest common multiple of the degrees of h and h 1 , . . . , hm , 

so that 

e = ao  deg h = a l  deg h 1  = ... — am  deg hm  

for some ao , 	, am  E N. Then ha°  is contained in the radical of the ideal 
(h', 	, knam) C R, so we can write ha° N  = 	- • 	fm h: for some 

N E N and homogeneous elements fi,  ,f E R. In other words, 

1 
 = (

hal  
1  ) ± • • ± fm haoN 

h2n 

ho") 

and this says that the terms in brackets form a partition of unity in the ring Rh,0 

(Section 3.1(c)). It implies that 

1171  
Spm Rh,0 = U SPm Rhi•°[ha oN 

i=1 

where each Spm Rh, ,o[hcite  ha01 is an open set in Spm Rhi 3 O- 
	 El 

Example 3.45. Let R = k[Xo, X1, . , XII], graded as usual by degree of 
polynomials. Then Proj R is nothing other than the n-dimensional projective 
space Pn  constructed in Example 3.40. (We will return to this fundamental 
example in Section 6.1(a).) El 

Example 3.46. Weighted projective space. Given natural numbers a 0 , al, . . . , 

an  E N, we take R = k[X0, X1, . . . , X n ] to be a polynomial ring graded by 
deg X i  = ai  for each i = 0, I, . , n. So R = R(,), where R(e) is the 
vector space spanned by all monomials X on'rni  1  • • • Xnmn with Eai m, = e. We 

write 

Proj R = P(ao : al : . : an ), 

called a weighted projective space. Moreover, if the weights ao , al,  . .. , an  have 
a common divisor, then an isomorphic projective variety is obtained by dividing 
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ao, al, 	, an  through by their common divisor, that is: 

IF(ao  : a1: . . . : an ) 	P(aolb : ailb : 	: 

where b = gcd(ao, al, . . . , an ). 

(See also Example 3.72.) 
	

LI 

The following fact, which we shall need later, is a consequence of 
Proposition 3.5. 

Proposition 3.47. A subvariety of?" of codimension 1 is defined by the van- 

ishing of a single homogeneous equation. 	 Li 

3.3 Functors and algebraic groups 
(a) A variety as a functor from algebras to sets 

An affine algebraic variety X, at the most elementary level, is a subset of k" 
defined as the set of common zeros of a system of polynomial equations 

xn) = F2(x 1, 	, xn ) = - • • = Frn (xi, 	, xn ) — 0. 	(3.9) 

What is more essential to X, of course, is not the particular choice of equations 
(3.9) but rather the ideal that they generate. More than this, one can even view 
the particular choice of field k in which one looks for solutions as inessential 
to the system and define X as the solution set 'for any number system in which 
the system makes sense'. 

To make this idea more precise it is convenient to use the language of functors. 
Let R be any k-algebra and consider the set 

X(R) = {(x1, 	, xn ) E en satisfying the system of equations (3.9).1 

We call X(R) the set of R-valued points of the variety X. This is no more than 
a set, of course, and so on its own does not have very much meaning. However, 
the point of view that follows turns out to be extraordinarily powerful. Namely, 
suppose that we have a homomorphism f : R ---> S of k-algebras. It is plain to 
see that, if (xi, , xn ) is an R-valued point of X, then (f (xi), , f (x n )) is 
an S-valued point. In other words, f determines a set mapping X(R) --> X(S). 
Let us denote this mapping by X(f). If f : R ---> S and g : S --> T are two 
k-algebra homomorphisms, then clearly 

X(g 

 

0 f) = X(g) 0 f). 
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This observation can be expressed in formal language: 

X is a (covariant) functor from the category of k-algebras to the category of 
sets. 
We want to think of an algebraic variety not just in itself, but as a 'program' 
which takes as input a k-algebra and outputs a set. 

It is also important to note that this functor determined by an algebraic variety 
does not depend on how we choose coordinates. Let X = Spm A, where 

A = k[x i , 	, xd/(Fi , 	, Fm ) 

is the quotient ring by the ideal generated by the system of equations (3.9). 
Given an R-valued point (al, , an ) E X(R) we have a homomorphism of 
k-algebras 

k[xi, 	, xd --> R 

obtained by mapping each x i 	The kernel is just the ideal generated by 
F1 , . , F„„ and so we get a homomorphism A 	R. In this way we can 
identify 

X(R) = Homk(A , R) 

or, equivalently: 

X(R) = Mork(Spm R, X). 	 (3.10) 

Moreover, if f : R --> S is a homomorphism of k-algebras, then it induces a 
morphism f: Spm S --* Spm R, and the set mapping 

X( f) : Mork(Spm R, X) Mork (Spm S, X) 	 (3.11) 

is just given by composition g t-÷ g o 7: 

Spm S 	---›- 	Spm R 

g 
X 

We can extend the functor X from affine varieties to arbitrary algebraic 
varieties. Since- a variety X is obtained by patching together affine varieties 
for i E I, some index set, we obtain a functor X by 'gluing' the functors Ui ; by 
definition of a variety this functor will not depend on the particular choice of 
our open cover Wi  ha . Moreover, given k-algebras R, S and a homomorphism 
f : R ---> S, the interpretation of the set X(R) and the set mapping X(f) are 
exactly the same as (3.10) and (3.11). 

This point of view will be needed in Chapter 11. 
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(b) Algebraic groups 

Let us now look at a case where this functorial point of view is particularly 
useful. This is the definition of an algebraic group. Consider the most basic 
case of the special linear group G = SL(n). Taking as coordinates the matrix 
entries (xii)i<ij<n, this is the degree n hypersurface in n 2-dimensional affine 
space: 

G: det IxiiI — 1 = 0. 

Given a k-algebra R, the set of R-valued points is 

G(R) = {(a 11 ) E R112  I det laii  I = 1} = SL(n, R). 

In other words, G(R) is just the group of special linear matrices whose entries 
are in R. Moreover, given an algebra homomorphism f: R --> S. the induced 
map 

G(f) : SL(n, R) --> SL(n, S) 

is a homomorphism of groups. So we see that G = SL(n) is in fact a functor 
from the category of k-algebras to the category of groups. 

Generalising, we say that: 

an algebraic variety G is an algebraic group if G is a (covariant) functor from 
the category of k-algebras to the category of groups. 

An example of an algebraic group which is not affine is the famous group law 
on a plane cubic curve. (See, for example, Cassels [1] §7.) In the case when G 
is affine, one can make the following definition. 

Definition 3.48. Let A be a finitely generated k-algebra. Then G = Spm A is 
called an affine algebraic group if there exist k-algebra homomorphiSms 

p, : A -->- A Ok  A (coproduct) 
E : A --> k 	(coidentity) 
t : A —> A 	(coinverse) 

satisfying the following three conditions. 

(i) The following diagram commutes: 
A A 	----> 	A Ok A 

11,  4, 	4,1AOIL 

lieu 
—* A Ok A Ok A. 
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(ii) Both of the compositions 

k Ok A 

€0 1 A 
A-4 AOkA 	 A 

1A0E\ 
A Ok k 

are equal to the identity. 
(iii) The composition (where the last map m is multiplication in the algebra) 

A A Ok A 14- A ok  A A 

coincides with E. 

These three requirements correspond, respectively, to associativity and the 
existence of an identity element and (right) inverses. The homomorphisms 

6, t induce natural transformations ,u, E, t, and these together with the axioms 
above guarantee that the functor 

G: {algebras over k} 	{sets} 

actually takes values in the category of groups. 

Example 3.49. If G is any group, the group ring k[G] of G is the vector 
space (finite-dimensional if G is a finite group) with basis {[g]] gE G and bilinear 
product defined (on basis vectors) by 

m : k[G] x k[G] 	k[G] 
([g], [h]) F---> [gh]. 

This makes k[G] into a k-algebra; we let A be its dual as a vector space, given the 
structure of a k-algebra by componentwise addition and multiplication. Spm A 
now becomes an affine algebraic group by taking 

the dual of the multiplication map on k[G], E to be evaluation at 1 E G C k[G], 

and t to be the pull-back of linear forms under the involution of k[G] defined 
by inversion in G. 

For example, when G is the cyclic group of order n we obtain 

A -,- k[t]/(t — 1), 
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with ,u(t) = t t, E(t) = 1 and c(t) = tn -1- . As a functor, Spm A assigns to a 
k-algebra R the group 

Spm A  (R) = {a E R I an = 1). 

LI 

Example 3.50. The spectrum of a polynomial ring in one variable A = k[s] 
can be given the structure of an affine algebraic group by defining ,u(s) = 
s 1 + 1 s, E(s) = 0 and t(s) = -s. This group is denoted by Ga . As a 
functor, it assigns to a k-algebra R the additive group R itself. As a variety, of 
course, it is isomorphic to A l  . 

Example 3.51. The spectrum of the ring of Laurent polynomials A = k[t , t -1 ] 

is made into an affine algebraic group by defining ,u,(t) = t t, 6(0 = 1 and 
L(t) = t -1 . This group is denoted by Gm . As a functor, it assigns to a k-algebra 
R the multiplicative group RX of invertible elements in R. As a variety, it has 
an open immersion in A 1  (as the complement of the origin) corresponding to 
the subring kft} k[t , t -1 ]. Eli 

Example 3.52. Let A = 	(det x) -1 1 be the polynomial ring in n 2  variables 
xij, 1 <i, j < n, with the inverse of their determinant adjoined. Then Spm A 
is an open set in affine space An2  and becomes an affine algebraic group by 

I(X j) = E xi, xii , E (xii) 	jj , t(xi i ) = (det x) -1 (adjx)ii 

This is, of course, none other than the general linear group GL(n). In the case 
n = 1 it is precisely the multiplicative group Gm  of Example 3.51. As a functor 
it assigns to a k-algebra R the group GL(n, R) of invertible n x n matrices with 
entries in R. LI 

Example 3.53. The ring Ao = k[xi3 ]/(det x - 1) is the quotient of A (from 
Example 3.52) by the ideal (det x -1) c A. Observing that this ideal is contained 
in ker c and is preserved by ji and t, we see that these maps induce maps €0, /to, to 
on Ao, making Spm Ao  into an affine algebraic group. This is a subgroup of 
Spm A = GL(n) and is precisely the special linear group SL(n). 111 

The action of an algebraic group on an affine variety can also be viewed 
functorially in the same spirit. For future use we give the precise definition. 
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Definition 3.54. An action of an affine algebraic group G = Spm A on an 
affine variety X = Spm R is a morphism G x X X defined by a k-algebra 
homomorphism 

AR:R —>R0k A 

satisfying the following two conditions. 

(i) The composition 

R 	R Ok 	R Ok k R 

is equal to the identity. 
(ii) The following diagram commutes: 

R 
R Ok A 

AR 1 A 

iRotLA 
R Ok A 	R Ok A ® A. 

3.4 Completeness and tonic varieties 
(a) Complete varieties 

The Hopffibration is a continuous surjection of the 2n + 1-dimensional sphere 

s2n+1  
= ri 
	

Zi, • • • 5 z 	
e  cn+1 

n) 	 IZ01 2 	IZ11 2 	• • • + IZn1 2  = 11 

onto a complex projective space P (with the Euclidean topology): 

S 1  circle fibre 

s2n+1 c  R2n+2 = Cn+1 

Hopf map 

In particular, this implies that P 1'(  with its Euclidean topology is compact: that 
is, any infinite sequence of points in Irci contains a convergent subsequence. 
The aim of this section is to discuss how this property should be formulated for 
an algebraic variety. 
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Definition 3.55. 

(i) A map f : X --> Y of topological spaces is called closed if for every closed 
set Z c X the image f (Z) c Y is closed. 

(ii) An algebraic variety X is said to be complete if for any algebraic variety Y 
the projection morphism X x Y --- Y is closed. 	 0 

Note that condition (i) is much stronger for the Zariski topology, with which 
we are concerned, than for the Euclidean topology. For example, if Y is an 
irreducible curve, then the image f (Z) of a closed set Z c X must be either 
finite or the whole of Y. More generally, if Y = A", then f (Z) must be the 
zero-set of some system of polynomials. 

On the other hand, it is easy to see that products and closed subsets of complete 
algebraic varieties are again complete. 

Example 3.56. The affine line A 1  is not complete, since the projection A l  x 
A1  ----> A 1 , (x, y) F--> x, is not a closed map. For example, the image of the 
closed set V (xy — 1) C A l-  x A l  = A2  is the punctured line A 1  — {0}. 	ID 

A1  

Figure 3.5: The affine line is not complete 

We can use the same idea to make the following general observation. 

Proposition 3.57. The only complete affine variety is the single point 
Spm k. 	 El 
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Proof Suppose that X is a complete affine variety realised as a closed subvariety 
X C An , and let xi , • , xn  be the coordinates on An. We then consider the 
projection of the product X x A 1  —> A1 , (x, t) F-± t. The image under this 
projection of the closed set 

V(xit 1)11 (X x A1 ) 

does not contain 0 E A 1 , and so by completeness it is either empty or a single 
point. 

If the image is a single point, we let its coordinate be t = a 0 0. This means 
that 

X c V (x i  — —I ) c An. 
a 

On the other hand, the image can be empty only if 

X C V(x1)- 

In other words, we have fixed the value of the first coordinate x i  for all points 
of X c An. Similarly, we can determine the values of the other coordinates 

x2, • . . , xn so that X is a single point. 

There is a general criterion for determining completeness of a variety X. One 
should think of this as being analogous to the criterion for compactness that any 
infinite sequence has a convergent subsequence. We make use of the notion of 

R -valued points, that is, of the functor X from k-algebras to sets, introduced in 
the previous section. 

Valuative Criterion for Completeness 3.58. Let X be a separated algebraic 

variety and suppose that for an arbitrary valuation ring V over k, with field of 

fractions Kv , the natural map 

X(V) X(Kv) 

is surjective. Then X is complete. 

Proof Since the property of the projection X x Y 	Y being closed is local, 

it is enough to assume that Y := Spm S is an affine variety. Let ZcXx Y be 
a closed set. Without loss of generality we may assume that Z is irreducible. 
Replacing Y by the Zariski closure of the image of the second projection Tr2lz 
Z --->- Y, to assume that this projection is a dominant morphism, we have to 
show that 7r2 l z  is surjective. 
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Let y E Y be an arbitrary point, and let m c S be its corresponding maximal 
ideal. The projection 721z induces an embedding of fields 

k(Y) 	k(Z), 

and hence by Theorem 2.37 there exists a valuation ring (V, m) in k(Z) domi-
nating (S, m). Then there is an injection S 	V such that m y  fl S = m. 

The first projection ir1 I z : Z —a X determines a k(Z)-valued point of X and 
hence a Kr  -valued point of X. By hypothesis this is induced by a V-valued 
point 

Spm V ---> X 

or, in other words, a homomorphism R ----> V, where Spm R C X is some affine 
neighbourhood. Tensoring this with the inclusion S c--> V and composing with 
multiplication in V gives a map 

Ok S 	V Ok V ----> V , 

and the composition with V --a V/1 -fly  k determines a point of X x Y. By 
construction this point belongs to the closed set Z, and hence y is in the image 
of Z. 

Our first application of the Valuative Criterion is the following. 

Proposition 3.59. The projective spacer is complete. 

Proof Let V be a valuation ring with valuation v : K v* --> A, and let (ao 
al : . : an ) be the homogeneous coordinates of a K r -valued point a E pn 

(see Example 3.40). Not all ai  are zero, and among the nonzero homogeneous 
coordinates we shall suppose that the valuation v(a 1 ) E A is minimal. 

We have seen in Example 3.40 that Pn is covered by n 1 affine spaces 
U0, U1, . , Un  C Pn, where each Ui = Spm R1 .24 An . Moreover, a E Urj with 
coordinates 

(a0 al ai_1 ai+i  
9 • • • 9 - 	• 

an 

Since v(alai) = v(a) — v(a1 ) > 0 for each i for which ai  0 0, it follows that 
all coordinates are in V, so that a is a V-valued point of U1 c F. 

a1  a 	a • 	a • a • • 	• 

Corollary 3.60. Every closed subvariety of Pn  is complete. 
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(See also Corollary 3.73 at the end of the chapter.) Finally, we shall need the 
following fact later on (Section 9.1). 

Proposition 3.61. If f : X —> Y is a morphism of algebraic varieties, where 
X is complete and Y is separated, then f is a closed map. 

Proof The graph IF c-›- X x Y of f is a closed immersion since by definition 
it is the pull-back of the diagonal LS, c Yx 1" under the map f x id. Then f 
can be expressed as the composition 

and since each of these maps is closed, so is f. 

(b) Toric varieties 

We are now going to show how a complete algebraic variety, called a toric 
variety, can be obtained from data consisting of a partition of the real vector 
space Rn into convex rational polyhedral cones. (For a good introduction to this 
subject see Fulton [37].) 

A point of Rn whose coordinates are all integers will be called a lattice point, 
and we denote the set of these by N = Zn  C R'. A linear form f : -÷ R 
determines a closed half-space Hf = Ix E Rn I f (x) > 01. By a (convex) 
polyhedral cone we mean a finite intersection 

a Hf, n • • • n fm  C Rn  

The forms fi  , 	, fin  are called supporting functions of the cone a, and the 
intersections of a with the subspaces 

vuii) n • • n v(fia ) c Rn  , 	1 < < • < ja < 

are called the faces of a. 
For simplicity, we will always assume that a polyhedral cone in Rn  is n-

dimensional - that is, not contained in any linear hyperplane of I n  . A polyhedral 
cone will be called-nendegenerate if it contains no lines (1-dimensional vector 
subspaces) of Rn . It is rational if it is spanned by rays (1-dimensional faces) 
passing through lattice points. 

Definition 3.62. A finite set E = {a l , 	, at } of rational convex polyhedral 
cones in Rn is called afan if every intersection a i  n aj  for i j is a face of ai 

 and a3. 
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Let M c (Rn)V be the dual lattice of N, that is, 

M=If E (Rn)'' I f(X) E Z for all X E NI. 

Corresponding to the fan E there is a dual fan in (Rn) v  whose shared rays 
we will denote by 11, . • . ,I C (R)v. These define the faces of a 1 , . • - , at• in 
the examples following we will identify Rn  with (Rn ) v  via the standard inner 
product and draw a l  , ... , at  and /1, . . . , i s  in the same picture. 

The group algebra k[M] of M (see Example 3.49) is a finitely generated 
algebra over k. Indeed, identifying M'.:-/._- Zn by choosing a basis identifies 
k[M] with the ring of Laurent polynomials in n variables: 

-t 	-1-. 

	

k[M] -7; k[xi, . • . , x n , x i  , ... , xn  i, 	(ml, • - , mn) 1-± xi' • - • xnmn . 

In other words, elements of M become Laurent monomials and we extend by 
linearity. Moreover, the coproduct 

x m  1---> xm  0 x m  

(where we write xm = xri ...xnm. for m E M) makes the spectrum 

T = Spm k[M] 

into an affine algebraic group isomorphic to the n-fold product Gm  x • • • x Gm . 
Now consider a fan E. Each a E E determines a semigroup 

Ma  = {m E M I ( M, a) > 0 for all a cab 

where ( , ) denotes the natural nondegenerate pairing M x N --›- Z. This in 
turn determines a subalgebra k[Ma]  c k[M] of the Laurent polynomial ring. 
The assumption that a is nondegenerate implies that the field of fractions of 
k[Ma ] is k(xi, - - , xn) — or, more precisely, that the inclusion k[Ma] c--4- k[M] 
induces an open immersion 

T c---> Spm k[Ma ]. 

Moreover, the natural map 

k[Ma ] --* 14Mai 0 k[M], 

for m c Ma  defines an action of the group T on the affine variety Spm k[Ma]. 

Lemma 3.63. Given a fan E = {at, • • • , at}, for each 1 < i < j < t the 
gluing 

Spm k[Mai i UT Spm k[M, j ] 

is simple and separated. 	 Ill 
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This is a consequence of the defining condition on the intersection of the 
cones in a fan of Definition 3.62. 

Definition 3.64. Given a fan E = {al, . . . , at } in Rn, the gluing 

X(E) := Spm k[Mad UT • • • UT SPM k[Mat ] 

is a separated algebraic variety with algebraic function field k(x i  , .. . , xn), 

called a toric variety. 

Note that the tonic variety X(E) contains the torus T as an open set common 
to all the affine charts Spm k[Maj, and that X(E) thus constructed carries a 
natural action of the group T. 

Example 3.65. n = 1. The only possibility here is s = t = 2, with 

at = 11 = R>o, 
a2 = 12 = R<0. 

In this base, k[M1] = 1c[x], k[M2] = k[x-1 ], and the spectrum of each is the 
affine line A'. The gluing is that of Example 3.37(2), and so 

X(E) = P 1 . 

Note also that T = G., and this acts on X (E) = 11:°' by (x0 : xi) F---> (tx0 : r ixi) 
for t E Gm . 	 El 

Example 3.66. n = 2. Let E = lai , a2, a3, a41 be the fan obtained by parti-
tioning R2  into its four quadrants: s = t = 4 and /1, ... , /4 the rays spanned by 
(+1, 0), (0, +1). So 

k[M1] = lc[x , y] 
k[M21 = k[x -1  , y] 

k[M3] = k[x-1  , y -1 ] 

k[M4] = k[x, y -1 ]. 

This is a simple gluing which gives the product 

X(E) = P 1  x Pl . 

El 

Example 3.67. n = 2. Let s = t = 3 and 11,12, 13 be the rays spanned by 
(1, 0), (0, 1), (-1, —1), respectively. The cones al, a2, a3 are the three regions 
shown in Figure 3.6. 
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al 	02  
. 	 ) 

pl 	 pi. X P 1 	 1p2  

Figure 3.6 

We see that 

k[M1] = k[x, y] 

k[M21 = k[x -1 , x - 1  y] 

lc[M3] = k[y-1 , xy -1 ]. 

The toric variety obtained in this case is the projective plane (by defining ho-
mogeneous coordinates (X 0  : X1 : X2) = (1: x : y)) 

x(E ) = a--52 . 
0 

A homomorphism Gm  ----> T is called a 1-parameter subgroup of T. The set of 
these forms an abelian group and, in fact, is none other than the lattice N c JP. 

Note that as an algebraic variety G m  is isomorphic to the projective line P 1 
 minus two points; more precisely, it is the intersection of the two affine charts 

A 1  of P 1 , and these two charts are exchanged by the automorphism t <-> t-1  

Of Gm . 
The torus T acts on the toric variety X( E), and via this action any 1-parameter 

subgroup X : G m  T induces an action of Gm  on X(E). Let us use the same 
symbol X to denote the composition 

X : Gm  ---->- T --÷ X(E). 

If this morphism extends to a morphism Gm  c A1  —> X(E), then we shall say 
that the 1-parameter subgroup X has a limit in X(E). We are now ready to state 
the main theorem of this section. 

Theorem 3.68. Let E be a fan in Rn and let X(E) = 1/4..iI  I (TEE Spm k[M]  be its 

associated toric variety. Then the following three conditions are equivalent. 

(i) X(E) is complete. 
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(ii) Every 1-parameter subgroup ). : Gm  ---> T of the torus T c X(E) has a 

limit in X(E). 

(iii) E covers the space II kn, 

Rn  = U a' 
crEE 

(c) Approximation of valuations 

Our aim in the rest of this section is to prove Theorem 3.68. To begin, the 
following lemma is well known. 

Lemma 3.69. If P C kV/ is a convex cone not equal to I, then there exists a 

half-space 

Elf = {X E liln I f (x) ?_. 0} 

for some f E (Rn)v, such that P c IHIf. 	 0 

Let v : K* ---o- A be a valuation of the rational function field K = 

k(xi, . • • , xn). 

Lemma 3.70. There exists a linear form f : M ---÷ LI (unique up to a scalar 

multiple) with the property that 

v  	
< 

o 
f (m) 	 > V(X) I >  ° 

	

< 0 	 0. 

Proof Let 

Mv = {m E M I V(Xm ) ? 0). 

This is a saturated subsemigroup of the lattice M C (Rn )'' , which means that 
My  = P n M for some convex cone P c (Rn)v. If P = (Rn)v, then v(xm) > 0 
for all Laurent monomials xm, which by inversion implies that v(x) = 0 for 
all Laurent monomials. In this trivial case, therefore, it is enough to take f..---,_ 0. 

If P is a proper subset, take f to be a form as given by Lemma 3.69. This 
has the property- that. 

v(xm) > 0 	> f(m) > 0 

and hence, replacing m by —m, that 

v(xm) < 0 	f(m) <0. 

The lemma follows from these two statements. 	 0 
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From this we deduce the following: 

Approximation Theorem 3.71. For any finite collection mt, , Ms  E M 

there exists a linear form g : M -÷ Z with the property that for each i = 

1 > 0 > 0 
v(xmi ) = 0 = 0 g(m 1 ) 

1 <0 1 <0. 

Proof We argue by induction on the rank of M, noting that the result is trivial 
on a sublattice of rank 1. 

We consider the linear form f M 	R given by Lemma 3.70, whose 
kernel 

Mo = ker f CM 

is a sublattice of strictly lower rank than M. We re-order mi, 	, ms , if neces- 
sary, so that ml, 	, Mr E Mo and mr+i., • • • , ms g Mo. Then f is R-valued 
but otherwise satisfies the requirements of the proposition for the elements 
mr+i . . . , ms . Moreover, since the rational numbers Q are dense in R, we can 
perturb f,  preserving the conditions of the proposition, to take values in Q 
(we just have to perturb the values taken on a basis). Multiplying by a suitable 
positive integer to clear denominators we obtain a Z-valued form possessing 
the property of the proposition on the elements m r+i , , ms . Let us denote 
this by g main  M -÷ Z. 

If r --= 0, that is, if none of the elements ml, 	, ms  are in Mo, then we are 
done. So if r 0, let us turn our attention to the elements m1, . , mr E MO. 

By the inductive hypothesis there exists a form h Mo -± Z such that 

> 0 	 > 0 

	

v(xiii9 1 = 0   h(mi)1=-- 0 
< 0 	 < 0 

for each i = 1, . . . , r. We let gsub : M 	Z be an arbitrary extension of h to 
the whole of M. Then it is clear that for a sufficiently large integer N E Z the 
form 

g = N gmain + gsub 

has the required property. 
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Proof of Theorem 3.68. (i) 	(ii) Consider the graph of A : G in  ---> T in the 
product A 1  x X(E): 

F c Gx T c A l  x X(E). 

Denote its Zariski closure by F c A 1  x X(E) and consider the projection 
A1 . By completeness the image is a closed set, and by construction it 

contains Gm. The projection is therefore surjective and an isomorphism away 
from the origin of A'. But the local ring 0A1, 0  at the origin is a valuation ring, so 
by Example 2.31 and Exercise 2.9 the projection r ---> A1  is an isomorphism. Its 
inverse morphism is then the graph of a morphism : A 1  --a- X(E) extending A. 

(ii) = (iii) It is enough to show, since the lattice directions are dense, that 
the cones of the fan cover the lattice N c R'. For x E N let A, : 	T be 
the corresponding 1-parameter subgroup. This has a limit T., : A 1  ---> 
and the limit point 7,,x (0) is contained in Spm k[Ma ] for some cone a E E. But 
this means precisely that x E o. 

(iii) == (i) Let l, .. . , is  be the rays of the dual fan of E spanned by lattice 
points ml , 	, m E M. We will apply the Valuative Criterion 3.58. Choose an 
arbitrary valuation ring V with v K —> A, and a morphism f Spm Kv 
X(E), which we can suppose without loss of generality maps into the torus part 
T c X(E) (otherwise we apply the argument instead to the lower dimensional 
toric strata). 

Let g E N = Hom(M, Z) be the linear form given by the Approximation 
Theorem 3.71 applied to ml , , ms  and the valuation v. Since, by hypothesis, 
the fan E covers R', it follows that g is contained in some cone CI E E. This 
means that g(M) > 0. The corresponding coordinate ring k[M,i ] is generated 
by some subset of the Laurent monomials xml , . . . , , and for members of this 
subset we have g(m3 ) > 0 and hence v(xini ) > 0. Hence k[Ma]  is contained in 
the valuation ring V c K v , and so we obtain a V-valued point of X(E). This 
extends the morphism f to 

Spm Kv C Spm V  

as required. 	 LI 

Example 3.72. Weighted projective space. Let a 	(ao, al, 	, an ) be a 
primitive element of the lattice N Z'', that is, 

gcd(ao, ai , . . . , an ) = 1. 

Then the quotient N = .̂1 ilZa is a free abelian group of rank n. If in addition all 
ai > 0, then a partitions the first quadrant of N OR = Rn+  I  into n+1 polyhedral 
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cones of a fan with 1-dimensional faces spanned by a and the standard basis 
vectors. This fan projects to a fan covering R" = N R. 

The complete toric variety associated to this fan in Rn is the weighted projec-
tive space P(ao : al : . . . : an ) of Example 3.46. When ao = al = • • = an  = 1, 
for example, it is nothing other than the n-dimensional projective space F. 

Just as for IP', the weighted projective space P(ao : al : . . . : an ) can be 
described using n + 1 coordinates X0, X1, , X. Then k[M] has a basis of 
Laurent monomials 

Xoni° 	.. . X,Tn 	such that aomo + aimi + • • + anm, = 0. 

For each i = 0, 1, . , n, the corresponding subalgebra k[M1]  c k[M] is 
spanned by those monomials for which 

>_ 0 	for all j 	i. 

El 

= (a0, al , a2) 

49-2 

C3 

R3  R2 

Figure 3.7 

Corollary 3.73. Every projective variety Proj R is complete. 

Proof Let xo, 	, xn  be homogeneous generators of R with degrees 
ao , a1 , .. . , an , and consider the surjective graded homomorphism 

k[X0, 	, X n ] 	R 

mapping X i  F->- x1 , where deg X i  = ai. Denote the kernel by a C 

k[X0, Xi, , Xn ]; then Proj R is isomorphic to the closed subvariety of 
the weighted projective space ]P(ao:ai "an) defined by the ideal a. The 
weighted projective space is complete by Example 3.72, and hence so is 
Proj R. LI 
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Remark 3.74. Note that this proof shows that a choice of homogeneous gen-
erators in the graded ring R, of degrees ao, . . . , a„, is equivalent to specifying 
a closed immersion of Proj R in the weighted projective space P(ao : . . . : an ). 

In particular, a closed subvariety of P" is precisely Proj R for some graded ring 

R generated in degree 1. We will return to Proj in Section 6.1(a). 

Exercises 

1. Show that an n-dimensional Euclidean space Rri, for n> 1, is reducible in 
the sense Of Definition 3.14. Show that this space is not Noetherian. 

2. Show that a Noetherian topological space can be (uniquely) expressed as a 
finite union of in-educible closed sets. 

3. Show that in a primary ring (Definition 3.24) the set of nilpotent elements is 
a prime ideal. 

4. Let S = Z[V-51, and let R be the ring obtained by adjoining (1+ \/-5)/2. 

Show that Spm R -÷ Spm S is an open immersion. 
5. Let X be a topological space, and let X x X be the Cartesian product equipped 

with the product topology. Show that the diagonal subset 6. c X x X is 
closed if and only if X is Hausdorff. 

6. Consider the plane R 2  with topology coming from the usual Euclidean met-
ric. Then the map 

0 : R2  R2  
(x, y) i-->- (2x, y/2) 

is a homeomorphism. When the cyclic group generated by 0 acts on the 
punctured plane R2  — {0}, show that the quotient topological space is non-
Hausdorff. 

7. Give a direct proof that the weighted projective space P(ao : al : . . . : a„) is 
complete, by the method of Proposition 3.59. 
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Algebraic groups and rings of invariants 

In general it is hard to construct rings of invariants — that is, to determine ex-
plicitly a set of generators and relations. However, this is not actually necessary 
in order to say that a moduli space exists as an algebraic variety. For this one 
would like to understand — in the precise manner of a Galois theory, so to 
speak — the relationship between the invariant ideals in a ring and the ideals in 
its subring of invariants. What we need here is that the group that is acting is 
linearly reductive: this is the central notion in this chapter. 

We begin by giving a careful definition of a representation of an algebraic 
group. Various important properties can be deduced only by following closely 
to this definition; for example, it allows us to deduce that all representations 
are locally finite-dimensional. The set of local distributions supported at the 
identity in an algebraic group G admits a convolution product, making it into a 
(noncommutative) algebra 1-1(G), called the distribution algebra. The tangent 
space of G at the identity element, called the Lie space g = Lie G, is a vector 
subspace of 7-i(G). As is well known, it inherits a Lie algebra structure, although 
we will not use this in this book. As well as the Lie space, 7-1(G) also contains 
a distinguished element S2, called the Casimir element, constructed using an 
invariant inner product on the Lie space (Section 4.2). In Section 4.3 we use 
the Casimir element to prove the linear reductivity of SL(n). We then prove 
Hilbert's Theorem 4.53 that if a linearly reductive algebraic group acts on a 
finitely generated algebra, then the invariant subalgebra is finitely generated. 
The key ingredient in the proof of this is Hilbert's Basis Theorem. 

In Section 4.4 we determine the Hilbert series of the rings of classical binary 
invariants. Using the relation e*f —fire h in the distribution algebra, 
we prove the dimension formula for (invariants of) SL(2). As an application 
we derive the Cayley-Sylvester formula for the Hilbert series of the classical 
invariants for binary forms. 

116 
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In the final section of this chapter we give an alternative proof of linear 
reductivity for S L (2). This yields, in addition, a proof of geometric reductivity 
of S L(2) over a ground field of positive characteristic. 

4.1 Representations of algebraic groups 

Let G = Spm A be an affine algebraic group over the field k. 

Definition 4.1. An (algebraic) representation of the group G (or of the algebra 
A) is a pair consisting of a vector space V over k and a linear map A y  : V -± 

V Ok A satisfying the following conditions. 

(i) The composition 

V 121--1  V Ok A (±) 6-> V 

is the identity, where E : A --> k is the coidentity. 
(ii) The following diagram commutes, where AA : A -÷ A Ok A is the 

coproduct. 

	

V 
	

V Ok A 

	

Itv 
	

/iv 	iA 

V Ok A 
1 v ®AA 

V Ok A ek A 

Example 4.2. The coordinate ring A of the group G, together with the coprod-
uct AA, is itself an algebraic representation. 

Remark 4.3. Let us check that this is equivalent to the usual definition of a 
representation as a linear action of G on V. If p : G G L(n) is such a 
representation, then write k[X ij, (det X) -1 ] for the coordinate ring of GL(n) 
and let fij  = p*X ii  E A be the pull-back of X ij  under p. In other words, the 
fij are the entries -of the n x n matrix representation, viewed as functions on 
the group G. We then obtain an algebraic representation of G, in the sense of 
Definition 4.1, by taking an n-dimensional vector space V. a basis fe i l, and the 
linear map given by 

	

11, v 	E e ® hi. 
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Conversely, suppose that p, : V -->- A 0 V is a finite-dimensional algebraic 
representation, and let x1, . . . , x n  E V be a basis. Then t extends naturally to 
a homomorphism of polynomial rings 

k[x , 	, xn ] 	A[xi - • • , xn l• 

This is just the same thing as a linear action of G on the dual space of V, viewed 
as an affine space, and this construction is inverse to the first. 	 El 

All of the usual notions concerning group representations can be defined in 
the spirit of Definition 4.1. In what follows we shall often drop the subscript 
and write p, = Iv when there is no risk of confusion. 

Definition 4.4. Given a representation p, : V 	V 0A of a group G = Spm A: 

(i) a vector x E V is said to be G-invariant if bi(x) = x 1; 
(ii) a subspace U c V is called a subrepresentation if .t(U) C U 0 A. 	CI 

Remark 4.5. In characteristic zero the coordinate ring A of a connected alge-
braic group is an integral domain. It follows from this that the above definitions 
are in this case equivalent to the usual notions for a rational representation 
p: G ---> GL(V). (See Exercise 4.8.) 

The above definitions have some immediate consequences. The first says, 
in the language of Remark 4.3, that in any infinite dimensional representation 
only finitely many of the matrix entries fij are nonzero: 

Proposition 4.6. Every representation V of G is locally finite-dimensional. In 

other words, every x E V is contained in afinite-dimensional sub representation 

of the group. 

Proof We can write 11,(x) as a finite sum E i  x i  ® fi  for some xi  E V and 
linearly independent elements fi  E A. The linear span U c V of the vectors 
x i  is then exactly what we require. First, it follows from Definition 4.1(i) that 

X = Ec(fi )x i , 

so that x E U. Second, the commutative diagram in Definition 4.1 (ii) says that 

Eit(xofi = 
	

E 	A® A. 
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Since the fi are linearly independent, this implies that bi(x 1 ) E U 0 A for each 
i, so U c V is indeed a (finite-dimensional) subrepresentation. 	El 

For the multiplicative group Gm  of Example 3.51, the representations are 
particularly simple to describe. Given a vector space V and an integer m E Z, 
consider the map 

V --+ V 0 k[t , t -1 ], 	v 	v 0 in'. 

This defines an algebraic representation of Gm , called its representation of 
weight m. By taking direct sums of these representations we get all representa-
tions of Gm . 

Proposition 4.7. Every representation V of G. is a direct sum V 
EmE, v(n) , where each V(m) c V is a subrepresentation of weight m. 

Given such a representation V = (1) K m) of Gm , a vector v E Km) is said to 
be homogeneous of weight m. 

Proof For each integer m E Z define 

V(m) ={vE VI 	= V en }. 

It is easy to verify that this is a subrepresentation of V (see Exercise 4.4), and 
by construction it has weight m. The proof that V =emEz V( m) is very similar 
to the proof of Proposition 4.6: begin by writing, for an arbitrary v E V, 

it(v) — 	t m  E V k[t, 
mEz 

It follows from Definition 4.1(i) that v = E vni , so it just remains to check that 
each vm  E Km). This will prove the direct sum decomposition since obviously 
V(m) 1-1 Voi) = 0 whenever m n. However, Definition 4.1(ii) tells us that 

E ,,,, (vm )tm 

   

vm  en  0 tm  E V 0 A 0 A, 
MEZ meZ 

 

and so by linear independence of the tni E A it follows that ou(vm ) = Vm  0 tm 
for each m E Z; hence v m  E Km). 	 El 

It is also easy to classify the representations of the additive group G a 
 (Example 3.50). Note, incidentally, that our assumption that the field k has 

characteristic zero is essential in the next proposition, as well as in the two 
examples which follow. 



R( n), 	R(m)R(n) C R(m+n)• R NW 
mEZ 
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Proposition 4.8. Every representation V of Ga  = Spm k[s] is given by 

	

00 	S '1
iu, (v )  = 	fn (v) 	wi  

n=0 

for some endomorphism f E EndV which is locally nilpotent (that is, every 
vector is eventually killed by iterates of f). 

Proof We have a sequence of linear maps 3„ : V 	V defined by 

,u(v) = 	8,,(v) ® s' E V 0 k[si. 
n=0 

By Definition 4.1 we see that So(v) = v and 

00 	 00 
ILIOn (V)) S n  E3n(V) (S 1 + 1 sr , 

n-=0 	 n=0 

from which it follows that 

(m n) 
8m+n • 

The map f = 31 therefore has the properties stated in the proposition. 	El 

In the previous chapter (see Definition 3.54) we defined an action of a group 
G = Spm A on an affine variety X = Spm R. We can now interpret this as 
simply a representation 

R R ek A 

which is also a ring homomorphism. The subset of G-invariants 

R G  = {f R I AR(f) = f 1} 

is a subring of R. 

Example 4.9. An action of the multiplicative group G. = Spm k[t , t -1 ] on 
X =--- Spm R is equivalent to specifying a grading 

The invariants of Gin  are then the homogeneous elements of weight 0 under 
this grading. Moreover, the linear endomorphism of R which rescales each 
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summand R(m) by m, 

E : R 	R, 	fn, 	mf, n , 

is a derivation of R. E is called the Euler operator. Trivially, the Gm-invariants 
in R are the elements killed by E, that is, R G. = ker E. 

Example 4.10. An action of the additive group Ga  = Spm k[s] on X = Spm R 

is equivalent to specifying a locally nilpotent derivation D E End R of the 
function ring R (see Definition 4.15 below). The action iu R  :R--- ROk[s] is 
then given by 

oo 	 S n 

AR(f) =  E Dn (f)0 
n=-0 

The Ga -invariants in R are the elements killed by D, that is, RGa = ker D. 0 

We will later need to consider semiinvariants of group representations as well 
as invariants (see Chapter 6), and for these we make the next two definitions. 

Definition 4.11. Let G = Spm A be an affine algebraic group. A (1- 

dimensional) character of G is a function x E A satisfying 

= x 0 x ' 	'(x )x = 1. 

Note that the characters of G are invertible elements of the function ring A, 
and in fact they form a multiplicative subgroup of these. 

Lemma 4.12. The characters of the general linear group GL(n) = 

Spm k[X ii , (det X) -1 ] are precisely the integer powers of the determinant 

(det X), n E Z. 

Proof This is trivial: since det(X ii ) is an irreducible polynomial, the only 
invertible elements, of k[X ij , (det X) -1 ] are, up to multiplication by a scalar, 
the powers (det X)' . For every n E Z and scalar A E k, moreover, A(det X) is 
a character precisely when A = 1. 

Definition 4.13. Let x be a character of an affine algebraic group G, and let V 
be a representation of G. A vector X E V satisfying 

itt v (x) = x x 
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is called a semiinvariant of G with weight x •  The semiinvariants of V belonging 
to a given character x of G form a subrepresentation (see Exercise 4.4), which 
we shall denote by Vx  c V. 	 III 

An algebraic group T = Spm A which is isomorphic to a direct product 
of copies of Gm  is called an algebraic torus. In this case the set X(T) of 
characters of T is a basis over k of the algebra A. The following fact follows 
from Proposition 4.7. 

Proposition 4.14. Let T be an algebraic torus and let X(T) be its set of charac-

ters. Then every representation V of T is the direct sum of all its semiinvariant 

subrepresentations: 

V= (1) V. 
xEx(T) 

4.2 Algebraic groups and their Lie spaces 

In this section we will define the Casimir operator associated to a representation 
of an algebraic group. 

(a) Local distributions 

Definition 4.15. Let R be a commutative ring over k and M an R-module (see 
Chapter 8). An M -valued derivation is a k-linear map 

D : R ---> M 

satisfying the Leibniz rule D(xy)=.-- xD(y) + y D(x) for x, y E R. 	III 

An R -valued derivation D : R --* R will simply be referred to as a derivation 
of R. 

Example 4.16. Let R = k[ti, . . . , tn ]. The first examples of derivations are the 
partial derivatives 

a — : R -4 R. 
at 

Fixing a1 , .. . , an  E k, a second example is the evaluation 

a 
f i--. —(a i , . . . , an). a ti  

This is a derivation with values in the R-module k .---- RAti — al, • , 
tn  — an ). 	 0 
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One can generalise this example to any affine variety. Let p be a point of 
X = Spm R, with maximal ideal mp  c R. Then a k = R Imp  -valued derivation 
is a linear map 

a : R 	k 

with the property that 

a( f = f (p)a(g) g(p)a(f) 

for all f, g E R. We shall sometimes refer to a as a derivation of X at the point 
p E X. Note, in particular, that such a derivation vanishes on m 2p  c R. It is this 
idea that we want to generalise next. 

Definition 4.17. Let p be a point of X = Spm R with maximal ideal m p  c R. 
A local distribution with support at p E X is a k-linear map a : R k with 
the property that a(m) = 0 for sufficiently large N E N. 

The degree deg a of a local distribution supported at p is the minimum d E N 
such that a(md+ 1 ) = 0. Every local distribution of degree 0 is a scalar multiple 
of the evaluation map 

ev • R —›- k, P • f 	f(p). 

Lemma 4.18. For a k-linear map a : R 	k, the following are equivalent: 

(i) a is a derivation of X Spm R at the point p E X; 
(ii) a is a local distribution, supported at p E X, of degree I and satisfying 

a(1) = 0. 

Proof (i) 	> (ii) It has already been observed that a is a local distribution of 
degree 1, while a(1) = a(1 1) = a(1) a(1). Hence a(1) = 0. 

(ii) 	 (i) If f, g E R, then f — f(p), g — g(p) E m p , so that deg a = 
1 implies 

a((f — f (p))(g — g(p))) = 0. 

Expanding and using the fact that a( f (p)g(p)) = f (p)g(p)a(1) = 0 gives 

a( f g) = a( f)g(p) a(g) f (p), 

as required. 	 LI 
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It follows from the lemma that the vector space Derk(R, R Im p ) of derivations 
of X = Spm R at p E X is isomorphic to the dual of mp /m2p . 

Definition 4.19. The k-vector space (m p /m2p)v Derk (R, R Im p ) is called the 
Zariski tangent space of X at the point p. 	 El 

Remark 4.20. The dimension of the Zariski tangent space at p E X is greater 
than or equal to the dimension of the variety X at p; X can be defined to be 
nonsingular at p if and only if the two dimensions are equal. (This is equivalent 
to Definition 9.44 in Section 9.3(b).) Over a field k of characteristic zero an 
algebraic group is always nonsingular. El 

We now have a vector space isomorphism 

{local distributions with degree < ci} (R/mdp+1 )v  , 

and when d = 1 this decomposes into 

k (m p  m2p ) v  , 

where, by Lemma 4.18, the two summands are spanned by the evaluation map 
evp  and by derivations at p, respectively. 

More generally, for each d < e the natural projection R/inep+i 	R tu dp+i 

induces an injection 

/„4„,(1+1 \ V c__>.  (ID 	v 
Inli 	 111  'RP ) • 

There is therefore an ascending sequence: 

k c(R1m 2p )v  C (R I m 3p )v  C • - • C (R/mdp+ 1 )v  e • • • 

The space of local distributions supported at p can thus be identified with the 
limit (that is, the union) of this sequence. 

(b) The distribution algebra 

If G = Spm A is an affine algebraic group with coordinate ring A, we will 
denote by 7-1(G) the vector space of distributions a : A ----> k supported at the 
identity element e E G. The Zariski tangent space of G at this point is called 
the Lie space of G and is denoted by g = Lie(G) c 7-1(G). 

Remark 4.21. The vector space g acquires from 7-1(G) (together with its con- 
volution product, which we are about to define) the structure of a Lie algebra. 
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This is outlined in Exercise 4.3. However, we are not going to use the Lie 
algebra structure in this book. 	 CI 

Let It = IA : A ->- A A be the coproduct on G. 

Definition 4.22. If ot, p E 71(G) are distributions supported at the identity, the 
convolution product a * ,8 of a and /3 is the composition 

a®13 

El 

Lemma 4.23. The convolution product of a, j3 E li(G) is again a distribution 

supported at the identity a * c li(G), and 

deg a * 5_ deg a + deg p. 

Proof Since (e, e)i- e under the group operation G x G 	G, we have 

it(m)Cm0A+A0m, 

where m = me . Since It is a ring homomorphism, this implies, for a, b E N, 

orta+b+i)  c E  mi ® mi. 

i+j--=a+b+1 

Taking a = deg a and b = deg /3, it follows from a(m 1 ) = 0 and /3(mb+ 1 ) - 
0 that a * 0(11a+b-1-1) = 0, which proves the lemma. 	 El 

Evaluation at the identity c = eve  E 71(G) is an identity element for the 
convolution product. Moreover, it follows from the associative law for the co-
product ict (Definition 3.48(i)) that * is associative and thus makes H(G) into 
an associative algebra, called the distribution algebra of the algebraic group G. 

Remark 4.24. In general, the distribution algebra is infinite-dimensional and 
noncommutatiVe. If k has characteristic zero, it is a theorem of Cartier that 
H(G) is the universal enveloping algebra of a Lie algebra. El 

Example 4.25., Consider the multiplicative group G = Gm = Spm k[t , t -1 ]. 
The vector space of distributions supported at the identity is, by definition, 

71(Gm) = lim (k[t]/(t - 1)/ v  . I? --+00 
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As an algebra this is isomorphic to the polynomial ring k[E] where 

E 
dt 

: k[t, t -1 ] 	k, 
t=1 

 

and Lie(Gm) is the 1-dimensional linear span of E. In fact, by definition E * E 

takes f(t) E k[t , t -1 ] to 

8 2 .  
	f 
atat' t=ti=i 	

d \ 2 f(t) 

dt 
t=1 

  

Similarly, the n-th power E"-  = E * ••• * E is equal to (a 2 /atn)lt=1. 	111 

Example 4.26. Similarly to the previous example, the additive group Ga  = 
Spm k[s] has distribution algebra 

H(Ga) = lim (k[s]/(s'))"' = k[D]. 
f/--> 00 

This is the polynomial ring generated by 

: k[s] 	k. 

A homomorphism of algebraic groups G 	G' induces a ring homomor- 
phism 7-t(G) 	1-t(G') and a linear map of Lie spaces Lie(G) --> Lie(G I). 
(This is also a homomorphism of Lie algebras in the sense of Exercise 4.3.) 
Note that the induced homomorphism of function rings is in the reverse direc-
tion, A' A, but our constructions dualise this once more so that both functors 
7-( and Lie are covariant. 

We return now to the representations of G — Spm A. Let ,u, v  : V 	V OA be 
an algebraic representation, with an associated linear representation p : G 

GL(V). For each distribution a E 7-1(G) consider the k-linear map 

V - 1-1->I -VOAl ®-"->V0k-a->-V. 

We will denote this composition by 7(a) E End V. From the associativity of 
(Definition 4.1(H)) we obtain: 

ds 

Lemma 4.27. The map 7 : 7-1(G) End V is a ring hornomorphism. 	LI 
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In other words, the representation V is a (noncommutative) 7 -1(G)-module. 
A vector v E V is G-invariant if and only if 

(a)v = a(1)v 

for all a E 7-1(G). In particular (by Lemma 4.18(i)), To(a)v = 0 if a E g 
Lie(G). That is, the Lie space g kills all of the G-invariants in V. 

Example 4.28. Let V be a representation of Gm , and decompose a vector v E V 
into its homogeneous components v = Emez  Vin  under the action of Gm . Then 

iu, (v )  E 	en, 

and so the generating distribution 

E = —
d 

dt t= 1 
E 7-1(Gm) =-- k[E] 

  

acts by 75(E): v 	Emv ni . In other words, it coincides with the Euler operator 
of Example 4.9. 	 111 

Consider the action of G on itself by conjugation: 

G x G --->- G, 	(x, g)F-÷ gxg -1 . 

This induces an action of G on its coordinate ring A. Since the identity element 
e E G is fixed under conjugation, the action preserves the maximal ideal m = 
me, and in particular it induces a k-linear action on each quotient A /m" and 
on its dual space. It follows that 7-1(G) becomes a linear representation of G. 
On the other hand, given a representation p : G 	GL(V), the space End V 
also becomes a linear representation, by conjugation T 	p(g)T p(g) -1  for 
T E End V and g E G. With respect to this action we have: 

Lemma 4.29. The map 75 : 7-1(G) 	End V is a homomorphism of G- 

representations. 

In particular, the Lie space g is a subrepresentation of 7-1(G); this is called 
the adjoint representation and is denoted by 

Ad: G 	GL(g). 

Example 4.30. Consider the general linear group GL(n) with coordinate ring 
A = k[X ii , (det X) -1 ]. The Lie space gr(n) of GL(n) is the k-vector space 
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with basis 

a 
Eij = ax x=1, 

: kiXij, (det X) -1 ] 	k 

for 1 <i, j < n. (Note that this generalises Example 4.25.) This space is 
isomorphic to the vector space of n x n matrices over k, by mapping Eii  to the 
matrix with a 1 in the (i, j)-th entry and Os elsewhere. With this identification 
the adjoint representation is 

Ad(g) : gC(n) 	gt(n) 	M F-± gMg-1 . 

Example 4.31. The special linear group SL(n) has coordinate ring A = 
k[X i  j1/(det X — 1). We can identify its Lie space zl(n) as follows. It is the 
Zariski tangent space (m/m 2)v, where m c A is the ideal at the identity matrix, 
and a tangent vector is therefore a ring homomorphism f : A 	k[t]/(t2)  for 
which the composition A —÷ k[t]/(t2) 	k[t] I (t) = k coincides with the 
map A -->- A/m. In other words, if we write e for the residue class t mod t2  and 
k[E] = k[t]/(t2), then a tangent vector is a matrix I + EM which satisfies 

1 = cid(/' €M) = 1 + E tr M, 

since € 2  = O. Hence zl(n) C gr(n) is the vector space of n x n matrices over k 

with trace zero. 

(c) The Casimir operator 

Consider now an inner product on the Lie space, that is, a symmetric and 
nondegenerate bilinear form 

K:gxg --> k. 

We will assume that K is invariant under the adjoint representation Ad: G --> 
GL(). 

Definition 4.32. Let lc be a G-invariant inner product on g, as above. Let 
X1, , XN E g be a basis of g and let , X E g be its dual basis with 
respect to K. The distribution 

= * X; + • • • + XN* X E 

is called the Casimir element over G with respect to K. 

Proposition 4.33. The Casimir element E2 is independent of the choice of basis 

{Xi, 	XN}- 
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Proof A second basis {Y1, ... YN}, with dual basis {Y,..., YN'} is related to 
the first by 

= j 	= E a;irj , 	i = 1,..., N, 
j=1 

 

j=1 

where A = (aii) A' = (a".) are some matrices satisfying A t A' = IN. So we 
compute 

N N 
E y1  *Y1 	

( 

= E E aiiX i  * Ea;krk  
i=1 	 i=1 j=1 	 k=1 

E Ea iAk  xj * 
j,k 	i=1 

E sik x, *xik  = n, 
j,k 

as required. 	 El 

For the Casimir element for SL(n), see Example 4.48 below. 
Since the inner product K is assumed to be G-invariant, for each g E G 

the sets 

{Ad(g)(Xi), 	, Ad(g)(X N)}  {Ad(g)(X;), 	, Ad(g)(rN )}, 

are again dual bases. We therefore deduce: 

Corollary 4.34. The Casimir element 0 E 7-1(G) is invariant under the action 

of G on the distribution algebra. 	 CI 

Let p : G 	.01(V) be a representation of G. This is an 7-1(G)-module 
via the homomorphism : 7-1(G) —>- End V of Lemma 4.27. In particular, the 
Casimir eltment 0 determines a linear endomorphism of V, 

called the Casimir operator (with respect to the inner product K). By 
Lemma 4.29 and Corollary 4.34 this is invariant under the conjugation action 



130 	4 Algebraic groups and rings of invariants 

of G on End V: that is, it commutes with the action of G. Moreover, since g 
kills the G-invariants V G  c V, so does the Casimir operator. In other words: 

Corollary 4.35. The Casimir operator is an endomorphism of each represen-
tation V of G, and 

V G  C ker (A). 

4.3 Hilbert's Theorem 

(a) Linear reductivity 

Definition 4.36. An algebraic group G is said to be linearly reductive if, for 
every epimorphism 0 : V -->- W of G representations, the induced map on 
G-invariants O G  : V G  ----> W G  is surjective. 	 0 

There are various equivalent definitions (see also Lemma 4.74 below): 

Proposition 4.37. The following conditions are all equivalent. 

(i) G is linearly reductive. 
(ii) For every epimorphism (/) : V --* W of finite-dimensional representations 

the induced map on G-invariants (1)G  : V G  -4- W G  is surjective. 
(iii) If V is any finite-dimensional representation and v E V is G-invariant 

modulo a proper subrepresentation U c V, then the coset v + U contains 
a nontrivial G-invariant vector: 

Proof (i) implies (ii) trivially. Applying (ii) to the quotient map V —> V/ U 
gives (iii), so we just have to show that (iii) implies (i). We suppose that (j) : 
V -4- W is an epimorphism of G representations and that 0(v) . w E W G  

for some v E V. By local finite dimensionality (Proposition 4.6) there exists 
a finite-dimensional subrepresentation Vo c V containing v. Now v E Vo is 
G-invariant modulo the subrepresentation U0 = Vo 11 ker 4), so by property 
(iii) there exists a G-invariant vector v` E Vo such that v' — v E Uo. Since 
4)(v) --z- w, we have shown that (/) G  : V G  --> W G  is surjective. Ill 

Proposition 4.38. Every finite group is linearly reductive. 

Proof Suppose that V is a finite-dimensional representation and v E V is a 
vector invariant modulo a subrepresentation U c V, and set 

V. 
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Clearly v' is G-invariant, while 

v' — v =  
I G I 

gEG 

is contained in U. So we have verified condition (iii) of Proposition 4.37. 0 

Remark 4.39. The homomorphism R : V ---> V G  used in this proof, R = 

1 	gEG g5  is called a Reynolds operator and corresponds to Cayley's 0- 1G1  E 
process in the work of Hilbert. (See Sturmfels [28].) One could, alternatively, 
prove the proposition by using R to verify Definition 4.36 directly, but we have 
used the criterion of Proposition 4.37 because this is the approach that we will 
take to prove the linear reductivity of SL(n) (Theorem 4.43). 0 

Direct products of linearly reductive algebraic groups are linearly reductive; 
moreover, if H C G is a normal subgroup and G is linearly reductive, then so 
is the quotient GIH. Conversely, if both H and GIH are linearly reductive, 
then G is linearly reductive. 

Example 4.40. If G is an algebraic group whose connected component at the 
identity is linearly reductive, then G is linearly reductive. 	 0 

Proposition 4.41. Every algebraic torus (Gm )N  is linearly reductive. 

Proof It is enough to prove this for T . Gm ; again, we shall check condi-
tion (iii) of Proposition 4.37. By Proposition 4.7, a representation V and a 
subrepresentation U have weight decompositions 

V = IED V(n ), 

	 U = ED uon) , 
m EZ 
	

M EZ 

with 1J(,,i)  c V(, 1). T-invariance of an element v . E von)  modulo U means 
that V( n) E U for all m 0 0. It follows that v (0)  is a T-invariant element of the 
coset v + U, required. 	 0 

Example 4.42. An example of a group which is not linearly reductive is the 
additive group Ga  r:---=1  k. To see this, consider the 2-dimensional representation 
given by 

t 1---> ( l  t  ) 
0 1 Ga  ---> G L(2), 
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Then restriction to the x-axis, 

V := k[x , y] --->- W := k[x, Al (y) = k[x], 

is a surjective homomorphism of Ga-representations. But V Ga = k[y], W Ga = 

k[x], so the induced homomorphism on invariants is not surjective. 	El 

Our aim in the remainder of this section is to prove: 

Theorem 4.43. The special linear group SL(n) is linearly reductive. 

The general linear group GL(n) is generated by its centre, which is isomor-
phic to G„, and the subgroup S L(n). It can therefore be expressed as a quotient 
G L(n) = (Gin  x SL(n))1Z n , and so we obtain: 

Corollary 4.44. G L(n) is linearly reductive. 	 0 

Remark 4.45. The proof of Theorem 4.43 will be modelled on that of 
Proposition 4.38, using a Reynold's operator R: V --->- Vs)  (Remark 4.39). 
In this case R will be constructed using the Casimir operator for the represen-
tation V. For the case n = 2, on the other hand, we will give an alternative and 
more direct proof in Section 4.5. 0 

Let U be any finite-dimensional vector space. The Lie space of G L(U) is 
canonically isomorphic to End U, and the adjoint representation is the conju-
gation action of G L(U) on this space (Example 4.30). Associating to a pair of 
endomorphisms of U the trace of their composite 

K: End U x End U ---> k, 	(f, g) 1---> tr fg, 	 (4.1) 

defines a nondegenerate inner product (symmetric bilinear form) on End U. We 
will write K(f) = K( f, f). The following is clear. 

Lemma 4.46. K is invariant under the adjoint action of G L(U). In other words, 

K(af a 1 ) = K(f) 

is satisfied for all f E End U and a E GL(U). 	 0 

The Lie space .si(U) of the special linear group S L(U), as a subgroup of 
G L(U), is the subalgebra of End U consisting of trace zero endomorphisms 



4.3 Hilbert's Theorem 	 133 

(Example 4.31). We shall denote the restriction of the inner product K to 51(U) 
by the same symbol. 

Lemma 4.47. K is a nondegenerate inner product on .5C(U) invariant under the 
adjoint action of SL(U). 

Proof K is nondegenerate on End U, and with respect to K the subspace (U) is 
the orthogonal complement of the identity element /u. Since K(10 = dim U 
0, it follows that K is nondegenerate on 5C(U). 

Example 4.48. Let us calculate the Casimir element for SL(n) using this inner 
product. Let eij denote the sparse n x n matrix with a single 1 in the i-th row 
and the j-th column. Let fij  = eji and, for i = 1, . . . , n — 1, let 

hi  = eii — 	 mi =e11 ± • • • + 

	 —(e11 	enn). 

Then the Lie space .5C(n) has dual bases 

U {fij } i<j U 	 U feifli<j U fm i l i . 

By Definition 4.32, we now compute 

	

= E(eij  * fii fii * eii) 4 1 + • • • + 
	—1 (en + • • • -4-  enn)2. 

i<i 

For example, in the case n = 2, the Casimir element is 

5-2=e* f f*e+-1-h*h, 

where 

e  = (0 1 
0 	 0 
) 

f =
(o o\ 

h = 
(1 0 

0 	 0 —1 ) 

(See also Section 4.4(a).) 

Proposition4.49. For a representation p : S L(n) --> GL(V) the following 
are equivalent. 

(i) The representation is trivial. 
(ii) (S2) = 0. 

(iii) tr 76(Q) = 0. 
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Proof (i) implies (ii) by Corollary 4.35, and this implies (iii) trivially; so we 
just have to show that (iii) implies (i). 

Let T c SL(n) be the torus subgroup of diagonal matrices and I) c s((n) its 
Lie space. Under the action of T the representation V has, by Proposition 4.14, 
a character space decomposition 

= 	Vx . 
xEx(T) 

Each x : T 	Gm  corresponds to a linear form with integer coefficients 
x : --> k, and for each h E 1) we have 

tr -6002  = E(dim Vx  )7(h )2 . 
x01 

It follows that if tr 75(h) = 0 for all h E 1), then dim Vx  = 0 for all nontrivial 
characters x E X(T) - or, in other words, V is a trivial representation of the 
torus T. Since diagonalisable elements are dense in SL(n), this implies that V 
is also trivial as a representation of SL(n). 

The proposition is proved, therefore, if we can show that tr 73(Q) = 0 implies 
tr ,-6(h) = 0 for all h E 1). We will do this just for SL(2); the general case is 
similar. We have seen that the Casimir element is 

C2 =e* f+ f*e±.1**he7i(SL(2)) 

= 

where the matrices 

	

e  + .i 	(, 	0  

	

J 	
1 0 ) ' V 1(e — f) = ( ° 	Nr-71. 

---1 	0 ) ' 
h = (1 0

1 ) 
0 

are conjugate in sl(2). Hence 

3 
tr 76(52) = -

2 
tr ,75(h) 2 , 

and we are done. 

In particular, if the Casimir operator p(52) of a representation V is nilpo-
tent, then the representation is trivial. Applying this to the subrepresentation 
ker p(Q)n shows that ker (P(0))in c  SL(n) for any integer m > 0. Combining 
this with Corollary 4.35, we conclude: 

Corollary 4.50. V sL(n)  —U ker (Q))m 
m> 

LI 

- ,NT-11)2  + 
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Proof of Theorem 4.43. Given a finite-dimensional representation V of SL(n) 

we shall construct a Reynolds operator R : V ---> V sL(n)  analogous to the 
averaging operator R = 1 /IGI EgEG  g used in the proof of Proposition 4.38 
for the case of a finite group. This is constructed from the Casimir operator 
Cv := FAQ) E End V as follows. Let N = dim V, and let 

xv (t) = t iv  + 	+ • • • + cN _m tni 

be the characteristic polynomial of Cv , where cN_ ni  0 0. The Reynolds operator 
is constructed by substituting the Casimir into the polynomial 

1 	 1 
P(t) := 	Xv(t) =  	c1t N-m-1  + • • - cAr-m)- 

CN- m tm 	CN-m 

That is, R := P(Cv ). This is a homomorphism of SL(n)-representations, and 
by the Cayley-Hamilton theorem it satisfies 

P(Cv) = 0. 

It follows from Corollary 4.50 that the image of P(Cv ) is contained in V sL(") . 
We can now follow the proof of Proposition 4.38 and apply the criterion 

in Proposition 4.37(iii) for linear reductivity. Suppose that U C V is a sub-
representation and that v E V is SL(n)-invariant modulo U. This means that 
76(z1(n))v c U, and hence Cv  v E U. It follows from the way we have de-
fined P(t) that P(Cv )v — v E U, and so the vector v' = P(Cv )v satisfies the 
requirements of Proposition 4.37(iii). 

(b) Finite generation 

Let G be an algebraic group acting on a polynomial ring S, preserving the 
grading. 

Theorem 4.51 (Hilbert [19]). If G is linearly reductive, then the ring of in-

variant polynomials S G  is finitely generated. 

Proof We will essentially follow the original reasoning of Hilbert. The invariant 
ring is graded by 

	

sG = 	sG n  se.  
e>0 

Let S+G  c SG be the span of the invariants of positive degree and denote by 
C S the ideal generated in S by 	By Theorem 2.2, in fact, .1 is generated 
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by finitely many polynomials f', 	, fN E S. In other words, the S-module 
homomorphism 

0 : S ED • • • ED S 	J 	(hi, . , 	E hi  fi  

is surjective. 

Claim: SG  is generated by fi, 	, fN- 
We pick an arbitrary homogeneous invariant h E SG. To show that h belongs 

to k[ , • • • fiv] we shall use induction on deg h. If deg h = 0, then h is a 
constant, so this is clear. If deg h > 0, then h belongs to the homogeneous 
ideal J, and therefore to the invariant subspace J G , where we can view J 
as a representation of G. The map 4) above is a surjective homomorphism 
of G-representations, so by linear reductivity the induced map of invariants 
sG 

 JG  is surjective. There therefore exist invariant polynomials 
, h'N  E S G  such that 

fi. 
i=1 

The fi  all have positive degree, so deg h < deg h. By the inductive hy-
pothesis we may therefore assume that each 11; E k[fi, . , f ly ] and hence 
h E k[ , fN] also. 

Note that the last part of this proof is really just Proposition 2.41. 
We turn now to the general case of G acting on a finitely generated k-algebra 

R. We shall show that, again, the invariant subring R G  is finitely generated, by 
reducing to the case of a polynomial ring as above. 

Lemma 4.52. Suppose that an algebraic group acts on a finitely generated k-
algebra R. Then there exists a set of generators r1, . . . , rN of R whose k-linear 
span (ri, , rN) C R is a G-invariant vector subspace. 

Proof Let si , . . . , sm E R be any set of generators. By local finiteness (Propo-
sition 4.6) each si  is contained in a finite-dimensional subrepresentation V c R 
of G. It therefore suffices to extend si , . . . , sm  to a basis r1, . . . , rN of the finite-
dimensional subspace Ei V c R. 0 

Geometrically, this lemma says that an affine algebraic variety acted on by 
an algebraic group can always be equivariantly embedded in an affine space 
AN  on which G acts linearly. 
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Theorem 4.53. If a linearly reductive algebraic group G acts on a finitely 

generated k-algebra R, then the invariant ring RG  is finitely generated. 

Proof Pick generators r1, 	, rN  of R as in Lemma 4.52. Then there is a 
surjective k-algebra homomorphism 

S = k[xi, 	, xN] --->- R 

given by mapping xi  F--> ri  for each i = 1, . , N. Via this map G acts on the 
ring S, and by Theorem 4.51 the invariant ring SG  is finitely generated, while 
by linear reductivity the induced map SG 	RG is surjective. It follows that 

R G  is finitely generated. 	 El 

4.4 The Cayley-Sylvester Counting Theorem 

In order to gain a concrete understanding of any invariant ring it is essen-
tial to be able to compute its Hilbert series. In this section we shall describe 
some methods for determining the Hilbert series for the case of classical binary 
invariants. 

(a) SL(2) 

Let us write a general unimodular 2 x 2 matrix as 

ac db 

 
E SL (2). 

The Lie space 5C(2) of S L(2) has a basis consisting of three derivations: 

a 
e _ ab X= I 

a 
ac X= I 

h = 
X=I 

   

    

These correspond to the three subgroups of S L(2) 
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We can represent these basis elements, in the manner of Example 4.30, as 
matrices 

(0 0 	( 1 01  ) . 
= 

e  = ( 00 01) , f = i 	0) ' 
h

0 

The adjoint action of SL(2) on .a1(2) is by conjugation, and its restriction to 
T c SL(2) is therefore given by 

Ad i t  ° 
0 ti )

: l e 1---> t2e 
f 1—>. t -2  f 
h 1---> O. 

(4.2) 

The invariant inner product (4.1) from Section 4.3(a) is given by the symmetric 
matrix 

0 1 0 
I 

( 
00 

) 

0 0 2 

with respect to the basis e, f,h E .51(2). We may therefore construct an 
orthonormal basis 

e-Ff e—f 	h 

27  
and, as we have seen in Example 4.48, Casimir element 

=e*f+flre-1-111ThE7-t(SL(2)). 	 (4.3) 

We now consider the basic representation S = k[x, y] of SL(2), and the 
action on S of the Lie space sl(2) C 7-1(SL(2)) and of the Casimir element 
on S, via the homomorphism : 7-1(SL(2)) 	End S. For simplicity we will 
usually drop the tilde and write just p : 7--t(SL(2)) 	End S. This should not 
cause any confusion. 

Example 4.54. SL(2) acts on the right on the polynomial algebra S = 
k[x, y] by 

f (x , y) - ( ciy 	= f (ax + f3y , y x Sy). 

Let us compute the derivative at the identity of the restriction of this action to 
the subgroup N+ c S L(2): 

f(xy) • (
01 si ) 

= f (x sy , y), 



4.4 The Cayley-Sylvester Counting Theorem 	 139 

so we obtain 

ds I f(x, Y) • 
s 	a 

Y al-xfix ' 37) * 

  

Similarly, for N c SL(2) we find 

ds 
If (x, Y) • 

s.0 (s

1 o)L x  a 
1) J -Y  

 

For the subgroup T c SL(2) the restriction of the adjoint action is given by 

f (x, y) • (
t 	0 

-1 
= f(tx, t -1  y), 

0 t 

and we must differentiate at t = 1: 

dt J (x, y) • 
t.i 

(t 01 \1 =x 8f y af .  
)1 	ax 	a y  

 

We conclude that the representation of the Lie space p : s1(2) --> End S is 
given by 

	

p(e) = y
a 	

p(f) == x—
a , p(h) = 	y

a 

	

ax 	ay 	ax 	ay 
From (4.3) the Casimir operator is 

p(0) = P(e)P(f) P(f)P(e) 	P(h)2  

=E+1E2 , 

where E = x + y . 

In this example, for each d E N the binary forms of degree d give a subrep-
resentation Vd C S. Note that by Euler's Theorem the Casimir operator on Vd 

is the scalar d d2/2. 

Remark 4.55. The following inhomogeneous description of the representation 
Vd will reappear at the end of this chapter. Namely, Vd can be viewed as the 
d 1-dimensional vector subspace of k[x] consisting of polynomials of degree 
at most d. Then S L(2) acts on the right on Vd by: 

f (x) • (13, '63 ) — (Y x + 8) d  f ( c" 	)- 
yx 
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(b) The dimension formula for SL(2) 

If V is a finite-dimensional representation of S L(2), then under the action of 
the torus T c SL(2) it has a weight-space decomposition (see Proposition 4.7) 

V = @V(n). 	 (4.4) 
mEz 

The following follows from (4.2): 

Proposition 4.56 (Weight shift). Under p : st(2) -4- End V we have 

p(e) : V(m) —> V(m  +2) , p(f) V(m) 	V(m -2) • 

Lemma 4.57. In the distribution algebra 7-1(SL(2)) the following relation 
holds: 

e* f — f*e=h. 

Proof We fix independent variables a, b, c, d and a', b', c', d' as the entries of 
matrices 

( ac  bd ) X' = (a' b) X = 

By definition of the convolution product, the element e * f evaluated on a 
polynomial F(X) in a, b, c, d gives 

a2F(XX') 

abac' 

One easily checks that this is equal to 

82F(x) 	a F (X) 

abac x=1 ±  aa 

Similarly, the value of f * e at the polynomial F (X) is 

a2 F(x) 	0 F(X)  

abac x ,, 	ad x=1 

Subtracting these two expressions yields the identity in the lemma. 

X =X'= I 

X= I 

Corollary 4.58. The Casimir element of SL(2) is 

52=e* f+ f*e-qh*h=2e* f —h-1-1h*h=2f*e+h-F-12th*h. 
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This allows us to locate explicitly the invariants of SL(2) in the representa-
tion V: 

Corollary 4.59. V sL(2)  = ker le : V(0) —> 142)}. 

Proof Clearly VsL(2)  C V(0), and indeed it is contained in ker e since it is 

killed by the Lie space s/(2). But conversely, every v E ker e is killed by 
the Casimir operator, by Corollary 4.58. By Proposition 4.50, this implies that 

V E V SL(2) . 

The dimension formula for V sL(2)  will follow once we show that the map in 
Corollary 4.59 is surjective. In fact: 

Lemma 4.60. The composition e 2 : V(-2) 	V(0) 	V(2) is an isomorphism. 

Proof First let us show that e 2  is injective. If v E ker e2 , then the vector 

e(v) E V(0) is SL(2)-invariant by Corollary 4.59. In particular, f e(v) = 0. It 

follows that 

p(Q)v = p(2f * e h 	* h)v = 0, 

so that, by Proposition 4.50, v E VSL(2) . But v lies in the —2-weight space, 
Which contains no nonzero invariants; hence v = 0. 

By a similar argument the homomorphism f 2  : V(2) —> V(-2) is injective. It 

follows that dim V(_2) = dim V(2), and hence that e2  is an isomorphism. 	0 

It follows from this that e: V(o) —> V(2) is surjective, and we deduce: 

Dimension Formula 4.61. If V is any finite-dimensional representation of 

SL(2), with weight-space decomposition (4.4) with respect to the torus T c 

S L (2), then 

dim OW)  = dim V(0) — dim V(2). 

0 

The generating function 

chv (q) = E dim V( n)qm E Zrq , 
mEz 

of the weight-space decomposition (4.4) is called the (formal) character of 

the representation V. For example, the space Vd of binary forms of degree d 



142 	 4 Algebraic groups and rings of invariants 

has character 
,d+1 — ,—d-1 

chv, (q) = q-d 	—d+2 .. . +q d-2  +q d = 	 
q - q - 

Corollary 4.62. dim V sL(2)  = - Res (q - q -1 )chv (q). 	 LI 
q=0 

(c) A digression: Weyl measure 

By Cauchy's integral formula we can re-express Corollary 4.62: 

dim V SL  (2)  = — 1 —27r 
i 

(q - q -1 )ch v  (q)dq , 

where the integral is taken with winding number 1 around the origin. Taking 
the unit circle with parametrisation q = ei°  transfouns the integral to 

dim  vSL(2) = 1  f 7r (1 — cos 20)ch v (eie )dt9. 	 (4.5) 

(We have used here the Weyl symmetry ch v (q) = chv (q -1 ). This can be 
seen from the definition of the character, using conjugation by the element 
( 0 

1 
 1 ) 

E SL(2).) 
- 0 
Note that every conjugacy class of the maximal compact subgroup SU(2) C 

SL(2, C) has a unique representative of the form 

e 0  
A(0) = 0  for 0 < 0 <yr . 

Thus, if we define a Weyl measure 

g(0) = 1 - cos20 = 2 sin2 0, 

then, noting that fon  pt(9)Ch9 = 7r, we see that the dimension formula (4.5) has 
the form of an average of the class function ch v  (0) = chv(eio) with respect 
to the measure 

Let us compare this situation with the Dimension Formula 1.11 for repre-
sentations of a finite group G. If we denote by ci, , ck c G its conjugacy 
classes, then, noting that the character x : G -> C of the representation is a 
class function, the Dimension Formula 1.11 can be written: 

7  0 

dim V G  
1 
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(0i  —0i) 
A(0) = (eie  

0 e—ie) 

SU(2) 

SL(2,) 

Figure 4.1: Weyl measure /AO) = 2 sin2 0 

In other words (again noting that E 	= I GI), the dimension is given as 
the average of the character with respect to the measure pc(c) = I c. 

In conclusion, then, in both cases of G a finite group or the compact Lie group 
SU (2) we see that the dimension formula can be interpreted as the average of 
the character over the conjugacy classes of the group, with respect to cardinality 
or the Weyl measure, respectively. 

(d) The Cayley-Sylvester Formula 

As an application of the dimension formula we are now going to compute the 
Hilbert series of the classical binary invariant ring. If V is any n-dimensional rep-
resentation of SL (2), we consider the induced action of SL (2) on the polynomial 
ring S(V) = k , . . . , xn ] of functions on V. Let al, . . . , an  E Z be the weights 
(not necessarily distinct) of the torus T C SL(2) (see Section 4.4(a)) occuring 
in the weight-space decomposition of the representation V (Proposition 4.14). 
The function 

1 	
(Iv 	

(q 0 
P(q;t) 	 = det 	— t 

(1 — qait)(1 — qa2t) • • • (1 — qant) 	 0 q -1  )v 
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is called the q-Hithert series of the representation. Then Molien's Theorem 1.10 

for finite groups has the following analogue for SL(2). 

Proposition 4.63. The invariant ring S(V)s 2) has Hilbert series 

P(t) = — Res (q — q -1 )P(q;t). 
q=0 

Equivalently, if P(q; t) = EmEz  cm (t)qm , then P(t) = co(t) — c 2(0. 

Proof This is similar to the proof of Molien's Theorem. First, by making a 

linear change of coordinates we can assume that xi , 	, xn diagonalise the 

action of T G.. Then we note that the power series expansion of 

1 
R(xi , 	, n) = (1 —xi)(1 — x2 ) • • (1 — x) 

lists once each all the monomials of the ring S. and that the action on this 

expression of 

(q 0 
0 	E T 

yields 

1 
R(q al xi, . 	qan xn) = 	  

(1 — qal xi)(1 — qa 2  x2) - • • (1 — q anxn) 

When this is expanded, the sum of the coefficients in degree e is precisely the 

formal character ch v,(q) of the representation V,. It follows from this that 

00 

E chve (q)t e = R(qal t , 	, q an t) = P (q; t). 

e=0 

From Corollary 4.62 

dim  5SL(2) n  = _ Res (q — 	)thve  (q) ,  
47=0 

and hence the Hilbert series is 
00 

P(t) = — Res E(q  — q -1 )chve (q)t e  = — Res (q — q -1 )P(q;t). 
q=-0 

LI 

In particular, consider the representation V = Vd of binary forms of degree d 

(see Example 4.54). The d +1 monomials x d , x'_ 1  y, 	y d  are already a basis 
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diagonalising the action of T and are transformed to 

qdx d , qd-2 x d—i y 	q —d yd 

q 0 
by the element 	q-1)• The q-Hilbert series is therefore 

0  

P(q; t) = 
i=0 1  _ qd-2it • 

Definition 4.64. The q-analogue of an integer d, of its factorial and of the 
binomial coefficients are, respectively: 

	

(i) 	
[dig, = qd-1 qd-3 	q —d-F3 q—d-F1 	qdqd 

 

[dig ! = 	, 
i=1 

	

(iii) 	 Ed+e] 	[d+e]q !  
e 	q 	[d]q ![e]q ! • 

0 

The corresponding classical notions are obtained by letting q 	1. In this 
sense the following proposition is the q-analogue of the binomial theorem 

1 
	= — od+i 	 e e>0 

Proposition 4.65. 

1 	 d el 

e> 
ri  _  ad-2i t L—d [ e Jq  0 

t e  

Proof Denote the left-hand side by 

	

(q,t)= fl 	 = 1  _ nd-2i t 

	

1=0 	-1  
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1 

and its power series expansion in t by 

0(q, t) = Eae(ote, 	ao(q) = 1. 
e>0 



= q 
(1 — u)(1 — u2 )• • • (1 — tid) 

	

_de(1 u e+1)0 ue+2- 	- 

	

) 	(1 — tl e+d) 
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Note that (q, t) satisfies the functional equation 

(I)(q , 4720 	1 q  dt   adn  
1 ___. qd+2t`v"1 ' '). 

Comparing terms on both sides, this gives 

ae(q)q
2e 

ae-1q
2e+d = ae (q) ae—lq

—d 
• 

Rearranging, we obtain the recurrence relation 

qe+d q — e — d 

ae(q) = 	 ae-i(q) ge _ q — e 

for the coefficients of 0(q, t), from which the proposition follows. 

Returning to the representation Vd of SL(2), with basis X d  , X d-1  y, 	, yd, 

let 6, 	, 4.d  be the dual basis of 	From Propositions 4.63 and 4.65 we 
deduce: 

Theorem 4.66. The Hilbert series of the classical invariant ring 
4d1sL(2) for binary forms of degree d is given by: 

+ e 
P(d) (t) = — E 1 Res (q — q - '

, 
 )[ 

d 	i 
te 

 

q= 0  e>0 

For the purpose of computing it is convenient to make a change of variable 
u = q2 . Then 

Fd+el 
	

[e 	l]q [e 2,1q  • • [e d]q  

e j q 
	[117 {21 q  - - {c/17  

and (note that the denominator begins with the quadratic factor!) 

—(1 	q_1) 1- d 	
= q

_
de-1(

1 ____ ue+l)(1 	ue+2). . • (1 	ue+d) 
(4.6) 

e 	 u 2) . . . (1 	ud) 	• 

For a formal power series f (u) E Z[[u]] we shall denote the coefficient of un 

by [f (u)],, E Z. 
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Cayley-Sylvester Formula 4.67. The vector space k[6, 	mesL(2) of clas- 

sical invariants of degree e for binary d-ics has dimension 1 [0.  _ ue+ixi _ ue+2). ( 1 _ ue+d) i 

m(d, e) — 	(1 — u 2) • • • (1 — ud) 	idel2 

0 

if de is even, 

if de is odd. 

Proof The dimension m(d, e) is equal to the residue appearing in 
Theorem 4.66, and we may note that, if de is odd, then this residue vanishes 
since the expansion of (4.6) contains only even powers of q. We shall therefore 
assume that de is even. Writing 

R(u) = 
— ue+ 1 )(1 — ue+2) 	(1 — ue+d) 

(1 — u 2) • • (1 — u d ) 

we have 

m(d, e) = 	q—de-1R(q2)dq, 
27r 1 

where the path of integration is a small circle around q = 0. Under the change 
of variable u = q2 , du = 2qdq, this is equal to 

1 	
U

—del2u—i R(u)du, 

27ri 	2 

where the contour now has winding number 2 about u = 0 and is therefore 

i f 
m(d, e) = 

27ri 	
u—de12-1 R(u)du 

= Res 14 -61e12-1 R(u) 
u.o 

= [R(u)lde/2. 

Corollary 4.68 (Hermite reciprocity). m(d, e) = m(e, d). 	 LI 
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(e) Some computational examples 

Proposition 4.69. For 2 < d < 6, the Hilbert series P(d) (t) of the classical 
invariant ring for binary d-ics is given by the following table: 

d p (d) ( t ) 

2 
1 

1 — t2  

1 

1 — t 4  
3 

4 

5 

1 

(1 — t 2)(1 — t 3 ) 

1 + t 18  

(1 — t4)(1 — t 8)(1 — t 12) 

1 +t15 

(1 — t2 )(1 — t4) (1 — t6)(1 — t 10 ) 

Proof We shall just do the cases d = 4, 5, leaving the others to the reader. 
From the Cayley-Sylvester formula, 

[ (1 — u'' )(1 — u e+2)(1 — ue+3 ) (1 — U e+4)1 

(1 — U 2)(1 — 14 3)(1 — U4) 	2e 

In this expression we can expand the numerator, ignoring terms of degree greater 
than 2e: 

 

1 — U e+1  — ue+2 _ ue+3 _ ue+4 
= 	  

(1— u 2)(1 — u 3 )(1 — u 4) 

 

m(4, e) 
2e 

 

1 	] r  u+u2±u3+0 = 
[ (1 _0(1_ OR)(1 — U 2)ie l(1 - U 2)(1 — U3)(1 	4 

= [ 
	1 +  U312  

(1 — 00 — /42)( 1  — U 3)1e [ 	

u  

( 1  — 	0 ( 1  — u2)(1 — /43)1 
(where for the last term we have simply factorised 1 — u4). Exchanging U 312  and 

u between the two numerators, and noting that the second then has no integer 

1 
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powers in its expansion, we see that 

m(4, e) = 	  
[ (1 —u 2)(1  1  

and hence that P 4 (t) = 1/(1 — t 2)(1 — t 3 ). 
We now turn to the case d = 5. Since m(5, e) = 0 whenever e is odd, it is 

enough to consider even values e = 2a. Then 

m(5, 2a) = 	  
_ u2a+i ) 1 _ u 2a+2)(1 u2a+3 )0  _ u 2a+4 )( 1 _ u2a+5 )  

(1 — u 2)(1 u 3 )(1 — u4)(1 — u5) 	 5a 

Expanding the numerator and ignoring terms of degree greater than 5a, we 
obtain: 

1 
m(5, 2a) =[ 	  

(1 — u 2 )(1 — u 3 )(1 — u 4)(1 — u 5 d5a 

Ud-ti2 ±ti3 d-U4 H-tt 5 

— U 2)( 1  — 	— 	— u5 )1a 

[

u3  + u 4  + 2u5  + 2u 6  + 2u 7  +  u 8  + u9 1 
(1 — u 2 )(1 — u 3 )(1 — u 4 )(1 — u 5 ) 

(4.7) 

We deal with each of these three brackets. The first can be rewritten: 

[ 	

1  
( 1 — u 2 ) ( 1 — 	 — 	 — Ltd 5a  

+ u2 u4 u 6 u8)(i u3 u6 u9 u 12)(1 u4 u 8 u 12 u 16) 

(1 — 00 )(1 — 05 )(1 — /4 20 )(1 — /45) 	 5a 

[ 1 + u 5  + 40° + 505 + 7u2o ± 4u 25  ± 3u3°  
9 

(1 - O M _ u10)(1 _ 05)(1 ____ u20) 
5a 

where, in the last step, the numerator has been expanded ignoring terms that 
are not divisible by 5. 
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The second bracket in (4.7) can be rearranged similarly: 

u + u2  + u 3  + u4  + u 5  L i _ u2„, _ u3 )(1 — u 4 )(1 — ,,,,,L 
[ u(i  + u2  + U4)(1 ± U 4  + U8 )( 1  + U + U 2 ) 

L 	(1 - u 6)(1 — u 3 )(1 — u 12)(1 — u 3 ) ]3a 

2u3 4_ 2u 6 4_ 3 u9 + u 12 ± u 15 [ 1 (1 — U 3 )2 (1 — U 6)(1 — 02) 3a  

The third bracket is: 

3  + U 4  + 2U 5  + 2U6  + 2U7  + U8  + U9 1 

(1 — u2)(1 — u 3 )(1 — u4)(I — u 5 ) j a  

Fu 3 (1 +  u  + u2 + u3 + u4)(1+  ,4 2 )1  

L (1 - u2)(l - u3)(1 - u4)(1 - u5) j a  

Li — u)(1 — U 2 )2(1 — U 3 )1a.  

It follows from these computations that the Hilbert series is given by 

1 + t + 4t2  + 5t 3  + 7t 4  + 4t5  + 3t5  2t + 2t 2  + 3t3  + t4  + t 5  
P(5) (Vi) = 	  

(1 — t)(1 — t 2)(1 - t 3 )(1 - t 4) 	(1 _ t )2(1 _ t2) ( 1 _ t4) 

t 3 
+ (1 	— 0(1 — t2 )2 (1 — t 3 ) 

1 +t9  

= (1 — t 2 )(1 — t 4 )(1 — t 6) .  

In the cases d = 2, 3, the discriminant D() E k[6, ... , mSL(2) has 
degree 2, 4, respectively (Examples 1.21 and 1.22). 

For the case d = 4, we have constructed in Chapter 1 (see Section I.3(b)) 
invariants g2(), g3() E kl[6, ..., 41sL(2) of degrees 2, 3, respectively. In fact, 
g2  and g3 are algebraically independent: this can be seen by restricting to the 
subspace = ,4, ,i. = = 0, on which the invariants reduce to 

g2(0 = g ± 34'1, 	g3(4) = (Q - 

= 

- 

r 	 
= 

= u3  
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These determine a map k 2 	k2 , 	(g2, g3) which is clearly surjective 
(since one can separate variables), so g2, g3 cannot satisfy any polynomial 
identity. From Propositions 4.69 and 1.9 we can therefore conclude: 

4d -isL(2) Corollary 4.70. The ring of invariants k[40, 	 is generated by the 

discriminant D(0 when d = 2, 3, and by g2()> g3() when d = 4. 

The higher degree cases are less simple, but by constructing the invariant 
rings explicitly the following results are known. (See also Schur [26].) 

P5(t) = 
(1 — t 4 )(1 — t 8 )(1 — t 12)(1 	t 18 )' 

and, indeed, the invariant ring k[40, 	5],51.(2) has four generators of degrees 
4, 8, 12, 18 satisfying a single relation of degree 36. Similar for d = 6, 

1 — t 3°  

Example 4.72 (Shioda [27]). For d = 8, the Hilbert series is 

1+0±t9 +0) -Ft 18  
(1 — t2)(1 — t 3 )(1 — t4)(1 — t 5 )(1 — t 6 )(1 — t7 ) 

1+20  . 
b=25 t 	t  2-ia=16 ta E
29 	b 	45 

(1— t2)(1 — t 3 )(1 — t 4 )(1 — t5 )(1 — 0)(1 — t 7 )(1 — 	— t 9 )(1 0)) 

where the first expression is obtained from the Cayley-Sylvester formula, and 
the second is a convenient rearrangement. In this case the ring k[6, .. . , 8]S L(2) 

is generated by nine invariants ./2(0, . . . , Ji0(). These satisfy five relations 
of degrees 16, .. . , 20, which in turn satisfy five syzygies. More precisely, the 
relations can be -elpre-s-sed as the Pfaffians of the five principal 4 x 4 minors of 
a skew-symmetric matrix 

0 f6(J) ( 
0 

Example 4.71. For d = 5, the Hilbert series can be written as 

1 — t 36  

P6(t) = 
(1 — t 2 )(1 — t 4)(1 — t 6 )(1 — t 10 )(1 	t 15 )' 

and the invariant ring has five generators of degrees 2, 4, 6, 10, 15 and a single 
relation of degree 30. 	 1=1 

P (81 (0 = 

.h(J) .f8(J) A (J) 

AGO f9 (J) fio(J ) 

0 	fio(J) 
0 	f12(J) 

0 
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where each f1 (J) is a weighted homogeneous polynomial of degree i, with 
deg J,,,, = m. 	 El 

Remark 4.73. In fact, a Gorenstein ring of codimension 3 is always defined 
by an odd number 2k + 1 of relations in its generators, and, by a theorem 
of Buchsbaum and Eisenbud [22], these relations can always be expressed as 
the Pfaffians of the principal 2k x 2k minors of a skew-symmetric matrix, as 
above. El 

The case d 7 we prefer quietly to omit, though the interested reader may 
like to compute P 7 (t) for him or herself, or consult Dixmier and Lazard [24]. 

4.5 Geometric reductivity of SL(2) 

We shall give in this section an alternative proof of linear reductivity in the 
special case of S L(2). We begin by extending Proposition 4.37. 

Lemma 4.74. For an algebraic group G the following conditions are 

equivalent. 

(i) G is linearly reductive. 

(ii) Given a finite-dimensional representation V of G and a surjective G-

invariant linear form f: V --> - k there exists an invariant vector w E V G 

 such that f (w) 0 0. 
(iii) Given a finite-dimensional representation V of G and an invariant vector 

W E V G  there exists an G-invariant linear form f : V -- > k such that 

f (w) 0 0. 

Proof (i) implies (ii) immediately from Definition 4.36, with G acting triv-
ially on W = k. Conversely, (ii) implies (i) using the formulation of 
Proposition 4.37(ii). If v E W G , then we can decompose W as a represen-
tation of G, as W = ktv 1 e) W' (Exercise 4.6). Then by condition (ii) the 
composition V G  C V ---> W -÷ /qv} is surjective. 

(ii) is equivalent to (iii) by replacing V by its dual V' and noting that the 
space of G-invariant forms is HomG(V v  , k) = HomG(k, V) .= V G , where G 
acts trivially on k. 1=1 

It is the formulation of linear reductivity given by part (iii) of the lemma that 
we shall verify for S L(2). First, by linear reductivity of G m .1=-:' T c SL (2), we 
can find a T-invariant linear form e : V -->- k such that e(w) = 1, and using 
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this form we can define a map 

: V -± k[SL(2)] 

by 0(x)(g) = e(g • x) for x E V and g E SL(2). Equivalently, 0 is the 
composition of the group action (see Definition 4.1) with e 1: 

!iv 	 e0 
V ---> V k[SL(2)] 

1
k k[SL(2)] = k[SL(2)]. 

The following properties of are easy to check. 

Lemma 4.75. 

(i) 0(w) is the constant function I. 
(ii) For all x E V the function 0(x) is invariant under the right-action of T, 

that is, 0(V) c k[SL(2)] T  

(iii) is a homomorphism of SL(2) representations. 

We will give an explicit description of the invariant ring k[SL(2)] T . The 
coordinate ring of SL(2) is 

k[SL(2)] = k[x, y, z, t11(xt — yz 1), 

and this carries left- and right-actions of the group by left- and right-translation: 

( x y 	(a 	x y\( a' b' 

z t 	c d ) 	t 	d' ) • 

We consider the right-action restricted to the torus T c SL(2) and the left-
action of SL(2) on the invariant subalgebra k[SL(2)] T . Since 

Ix y) q 0 \ 	qx q -1  y 

t 	q -1 	qz q -1 t 9 

we have 

k[x, y, z, t] T  = k[xy, xt zy, zt]. 

The polynomial-xt,-, yz — 1 is itself T-invariant, and so 

k[SL(2)] T  = k[xy, xt, zy, zt]/(xt — yz — 1). 

We can give this ring another description. For each natural number n E N let 
X, be the following set of rational functions in variables u, v: 

	 degu f (u, v) 	degv f (u, v) ni . 
1(u 

f(u, v) 

 — v)n 
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This is a vector space of dimension (n + 1)2 , and Riz  C R, 2+ 1. The union 

R  = Rn 
lim Rn 

n--* 
n>0 

is a subalgebra of k[u, v, 11(u — v)] c k(u, v), while the function field k(u, v) 

is a representation of S L(2) via 

au + b 	av + b 	( a 
u 1-÷ 	, 	I--->  	 b  E SL(2). 

cu + d 	cv + d' 

Note that under this action 

au+b av+b 	u v 
u — v 	 

cu + d cv + d (cu + d)(cv + d)' 

from which it follows that R I, c k(u, v) is a subrepresentation. More precisely, 
R n  is isomorphic to the tensor product Vn  0 Vn , where V is the (n + 1)- 
dimensional irreducible representation of SL(2) as described in Remark 4.55. 

Lemma 4.76. There exists an isomorphism 

R -1"; k[S L(2)1 = k[xy, xi', zy, zt]l(xt — yz — 1) 

induced by mapping u 	x/z, v 	y 1 t, 11(u — v) 	zt. 

The proof of this is easy and is left to the reader. 

Second proof of Theorem 4.43 for n = 2. We have to construct an invariant 
linear form f E HOTrisL(2)(V , k) such that f (w) 0 0, and we begin with 

: V --> 	L(2)] constructed above. By Lemmas 4.75 and 4.76, the image of 
: V -4- k[SL(2)1 T 	R is contained in the finite-dimensional vector space 

R, for some n. By definition, a general element is of the form 

f(u, v) 

(u v)n 
where f (u, v) = E alj u i v j . 

Oi,j<n 

Taking the determinant of the coefficient matrix (Ctij)0<ij<n defines a function 
det : Rn  k which is homogeneous of degree n + 1 and is SL(2)-invariant. 
Note that at the constant function 

1 = 
(Lt — 	U n  — 11/4 11-1  V + 2 • (—On  

	 E Rn  C k[SL(2)1T 
(u — on 	 (u — on 
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det takes the value 

1 

—n 
In 

— 1 n 
(- 1 )n 

Let h : R,1 	k be the formal differential of det at 1 E R" that is, the linear 
coefficient in the expansion of 

det (1 + f v)  . 
(u — v)" 

Then h is an SL(2)-invariant linear map given by 

f (u v) , 	fl 

 	E(_ iyz-iai , n_i  H ). 
(u _ 	

jOi(i 

In particular, 

11
n  

h(1) 	(-1)n (n 	 .) 	O. 	 (4.8) 
i=o 

Hence (using Lemma 4.75(i)) the composition 

f h 0 : V R n  k 

is an invariant linear form f E Homa(2)( V, k) with the required property. 

Notice that in this proof the only place where we have used the assumption 
that the field k has characteristic zero is in the final step (4.8). In positive char-
acteristic, even if we cannot use the differential h, we can nevertheless move the 
goalposts and use the function det to modify the condition of Lemma 4.74(iii): 

Definition 4.77. An algebraic group G is geometrically reductive if, given a 
finite-dimensional representation V of G and an invariant vector w E VG, there 
exists a G-invariant homogeneous polynomial function f : V k satisfying 
f(w)=1. 1=1 

det 

Theorem 4.78 (Seshadri [76]). If char k — p > 0, then SL(2) is geometri-

cally reductive. 	\ 
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Proof In the proof above we may take n = 	— 1 for sufficiently large v. 
Then 

	

(u — =  	= (u — v)P v 	uP v  — vP v  u 	v . 
u — v 	u — v i=0 

In particular, the form det : Rn 	k takes the value 1 at 1 Rn  . So in this case 
the composition 

f = det o0 : V --> Rn  --> k 

has exactly the properties asserted in the theorem. 	 1=1 

Remarks 4.79. 
(i) Obviously linear reductivity implies geometric reductivity, and over a field 

k of characteristic zero the converse is also true and the two conditions are 
equivalent. In positive characteristic, however, geometric reductivity is a 
strictly weaker condition, and in fact the only connected linearly reductive 
groups are tori. In particular, SL(n) for n > 2 is geometrically reductive 
but not linearly reductive. 

(ii) It is actually the property of geometric reductivity that the construc-
tion of quotient varieties depends upon. It turns out that both the finite-
generatedness of the invariant ring and the separation of orbits by the in-
variants follow from the geometric reductivity of the group. 

Exercises 
1. If D and D' are derivations of a ring R, show that their commutator [D, 	= 

DD' D' D is also a derivation. 
2. Let a E 7-1(G) be a distribution supported at the identity of an algebraic group 

G, let R = k[G], and denote by Da  E End R the k-linear endomorphism 

	

R 	RekR 5-1  k igk R R 

Show that the following two conditions are equivalent: 
(i) a:R-÷kisak= R/rn-valued derivation; 

(ii) Doi  : R -->- R is a derivation of R. 
3. Show that the set Lie(G) of derivations at the identity is closed in distribution 

algebra 7-1(G) under the commutator ra,13]=a*I3-16*a. (The Lie space 
Lie(G) equipped with this commutator product is called the Lie algebra of 
the algebraic group G.) 
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4. Let x E k[G] be a character of an algebraic group G, and let V be a linear 
representation of G. Show that 

Vx  := {v E V I p,v(V) = V X} 

is a subrepresentation. 
5. Let ii, v  : V 	V 0 k[G] and pcw : W 	W k[G] be two representations 

of an algebraic group G. 
(i) Show that the tensor product U 0 V is a representation of G via the 

composition 

U 0 V 	U k[G] 0 V 0 k[G] U ® V k[G] 0 k[G] 
iom 

UOVO k[G], 

where m : k[G] 0 k[G] 	k[G] is multiplication in the ring. 
(ii) Show that the space Homk(U, V) of k-linear maps from U to V is also 

a representation of G. 
(iii) Show that f E HOMk(U, V) is G-invariant if and only if f is a G-

module homomorphism. 
6. Suppose that G is linearly reductive, and let W be a subrepresentation of 

a finite-dimensional representation V of G. Prove that V decomposes as a 
direct sum of representations V = W W'. Hint: Apply linear reductivity 
to the surjective map of representations Homk( V, W) Homk(W, W)- 

7. Let 

be an exact sequence of representations of G. Show that the induced sequence 
of spaces of invariants 

-± UG  V G  W G  

is exact. (That is, the functor which takes invariants is left-exact.) 
8. Let pc :17 --> V 0 k[G] be a representation of an algebraic group G. Let 

g E G(k) be a k-valued point and mg  c k [G] the corresponding maximal 
ideal. Denote by p(g) E End V the composition 

mod m g  
V --- V k[G] 	V k L" -÷ V. 

Show that, if the coordinate ring k[G] is an integral domain, then a vector 
v E V such that p(g)(v) = v for every g E G(k) is a G-invariant. 
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The construction of quotient varieties 

Suppose that an algebraic group G acts on an affine variety X = Spm R (where 
we assume throughtout that R is an integral domain over k). We will consider 
the map to affine space 

given by some G-invariant functions fi , 	,f,  E R G  . Since each fi is G- 
invariant, it is constant on the G-orbits. It follows that the map 0 sends each 
orbit to a single point. This suggests — although a slight oversimplification — 
the essential idea for constructing a quotient variety by means of the invariant 
functions: 

Aim: By taking sufficiently many invariants fi, 	, fn  E R G , can we obtain a 
'quotient variety' X/ G as the image 0(X) c A'? 

First of all, what do we mean by 'sufficiently many' here? If the group G 
is linearly reductive, then by 1-filbert's Theorem 4.51 the invariant ring R G  is 
finitely generated. In this case it should be enough to take fi , . . . , I', to be a set of 
generators. Second, our use of the word 'quotient' begs the following question: 

Question 1: Do two distinct G-orbits always map to distinct points under 0? 

Given that the functions fi, .. . , fn  used to define 0 generate all the invariants, 
this can be rephrased: given two distinct orbits of the G-action, does there exist 
any invariant form taking different values on the two orbits? 

Moreover, if we ask for a 'variety' as the quotient, then we cannot avoid the 
following question. We have seen in Example 3.22 that the image of a morphism 
of algebraic varieties need not itself be an algebraic variety. 

15R 
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Question 2: Is the image of 0 in A" an algebraic variety? 

We shall examine these questions in this chapter, and to what extent it is 
valid and consistent to view the image of 0(X) C A" (or more fundamentally 
Spm R G ) as the quotient of X by G. It turns out that Question 1 can be completely 
answered when G is linearly reductive, although the question first has to be 
modified slightly. On the other hand, it is not always the case that the quotient 
space of an affine variety is an algebraic variety at all (in any natural way), and 
so the above strategy has its limits. 

The contents of this chapter are as follows. When a linearly reductive alge-
braic group G acts on an affine variety X = Spm R as above, the morphism 

X -± X IIG := Spm R G  induced by the inclusion R G  c R is called the 
affine quotient map. In Section 5.1 we show that this is surjective and deter-
mines a one-to-one correspondence between closed G-orbits in X and points 
of X//G. A point of X is called stable if it belongs to a closed G-orbit of the 
same dimension as G. The stable points form an open subset X' c X, and the 
restriction of (i) to XS is a 'geometric quotient' in the sense that its fibres are 
precisely the G-orbits in Xs. 

In the second section we apply this general theory to the classical case of 
hypersurfaces in P". The set X = UnA of nonsingular hypersurfaces of degree 
d in P" is an affine variety in which (for d > 3) every point is stable for the 
action of G = GL(n + I). Thus XI G exists as an affine variety parametrising 
smooth hypersurfaces up to projective equivalence. This is an open subset in 
the projective variety Proj R„,d, where Rn ,d = k{V nAiSL(n+1) is the ring of 
classical invariants. Proj Riz ,d is the moduli space of semistable' hypersurfaces 
of degree d in Pn  , though we postpone the question of what semistable means 
geometrically until Chapter 7. 

This is an example of a group action of 'ray type', for which a projective 
variety appears in a natural way as the quotient. We will study these more 
systematically in Chapter 6. 

5.1 Affine quotients 

(a) Separation of orbits 

We begin with an example. 

Example 5.1. Consider the action of the multiplicative group G m  on the affine 
plane A2 , given by 

Cc' 

(x, y) 1---> (tx, t -l y) 	for t E Gm . 
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The orbits of this action are of three types: 

(i) The origin (0, 0) is an orbit consisting of one point. 
(ii) For each nonzero a E k the hyperbola xy . a is a single orbit. 
(iii) The x-axis minus the origin and the y-axis minus the origin are orbits. 

xy=a 

• 

Rectangular hyperbola x-axis 	y-axis Origin 

Figure 5.1 

On the other hand, this action induces a G m-action on the coordinate ring 
R = k[x, y], for which the invariant ring R um is generated by the monomial 
xy. This generator determines, according to the recipe given in the introduction 
to this chapter, a map 

(x, y) f---> xy. 

This map separates the orbits (ii) but cannot distinguish the three orbits of (i) 
and (iii), all of which map to zero. (Compare this with Exercise 3.6.) 	El 

Even in this simple example, and even though the group G m  is linearly 
reductive, we have found a counterexample to Question 1 posed above. What 
is it that goes wrong here? The answer is quite simple: Question 1, as stated, 
overlooks the fact that the map 0 is continuous. Every fibre of 0 (that is, the 
preimage of each point) is a closed set. So if there is any orbit of the G-action 
which is not a closed set, then the answer to Question 1 must be negative. How 
can one get round this? 

This example is quite typical and suggests the following general ideas. 

(i) First, we could identify to a single point the three orbits which the invariants 
fail to separate. 
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(ii) Alternatively, note that the fixed point of the group action (0, 0) is the 
ringleader of the troublemakers here: it is at just this point that the dimen-
sion of the stabiliser subgroup jumps. Removing this bad point levels up 
the dimensions of the stabilisers, and then we will get a good quotient. 

(iii) On the other hand, even after carrying out (ii) the quotient that we obtain 
fails to be Hausdorff (or, in the language of algebraic geometry, separable). 
For this, we have to go a step further and remove, also, the x- and y-axes 
before taking the quotient. This done, we finally obtain a nice quotient of 
Al  x Gm  modulo Gm , namely, A1 . 

Although the last approach (iii) has its merits, it is the first approach (i) that 
we shall follow in this chapter. (But see also the remarks at the beginning of 
Section 6.3.) 

Definition 5.2. Two G-orbits 0, 0' C X are said to be closure-equivalent if 
there exists between them a sequence of orbits 

0 = 01, 02, • • • , On—i, On  = 0 /  

with the property that O fl Oi+1 0 0 for each i = 1, .. . , n — 1. 

Invariant forms, because they are continuous, take the same value on closure-
equivalent orbits. We should therefore modify Question 1 as follows. 

Question 3: Do any two closure-inequivalent G-orbits map to distinct points 
under 0? 

Equivalently, given any two closure-inequivalent orbits, does there exist an 
invariant form taking distinct values on the two orbits? And to this linear 
reductivity of the group gives us a complete answer: 

Theorem 5.3 (Nagata, Mumford). Suppose that a linearly reductive group G 

acts on an affine variety X. Given two orbits 0, 0' C X, the following three 

conditions are equivalent. 

(i) The closures of 0, 0' have a common point, 0 1-1 0' 0 0. 

(ii) 0 and 0' are closure-equivalent. 

(iii) 0 and 0' fail to be separated by the G-invariants lc[Xr 

Proof (i) 	> (ii) 	(iii) is already clear. We shall prove the converse, 
(iii) 	> (i). In other words, we will show that if 4 II 0' = 0, then the orbits 
0, 0' are separated by k[X]G. 
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Step 1. Let a c R := k[X] be the ideal of functions vanishing on the closure 
0, and similarly let a' c R be the ideal of 0'. We consider the ideal a + a' 
generated by a and a'. By hypothesis, the zero-set in X of the sum is empty, 
and so by Hilbert's Nullstellensatz 3.8 (take f = 1!) we have a + a' = R. 

Step 2. The subsets 0, 0' C X are preserved by the action of G, and this 
means that the ideals a, a' c R are subrepresentations of G. Then the homo-
morphism of R-modules 

(a, a') i--> a + a' , 

is also a homomorphism of G-representations. By step 1 it is surjective, and so 
by linear reductivity (Definition 4.36) the map 

(a I) R G ) q) (a' 11 R G ) --->- R G  

is also surjective. In particular, there exist invariants f Earl R G  and f' E 

a' 11 R G  satisfying f -I- f' = 1. The function f vanishes on the orbit 0 and 
takes the value 1 on the orbit 0', so we are done. El 

Corollary 5.4. If G is a linearly reductive group acting on an affine variety X, 

then distinct closed G-orbits are separated by the G-invariants k[Xi G  . 	0 

Corollary 5.5. If G is a linearly reductive group acting on an a ne variety, 

then each closure-equivalence class contains exactly one closed orbit. More-

over, this is contained in the closure of every orbit in the same equivalence 

class. 0 

Proof By the previous corollary the closure-equivalence class can contain at 
most one closed orbit, so we just have to prove the existence of one. Let 0 

be an orbit with minimal dimension in its equivalence class: we claim that 
this is a closed set. For if not, then the boundary 0 - 0 is a nonempty union 
of G-orbits which are both closure-equivalent to 0 and of smaller dimen-
sion, giving a contradiction. For the last part, if 0' is an equivalent orbit, then 
0 II -67  = -05 n -67  is nonempty. But by continuity 0' is a union of orbits, so 
0 c 0'. ID 

It follows from Theorem 5.3 that the image 0(X) c An parametrises the 
closure-equivalence classes of G-orbits in X, or, from Corollary 5.5, that it 
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parametrises the closed G-orbits. On the other hand, for nonreductive groups 
the theorem is certainly not true: 

Example 5.6. Consider the action of the additive group G a  on the affine plane by 

(x, y) 	(x, tx y) 	for t E Ga. 

The orbits are of the following two types: 

(i) each vertical line away from the y-axis is an orbit; 
(ii) each point on the y-axis is a single orbit. 

In particular, we see that in this example every orbit is a closed set. (In fact, this 
is true whenever a unipotent group acts on an affine variety.) On the other hand, 
the invariant ring is k[x] C k[x, y], which fails to separate any of the orbits of 
type (ii). Indeed, the group Ga  is not linearly reductive (see Example 4.42). LI 

(b) Surjectivity of the affine quotient map 

Next we consider Question 2 from the introduction to this chapter. We are 
interested in the map to affine space 

x 	(fi  (x), 	, fn (x)), 

given by generators fit..., fn E RG of the ring of invariants. The Zariski 
closure of the image Y c An of this map is the set of all (al, , an ) E An  
satisfying: 

F (al, 	, an) = 0 for all polynomial relations F(fi , 	fn ) 0 
among the generators ft, . . . , fn  E R G . 	 (5.1) 

In other words, Y is the zero-set of the kernel I C k[al, .. . , an] of the homo-
morphism 

k[ai, 	, an ] —> R G 	ai 	fi  for i = 1, . . . , n. 

A priori 0 maps X to Y, and we would like to know that it is surjective on 
this set. 

Proposition 5.7. If the group G is linearly reductive, then the image 0(X) C An  
. 

is equal to its Zariski closure Y C An above. 

Proof The idea of the proof is similar to that of Hilbert's Theorem 4.51. Starting 
with a point a = (al, . . . , an ) E Y, that is, satisfying (5.1), we consider the 
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homomorphism of R-modules 

7 :1“43.--•GR—> R, 	(b1,..•,13n) . 
	bi (fi  — as). 

i=1 

Since each fi  —a E R is G-invariant, we see that TC is in fact a homomorphism of 
G-representations. Also, we observe that the induced map TC G  on G-invariants 
is not surjective: its image is the maximal ideal ma  C R G  corresponding to the 
point a E Y. Since G is linearly reductive, this implies that 7 itself cannot be 
surjective; its image is therefore contained in some maximal ideal m c R. By 
Corollary 2.25, the intersection mil R G  is a maximal ideal in R G , and therefore 
it coincides with the maximal ideal ma . This shows that a E Y is the image of 
the point of X corresponding to m. El 

The closed subvariety Y = 4)(X) c An depends on the choice of generating 
invariants fi, ... , fn. In other words, Y--':' Spm [a l , . . . , an[Rj. However, 
the ideal I is radical (that is, ,V1 = I, since R G  c R contains no nilpotents) 
and so Y is precisely the spectrum Spm R G . 

Definition 5.8. We denote the affine variety Spm R G  by X//G. The inclusion 
R G  c R determines a morphism of affine varieties 

which we shall call the affine quotient map. 	 El 

What we have proved is the following. 

Theorem 5.9. If G is a linearly reductive group acting on an affine variety X, 
then the affine quotient map 

(I): X --> XIIG = Spm k[X] G  

is surjective and gives a one-to-one correspondence between points of X II G 
and closure-equivalence classes of G-orbits in X. 

In addition, 1:13 has the following property. 

Proposition 5.10. If Z C X is a G-invariant closed subset, then its image 
(1)(Z) is also closed. 
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Proof Let a c R be the ideal of Z. This is G-invariant, and so G acts on 
the residue ring R /a. By linear reductivity, the surjective ring homomorphism 
R --> R/a restricts to a surjective map R G 	(R/a) G . The kernel is RG n 
and so we obtain an isomorphism 

RGARG n a) (R/a) G . 

Let us now interpret this geometrically. R G /(R G  11 a) is the coordinate ring of 
the closure in XIIG of 4)(X), while (R/a) G  is that of Z//G. Taking spectra, 
this therefore says that 4) induces an isomorphism of affine varieties 

Z G 	(1)(Z). 

By Theorem 5.9, the affine quotient map Z 	ZIIG is surjective, and this is 
just the restriction of 4). 	 0 

For any subset A c X//G, the preimage 4) -1 A c x is G-invariant; if 4) -1 A 
is closed, then it follows from Proposition 5.10 that A is closed. 

Corollary 5.11. The affine quotient map (I) is a submersion. That is, if the pre- 

image 0 -1  A C X of a subset A C X 	is open, then A is an open set. 	0 

(c) Stability 

Corollary 5.4 motivates the following fundamental notion. 

Definition 5.12. Suppose that a linearly reductive group G acts on an affine 
variety X. A point x E X is said to be stable for the action of G if the following 
two conditions are satisfied. 

(i) The orbit Gx C X is a closed set. 
(ii) The stabiliser subgroup Stab(x) = {g E G I  gx = x} is finite. 

We denote the set of all stable points for the G-action by Xs c X. 

Note that, given-X—E X, the orbit Gx is the image of the map 

g 	gx, 

while the fibres of Vix  are the left-cosets of Stab(x) in G. Thus the conditions (i) 
and (ii) of the definition are equivalent to requiring that VI x  be a proper morphism 
(since the fibres are affine, so that rtii, being proper implies that the fibres are 
complete and affine, and therefore finite). 
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Proposition 5.13. Let Z c X be the locus of points x E X for which Stab(x) 
is positive dimensional. Then X' is the complement in X of 4Y -1 (t(Z)). 

Proof Suppose that (1)(x) E CZ). If X E Z, then condition 5.12(H) fails; 
while if x Z, then the fibre (1) -1 (4)(x)) contains at least two G-orbits, and by 
Corollary 5.5 the orbit Gx (which does not have minimal dimension) cannot 
be closed - so condition 5.12(i) fails. This shows that (1) -1 (4)(Z)) c X - Xs; 
the converse is similar. LI 

Corollary 5.14. All points are stable, X' = X, if and only if all points of X 

have a finite stabiliser. 	 LI 

By considering the map 

G x X -- X x X, 	(g, 	(gx , x), 

determined by the group action, we see that Z c X is a closed set. In fact, let 
ZcG x X be the pull-back of the diagonal ACXx X; then Z is the locus 
along which the fibres of the projection Z X onto the second factor (that is, 
the stabiliser subgroups) have positive dimension. Since Z is also G-invariant, 
we deduce from Proposition 5.10: 

Proposition 5.15. The stable set X' C X and its image .43(X") C X G are 

open sets. 

Suppose that x E X is stable and that the orbits Gx and Gy, for another 
point y E X, are closure-equivalent. Since Gx is a closed set, this implies that 
Gx C Gy. Since dim Gx = dim G > dim Gy, it follows that Gx = Gy. From 
Theorem 5.3, therefore, we obtain: 

Theorem 5.16. Suppose that a linearly reductive group G acts on an affine 

variety X, and suppose that x E X is a stable point for the action. Then for 

any y E X - Gx there exists an invariant function f E k[X]' such that 

f (x) 0 f (Y). 	 El 
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Let us denote the image 4(Xs)  of the stable points by XS/  G. This is an open 
subset of XIIG and we have a commutative diagram: 

X c X 

4,  cts 

XS /G C X//G. 

Corollary 5.17. The restriction X' 	X' G of the affine quotient map 4) gives 

a one-to-one correspondence between points of X' I G and G-orbits in Xs. CI 

In this situation, one says that X' I G is a geometric quotient of X' by G. (For 
a more precise definition see Mumford et al. [30] chapter 4.) 

5.2 Classical invariants and the moduli of smooth hypersurfaces in IF" 

We can apply the general theory of the last section to study the moduli of smooth 
hypersurfaces in P. In Section 5.2(a) we show that the set of these is an affine 
variety, defined by the nonvanishing of the discriminant, and in Section 5.2(b) 
we show that every smooth hypersurface is stable for the action of the general 
linear group. 

(a) Classical invariants and discriminants 

A form of degree d in n 1 coordinates xo, x 1 , . . . , xn  can be written 

f (xo, xi, 	xn ) = E 

In this notation I = 	, in ) is a multiindex, 0 < ic, < n for each a, 

ranging through (n dd) values for which I / I := E ic, d. For each multiindex, 
the monomial x 1  = x 	. . . xni. comes with coefficient al E k. 

We will denote by Vn ,d the vector space of homogeneous polynomials f (x) 

of degree d and by Vn,d the associated affine space. (Thus Vi,d = Vd in the 
notation of earlier chapters.) This space has dimension rd d), and GL(n + 1) 
acts oniTn,d on the right by f f (gx). Equivalently, if we introduce ( d) 
independent variables 41 as coefficients for the generic form 

(0.7c) = E 	E k[xo, . • • , x,;. • • , j, • • •i, 
Ill =d 
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then a matrix g = (a11) E GL(n) transforms the form (4' ()x) to 

(0gx) = E 	aoixi)i° (E alixj)il  • • ( 
I/1=d 

which, after expanding and gathering monomials x i , can be written as 

Ox) := 	4j(g)x' . 

Il 

The transformed coefficients 4 j(g) can be expressed as 

r(g) g 6.  
I=d 

for some polynomials gif  E k[aii ]. (See Chapter 1 for the binary case n = 1). 
The following generalises Definition 1.24. 

Definition 5.18. If a homogeneous polynomial F() satisfies 

F(4g) = F(4- ) 	for all g E SL(n -1- 1), 

then F is called a classical ((n +1)-ary) invariant. 	 0 

Let Hn,d =iPVn , d. In terms of Hn,d we can interpret the classical invariants 
in more geometric language. 

Proposition 5.19. For a homogeneous polynomial F(0 E k[V n,d] the follow-

ing two conditions are equivalent: 

(i) F(0 is a classical invariant; 
(ii) the subvariety F(4- ) = 0 in Hn,d is GL(n 1)-invariant. 

Proof It is enough to prove (ii) 	> (i), that is, that F() is SL(n+ 1)-invariant 
when the projective subvariety F() = 0 is GL(n 1)-invariant. We may also 
assume that F() is irreducible. Then the ideal of the subvariety has a generator 
which is unique up to multiplication by a unit in the polynomial ring Ka 

that is, by a nonzero constant. This shows that the 1-dimensional subspace of 
kR] spanned by F is GL(n 1)-invariant. By Lemma 4.12, every character of 
GL(n 1) is a power of the determinant, and it follows that F() is invariant 
under the subgroup S L(n + 1). 

As in the case n = 1, the discriminant is a basic example of a classical invari-
ant. Before we define it, let X C Pn  be a hypersurface f (xo, xl, 	, xn) = 0 
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in F, where f (x o , x i , .. . , xn ) is a homogeneous polynomial of degree d. Re-
call that p E Pn  is a singular point of X if it is a solution of the simultaneous 
equations 

af 	af 	af  
0x0 = axi = • • • = a Xn = °. 

X is said to be nonsingular (or smooth) if these equations have no nonzero 
solutions. (See Section 1.4.) 

We shall denote by 1-1:7 c Hn,d the set of all singular hypersurfaces X c F. 
In order to analyse Hiry we introduce the subset 

Z = {(p, X) I p E Pn  is a singular point of X c F} 

of the product F x Hyt, d. In coordinates Z is defined by n + 1 equations, 

a 	 a 
(5.2) 

axo i 	 axn I  

In particular, Zc Fx 1171 ,d is a closed subvariety. Consider the projections to 
the two factors: 

Z 

ipn Hn,d 

First, note that the image of cp is precisely fiTst indg . On the other side of the diagram, 
for any p E Pn  the fibre * -1 (p) is the set of all hypersurfaces that are singular 
at the point p, and by (5.2) this set is defined by n + 1 linear equations in Hn,c1- 

It follows that 

dim Z = dim IP + fibre dimension of * 

> n + dim lin,d — (n -I- 1) 

= dim Hn ,d — 1. 

In fact it is easy to see that equality holds: the image of ci) is a proper sub-
set since there exist nonsingular hypersurfaces (Exercise 5.1), and has the a) 
same dimension as Z because there exist hypersurfaces with exactly one sin-
gular point (Exercise 5.2). Hence dim Z _ < dim Hn,d — 1 and we conclude 
that 

dim Hnsindg  = dim Z = dim Hn  4 — 1. 
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Since the projective space IPm is complete, moreover, 11,: ind g  c H is a closed 
subset, and by Proposition 3.47 this implies that it is defined by a single homo-
geneous equation. 

Definition 5.20. The defining equation D() E k[Vn,d] of the hypersurface 
dim Hrt,c1s  C dim n,d (determined up to multiplication by a scalar) is called ing 	fi 
the discriminant of forms of degree d on IP', or of degree d hypersurfaces in 
F. (This generalises Definition 1.20 for the case n = 1.) 	 0 

It is clear that Hn4s  is invariant under GL(n + 1), and so Proposition 5.19 ing  
implies: 

Corollary 5.21. The discriminant D(4') is a classical invariant. 	 0 

Example 5.22. For degree d = 2, the space Vn ,2 of quadratic forms can be 
naturally identified with the vector space of (n +1) x (n 1) symmetric matrices 
(aij ), aij = aii . Such a matrix determines the quadric hypersurface Q c 

with equation 

Eaxix = 0. 

Then Q is singular if and only if det I aiil = 0; thus the discriminant in this case 
is D(a 3 ) = det 

(b) Stability of smooth hypersurfaces 

We need one more key fact for the construction of a moduli space for smooth 
hypersurfaces. This is due to Jordan [34] and Matsumura and Monsky [32]. 

Theorem 5.23. Any homogeneous polynomial f E k[X0, 	, XII ] with de- 

gree > 3 is invariant under at most finitely many g E GL(n 1). 

Proof We shall  prove the equivalent statement that f is invariant under no 
nonzero element of the Lie space gl(n + 1). Recall from Example 4.30 that 
gl(n + 1) is the vector space of all (n + 1) x (n 1) matrices A = (au ), 

0 <i, j < n. Such a matrix determines a partial differential operator 
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and the action ofill(n + 1) on polynomials induced by that of GL(n + 1) is 

f DAf = E ai,ixi axi . 

We have to show that the linear subspace {A E gl(n + 1)1D A ( f) = 0} is zero. 

Let f. = IL for each i = 0, 1, .. . , n. Then nonsingularity of the homogeneous I 	ax, 
polynomial f (xo, x l , . , x n ) means that the equations 

fo(xo, xi, ••• , xn) 	fi(xo, xi, ••• xn) = • • • = fn(xo, xi, 	, xn ) = 0 

have no nonzero solutions. This implies that the maximal ideal m = 

(xo, xl, , xn ) C k[xo, xi, , x n ] is a minimal prime divisor of the ideal 

CM, ft, • • • , fn)- 

Claim: ft is not a zero-divisor modulo the ideal (fo, . , 	, fn ) for any 

i = 0, 1, . , n. It is enough to consider the case i = 0. By Krull's Princi- 
pal Ideal Theorem (see Atiyah and Macdonald [9] Chapter 11, or Eisenbud 
[61] Section 8.2.2) every minimal prime ideal containing (fi, 	, fn ) has 

height < n. Since m has height n + 1, there is no h 	, fn ) with 

foh E (ft, 	, fn ) - proving the claim. 

Returning now to the equation DA f = 0, this is equivalent to an identity 

E l1 (x)f(x) = 0 	for linear forms / i  (x) = E aii x j . 
i=o   

By the claim, this forces each li (x) to be in the ideal (fop..., J, • • • , ftz)- But 

by hypothesis deg f1 (x) > 2, so we must have li (x)=-,- 0 for each i, and hence 

A = 0. 	 1:1 

The set of nonsingular homogeneous equations of hypersurfaces of degree 

d is an open subset of V n,d defined by D() 0 0. We shall denote this open set 

by Un ,d; it is an affine variety with coordinate ring 

k[Un ,d] = 	D(0-1 ]. 

Then GL(n + 1) acts on this variety, and by Theorem 5.23 and Corollary 5.14 

we have: 

Corollary 5.24. For d > 3, every point of Un4 Clrn ,d is stable for the action 

of GL(n + 1). 	 0 



172 	 5 The construction of quotient varieties 

By Corollary 5.17, therefore, there exists a good quotient whose points 

parametrise precisely the GL(n + 1) orbits, 

4) : Un ,d —> Un ,d1 GL(11 + 1). 

This quotient UnA IGL(n + 1) is called the moduli space of smooth hyper-

surfaces of degree d in Pn; its points are in one-to-one correspondence with 

projective equivalence classes of such hypersurfaces. 
The following example has already been seen in Chapter 1. 

Example 5.25. Binary quartics. The variety U1,4 is the set of all binary guar-

tic forms (writing 40, 41, . . . , 44 instead of 404 , 413, ... , 413) 

(4 0 x, y) = 6X 4  + 41x 3 y + 642x 2y2  + 43xy3  + 44y4  E V1,4 

without repeated linear factors. By Corollary 4.70 and the fact that 

D() = g2X03  — 27g3(4)2 , 

the invariant ring k[6, ... , zt, D (4 )_
1] G L(2) is generated by g2(4 )3 /D(4). 

Hence the affine quotient map is 

ibinary quartics without I 
'repeated linear factors i 

The moduli space, parametrising G L(2)-equivalence classes of binary quartics, 

is in this case the affine line Al . The reader should compare this with the proof 

of Proposition 1.27. 	 0 

Example 5.26. Plane cubics. Ternary cubic forms (4 Ox , y, z) — or equiva-

lently, plane cubic curves — live in the vector space 

V2,3 = (x 3  ,y
3  ,z 3  ,x 2  y,y 2  z,z

2  x, XY
2

, yz2
, ZX

2 , xyz). 

As affine space V2,3 =-- A l°  this has coordinate ring 

k[V2,3] = k[43oo, 030, 603, 4210 ,  621, 4102, 120, 612, 4201, 41111, 

and it is a classical result of Aronhold [21] that the ring k[V 2 ,3]
,5 L(3) is generated 

by two algebraically independent invariants S(4) and T(0, where deg S = 4 and 

deg T = 6. In particular, the discriminant D() is in k[S , T] and is computed 

to be 

D — T 2  +64S3 . 

4) : U1,4 = —> A', 4 }--> g2(4) 3 /D(4). 
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(To give S, T explicitly one uses the canonical form of a cubic, 

C : x3  + y 3  + z3  + 6mxyz = O. 	 (5.3) 

Then S = m — m4 , T = 1 — 20m 3  — 8m6  and D = (l ± 8m 3 )3 .) 
Restricting to the nonsingular cubics, the ring k[I, D()- l]GL(3) is generated 

by a single invariant S() 3 /D(). Hence the affine quotient map is 

1  nonsingular 	 S( )3  
. 	 —>-I 	Al , 	1-± D(0 . plane cubic s 

Thus the moduli space, as in the previous example, is the affine line Al . 
For reference later on, let us say a bit more about this example. The S L(3)- 

invariance of S and T means that they have some projective geometric inter-
pretation: the conditions S = 0 and T = 0 are projectively invariant properties 
of a cubic, and one can ask what they mean geometrically. The Hessian of a 
plane cubic f(x, y, z) E V2,3 is the cubic 

a2f7a2x  02fiax ay  a2flaxaz 
H(f)(x,y,z)= a2pay ax  a2f/a2 y  a2 payaz  E V2,3- 

a2pazax a2paza y  a2f7a2 z  

As a plane curve, H(f)(x,y,z) . 0 is the locus of points in P2  whose polar 
conic with respect to f (x, y, z) = 0 is a pair of lines. The interpretation of S, T 
is now the following (an exercise for the reader, using the canonical form (5.3)). 
First, 

S = 0 	.), 	H(f) factorises as three lines 

or, equivalently, if and only if f is a sum of three cubes l? + 13 +13 of linear 
forms li (x, y, z). On the other hand, 

T . 0 	> 	H(H(f)) = f up to a scalar. 

	

For more details we refer the 	reader to Salmon [35] or Elliot [33]. 	El 

--(c) A-moduli space for hypersurfaces in P" 

We will now construct a complete variety which compactifies the affine moduli 
space U,d I GL(n + 1) of the last section. This is intended to serve as a motivat-
ing example for the construction of the projective quotient in the next chapter, 
but nevertheless it is very classical and we will return to it in Chapter 7 after 
we have discussed the Hilbert-Mumford numerical criterion for stability and 
semistability. 
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We consider the ring of classical invariants 

oo 

Rn,d = k[V n,d] SL(n +i) 	IED k[
1 ]

eSL(n+1) , 

e=0 

graded by degree, and the projective variety Proj R n, d (Definition 3.43). By 
construction, this is covered by affine open sets Spm RF, 0 for homogeneous 
elements F E R = Rn ,d. By Hilbert's Theorem 4.51, the ring Rn ,d is finitely 
generated, and so Proj R n,d is covered by Spm RFi ,c,, .. . , Spm RF,n ,0 for some 
finite set of classical invariants F1(), . . . , F(0 generating the invariant ring 
Rn, d (Proposition 3.44). On the other hand, it is easy to verify that 

1 	
GL(n+1) 

RF,0 = k[4i , F()
] 

and hence we have: 

(n+1 Proposition 5.27. For each classical invariant F() E k[V„,d]SL) , the 

affine variety Spm k[1, F()-i]GL(n+ 1 ) is contained in Proj Rn ,d as an 

open set. 	 CI 

Remarks 5.28. 

(i) This proposition will be a special case of Remark 6.14(iv) in the next 
chapter. It says that the projective quotient is constructed by gluing together 
the affine quotients by GL(n ± 1) of localisations V n,d — {F --,--- 0}, where 
F runs through all classical invariants. 

(ii) The next proposition says that the function field of each affine variety 
Spm RF, 0 — that is, the field of fractions of RF,0 — is equal to the field of in-
variant rational functions k (41 )GL(n+1) . This observation will be generalised 
in Proposition 6.16 in the next chapter. 	 0 

Proposition 5.29. The field offractions of k[I, F(0 -1 ] GL( n+1)  is equal to the 

field of invariant rational functions k(41) GL(n+1)  

Proof Let deg F = h > 0. An arbitrary rational function can be written as a 
ratio of polynomials A()1 B(). Then G L(n + 1)-invariance forces A and B 

to be homogeneous of the same degree - let this be e = deg A = deg B. Then 
the two rational functions 

A(4)B(4) h-1 	 B(Oh  
b() = 	 

F We  ' 	 F(Oe 
a(0 = 
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are both G L (n + 1)-invariant elements of k [41 , F (4) 1 ], and their ratio is equal 
to A()1 B(). 

If in Proposition 5.27 we take F to be the discriminant, then from Corol-
lary 5.24 we arrive at: 

Corollary 5.30. For d > 3, the moduli space Un , d  GL(n + 1) of smooth 
hypersulfaces of degree d in Pi is contained as an open subset in Proj Rn, d, Lii 

(d) Nul?forms and the projective quotient map 

We conclude this chapter by explaining the sense in which the projective variety 
Proj R n ,d is itself a quotient of Vn,d  by GL(n + 1) (Definition 5.36). 

Definition 5.31. A form of degree d 

(a0x0, xl, • • • , xn) = E arxl  E Vn,d 
111=d 

with the property that F(al ) = 0 for every nonconstant classical invari- 
ant F E Rn,d was called by Hilbert a nullform. In Mumford's terminology, 
such a form is also called unstable. If a form is not unstable, it is called 
semistable. 	 El 

Let F() E R =  kvSL(n+1) 4 n4 	 be an arbitrary invariant. This decomposes 
uniquely as a sum of homogeneous classical invariants 

	

F() = F(0) + F(l) () + F(2)(4) + • 	F(e)() , 

where deg F(i)(0 = i. It follows that a E V n ,d is a nullform if and only if 
F (a) = F(0) for every F E R n, d. By Theorem 5.3 we deduce: 

Proposition 5.32. A form a E V n,d is a nullform if and only if the closure of 

its SL(n + 1)-orbit contains the origin, that is, 0 E SL(n + 1) • a. 	El 

Together with Theorem 5.16, this implies: 

Corollary 5.33. If a E V n ,d is a nullform, then it is not stable for the action of 
SL(n + 1). 	 0 

If a E V n, d is not a nullform, then it is semistable, so the corollary says: 

stable 	> semistable. 
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Note that if two forms a, b E Vn,d are in the same SL(n 1)-orbit, then 
stability of one is equivalent to stability of the other (Definition 5.12). Similarly, 
since a classical invariant F E Rn,d is constant on SL(n 1)-orbits, its non-
vanishing is independent of the GL(n 1)-action on forms. So we have: 

Lemma 5.34. If two forms a, b E Vn ,d are in the same GL(n 1)-orbit, then 
a is a nullform if and only if b is a nullform. 	 0 

Example 5.35. A binary quartic a E V1,4 is a nullfonn if and only if the 
equation (a Ox , y) = 0 has a root of multiplicity > 3. 

To see this, recall (see Corollary 4.70) that the ring R1,4 of SL(2)-invariants 
is generated by 

g2(0 = 	- , 3 + 

g3() = 64 -O 3  - 	± 2.123 — 

If (ax, y) = 0 has a root of multiplicity > 3, then it is GL(2)-equivalent 
to one of x 4 , x 3  y, each of which has g2(a) = g3(a) = 0 and is therefore 
a nullform. Conversely, if a is a nullform, then in particular its discriminant 
vanishes, D(a) = 0. This means that it has a multiple root, which up to G L(2) 
we can take to be x = 0, so that 

(a  x y) = x2(px 2  qxy ry2) .  

The condition g2(a) = 0 then implies r =-- 0, so that x = 0 has multiplicity > 3. 
This example will be generalised in Proposition 7.9 and Example 7.10. 0 

Consider now the affine quotient map for the action of S L(n ± 1), 

Spill Rn,d• 

In this notation the set of nullforms is (D -1 (0(0)), and we shall denote the 
complement of this set, the set of semistable forms, by Vsns d  C Vn,d. This is 
precisely the union of open sets 

V sns4  = {Fi(a) 0 0} U • • • U {F r(a) 0 01 

for generators F1, . . . , Fr E Rn,d. Then the affine quotient maps (D i  : {F(a) 
0} 	= Spm 	, F1()-1}GL(n+1), for = 1, . .. , r, glue together to give 
a surjective morphism 

: Vriss4 	Proj Rn,d• 
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Definition 5.36. 41  is called the projective quotient map, and 

V d  G L(n ± 1) := Proj R, d  

is called the moduli space of (semistable) hypersurfaces of degree d in F. 

Example 5.37. Binary forms. 
d = 2, 3.  Each of R1,2 and R1,3 is of the form k[D], a polynomial ring in one 

variable generated by the discriminant. It follows that in each of these cases 
Proj R consists of a single point. (See Example 3.45.) 

d = 4.  In this case R1,4 = k[g2, g3], a polynomial ring in two variables with 
weights deg g2 = 2, deg g3 = 3. Hence Proj R1,4 : 3), that is, the moduli 
space of binary quartics is a weighted projective line. In fact, this variety is 
isomorphic to P 1. LII 

	

Let R be the graded ring of Example 3.46, and let F(X0, Xi, 	, X n ) E Re  

be a homogeneous polynomial of degree e. Then the quotient ring RAF) is 
an integral domain which inherits a grading from R. The projective variety 
Proj RAF) can be identified with the zero set 

{F(X0, X1, 	, Xn ) = 	c P(ao : al : 	: an ) 

and is called a weighted hyperswface of degree e. 

Example 5.38. Binary quintics. As we have seen in Example 4.71, the in-
variant ring R1,5 is of the form k[X0, X1, X2, X3]/(F(X0, X1, X2, X3)), where 
deg F = 36, and where 

deg X0 = 4, deg Xt = 8, deg X2 = 12, deg X3 = 18. 

It follows that the moduli space of binary quintics is isomorphic to a weighted 
surface of degree 36 in the 3-dimensional weighted projective space P(4 : 8 : 
12: 18). 

Binary sextics. Similarly, in the case d = 6 the moduli space Proj R1,6 is 
isomorphic to a weighted hypersurface of degree 30 in P(2 : 4 : 6: 10: 15). 

Binary octics. From Example 4.72, the moduli space of binary octics Proj R1,8 

is a 5-dimensional subvariety of P(2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10) defined by 
five 4 x 4 Pfaffians. 	 LI 
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For forms in three variables — that is, curves in P 2  — determining the ring of 
classical invariants R2 01 is not easy, and we shall mention only the following 
result. 

Example 5.39. Plane cubics. As we have seen in Example 5.26, the ring of 
classical invariants 

R2,3 = k[V2,3p1(3)  

is precisely the polynomial ring k[S, 71, where deg S = 4 and deg T = 6. 
Hence the moduli space of plane cubic curves is naturally isomorphic to the 
weighted projective line P(2 : 3). 	 0 

We next note that in this projective quotient variety there is a well-defined 
notion of stability. 

Lemma 5.40. For a nonzero form a E V ii,d the following conditions are 

equivalent: 

(i) a is stable for the action of SL(n + 1) on V n, d. In other words, the orbit 
SL(n + 1)a c V n ,d is closed and the stabiliser Stab(a) c SL(n + 1) is 
finite. 

(ii) a is stable for the action of GL(n + 1) on any open set {F(4) 0 01 C Vn,d) 

for F E Rn,d, containing a. 

Proof It is clear that finiteness of the stabiliser in (i) is equivalent to finiteness of 
the stabiliser in (ii); we have to show that closure of the orbits of a in (i) and (ii) 
are equivalent. First let us assume (i) — that is, that S L (n + 1) • a C 1 7 „, d is closed. 
Then by the Nagata-Mumford Theorem 5.3 there exists some classical invariant 
H() such that H(a) 0. This determines a morphism H : Vn,d --> Al , and 
we consider its restriction to the orbit of a: 

{H() 0} 
U 

H' : GL(n + 1) • a --->- Al  — {0}. 

This map H' is surjective and its fibre is a disjoint union 

U coi  SL(n -I-- 1) • a, 	= 1, N = deg H. 	(5.4) 
1<i<N 

By hypothesis this is closed in Vn,d, and hence the orbit GL(n ± 1) - a is a 
closed set. 
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Conversely, assume (ii). Then 

GL(n + 1) a 11 {F(0 = F(a)} 

	

is a disjoint union as in (5.4) and so SL(n + 1) • a is closed in V n ,d. 	0 

Definition 5.41 (Mumford [30]). A nonzero form a E Vn,d, and the corre-
sponding hypersurface in PT', are said to be stable if the conditions (i), (ii) of 
Lemma 5.40 are satisfied. 

Example 5.42. Every nonsingular hypersurface of degree >3 (or, in the 
case n = 1, every binary form without repeated linear factors) is stable by 
Corollary 5.24. 

Note that stability depends only on the GL(n 1)-orbit of a form; note 
also that stability implies semistability. By Proposition 5.15, the set of stable 
forms Vns ,d  C Vn ,d and its image 41 (1Ins ,d ) C Proj Rn ,d are open sets. By 
Corollary 5.17, kli(Vns) parametrises projective equivalence classes of stable 
hypersurfaces of degree d in F via the restricted map 

: Vsn,d —>- kli(Vsn,d) C V snsodi/GL(7 ± 1) = Proj Rn,d• 

We write 

V sn,d /GL(n + 1) := kii(Vsn, d), 

called the moduli space of stable hypersuifaces. 
To summarise the constructions of this section: 

nonsingular 	> stable 	> semistable (not a nullform). 

Correspondingly, we have constructed moduli spaces: 

{D() 0 0} GL(n ± 1) c--± rol GL(n + 1) 
open open 

V sns, d //GL(n + 1) 

II 

{ nonsingular liYiperl' _.- 
surfaces up to pro-
jective equivalence 

II 

I stable hypersurfaces 
up to projective 
equivalence 

II 

I
semistable hypersur-
faces up to closure 
equivalence of 
GL(n + 1)-orbits 

It turns out that, even if the structure of the invariant ring R n ,d = k[1]SL(n-1--1) 

is not known, it is nevertheless possible to classify the stable forms and the 
nullforms. We will return to this question in Chapter 7 (Section 7.2(a)). 



180 	 5 The construction of quotient varieties 

Exercises 

1. For each n, d give an example of a nonsingular hypersurface f(xo, 

xi, - - - , xn) = 0- 
2. For each n, d give an example of a hypersatface f (x o , xi, . .. , x n ) = 0 with 

exactly one singular point. 



6 

The projective quotient 

Let G be an algebraic group acting on an affine variety X. In the last chapter 
we discussed the following strategy for defining a quotient variety of X by G: 

(A) For suitable G-invariant functions fi , 	,f c k[X]G,  consider the map 
to affine space 

X 
	

X 1—> (MX), • - fn(X)), 

and take for the quotient the image of this map. 

In this manner we constructed quite explicitly a moduli space for nonsingular 
hypersurfaces in F; and by gluing together affine varieties obtained in this way 
(in Other words, using Proj) we constructed a compactification of the moduli 
space. 

Although at an elementary level this approach works well, the following 
improvement has a wider scope for applications: 

(B) fo, 	, fn  need not be G-invariants, nor even regular functions on X, 
but their ratios fi /fi  should all be G-invariant rational functions. (To be 
precise, the fi  should be G-invariant sections of a G-linearised invertible 
sheaf — see Section 6.2.) Thus chosen, we have a rational map (that is, a 
map defined' on a nonempty open set in X) to projective space 

X — — 	 x I> (fo(x):  fi (x): ... : fn (x )), 

and we take the image of this map. 

Just as we arrive at an affine variety Spm k[X] G  via (A), via (B) we arrive at a 
projective quotient, often called the GIT (geometric invariant theory) quotient. 
While (A) is the basic technique for constructing a quotient locally, (B) is 
generally more useful for constructing quotients globally. In fact, (A) is just the 
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special case of (B) in which one takes fo = 1 and G-invariant regular functions 
, , fn . Moreover, the point of view of (B) is closely related to the so-

called 'moment map', which allows one to construct symplectic reductions of 
symplectic manifolds and complex 'Uhler manifolds. 

Note that the map to projective space in (B) fails to be defined at the 
common zeros of fo(x), fi(x), , f n (x). It is in this respect that the con-
struction differs significantly from that of (A). By taking as many functions 
fo, , fn  as possible, one can reduce this common zero-set, but in gen-
eral it will remain nonempty. Those points that remain in the zero-set for any 
choice of functions are called the unstable points for the group action (Hilbert's 
nullforms in the classical case of hypersurfaces studied in the last chapter (see 
Definition 5.31)). 

Here is a summary of the chapter. For a linearly reductive group G acting on 
an affine variety X = Spm R and a choice of character x E Hom(G, Gm), we 
construct in Section 6.1 the Proj quotient map (13 x  : X — — X II x G := 
Proj ED.Ez  RxG„„ which is a rational map defined on the open set X xss of 
semistable points with respect to x. This improves on the affine quotient XIIG 
(which is the case of the trivial character x = 1) and is obtained by gluing 
together affine quotient maps of covering open sets. A classical example is the 
moduli space Proj R , d of semistable hypersurfaces in Chapter 5, where Rn,d 

coincides with an,0  RxG. with G = G L(n ± 1), x = det and R = k[V,,d]. 
In Section 6.2 we briefly discuss a generalisation X//MG := Proj S(M) G  in 

which M is an invertible G R-module and S(M) is its symmetric tensor algebra. 
The quotient X// x G is the case M = R with G-action via x : G 
This generalisation allows one to answer fully the 'Italian problem' (for locally 
factorial X) of constructing a birational quotient: that is, there exists some M 
for which X//MG  has function field equal to k(X) G . 

When the character x E Hom(G, Gni) moves, the Proj quotient X x G un-
dergoes a birational transformation. A flop is a special case of this. We ex-
amine in Section 6.3 some examples of such moving quotients of torus ac-
tions on affine space, which have natural descriptions as toric varieties. In 
complex geometry the different quotients are parametrised by the symplectic 
moment map. 

6.1 Extending the idea of a quotient: from values to ratios 
Throughout this section we work with an affine variety X = Spm R. Recall 
that the quotient constructed in the last chapter followed the first of the three 
approaches introduced in the discussion following Example 5.1: 

(i) Identify to a single point orbits which the ring of invariants fails to separate. 
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When an algebraic group G acts on the affine variety X, by definition it acts 
on its coordinate ring R and one considers the affine quotient map 

: Spm R Spm R G . 

What we showed was that when G is linearly reductive this map expresses 
Spm R G  as a parameter space for the closure-equivalence classes of G-orbits in 
X (Theorem 5.9). Moreover, as we will see in Chapter 11 (see Example 11.8), 
Spm R G  is even a categorical quotient. Nevertheless, the quotient problem for 
affine varieties does not end here. We still need one key idea which concerns 
the invariant rational functions on X. 

In ring-theoretic language, the action G ra- X is written as a coaction (see 
Definition 3.54) 

btx : R 	R Ok k[G]. 	 (6.1) 

To say that a function f E R is G-invariant then means that p,x ( f) =f 0 1. 

Definition 6.1. We shall denote the field of fractions of R by Q(R) or, alterna-
tively, by k(X). An element a lb c Q(R) is called G-invariant if it satisfies: 

(a 0 1),u(b) --= (b 0 Oitx(a). 

Note that G-invariance of an element does not depend on how it is repre-
sented. Moreover, it is a property closed under addition, multiplication and 
division, and the set of invariant elements is therefore a subfield of Q(R). This 
is called the invariant field and written Q(R) G . Or, denoted k(X) G , it is called 
the invariant function field of X under the group action. 

The Italian problem: If an algebraic variety X has a quotient under the action 
of G, does this quotient have function field equal to k(X)G ? 

We call this question 'Italian' in honour of the Italian school of algebraic 
geometry that left for posterity so much work on birational geometry. (See also 
the preface to the first edition of Mumford et al [30].) A variety satisfying this 
requirement is called a birational quotient. Stability (Definition 5.12) gives one 
solution to the problem of finding birational quotients. 

Proposition 6.2. Suppose that a linearly reductive algebraic group G acts 
on an a ne variety X, and that there exists a stable point for the action. Then 
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every invariant rationalfunction can be expressed as a ratio of invariant regular 

functions. In other words, k(X) G  coincides with the field of fractions of k[X]G.  

Proof The set of stable points is a (by hypothesis, nonempty) open set Xs c X. 

Let hlf, for f,h E R, be an invariant rational function on X = Spm R; we 
shall write R1 = R[lif ] and (R G Y = R G [hl f] (see Section 8.2(a) in the next 
chapter). Then, corresponding to the inclusions 

Rf D (R G)' D R G , 

we obtain a sequence of dominant morphisms (see Definition 3.27) 

X D (x) 0} ---> /7 ' := Spm (R G )! 	Y := Spm R G . 

By Theorem 3.28, the image of a dominant morphism contains a nonempty open 
set. Moreover, G-invariance of h I f implies that every orbit collapses to a single 
point under the map {f (x) 0} --> r. We claim that this forces the element 
h I f to be algebraic over the field Q(R G ). Suppose it were transcendental. 
In this case Y' would have dimension strictly greater than that of Y. But this 
contradicts the fact (see Corollary 5.17) that the fibres of the (nontrivial) quotient 
map XS ---> Y are single orbits. 

So h/ f satisfies some irreducible polynomial equation over Q(R G ), of degree 
n, say. This means that over some open set the morphism Y' ± Y is n-to-one. 
By the same reasoning as above (that is, Corollary 5.17) we must have n = 1. 
Hence hlf E Q(R G ). LI 

It follows from the proposition that, if Spm R contains any stable points for 
the action of G, then Spm R G  satifies the Italian condition. However, there are 
many examples in which this is not the case. 

Example 6.3. Let the multiplicative group G m  act on affine space An+' by 
rescaling coordinates: 

(xo , xl , 	, xn ) 	(txo, txi, • • • , txn), 	t E 

Expressed ring-theoretically, G. acts on the polynomial ring k[xo, xi, . • • , xn] 
by simultaneously multiplying every variable xi  by t E Gm . The only invariants 
in k[xo,  xl, , xn] are the constants, so the affine quotient map is the trivial 
morphism 

Spm k, 

collapsing the whole space to a single point. 
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Geometrically, one might find it unreasonable that the quotient of an 
n 1-dimensional variety by a 1-dimensional group should be a single point. 
However, the orbits of the action G m  ra, An+1  are of two kinds: 

(i) lines through the origin, and 
(ii) the origin itself. 

Of these, only the second is a closed orbit. Thus all orbits are closure-equivalent, 
so this example does not contradict Theorem 5.9. 

Figure 6.1: The orbits in Example 6.3 (n = 1) 

On the other hand, we can observe that although there are no (nonconstant) 
invariants, there are plenty of invariant rational functions. These are all quotients 
f (x)I g(x), where f, g c k[xo, xi, .. . , x n ] are homogeneous polynomials of 
the same degree deg f = deg g. Equivalently, they are all the rational functions 
of the ratios x1/xo, , xn /xo, and so the invariant function field is 

k(xo, 	, 	,x) 
	1, Xi 	X n  

	

Xo 	X0 

This has dimension (that is, transcendence degree over k) equal to n 

dim An+1  — dim Gm. As the reader can guess, the 'correct' quotient satis-
fying the Italian condition in this example is projective space P n , which 
parametrises all of the orbits away from the origin. We shall justify this in what 
follows. 



186 	 6 The projective quotient 

(a) The projective spectrum 

We are going to construct a new quotient of the form Proj R (see Section 3.2(b)). 
First, let us consider again the construction of projective space pn by gluing 
together affine spaces in Example 3.40. It could be defined alternatively by the 
following four steps. 

(i) As a set, Pn consists of all ratios (ao : al  : ... : an ), or, in other words, 

Pn = (k n+1  — {0})/k x . 

(ii) As a topological space, Pn is given the Zariski topology. That is, we take as a 
basis of open sets the complements U f  c Pn of zero-sets of homogeneous 
polynomials f (xo, xi, 	xn), 

f = {(a0 : al : 	: an) I f (ao : al : 	: an) 0 0} . 

(iii) As a variety, Pn has algebraic function field (see Definition 3.30) 

(iv) The structure sheaf Opn is the elementary sheaf of subrings of K o  (see 
Definition 3.2) given on the basic open sets by 

Opn : 

 

g 
(If  I--> 1 — I f, g are homogeneous polynomials with 

fm 

deg g = m deg f, m 0j. 

In fact, what we have described here is nothing other than the projective spec-
trum Proj R (Definition 3.43) of a graded integral domain over k, 

R = 	R( n). 
ni>o 

Let us consider those homogeneous ideals of R which are maximal among 
homogeneous ideals, called maximal homogeneous ideals. Of these there are 
two kinds: 

(HO) Sums J R+ , where 

R+  = 	R(,n) 
m>0 

is the 'irrelevant ideal' and J is a maximal ideal in R(0) . 
(HI) Those not containing the irrelevant ideal R. 
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Maximal homogeneous ideals of type (HO) are actually maximal ideals of R, 
but those of type (H1) are not. In case (H1), the residue ring is isomorphic to a 
polynomial ring in one variable, in fact. 

By definition, a homogeneous ideal is just an ideal which is invariant under 
the natural action of G., on R. Consequently, maximal homogeneous ideals 
correspond geometrically to G m-invariant closed sets in Spm R which are min-
imal among such sets. Those of type (HO) are fixed points under the action 
Gm Th- Spm R, while in case (H1) they are the closures of 1-dimensional 
orbits. 

Given a homogeneous element a E R we can define a ring 

Ra,0 = —
b 

a, b are homogeneous polynomials with 
an  

deg b = m deg a, m > o}. 

(See Definition 3.41.) Given also a maximal homogeneous ideal m c R not 
containing a we obtain a maximal ideal 

{

—b  I E 111} C Ra,o• 
an 

Conversely, any maximal ideal in Ra  xi determines, by the set of numerators 
of its elements, a maximal ideal in R. In this way we arrive at the following 
description of Proj R. 

Proposition 6.4. The ringed space given by the following four properties is an 
algebraic variety, and is isomorphic to the variety Proj R of Definition 3.43 
constructed by gluing affine varieties. 

(i) Set: The underlying set is that of maximal homogeneous ideals in R of 
type (H1). 

(ii) Topology: The set of these ideals is equipped with the Zariski topology. 
That is, a basis of open sets consists of 

Ua ={mla gm} 

for homogeneous elements a E R. 
(iii) Function field: This is the field of ratios of homogeneous elements of R 

of equal degree (together with zero), 

a 
Ko =

b
la,bE R, deg a = deg bl U {0}. 
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(iv) Structure sheaf- 0 is the sheaf of subalgebras of Ko defined on basic open 
sets by 

0(Ua) = Ra,O• 

One should note that Proj R contains less information than the graded ring R. 
To see this, let j be a natural number and consider the grade subring generated 
in degrees divisible by j, 

R U1  
n>0 

Replacing R by RU1  does not change the collection of coordinate rings R a , 0 
 (R1 )a ,, ø  and the gluing data they determine, and it follows that restriction of 

maximal homogeneous ideals defines an isomorphism of algebraic varieties 

Proj R Proj 
	

m m n 	 (6.2) 

Next, note that for each maximal homogeneous ideal m c R the restriction 
to elements of degree zero m fl R(0) is a maximal ideal of R(0), and so there is 
a mapping 

: Proj R 	Spm R(0), 	I-->- in R (0) . 	 (6.3) 

To see that this is a morphism of algebraic varieties, consider its restriction to 
the affine varieties Spm Ra , 0  from which Proj R is obtained by gluing. Each 
Ra ,0 contains R(0) as a subring and so has an induced morphism of spectra 
Spm Ra,0 Spm R(0) . This is nothing other than the restriction of (6.3). 

The map .0 is called the structure morphism of Proj R. The following example 
is trivial but will be needed later. 

Example 6.5. Let R(0) be a finitely generated algebra over k. The polynomial 
ring in one variable R(0) [u] is a graded ring by assigning deg R(0) = 0, deg u = 1. 
In this case the structure morphism 

	

Proj R(0)[u] 	Spm R(o) 

is an isomorphism of varieties. 

The degree zero component R(0), as well as being a subring of R, is also the 
residue ring modulo the irrelevant ideal R+. Corresponding to the projection 
R R(0), then, there is a closed subvatiety F C Spm R which is the image of 
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Spm R(0). As a set this consists of the maximal (homogeneous) ideals of type 
(HO) above; and in fact the map Spm R(0 )  F C Proj R is an isomorphism 
whose inverse is the restriction of the structure morphism. As already noted, if 
we let Gm  act on Spm R via its graded action on R, F is just the set of fixed points. 
Maximal homogeneous ideals of type (H1) are in one-to-one correspondence 
with the Gm  orbits in Spm R F. In other words, as a set: 

Proj R = (Spm R — F)/ k<. 

Remark 6.6. We need to make a technical remark which will be needed later. 
A graded ring R need not be an integral domain for Proj R to be defined as 
an algebraic variety. More generally, let Rs be the localisation of R by the 
multiplicative set S c R of nonzero homogeneous elements of positive degree. 
(For the definition of localisation, see Section 8.2.) Assume, first, that Rs is an 
integral domain or, equivalently, that Rh is an integral domain for every h E S. 
Then the field of fractions of Rh does not depend on h E S. Gluing their spectra 
Spm Rh, we obtain an algebraic variety which we also denote by Proj R. In fact, 
this is isomorphic to Proj R, where ik is the image of the natural homomorphism 
R Rs and is an integral domain. 

Our assumption that Rs is an integral domain is not essential here. Rather, it 
is enough that Rs is locally integral. This is satisfied, in particular, if Spm R is 
smooth away from the fixed-point set F c Spm R. Then Proj R can be defined, 
similarly, as a disjoint union of algebraic varieties. 

(b) The Prof quotient 

Suppose that our affine variety X = Spm R is acted upon by the group G. By 
Proposition 4.7, the ring R has a direct sum decomposition 

R = e Ron) 
inEz 

(6.4) 

in which R( n) is the summand of weight m for the action. Note that the invariant 
ring RGm is the same-as R(0) . Note also that the group action preserves the algebra 
structure of R, and so R becomes a graded ring via this decomposition. 

Definition 6.7. The action Gm 	X is said to be of ray type if, in the decom- 
position (6.4), either R( n)  = 0 for all in < 0 or R( n) = 0 for all m > 0. By 
exchanging t with t 1  in Gm  = Spm k[t, t -1 ], if necessary, it is enough to 
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assume that R(m) = 0 for all in <0, so that 

1? ED R(ni) . 

m>0 

El 

As we have seen in the previous section, the closed set F c X determined 
by the irrelevant ideal in R is the fixed point set for the action of G m, and Proj R 
can be viewed as the quotient by G m  of the complement X — F. Moreover, if 
we choose a nonzero homogeneous element a E R+ , then Ra ø = (Ra )(0) and 
there is a commutative diagram, where Spm R a  is the basic open set D(a) (see 
Chapter 3, (3.6)): 

Spm Ra  = 	D(a) 	X — F c X 

(6.5) 

Spm Raj) = D(a)//Gm 	Proj R 

The left-hand vertical map is the affine quotient map for the action G m  
D(a) c X. Since X — F is covered by open sets of the form D(a), this shows 
that the right-hand vertical map X — F 	Proj R is a morphism of algebraic 
varieties and is locally an affine quotient map. This suggests the following 
terminology. 

Definition 6.8. If Gm 	X = Spm R is an action of ray type, then the projective 
spectrum Proj R =: X//G m  is called the Prof quotient of X by G. 

Denoting by cto the affine quotient map and by 0 the structure morphism 
(6.3), the following diagram commutes: 

X — F (-->- 	X 

1, 
	 (6.6) 

Proj R 	Spm R(0) = Spm RG. 

Thus the Proj quotient is precisely (the base change of) an affine quotient away 
from the fixed point set F. 

Example 6.9. When Gm  acts on An+ 1  by x 1-÷ tx, t E Gm, the action on 
the polynomial ring R = k[xo, xt, 	xn ] is ray type, while F = {01 and 
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diagram (6.6) is: 

An+1 101 c__), 	An+1 

pn 0 ---> Spm k = point 

Let us now consider an action on X = Spm R of a general algebraic group G. 
In many cases where the invariant regular functions and the invariant rational 
functions disagree the source of the disagreement, as in Example 6.3, is the 
multiplicative group Gm . (Though see also Example 6.21 in the next section.) 
What we are going to do next, using the preceding discussion, is to build a 
projective quotient X// x G associated to each 1-dimensional representation 

x : G -± Gm  = Spm k[t , C l ]. 

Consider the function t pulled back to G via x : we shall use the same symbol 
x to denote this function. For the coproduct ILG (Definition 4.11) this function 
satisfies ptG(x) = x 0 x . 

Definition 6.10. A function f E R on X = Spm R satisfying 

where i.t x  is the coaction (6.1), is called a semiinvariant of weight x for the 
G action. (See Definition 4.13.) This condition can be written set-theoretically 
as f (g - x) = x(g) f (x) for all g E G, x E X. 	 0 

Example 6.11. Let G = G L(n) and w E Z be an integer. Then the determi-
nantal power x = der is a 1-dimensional character of G, and by Lemma 4.12 
every characteris-of this form. A semiinvariant f E R with respect to x = der 
is called a classical semiinvariant of weight w. Set-theoretically this means that 
f (g . x) = (det g)w  f (x) for all g E GL(n), x E X. El 

Obviously the set of semiinvariants of a given weight x is a vector subspace 
of R, and we denote this space by R. A product of semiinvariants of weights 

x ' x ' is again a semiinvariant of weight x x'. In particular, this means that the 
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direct sum 

ED R,G. 
mEz 

(6.7) 

has the structure of a graded ring. 

Definition 6.12. The action of G on X = Spm R is of ray type with respect 

to x E Hom(G, Gm ) if either RxGm = 0 for all m < 0 or for all m > 0. If 

Hom(G, Gm) Z, then this definition is independent of the choice of x and 

we will just say that the action G ra- X is of ray type. 0 

Just as for Gm-actions, it is enough to assume that R xG„i = 0 for all m < 0, 

and then the ring of semiinvariants is 

(6.8) 

Notice that because of the isomorphism (6.2) the projective spectrum of this 
graded ring depends only on the ray R +  spanned by x in the real vector space 

Hom(G, G„) Oz R. (The set of characters Hom(G, Gm ) is a finitely generated 

free abelian group.) 

Definition 6.13. Let G (m- X = Spm R be any action and x E Hom(G, Gm) a 

character. 

(i) The projective spectrum 

XII x G :=Proj CBI RxG. 
ni>o 

of the graded ring (6.8) is called the Prof quotient in direction x of the 

action G ra.. X. 
(ii) A point x E X satisfying f (x) 0 0 for some semiinvariant f E R with 

weight equal to some positive power x n , n > 0, is said to be semistable 
with respect to x; if no such f exists, then x E X is called unstable. The 
set of points semistable with respect to x is an open set which we denote 

by Xsxs c X. 	 LI 

How do we know that the ring of semiinvariants (6.8) is finitely generated? 
By Example 6.5 we can identify X = Spm R with Proj R[u] . We let G act on 
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the graded ring R[u] with a twist by x -1 , that is: 

g • (f 0 um) = (g • f) 0 x(g)'um , for g E G, f E R and m > O. 

Then the ring (6.8) is precisely the invariant ring under this action, and hence 
it follows from Hilbert's Theorem 4.51 that, if G is linearly reductive, then the 
ring (6.8) is finitely generated. From the inclusion homomorphism 

c---> R[u] 
m>0 

we obtain a rational map 

X — — --> XII x G. 

In concrete terms this is given by x F-> (f0(x) : fi(x) : . . . : fr,(x)) E P(ao : 

an ), where fo, . . . , fn  E 03,,0  R,G. are generating semiinvariants of 
degrees ao, . . . , a,. The rational map is therefore defined on the open set Xsxs, 

and the morphism 

Xs; -± X // x G 	 (6.9) 

is called the Prof quotient map in direction x. 

Remarks 6.14. 

(i) First of all, suppose that x = 1 is the trivial character. The constant 
function f = 1 E R is a (semi)invariant satisfying f (x) 0 0 for every 
x E X, so all points of X are semistable. On the other hand, for every m > 0 
the space R xG. is nothing but the ring of G-invariants, and so the graded 
ring (6.8) reduces to the polynomial ring R G  [u]. Thus by Example 6.5 its 
Proj is isomorphic to Spm R G , and so the Proj quotient coincides with the 
affine quotient. In this sense the Proj quotient extends the idea of the affine 

quotient. 

(ii) When the character x is nontrivial, the semiinvariant ring (6.8) is the same 
as the ring of invariants in R under the action of the kernel 

Gx  :=ker {G 2-->- Gm }. 

More precisely, R Gx = (1)(RGx )(m), where the grading is the weight-space 
decomposition under the action of G/Gx  -1'. Gm , and then 

(R Gx)( m ) = 

Thus the Proj quotient X// x G is obtained by taking the affine quotient of 
X by Gx , but replacing Spm by Proj . 
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(iii) Generalising (6.6) there is a commutative diagram: 

X" x X 

(1),, 	4, 0 

Proj R G x = Proj (ED R) 
pn>o 

0 
= XII x G ---> XIIG — Spm R G  

(6.10) 
Thus on the open set Xsxs c X the Proj quotient is obtained by base change 
from the affine quotient. 

(iv) If f E R is a semiinvariant in direction x , then the following diagram 
commutes: 

G r- , D(f) c—)- X" C X x 

I,  

Spm (R[l/f1) G  = D(f)//G c---> XII x G 

(6.11) 

Here the left-hand vertical map is the affine quotient and the right-hand 
vertical map is the Proj quotient. In this way one sees that the Proj quotient 
map is an affine quotient map locally and indeed is obtained by gluing such 
maps. Hence X// x G is a moduli space for closure-equivalence classes of 

G-orbits in the semistable set XS.  (But note that this is not the same as 
closure-equivalence in X.) 

(v) The motivating example for all of this is the moduli space of hypersurfaces 
of degree d in Pn discussed in the last chapter. Here X = V n ,d, the affine 
space of forms of degree d acted on by G = GL(n + 1), and we use 
the character x -= det, for which Gx  = SL(n + 1). The semiinvariant 

) ring is none other than Rn,d = k[Vn ,d]SL(n+i  and the moduli space is 
Proj Rn  ,d --= V n ,d ii det GL(I ± 1). 

(vi) Finally, note that, in view of Remark 6.6, under suitable conditions we can 
define the Proj quotient X// x G as a disjoint union of algebraic varieties 
even if the semiinvariant ring is not an integral domain In particular, it is 
enough that the semistable set Xs; is smooth. 

Remark 6.14(iv) allows us to generalise Proposition 6.2. First we need to define 
stability with respect to a character x ;  note that for the trivial character x = 1 
the following definition agrees with Definition 5.12 of the previous chapter. 
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Definition 6.15. If x E X is a semistable point with respect to character x , 
then x is stable with respect to x if the orbit Gx  -x c X, where Gx  = ker x , 
is a closed set and the stabiliser subgroup {gEGIg•x=x} is finite. 	LII 

Proposition 6.16. Suppose that a linearly reductive algebraic group acts on an 

affine variety X and that X contains stable points with respect to a character 

x of G. Then every invariant rational function can be expressed as a ratio of 

semiinvariants of weight x. In particular, the algebraic function field of X x G 

is k(X) G . 111 

The quotient XlI x G therefore satisfies the Italian condition. In addition, it 
follows from diagram (6.11) that all of the results of Section 5.1(c) can be 
extended unchanged to the present situation, and in particular we obtain: 

Proposition 6.17. If all x-semistable point are stable, X x" = X xs , then the 

fibres of the map Xsx  -4 X II x G are closed orbits. 	 LI 

In this last situation we denote the quotient by X/ G, often called the geo-

metric quotient. (See Mumford et al [30] Chapter 4.) 

(c) The Proj quotient by a GL(n)-action of ray type 

The classical case of the above construction arises when G is the general linear 
group GL(n) and the character x is the determinant 

det : GL(n) -± Gm . 

Indeed, the motivating example of the previous chapter was exactly of this form 
(Remark 6. 14(u)). Although we do not have anything new to add for this case, 
it will be used so often in what follows that it is worth restating the important 
points in this section. 

First of all we take the ring of invariants of the kernel SL(n) of det. This ring 
RSL(n) is acted upon by Gm , identified with the quotient group GL(n)I SL(n). 

The ring of invariants is graded by this action: 

RS L(n) =LTh D S L(n) 
It  (D) 

w EZ 

SL(n) 	GL(n) We note that R (w) = R (det). the semiinvariants of weight w for the action of 
G L(n) (Example 6.11). 

The action of G L(n) on an affine variety X = Spm R is of ray type if and only 
if the induced action of Gm  on R sL( n)  is of ray type. Just as in Definition 6.7, it is 
enough to assume (by exchanging g g-1  in the GL(n) action if necessary) 
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SL( that R (J1 )  oo  = 0 for all w <0. In this case Proj R s-L(0  is the Proj quotient of the 
action GL(n) ra, X. 

Thus the Proj quotient X//GL(n) is obtained by taking the affine quotient 
X//SL(n) but replacing the affine spectrum with the projective spectrum, and it 
parametrises closure-equivalence classes of GL(n)-orbits in X'. (Note that it 
does not parametrise closure-equivalence classes in X, as the baby example 6.9 
shows!) Diagram (6.10) now looks like: 

X" 

Proj R SL(n) 
	spm R GL(n) 

Example 6.18. Binary forms revisited. G L(2) acts, by transformation of 
binary forms 0 x, y) of degree d, on the d 1-dimensional affine space 

V d = {(4. x, y)} = spm k[4 .0• 6, • • • • M. 

The graded ring of semiinvariants of GL (2) is the same as the ring of invariants 
of SL(2). More precisely, given a polynomial F(), 

homogeneous of degree m 

( F(4) is G L (2) semiinvariant 
drn of weight w = 

(F(') is S L(2) invariant and ) 

In the case d = 4, the semiinvariant ring is k[g2, g3] generated by g2(4) of 
weight 4 and g3() of weight 6, and the Proj quotient V4//GL(2) is isomorphic 
to Pi  (Proposition 1.25 and Corollary 4.70). 

A point x E X is semistable with respect to an action GL(n) r X of ray 
type if there exists a semiinvariant f E R = k[X] of positive weight for which 
f(x) 0. A semistable point x E X is stable if the orbit SL(n) • x c X is 
closed and the stabiliser subgroup is finite, and on the stable set XS C X" the 
Proj quotient is a moduli space for GL(n)-orbits. 

This is a generalisation of the definition of a semistable form (Defini-
tion 5.31). Let F c X be the fixed point set under the action of the scalar 
matrices Gm  c GL(n), this will be called the irrelevant set. The following is 
then essentially Theorem 5.32. 

Proposition 6.19. The following conditions on a point X E X are equivalent: 

(0 X E X is semistable; 

(ii) the closure of the orbit SL(n).x does not intersect the irrelevant set F c X. 
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Proof (i) 	> (ii) By semistability there exists a semiinvariant f of positive 
weight satisfying f(x) 0 0. This f is therefore nonzero on the orbit SL(n) • x. 

On the other hand, f is identically zero on F; so (ii) follows. 
(ii) 	> (i) By Theorem 5.3, x and F are separated by some invariant: that 

is, there exists f E R sL(n) , R = k[X], for which f(x) 0 and f I F F=7-- 0. But 
vanishing on F implies that f E R +S L(n)  , and hence by taking homogeneous 
components of f we obtain (i). 	 Li 

In almost all applications one has R(o) = k, and in this case the Proj quotient 
is a complete variety. (In general, it is proper over the affine quotient Spm R G .) 
Here the fixed point set F is a single point, which we shall denote by 0 E X. 

Corollary 6.20. When R(0) = k, x E X is semistable for the action of GL(n) 

if and only if 0 SL(n) • x. 	 Li 

In the moduli construction for hypersurfaces in Pn this was Proposition 5.32. 

6.2 Linearisation and Proj quotients 

Apart from Definition 6.23, most of this section will not be used afterwards in 
this book, but nonetheless we include it for completeness and for the sake of 
clarity. Beginners are invited to skip it. Taking Example 6.3 as point of departure, 
and also motivated by the case of projective hypersurfaces in Chapter 5, we 
have developed and extended the notion of quotient variety. However, as the 
next example shows, even in the absence of G il, it can happen that there are not 
enough invariants to make the theory work. 

Example 6.21. First consider the quadric surface in Y c A 3  with equation 

AC — B 2  + =0. 

If we identify Y with the set of symmetric 2 x 2 matrices with determinant 
—1/4, then it is acted upon by SL(2) in the usual way: 

( A B 	(A B t 
1-÷ P 

C) 	B 
P E SL(2). 

Note that the stabiliser subgroups are the conjugates of T c SL(2) consisting 

of diagonal matrices (
q-1 

q 	° )• Thus Y is the quotient variety SL(2)/ T. (See 
0  

Section 4.5.) 
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Next, consider the set L of matrices of the form 

x A B — 

B+ 	C 

and of rank 1. Then L is a 3-dimensional closed subvariety in A 5 . The map 
forgetting x, z, 

L —›- Y, 	(A, B, C, x, 	(A, B,C), 

is surjective and its fibre is a 1-dimensional vector space with 

( 0 A B- 
C  ) 

(6.12) 

as its origin. In other words, L is a line bundle over Y (in the geometric sense, 
rather than the algebraic sense of the next chapter). Moreover, the group S L(2) 
also acts on L: 

x A B 

B+ 	C 
ax + bz 	A' 	B' 

+ 

1 
2 

where 

A' 	p  (A 
C' 	

By 	p  (a b 
E S L (2). 

C 	 c d 

There are two orbits of this action: an open orbit isomorphic to SL(2) and a 
closed orbit consisting of points (6.12) isomorphic to Y. 

The variety we are interested in is the 4-dimensional fibre product X := 
L X y L. In more concrete terms, this is the set of rank 1 matrices of the form 

• x2 	A 	B —\  

▪ Z2 B+ 	C ) 

This is a closed subvariety of A7 , and the map forgetting xl, x2, zi, z2 expresses 
X as a rank 2 vector bundle 

Y. 

That is, each fibre is a 2-dimensional vector space. 

Claim: Under the above action SL(2) n X, the only invariants are the constant 
functions. 
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For example, the element ( q 0 
0 q- 1 ) E SL(2) maps 

(xi x2 1 0) 	(qx1 qx2 1 0) 
E X. 

0000 	0 	0 0 0 

This has a limit as q -+ 0, which is contained in the zero section of the vector 
bundle X ---> Y. Similarly, at other points of X, we see that all orbits are 
closure-equivalent to points of the zero section. Thus, if f is an invariant, then 
by SL(2)-invariance and continuity its value at each point is equal to its value 
at a limiting point in the zero section. But the zero section is isomorphic to Y, 
on which S L(2) acts transitively. Hence f is constant, proving the claim. 

On the other hand, x2/x1 is an invariant rational function and generates the 
invariant function field k(X) G . 	 0 

Even in cases of this sort, it is nevertheless possible to construct a birational 
quotient by using G-linearised invertible R-modules, which we define next. 

Definition 6.22. Suppose as usual that G acts on an affine variety X = Spm R. 
Then a GR-module is a representation of G which is also an R-module M for 
which the defining coaction 

gm : M --- > M Ok k[G] 

is a homomorphism of R-modules, where R acts on M Ok k[G] via AR : R ---> 
R Ok k[G]. In other words, it m(ar) = AR(a)i.t m (m) for a E R,m E M. 	El 

Reversing the roles of G and R in this definition: 

Definition 6.23. Given an R-module M, a G-linearisation of M is a coaction 
gm : M --> M Ok k[G] making M into a GR-module. 	 111 

Suppose M is an invertible R-module (see Definition 8.60) and admits a 
G-linearisation. Then the tensor algebra of M, that is, the direct sum of tensor 
products 

S(M) := ED M ®ni, 
m >0 

has the structure of a commutative algebra over R on which the group G acts. 
We can therefore consider its ring of invariants, which by Hilbert's Theorem 
is finitely generated. On the other hand, since M is locally isomorphic to R 
(by definition of an invertible R-module), S(M) is locally isomorphic to the 
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polynomial algebra R[u]. So it follows from Example 6.5 that the structure 
morphism Proj S(M) --->s Spm R is an isomorphism, and in the same manner 
as (6.9) we obtain a morphism 

Xsm' --->, X // m G := Proj S(M) G . 

This is called the Proj quotient coming from the G R-module M. 

Example 6.24. If x is a 1-dimensional character of G, then the homomorphism 

R -- > R Ok k[G], 	a 1-->- a ( g x -1  

is a G-linearisation of R itself viewed as an R -module. Thus the pair (R, x) 
defines a GR-module, and the corresponding Proj quotient is precisely X// G, 
defined as the projective spectrum of the graded ring of x -semiinvariants 
(Definition 6.13). CI 

Here is an example of an invertible GR-module which is not isomorphic 
to R. 

Example 6.25. Let X be the 4-dimensional variety of Example 6.21, and con-
sider the following subspace of the function field k(X): 

M = {f E k(X) 1 xif E k {X] , z i f E k [X}}. 

The ring of invariants in S(M) is generated by 1, x 2 /x 1  . Moreover, the comple-
ment of the zero section in X is exactly the set of semistable points with respect 
to M. Thus the quotient is the projective line P'. 

Note that x1 = z 1 = 0 defines the codimension 1 subvariety L C X, and 
it is usual to denote the module M by Ox (—L). Since the rational function 
xi /x2 on X is SL(2)-invariant, so is its zero-set L, and hence M carries an 
S L(2)-linearisation. 0 

Examination of this example indicates another solution to the 'Italian prob-
lem' of constructing birational quotients. 

Theorem 6.26. Suppose that a linearly reductive group G acts on an affine 
variety X, where k[X] is locally a unique factorisation domain (X is said 
to be locally factorial). Then there exists a GR-module M whose associated 
projective quotient X // m G has a rational function field equal to the invariant 
function field k(X) G  . 0 
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Since we are not going to make any use of this result, we merely sketch the 
proof. Let fi , , fN be generators of the field k(X) G , and let D c X be the 
sum of the polar divisors (fi). Then we let M be the set of rational functions 
with poles at most along D: 

M = ff ek(X)1(f)± D >01. 

Local factoriality now implies that as a k[X]-module M is invertible. It is also a 
representation of G since D is G-invariant. Finally, the invariants of the tensor 
algebra S(M) include the functions 1, , . . . , fN , and so X II M G is a birational 
quotient. 

6.3 Moving quotients 

Taking the problem of invariant rational functions as our starting point, we have 
now generalised the idea of a quotient variety in the following way. 

• First, we abandoned the hope of getting a quotient that classifies all orbits of 
the group action. 

• After removing the unstable orbits, we considered the quotient problem re-
stricted to as large as possible an open set. 

In terms of the ideas suggested in Section 5.1(a), we have moved from approach 
(i) to (i)+(ii)+(iii). In this generalisation, if the group action is not of ray type, 
then we obtain different quotients depending on the choice of 1-dimensional 
character of G (or, more generally, the choice of a G-linearised invertible mod-
ule). For example, an action of Gm  which is not of ray type, corresponding to 
the identity, trivial and inverse characters Gm  ----> Gm  we obtain three quotients: 

character quotient 

identity t t Xfi+Gm  = Proj R+  
trivial t 1 X II 0G. = Proj Ro 
inverse t t -1  XII_ G„ = Proj R_ 

(R_, R0 and R+  denote the subspaces of the graded ring R = emEz  R( n ) 
determined by the Gin-action with in < 0, in = 0 and in > 0, respectively.) We 
will denote these three quotients by X_, X o , X. As an example, we begin by 
considering a simple flop. 

(a) Flops 

Consider the affine space AN on a finite-dimensional representation of the mul- 
tiplicative group Gm . By Proposition 4.41, the action of Gm  can be diagonalised: 
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that is, one can find coordinates x l , ... , x N  with respect to which the action of 
t E G„ is 

(xi, ... , .XN) 1—> (tal Xi, • • • , taN  XN) 

for some fixed integers al, .. . , aN e Z. We may assume without loss of gen-
erality that all of the al, .. . , aN are nonzero. What is important here is the 
distribution in Z of the values taken in this sequence; we shall consider here 
the simple case in which +1 occurs p times and —1 occurs q times for some 
p ± q = N. We rename the last q coordinates yi, ... , y q ; then (reordering if 
necessary) the action of t e G„ is 

(x i , . .. , xp, Yi, . • • , Y q ) I-->- (txi, — , txp, t l yi, ... , t l yq ). 	(6.13) 

We now give to the coordinate ring R = k[xi, ... , x p , yi, . .. , y q ] of AN  a 
grading by defining 

deg x i  = 1  
deg y j  = — 1 	j =1, ... ,q. 

In this graded ring R = enez  R., the component R (0)  is generated by pq in-
variants x i yi  while the subalgebra R +  is equal to R(0) [xi , .. . , x i) ]. Thus Proj R +  

is the variety constructed by gluing p affine open sets 

Spm R41/xil(o), • • • , Spm 14[11 xpi(o). 

Proj R_ is constructed similarly. 

Theorem 6.27. 

(i) X0 is the subvariety of affine space APq consisting of p x q matrices of 

rank at most 1, 

(6.14) 

• • • 

• • • 

( zii 
rank 

Zpl 

Zig ) 

< 1. 

Zpq 

This is defined by (I) x (1) quadratic equations 

Zi j 	Ziff 

Ziff 	Zi,j ,  
=0, 

 

for 1 < i < i' < p, 1 < j < j' < q. Equivalently, Xo is the affine cone 

over the Segre variety PP-1  x Pq -1  c PPq -1  (see Section 8.1(b)). 
(ii) X +  is the subvariety of X 0  x PP-1  defined by 

X + = {(Z , x = (x i : ... : x p )) 1 rank ( t x, Z) < 11 . 
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(ill) X_ is the subvariety of X 0  x P7-1  defined by 

1 (Z, y = (y i  : ... : yq )) I rank ( zy  ) < 11 . 

0 

The cases p or q = 0 we have already seen in Example 6.3. The cases p or 
q = 1 are exceptional. Of these, the case p = q = 1 is particularly exceptional, 
and in fact there are isomorphisms X ±  14 X o . 

Example 6.28. In the case p = q = 1, the action of G„ on A2  is by 

(x, y) i--÷ (tx , t -1  y). 

This is the example we gave in Section 5.1(a) to illustrate the problem of 
separating orbits. The three quotients X_, X0, X +  are all isomorphic to Al . CI 

Example 6.29. The case p = q = 2 is well known and is the basic 3- 
dimensional flop. We write pii = xiyi , recall that these are the generating 
invariants of R. Thus 

X0  -= Spm lax]. yi , xi Y2, X2Y1, X2Y21 

= Spm ICIP113 P121 P211 P221/(P11P22 - P12P21)- 

This is a quadric hypersurface in A4  with an isolated singular point at the origin. 
X +  and X_ are both resolutions of this singular point, and the exceptional sets 
(that is, the fibres over the origin) C+  and C_ are both copies of Pl . The two 
morphisms 

X+ - C+ -> X0 - {0} --- X_ - C_ 

are both isomorphisms, but the composition X +  — C +  <-4- X_ C_ does not 
extend in either direction to an isomorphism of X +  with X_ (it is a proper 
birational map). 	 0 

As in this example, when p, q > 2 the three quotients X_, X 0 , X +  all have 
the same rational function field, but the rational maps 

X_ <- - --> X+ 

cannot be extended in either direction to a morphism. 

Remarks 6.30. 

(i) Denote by X 0  the blow-up of X0 c AN at the origin. Then the mor-
phism X0  ---> X0  resolves the singular point of X o , with the exceptional set 
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x, 	 x 

Flop 

\ / 

Figure 6.2: A flop 

isomorphic to the product PP -1  x Pq -1 . In fact this mapping is via X, and 
there is a commutative diagram: 

This is precisely the fibre product of the maps X± -----> Xo. 
(ii) We have a pair of varieties X ±  together with subvarieties C+  C X +, C_ C 

X_ whose complements are isomorphic. In this situation, suppose that (the 
restriction to C± of) the canonical line bundle 0(K) (that is, the determinant 
line bundle det C2x of the cotangent vector bundle, also denoted cox  - see 
Definition 9.44 in Chapter 9) changes from negative to positive as we pass 
from X_ to X. Such a birational map is called a flip and is supposed to 
take one step towards a minimal model of the function field. In the present 
example we have 

0 ( K)I c_ = 07q-i (P — q ), 0(K )1c+  = (-9PP- ' (q 13). 
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Hence, if p < q, then the birational map X_ — — --> X+ is a flip (and its 
inverse X +  — — 	X+ is an inverse flip). See Mori and Kollar [39]. 

(b) Toric varieties as quotient varieties 

When the action of G on X is not of ray type with respect to x E Hom(G, G„), 
the projective quotient X// x G depends on the ray R +  • x in Hom(G, Gm) Oz R, 
and not just on the direction R • x. 

We begin with an example which in effect compactifies that of part (a) above. 
Consider two actions of Gin  on X = AP+q+ 1 : 

A(s) : (x 1 , • •• , xp, Yi , • • • • Y q  , Z) i 	(sx , . • , sxp 	, • - • , Y q , Z) 

: (x1 • • • / Xp, yi 	' • / Yq z) F--> (x1, • • • , xp, tyi, • • • , tyq , tz), 

where s, t c G„. The two actions commute and so define an action of the 
2-dimensional torus G = Gm  x G. The characters of G correspond to pairs 
of integers a, b E Z, 

Xa,b : G 	 (s, t) 	S atb  

We shall sometimes denote this character simply by (a, b). 
When (a, b) = (0, 1) the action on X of ker x0 , 1  is A and the associated ring 

of invariants is the polynomial ring k[y i , . . . , yq ]. Here we assign the grading 
coming from the action of x 0,1(s, t) = t, which is the standard grading with 
deg yi = • =- deg yq  = 1. By Remark 6.14(ii), the Proj quotient Xi/ (o , 1) G 
is therefore Pq -1 . Similarly, the Proj quotient X // (1 , 0) G is PP-1 . Neither is a 
birational quotient. 

Next, consider (a, b) = (1, 1). The kernel of x 1 , 1  acts on X as  
s E G„, and the ring of invariants is k[x i  yj , z] ip, 1 , j<q . Hence in this case 
the Proj quotient X/4 1 , 1) G is the affine cone over the Segre variety PP -1  x 
pq  —1 c  

Now suppose that the character x,,,b has a direction in between (0, 1) and 
(1, 1). Then the projective quotient X II (a, b) G has the structure of a PP-bundle 
over Pq -1 . This bundle has a section Pq -1  which collapses to the vertex of 
the Segre cone as we move to Xi/ (1 , 1) G. Similarly, the quotient in any direction 
between (1, 1) and41, 4)-is a IN -bundle over PP -1 . The birational transformation 
of X # (ci , b) G as the ray in the direction (a, b) crosses over the ray (1, 1) is a flop. 
This phenomenon is called wall crossing. 

As another example, let us take a look at a sextic del Pezzo surface with a 
torus action. Think of A 6  as the space of 2 x 3 matrices 

(x1  x2  x3  ) 

Yi Y2 Y3 



206 	 6 The projective quotient 

A 

X (1,1) 

X (1, 0) 

Figure 6.3: Wall crossing 

The two tori (G m)2  and (G )3  act on this space, on the left and right, respectively, 
as the diagonal matrices 

S 

S2 

These two actions commute, and the diagonal subgroup G m  of each has the same 
action. There is therefore a 1-dimensional subgroup of G„ 2  x G„3  which acts 
trivially, and we let G be the quotient by this subgroup. This is a 4-dimensional 
torus G G 4  acting on A6 . The group Hom(G, Gm) of characters 

aa2 bl b2 b3 
(Si, S2 : ti, t2, 1'3)1—> Si l  S2 1- 1  t2  t3  

can be identified with the abelian group 

{(cti , a2 : b1, b2, b3) e Z5  I al 	a2 = 	b2 	b3}. 



semiinvariant 
weight  e Hom(G, Gm) 

semiinvariant 
weight E Hom(G, G„) 

X 1 	 X2 	 X3 

(10:  100) (10 : 010) (10 : 001) 

y 1 	 Y2 	 y3 

(01 : 100) (01 : 010) (01 : 001) 

(a) (b) 

x1Y2Y3,  Yix2Y3, Y1Y2x3 

yix2x3, x1y2x3 , x1x2y3  

X1Y25 X2Y1 

.x2y3 , .x3y2  
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The natural coordinates on A 6  are semiinvariants for the G-action with weights 
given in the following table: 

These weights are the six vertices of a triangular prism (the effective poly-
hedron). The centroids of the five faces of this prism form the vertices of a 
6-sided polyhedron (two tetrahedra glued along a triangular face), which we 
will denote by N (called the nef polyhedron). 

Figure 6.4: Semiinvariants by weight 

We can describe how the Proj quotient A 6 // x  G depends on the ray direction of 
a character 

X - -=- (al, a2 : b1, b2, b3) e Hom(G , Gm). 

(i) If R+  - x lies outside N, then the quotient is either empty or a single point. 
(ii) If R+  • x is the direction of the top vertex (21 : 111) of N, then the 

semiinvariants are generated by 

Y1 X2X3 9 X 1 Y2X3 ! X1 X2 Y3 • 
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Taking the projective spectrum we see that the quotient is P2 . Similarly, 
the quotient at the bottom vertex (12 : 111) is P2 . 

(iii) If R+  - x is the direction of one of the three remaining vertices (11: 011), 
(11 : 101), (11 : 110) of N, then the semiinvariant rings are k[y2x3, x2Y3], 
k[y3xi , x3 y,], k[Yi x2, xi Y2l, respectively. So these three quotients are each 
isomorphic to P l  

(iv) If R+  • x is the direction of an interior point of N, then the Proj quotient is 
a toric variety defined by the fan as shown in Figure 6.5. This is a surface 
obtained by gluing six copies of A2  (see Section 3.4(b)). 

Particularly pretty is the point x = (33 : 222). One can read off from the 
fan that the surface is P 2  blown up at three points, or equivalently F l  x Pl 

 blown up in two points. (See, for example, Fulton [37].) In this case we 
get seven generating semiinvariants: 

2 	, 	,,2, 	„.2„. ,,2,, 	„.2„. ,,2„, 
Xi X2X3Y1 Y2Y3 	X2X3y2..Y3, -^, 3 0.0'3 .y1 	-1,2)1 .y2/ 

x2x1y2y1, x3x 12. y3y ? , 

and these embed the quotient variety in P6 . The image is called the del 
Pezzo surface of degree 6. 

(v) The reader may like to examine the remaining cases for him- or herself. 
They are all toric varieties. 

In fact, it is known that every toric variety can be represented as a quotient 
of affine space AN  by some torus action. 

(c) Moment maps 

What we have seen in this chapter is that, from the point of view of Proj quo-
tients, it is most natural to think of quotient varieties as occuring in families. We 
can move from one to another in a suitable parameter space. In terms of differ-
ential geometry, and viewing complex varieties as symplectic manifolds, what 
is responsible for this phenomenon is a moment map. One can define precisely 
what is meant here, but we shall just indicate how it arises naturally in some of 
our examples. (But see Mumford et al [30] or McDuff and Salmon [40].) First 
consider the action G„ r An+1  of Example 6.3. We assume that the ground 
field is the field of complex numbers C; thus C* acts on the space Cn+ 1  by 
scalar multiplication. In this case the moment map is 

cn+t 	R,  
(Zo, Z1, - - - Zn) 

i  12 

i =0 

This map is invariant under the action of the subgroup U(1) = {Z E C* I IZI = 
1} C C * , and for any real number a E R one can consider the restricted action 
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Figure 6.5: The fan of a sextic del Pezzo surface 

of U(1) on the fibre ,u, -1 (a) and its orbit space 

X a  = it-1 (a)1U(1). 

It is easy to see that we get: 

PT 1 (a) X a 

a > 0 
a = 0 
a < 0 

s2n-1-1 	cpn 

point 	point 
empty empty 

These quotients are parametrised by the real line, passing from ClPn to the empty 
set with a single point appearing as we cross the boundary. This corresponds to 
the three algebraically constructed quotients 

Proj R+  = pn, Proj R(o) = point, Proj R+  = empty set. 

One can also view ,u, as a Morse function on Cn+1, for which the origin is a 
critical point of index (0, 2n), and the sphere s2n--0- is the level set for a > 0. 
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ite 

a=0 

a<0 

Figure 6.6: The moment map 

The moment map of the action (6.13) of Section 6.3(a) is the map 

P 

(X19 • • • ! Xp 9 yi, • • • , yq ) 1--->- E ixi 
i=1 

Again, au, is a Morse function on CP -Fq = R2P+2q, with the origin as a critical 
point of index (2p, 2q). 

The moment map giving the sextic del Pezzo surface is 

c R5 , 

(Xi X2 X3
)1--* (E 

Y1 Y2 Y3 

 

I 1 2  : IX11 2  ± IY11 1 1x21 2  + IY212, 

  

IX31 2  ± 1)131 2) • 



The numerical criterion and some applications 

Our aim in this book is to study the Proj quotient, and some applications of 
this, when an algebraic group G acts on an affine variety X. In fact, as we have 
seen, this is not a quotient of X, but of its subset X" c X of semistable points 
for the group action, and to get a good quotient we have to restrict further still 
to the set Xs c X" of stable points. But in general this leaves unanswered 
the fundamental problem of determining whether or not a given point x E X 
is (semi)stable. Let us review very briefly how, in general, we will answer this 
question in some particular cases. 

(1) In Chapter 5 we have already looked at the action of GL(n + 1) on the 
affine space of homogeneous polynomials of degree d in n 1 variables 
fd(xo, xl, • • xn), and we have seen that all nonsingular forms are stable 
(Corollary 5.24). 

(2) In Chapter 8 we are going to consider the action of GL(r) on the affine space 
of r x n matrices, and it will turn out that stability and semistability are 
both equivalent to the condition of having maximal rank (Proposition 8.1). 

(3) In Chapter 10, under the action GL(N) ra, A1tN,2(H°(L)), we will see that 
a point is semistable if and only if it is the Gieseker matrix of a semistable 
rank 2 vector bundle with determinant L (Propositions 10.69 and 10.70 and 
Lemma 10.81). 

In each of these examples semistability is shown using some explicit semi-
invariants — in ca—se (l) the discriminant, in (2) the determinantal minors and in 
(3) the Pfaffian minors. 

Nevertheless, it is possible to determine the (semi)stable points of a group 
action even without knowing the semiinvariants, and that is what we will 
discuss in this chapter. It should be regarded essentially as an interlude, 
though, as the numerical criterion will not be needed in later chapters for the 
moduli constructions for line bundles and vector bundles. For the classical 
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examples of Section 7.2, on the other hand, it does give very explicit geometric 
information. 

7.1 The numerical criterion 

Although similar results can be shown for any linearly reductive group, we 
will restrict our attention in this chapter to the general linear group GL(n); 
and we will restrict ourselves, moreover, to actions GL(n) r-a. X of ray type 
(Definitions 6.7 and 6.12). We will denote by F C X the fixed point set under 
the multiplicative group Gm  c GL(n) of scalar matrices, called the irrelevant 
set (see Section 6.1(c)). 

(a) 1-parameter subgroups 

Definition 7.1. Let G be any algebraic group. A nontrivial homomorphism 
X : Gm  --->- G is called a 1-parameter subgroup of G, or 1-PS for short. 	El 

If G acts on a variety X, then the group Gm  acts on X via the 1-PS A: that is, 
X 1-4 X(t) • x, x EX,t E Gm . If we regard Gm  c--> A l  by taking the spectrum 
of the inclusion of rings k[t] c---> k[t , t-1 ], so that Gm  = A1  - {0}, then we can 
consider the limit limt,o A(t) - x. 

Definition 7.2. If a 1-PS A : Gm  -> X extends to a morphism Al -> X, then 
the image of the origin 0 E A 1  is called the limit of X as t --> 0 and written 
limt,0  X,(t) • x. 	 El 

In what follows we shall always assume that the variety X is separated 
(Definition 3.33). This guarantees the uniqueness of limits. The following two 
theorems are together called the Hilbert-Mumford Numerical Criterion. 

Theorem 7.3. The Hilbert-Mumford Numerical Criterion. For an action 
GL(n) (--, X of ray type and a point x E X the following conditions are 
equivalent. 

(i) x E X is semistable. 
(ii) For every 1-PS in SL(n) C GL(n) the limit lim t,0 X(t) - x either does not 

exist, or it exists but it is not contained in the irrelevant set F c X. 

Theorem 7.4. For an action GL(n) (-- X of ray type and a point x E X the 
following conditions are equivalent. 

(i) X E X is stable. 
(ii) x V F and the limit lim t ,0 X(t) • x does not exist for any 1-PS in SL(n) C 

GL(n). 	 El 



x E V is stable < 	›- for any 1-PS X : Gm  ---> SL(n). 

1im,,0 X(t) • x does not exist 
(7.3) 
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Given integers r1, .. . , rn  E Z, not all zero, with r1 + • - • + rn  = 0, we have 
a 1-PS, called a diagonal 1-PS: 

Gm  ---> SL(n), t 1—›- 
tr2  

t rn) 

(7.1) 

In fact, every 1-PS in SL(n) is conjugate to a diagonal 1-PS. More precisely, 
the following is true. 

Proposition 7.5. For every 1-PS X : Gm  --> SL(n) there exist integers r1 < 
r2  < • - - < r, for which X is conjugate in SL(n) to the diagonal 1-PS (7.1). 

The kind of group action GL(n) ra. X that we often encounter is where X 
is a vector space V, viewed as an affine space, and the action GL(n) ra, V is 
a linear representation. Typically, the centre Gm  c GL(N) acts by x i—)- t m  x, 
x E V, t E Gm , for some positive integer M E N, and in this situation the 
irrelevant set F is just the origin 0 E V. It is for this case that we will prove the 
two theorems above. Namely: 

limt,0 X(t) • x 0 0 
x C V is semistable i, 	> 	 (7.2) 

for every 1-PS X : Gm  ---> SL(n), 

(b) The proof 

By definition of an action of an algebraic group, if R is any algebra over k, then 
SL(n, R) acts on V Ok R. In particular, if R is an integral domain with field of 
fractions K, then we get an action SL(n,K) (m, V Ok K. 

Proposition 7.6. Suppose that y E V belongs to the closure of the orbit SL(n) • 
x C V. Then there exist a (not necessarily discrete) valuation ring (R, m) and 
a matrix E c SL(n, K) such that R im  ; -. .' k and satisfying the following two 
conditions. 

(a) E•xEVOkR; 
(b)Lc . 3 - x = y mod m. 
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Proof We will write G ,-- SL(n). Let W C V be the closure of the orbit G • x. 

Then the dominant morphism G —> W, g 1--> g • x corresponds to an injective 
homomorphisms of rings: 

k[W] c--> k[G] 
n 	n 

k(W) c---> k(G) 

Let n be the maximal ideal of y E W. By Theorem 2.37, there exists a valuation 
ring (R, m) dominating (k[W], n) with field of fractions k(G) and residue field 
isomorphic to k. 

Any morphism of affine varieties Spm A —› SL(n) determines an element 
of SL(n, A). In particular, the identity map G -÷ SL(n) determines a matrix 
E E SL(n,k[G]), and we can view this as belonging to SL(n, k(G)). But then 

• x E V Ok k[W] and E - x,----_ y mod n, as required. 	 0 

To understand what is going on in this proof we can give an analytical expla-
nation as well. This captures the essential idea behind the more general case. 

If ycW=G- x, then we can find a holomorphic map 0 : A —› W of the 
disc A = {z E C I IZI < 11 such that 0(0) = y and 0(A') c G • x, where 
A' = A —0. Suppose that the restriction of 0 to A' lifts to a holomorphic map 
* : A' —> G. We then have a commutative diagram: 

* A 7  ---> G 

n 	4, 

0 A —> W C V L- Cm 

Let C{{z}} be the ring of germs of holomorphic functions at the origin 0 E A, 
and let K be its field of fractions. The map * then corresponds to an element 
W(z) E SL(n, K). Since 0(0) = y, it follows that 

lim 41(z) - x = y. 
z-->o 

So R := Cl{z}} and Et := 111(z) satisfy conditions (a) and (b) of the proposition. 
In general, if (R, m) is a valuation ring and E E SL(n, K) a matrix satisfying 

conditions (a) and (b) of Proposition 7.6, then we will write 

lim E • x = y. 
R 

There are now two essential lemmas. We let R be a valuation ring and K its 
field of fractions. 
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Lemma 7.7. Any n x n matrix E E Mat(K) can be expressed as a product 

E = ADB, 

where D = diag(6, 	, 	is a diagonal matrix and A, B E SL(n, R). 

Proof If E = 0, this is trivial; so we can assume that E = ( ij ) 0 0. We then 

consider the minimum v ffna, of the valuations v(, j ) of the nonzero entries of E. 
After multiplying on the left and right by permutation matrices we may assume 
that this minimum value is vnain = v(61). We can now write 

/1 o o o\ Z2 z3 	• • • zn  \ 411 o 	o 	• o 
Y2 1 0 0 10 0 * * 
y3 01 ^ La4  01 = 0 * * 

• 
• 
• 

\Yn 1 \ 0 1 \ 0 * * */ 

where yi = 	and zj = 	Note that both yi, z j  belong to R by 
the way we have chosen 61. Thus both of the matrices on the left-hand side 
belong to SL(n, R). We now repeat the argument for the (n — 1) x (n — 1) 

submatrix on the right-hand side, until we obtain a diagonal matrix 

) , 	v(6) 	v(2.) 	• • • .-5_ v(n), 

satisfying the requirements of the lemma. 	 El 

Let A be the valuation group of R (see Section 2.4(b)). This is a totally 
ordered additive group. Given a finite set of elements xi , . , x n  E A, the next 
lemma, which is essentially Proposition 3.71, says that linear inequalities on 
these elements can always be replaced by inequalities on a corresponding set 
of rational integers. 

Proposition 7.8. Let xi, 	, xn  E A and let (13 c Zn be any finite sub- 

set. Then there exist integers r1, 	,r, E Z with the property that, for all 

, an) E 

aixi + - — + anxn = 1 > 
< 

0 
+ " . airi + an rn  

{ > 0 
= 0 
< O. 

(7.4) 0 
0 



ADB, D= 

( 6 
1-9 
I-1 -- 

216 	7 The numerical criterion and some applications 

Outline of the proof The elements xi , — , x n  E A partition Zn into three 
subsemigroups: 

C+ = {(ai, • • • , an) I ai xi + • • •+ anxn > 01, 
Co = {(ai, — , an) I al xi + • • •+ anxn = 01, 
C- = {(ai, ••• , an) I ai xi + • • • + anxn < 01. 

There now exists a hyperplane 

rixi + • - • + rn xn  = 0 

in Rn which contains Co and which partitions Rn into half-spaces which intersect 
Zn in C. (In the case n = 2, this is called a Dirichlet section.) Since (1) is a finite 
set, the real numbers r1, . . . , rn  can be made rational by a small perturbation; 
they can then be assumed to be integers by multiplying through by their common 
denominator. (See Section 3.4(c).) 1] 

Let us denote the second expression in (7.4) by (a I r1 , • • • , rn)- 

Proof of (7.2). By Proposition 6.19 we just have to show that the following are 
equivalent: 

(a) 0 E SL(n) • x. 

(b) limo X(t) • x = 0 for some 1-PS A, : Gm  —> SL(n). 

(b) 	(a) is obvious, and we just need to show (a) == (b). By Proposition 7.6 
(with y = 0) there exists a valuation ring R, with field of fractions K, and a 
matrix El' E SL(n, K) such that 

lim E • x =-- O. 	 (7.5) 
R 

By Lemma 7.7 we can write 

n) 

where A, B E SL(n, R) and 4, .. . , E K. Let T C SL(n) be the group of 
diagonal matrices; the action of T on V can be diagonalised using a suitable 
basis e 1 , .. . , en, E V. Each vector ei then spans an eigenspace on which T acts 
with some weight 

ai = (ail, - - ,a) E Zn, 
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in the sense that 

( ti 

t2 
	

t„ 

	
t 11  t 2  . . . tcr:t" ei, 	1 < i < m. 	(7.6) 

Let p : SL(n) 	SL(V) be the linear representation giving the action that 
we are considering. (So g • x means p(g)x.) Then p(E) = p(A)p(D)p(B) and 
there exists a limit limR p(A) with determinant 1. This implies, by (7.5), that 

lim p(D)(p(B)x) = 0. 	 (7.7) 

Using the basis above we will write 

B • x = p(B)x = fiei -4- • • 	fn em . 	 (7.8) 

Since B c SL(n, R), the coefficients ft  belong to R, and (7.6) says that 

p(D)(p(B)x) = a1fe + • • • + 

where r:= I1 21221  . . . 	Since the limit of this expression is zero, we must 
have v(ai fi ) > 0 for each i = 1, . , m. Hence 

v(f1 ) = 0 	> v(r) > O. 	 (7.9) 

We now consider the residue classes modulo the valuation ideal m c R of B 
and fi; we denote these by B E SL(n,k) and ji  E k. Reducing (7.8) mod m 
gives 

B • x = f + • • • + .7m em, E V. 

By (7.9), v(ri) > 0 whenever f 0 0. It follows that (7.7) remains valid with 
B replaced by B: 

lim p(D)(p(B)x) = 0. 

We now apply Proposition 7.8 to the set of weights (13 = {a i }' 1  of the repre-
sentation p and the values v(6), , E A. This tells us that there exist 
integers r1 , . , rn  E Z such that for all 1 < i < m: 

	> 	(ai  I 	, rn ) > O. 
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For this set of integers we have 

( t 1  
tr2  

lim 	 • (p(B)x) = O. 

But p(Iii) E SL(n,k), and so we have constructed a 1-PS proving (b). 

Proof of (7.3). The proof here is similar to that above; we will suppose that 
x E V is semistable but not stable, and show that in this case lim t,0 A(t)- x 
exists for some 1-PS A. Let us write G SL(n). There are two possibilities 
that we have to consider: 

(a) The case in which the orbit G x is not closed. 
(b) The case in which the stabiliser Gx ,--{gEGIg•x. x} is not finite. 

In case (a) we apply Proposition 7.6 to a point y in the boundary of the closure 
W = G - x. This gives a matrix Ec SL(n, K) such that 

limE•x=yVG• X, 

and writing E = ADB we have 

lim D (B x) =--yVG•x. 

Using the same basis as in the previous proof we have (7.8), 

B . x=fiei+•.+fmem, 	f E R, 

and modulo the maximal ideal n c R at y, 

T3 • x =--- 	el + • • 	f ,n em. 

Since the limit exists we have v(ri fi ) > 0 for each i = 1, . . . , m, and so by 
the same argument as before 

f i 	0 	> v() >O. 

Since the limit is not contained in G-x, the diagonal matrix D is not contained in 
SL(n, R); so v( i ) <0 for some component 4:i. We now apply Proposition 7.8 
to the set of weights 4) consisting of the single vector (0, . , 0, 1, 0, . . . , 0) 
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(i-th entry) to obtain (r1, 	, rn ) with ri  < 0 and such that there exists a 
limit 

(tr' 

lirn 
t-o 

t r2  

trn 

This deals with case (a). For (b), we remark that G = SL(n) is an affine 
variety and that the stabiliser G C G is a closed subvariety and therefore is 
itself an affine variety. So it follows from Proposition 3.57 and the Valuative 
Criterion 3.58 that there exist a valuation ring R (with field of fractions K) and 
a matrix E E SL(n, K) satisfying: 

(i) 5• x = x, 	(ii) lim E does not exist. 

By Lemma 7.7 we can write E = ADB. Now, by (ii) we must have v(0 <0 
for some component of D; and since p(A)(p(D)p(B)x) = x it follows that 
the limit limR p(D)(p(B)x) = x exists. The proof is now the same as for 
case (a). El 

7.2 Examples and applications 
(a) Stability of projective hypersurfaces 

We can apply the Hilbert-Mumford Criteria (7.2) and (7.3) to answer the ques-
tion left open at the end of Chapter 5: what is the geometric interpretation of 
stability of homogeneous polynomials in n 1 variables under the action of 
GL(n 1), or, equivalently, of hypersurfaces in Pn under the action of the 
projective group? 

The first case n = 1 of binary forms is easy to deal with. In the case of any 
ray-type action of G L(2), (semi)stability is determined by the limits under a 
single 1-PS (up to conjugacy in S L(2)) 

—> SL (2), 	t 	( t  
0 

(7.10) 

Proposition 7.9. 
(i) A binary form (a x, y) of degree d is stable if and only if every linear factor 

has multiplicity < d 12. 
(ii) A binary form (a x, y) of degree d is semistable if and only if every linear 

factor has multiplicity < d/2. 
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Proof We will deal with parts (i) and (ii) simultaneously and prove the 'only 
if' direction first. 

Writing 

(a Ox , y) = aox d  daixd-1  y + • • + cled  

we may assume coordinates chosen (that is, move the form within its GL(2)- 
orbit) so that the multiple zero is y = 0. This means that 

ao = ai = • • = am _i = O. 

We shall prove (ii) first. By hypothesis, m > d/2 in this case. Thus (a x, y) 
is a sum of terms ai (di )x i  y d—i  for i > d/2, so that under the action of the torus 

t 0 \ 
0 t -1  

we have limo (a Ot x , 1  y) = 0. This shows that (a x, y) is a nullform by 
Corollary 6.20. 

For part (i) assume that m > d/2. If d is odd this implies m > d/2 so the 
result already follows from (ii); we may therefore assume that d = 2s is even. 
Then, by hypothesis, m > s and we can assume that equality holds, again by 
part (ii). Thus 

ao = ai = - • - = as_i = 0, 	as  0 O. 

So under the torus action we have 

lim (a O tx , r l y) = as xs ys 

Observe that the form asxs ys E V14 is nonstable, since its stabiliser in SL(2) 
contains T and is therefore positive-dimensional. If it is contained in the orbit 
SL(2)a C Vi,d, then a also fails to be stable; otherwise, if it is not contained 
in the orbit SL(2)a, then this orbit is not closed, and so again a is nonstable. 

To prove the converse, we assume that (a 0 x, y) fails to be stable. By (7.3) 
this is equivalent to the existence of limo X(t) • a under some 1-PS, which by 
changing coordinates (that is, conjugating in S L(2)) we can take to be (7.10). 
This is equivalent to x dividing (a 0 x, y) with multiplicity > d/2. This proves 
part (i). Similarly, lim,±0A(t) • a = 0 is equivalent to x dividing (a 0 x , y) with 
multiplicity > d/2, and so part (ii) follows from (7.2). 1=1 

Gm  T c SL(2) 	t 

Example 7.10. d = 4. A binary quartic is stable if and only if it has no repeated 
linear factors. 	 El 
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When we pass from two variables to three or more the number of 1-PS s that 
have to be considered increases rapidly. The following generalisation of the 
binary case is proved similarly, but we omit the details as they are illustrated 
by the examples below. 

Proposition 7.11. Let (a x) E V n,d be a homogeneous form of degree d in n 

variables. 

(i) (a x) is a nullfonn, that is, it fails to be semistable under the action 

GL(n) tTh V„,d, if and only if there exists a vector (ri, 	, rn ) E Zn  such 

that al = 0 for all I such that (I I 	, rn ) > 0. 
(ii) (aOx) fails to be stable under the action GL(n) 	Vn,d if and only if there 

exists a nonzero vector (ri, 	, rn ) E 	— {0} such that al = 0 for all I 

such that (I I 	, rn ) > 0. 	 0 

This proposition has a simple geometric interpretation. Consider the case 
n = 3. (This is entirely representative of the general case.) Suppose we arrange 
the monomials of degree d in x, y, z in a triangle in the plane 

1(i1 	i3) EZXZXZI 	i2 i3 = d, 	i2, i3 > 01. 

Then a 1-PS (7.1) determined by a vector r = (r1, r2, r3) corresponds to the 
line rl  through the centroid, and the condition for a form (a x, y, z) to be a 
nullform is that all the monomials occuring nontrivially (that is, with nonzero 
coefficient) in the form lie in the open half-plane strictly on one side of r1 . 
Failure to be stable is equivalent to all monomials appearing nontrivially lying 
in the closed half-plane on one side of r -L . (See Figure 7.2.) 

Example 7.12. Plane cubics. The singular behaviour of a cubic in P 2  is clas-
sified by the nine types shown in Figure 7.1. 

We claim .  

(i) A plane cubic curve C c P2  is semistable if and only if its only singular 
points are ordinary double points. 

(ii) C c P2  is stable if and only if it is nonsingular. 
AR. 

In Figure 7.1, in other words, case (1) is stable (this already follows from 
Corollary 5.24) and cases (2), (4) and (6) are semistable, while the others are all 
nullforms. Note, incidentally, that all the nullforms belong to closure-equivalent 
orbits. 

Proof The proofs of (i) and (ii) are entirely similar, and we will just prove (ii). 
We arrange the cubic monomials in x, y, z in a triangle with xyz at the centroid, 



® 
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Figure 7.1: Classification of plane eubies 

• 

• 

• 

• • 

• 

(A,,I)>0 

Figure 7.2: Stability of plane quarties 
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and let the line rl  (corresponding to a diagonal 1-PS) rotate through this point. 
As the line varies we examine the geometry of the cubic curve whose equation 
is supported in the closed half-plane on one side or other of the line. 

For example, for r = (2, —1, —1) the equation of the curve lives in the 
half-plane: 

x 	 6 
x 	x 	 3 	3 

xy 2 	xyz 	xz 2 	 0 	0 	0 

y
3 	y 2Z 	yz 2 	Z 3 	—3 	—3 	—3 	—3 

(where the right-hand triangle shows the weight of the corresponding mono-
mial). This is precisely the condition for C c P2  to have a singular point at 
(1 : 0 : 0). Conversely, if C is singular, then by choosing homogeneous coordi-
nates so that the singular point is at (1: 0 : 0) we see in this way that C is not 
stable. 

A second possibility, corresponding to r = (1, —2, 1), is 

3 
X

2 y 
	

0 	3 
xy 2 	xyz 	 —3 	0 	3 

y
3 	y 2 Z 	yz 2 	 —6 	—3 	0 	3 

This is equivalent to C containing the line y = 0 as a component; and conversely, 
again, if C contains a line, then we can assume, by changing coordinates, that 
it is this one. 

Finally, we note that up to symmetry of x, y, z these two cases contain all 
possibilities as the line r1  rotates about the centroid. 	 El 

For higher degree plane curves the enumeration of singular types quickly 
becomes horrendous, but nevertheless a similar analysis is possible. We will 
content ourselves w-  statement for degree 4. 

Example 7.13. Plane quartics. 
(i) A plane quartic curve C c P2  is semistable if and only if it has no triple 

point, and is not the sum of a plane cubic and an inflectional tangent line. 
(ii) A semistable plane quartic curve C c P2  is stable if and only if it has no 

tacnode. 
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(A tacnode is a double point with a single tangent line with contact of order 4. 
Its local canonical form is y2  = x4 .) 	 D 

Figure 7.2 shows the case of a nullform (with equation supported on the right-
hand side of the line) which is the union of a plane cubic and an inflectional 
tangent. (See also Mumford [47].) 

(b) Cubic surfaces 

We turn now to cubic surfaces in 1P3 . Our first aim is to show: 

Theorem 7.14. A cubic surface S C 1P 3  is stable under the action GL(4) r- , 

V3,3 if and only if it has finitely many ordinary double points and no worse 

singularities. 

Remark 7.15. We should first say a few words about double points. Suppose 
P is a double point of a surface S c A3 , and choose corrdinates so that P = 
(0, 0, 0) is the origin. Then the equation of S decomposes into homogeneous 
polynomials 

f2(x ,  Y, z) + f3(x, Y, z) + - • • =0, 

where, by hypothesis, f2 0 0. The rank of the double point is then defined to 
be the rank of the quadratic form f2(x, y, z). An ordinary double point is, by 
definition, a double point of rank 3. The tangent cone of S at P is the quadric 
cone {f2(x, y, z) = 0} C A3  with vertex P. If P E S is a double point of rank 2, 
then the tangent cone is a pair of planes (that is, f2 factorises as a product of 
linear forms) and the intersection of these planes is called the axis of the double 
point. CI 

A 1-PS X : G. -± S L(4) will be called normalised if its image is in the torus 

T = {diag(to, ti, t2, t3) I t0t1t2t3 -= 1} C SL(4) 

and it is of the form 

X : t 1-9- diag(tr°, tri  , t r2  , t r3 ), 	where ro > ri > r2 > r3. 

(Note that ro + ri + r2 + r3 = 0. In particular, r3 < 0.) Every 1-PS is conjugate 
to a normalised 1-PS, and so when we apply the Hilbert-Mumford criterion it 
is sufficient to consider only normalised 1-PSs. 

We want to look for cubic surfaces which have a limit as t -->- 0 under such 
a 1-PS: that is, which fail to be stable. The equation of such a surface must be 
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a linear combination of monomials from the set 

Me (X) := fwax b ycz d  I aro + bri cr2 dr3 > 01. 

We will denote the set of all 20 cubic monomials in w, x, y, z by M. 

Notation 7.16. We denote the monomial in = W a  x b  yc z d  by (a, b, c, dl, the 
1-PS p, : t F-± diag(tr°, tl, t r2  , t r3 ) by Iro, r1, T2, r3), and the inner product 
aro + bri cr2 dr3 by On I it) -= (a, b, c, d I ro, r1, r2, r3)• LI 

Proposition 7.17. If A is any normalised 1-PS, then Me (A)  is a subset of 
one of: 

(1) Me(1, 1, 0, —2), (2) il1e(2, 0, —1, —1), (3) Me(1, 0, 0, —1). 

El 

We will prove this in a moment. We need to put a partial ordering on the 
monomial set M by: 

in > in' for in, 	E M (m I 	> 	I X) for all 
normalised 1-PSs X. 

(7.11) 

With this definition the following fact is easily checked. 

Lemma 7.18. 

la > a' 
(a, b, c, 	> (a' , b' , c' ,d1 	 a+b> a' ± 

ad-b±c>a/-1-bi-kc'. 

0 

From this lemma we obtain Figure 7.3, where the right-hand column is 3a + 
2b c. Now the subset Me(X) c M is an ideal with respect to the partial 
ordering, in the sense that, if in E Me(X) and in' > in, then in' E M(A). 
Dually, its complement,M - (X) c M has the property that, if in E M(A) and 
in > in', then m' c M(A). Because of these properties, in order to prove an 
inclusion relation Me (X) C Me (a) or, equivalently, that Me ponm- (ju,) = 0, 
it is enough to check just the maximal elements of M -  (p,): 

Proposition 7.19. The following conditions are equivalent: 

(i) M(A) c Me W. 
(ii) (in I X) <0 for every maximal monomial in E 



1-PS ,u, 
11,1, 0, —2) 
12,0, —1, —1) 
11, 0, 0, —1) 

monomials of M( 1a) 

(y, z) 2  z, 	(w,  x)(Y , z)z 
(x, y, z) 2 (y, z) 
(x,y,z) 2 z, 	wz 2  

maximal elements 
wyz 
x 2y 

x 2Z, WZ2 
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w3  

/ 
W2X 

/ \ 
WX2 	W2y 

/ \ / 
x 3 	wxy 	 w2Z 

\ / \, / 
w2y 	wy  2 	WxZ 

\ 
xY 2 	X 2Z 	 WyZ 

/ 

	

Y 3 	xyz 	 wz2 

/ 
y2z 	XZ2  

9 

8 

7 

6 

5 

4 

3 

2 

1 

z 	0 

Figure 7.3: Partial ordering of the monomial set M 

Proof (i) is equivalent to M - (//,) 11 M(X) = 0, while, if /14' (u,) has maximal 
monomials n'ti, • . • , inn, then 

n 
M — (11,) = Um E M I in _> in} . 

This immediately implies that (i) is equivalent to (ii). 	 0 

Proof of Proposition 7.17. For the three sets (1), (2), (3) we find the following: 

We have to show that 111-9,) contains one of these sets, for any normalised 
1-PS ). 
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If either wyz E M(A) or x 2y E M(A), then we are done, so suppose not: 
that is, 

	

(1, 0, 1, 1 I X) > 0, 	(0, 2, 1, 0 I X) > 0. 

We now observe (using ro + r 1  ± r2 + r3 = 0) that 

2(1, 0, 1, 1 I X) ± (0, 2, 0, 1 I A) = (2, 2, 2, 3 I X) = r3  < 0 

and 

(1, 0, 1, 1 I X) + (0, 2, 1, 0 I A) + (1, 0, 0, 2 I X) = (2, 2, 2, 3 I A) = r3 < 0, 

and these inequalities force (0, 2, 0, 1 I A) < 0 and (1, 0, 0, 2 I A) < 0, or in 
other words x2z and wz 2  c M(A). 0 

Proof of Theorem 7.14. We first assume that S is not stable and examine its 
singularities. By the Hilbert-Mumford Criterion (7.3), instability means that the 
equation of S has a limit as t -> 0 under some 1-PS X, which we can assume 
to be normalised. Existence of the limit, in turn, implies that the equation of S 
belongs to the linear span of the monomials M(A), and by Proposition 7.17 it 
therefore belongs to the linear span of one of the sets (1),(2),(3). We consider 
each of these in turn. 

A general cubic S c P3  spanned by Me(1, 1, 0, -2) has the form 

c(w, x, y) + zq(w, x) = 0, 

where c is a cubic and q is a quadratic form. S therefore has a singular point at 
P = (0 : 0 : 0: 1). But the tangent cone at this point is q(w, x) = 0, which 
has rank 2, so that P is not an ordinary double point. 

Next, Me(2, 0, -1, -1) spans cubics of the form 

wq(w, x, y, z) ± ax 3  = 0, 

where q is quadratic. Such a cubic contains the line w = x = 0, and on this 
line we can find a singular point whose tangent cone contains the plane w = 0, 
and is therefore not an ordinary double point. 

--- -- Finally, a cubi c spanned by Me(1, 0, 0, -1) has the form 

c(w, x, y, z) -1- l(w, x, y)wz = 0, 

where c is cubic and 1 is linear. This has a rank 2 double point at P = 
(0 : 0: 0: 1) whose tangent cone is the pair of planes /(w, x, y)w = 0. 

We now have to show the converse, that, if S c P3  is stable, then it has only 
ordinary double points. But this is easy: if the point P = (0 : 0 : 0 : 1) were 



  

monomials of Me(,u,) maximal elements 

  

1, 1, -5) (w, x, y)(x, y)z, 	(w, x, y)z 2  , 	z 3 wxz 

3, -1, -5) (W, x)(y, z)z, 	(y, z) 3  wyz, y 3 

-1, -1, -1) (x, y, z) 3  X 3 
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a singular point worse than an ordinary double point, then the equation of S 

would (after a suitable choice of homogeneous coordinates) necessarily be of 
the form MET) (1, 1, 0, 2) above - and such a cubic is not stable. 	0 

Theorem 7.20 (Hilbert [20]). A cubic sulface S c 1P3  is semistable under the 

action GL(4) r), V3,3 if and only if it has at most finitely many singularities of 

the following types: 

(I) ordinary double points, 

(2) rank 2 double points whose axes are not contained in S. 

Remark 7.21. One says that the surface has (at most) rational double points, 
of type A 1  in case (1) or type A2 in case (2). 	 0 

Theorem 7.20 is proved in the same way as Theorem 7.14, using the numerical 
criterion (7.2). Given a normalised 1-PS A = Iro, r1, r2, r3) we define 

M+ (A) := {WaX b ycZd  I aro + bri + cr2 + dr3  > 0}. 

A cubic surface unstable with respect to A then has equation in the linear span 
of M(A). 

Proposition 7.22. If A is any normalised 1-PS, then M± (X) is a subset of 

one of: 

(I) M±(3,1,1, -5), (2) M+(3, 3, -1, -5), (3) M±(3, -1, -1, -1). 

Proof Exactly the same as the proof of Proposition 7.17. We begin by noting 
(where ME)  denotes the complement of M+ in M): 

If Me  (A) contains wxz or x 3 , then it contains Me (3, 1, 1, -5) or 
Me(3, -1, 1, -1), respectively, and we are done. If not, then both of 
(1, 1, 0, 11 A) and (0, 3, 0, 0 1 A) are strictly positive. From the equalities 

(0, 3, 0, 0 IA) ± 3(1, 1, 0, 1 1 X) = 0, 
3(1, 0, 1, 1 1 X) + (0, 3, 0, 0 IA) = 0, 
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therefore, it follows that (0, 3, 0, 0 I A) <0 and (1, 0, 1, 1 I A) <0, and hence 
that Me(X) contains M 9(3, 3, -1, -5). 	 1=1 

Proof of Theorem 7.20. Suppose that S c P3  is unstable. Then its equation 
lives in the linear span of one of the sets (1), (2), (3) of the previous proposition, 
and we consider each of these in turn. 

In M+(3, 1, 1, -5), a general cubic S c P3  has the form 

c(w, x, y) aw 2  z = 0. 

This has a rank 1 double point at (0 : 0 : 0: 1) whose tangent cone is the double 
plane w2  = 0. In M+(3, 3, -1, -5) a general cubic has the form 

y 21(w, x) yqi(w, 	zq2(w, x) c(w, x) = 0. 

Again, this surface has a double point at (0 : 0 : 0 : 1) with tangent cone 
q2(w, x) = 0 and axis w = x = 0 which lies on the surface. Finally, a cubic in 
M+(3, -1, -1, -1) looks like 

wq(w,  , x, y, z) = 0, 

which is reducible (and in particular is singular along a plane conic). 
From this analysis we conclude that, if the cubic surface S c P3  is unstable, 

then one of the following holds: 

(a) S has a triple point. 
(b) S has a double point of rank 1. 
(c) S contains the axis of a rank 2 double point. 
(d) S is reducible. 

The converse is easy and we leave it to the reader. 	 0 

Finally, we will classify the closed orbits of semistable points under the action 
GL(4) V3,3. Of course, all stable orbits are closed; for the nonstable orbits 
the problem is, to which of the types (1), (2), (3) of Proposition 7.17 do they 
belong? Note that, if an orbit is closed, then it can be represented by the limit 
of a point under any -1-PS. As an example, let us see what happens when we 
take a cubic of type (1) and pass to the limit under the 1-PS A = 11, 1, 0, -2). 
A monomial in remains in the limit if and only if (in 1 A) = 0, and the only 
monomials with this property are y 3  and wxz. The limiting cubic is therefore 
of the form ay 3  bwxz, and semistability guarantees that both a, b 0. We 
therefore have a candidate for a closed semistable and nonstable orbit: 

S L(4) • (y 3  - wxz) 
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In fact, if we apply the same reasoning to types (2) and (3), then we find (up to 
scalar) the same orbit again, and no others. We just have to check: 

Proposition 7.23. SL(4) • (y 3  — wxz) is a closed orbit. 

Proof The surface S: y 3  — wxz = 0 is semistable since it has three singular 

points (1: 0 : 0 : 0), (0 : 1: 0 : 0), (0 : 0 : 0 : 1) which are all rank 2 
double points whose axes do not lie on S. (In fact, these axes are the edges of 
the tetrahedron of reference passing through the last vertex (0 : 0 , : 1 : 0).) 

Consider the closure of the orbit SL(4) • (y 3  — wxz). This must contain a 
closed orbit, and what we have seen above is that the latter must be projectively 

equivalent to the orbit of y 3  — wxz. But this means that SL(4) • (y 3  — wxz) is 

itself closed. El 

Theorem 7.24. The moduli space of semistable cubic surfaces V3,3Il GL(4) 

is the one-point compactification of the geometric quotient V 3 /GL (4) which 

parametrises projective equivalence classes of stable cubic surfaces. 	0 

The single point that we add corresponds to the closure equivalence class of 
semistable surfaces which are not stable, and this class is represented by the 
unique closed orbit of the surface y 3  = wxz. 

Remark 7.25. It is easy to see that the surface S : y 3  = wxz is the image of 

the rational map 

p2 _ _ __>, p3 , 	(a : b : c) 1-4- (a2b : b2  c : abc : c2  a). 

It is therefore isomorphic to the quotient of P 2  by the cyclic group Z/3 generated 

by the automorphism 

a  : p2 __>. p2 , 	(x : y : z) F+ (y : z : x 

0 

(c) Finite point sets in projective space 

Let us consider finite (unordered) point sets in projective space A = 

{Pi , • • • , pal C IF and their stability under the action of the general linear 

group GL(n + 1) (Th, SdPn . Of course, the symmetric product SdPn 'is not an 
affine variety, so to define stability we need to embed it in a suitable projective 

space in such a way that GL(n + 1) acts on its affine cone. 
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In the case n = 1 we can view {pi,  . . . , pd} c P1  as the zero-set of a binary 
form of degree d, 

Fd(x, =11(bix — aiY), 

where pi = (at : bi), • • • , Pd = (ad bd). In other words, SdP 1 	P(Vd), 
and the quotient we are considering is VaGL(2). Then, as we have seen in 
Proposition 7.9, 

(

the set {pi, , p d } c Pl) < 
is semistable 

(no more than [d/2] of the 
points coincide 

This has the following generalisation. We can view the set A = 
{Pi , • . , pd } c Pn as a hypersurface of degree d, reducible as a union of 
d hyperplanes, in the dual projective space (Pii)v, as follows. In terms of ho-
mogeneous coordinates we write 

pi = (ag)  : a(1i)  : . . . : an(i) ) 

and the linear form with these coordinates as coefficents as 

(i) 	(i) 	 (i) (xo, xi , 	, xn) := ao  xo + al  xi + • • • + an  xn . 

We then associate to the unordered point set A the homogeneous polynomial 

A(xo, xi, • • • , xn) = 	71-„, (x0, x 1 , • • • , xn), 
i=1 

and by unique factorisation (Theorem 2.10) the set A c Pn  is completely 
determined by this polynomial. 

Definition 7.26. The point set A c Pn will be called (semi)stable if the corre- 
sponding degree d form n-A  is (semi)stable. 	 El 

Proposition 7.27._A point set A c Pn is stable under the action of GL(n +1) 
if and only if — 

tlAnP dimP+ 1 
A 	n + 1 

for every projective subspace P CPn. If the inequality < is satisfied, then A 
is semistable. 
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Proof We will assume that the inequality holds and deduce that the form 7rA (x), 
and hence A, is stable, leaving the converse to the reader. 

Let ,u, : 	SL(n + 1) be an arbitrary 1-PS; we have to show that 
there is no limit limt,0 p,(t) • n-A(x). We first choose homogeneous coordinates 
(xo : Xi : . : xn ) for which 1a is normalised so that 

t 1-> diag(tr°, /1.1  , 	. , lin ), 	where r0 < r1  < • • < rn . 

Let Pk c IP' be the subspace defined by xo = • • • = xn_k_i = 0, and let ak 

be the number of points in A 11 Pk. The form n-A(x) contains (with nonzero 
coefficient) the monomial 

a —an_1 a_1—a2 	a 1  —ao ao 
X " 0 	X 1 	. . X 	X 

	

n — 	n 

with weight (with respect to p,) 

11) = (an  — an_t)ro + (an-i an_Dri +...  + (ai - ao)rn_i + aorn. 

The inequality in the proposition, applied to Pk, implies that 

k + 1 
d ak < 	 

n + 1 

and hence 

= an ro - an-t(ro - r1) - an-Art - r2) - • • • 
-al (rn_2 - rn  _ ) - ao(rn_i - ) 

nd 	 (n - 1)d 
< dro 	(r0  r1) 	(r1 - r2) - • • • 

n+1 	 n + 1 
2d 	 d 
	(rn_i - rn) 

	

n +1
(rn-2 rn-1) 	

+1 n  

	((n + 1)ro - n(ro - ri) - (n - 1)(r1 - r2) - - 
n + 1 

-2(rn _2  - rn_i) - (rn_ i  - rn )) 

= 0. 

	

This shows that ,u,(t) • n-A (x) does not have a limit as t 	0, as claimed. 

Example 7.28. Five points in P2 . In this case, stability and semistability are 
equivalent and a set is stable if and only if: 

(1) the five points are all distinct, and 
(2) no four of the points lie on a line. LJ 
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Example 7.29. Six points in 1P3 . Here a set is stable if and only if: 

(1) the six points are all distinct, 
(2) no three of the points lie on a line, and 
(3) no five of the points lie on a plane. 

Semistability is equivalent to conditions (1), (3), and 

(2') no four points lie on a line. 
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Gras smannians and vector bundles 

It is well known that the set of vector subspaces of a fixed dimension in a 
fixed vector space is a projective algebraic variety, called the Grassmannian. 
We are going to examine the Grassmannian as an example of a Proj quotient by 
a group action of ray type. In Section 8.1, using a construction of this variety 
by means of invariants, we shall study, in the case G(2, n), its coordinate ring. 
We compute its Hilbert series, its generators and their relations. 

From Section 8.2 we shall review, as preparation for the chapters which 
follow, the theory of modules over a ring. We discuss localisation and gluings by 
partitions of unity, free modules, tensor products and flat modules. In Section 8.3 
we define locally free modules and invertible modules, and the properties of 
these which follow from flatness. 

The set of equivalence classes of invertible modules forms an abelian group 
under the tensor product, called the Picard group of the ring. For the ring 
of integers of an algebraic number field, for example, this coincides with the 
divisor class group. In Section 8.4 we calculate the Picard group explicitly in 
the cases of an imaginary quadratic field and of an affine hyperelliptic curve 
(that is, a quadratic extension of the polynomial ring k[x]). This paves the way 
for the later discussion of the Jacobian variety. 

Just as one obtains an algebraic variety by gluing together affine spectra of 
algebras, so too one can glue invertible modules, or locally free modules, over 
a ring to form line bundles, or vector bundles, over algebraic varieties. The line 
bundles (vector bundles of rank 1) form a group Pic X under 0, which coincides 
with Pic R when X = Spm R is affine. 

In the final section we construct the tautological line bundle on a projective 
space and the universal vector bundle on a Grassmannian G(r, n), and use this 
to show that the Grassmannian represents the functor gr(r, n) which assigns to 
a ring R the set of locally free rank r submodules of len  up to isomorphism. 

234 
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We compute the tangent space of G(r, n) at a point and of the Gras smannian 
functor which it represents. 

8.1 Grassmannians as quotient varieties 
The set of r x n matrices is an rn-dimensional vector space, and via multipli-
cation on the left by r x r matrices this vector space becomes a representation 
of the general linear group G L(r). We denote this space, viewed as an affine 
space, by Mat(r, n). We shall consider its quotient by the action of GL(r). 

First of all, let 

X12 

X = 	 • • • 
	 (8.1) 

Xi Xr2 	Xrn 

be a matrix of independent variables. Using these variables we identify 
k[Mat(r, n)] with /*if ], on which G L(r) acts. We consider the projective spec-
trum of the semiinvariant ring 

k[Mat(r, n)]SL( r)  = ED k[Mat(r, n)](Tr) . 	 (8.2) 
w>o 

The weight w of a homogeneous polynomial is 1/r times its degree; so in 
particular all components of negative weight are zero, and the only polynomials 
of weight zero are the constants. In other words, the action G L(r) ra- Mat(r, n) is 
of ray type (Definition 6.12). Moreover, the fixed point set F of the multiplicative 
group of scalar matrices G,,, c GL(r) is just the origin 0 E Mat(r, n) (see 
Section 6.1(a)). 

For each subset 1 = {i 1  < • • • < i, C { 1, 	, n} we will denote by X1 the 
r x r submatrix of (8.1) constructed from columns ji , . . . , ir . The minor det Xt 
is a homogeneous polynomial of degree r in k[Mat(r, n)] and is a semiinvariant 
of weight 1. 

Proposition 8.1. Given a matrix A E Mat(r, n), the following are equivalent: 

(i) A is stable fOr the" action of GL(r). 

(ii) A is semistable for the action of GL(r). 
(iii) A has rank r. 

Proof (i) 	> (ii) is trivial. For (ii) 	(iii), we suppose rank A < r. Then, 
by moving A within its GL(r) orbit we may assume that its first row is 
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zero: 

A= 

0 	• . • 

. . . 

0:  ) 

The 1-parameter subgroup of the special linear group ). : 	SL(r) de- 

fined by 

X( t) = 

acts on the left on Mat(r, n) and sends A to 

00 • • • • • • 0 
t* t* 

( 
• • • t* 
• • • 

) 

t* t* • • • t* 

As t 	0 this tends to the origin 0, which therefore lies in the closure of the 

SL(r) orbit of A. 
(iii) 	(i) If A has rank r, then there is a submatrix A 1  whose determinant 

is nonzero. Since det A I  is a semiinvariant of positive weight, it follows that A 
is semistable. Moreover, the set of matrices of rank r is an open set on which 

the stabiliser subgroup in GL(r) is trivial. It then follows from Corollary 5.14 

that all the orbits in this subset are closed. 0 

We assume from now on that r < n. The projective spectrum of k[Mat 
n)iSL(r) then parametrises the set of stable GL(r)-orbits in Mat(r, n). (This 

follows from Theorem 5.3, though in the present case it is also easy to prove 
directly.) By associating to a matrix A E Mat(r, n) the space spanned by its 

rows, this orbit space coincides with the set of r -dimensional subspaces of a 

fixed n-dimensional vector space. 

Definition 8.2. The projective spectrum 

G(r, n) 	Proj k[Mat(r, n)]SL(r) 

is called the Grassmannian variety of linear r-planes in kn . 
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The unstable points in Mat(r, n) are the matrices for which all r x r mi-
nors det XI are zero. Thus G(r, n) is covered by ( r ) affine varieties {de X 1  0 
0}1 G L(r). Moreover, each of these affine varieties is isomorphic to Ar(n—r) . For 
example, when I = {1, 2, . . . , r} each orbit in the affine open set is uniquely 
represented by a matrix 

(x,) -1  x = 
1 0 	- • 0 * 
0 1 • • - 0 * 

0 0 " • 1 * 

• - • 

• • • 

(8.3) 

in which the r(n - r) entries * serve as coordinates on A?-T).  (Note that each 
* is a GL(r)-invariant rational form on Mat(r, n).) 

Example 8.3. The case r = 1 is the construction of projective space F in 
Examples 3.40 and 3.45. 

In the remainder of this section we shall examine the serniinvariant ring (8.2) 
in the case r = 2. 

(a) Hilbert series 

As a representation of S L(2), the vector space Mat(2, n) is the direct sum 
VI. ED • • • ED Vi of n copies of the 2-dimensional irreducible representation 
(see Section 4.4(a)). The q-Hilbert series (see Section 4.4(d)) of 171 is P (q; t) = 
11(1 - qt)(1 - qt), so the q-Hilbert series of Mat(2, n) is 

1 
P(q; t) 

(1 - qt)n(1 - q -1 0n .  

It follows from Proposition 4.63 that the invariant ring k[Mat(2, n)js1(2)  has 
Hilbert series 

00 
dim 

forms of degree k 
k=0 

The expression in square brackets is 

( 1 	ct0 (n j 
q 

i=o 

n+k- 1) cif  t  E ( 

k =0 	 q
k ' 

I SL (2) invariant —1 

	

q=0 	— tY — q -1  On ] 
k 

	

t = Res 	q 	q  

and by reading off the coefficient of q -1  and replacing t by 	we obtain the 
following. 
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Proposition 8.4. The Hilbert series of the semiinvariant ring (8.2), computing 
the dimensions of the spaces of weight w semiinvariants, is equal to: 

oo 
P(t) = E dim (k[Mat(2, n)](swL)(2) ) tw 

w=o 

= 
 t

1(n+ w —1) 2  _ in + w)(n + w —2)} 

w=o 	w 	) 	1\w + 1) 	w — 1  ) 
t 1' . 

El 

The expression in braces, the dimension of the space of semiinvariants of 
weight w, is 

H(w) := 

(w ± n — 1)(w ± n — 2)2(w + n — 3)2  ... (w ± 3) 2 (w ± 2)2 (w ±  1) 
(n — 1)!(n — 2)! 
	 9 

(8.4) 

which is a polynomial in w of degree 2n — 4. 

Example 8.5. For n < 6 these polynomials are 

H2 ( w) = 1 

H3 ( w ) = 

= 

H4 (w) — 

(w + 2)(w + 1) 
2! 

(w+2\ 

2 ) 

(w ±  3)(w ±  2)2(w ± 1) 
3!2! 

(w + ,61) ± (w + 
4 ) 1\  4 j 

H5 ( w ) = 
(w + 4)(w +  3)2(w ± 2)2(w + 1) 

4!3! 

= (w + 6\ + 3  (w + 5 \ + (w + zi. 
6 ) 	6 ) 	6 ) 



f16(w) 
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(w  5)(w ±  4)2(w ± 3)2 (w +  2)2 (w ± 1) 
5 !4! 

With these 

P2(t) 

P3(0 = 

P4(t) 

P5(0 = 

coefficients 

1 

	

(I)  + 
	
+6 (w 	7)+6(w+6)+(w+5) 

	

8 	8 	8 	8 	) 

we obtain Hilbert series: 

1 — t 2  

1 — t 

1 
(1 — 

1+ 1 

(1 — t)5  

1 	3t + t2  

( 1 - 

1 — 5t 2  + 5t3  — t 5  
(1 — (1 — t) 1° 

1 — 15t 2  + 35t 3  — 21t4  — 21t 5  + 35t6  — 15t 7  + t9  
(1 — t)9 	 (1 — t) 15  

The cases n = 2, 3, 4 correspond, respectively, to the simplest Grassmanni- 
ans G(2, 2) = {point}, G(2, 3) = (] 2)v and the quadric G(2, 4) c P. (See 
Example 8.18). 	 El 

(b) Standard monomials and the ring of invariants 

The following is the first fundamental theorem of invariant theory. 

SL( Theorem 8.6. The ring of (semi)invariants k[Mat(r, n)] r)  is generated by 
the (11

r) minors det Xi, I/ I = r, of the matrix (8.1). 	 Li 

We will give aproor Of this for the case r = 2. By Proposition 8.1, the common 
zero-set in Mat(2, n) of all the positive weight semiinvariants consists of the 
matrices of rank < 1. The projectivisation of this set in IDMat(2, n) = p2n —1 is 

 the image of the Segre map 

1 + 6t + 6t 2  t3  
P6(t) = 

(aibi • • • aibn 
((al a2), (b1 : . . . : bn )) 

a2b1 • • • a2bn) 
p1 x  pn — 1 c_±  p2n— 1 
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Writing 

(Xi X2 ' • • Xn) 
X = 

yi Y2 • ' • Yn 
(8.5) 

for the matrix of indeterminates (8.1), denote by In  C k[xi , • • • , Xn, yl, • • • , yid 
the ideal of polynomials vanishing identically on the Segre variety. This is the 
kernel of the homomorphism 

... , xn, yl, • • • , Yd --->- krsi, s2, t1, • • • , tni 

Siti 5 

S2t j • 

(8.6) 

This kernel contains, in particular, the 2 x 2 minors 

Pii (x, y) := 1 < i < j < n. 	 (8.7) 

  

The case r = 2 of Theorem 8.6 reduces, using the claim made in the proof of 
Theorem 4.51, to the following statement. 

Theorem 8.7. The homogeneous ideal In  of the Segre variety p1 x pn c___>  p2n-1 

is generated by the minors (8.7). 

It will be convenient to adopt the notation x = (xi, .. . , xn), Y = (Y 1 , - .. , yn), 

k[x, y] = k[xi, — , xn, yi, • • • , yd. 

Definition 8.8. A standard monomial in k[x, y] is a monomial 

Xi i Xi2  • • • XiaY ilY :12 • ' • Y' 
	

ii < • • • < ia, 	ll < — 5- ib, 

for which ia  < ji • 
	 0 

Let /,', c k[x, y] be the ideal generated by the minors pii (x, y). The idea, 
to show that In  C I„ is to 'straighten' arbitrary monomials, modulo /, into 
standard monomials. 

Lemma 8.9 (Straightening quadratic monomials). Every quadratic mono-

mial is congruent to a standard monomial modulo I. 

Proof xi  x1 and yi yj  are already standard monomials, as is Xi yi  if i < j. If 
i > j, we just note that Xi yi  is congruent to x 3  y, which is standard, modulo 

Po' (x  , .Y). 	 0 
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Lemma 8.10 (Straightening higher monomials). An arbitrary monomial in 
k[x, is congruent to a standard monomial modulo I. 

Proof Consider a monomial m = xi i  .. . x ia  y j, . . . jb  as in Definition 8.8 and 
suppose that i:„ > Ii. We write a(m) =ia  — Using the minor pia ji (x , y) we 
can replace x ia y j, by x ji yia  , and repeating this operation if necessary (since xi a 

 or yi, may occur with multiplicity in m) we can replace m by another monomial 
m' in the same residue class modulo I , in which one or other of x ia  or y j, 
does not appear. We then have ot(mi) < ot(m). Repeating this procedure we 
eventually obtain a monomial m" for which ot(m") < 0 and which is therefore 
standard. El 

The monomial in Definition 8.8 is of degree d = a + b. If we substitute 
X i 	yi 	s2tj , then we obtain a monomial 

5a5bt t 2  . . . tia t11  th  

which has degree d in each of s := (s1, s2) and t := (ti, 	, tn ). We will call 
this a monomial of bidegree (d, d) in (s, t). 

Lemma 8.11. The map induced by the substitution (8.6) 

I standard monomials I 	'degree d 	 degree d —>- 	 x [of degree d 	 monomials in s I {monomials in t I 

is bijective. 

Proof Any monomial of bidegree (d, d) in (s, t) can be written uniquely as 
4441 	tia  tj, 	Oh  with a + b = d and 1 < < • • < ia < 11 < - < A. 
But this is the image of the standard monomial x i , . . . xia  yi, . y jb . 	0 

Proof of Theorem 8.7. We have seen that /,c c In , and it remains to show 
the reverse inclusion. As d varies, the monomials of bidegree (d, d) in s, t 
form a basis of (the image of) k[x, Wi n . On the other hand, by Lemma 8.10, 
the standard monomials generate k[x, 3/]// n/ . Hence the two ideals In , 
coincide. 	 0 

(c) Young tableaux and the Plucker relations 

A Young diagram of size (k1, . .. , k r) is an array of r rows of empty boxes, with ki  
in the i-th row. Rectangular Young diagrams, for which ki = • • • = kr  = w, say, 
provide a useful tool for describing the weight w summand of the semiinvariant 



1 1 
2 3 

1 2 2 2 
3 3 3 3 
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ring k[Mat(r, n)]SL(r)• Here we restrict ourselves to the case r = 2 and will only 
be concerned with Young diagrams of size (w, w): 

. . . 

• • • 

We are going to use these to determine the relations among the generating 
SL, of the  minors pij (x, y) of the homogenous coordinate ring k[Mat(2, nA(2)  

Grassmannian G(2, n). 

Definition 8.12. 

(i) A Young diagram of size (w, w) in which each box contains an integer 
from {1, . , n} is called a Young tableau (for Mat(2, n)): 

il i2 ' 	• 	' 

-
-

1 
''"  I 

il ./2 ' 	• 	• iw 
1 < ic„ < n. 

(ii) A standard tableau (for Mat(2, n)) is a Young tableau whose entries satisfy 
the two conditions: 

< i2 < • • • < iw 

J1 J2E" Jw  • < 

	

i2 	iw  
A A • •• A 

	

ii J2 	.iw 

Examples 8.13. w = 1. Here a standard tableau looks like 

 

with i < j. 

   

   

w = 2. If n = 3, for example, there are exactly six standard tableaux: 

(S1) 

(S2) 

El 

Lenuna 8.14. The number of standard tableaux of size (w, w) for Mat(2, n) is 
equal to 

w — 1) 2  (n w\(n w — 2\ 
w 	\w+ l) w — 1 ) 
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Proof First, the number of Young tableaux of size (w, w) satisfying just con-
dition (Si) is 

+ w — 1) 2  

(Choosing either row is equivalent to choosing w objects from 1, . , n, 
R1, , R w _1, where Ra  denotes the rule let ia  = ia+ 1'.) Within this set we 
will classify those Young tableaux that are not standard. Suppose T is a Young 
tableau satisfying condition (Si), and that the first column from the left in which 
condition (S2) is violated is the a-th. In other words, i1 < ji, 1a-1 < la-1, 
but ia  > ja . In this situation we obtain a pair of nondecreasing sequences: 

Ii <  • < ja < ia < ia-1-1 < ••< iv) 	of length w + 1, 
< • • • < 1a-1 < 	< ' • < 1w 	of length w — 1. 

The set of such pairs has cardinality (nwd-±tvi ) +ww —1 2 ) by the same reasoning as 
above. It is therefore enough to show that the map 

nonstandard 
'Young tableaux I nondecreasing 	nondecreasing 

sequences of x sequences of 	(8.8) 
length w + 1 J 	I length w — 1 

is a bijection. We will construct the inverse map. Given sequences 

io < < • w - < iw , 
< • • • < iw _ , 

we want to construct a nonstandard Young tableau N. First we compare io and 
ii. If  io < Ii, then 

1 1 12 1 3 • • iw  

10 11 12 • • 	' 1w-1 

will do. If io > j1, then the first column of N will be 

• • • 

io 	• • • 

and we then compare i1 and 12. If ii< 12, then we take 

N = 11 1 2 1 3 ' 	' 	' 1 w 

10 1 1 32 " ' 1w-1 
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and we are done. If i 1 > h, then the first two columns are determined: 

• • • 

io 

and we compare i2 and j3. Repeating this process we eventually obtain a non- 
standard tableau and an inverse of the map (8.8). 	 El 

We now consider the ideal of relations among the 2 x 2 minors (8.7), that is, 
the kernel of the ring hornomorpism 

S = k[Piiii<i,j<n 	k[Mat(2, n)]S L(2) 

We denote this kernel by Jn  C S. 
For distinct numbers i, j k, 1 E {1, .. . , n} consider the 4 x 4 determinant 

Xi Xi Xk 

Yi Yj Yk 

Xi X1 Xk 

Yi Y j Yk yi 

Evaluating this by the Laplace expansion along the first two rows yields an 
identity 

Pk/(x, Y)pki(x, y) pik(x , y)i) 	y) + p jk(x, y)pii(x, y) = 0. 	(8.9) 

These (4) relations are called the Plucker relations for the ring k[Mat(2, n)]S 1.(2) 

The following is a special case (for r = 2) of the second fundamental theorem 
of invariant theory. 

Theorem 8.15. The ideal Jn  C S = k[p1 ] is generated by the Plucker relations 

PuPki — 	PikPa, 	1<i<j<k<1<n. 

111 

Proof To each monomial of degree w in S corresponds a Young tableau of size 
(w, w) by 

• 

Piiji • • • 
il i2 ' • ' iw 

ii h ' * 	' fw 

A monomial which corresponds in this way to a standard tableau is called a stan- 
dard monomial. Let J", C S be the ideal generated by the Plucker relations — so 
clearly J, c Jn . For i < j <k <1, the Plucker relation (8.9) can be interpreted 



8.1 Grassmannians as quotient varieties 	 245 

as saying that the monomial 

PikPii PikPii — PiiPk/ mod 

is nonstandard but is expressed as a sum of standard monomials modulo 
(This is 'quadratic straightening' — compare with Lemma 8 9.) Thus, by apply-
ing this process inductively one sees that an arbitrary monomial in S is congruent 
modulo J to a standard monomial. In other words, the residue ring S Jn  is 
spanned, as a vector space, by standard monomials. On the other hand, by 
Proposition 8.4 and Lemma 8.14, the number of standard monomials of degree 
w is equal to the dimension of (S Jn ) w , and hence dim(S/J) w  < dim(S/ Jii)w • 
The reverse inequality holds because J , C .1n , and so the two ideals are 
equal. 

Remarks 8.16. 

(i) It follows from this proof that for each w E N the standard monomials of 
degree w form a basis of (S/Jn ) w = k[Mat(2, n)] wL  j 2  - 

(ii) As well as an action of G L(r) on the left, the space Mat(r, n) has an action on 
the right by GL(n). Consequently, the semiinvariant ring k{Mat(r, n)]'
is a representation of the group GL(n). Moreover, the weight w summand 
k[Mat(r, n)]SwL)(r) is a finite-dimensional subrepresentation, and using the 
theory of characters one can show that it is irreducible. 

(d) Grassmannians as projective varieties 

By Theorem 8.6, the Grassmannian G(2, n) = Proj k[Mat(2, n)]51(2)  has an 
embedding as a closed subvariety of (n2) — 1 = (n — 2)(n + 1)/2-dimensional 
projective space: 

G(2, n)  

This map is called the Pliieker embedding. By Proposition 8.4, the polynomial 
H(w) of degree 2n —4 (see (8.4)) is the Hilbert polynomial of G(2, n), which 
means the following. 

Suppose that S = EBC_O  Su, is a graded integral domain with So = k and 
generated over k by Si . Then (see Remark 3.74) X = Proj S has a closed 
immersion in a projective space PN, where N 1 = dimk Si. 

(i) There exists a polynomial Hs(x) E (2[4 such that for some wo c N 

dim Sn, = Hs(w) for all w > wo. 

Hs(x) is called the Hithert polynomial of S. 
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(ii) The degree of Hs(x) is equal to the dimension of X. 
(iii) The leading coefficient of Hs(x) is equal to (deg X)/m !, where m = 

dim X. That is, 

deg X 
Hs(x) = 	x m  + lower degree terms, 

m! 
m = dim X. 

By definition, the degree of X is the number of intersection points 

xnlii n•..n Hit, 

with m general hyperplanes in PN. 

From (8.4) we obtain the following. (And we will return to re-examine this 
degree in the next subsection.) 

Proposition 8.17. G(2, n) C P(n 	has degree 
1  (2n — 4\ 

n — l_rz — 2 1 
El 

This number is called the ((n — 2)-nd) Catalan number and has various 
interpretations in combinatorics. For low values of n it takes the following 
values. 

dim G(2, n) 2 4 6 8 10 12 14 16 18 20 

deg G(2, n) 1 2 5 14 42 132 429 1430 4862 16796 

By Theorem 8.15, the Grassmannian G(2, n) cF01-3) /2  is cut out (scheme-
theoretically) by the (724) quadrics determined by the Pliicker relations of 
Theorem 8.15. Note, incidentally, that these quadrics are exactly the 4 x 4 
Pfaffian minors of the n x n skew-symmetric matrix P := (Pii)i<ii<n• (See 
Section 10.3(a).) 

Examples 8.18. 
G(2, 3) is isomorphic to the projective plane 1P 2 . 
G(2, 4) is isomorphic to a nonsingular quadric hypersurface in P 5 . 
G(2, 5) c P6  has codimension 3 and degree five and is the zero-set of 

5 quadrics. 
G(2, 6) C P 14  has codimension 6 and degree 14 and is the zero-set of 

15 quadrics. In this case the 15 quadrics are the partial derivatives, with 
respect to the 15 homogeneous coordinates, of the cubic Pfaffian of the 
6 x 6 skew-symmetric matrix of Pliicker coordinates. 	 0 
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The first and second fundamental theorems of invariant theory say that the 
homogeneous coordinate ring of the Grassmannian R = k[Mat(2, )]S'(2), as 

a module over the polynomial ring S = k[pii ], can be expressed in an exact 
sequence as follows: 

0 <-1?+-S*-(
n

4
)S(-2). 

Here S(e) denotes the graded S-module equal to S but with grading shifted 
by e. In this sense the arrows are all homomorphisms preserving the gradings. 
For the first few values of n one can use Example 8.5 to deduce that the exact 
sequence extends as follows: 

G(2, 4) : 0 <- R 	S 	S(-2) 	0 
G(2, 5) : 0 	R 	S 	55(-2) 	5S(-3) 	S(-5) <- 0. 
G(2, 6) : 0 	 15S(-2) 	35S(-3) 	21S(-4) 21S(-5) 

355(-6) <- 15S(-7) 	8S(-8) 	0. 

(e) A digression: the degree of the Grassmannian 

We will briefly explain the degree appearing in Proposition 8.17 from another 
more topological point of view - and the reader can happily skip this at a first 
reading. Our main reason for including this is that the ideas, in particular the use 
of the Pascal triangle, will reappear in Chapter 12 in connection with the inter-
section numbers in the moduli spaces of vector bundles and parabolic bundles, 
and the case of the Grassmannian may serve as a useful preliminary example. 

But first an even easier example. Throughout this section our field will be 
k = C. 

Example 8.19. What is the degree of the Segre variety 

ipn x Pn 	IPN , 	(x, y) 	x y t  , 

where N = n(n 2)? We have to compute in the cohomology ring H*(P" x 
, Z), which is isomorphic to Z[x,y]lI, where the generators x, y are the 

hyperplane classes et(p(1)) pulled back from each of the two factors and I = 
(xn+i yn+1) is the ideal of relations. 

The class xnyn, of top degree, is Poincare dual to a point, while the hyperplane 
class in the Segre space PN is x y. So the required degree is the integer d E Z 

such that 

(x + y )2n d xn y n mod I. 

By simple binomial expansion this number is d = (2nn). 
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Notice that this binomial coefficient is computed from a Pascal triangle, 
truncated by the relations X' yn+ 1  = 0. For example, in the case n = 4, 
the degree d = 70 comes from: 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
5 10 10 5 

15 20 15 
35 35 

70 

Notice also that if we fiddle this Pascal triangle by replacing the left-hand 
central column with Os, then the Catalan numbers appear in the central column, 
and the degree 14 at the bottom is (according to Proposition 8.17) that of the 
8-dimensional Grassmannian G(2, 6)! 

1 
0 1 

1 1 
0 2 

2 3 
0 5 

5 9 
0 14 

14 

It is this phenomenon that we are going to explain. 

The Grassmannian G(r, n) carries a tautological vector subbundle and quo-
tient bundle: 

0 --> .F ---> 06)11  ---> Q -± O. 

(See Section 8.5(b).) If .T has Chem classes x1, . .. , xr  and Q has Chern classes 
Si, • • • , Sn-r, then the total Chem classes satisfy 

1 
1 

4 

cCF)c(Q) = 1, c(F) = 1 + xi + - - - + xr , c(2) = 1 +S1 + • • • + sn_r . 

(8.10) 
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In other words, the si  are polynomials in the xj  defined by the formal power 
series expansion 

= 1 1 . 

	
(8.11) 

 + xit + • • - + xrtr i>o 

It is known that the classes xl, 	, xr, si 	, sn _r  generate the cohomology 
ring H* (G(r, n), Z) and that (8.10) generates all the relations among them. (See, 
for example, Bott and Tu [511.) In particular, it follows that the cohomology 
ring is generated by just Xi, , x r  with r relations sn-r+i = • • • = sn  = 0: 

H*(G(r, n), Z) = Z[xi, 	, Xr]l(Sn—r+19 • • • sn)• 
	 (8.12) 

These relations are an obvious consequence of the fact that rank Q = n - r. 

Proof of Proposition 8.17. We now restrict our attention to the case r = 2 and 
the Grassmannian G = G(2, n). We will write the cohomology ring as 

H*(G,Z) = Z[A, B]/(sn_i, sn), 

where A = -x1, B = x2 and the polynomials sj (A, B) are determined, via 
(8.11), by the recurrence relation 

si+ 1 As i  Bs i _i = 0, 	So = 1, Si = A. 	(8.13) 

For example, 

s2 = A2  - B, 
S3 = A 3  - 2AB , 

54 = A4  3A2B + B 2 , 

and so on. 
Note that A = c1(.Fv) = ci(det Fv). In other words, it is the hyperplane 

class in the Pliicker embedding. Our problem, therefore, is to deteimine the 
class A N  where N = dim G = 2(n - 2). 

On the othediancl,Bn -2  is Poincare dual to a point. This is because B is the 
second Chern class of .TV,  and so is Poincare dual to the zero-set of a global 
section of _Tv  , that is, of the set of lines contained in a hyperplane of P -1 . So 
B n-2  is Poincare dual to the set of lines contained in n - 2 general hyperplanes - 
that is, a Pl. 

Hence the degree of G(2, n) C P(n-2)(n+1)/2  is the number d e Z such that 

A 2 ' 2 	d B n-2  mod (sn_i, sn). 
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Now, just as in Example 8.19, this number is determined by a Pascal triangle. 
Namely, spread out the monomials in A, B, si  of top degree < N = dim G in 
an array (illustrated here for n = 6): 

B4  

A2 B 3  

A4 B 2 

A 6 B 

A 8  

A B 3 si 

A3  B 2s i 

A5  B 

A7si 

A2  B 2  s2 

A4  Bs2 

A 6  s2  

A3  Bs3 

A5  S3 
A4s4  

The recurrence relation (8.13) says precisely that this array is a Pascal triangle, 
with each entry obtained by adding those diagonally above it. From this it 
follows at once that the degree d is the bottommost entry in the Pascal triangle: 

1 
1 

1 	1 
2 

2 	3 	1 

1 
2 

Each entry in the array is the number of descending paths from the top 
(corresponding to B 4). In particular, the degree d is the Catalan number 

(2n — 4)! 	1 (2n-4  
(n — 1)!(n 2)! 	n — 	— 2 ) • 

(See, for example, Conway and Guy [53] p.105. Counting descending paths 
in the right-hand Pascal triangle is equivalent to counting 'mountain ranges'. 
Alternatively, see Stanley [58], where many combinatorial interpretations of 
Catalan numbers can be found in Ex. 6.19 (pp. 219-229).) 
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8.2 Modules over a ring 

Let R be a (commutative) ring. An action of R on an abelian group M is a map 

(a, m) i—>- am, 

which is distributive, a(m m') = am + am', associative, a(dm) = (ad)m, 
and satisfies Om = 0 and lm = m. Equivalently, we have a ring homomorphism 
R 	Hom(M, M). An abelian group M equipped with such an action of R 
is called an R-module. Homomorphisms of R-modules M 	N, submodules 
N c M, quotient modules MIN and direct sums MIEDN of R-modules are all 
defined in the usual way. We refer the reader to Atiyah and Macdonald [9] for 
a more systematic treatment than we can give here. 

Examples 8.20. 

(i) Every abelian group is a module over the ring Z, while a module over a 
field k is the same as a vector space over k. 

(ii) Any ring R is itself an R-module. In this case, the submodules are nothing 
other than the ideals of R. 

(iii) Any ring homomorphism : R -->- S makes S into an R module by the 
action as := 0(a)s for a E R, s E S. 	 LI 

If M is an R-module and a c R is an ideal, then 

aM := {am I a E a, m E MJ C M 

is a submodule. The ring R acts on the quotient MIaM, and the restriction of 
this action to a is zero. Hence MlaM is actually an R/a-module. This is called 
the reduction of M modulo a. 

(a) Localisation 

Localisation is a notion complementary to that of reduction MlaM. Let So c R 
be the subset consisting of elements which are not divisors of zero, and on the 
Cartesian product R x So define an equivalence relation 

(x', y') 	xy' = yx' 	 (8.14) 

We denote the equivalence class of (x, y) by x /y. The set of equivalence classes 
(R x So)/ — can then be given a ring structure by the rules: 

X X
t 	xyl + x'y , 

—+ — = 	 
Y 	Y; 	,YY' 	 (8.15) x x 	xx 
—x — 
y 	y' 	yy'' 
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This ring is called the total fraction ring of R and is denoted by Q(R). When R 

is an integral domain, Q(R) is its field of fractions. The injection R c---± 

x 1--> .f , identifies R with a subring of its total fraction ring. 
We now generalise this construction. A subset S c R — {0} containing 1 E R 

is called multiplicatively closed if x,y E S implies xy E S. We can then define 

an equivalence relation on the product R x S by 

(x, y) — (x', y') < 	? s(xy' — yx') = 0 for some s E S. 	(8.16) 

In the same way as (8.15) we now put a ring structure on the set of equivalence 

classes (R x S)I —. This ring is denoted S -1 R. Note that if S = So, and 

therefore contains no divisors of zero, then the two equivalence relations (8.14) 

and (8.16) coincide. Thus SeT 1  R is equal to the total fraction ring Q(R). 

The map 

x 
R --> S -1 R, x i—> — 

1 
(8.17) 

is a ring homomorphism whose kernel is the set of x E R such that sx = 0 for 

some s E S. In general, therefore, it is not injective. 

Example 8.21. Localisation at one element. If a E R is not nilpotent, then the 

set S = {1, a,a2 ,a3 , . . .} does not contain zero and is multiplicatively closed. 

In this case S -1  R is denoted by Ra • 	 El 

When R is an integral domain, R a  is the subring R[l I a] of the field of 

fractions generated by R and 1/a which has already been used in discussing 
algebraic varieties, and in particular the construction of the structure sheaf (see 

Section 3.1). 

Definition 8.22. The complement S = R — p of a prime ideal p c R is a 

multiplicatively closed set which excludes zero. In this case the ring R p  := 

S-1  R is called the localisation of R at p. 	 El 

The reason for the terminology is that R p  is a local ring, that is, a ring 
containing a unique maximal ideal. This ideal consists of elements expressible 

as x/s, where x E p, and is denoted by pRp  R. By construction of R p  , all elements 

not contained in pR p  are invertible, and it follows that pR p  c Rp  is maximal 

and, moreover, is the unique maximal ideal. 
The following is a very important fact about local rings. The reader should 

compare the proof with that of Lemma 2.20. 
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Nakayama's Lemma 8.23. Let M be a finitely generated module over a local 

ring (R, in), Then M = mM only if M = 0. 

Proof Let mi, . , m r  be generators of M. Then the condition M = mM says 
that 

=A 

for some r x r matrix with entries in m. Rewriting this as 

m 
4 	

) 
( — A) ( 

rn, 

and multiplying on the left by the adjugate of the R valued matrix 4 — A, we 
obtain relations 

det(4 — A)mi = 0 for each i = 1, . . . , r. 

But det(4 — A) is of the form 1 -I- a, for a E in, and hence is not contained 
in tn. Since (R, in) is a local ring, this implies that det(4 — A) is an invertible 
element of R, and hence m1 = • • • = mr  = 0. 	 111 

Nakayama's lemma is often used in the following form, whose proof we 
leave as an exercise. 

Corollary 8.24. Let M be a finitely generated module over a local ring (R, in). 
Then elements ml, 	, m r  generate M if and only if their residue classes  

Tr  span the quotient M ImM as a vector space over the field R/m. 

In this situation, if i 1 , 	, m r  E WITIM are a basis over R /ra, then we say 
that ml, . . . , m r  form a minimal system of generators of M. 

We can now generalise the above construction of fractions, with respect to 
a multiplicatively closed subset S c R, to any R-module M. First we put the 
same equivalence relation (8.16) on the product M x S. Then we define an 
action of SR on the set of equivalence classes (M x S)I — by 

m m' sm' s'm 	a m am 
— — = 	 — x — = 
S 	s' 	SS' 	5 	s' 	SS' 

(8.18) 
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This defines an SR-module which we denote by SM. Analogously 
to (8.17), there is a natural map M ---> S -1  M with kernel 

ker IM ---> S-1  M} = fin E M I sm = 0 for some s E Sl. 	(8.19) 

Corresponding to Example 8.21 and Definition 8.22, we can define localisations 

Ma at a nonnilpotent element a E R, and Mp  at a prime ideal p c R. 
In the case when S is the set So of ring elements which do not divide zero, 

Q(M) 	S0-1  M is called the total fraction module. 

Definition 8.25. An R-module M is called a torsion module if Q(M) = 0. If 
the natural map M --> Q(M) is injective, then M is said to be torsion free. D 

(b) Local versus global 

Let b c R be any ideal and a E R any ring element. In the ring Ra  the set of 
elements of the form x I an with n E N and x E b is an ideal which we denote 
by bRa . Note that, if a E b, then 1 E bRa , so we get a proper ideal only if 
a g b. If b c R is a prime ideal, then bRa  C Ra  is also a prime ideal, and b is 
the inverse image of bRa  via the map R ---> Ra . 

For the set of maximal ideals, in particular, we therefore have a bijection: 

Sprn Ra a-j D(a) := {m I a V ml c Spm R. 

(When R is an integral domain, we have already seen this in Section 3.2.) 
Note that, if a E R is nilpotent, then Ra  = 0 (and more generally Ma  = 0 
for any R-module M), and so D(a) is the empty set. (This is the converse of 
Theorem 2.27.) 

Definition 8.26. Suppose that the ideal generated by al, .. . , a, E R contains 1. 
That is, there exist b1, .. . , bn  E R such that 

aibi + • • • + anbn = 

Then the set lab ... , an } is called a partition of unity. In this case we have 

U7 1 D(a1 ) = Spm R. Given an R-module M, the collection of localisations 

Rai , ... , R an  and Ma„ .. . , Man  is called a covering of M. 	 0 

(See the paragraph on local properties in Section 3.1(c).) By expanding the 
relation (aibi -1- • - - + an bn )N  = 1 for N c N sufficiently large, we find: 

Lemma 8.27. If {al, . . . , an } is a partition of unity, then for any natural number 
k E N the set of powers {a ll, . . . , ank } is also a partition of unity. 	CI 
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Note that the coverings of an R-module M given by {al, 	, an } and 
... ,ank } are the same. 

Proposition 8.28. If {al, . .. , an } is a partition of unity and M is an R-module, 
then the natural homomorphism 

is injective. 

m 	ma i EDP • • ED man , 
In 	in 

(—. . . — 
1 	1 

Proof Suppose that m E M belongs to the kernel. That is, mil E Mai  is zero 
for each i — 1, . . . , n. By (8.19) this means that for some k E N we have 

ak M = ••• = ak
M = O. 1 

But by Lemma 8.27 this implies that m = 0. 

Corollary 8.29. If an R-module M admits a covering {Mai  } for which every 
Mai  = 0, then M = O. 	 LI 

In other words, the property M = 0 holds locally, in the sense of Sec-
tion 3.1(c), if and only if it holds globally. Such properties are common; in 
particular we shall often use the following. 

Proposition 8.30. Let f : M --> N be a homomorphism of R-modules, and let 
{a1, . .. , an } be a partition of unity of R. If all the localisations 

fai : Mai ----> Nat , 	i = 1, . . . , n, 

are isomorphisms (or injective, surjective, zero), then f is an isomorphism (or 
injective, surjective, zero, respectively). 	 LI 

The localness' of the vanishing of a module can also be expressed 
`pointwise': 

Lemma 8.31. ThefolloWing properties of an R-module M are equivalent. 

(i) M = 0. 

(ii) Mm  = 0 at every maximal ideal in c R. 

Proof (i) implies (ii) is trivial; we shall prove that (ii) implies (i). Given m E 

M, let 

Ann(m) = {a E R I  am = 01. 
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This subset is an ideal in R, called the annihilator of m E M. We shall show 
that Ann(m) = R for all m E M; this will show that M = 0. Pick a maximal 
ideal m c R. Then (8.19) and the hypothesis that S -1 M = Mm  = 0 imply 
that Ann(m) contains the complement S of m. This shows that Ann(m) is not 
contained in any maximal ideal m C R and is therefore equal to R. 

It is important to examine next the gluing principles by which a module 
M is reconstructed from a covering {M ai  }. First note that for each i, j the 
compositions 

1 
M> Mai —÷ Maiaj and M Maj 	Maiaj 

agree. 

Proposition 8.32. The sequence 

M- 
r 

--- ED Ma i 1 IED Maiaj 
j 

is exact in the sense that, given any collection of elements {x i  E Mai  } obeying 
the compatibility condition x i  = x1  E Majai  for all i, j, there exists a (unique) 
element m E M such that x i  = m 11 for each i. 

Proof Replacing the partition of unity {a1, 	, an } by {all, 	, 4} if neces- 
sary, it is enough to assume that each xi = m i lai  for some m i  c M. By 
hypothesis, (ai aj )P(aj m i  — a i m j ) = 0 for some p E N, and we can take p to 
be the same for all i, j. By Lemma 8.27 there exist elements b 1 , , bn  E R 

such that E . ce+lb • 1 If we take m=E .eb .m • then for each i we find J J 	— — 	 J J 

aP. ±1m =E(a.a.)Pa.b .m — 	\p„, vv, j 	j — Daii4j 	= arms. 

Hence in the module Mai  we have m/1 = armi  /4+1  = xi. The uniqueness of 
m follows from Proposition 8.28. 	 El 

Let Hom(S, R) be the set of ring homomorphisms S —> R. 

Proposition 8.33. Given a covering {Rai } of the ring R, the following sequence 
is exact: 

- -> 
Hom(S, R) 	Hom(S, Ra,) 

—+ FT Raiaj). 
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Proposition 8.32 allows one to reconstruct the module M itself by gluing. 
(This is a special case of descent under a faithful flat morphism.) 

Proposition 8.34. Suppose that a ring R admits a covering fRaj l and data 
consisting of the following. 

(i) For each i an Rai -module MI, 
(ii) for each pair i, j an isomorphism fij : (Mi)ai 	(M j)ai  satisfying: 

(iii) for each triple i, j, k, the cocycle condition fii fik = fik (Mi)afak 

(Mk)a. ai  

Then there exists, uniquely up to isomorphism, an R-module M such that 
Mai  Mi  for each i. 

To prove this it is enough to take for M the kernel of the homomorphism 

ED Mai —÷ ED 11/1  _alai 	(me) 
( fi; Oni  

1 

We leave the details to the reader. 

(c) Free modules 

The following generalises the notion of a basis in a vector space. 

Definition 8.35. Afree basis in an R-module is a subset B = Im i l iEl  satisfying 
the following conditions. 

(i) B generates M over R. 
(ii)Ei  aim = 0 for ai E R only if all ai  = 0. 

An R-module M which admits a free basis is said to be free. Equivalently, 
M is isomorphic to a direct sum of copies of R. 

Lemma 8.36. Let M be a free R-module with a free basis B. 

(i) For any maximal ideal m C R, the quotient module M mM has dimension 
equal to IBI as a vector space over the field R Im. 

(ii) The cardinality IBI is independent of the choice of basis and depends only 
on the module M. 

Proof (i) follows simply from the fact that the set {Tii I  m E B) c M/mM is a 
vector space basis. Part (ii) follows from (i). 	 LI 
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This cardinality is called the rank of the free module M. When R is an integral 
domain, it is also equal to the dimension of Q(M) as a vector space over the 
field of fractions Q(R). 

Every free module is torsion free (Definition 8.25). In special cases the con-
verse is also true (see Exercise 7.2): 

Proposition 8.37. If R is a principal ideal domain, then every finitely -  generated 
torsion free R-module M is free. 	 El 

The case R = Z is well known. By Theorem 2.4 the proposition also applies 
to the case R = k[x]. In the following chapters we shall often use the following 
(see Exercise 8.3): 

Corollary 8.38. If R is a discrete valuation ring (Section 2.4(b)), then every 
finitely generated torsion free R-module is free. 	 CI 

We now suppose that R contains the field k. If B = {m i } EI is a free basis, 
then the expression of an element m E M as m = Ei  am i  determines a 
linear map 

M --> ROkM, m1-* 	al  0 mi . 

If we view the vector space R Ok M as an R-module by multiplication on the first 
factor, then this map is a homomorphism of R-modules. This homomorphism 
can be used to characterise free modules. 

Lemma 839. Suppose R contains the field k and there exists a homomorphism 
of R-modules f : M --> R Ok M (that is, f (am) = (a 0 1) f (m) for a E R and 
m E M) satisfying the following two conditions: 

I. the composition of f with the map 

R Ok M ---> M , a 0 m 1----> am 

is the identity map; 
2. the following diagram commutes: 

f 
M ---> R Ok Al 

f, 	.1,1Rof 

R Ok M --> R Ok R Ok M 
a 0 m 1--* a0 10m 



8.2 Modules over a ring 	 259 

Then M is a free R-module. Moreover, any basis of the k-vector space 

MO = tin EMlf (n) = 1 0 m} 

is a free basis for M. 

Proof Mo c M is a vector subspace over k, and so it is enough to show that 
the natural homomorphism of R-modules 

q: R Ok M0 ---> M, 	a 0 m i-)- am 

is an isomorphism. Suppose that E j  bimi = 0 for some b./ E R and m1 E Mo. 
Applying f to this relation: 

0= 	f (b jm j) = 	(b j 0 1) f (m j ) = 	(b j  0 1)(1 0 m j ) = 	0 m j . 
i 
	

i 
	

i 

This shows that 0 is injective. 
Next, let {bj}j E j be a basis for R as a vector space over k. Given any m E M, 

we can write f(m)=Ei bi 0m 1  for some m j  E M. Applying the commutative 
diagram (2) we have 

E bi 0 1 ®m i  = 
i 

0 f ( I ii) . 

But {b3 } was chosen to be a basis, so we conclude that 1 0 m j  = f(m 3 ) for 
each j, which means that m j  E Mo. By condition (1), m =Ej bj 0m j , and 
hence 0 is surjective. 	 El 

(d) Tensor products and flat modules 

The tensor product of two R-modules is a notion that unifies those of reduc-
tion modulo an ideal M I aM on the one hand, and localisation S -1 M on the 
other. 

Let Im i  L E / be a set of generators of M. Then the R-module homomorphism 

lel  --->- M, (a)id 	aimi 

is called afree cover of M, and we denote its kernel by Km c RED 1  . Now let N 
be another R-module. Then the subset 

Rain)id I (ai)id E Km, n E NI C NEB!  

generates a submodule which we denote by KmN c NE 9I . 
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Definition 8.40. 

(i) The tensor product of M and N over R is defined to be the quotient 
R-module 

M OR N := NEBI  IKmN. 

(ii) Given m = E ai m, E M and n E N, the residue class of (ain)/E 1 in 
N€31. /KmN is independent of the choice of generators Imi,li EI and is de- 
noted by 

mOnEM OR N. 
0 

The R-module M OR N is independent of the choice of generators, up to 
isomorphism. Many of the important operations on modules can be expressed 
as tensor products. 

Examples 8.41. 

(1) Let a c R be an ideal. Then the module M = R/a is generated by a single 
element, so that KM = a and R/a OR N = NlaN. In particular, note that 
R OR N = N . 

(ii) The tensor product is distributive over direct sums: 

(M1 M2) ®R N-= (Mi OR N) ED (M2 OR N)• 

In particular, if M is a free module of rank r, then M OR N 
(iii) Let M = S-1  R, where S c R is a multiplicatively closed subset. Taking 

{Vs )„s as a system of generators, we see that Km  is generated by dif-
ferences [1/s] — t [ 1/st] E KE{9S . Thus the tensor product S -1  RORN is 
isomorphic to S -1  N. 	 0 

One can now easily verify commutativity and associativity of the tensor 
product: 

M OR N 'Ll N OR M, 

L oR  (M OR N)'--L--' (L OR M)OR N . 
(8.20) 

Moreover, by definition of the tensor product, any R-module homomorphism 
f : N1 ---> N2 induces an R-module homomorphism 

fm:moRN1 ---> M ( % N2, mOnt-->m® f(n). 

In other words, MOR is a functor from the category of R-modules to itself. 
We now come to a very important notion. 
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Definition 8.42. An R-module is flat if for every homomorphism f : N1 -÷ N2 

of R modules, 

f : N 1  -÷ N2 injective 	> f : M OR N1 ---> M OR N2 is injective. 

CI 

Examples 8.43. 

(i) Every free module is flat. 
(ii) Let S c R be a multiplicatively closed subset. It follows easily from (8.19) 

that, if f : N1 --›.- N2 is an injective R-module homomorphism, then 

f: S -1  N1 --+ 5-1  N2 is also injective. By Example 8.41 (iii), this implies 

that SR is a flat R-module. 	 D 

From part (ii) together with Example 8.41(iii) and the fact that the tensor 
product of two flat modules is again flat we deduce the following. 

Lemma 8.44. A module M is flat over R if and only if the localisation M m  is 

flat over R. for every maximal ideal m c R. 	 1=1 

The first indication of the importance of flatness is the following. 

Proposition 8.45. Over a local ring (R, m) every finitely generated flat module 

is free. 

Proof Suppose that M is an R-module with a minimal system of generators 

m 1 , • • • , in, E M. We will show that this system is a free basis. Let 

aimi + - - - + arm,. = 0 

be a linear relation among the generators, and let a c R be the ideal generated 

by the coefficients al, . . . , ar  E R. Then the element 

a := al 0 mi ± • • • ± ar 0 mr E aORM 

is in the kernel of the R-module homomorphism 

aORM--)-M=RORM, 

and therefore a = 0 if M is flat. We want to deduce from this that al = • • • = 

a, = 0. We consider the vector space over R/m, 

(a/ma) OR/Trt (M/InA1). 



262 	 8 Grassmannians and vector bundles 

Note that this is a quotient module of a OR M and that Ei  orTli  = -ey--  = 0. But 
by definition of a minimal system of generators this implies that all the (gener-
ating) elements Fri • • • 	E a/tna are zero. By Nakayama's Lemma 8.23 this 
implies that a = 0, and we are done. 	 CI 

8.3 Locally free modules and flatness 

(a) Locally free modules 

Unlike the vanishing M = 0, the properties M R and of being free are not 
local properties. 

Definition 8.46. An R-module M is locally free if it admits a covering {Mai 
 by some partition of unity al, . , a, E R, for which each Ma, is a free 

Rai  -module. 	 El 

Given some mild conditions, local freeness can be characterised in terms of 
the localisations at maximal ideals: 

Proposition 8.47. Suppose that R is a Noetherian ring and that M is a finitely 

generated R-module. Then the following are equivalent. 

(i) M is locally free. 

(ii) For every maximal ideal m C R the localisation Mm  is a free km -module. 

Exercise 8.5 shows that the hypothesis that M is finitely generated cannot be 
relaxed. 

Proof (i) 	 (ii) Let {al, • , an } C R be a partition of unity as in Defini- 
tion 8.46. Then the multiplicatively closed set R — m contains some ai . By 
hypothesis, Mai  is a free Raj  module, and hence Au  is a free R m.-module. 

(ii) 	> (i) Let m c R be a maximal ideal and let mils, 	, m r/s E Min  

be a free basis, where m i  E M and s E R, s 	m. We then consider the 
homomorphism of R-modules 

ERs  El) - - R s 	 (al, 	, 	
aimi 

 
i=1 

Denote the kernel and cokernel by K, C. These are both R-modules whose 
localisation at m is zero; they are finitely generated, and so there exists a ring 
element t m such that tK = tC = 0. Therefore, taking a = st, the localisa-
tion Ma  is a free Ra-module. 
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What we have shown is that for every maximal ideal in c R there exists 
am  E R m for which the localisation Marr, is free. The ideal generated by 
the am  as in ranges through all maximal ideals is the whole of R. Since R is 
Noetherian, a finite subset of am  can be taken to give a partition of unity, and 
hence M is locally free. 

Proposition 8.48. A finitely generated module M over a Noetherian ring R is 
locally free if and only if it is flat. 

Proof If M is locally free, then each localisation Mm  at a maximal ideal in c R 
is a free km -module, and therefore a flat R m -module by Example 8.43(1). By 
Lemma 8.44, this implies that M is flat over R. Conversely, if M is flat, then 
each localisation Mm  is flat over Rm  and therefore free by Proposition 8.45. 
Hence M is locally free by Proposition 8.47. 1=1 

If M isNa locally free module, then by Lemma 8.36 the set of maximal ideals 
for which dimR/m (M/mM) equals some value r is an open subset of Spm R. 
Hence: 

Proposition 8.49. If M is any locally free R-module, then dimR i m (M mM) is 
constant on connected components of Spm R. 	 0 

The rank of a locally free module (at a maximal ideal in c R) is defined to 
be this dimension dimR/m (M/mM). By Lemma 8.36 it is equal to the rank of 
the free localisations of M. 

Remarks 8.50. 

(i) Partitions of Spm R into two disjoint open subsets correspond to (nontrivial) 
idempotents e E R, e 2  = e. See Exercise 7.6. 

(ii) If R has no nontrivial nilpotents, then the converse of Proposition 8.49 is 
also true. See Exercise 8.7. 	 El 

Many of the linear algebra constructions that are familiar for vector spaces 
carry over in a similar manner for locally free modules. 

Proposition 8.51. If M, N are locally free R-modules, then the following hold. 

(i) The direct sum M IED N is locally free and rank M N = rank M 
rank N. 
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(ii) The R-module HomR(M , N) is locally free and rank HomR(M, N) = 

rank M x rank N. - 

(iii) The tensor product M OR N is locally free and rank M OR N = rank M x 
rank N. 

Proof We will prove (iii). By hypothesis there are partitions of unity 
{a1, , an } and {b1, . . . , b in } giving coverings {Mai  } and {Nb i  } by free mod-
ules. Then the collection {a i  bj  } is also a partition of unity and each Mai  b, Nai bj  

is free. Therefore the tensor products Mo ./  Nai b, are free (tensor products 
of free modules are free by Example 8.41(ii)); and since 0 commutes with 
localisation, it follows that M OR N is locally free. El 

The special case N = R of part (ii) of this proposition is called the dual of 
the locally free module M, and denoted 

M Y  :=HomR(M , R). 

Proposition 8.52. If M is any locally free module, then (My)v :==.' M. 

Proof The evaluation map 

M x HomR(M, R) R, (m, f) f (m) 

determines an R-module homomorphism 

M HomR(HomR(M, R), R) = (Mv . )v  • 

If M is a free module, this is an isomorphim. But HomR commutes with locali- 
sation, and so by Proposition 8.30 it is also an isomorphism for any locally free 
module M. 	 CI 

The next fact will be needed in Section 8.5(b) later on. 

Lemma 8.53. If M is a locally free R-module, and R 	S is any ring homo- 

morphism, then M OR S is a locally free S-module. 	 CI 

(b) Exact sequences and flatness 

A sequence of R-module homomorphisms 

, 

• • 	N 	--->- v ---> Ni+1 
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is exact if, at each term, Im fi _ i = ker fi  c Ni. Of particular importance is 
the case 

0 --›- Ni ---> N2 ---> N3 -> 0, 	 (8.21) 

in which the map N1  -÷ N2 is injective and the map N2 --> N3 is surjective. 
This is called a short exact sequence. 

Proposition 8.54. For the short exact sequence (8.21): 

(i) if N1, N3 are flat, then N2 is flat; 
(ii) if N2, N3 are fiat, then N1 is flat. 	 111 

Before proving this we need some preliminary facts. The first of these is 
really the background to the definition (8.42) of flatness. 

Lemma 8.5 (Right exactness of OR). If the sequence 

N1 ----> N2 --> N3 --> 0 

is exact and M is any R-module, then the sequence 

M OR N1 ---> M OR N2 -4-  M (DR N3 --> 0 

is exact. 

Proof We consider first the case M = R/a, where a c R is an ideal. We have 
a commutative diagram with exact rows: 

f 
NI ---> N2 

U 
aN2 

g _> 

_> 

N3 -> 0 

U 

A residue class/2 E N2/aN2 maps to zero under g I ag if and only if n E N2 lies 
in f (Ni) ± aN2, and this in turn is equivalent to saying that Ft is in the image 
of Ni/aNi. This proves the lemma for M = R/a, using Example 8.41(1). 

For the general-case-we return to Definition 8.40. If M = R' /KM , then the 
tensor product is MORN = NE1)1 1KmN. We now consider the diagram 

N?.1  -> 41  --> 41  -> 0 

U 	U 

Km N2 ---> Km N3 —> 0 

and apply the same reasoning as in the first case. 	 CI 



266 	 8 Grassmannians and vector bundles 

It follows from this that if M is a flat R-module, then the functor Mc% takes 
short exact sequences to short exact sequences. Such a functor is said to be 
exact. 

A flat module need not be free, and one can discuss whether there exists a 
free basis. 

Lemma 8.56. Suppose that M, N are R-modules and M is flat. Suppose also 
that elements m1, . , rn, E M and ni, . ..,nr  E N satisfy Erni  n = 0 E 

M OR N. Then it is possible to express 

(an) 

+ • • - 

ar i 

als 

ar S 

for some m'1 9 	,ni E M and ring elements aij  satisfying 

(an 

(ni, . • • , Fir) 	:. 
a11 

=0. 

Proof We consider the homomorphism 

f:RED•••@R-->N, 	a= 

a.r  

and tensor with M. Writing K = ker f,  the flatness of M implies that we obtain 
an exact sequence 

M OR  K M 	EDM-1-24MORN. 

Since m = (m1, . . . , m r) c ken l 0 f,  it follows that m is equal to the image 
of  Es. 

1 	
a m' 0 a for some l , ..., m E M and al , 	, a E K. 

J= 

We are now moving towards the proof of Proposition 8.54. The following is 
well known. 

Snake Lemma 8.57. Let 

0—+ u 	V 	W ----> o 
f4, 	g 	h4.  

0 	U' —> V' —> W' —> 0 

E ai n i , 
i=1 
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be a commutative diagram of modules in which each row is exact. Then there 

is an exact sequence 

0 ---> ker f ker g ker h 	coker f coker g 	coker h 	0 

where the connecting map 8 : ker h 	coker f is defined by S : w F--->- g(v) E 
U' mod f (U), where V E V is a lift of w. 	 I=1 

Lemma 8.58. Suppose 

0 —> N±> N2 -> N3 -> 0 

is a short exact sequence of R-modules and that N3 is flat. Then for any R-

module M the homomorphism 

1m0f:M OR N1 -4-  M OR N2 

is injective. 

Proof As in the proof of Lemma 8.55, we write M = R' /KM. Then, applying 

the Snake Lemma to the commutative diagram 

Km  oR  N2 -----> ATI  ---> M OR N2 	0 

f 1 Km  f 	tf 	tlM® f 

Km OR N1 	 -÷ M N1 -› 

we obtain an exact sequence 

KM OR N3 ---> 	Arr 

II 	 II 
ker fED I 	ker 1 11/  0 f 	coker 'Km  0 f -÷ coker f . 

Since f is injective, ker fe i  = 0. On the other hand, Km  -+ R634  is injective 

and N3 is flat, so coker 1 Km  0 f 	coker f (I)  is also injective. Hence ker 

f = 0. 	 0 
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Proof of Proposition 8.54. Let f : A 	B be an injective homomorphism of 
R-modules and consider the commutative diagram: 

Ni OR B 	N2 OR B 	N3 OR B 

T A 	t f2 	T 

Ni OR A 	N2 OR A —> N3 OR A 

(i) If fi and f3  are injective, then f2 is injective. 

(ii) By Lemma 8.58 the lower left map a is injective. If h is injective, then 

this implies that fi is injective. 	 LI 

One can summarise the results of this section as follows. 

Theorem 8.59. Let R be a Noetherian ring and 

f , 
1 —> v 2 —> N3 —> 	 Na  —> N a  —> 0 

an exact sequence offlat R-modules. If the R-module ker f is finitely generated, 

then it is locally free. 	 LII 

8.4 The Picard group 

Definition 8.60. 

(i) A locally free R-module L of rank 1 is called an invertible R-module. 

Equivalently, L is an R-module locally isomorphic to R. 

(ii) The set of all isomorphism classes of invertible R-modules is denoted by 
PicR . 	 LI 

By Proposition 8.51, the tensor product of two invertible modules is again in-
vertible. Moreover, if L is an invertible module, then tensoring with its dual gives 

L OR L v  HomR(L, L) L' R. 

For this reason we write L y  = L -1  in this case, and PicR becomes a group 
under the operation OR, called the Picard group of R. By (8.20) this is an 

abelian group. 

(a) Algebraic number fields 

An ideal a c R is called an invertible ideal if there exists an ideal b c R 

such that ab = c R for some c E R not dividing zero. An invertible ideal 
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is an invertible R-module (Exercise 8.8), and historically these were the first 
invertible modules to be studied. 

Example 8.61. In the integral domain R = Z[117] the ideal a = (2, 1+ V-17) 
is invertible since 

a2 	= (2, 1 + 	 (2, 1 — 	= (4). 

In this example a is locally free but not free. (Compare this with Exer- 
cise 2.1.) 	 LII 

Recall that a root of a monic polynomial with coefficients in R is said to be 
integral over R (Definition 2.19). 

Lemma 8.62. Let R be a subring of a field K. 

(i) An element b E K is integral over R if and only if the subring R[b] c K 

is finitely generated as an R-module. 

(ii) The set of b E K that are integral over R is a subring of K, called the 

integral closure of R in K. 

(iii) Suppose that b E K is a root of an equation 

f (x) = aoxn a 1 xn -1  ± • • + an_ix ± a, = 0, 

whose coefficients a i  E K are all integral over R. Then the coefficients of 

f(x)1(x — b) are also integral over R. 

(iv) Given polynomials f(x) = EL°  ai xn -i  and g(x) 	 E 

lag suppose that f(x)g(x) E R[x]. Then the products a i b j  E K are all 

integral over R. 

Proof 

(i) is well known and is an application of the determinant trick used in the 
proof of Lemma 2.20 and Nakayama's Lemma 8.23, to the action of b on 
R[b]. 

(ii) follows from (i). 
n- (iii) Multiplying the equation by a 1  o  shows that aob is integral over R. So 

if we write f (x) = ao(x — b)xn -1  g(x), then the polynomial g(x) has 
the same properties as f (x) but has degree one less. The result therefore 
follows by induction on the degree. 

(iv) We can assume that aobo O. Let al, . . . , an,+„ be the roots of f (x)g(x) = 

0 in some algebraically closed field containing K. Then for each subset 
/ C {1, . . . , m+n] it follows from (iii) that aobo fl  cei is integral over R. 
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Using the relations between the roots of an equation and its coefficients, 
each a, b3  can be expressed as some sum of such products, and by (ii) it is 
therefore integral over R. 	 0 

Let K be an algebraic number field, that is, a finite extension of the rational 
numbers Q, and let OK be the ring of algebraic integers in K, 

OK := (integral closure of Z in K) C K. 

Proposition 8.63. Every nonzero ideal a C OK is invertible. 

Proof Suppose that a has generators al, . . . , a„ and consider the polynomial 

-1 

	

f (x) = aixn + • • • + a„_ix 	E OK[X]. 

If K has degree d = [K : 0:2], then we can construct d polynomials 
f(i) = f, f  (2)- • , f (d) c C[x], whose coefficients are the conjugates in C 
of al, . . . , a,, E K over Q. Let g(x) = f (2) . . . f (d) ; then f (x)g(x) E Z[X] and 
g(x) E OK [x]. Let m be the greatest common divisor of the coefficients of 
f (x)g(x) and b C OK the ideal generated by the coefficients of g(x). Clearly 
m E MI, and Lemma 8.62(iv) applied to f (x)g(x)I m shows that ab C mOK- 
Hence ab = mOK and a is an invertible ideal. LI 

Definition 8.64. Let R be a subring of a field K. 

(i) A finitely generated R-submodule of K is called a fractional ideal of R. A 
fractional ideal generated by a single element is called a principal fractional 

ideal. 
(ii) Two fractional ideals a, ti c K are equivalent if a = cb for some c E 

K — {0}. 	 LI 

By Proposition 8.63, every nonzero fractional ideal a of the ring of algebraic 
integers OK is an invertible OK-module. Conversely, by choosing a basis for 
the total quotient module Q(a) (as a 1-dimensional vector space over Q(OK)) 

we see that every invertible O K -module is isomorphic to some fractional ideal 
a C K, and the equivalence class of a is independent of the choice of basis. We 
arrive at: 

Proposition 8.65. The Picard group of the ring of integers OK in an algebraic 
number field K is isomorphic to its divisor class group 

nonzero fractional ideals 
principal fractional ideals 

0 
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(b) Two quadratic examples 

We will compute the Picard group Pic R for two examples: for the ring of integers 
R = OK of an imaginary quadratic number field K, and for the coordinate ring 
R = k[C] of an affine hyperelliptic curve C. Useful references for this section 
are Taussky [59], or Borevich and Shafarevich [50]. 

We shall call a matrix with entries in a ring R an R-matrix for short; and 
we shall say that two R-matrices A, B of the same size n x n are R-similar if 
A = XBX -1  for some invertible matrix X E GL(n, R). 

Theorem 8.66. Suppose that the ring of algebraic integers OK is generated by 

a single element a E OK, that is, OK = Z[cd, and suppose that a is a root of 

a polynomial of degree n = [K : Q], irreducible over Q, 

f (x) = xn + 	+ • • • + an_ix + an E Z[X]. 

Then there is a natural bijection between the following two sets: 

(1) Pic OK; 
(2) Z-similarity classes of n x n Z-matrices with characteristic polynomial 

equal to f (X). 

Proof Let a be an invertible OK-module. This is torsion free, and so by Propo-
sition 8.37 it is free of rank n as a Z-module. Let al, .. . , an  e a be a free basis 
over Z. Now a is a OK = Z[a]-module, and so 

al 	al 
a 	= M 

for some n x n Z-matrix M Moreover, f (M) = 0 since f (a) = 0. Since 
f (x) is irreducible over Q, it is precisely the minimal polynomial of M, and the 
characteristic polynomial since it has degree n. While M depends on the choice 
of Z-basis a1 , . . . , an  E a, its Z-similarity class does not. And if we start with 
two isomorphic OK-modules a, a', then the matrices M, M' that we obtain are 
similar. We have_therefore constructed a map from (1) to (2). 

Conversely, suppose we are given an xn Z-matrix M whose characteris-
tic polynomial is equal to f (x). Then by the Cayley-Hamilton Theorem the 
mapping a M determines a ring homomorphism 

Z[a] 	End Zn . 

This homomorphism makes Zn into an OK = Z[a]-module, let us denote it by 
am. Extending the coefficients to Q makes this module a m  into a rational vector 
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space naturally isomorphic to K. In other words, am 	K as a fractional ideal 
of OK. We have therefore constructed a map from (2) to (1) which is precisely 
the inverse of that above. 

We want to consider, in particular, the case of a quadratic number field Q(Nrci). 
We suppose that d 0, 1 and that d is squarefree. The ring of integers is then 

if d 1 mod 4, 

z[Nrii] 
	

if d 1 mod 4. 

Corollary 8.67. There are a natural bijections among the following three sets: 

(/) Pic 
(2) Z-similarity classes of 2 x 2 Z-matrices satisfying the condition 

d 12  = (2M — 12 )2  if d 	mod 4 

d12  = M2 	if d # 1 mod 4; 

(3) GL(2,Z)-orbits of integral quadratic forms ax 	bxy cy 2  satisfying 

b2  — 4ac = D
Id if d 1 mod 4 

 : 

4d if d # 1 mod 4, 

where the GL(2, Z) action on quadratic forms is the usual one twisted by 

the determinant.-  

( a 	b12) 

b12 c 
(det A)A 

( a 	b12 A  
12 c 

Remark 8.68. If d < 0, then the set of quadratic forms with discriminant D 
is a union of positive definite and negative definite forms. These subsets are 
transposed by the action of GL(2, Z) but are preserved by SL(2, Z). The set 
(3) is therefore equivalent to: 

(3') S L(2, Z)-orbits of positive definite integral quadratic forms ax 2  +bxy +cy2  

with discriminant D. 

Proof The bijection between (1) and (2) follows directly from Theorem 8.66. 
To map from (2) to (3), suppose first that d12  = M2 . This is equivalent to saying 
that M has trace zero and determinant —d, so M can be written as 

m  = 
bI2 --b12)

a 	 b2 
ac — = —d. 
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Then 

:= M 
(0 	1 	( a 	b12) 

0) — b/2 c 

is a symmetric matrix defining a quadratic form ax 2  bxy cy 2  with dis-
criminant 4d. Moreover, under a similarity M AMA -1  the matrix M' 
transforms to 

1 	 1 
AMA-1  ( 0  1  1 ) = AM

( 0
- 1 )

A _ 1  ( 0
-1 ) 

' 	 = (det A)AM'A t . 
0 ) 	 0 	 0  

This construction determines a bijection between (2) and (3) in the case d 1 
mod 4. The case d 1 mod 4 is similar. 

For an imaginary quadratic field, where d < 0, the Picard group Pic Ova is 
now completely determined by the following fact. 

Lemma 8.69 (Gauss). Each SL(2,Z)-orbit of positive definite integral 
quadratic forms ax2  bxy cy 2  has a unique representative satisfying 
—a<b<a<cor0<b<a=c. 

The set of complex numbers (—b ,Nr15)12a for which these inequalities are 
satisfied lie in the region shown in Figure 8.1. 

1/2 
	

1/2 

Figure 8.1: The fundamental domain 
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Example 8.70. Take d = -41. Using Lemma 8.69, a complete set of 2 x 2 
Z-matrices M satisfying M2  + 4112 = 0, up to Z-similarity, is given by 

( 0 1\ ( 1 2) ( ±1 	( ±1 6\ (±2 5 
-41 OF -21 -1) ' -14 +1) ' -7 m1)' -9 T2 ' 

Hence the imaginary quadratic field Q(J-41) has class number 8 (that is, 
IPic °J-4 1 41 , - 8), and its ideal classes are represented by: 

(1, -V-41), (2, 1 + A/-41), (3, T1 + N/-41), 

(6, +1 +A,/-7T-1), (5, +2 + 41-41). 

(For an example where d.._--_ 1 mod 4, see Exercise 8.9.) 	 Ill 

We can apply the same reasoning as for Z to the polynomial ring k[x] (see 
Proposition 8.37), and we will consider next the Picard group of the quadratic 
extension k[x , N/d(x)], where d(x) E k[x] is a nonconstant polynomial. We 
assume that d(x) has no square factors in k[x]. Then k[x , ..N/ d(x)[ is the integral 
closure of k[x] in the field k(x , N/ d(x)). 

Proposition 8.71. There is a natural bijection between the following two sets: 

(1 ) Pic k[x , , V d(x)], 
(2) k[x]-similarity classes of 2 x 2 k[x]-matrices M satisfying M 2  -=- 

d(x)12. 	 El 

We can write such a k[x]-matrix in terms of three polynomials f (x), g(x), 
h(x) e k[x] as 

(g(x) - f (x)) 
M = 	 , g(x) 2  - f (x)h(x) = d(x). 	(8.22) 

h(x) -g(x)j'  

Under the bijection of Proposition 8.71, this matrix corresponds to the isomor-
phism class in the Picard group of the ideal 

(f (x), g(x) - A/ d(x)) C k[x , id(x)]. 

Within the k[xl-similarity class of the matrix (8.22) we can choose f (x) to have 
minimal degree and replace g(x) by its remainder on division by f (x). By this 
means, we find a representative for which 

deg g(x) < deg f (x) < h(x). 



(cx + e —(x — ai)(x — a2)) 
h(x) 	—cx — e 
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This is the analogue of Gauss's Lemma 8.69. If d(x) has odd degree, then 
equality cannot hold on the right, and we conclude: 

Lemma 8.72. If deg d(x) = 2p +1, then the k[x]-similarity class of the matrix 
(8.22) has a uniquely representative satisfying deg g(x) < deg f (x) < p < 
h(x) and f (x) monic. 	 0 

Example 8.73. Suppose deg d(x) = 3. Then f (x) is either constant or linear. 
The constant case corresponds to a principal ideal in k[x , .Vd(x)]; otherwise, 
f (x) is linear and g(x) is constant. If g(x) = b, then f (x) = x — a, where a 
is a root of d(x) b 2  = 0. What we have shown is that there is a bijection, 
when deg d(x) = 3, between the Picard group of k[x, .Vd(x)] and the elliptic 
curve 

C : {y2  = d(x)} U fool, 

given by: 

Pic k[x, ,Vd(x)] 

point (a, b) 
point at infinity oo 

ideal class (x — a, b — x 3  — 1) 
principal ideals 

Via this correspondence, in fact, the group structure of Pic k[x , .Vd(x)] coin-
cides with the well-known group law es on the plane cubic curve C c 11)2  which 
is uniquely determined by the rules: 

p,q,r ECcollinear < 	> p@qEDr =0, 

point at infinity oo 	= group identity 0. 
0 

Example 8.74. Suppose deg d(x) = 5. Then deg f (x) < 2. If deg f (x) = 2, 
then the matrix (8.22) takes the form 

where, moreover, the line y = cx + e is that passing through the two points 
p1  = (ai , b1), p2 = (a2, b2) of the affine hyperelliptic curve C = {y2  = d(x)}. 
(If the two points coincide, then y = cx e is the tangent line to the curve.) 
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The corresponding ideal is 

((x — ai)(x — a2), cx + e — -I d(x)) c k[x, Vd(x)]. 

It follows that Pic k[x, ,Vd(x)] corresponds birationally to the symmetric prod- 
uct Sym2 C of the curve. 	 El 

In general, the story is this: the Picard group of k[x, .Vd(x)] can be given the 
structure of a p-dimensional algebraic variety, where deg d(x) = 2p ± 1, and 
this variety is birationally equivalent to the symmetric product SymP C of the 
hyperelliptic curve of genus p 

C : {y 2  = d(x)} U fool. 	 (8.23) 

(See Example 9.7 in the next chapter.) 

8.5 Vector bundles 

Let X be an irreducible topological space and F an elementary sheaf on X. If 
K is the total set in which F takes values (Definition 3.2), it may happen that 
F actually takes values in some smaller subset K' c K. It is convenient, and 
should not lead to any confusion, to agree always to take the smallest such set. 
This smallest total set of the sheaf is the inductive limit taken over nonempty 
open sets in X with respect to the inclusion relation: 

Fgen  := lirn F(U) = U F(U). 
voo u00 

The set Fgen  will be called the (minimal) total set of the sheaf, or the stalk at 

the generic point. 

Example 8.75. If R is an integral domain and X = Spm R with its Zariski 
topology, then we have defined the structure sheaf as an elementary sheaf of 
rings in the total set Q(R), the field of fractions of R. (See Section 3.1.) In this 
case Q(R) is also the minimal total set. El 

If we fix a point p E X, we can put the same partial ordering by inclusion 
on the collection of open sets containing p by 

U>V < 	> UC V. 
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Recall that UcVF(U)D F(V). The limit over all open sets containing p 

Fp  := lim F(U) = UF(U) 
pEU 

pEU 

is called the stalk of F at the point p E X. 

Example 8.76. If X = Spm R, then p E X corresponds to a maximal ideal 
m c R. In this case the stalk of the structure sheaf F = Ox is the localisation 
of R at m, 

Ox, p  = Rm . 

In general, if Y c X is an irreducible closed subset, then the limit 

lim F(U) = 	F(U) 
ynuo0 	Ynuo0 

is called the stalk of F at (the generic point of) Y. The stalks Fgen  and Fp  are 
special cases of this. 

(a) Elementary sheaves of modules 

Let 0 be any elementary sheaf of rings on the topological space X. 

Definition 8.77. An elementary sheaf of 0 -modules on X is an elementary 
sheaf M satisfying the following conditions. 

(i) The total set M 	S an 0 _ gen  __ 	_ gen -module. Denote the corresponding action by 
: Ogen  X Mgen Mgen• 

(ii) For every open set U c X we have 0(0(U) x A/1(U)) c M(U). 

Condition (ii) says that every A/1(U) is an 0(U)-module, and it also follows 
that at every poiiif p —E-X the stalk Mp is an Op-module. 

Definition 8.78. Let R be an integral domain, and let M be a torsion free R-
module (that is, M c-->- Q(M)). Then the total fraction module Q(M) is a vector 
space over the field of fractions Q(R), and on the affine variety X = Spm R 
we define an elementary sheaf of Ox-modules 41  with total set M gen  = Q(M) 
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by assigning to each basic open set D(a) c X, a E R — {0}, the localisation 

M(D(a)) := Ma  = II; ImEM, n _> 01 C Q(M). 

0 

Note that this generalises the construction of the structure sheaf Ox itself 
(Section 3.1). Note also that the stalk of M at a point p e X corresponding to 
a maximal ideal m c R is the localisation M = Mm . 

Remark 8.79. We have assumed here that R is an integral domain; but if R 
is a primary ring (Definition 3.24), a torsion free R-module determines in the 
same way an elementary sheaf of Ox-modules. 	 El 

Example 8.80. Let R be an integral domain, let p c R be a prime ideal and let 
M be a torsion free module over R/p. (In particular, M is also an R-module, 
though not necessarily torsion free.) Define on X = Spm R an elementary sheaf 
of Ox-modules with total set Q(M) by assigning to a basic open set D(a) c X, 

a E R — {0}, the Ra-module 

I MTI  if a g p, 
10 	if a E p, 

where a E R/p is the residue class of a. This construction gives an extension of 
the elementary sheaf M on the closed subset Y = Spm R/p c X to the whole 
of X, which is zero on the complement X — Y. 

A special case occurs when p is a maximal ideal m corresponding to Y = 
{p} C X, a single point, and M = R/m. In this case we obtain an elementary 
sheaf on X which assigns to an open set U C X the module 

I R/m if p E U, 

1 0 	if p V U . 

This is called the skyscraper sheaf supported at the point p. 	 0 

Suppose that .A/1, Ai are elementary sheaves of abelian groups on X. A sheaf 

homomorphism f : .A4 --> Al -  consists of a group homomorphism of the 
total sets 

fgen : Mgen —± Argen, 

which for every open set U c X satisfies 

fgen(M(U)) c Ar(U). 
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If M, N are elementary sheaves of 0-modules and fgen  is a homomorphism 
of Ogen-modules, then f : M IV is called an 0-homomorphism. 

Definition 8.81. A homomorphism f : M —> .11r of elementary sheaves of 
modules is said to be infective, surjective or an isomorphism if at every point 
p E X the induced homomorphism on the stalks f : .11/1 p 	Alp  has the 
respective property. 	 El 

If f is injective, then on every open set U c X the induced homomorphism 
.A4(U) --->- N(U) is injective. However, the same is not true if we replace 
injective by surjective. It is for this reason that sheaf cohomology theory is 
important. (See Section 10.1.) 

(b) Line bundles and vector bundles 

Definition 8.82. On an algebraic variety X an elementary sheaf L of Ox-
modules is called an invertible sheaf, or a line bundle, if it has the following 
two properties: 

(i) The stalk L gen  at the generic point is a 1-dimensional vector space over the 
function field k(X). 

(ii) L is locally isomorphic to the structure sheaf Ox. In other words, there exists 
an open cover {U i } jE/  of X such that each restriction Li u, is isomorphic 
to Ou, • 

We include condition (i) for clarity, although it is not hard to see that it follows 
from (ii). This definition is the special case r = 1 of the following. 

Definition 8.83. An elementary sheaf on an algebraic variety X whose stalk 
at the generic point is an r-dimensional vector space over k(X) and which is 
locally isomorphic to the direct sum 07 is called a locally free sheaf, or a 
vector bundle of rank r. El 

Intuitively, a vector bundle of rank r is a family of r -dimensional vector 
spaces parametrised by the variety X. (This follows from Proposition 8.49.) 

Example 8.84. The structure sheaf Ox is itself a line bundle, called the trivial 

line bundle. The direct sum 07 is a vector bundle called the trivial vector 

bundle of rank r, 
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Figure 8.2: A vector bundle E 

Just as for modules, the tensor product of two vector bundles of ranks r, s 
is a vector bundle of rank rs (Proposition 8.51(iii)). In particular, the tensor 
product of two line bundles is again a line bundle, and the set of isomorphism 
classes of line bundles on X becomes a group under 0, called the Picard group 
Pic X. 

The following lemma follows from Proposition 8.34. 

Lemma 8.85. Every vector bundle on an affine variety X — Spm R is a sheaf 
of the form M (as in Definition 8.78)for some locally free R-module M. 	I=1 

We next define the pull-back of a vector bundle E on X under a mor-
phism of varieties f : Y —> X. We suppose that X has an affine open cover 
{Ui = Spm R i } and Y has an affine open cover { Vi  = Spm 1, and that f is ob-
tained by gluing affine morphisms f : V;  u;  corresponding to ring homo-
morphisms Rj  ----> Si . Then both Si  and the restriction Euj  are R i  -modules, and 
we form the tensor product Eui  R j  S , which is also an Si  -module. Gluing these 
S3  -modules we obtain a sheaf of O y  -modules, which by Lemma 8.53 is locally 
free. This is called the pull-back of the vector bundle E to Y and is denoted 
by f*E. Even when S is not an integral domain, the pull-back f*E under a 
morphism f : Spm S ----> X still makes sense as a locally free S-module, by 
Proposition 8.34. 
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On every projective variety Proj R there exists a distinguished line bundle. 
Here 

R = (E) Re  
e>0 

is a graded integral domain generated by Ro = k and R 1 . Let K = Q(R) be its 
field of fractions, and for i E Z let 

g K i  =-- k 
g,h E R are homogeneous elements 1 

c K. 
and deg g — deg h =i 

Each Ki  is a 1-dimensional vector space over the field Ko. 

Definition 8.86. For each i E Z we define an elementary sheaf of O x -modules 
on X = Proj R, with total set Ki , by assigning, on basic open sets Uf  where f 
is homogeneous, 

g g E R is homogeneous and 
Uf  1—>-  	 1 C 	Ki. 

fm deg g — m deg f = i for some m > 0 

This sheaf is a line bundle and is denoted by Ox(i). In particular, Ox(1) is 
called the tautological line bundle on Proj R. on Proj R 	 El 

We observe that as 1-dimensional vector spaces over K o  there are canonical 
isomorphisms 

Ki  0 Ki :_.4.: Ki+j , 	lqi L--' K_ i . 

These translate into canonical isomorphisms between line bundles on X = 
Proj R: 

Ox(i) 0 Ox(j) LI- Ox(i + j), 	Ox (0-1 ==.'. Ox(-0. 

Example 8.87. Consider projective space 

Pn  = Proj R = Proj k[xo, xi , . • • , xn]• 

Here 

g g,h E R are homogeneous polyno- 
Ki  = 	 C k(xo, xi, • • • , xn)- h mials and deg g — deg h =z 

The dual 014-1) of the tautological line bundle is in this case called the 
tautological line subbundle and can be viewed as the line subbundle of the trivial 
vector bundle 0 (n+1)  spanned by the element (xo, xi , .. . , x n ). More precisely, 
this can be described in terms of the affine open sets Ili = {xi  0 0} C P'1 . 
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On each U = Spm Rxo  we can consider the Rxo-submodule L i  C 

generated by 

( 	

ED. xn  ) 	(n+1) 4 xl ,..., _ 
E Rxi ,0  — , 

x i  x i  x i  

Since the i-th component is 1, it follows that L i  is a direct summand isomorphic 
to Rxo. On the overlaps Ui  fl Ui  the submodules L i  and L i  coincide, and hence 
they glue to a line bundle on Pl . This line bundle is Op(-1). 

This example generalises to the Grassmannian G = G(r, n). Namely, the 
r rows of the matrix (8.1) determine a vector subbundle .F of rank r of 
the trivial vector bundle O. In terms of the affine open cover by sets 
D(det X i ) = Wet X 1  0 011 GL (r), the rows of (X 1 )-1  X generate a submodule 

C Orwet xi). This is a rank r vector bundle on each affine open set, and 
glues to a vector bundle .F C Or on the Grassmannian, called the universal 
subbundle on G(r, n). 

(c) The Grossmann functor 

We define an equivalence relation on data consisting of an R-module M and an 
ordered set of n elements m l , , m n  E M by 

(Al; 	••• mn) — (0; 	m/n ) 

if and only if there exists an isomorphism f: M 	M' taking each m i 	. 

Definition 8.88. The Grassmann functor r(r, n) is the functor from the cate-
gory of rings to the category of sets which assigns to a ring R the set 

{ (M; mi, • • . , m n ) where M is a locally free R-1 . 
/isomorphism 

module of rank r generated by ml, . • • , mn 

and assigns to a ring homomorphism f : R ---> S the set mapping 

[M;mi, ••• mn] 	[M OR S; M1 0 	, 112 n  0 1]. 

(See Lemma 8.53.) 	 LI 

Although this functor is defined on arbitrary rings R, we will only be con-
cerned, in what follows, with rings containing the field k. What we want to 
show next anticipates (and serves as a model for) the discussion of Chapter 11, 
and we refer the reader to Section 11.1(a) for the necessary definitions. 
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Proposition 8.89. The functor gr(r, n) is isomorphic to the functor G(r, n) 
associated to the Grassmannian variety G(r, n). 

In the language of Chapter 11 one says that the Grassmannian G(r, n) is a 
fine moduli space for the Grassmann functor (Definition 11.5). Before proving 
the proposition, let us first look at the relation between the functor g r(1, n) and 
the projective space Pn-1 . This functor assigns to a ring R an equivalence class 
of invertible R -modules M equipped with n generators m 1 , . , m, E M. 

(1) Suppose that M is free, and choose an isomorphism M R. This iden-
tifies m 1 , • • • , m n  with ring elements al, . , an  E R, which define a partition 
of unity. So the ring homomorphisms for i = 1, .. . , n 

xn  
k[ xl  , • .. , 	Rai , 

xi 	xi 

define, by passing to the spectra and gluing, a morphism 

	

: Spm R 	Pn-1 . 

If we choose a different isomorphism M 	R, then the ring elements 
al , 	, an  E R are multiplied by some invertible element of R, and we ob- 
tain the same morphism Spm R ----> 

(2) More generally, M may not be isomorphic to R but is locally isomorphic, 
so we can choose a covering {Mai  } with each Mat 	Rai . By (1) we obtain a 
morphism 

ço j  : Spm 

and the maps q)i , çoj  coincide on Spm Rai  . Hence by Proposition 8.33 we get 
a morphism ç : Spm R 

What we have shown is that the functor gr(1, n) assigns to a ring R a set 
which can be viewed as the set of morphisms : Spm R ---> Pn-1 . Moreover, 
this has the property that the sheaf M on Spm is the pull-back of the tautological 
bundle: 

q)*Op(1) M, 

and the inclusion Op(-  1) c Or pulls back to the inclusion of R-modules 

(m i , 	, rnn ) : 	---> 	. 

Proof of Proposition 8.89. First of all we note that if there is a morphism 
: Spm R ----> G(r, n), then this will determine a vector bundle on Spm R which 
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is the pull-back of the universal subbundle çoT C R EI311  . By Lemma 8.85, the 
dual vector bundle q)*.Tv comes from a locally free R-module of rank r and 
the dual of the inclusion in REI)  determines n generators ml, E M. This 
shows that there is a map of functors 

	

, 	v),*_Tv G(r,  n) --> gr(r, n), 	v) 	 (8.24) 

We will construct the inverse of this map. 
Let M be a locally free R-module of rank r. If M is free, then a chosen free 

basis m 1 , , m, E M R EDn  can be represented as an r x n R-matrix, and 
so we obtain a map 

Spm R ----> Mat(r, n). 

Moreover, the composition of this map with the quotient by GL(r) 

Spm R 	Mat(r, n) — — --> Mat(r, n)//GL(r) = G(r, n) 

is a morphism independent of the choice of free basis. We denote this morphism 
by 04,m. 

In general, if M is not free, then by gluing affine open sets on which the 
localisations of M are free an in the discussion (2) above, we obtain a morphism 

q)m , in  : Spm R ----> Mat(r, n) ---> G(r, n). 

This is called the classification morphism of (M; ml, 	, m n ) and is charac- 
terised by the property that it pulls back the universal subbundle j C Or to 
the inclusion of R-modules Mv 	R 63". Thus the map 

gr(r, n) 	G(r, n), 	(M;mi, • • • , mn) 	q)m,m 

is the inverse of (8.24). 	 LI 

(d) The tangent space of the functor 

Given a ring R and a maximal ideal m c R, the quotient m/m2  is a vector space 
ove the field R/m. Recall that the dual space (m/m 2 )v  is called the (Zariski) 

tangent space of R (or of Spm R) at m (Definition 4.19). If R/m = k, then 
tangent vectors of R at m are ring homomorphisms 

f : R 	k[t]/(t2) 

for which the composition R 	k[t]I (t 2) ---> k[t]l (t) = k coincides with the 
map R R/m. 

In what follows we shall write, as usual, c for the residue class t mod t 2  and 
k[e] = k[t] I (t2 ). (See Examples 3.25 and 4.31.) 
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Definition 8.90. Given a functor 

F: {rings over k} 	{sets} 

and an element x E F(k), we define the tangent space of F at x to be 

(inverse image of x E F(k) under) 
C F(k[E]). TF := 

Fk[E]_+k : F (k[E]) --> F (k) 

This has the structure of a vector space over k. (It is a straightforward exer-
cise to prove this, and the reader may consult Schlessinger [48]. However, for 
readers meeting these notions for the first time it is probably not a very useful 
exercise, as in each application the vector space structure will be obvious from 
the context.) El 

An algebraic variety (or, more generally, a scheme) X determines a functor 

X : {rings} ---> {sets}. 

(See Section 3.3(a).) Then, after taking an affine open cover of X, at each 
k-valued point x E X(k) the tangent space TX c X(k[c]) in the sense of 
Definition 8.90 coincides with the Zariski tangent space. 

Proposition 8.91. The tangent space to the Grassmannian G(r, n) at a point 

[U] E G(r, n) corresponding to an r-dimensional subspace U C kn is canoni-

cally isomorphic to Homk (U , k n  U). 

Proof We will use the Grassmann functor gr(r, n), though alternatively we 
could use an affine open cover of G(r, n). To the point [U] E G(r, n) there 
corresponds an exact sequence of vector spaces 

0 -->U-->k"—>V---> 0, 	 (8.25) 

and a tangent vector at [U] is then an exact sequence of free 14€]-modules 

0 --> U —> k[c] 	0 	 (8.26) 

whose reduction modulo (E) coincides with (8.25). Let ul, 	, ur  E kn be a 
basis of U, and let 

Ui 	 , Ur  + EVr  E k[E]n 

— 
be a free basis of U as a WI-module. Since € 2  = 0, it follows that 
Eui, 	, Eu r  E U, and this is a basis of (lc. This shows that the given tangent 
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vector determines, via (8.26), a well-defined linear map 

U 	V =VIII, 	u i 	vi  mod U, 

and this correspondence defines an isomorphism TwiG Homk(U, kn 1 U). 

Exercises 

1. Show that for n > 3 the Hilbert series P, (t) of the semiinvaniant ring 
k[Mat(2, n)] SL(2)  satisfies 

P(f) t n  Pn (t) = 0. 

(See Proposition 8.4.) 
2. Prove Proposition 8.37 by induction on the dimension of the total fraction 

module Q(M) as a vector space over the field of fractions Q(R). 
3. Prove Corollary 8.38 by showing that a minimal system of generators is a 

free basis. 
4. For R-modules L, M, N show that 

HOMR(M OR N, L) = HomR(M ,HomR(N L)). 

(This says that the functors OR N and HomR(N, -) are adjoint.) Use this to 
give another proof of Lemma 8.55. 

5. Show that the Z-module M c Q consisting of rational numbers with square 
free denominator satisfies condition (ii) of Proposition 8.47 but is not locally 
free. (The author learnt this counterexample from M. Hashimoto.) 

6. If Spm R is a union of disjoint open sets Ul , U2, show that U1 = 
U2 = D(1 — e) for some idempotent e 2  = e. (Note that an idempotent e 
decomposes the ring as R = Re ED R(1 — e).) 

7. Let M be a finitely generated module over a local integral domain (R, m). 
Show that if 

dimRi m  M IMM = dimQ(R) Q(M), 

then M is a free module. 
8. Show that an invertible ideal a c R (see Example 8.61) is an invertible 

R-module. 
9. By considering the Z-similarity classes of 2 x 2 Z-matrices N satisfying 

N2  + 119/2 = 0, 	N 12 mod 2, 

show that the imaginary quadratic field Q(s./-119) has class number 10. 
(That is, the group Pic °,/- 1 19 has order 10.) 



9 

Curves and their Jacobians 

Every curve of genus g has associated to it a g-dimensional algebraic variety 
called its Jacobian. Analytically, over the field of complex numbers, this is 
a complex torus Cg / Fc where Fc is a lattice. Given a basis coi , , cog  of 
holomorphic 1-forms on the curve, Fc is the lattice of periods 

rc = I (f col, . , f cog) for a E Hl(C, Z)I C Cg . 
a 	 a 

(9.1) 

There is a natural map from the curve C to the Jacobian, and this extends to 
a map, called the Abel-Jacobi map, from its group of divisors to the Jacobian. 
Classically one uses theta functions to show that the Jacobian is a projective 
variety. However, in this chapter we will adopt a different approach, using 
invariants to construct a projective variety whose underlying set is the Picard 
group of C (Section 9.4), and then showing that over k = C this variety agrees 
with the complex torus just described (Section 9.6). 

The first three sections and Section 9.5 prepare the way for this construction. 
A nonsingular algebraic curve is a variety whose local rings are all discrete 
valuation rings. This leads to the notion of order of pole of a rational function 
at a point, gap values at a point and the vector space A(D) of rational functions 
with poles bounded by a positive divisor D. The (arithmetic) genus is the number 
of gap values at any point. In Section 9.1 we discuss these notions and prove 
Riemann's inequality, which gives a lower bound for dim A(D) in terms of the 
genus. 

The inequality itself is just a formal consequence of the definitions; how-
ever, its depth lies in the underlying facts that the genus is finite and equal 
to the dimension of the cohomology space H 1 (0c) (Section 9.2). We show 
that line bundles on C correspond bijectively to linear equivalence classes of 
divisors, and in this language A(D) = H°  (0 c (D)) while the index of special-
ity i(D) is the dimension of H 1 (0c(D)). Riemann's inequality becomes the 

287 
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Riemann-Roch formula (9.15) for L E Pic C, 

dim H°(L) — dim H 1 (L) = deg L — 1 + g. 

A variety X = Spm R is nonsingular at a point x E X with maximal ideal 
m c R if the graded ring grm R = IED m'/m' +1  is isomorphic to a polynomial 
ring. In Section 9.3, after explaining nonsingularity and differential modules, 
we extend Theorem 5.3 on the separation of closed orbits to deal with infinitely 
close orbits. An orbit G•x c X is afree closed orbit if it is stable with trivial 
stabiliser; and we show that, if X is nonsingular at all points of a free closed 
orbit, then the quotient X I G is nonsingular at the image point of this orbit, with 
dimension = dim X — dim G. 

In Section 9.5 we review duality and de Rham cohomology, and in the fi-
nal section we show that over the complex numbers our quotient variety is 
isomorphic to Cg/ Tic. The key to this is Abel's theorem. 

9.1 Riemann's inequality for an algebraic curve 

Among algebraic varieties, the simplest are the curves, and we begin this section 
with some facts about affine curves. Let R be a Noetherian integral domain, 
finitely generated over a field k, and we assume that Spm R has more than one 
point. Then a maximal ideal m c R is nonzero, and so by Nakayama's Lemma 
8.23 applied to the localisation R m  the quotient m/m2  is also nonzero. 

Lemma 9.1. The following conditions on a maximal ideal m c R are 

equivalent. 

(i) dimR /m (mIm 2) = 1. 

(ii) The localisation Rin  is a discrete valuation ring. 

Before proving this we note that on passing to the localisation at m condi-
tion (i) is preserved, in the sense that it implies mR in /m2 Rm  is 1-dimensional 
over the field R m /mR,,. Nakayama's Lemma, in the form of Corollary 8.24, 
says that if3 .7 spans this space, where 7 E mR,,, 7 0 m2 Rm , then it generates 
the maximal ideal mR„, c R m . Such an element it E mR,„ is called a regular 

parameter at the maximal ideal m. 

Proof We shall prove (i) 	> (ii) and leave the converse to the reader. Given 
property (i), let it E mR,, be a regular parameter. 

Claim: The descending chain of ideals R in  D mRin  = (7) D (7)2  D 
(7)3  D • • • has intersection zero. 
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To prove this, suppose a E n i,o(n- )'. Then for each n > 0 there is an element 
an  E Rii, such that a = an- '. Each an  = n- an+i, and so we have an ascending 
chain of principal ideals 

(ao) C (ai) C (a2) C (a3) C - • • . 

Since R, is Noetherian, (aN ) = (aN+1) for some N E N, and in particular 
aN+1 = aN b for some b E R m . This implies that (1 — bn- )aN = 0. But 1 — bn-
is invertible (it is outside the unique maximal ideal), and so aN = 0, which 
implies that a = 0, proving the claim. 

It follows from this that every nonzero element a E R,„, has a unique expres-
sion a = un- n for n > 0 and some invertible element u E R m . Hence the field 
of fractions Q(R) = Q(Rm ) has the corresponding property that every nonzero 
element a E Q(R) has a unique expression a = LiTr n  for some integer n E Z 

and element u E Q(R), u ,;i" mRin . The map 

In if a = tte z0 
V m  : Q(R) —> Z U {oo}, 	a 1--> 	 (9.2) 

oo if a = 0 

is then the required discrete valuation. 	 0 

Since every variety X is constructed by gluing affine varieties, at each point 
p E X the stalk of the structure sheaf Ox, p  is a local ring by Example 8.76. 

Definition 9.2. A nonsingular algebraic curve over a field k is an algebraic 
variety over k such that at every point p E C the local ring Oc , p  is a discrete 
valuat, thenion ring. We denote by 

v p  : k(C) —> Z U {oo} 

the valuation(9.2) at the point p C C. A rational function f E k(C) is regular 
at p if vp(f ) > 0 and has a pole of order n if v(f) = —n < 0. 	D 

Example 9.3. Let C c A2  be an affine plane curve f (x , y) = 0 having no 
singular points in the sense of Definition 1.31. Then C is a nonsingular algebraic 
curve. 

To see this, we consider the maximal ideal of a point p = (a, b) E C C A2 . 

This is a = (x - a, y — b) c k[x, y]. By hypothesis, the partial derivatives 
af/ax, 0f/ay do not both vanish at (a, b), and so f ,g' iii2 . Thus at each 
point p E C, with maximal ideal m c 0 c, p , the residue class of f spans a 
1-dimensional kernel of the restriction fii /W12  --->- m/m2 . Hence 

dimk m/m2  = dimk iii/fri2  — 1 = 1. 

Hence Oc , p  is a discrete valuation ring by Lemma 9.1. 	 D 
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In what follows we shall be interested in nonsingular algebraic curves C 
which are projective. This means that C is embedded as a closed subvari-
ety in projective space and is therefore complete by Corollary 3.60 (or by 
Corollary 3.73). 

Lemma 9.4. Let C be a projective nonsingular algebraic curve. If a rational 
function f E k(C) is regular everywhere, then it is constant. In other words, 

If E k(C) I vp(f) _- 0 for all p E CI = k. 

Proof If f E k(C) is regular everywhere, then it determines a morphism 
C ----> A l . By Proposition 3.61, the image is a closed set and therefore a complete 
affine variety. By Proposition 3.57, this image is a single point, and so f is a 
constant function. EI 

From now on, unless indicated otherwise, a curve will always mean a pro-
jective nonsingular algebraic curve. The simplest examples are projective plane 
curves 

C : { f (x , y , z) = 0} c P2 , 

defined by the vanishing of a homogeneous polynomial f(x,y, z) whose 
partial derivatives a flax, 8f/ay, aflaz have no common zeros in P2 . (See 
Proposition 1.36.) As an exercise, the reader should note that nonsingularity of 
a projective plane curve implies irreducibility. 

(a) Prologue: gap values and the genus 

Fix a point p on a curve C. We say that a natural number n E N is a gap value 
at p E C if there does not exist any rational function f E k(C) which is regular 
away from p and has a pole of order n at p. 

Example 9.5. Let C = PI  and p = oo E P1 . The rational function field k(P 1 ) 
is the field of Laurent polynomials f (x) in one variable, and a function regular 
away from oo is just a polynomial. The order of pole at oo is n = deg f (x), and 
such polynomials exist for every n > 1. Hence there are no gap values. E 

Example 9.6. Let C be a 1-dimensional complex torus C/(Z-1-Zr), and let p = 
0 E C be the origin. By Liouville's Theorem 1.44(ii) there are no meromorphic 
functions on C holomorphic away from 0 and with only a simple pole at 0. On 
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the other hand, the Weierstrass p-function is holomorphic away from 0 with 
exactly a double pole at 0, and by taking successive derivatives p', p", . . . 
there is a function with exactly one pole of order n at 0 for arbitrary n > 2. 
Hence the set of gap values in this case is {1}. El 

Example 9.7. Let f (x) be a polynomial of degree 2g + 1 without any re-
peated roots. Then the nonsingular algebraic curve obtained as the 1-point 
compactification 

C : {y 2  = f (x)} U fool 

of the affine plane curve y2  = f (x) is called a hyperelliptic curve. This is a 
2-sheeted cover of the projective line P 1  branched over the roots of f (x) = 0 
and the point oo E P 1 . (When k = C, this curve is the Riemann surface of the 
2-valued function Vf (x).) The rational function X E k(C) has a double pole 
at oo e C, while y e k(C) has a pole of order 2g -I- 1 here. Both functions are 
regular at all other points. Since the function field k(C) is generated by x, y, 

the set of gap values at oo is exactly {1, 3, 5, ... , 2g — 3, 2g — 11. E 

x4  

if  
, 
1 I I il  I 

Rational function 

9 	8 	7 	6 	5 	4 	3 	2 	1 	Order of pole 

Figure 9.1: The gap values of y 2  = x7  — 1 

At a point p E C the gap values themselves depend on the particular point. 
(Though Examples 9.5 and 9.6 are exceptional in this respect. In both cases 
the curve is acted upon transitively by automorphisms, and so the gap values 
happen, in these examples, to be the same at all points.) However, what turns 
out to be the case is that the number of gap values is independent of the point, 
and that this number is equal to the genus of the curve C (Corollary 9.21). Thus 
in the three examples above the genus is 0, 1, g, respectively. 

We can interpret this number in the following way. Choosing a regular pa-
rameter t at the point p E C, each rational function can be expanded about 
p as a Laurent series in t. Taking the principal part of this Laurent series gives 
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a linear map of vector spaces over k 

f E k(C) such that! 
ppp  : I vq ( f) _?-_ 0 	--÷ k((t))/k{{d} = rr i k 1 }. 

for all q E C — {p} 

The number of gap values at p is the dimension of the cokemel of this map. 
Now, not only is the number of gap values independent of the point p E C, but 
in a certain sense the vector space coker pp p  is also independent of the point. 
This will become clear when we introduce the cohomology space H i  (0c) (see 
Section 9.2(a)). 

(b) Divisors and the genus 

Our goal at this point is the Riemann-Roch Formula 9.29 for a line bundle on 
a curve, and we will approach this in the way it was approached historically, 
using the language of divisors. 

Definition 9.8. The divisor group of a curve C is the free abelian group 

Div C = ED Zp 
pEC 

generated by all the points of C. An element of this group 

D = Et/pp 
	(finite sum) 

pEC 

is called a divisor on C. 	 111 

The degree of a divisor D is defined to be the sum of its coefficients deg D = 

EpEC np, and D is a positive divisor, written D > 0, if np  > 0 for all p E C. 
If the difference of two divisors D — D' is positive, we write D > D'. 

Definition 9.9. 

(i) Given a discrete valuation ring R, v: Q(R) --->- Z U {oo} and integer n E Z 
we set 

R(nv) := tx c Q(R) I v(x) + n >01. 

For example, R = R(0) D R(—v) D R(-2v) D - • - and R(—v) is a 
maximal ideal in R. 
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(ii) For the valuation vp  of the local ring Oc , p  at a point on a curve C we write 
simply Oc, p (np) := Oc, p (nv p ). Then for a divisor D = EpEc npP we 
define 

A(D) = ri  oc,,,,(,,,pp)= If G k(C)  I V p(f) + n p L-  0 for all p e Cl. 
pEC 

In other words, A(D) is the set of rational functions on C with orders of 

	

poles bounded by the coefficients of the divisor. 	 CI 

The following facts are clear. 

(I) A(D) is a vector subspace of k(C) over k. 

(II) If D > D', then A(D) j A(D'). 
(III) A(0) = k (by Lemma 9.4). 
(IV) For any point p E C we have dim A(D + p)/A(D) <1. 

(V) For any positive divisor D, 

	

dim A(D) < deg D + 1. 	 (9.3) 

(This follows inductively from (IV), starting from (III).) 

Note that for any divisor D E Div C there exists some positive divisor D' 

such that D' > D. From properties (II) and (V), therefore, we deduce: 

Lemma 9.10. For all D E Div C the vector space A(D) is finite-dimen- 
sional. 	 0 

The difference between the two sides of the inequality (9.3) is an important 
quantity, which we will denote by 

j(D):= deg D +1 — dim A(D). 	 (9.4) 

The following is one of various ways to define the genus of a curve. 

Definition 9.11. For any curve C the supremum taken over positive divisors: 

g := sup j(D) 	E {0, 1, 2, ... , oo} 
D>0 

is called the (arithmetic) genus of C. 	 1=1 

In this language, a gap value at a point p E C is a natural number n E N 
for which A(np) = A((n — 1)p). Hence the number of gap values p E C is 



294 	 9 Curves and their Jacobians 

given by: 

(number of gap ) 
= sup j(np) < g. 

Ifalues at p E C 	n>0 

Next, by the same reasoning as for (9.3), we note that if D> D' , then 

dim A (D) < deg(D — D') + dim A(D r) 

and hence: 

(9.5) 

D > D' == 	j(D) > j(D'). 	 (9.6) 

Since every divisor is bounded above by a positive divisor, this shows that the 
positivity condition in Definition 9.11 can be dropped and the supremum taken 
over arbitrary divisors. That is: 

g = sup j (D). 	 (9.7) 
DEDiv C 

In particular, this implies 

dim A(D) > deg D + 1 — g for all D E Div C. 	(9.8) 

This is called Riemann's inequality, once we have proved the following: 

Theorem 9.12. The genus g of a curve is finite. 

(c) Divisor classes and vanishing index of speciality 

We are going to prove Theorem 9.12 in the next section. For the moment 
we will assume its validity and examine the divisors on a curve a little more 
closely. The set of divisors is a slightly artificial object, but it contains a distin-
guished subset which reflects very closely the world of rational functions on the 
curve. 

Definition 9.13. 

(i) For each nonzero rational function f E k(C) we define a divisor 

(f) := E vp (f )p E Div C. 
pEC 

This is called a principal divisor. 
(ii) The set of all principal divisors {(f) I f E k(C) — 0} is a subgroup of 

Div C, and the equivalence relation modulo this subgroup is called linear 

equivalence. 
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(iii) The quotient group 

	

Cl C 	Div C/{principal divisors) 

is called the divisor class group of the curve. 	 0 

Remark 9.14. This is the analogue for the function field k(C) of the divisor 
class group of an algebraic number field (Section 8.4(a)). The analogue of 
Proposition 8.65 will be Proposition 9.34. 	 0 

If two divisors D, D' are linearly equivalent, then they differ by a principal 
divisor D — D' = (h), h E k(C), and the map f F—> fh defines a linear iso-
morphism A(D') ----;- A(D). In particular, dim A(D) = dim A(D'), and so: 

Lemma 9.15. The dimension of A(D) depends only on the divisor class 

of D. 	 El 

Definition 9.16. For a divisor D E Div C the number 

i(D) := g — j(D) = dim A(D) — deg D — 1 ± g > 0 

is called the index of speciality of D. 	 0 

Note that by (9.6), 

	

D > D' 
	

i(D) 5_ i(g). 	 (9.9) 

Lemma 9.17. If divisors D, D' are linearly equivalent, then i(D) i(D'). 

Proof From (9.7) and (9.4), 

i(D) = dim A(D) — deg D + sup {deg F — A(F)} 
F EDiv c 

= dim A(D) + sup {deg(F — D) — A(F)}. 
F EDiv C 

As F ranges through all divisors, so does F — D, and so 

i(D) = dim A(D) ± sup {deg F — A(D -I- F)). 	(9.10) 
F EDiv C 

If D, D' are linearly equivalent, then D + F, D' + F are linearly equivalent, 
and hence Lemma 9.15 implies i(D) = i(D'). 	 0 
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Corollary 9.18. If divisors D, D' are linearly equivalent, then deg D = 
deg Di . 	 El 

We will give two sufficient conditions for i(D) = 0. The first is in terms of 
the degree of D. Note that by Definition 9.16, if deg D <g — 1, then i(D) > 0. 
This condition is sharp in the following sense: 

Lemma 9.19. There exists a divisor D yan  with 

deg Dvan  = g — 1, 	i(Dvan) = 0. 

Proof Theorem 9.12 implies the existence of some divisor D with i (D) = 0. 
If A(D) = 0, then, by Definition 9.16, deg D = g — 1, and so it suffices 
to take D. = D. So assume that deg D > g — 1 and A(D) 0 0. This 
means we can find a nonzero rational function f for which (f) ± D > 0. 
Choosing a point p e C at which f (p) 0 0 we have f g A(D — p), and so 
A(D)I A(D — p) = k. This implies j(D — p) = j (D), and so i(D — p) = i(D) = 
0. We now repeat the argument, subtracting points n = deg D — g ± 1 times to 
obtain 

A(D — pi — - • • — pn) = i(D — p1 — . . . — pn ) = 0. 

We then take Dvan  = D — pi — - - - — Pn. 
	 C 

This has the following important application, complementary to Riemann's 
inequality (9.8). In fact, its proof works for singular curves as well. 

Vanishing Theorem 9.20. If deg D > 2g — 1, then i(D) = 0 and 

dim A(D) = deg D — g + 1. 

Proof We apply Riemann's inequality (9.8) to the difference D — D., where 
Dvan is the divisor constructed in Lemma 9.19. This says, since deg(D — Dvan) > 
g, that A(D — Dvan) 0 0. Thus D is linearly equivalent to D v. -I- F for 
some positive divisor F > 0. Hence by (9.9) and Lemma 9.17 we see that 
i(D) = O. 1=1 

We have seen in (9.5) that the number of gap values at a point p E C is 
the supremum of j(np) for n > 0, and that this supremum is at most g. But if 
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n > 2g — 1, then the vanishing theorem implies that j(np — g — i(np) — g, 
and so we arrive at: 

Corollary 9.21. At any point p E C the number of gap values is equal to the 
genus of C. In particular, this number does not depend on the point. 	EI 

The second sufficient condition for the vanishing of i(D) is that A(D) has 
big enough dimension: 

Lemma 9.22. If dim A(D) > g, then i(D) = 0. 

Proof Suppose, for a contradiction, that i(D) 0 0, and fix a point p E C. Then 
i(D + p) is equal either to i (D) or to i (D) — 1, and so it must happen that i(D + 
np) = 1 for some n > 0. The divisor D' = D + np then satisfies dim A(D 1) > 
dim A(D) > g and i(D') = 1. On the other hand, by Theorem 9.20, we must 
have deg D' < 2g — 2. By Definition 9.16, therefore, 

dim A(D') = deg D' + 1 — g -I- i(D') _< g. 

9.2 Cohomology spaces and the genus 

In this section we are going to interpret the genus of a curve C as the dimension of 
a certain cohomology space and deduce from this its finiteness (Theorem 9.12). 
In fact we shall do the same also for the index of speciality i(D) of a divisor 
(see (9.13)). 

(a) Cousin's problem 

We first consider, at a given point p E C, the quotient module k(C)/0c, over 
the local ring Oc, p  (Definition 9.9). Let tp  E mp  Oc, p  be a regular parameter. 
We can identify k(C) = Oc,p [ 1 ] (this is localisation at tp  in the sense of 
Example 8.21), and the elements 

t -1 r2 t -3 	E k(C) p 9 p 9 p / • • • 

can be viewed as a basis of k(C)/0c,, as a vector space over k. In other 
words, every rational function f E k(C) uniquely determines coefficients 
c_1, c_2, ... , c_N such that 

N 

f .-- Ec_ic i mod OC,p• 

i=1 
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This residue class of f in k(C)/0c, is called the principal part (or singular 

part) of the function f at p E C. 

Cousin's Problem: Given Cousin data consisting of finitely many points 

Pi, , pm  E C and a principal part ai  E k(C)/0c, at each point, when 

does there exist a rational function f E k(C) satisfying f a i  mod 0c , pi  at 

all of the points? 

(This is also known as Cousin's first problem, or as Mittag-Leffler's problem.) 
For C = Pl  it is easy to see, using a global coordinate, that such a function 

always exists. The same is true for any affine curve C E An (Exercise 9.4). 
And for a single point p E C, Cousin's problem corresponds to the problem of 
computing the gap values at p (Section 9.1(a)). 

A different sort of example is the following. 

Example 9.23. Consider the field of meromorphic functions on the complex 
plane C, doubly periodic with respect to a lattice F Z2 . (See Section 1.5.) 
By Liouville's Theorem 1.44(ii), the space of functions having a simple pole at 
each of two cosets p+ y and q + F and holomorphic elsewhere is 1-dimensional 
(Exercise 9.3). Thus the Cousin problem for simple poles at p, q E C/ F cannot 
in general have a solution. 

The key tool for solving Cousin's problem is the notion of cohomology. We 
will think of the Cousin data (a1, . . . , an ) as an element of the infinite direct 
sum epEc  k(C)/0c,, called the principal part space of C (Figure 9.3). 

Definition 9.24. The linear map 

PP : k(C) 	+ED k(C)I0c,p 
pEC 

which assigns to a rational function its principal part at each point of the curve 
is called the principal part map on C. Its cokernel 

H i  (0 c) := coker pP 

is called the cohomology space of the structure sheaf Oc (or of C with coeffi-
cients in the sheaf Cc). 

Thus Cousin's problem is equivalent to that of computing H I  (0 c). 
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k(C)/0 c, q 

Figure 9.2: The principal part space 

Proposition 9.25. The dimension over k of the cohomology space H 1 (0c) is 

equal to the genus g of the curve C. 

Proof Given a positive divisor D = EpEc  tipp, we consider the 'truncated' 

principal part map 

ppD  : A(D) ---> ED oc ,p (npp)/oc,p , 0D(D) . 	(9.11) 
pEC 

The kernel is the field of constant functions k. The dimension of OD(D) is 

EpEc  np . deg D, and so coker ppD  has dimension equal to j (D). On the 

other hand, the diagram 

A(D) ---> 	OD (D) 

n 	n 
k(C) ----> Tpec  k(C)/0c, 

commutes, so that there is an injective linear map 

coker ppD 	coker pp . H i  (0c). 

Now, H i  (0c ) is the union of the images of coker pp D  as D > 0 ranges through 

all positive divisors, and hence 

dim H i  (0 c ) = sup dim coker ppD  = sup j (D) — 
D>0 	 D>0 

by Definition 9.11. 	 El 



300 	 9 Curves and their Jacobians 

We note from this proof that 

H 1 (0c) = ncoker Opp : A(D) -± OD (D)) . 	(9.12) 

Remark 9.26. One can also consider a multiplicative version of Cousin's prob-
lem. We define an elementary sheaf O cx  with the multiplicative group k(C)x of 
nonzero rational functions as its total set, defined on open sets U c C by 

Ocx  : U F--> { regular nowhere vanishing functions on U }. 

At each point p c C the stalk Ocx,p  is the group of invertible elements in 0C, p . 

We then have a 'multiplicative principal part map' 

3 : k(C) x  --> ED k(C) x  ICTc̀ 
pEC 

and we define H 1 (0) to be coker 8. What is the analogue of Cousin's prob-
lem in this case? At each point peCa valuation gives an isomorphism of 
k(C)</O with Z. Thus the direct sum above is nothing other than the divi-
sor group Div C, and the map 8 assigns to a function f c 40' its principal 
divisor (f)  (Definition 9.13). In particular, 

H 1 ((.9 ) = Cl C. 

(b) Finiteness of the genus 

In the expression (9.12) for the cohomology H I (Oc) we take a limit over 
positive divisors as more points are added or, equivalently, as the coefficients 

Figure 9.3: Multiplicative principal parts and divisors 
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over C go to infinity. However, the next proposition shows that the group can 
be computed by a limit using just one fixed divisor. 

Proposition 9.27. Let D be a positive divisor in C and suppose that the• 

complement of its support U = C — D is affine. Then 

1 	 I 1-1 1 (0c) = coker 0c(U) --> IEB k(C)I0c,p = 
pesuppD 

In particular, the genus is given by g = supn>0  j(n D) 

firn coker ppn  D. 
n—>oo 

In fact, one can show that the assumption that U is affine is unnecessary, as 
this is always the case. This is essentially an exercise using Theorem 9.20. 

Proof We decompose the principal part space as 

( 
	

k(C)/O,) ED (@k(C)/0c, q). 

Since U is affine, the map k(C) 	ED g Eu k(c)/(9c,q is surjective (that is, 
Cousin's problem for an affine curve always has a solution) and its kernel is the 
coordinate ring k[U] = Oc(U). Hence, by Definition 9.24, 

H 1 (0c) = coker 0c(U) 	k(C)/0c1. 
p E suppD 

Now since 

00 	 00 

0c(U) =U A(nD) and, by (9.11), 	ED k(C)/0c, = OnD (nD), 
n=1 	 pesuppD 	 n=1 

we obtain the limit in the propostion. 

Proof of Theorem 9.12. We consider a fixed embedding of C in some projective 

space Pn  . Let H—L Pt be a hyperplane and C n H : D = pi + • + pa 
its intersection with C. For simplicity we will assume that this intersection is 
transverse. (There always exists a transverse hyperplane section in this sense 
(see Exercise 9.5); though in fact this assumption is not essential in the proof that 
follows.) We take homogeneous coordinates (xo : xi : . . . : x n ) for which H has 

equation xo = 0. For each intersection point pi  we can find another hyperplane, 

defined by some linear form / i (x), passing through pi  but not through the 

pEsuppD 	 qeU 
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Figure 9.4: A space curve 

remaining d — 1 points. The ratio 1i(x)/x0 defines a rational function on C 

belonging to the space A(D). We consider the product 

li(x) • • •  li(x)  • ..id (x) 

f — 	d-1 	E A((d — 1)D). 
xo  

The function fi  has a pole of order d — 1 at pi  and at each pj , j 0 i, a pole 
of order at most d — 2. Together, therefore, fi , . . . , fd  generate A((d — 1)D) 
modulo A((d — 2)D). Next we introduce a hyperplane not containing any of 
the points pi , • • • , Pc19 defined by a linear form 1(x), and consider the rational 
function fo E k(C) determined by the ratio /(x)/x0. This has a simple pole at 
each pi , and for a E N the functions g fi, ... , fccli fd generate A((d — 1 ±a)D) 

modulo A((d 2 ± a)D). It follows (denoting the affine open set C — D 

by U) that 

coker 10c(U) 	k(C)/0c, = U OnD(nD) 

coincides with the cokernel of 

PP(d-2)D : A((d — 2)D) —>- O(d-2)D((d — 2)D), 

p E suppD 	 n=1 

00 
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and in particular it is finite-dimensional. By Proposition 9.27 this shows that 
H 1 (0c) is finite-dimensional. 	 IE 

Example 9.28. A nonsingular plane curve C c P2  of degree d has genus 

g= ..1-,(d — 1)(d — 2). 

To see this, we choose homogeneous coordinates so that the line xo = 0 inter-
sects C transversally in d points pl, ... , pd. The complementary open set is 
an affine curve Co : If (x, y) = 0) C A2 , taking xo  = 0 as the line at infinity. 
Letting D = p1 ± • • - ± pd, we have 

A(nD) = 
{polynomials f (x, y)h(x , y) with deg h < n — dl .  

Hence, if n > d, then 

dim A(nD) = 1(n + 1)(n + 2) — -,(n + 1 — d)(n + 2 — d) 

= nd — 1 d(d — 3). 

So j(nD) = deg nD + 1 — dim A(nD) = (d — 1)(d — 2)72, and the genus 
formula follows from Proposition 9.27. 	 El 

Generalising the cohomology space 111 (0c), for any divisor D = 

EpEc  np p E Div C we define 

{polynomials h(x, y) with deg h < n 

H 1 (0c(D)) := coker Ik(C) —3- ED k(c)/oc,p(npp)} . 

pEC 

(9.13) 

Degree: 1, 2 
	

3 
	

4 
	

5 

Riemann sphere 	Torus 
	Genus 3 
	

Genus 6 

Figure 9.5: The genus of a plane curve 
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Note that the kernel is A(D). The cokernel can also be expressed as the limit, 
taken over positive divisors F =•EpEc m pp E Div C, 

11 1 (0c(D)). lim coker {A(F ± D)--> e0c, p ((m p ±n p )p)10c, p (np p)1 . 

	

F >0 	 pec  

Its dimension is therefore equal to the index of speciality i(D) (see (9.10)). 
Substituting into Definition 9.16 we arrive at: 

Riemann-Roch Formula 9.29 (Weak form). 

dim A(D) dim H 1 (0c(D)) = deg D ± 1 — g. 

0 

We will write Riemann-Roch in the language of line bundles in (9.15) below. 
Historically, the formula was written 

dim A(D) — dim A(Kc  — D) = deg D + 1 — g 

(the 'strong form'). We shall discuss the divisor Kc  in Section 9.5 and more 
general Riemann-Roch theorems in Chapter 12. 

(c) Line bundles and their cohomology 

A divisor on a curve C is an object analogous to a fractional ideal in an algebraic 
number field K (Definition 8.64); and just as a fractional ideal determines an 
invertible OK-module, and hence a line bundle on Spm OK (Definition 8.78 
and Lemma 8.85), so each divisor on the curve C determines a line bundle 
on C. 

Definition 9.30. Given a divisor D = EpEc  npp E Div C, the assignment 

(open set U c C) i--> n OC,p(npP) 
pEU 

defines an elementary sheaf with total set k(C), which is denoted Oc (D). 0 

Note that D > D' if and only if Oc(D) D Oc(D'). In particular: 

	

D > 0 < 	> (9c C Oc(D) 	> Oc(—D) C Oc • 

Moreover, Oc(D)"L" Oc(D') if and only if D, D' are linearly equivalent; and, 
in particular, Oc (D) "-L- Oc if and only if D is a principal divisor. 

It is clear that Oc (D) is a line bundle (Definition 8.82), but in fact the converse 
is also true: 



9.2 Cohomology spaces and the genus 	 305 

Lemma 9.31. Every line bundle with total set k(C) is 0c(D) for some D E 

Div C. 

Proof Let L be a line bundle on C and consider the stalk L p at a point p E C. Let 
tp  be a regular parameter at p. Then L p  is an Oc, p -module of rank 1 contained 
in k(C), and so it can be identified with tpn0c , p  for some n =: np  E Z. Then, on 
some sufficiently small open set U c C containing p, L u  is the same as tii3Ou . 

Consequently, np  = 0 except at finitely many points, and so L determines a 
divisor D = — E npp. By construction, L and Gc(D) have the same stalk at 
all points of the curve, and so they are equal. 

Of course, any 1-dimensional vector space over k(C) is isomorphic to k(C), 

so we have proved: 

Corollary 9.32. Every line bundle on a curve C is isomorphic to G c (D) for 

some D E Div C. 

Although this corollary appears to reduce the notion of a line bundle on 
a curve to the simpler idea of a divisor, line bundles remain nevertheless an 
important tool. Indeed, the key advantage of line bundles is that the total set, as 
a sheaf, is not restricted to be k(C). The tautological line bundle on projective 
space is a good example (Definition 8.86), as is the canonical line bundle Q c  , 
which will enter the story a little later (in Section 9.5). It is possible to develop 
the theory of curves without line bundles, using only divisors, but this leads to 
an unnecessarily constricted view of the subject. 

Definition 9.33. The degree of a line bundle L E Pic C is defined to be deg D, 

where L Oc(D). 	 LI 

It follows from Corollary 9.18 that this definition is independent of the choice 
of divisor used. Moreover, from the isomorphisms 

Oc(D) 0 Oc(D')"L"-. Oc(D D'), Oc(D)-1  (9c(— D), 	(9.14) 

it follows that the degree satisfies 

deg L 0 M = deg L ± deg M, 	deg L -1  = — deg L. 

The isomorphisms (9.14) say that assigning to a divisor on C its associated line 
bundle defines a group homomorphism 

Div C Pic C, 	D Oc(D). 
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Since (9 (D) Oc  if and only if D is a principal divisor, we have the analogue 
of Proposition 8.65 for a function field: 

Proposition 9.34. The Picard group of a curve is isomorphic to its divisor class 
group, 

Pic C Cl C. 

Given any vector bundle E on C, its space of global sections is defined to be 

H°(E) := n L. C Egen . 

pEC 

For example, in the line bundle case H°(0c (D)) = A(D). An element of the 
stalk Egen is a rational section of the bundle, and assigning its principal part 
at each point of the curve gives a principal part map which is a linear map of 
vector spaces over k, 

PPE Egen —> 	Egen/Ep, 

pEC 

By definition, ker PPE = H°(E), and we define 

H i (E) := coker pp E , 

called the cohomology space of E. In the case E = Oc (D), this is the same 
as the cohomology H 1 (0c (D)) already defined. The Riemann-Roch Theorem 
9.29 therefore takes the form 

dim H°(L) — dim H 1  (L) = deg L — 1 g 	 (9.15) 

for any L E Pic C. 
The following fact is clear from the definition. 

Lemma 9.35. If a homomorphism of vector bundles E 	F is surjec- 
tive (Definition 8.81), then the induced linear map 111 (E) 	H l (F) is 
surjective. 	 El 

Given a divisor D and a vector bundle E, the tensor product E(D) := E 
0c (D) is another vector bundle having the same total set as E. The stalk Egen is 
the inductive limit (that is, the union) of H°(E(D)) as D ranges over all positive 
divisors. Suppose that f E Egen  is a rational section contained in H°(E(D)), 
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where D = EpECnPP >. 0. Then its principal part PPE(f )  is contained in 

el Ep (n p p)IEp , 	where Ep (np p):= Oc,p (np p)- Ep . 
pEC 

Denoting this vector space by E(D)/ E, the principal part map restricts to 

ppE , D  : H°(E(D)) --›- E(D)/E, 

assigning to each rational section of E with poles bounded by the positive 
divisor D its principal part. Then the linear map coker pp E,D  --> Hi (E) is 
injective, and I/ 1 (E) is the limit 

H i  (E) = lim coker pPE,D =  U coker ppE , D . 	(9.16)  
D>0 D>0 

Finally, a linear map of vector bundles E x F ---> G induces a commutative 
diagram: 

H°  (E) (E) X Fgen 	---> 	Ggen  

1, 	 4,  

H°(E) x G I G @pEc Fgen/ FP —* s@pEc gen, p 

Taking the vertical cokernels gives a linear map 

H°(E) x H l (F) --> I/ 1 (G), 

called the cup product in cohomology. 

(9.17) 

(d) Generation by global sections 

Let L be a line bundle on C and let s E H43 (L) be a global section. We choose 
a neighbourhood U C C of p and an isomorphism 0 : L I u 2--> Ou. Via 0 the 
restriction slu maps to an element of Oc(U), and, in particular, takes some 
value 0(s)(p) E k. This value taken at the point p depends on the choices of U 
and 0 made, butwhether or not 0(s)(p) is zero, and indeed the order of zero at 
p, depend only on p and the section s. The order of vanishing of the function 
O(s) at p is called the order of s at the point p E C and denoted ord p (s). 

Definition 9.36. 

(i) Given a nonzero section s E H°(L), we define a positive divisor (s)0 := 
EpEc (ordp(s))p, called the divisor of zeros of s. 
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(ii) The set of points p E C contained in the support of (s)0 for all nonzero 
sections s E W(L) is called the base point set of the line bundle L. If this 
set is empty, we say that L is base point free. I=1 

Let {Si,  . . . , sr, } be a basis of H°(L) and consider the linear map of vector 
spaces over k(C), 

k(C) n  --> ',gen, 	(ft / - - - , In) 1--> fisi ± - - • ± fnsn. 

This determines, as the map on the stalks at the generic point, a sheaf homo-
morphism Ot --> L. This can be expressed in basis independent terms as 

evL  : H°(L) Ok Oc --> L, 

called the evaluation homomorphism for the line bundle L. 

Proposition 9.37. The following conditions on L E Pic C are equivalent. 

(i) L is base point free. 

(ii) The evaluation homomorphism is surjective. That is, at every point p E C 

the induced Oc, p -module homomorphism on stalks H °(L) Ok OC,p --> Lp 
is surjective. 

Proof (i) is equivalent to saying that H°(L) —›- L p Imp L p  is surjective at all 
points, and this is equivalent to (ii) by Nakayama's lemma. 	 0 

A line bundle L E Pic C enjoying property (ii) is said to be generated by 

global sections. 

Proposition 9.38. If deg L > 2g, where g is the genus of the curve, then L is 

generated by global sections. 

Proof Given any point p E C, we have deg L(— p) = deg L — 1 > 2g — 1, 
so that by Theorem 9.20 the line bundle L(— p) has vanishing cohomology. 
Hence, from (9.16), for every positive divisor D > 0 the principal part map 

PPL(-p),D : lic) (L(D — 13)) --> L(D — p)/L( — p) 

is surjective. In particular, we see by taking D = p that p is not a base point. El 

9.3 Nonsingularity of quotient spaces 

In this section we introduce differential modules and give a general definition 
of nonsingularity. We show that the nonsingularity of a free closed orbit under 
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a group action is passed down to the quotient variety. Differential modules on a 
curve will also play an important part in the discussion of duality in Section 9.5. 

(a) Differentials and differential modules 

Let k be an algebraically closed field and K a finitely generated extension field 
of k. A k-linear map * K 	K obeying the Leibniz rule 

*(fg) = f*(g) g*(f) 	for all f, g E K 

is called a derivation of K over k. The set of derivations is a finite-dimensional 
vector space over K denoted by S-4/k , and its dual space Sticlk is called the 
space of differentials of K over k. Its dimension is equal to the transcendence 
degree of the extension: 

dimK  S-2K/k = Tr.deg Klk. 

(See, for example, Eisenbud [61] §16.5.) By definition, the space of differentials 
comes with a k-linear map 

dic : K 	OKI1c, 

which takes f E K to the evaluation functional * 	*(f ). This map satisfies 

dic (fg)= fdicg gdK f 
	

for all f, g E K. 

Every derivation is a composition K -> S 2 K k 	K for some linear map 
QKIk 	K • 

There are two important variations of this idea. Let R be a finitely generated 
integral domain over k. Then we can consider derivations of R taking values in 
the field of fractions of R, and in the residue field at a maximal ideal m c R, 
respectively: 

	

: R 	Q(R) 
	satisfying *(fg) = f/(g) vfr(f), 	(9.18) 

	

fr : R 	R Im k satisfying *(fg) = f*(g) g*(f). 	(9.19) 

In the first case, derivations (9.18) are in one-to-one correspondence with deriva-
tions of the field Q(R) over k. Those of the second case (9.19) are elements of 
the Zariski tangent space (m/m2)v at the maximal ideal (see Definition 4.19 and 
Section 8.5(d)). This can be seen as follows. The residue ring R /m2 , as a vector 
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space over Rim k, has a direct sum decomposition Rim 2 	m/m2 ,  

and projection on the second summand determines a k-linear map 

R --> RIm2  --> m1m2 . 

It is easy to check that this obeys the Leibniz rule, and every derivation (9.19) 
can be expressed as a composition R m1m 2  k for some linear form 
(Zariski tangent vector) v E 011/M2Y. 

Definition 9.39. Let R be a finitely generated algebra over k and let I be the 
kernel of the multiplication map 

R Ok R R, 	a b ab. 

Then the R-module S-2Rik := 1112  is called the (Kithler) differential module 
of R. 

If S c R is a multiplicative subset, then it is easy to verify that 

S-2- IR/k 	S 10  S 	 R/k• (9.20) 

Also, the k-linear map 

dR : R --->- c2R/k, a a 1 — 1 0a mod / 2  

satisfies the Leibniz rule, and dR  is universal for linear maps R --> M (where M 
is an R-module) obeying the Leibniz rule. In particular, we have the following. 

Proposition 9.40. 

(i) The total fraction module Q(S2R) (see Section 8.2(a)) is isomorphic to 

(ii) At a maximal ideal m c R, the quotient OR ImO R  is isomorphic to the 
Zariski cotangent space m/m2 . 

When R is an integral domain, Q(QR) is a vector space over Q(R) 
of dimension equal to the transcendence degree of Q(R)/k. On the other 
hand, by localisation at m we see that Q(2R)  is spanned by dimk(m/m2) 
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elements, and so: 

dimk(m/m2) _> Tr.deg Q(R)/k. 	 (9.21) 

(This is still true if R is not an integral domain, but we will not go into this.) 

(b) Nonsingularity 

Given a ring R and an ideal I C R, the direct sum 

is a graded ring with the natural multiplication. 

Definition 9.41. A Noetherian ring R is regular at a maximal ideal m c R 
if gru,R = En mi/m1 + 1  is isomorphic to a polynomial ring over the residue 
field Rim. 	 0 

We now return to the situation where R is finitely generated over the field 
k. Let a1, ... , an  E m be a basis, modulo m 2 , of m/m2 , and consider the ring 
homomorphism 

k[xi, . . . ,x,] -->- R, 	x i  1---> ai . 

Then, for every 1 > 0, the induced map 

k[xi, ... , x n ]/(x i , ... , x,) 1  --->- RIml  

is surjective, and so regularity of R at m means that this is an isomorphism for 
every I > 0. In particular, the completion of R at In is isomorphic to the formal 
power series ring: 

k[[xi, ... , xn ]] =.-->- -Isi := limR/tni . ,-- 
By l(rull's intersection theorem (see, for example, Eisenbud [61] §5.3) 
n,mi R u,--,--- 0, so the map R in  --> 1? is injective. In particular, it follows 
that Rin  is an integral domain. 

Definition 9.42. 

(i) A point p E X in a variety X is a nonsingular point if it is contained in an 
affine open set Spm R C X, where R is an integral domain over k regular 
at the maximal ideal m C R corresponding to p. 

(ii) A set {al, . .. , an } C m whose residue classes define a basis of the Zariski 
cotangent space tn/m 2  is called a regular system of parameters at tn. CI 

This generalises the definition of one regular parameter following Lemma 9.1. 
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Example 9.43. The polynomial ring k[x i  , 	, xn ] is obviously regular at all 
maximal ideals, and therefore affine space A' is nonsingular at all points. Con-
sequently, any variety obtained by gluing affine open sets isomorphic to A" is 
also nonsingular everywhere. Projective space Pi and Grassmannians G(r, n) 
are examples. 

If R is regular at a maximal ideal In, then a regular system of parame-
ters al, . , a E 111 is algebraically independent over k, and hence equal-
ity holds in (9.21). In particular, if R is regular at all maximal ideals, then 
by Proposition 9.40 and Exercise 7.7 the differential module 2R/k  is locally 
free. 

Definition 9.44. A variety X is nonsingular if it is nonsingular at all points. If 
X is covered by affine open sets Spm R, then by (9.20) the locally free modules 

ORIk glue together to determine a vector bundle Q x , called the cotangent bundle 
of X. 0 

We will give a functorial characterisation of nonsingular varieties. Consider 
as an example the case of the affine space X = An  = Spm S, where S = 
k[xl, , x n ]. We can observe that for any ring homomorphism go S —> A 
and any surjective homomorphism f : A' —> A there exists a homomorphism 
çd : S —> A' such that the following diagram commutes: 

A' 

lift go' 	f surjective 

S -2--> A 

The map go' is called a lift of go. The existence of this lift means that the map 
from A'-valued points to A-valued points of X induced by f, 

X(f) : X(A 1 ) 	X(A), 	 (9.23) 

is surjective (see Section 3.3(a)). A nonsingular variety is one which has this 
property whenever A, A' are Artin local rings: 

Definition 9.45. An Artin ring (over k) is a finitely generated ring containing 
k which satisfies the following equivalent conditions. 

(i) R is finite-dimensional as a vector space over k. 
(ii) R has only finitely many maximal ideals, and these are all nilpotent. 	El 
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Lemma 9.46. Every Artin ring has a decomposition as a direct sum of Artin 
local rings. 

(See Exercise 9.1.) The next result is the main tool that we will use later for 
proving nonsingularity of our moduli spaces. 

Proposition 9.47. For a variety X the following properties are equivalent. 

(i) X is nonsingular. 
(ii) For any surjective homomorphism of Artin local rings f : A' 	A the 

map (9.23) is surjective. 

Proof We will prove (ii) = (i) in the case X = Spm R. Choose elements 
xn  E m giving a basis of m/m2 , and consider a polynomial ring 

k[yi  , . . . , yd. We can construct a ring homomorphism 

R /1n2  ---> k[Y19 • • • 9 Yri]l(Y19 • • • 9 Yn)2  

by mapping residue classes.7i 	. We now apply condition (ii) to the pro- 
jection homomorphisms 

A' := k[yi, • - , ANY', - • • , 3 701  —> A := kryi, • • • , .Yni/(Yi, • - • , 

This tells us that for every natural number 1 e N the homomorphism co2 extends 
to a homomorphism 

go/ : R/m/  --> kryi, • • • , Yni/(Yi, • • • , 

and hence i, • • . , 37n are algebraically independent in gr in. R. 	 El 

(c) Free closed orbits 

Suppose that a linearly reductive algebraic group G acts on an affine variety 
X. In Chapter 5 it was shown that any two distinct closed orbits 01 0 02 are 
separated by thelnialiants of the G-action (Theorem 5.3 and Corollary 5.4). 
To show that the quotient variety is nonsingular, we need to extend this result 
to the limit as 01 and 02 approach infinitely close to each other. 

Definition 9.48. A closed orbit G•x c X is called a free closed orbit if the 
map G --> G • x, g —k g.xis an isomorphism. Equivalently, the orbit is stable 
(Definition 5.12) with a trivial stabiliser subgroup. 	 111 
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Let X Spm R and let / c R be the ideal of the orbit G x c X. Then / 
is invariant under the coaction 

: R --->- k[G] Ok R 

(That is, ,u,(/) C k[G] Ok 1.) The coaction therefore induces a map R I ----> 
k[G] Ok RII, and for a free closed orbit this is isomorphic to the coproduct 
k[G] Ok k[G] —> k[G]. We want to consider the map 

1112 	k[G] Ok 1/12  

induced by a. Via the above isomorphism, this is a homomorphism of k[G]-
modules. On the other hand, /// 2  is also a representation of G and is therefore 
a k[G]-module equipped with a G-linearisation (see Definition 6.23). The next 
lemma shows that /// 2  is isomorphic to (I/1 2) Ok k[G]. 

Lemma 9.49. A k[G]-module M having a G-linearisation is free. More pre-
cisely, any basis of the space of invariants M G  is a free basis of M as a k[G]-
module. 

Proof Let v : M --> k[G] Ok M be the coaction of G on M. This is a homo-
morphism of k [G]-modules.  Define a linear map 

a : k[G] Ok M --> k[G] Ok M, 	a 0 in I ,  AG(a) • (1 0 in). 

If i : k[G] —> k[G] is the coinverse map, then 

a o (i 1m ) o a 

is an isomorphism, and in particular it follows that a is an isomorphism. Let 
AG,G (AG 0 1) 0 po : k[G] --> k[G] 0 k[G] 0 k[G]. Then by the same 
reasoning as for a, the linear map 

: k[GlOk[G]0M --> k[G]Ok[G]0M, 	a0b0rn 1—> Ptc,G(a)(1 0b0m) 

is also an isomorphism. We now define a map f by the commutative diagram 

M 	k[G] Ok M 

4,  a 

M 	k[G] Ok M 
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and apply Lemma 8.39. By the associative law for the (co)action f satisfies the 
conditions of the lemma, while a(Mo) = M G . Hence 

M G  Ok k[ —> M 

is an isomorphism. 	 0 

We now apply the linear reductivity of G to the surjective linear map of 
representations I —>. 1/1 2 • This, together with Lemma 9.49, implies that there 
exist G-invariant elements A , ... , f,. E ./ G  which form a free basis modulo 
/ 2, where r is the rank of /// 2  as a k[Gj-module. By Nakayama's lemma (or, 
more precisely, by the matrix trick used in its proof) A , . .. , fr  generate I in 
some neighbourhood of the orbit G • x, in the sense that there exists b E R, 

congruent to 1 modulo I, such that the homomorphism of Rb-modules 

Rb ED • • • El) Rb ---> I Rb, 	(gi, . . . , gr) 1--> gift + • - • + gr fr 	(9.24) 

is surjective. 

Lemma 9.50. There exists b 7,-  1 mod 1, as above, which is G-invariant. 

Proof Let a = {b e R I bl c (f i , ... , fr )}. Then a c R is an ideal and is 
also a representation of G. Since 1 E a + /, it follows from linear reductivity 
(Proposition 4.37) that 1 E aG  + / G • 	 0 

Let .7 E X II G be the image of x e X under the affine quotient map X = 

Spm R -->- XIIG = Spm R G , corresponding to a maximal ideal m = I r1R G  = 

I G  C R G  . Applying linear reductivity to the surjective map of representations 
(9.24), we see that m is generated by /1, . . . , fr  in some neighbourhood of T. 
The same is true for any power m 1 , and we have shown the following. 

Theorem 9.51. Let G-x c X= Spm R be a free closed orbit with defining 

ideal I c R. 

(i) There exist invariants fi, . . . , f r  e RG whose residue classes modulo 1 2 

 form a free basis of 1/12 . 

(ii) There exists a G-invariant affine open set U C X containing G • x such 

that the restrictions of fi, . . . , fr  to U generate I. 

(iii) If m c R G  is the maximal ideal of the image of x in X//G, then every 

power m1  is generated by (ft, . . . , f r)1 . 	 Ei 
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Suppose, further, that X is nonsingular at the point x E X. Then the fibre 
at x of the graded ring gr i R (that is, its quotient by the maximal ideal ni) is a 
polynomial ring in r := dim X — dim G variables. It then follows from part (ii) 
of the theorem that gr. RG is isomorphic to a polynomial ring in r variables, 
and we conclude: 

Corollary 9.52. If an affine variety X is nonsingular at every point of a free 
closed orbit G • x, then the affine quotient X is nonsingular at the image 
point.37 E X II G, with dimension = dim X — dim G. 

9.4 An algebraic variety with the Picard group as its set of points 

Fix a curve C of genus g and an integer d E Z. We are going to construct in 
this section a g-dimensional nonsingular projective variety, the Jacobian of C, 
whose underlying set is Pic d  C, the set of isomorphism classes of line bundles 
on C of degree d. 

(a) Some preliminaries 

We will assume throughout this section that d > 2g, and we fix a line bundle 
L E Pic2d  C. We note that every line bundle 4 e Pic' C has the following 
properties: 

(i) H 1 (4) = O. 
(ii) 4 is generated by global sections. 
(iii) dim 1-/°() = d 1 g =: N > g. 

We set := L 0 4-1  c Picd  C and note that also has all of the proper-
ties (i) to (iii). The key tool in the algebraic construction of the Jacobian is the 
multiplication map 

H° (4) x H° (-F) 	H° (L), 	(s, 	st. 

Definition 9.53. Given a line bundle 4 E Pied  C, a pair (S, T) consisting of 
a basis S = {Si, sly} of 10() and a basis T = iti, , tArl of H° (4) is 
called a double marking of 4. 

Given a line bundle 4 E Picd C and a double marking (S, T), we introduce 
the following N x N matrix with entries in 10(L): 

Siti • ' • SltN 

111(4', S,T) . 	
• 

SNti • - SNtN 
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If we fix a rational section of L, then kli(4', S, T) can be viewed as a matrix of 
rank 1 over the function field k(C). 

Definition 9.54. We denote by MatN (H°(L)) the set of N x N matrices with 
entries in H°(L). The subset of matrices of rank 1 over k(C) or, equivalently, 
those for which all 2 x 2 minors vanish, is denoted by MatN,i( 10(L))- 	0 

Remark 9.55. A matrix kli of rank 1 over a field (or unique factorisation 
domain) K is expressible as a product: 

(a

1  

an 

	

.: 	(bi, — , bn,), 	ai,bj E K. 

Moreover, these vectors are unique up to scalar multiplication in the sense that if 

(

al 
1 

IP =  

a/ 
n 

then a; = cat , bij  = c-l bi for some c E K. 	 0 

The following proposition says that when kif is of the form W(, S, T), the line 
bundle can be recovered as the image of the linear transformation determined 
by the matrix. 

Proposition 9.56. Given a matrix kli e MatN,i(H°(L)), the following two 
conditions are equivalent. 

(1) The N rows and the N columns of 41 are linearly independent over k. 
(2) tlf = 111(4', S, T) for some 4 e Picd C and double marking (S, T). 

Moreover, the line bundle 4 is the image 4 c LED A.' of the sheaf homomorphism 
determined by 'If, 	--. 

('I' ) : (9(c13' N 	L ON . 

Proof (2) 	> (1) is clear, and we just have to show (1) 	> (2). Let 4 be the 
image of ('P) : (.9 N _4.  L eN . That 4' is a line bundle follows from the fact 
that IP has rank 1 as a matrix over k(C). To see that deg 4 = d, observe that, 
since 'If has rank N over k, we have dim H °(4') > N > g, and so by Lemma 
9.22 we have H 1 () = 0. From this it follows that deg 4 > N + g — 1 = d. 
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But the same reasoning deg L — deg 4 = deg 	d and hence deg 4 < d. So 
4.  E Picd C. That 111 = klf(4, S, T) follows from Remark 9.55. 	 0 

Remark 9.57. This construction can also be explained in terms of divisors. 
The matrix kli(4, S, T) has rank 1 over the function field k(C) and is therefore 
a product of k(C)-valued vectors 7 = (ft, . . . , fN) and 1 = (gi, • • • , gN). 

Then 4 = Oc(D), where D is the greatest common (positive) divisor of the 
polar divisors (n) 00 , . • • , (fN)oo• D 

The space of matrices Mat N (H°(L)) is a vector space over k isomorphic to 
the direct sum of N 2  copies of H°(L), and the general linear group GL(N) acts 
on this space by left and right multiplication. In particular, this gives an action 
of the direct product GL(N) x GL(N), under which the image of the group 
homomorphism 

Gm  —>- GL(N) x GL(N), 	t 1---> (tIN, C l iN) 	(9.25) 

acts trivially. We therefore consider the cokernel 

GL(N , N) := GL(N) x GL(N)/Gm. 	 (9.26) 

The coordinate ring of GL(N) is the localisation of the polynomial ring k[x 13 ] 
at det x and is graded by homogeneous degree: 

k[GL(N)] = k[xii  , (detx) -1 ] = ED k[GL(N)], 	deg x13  = 1. 
eEZ 

Hence 

GL(N , N) = Spm (EB k[GL(N)] e  Ok k[GL(N)] e) . 
eEZ 

Note that, since GL(N) is linearly reductive, so is GL(N , N). 
As a representation of GL(N , N) the space MatN (H° (L)) is isomorphic to a 

direct sum of dim H° (L) copies of the space Mat N (k) of square matrices over 
k. This can be viewed as an affine space An , where n = N2  dim H° (L), and 
MatN , i (H°(L)) as a closed subvariety. In particular, Mat N , i (H° (L)) is an affine 
variety (or, more precisely, each irreducible component is an affine variety, and 
the discussion below applies to each irreducible component) and is preserved 
by the action of GL(N , N). This action is of ray type. 

The set of matrices III satisfying the linear independence condition (1) in 
Proposition 9.56 forms an open set 

U(L) C MatN,i(H°(L)), 
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which is therefore a parameter space for double-marked line bundles (4, S, T) of 
degree d. Moreover, the open set ?AL) is preserved by the action of GL(N , N). 

Proposition 9.58. Matrices III, klil E U(L) give isomorphic line bundles 4, 4' 

if and only if they belong to the same GL(N , N)-orbit. 	 El 

We have therefore identified the set Pie d  C with the space of GL(N , N)-orbits 
in ?AL) C MatN,i(H°(L)). 

(b) The construction 

We are going to study the Proj quotient of the action GL(N , N) r - - 

matN,i(H°(L)), using the character 

8 : GL(N , N) —> t in , 	(A, B) 1--> det A det B . 	(9.27) 

We denote the kernel of 8 by SL(N, N). Semiinvariants and semistability will 
always be taken with respect to this character. We will show in this section 
that stability and semistablity coincide and that the open set of stable points is 
precisely ?AL) c MatN,i(H° (L)), defined above. 

Any linear form f : H°(L) —> k induces a map, which we will denote by 
the same symbol, f : MatN(H°(L)) —> MatN(k). Then the function 

MatN(H°(L)) —> k, 	kif 1--> det f ('.P) 

is a homogeneous polynomial of degree N and is a semiinvariant of weight 1 
for the action of GL(N , N). From this we see (see Definition 6.13): 

Lemma 9.59. Let kli be a matrix in MatN(H°(L)). If there exists a linear form 

f: H° (L) --> k such that det f(W) 0 0, then klf is semistable. 	 ID 

An important case arises when f is the evaluation map at p E C, 

eVp : H ° (L) —> LIm p L :--1-' k, 

or a sum of evaluation maps at points of some divisor. Since the diagram 

H°() x H°(-F) —> H°(L) 

evp  4, 	4evP  

41111p X --elTripZ ----> LImpL 
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commutes, the matrix ev p  (kIJ S, T)) E MatN(k) is the product of the column 
and row vectors obtained from the entries s1, . • . , sN e 1-1° (0 and t1, . .. , tN E 

H° (4) via the evaluation maps 

evp  : H°() > 4. /mp4' 	k, ev p  : 	 k. 

Lemma 9.60. Let 	, fN be the nonzero evaluation maps of L at points 

131, • •, PN E C, and let f = fi + • • • + fN : H°(L) 	k. Then 

det f (k1 1 (4 • , S, T)) is equal to the product of the determinants 

det {(evp„ 	, evp,) : H° (4) 	kEI)N 1 , 

det {(evp„ . , evp,) : H° (F) 	ON  I . 

Proof Just observe that 

f(w(4', hs, T)) = 
(f(siti) • .• .• f(sNti)) 

f(sitN) • " f(sNtN) 

= 	si(pi) • .• si(pN) )  (ti(pi) 

sN(191.) • • • si(pN) 	ti (p) 

) •• .. •• 	IN (13 1.) 

• • • tiv(pN ) 

where si (pj ) := ev pi (si) and so on. On the right-hand side, the first matrix 
is the matrix representing the map (ev p„ 	, evp,) : H°(0 	k (13'N  and the 
second is the matrix representing (ev p„ . , evp,) : H°  (4) 	ON . 

Note that the kernel of (ev p„ 	, evp,) : H° (4) 	IcED N  is the space 
H°(4•(—pi — • • — PN)) ,  and similarly for 4.  If the points pi., • • • , PN can 
be chosen so that these kernels vanish, then by the lemma it will follow that 
det f( 111 (4, S, T)) 0, so that S, T) is semistable. On the other hand, for 
a general point pi E C we have 

dim H° (“—pi)) = dim H°(4(—p1)) = N 

Then, for a general choice of a second point p2 E C, 

dim H° (4(—pi — p 2)) = dim H°(4(—p1 192)) = N — 2. 
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Repeating this N times we see that there exist points pi., . . . , pN E C such that 

dim 1/° (4( — P1 — ' • • — PN)) = dim H°((—p i  — • - • — pN)) = 0. 

So indeed, if we take f : H°(L) ----> k to be the sum of the evaluation maps 
at these points, then Lemma 9.60 guarantees that det f (k11( , S, T)) 0 0, and 
hence that tl1(4, S, T) is semistable. 

Even better, stability follows from the next lemma. 

Lemma 9.61. If A, B E GL(N) are matrices satisfying At I f( , S, T)B = 

41 (4, S, T), then A and B are both scalar matrices and AB = 

Proof By By hypothesis, the following diagram commutes: 

oeN (T ) L eo 
c 

A ,I, 	f B 

0Ecl ,3N  - 1 	LEDA/ 

This defines an automorphism of the line bundle 4 = lin (*), and this is just 
multiplication by a scalar c E k. Thus A = c/N and B = c-1  IN. 	 El 

Summarising, we have shown: 

Proposition 9.62. Every matrix xlf(, S, T) is stable with respect to the action 
of GL(N , N) and the character 8. That is, 14(L) c MatsN , 1 (10(L)). 	III 

Conversely, the matrices kli(4, S, T) exhaust all the semistable elements of 
MatN , i (H°(L)). 

Proposition 9.63. If tif E MatN, 1 (H°  (Li)) is semistable, then the N rows and the 
N columns are linearly independent over k. In other words, Maq i (H°(L)) C 
14(L). 

Proof Suppose the rows are linearly dependent. Then we can choose a basis 
of H°(L) with respect to which 

\J1= 

( 0:  0 
* 

* 	• • • 

0:  ) 



322 	 9 Curves and their Jacobians 

Multiplying on the left by the 1-parameter subgroup A : Gm  ---->- SL(N), 

t 1----> diag(t —N+ 1 , t, . . . , t), gives 

( 0 0 	0 ) 

t* t* • • • t* 
A(t)W= 	 , 

- - - 

t* t* • • • t* 

which tends to the origin as t —> 0. If the columns are linearly independent, we 
argue similarly, multiplying on the right by A(t). In both cases we see that the 

closure of the orbit SL(N, N) • tif contains the origin, and so xlf is unstable. El 

We have arrived at an action of ray type GL(N , N) ra. MatN,i(H°(L)) for 

which, by Propositions 9.62 and 9.63, MatsN,i (H°(L)) = Maq 1 (H°(L)) = 

U(L). 

The Proj quotient 

MatV 1  (H°  (L ))/ G L(N, N) = Proj k [MatN,i(IP(L))I SL(N,N) 	(9.28) 

is therefore a good quotient in the sense that its points correspond one-to-one 
to the orbits of the group action. 

(Notice that this quotient construction is valid once we know that the affine 
variety MatsN,i (H°(L)) is smooth, by Remark 6.14(vi). This will be proved in 
Proposition 9.68 below.) 

We conclude: 

Theorem 9.64. The quotient variety (9.28) is a projective variety whose un- 

	

derlying set is Picd  C . 	 1=1 

By the proof of Proposition 9.62 and by construction of the projective quo-
tient, given N distinct points pi , .. . , pN E C, the subset 

{4 E PiCd C I H°  ((— p — • • • — pN)) = H °  ( .-(pi — • • • — pN)) =01 

is an affine open set. This is the complement of two translates, in the abelian 
group Pic C, of the theta divisor 

	

0 	R I H °(0 $ 0} c Picg -1 C. 	 (9.29) 

The quotient variety (9.28) is covered by affine open sets of this type. 



aij E H°(L). 

SNtN aNNE 

sitN + aiNE )  

• 

• • • 

sNti aNie 
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(c) Tangent spaces and smoothness 

Let 	S, T) be a line bundle on C with a double marking. What is the tan- 
gent space to the affine variety MatN,i(H °(L)) at the point tlf(, S, T)? As in 
Section 8.5(d) we let k[E] = k[t]/(t2) with E 2  = 0, c 0 0. Then a tangent 
vector to the affine space MatN(H °(L)) at 5, T) can be written 

(9.30) 

For this to be a tangent vector to the subvariety MatN,i(H ° (L)) it is necessary 
and sufficient to have rank 1 as a matrix over k(C) Ok k[c]. This implies the 
following. 

Lemma 9.65. The matrix (9.30) is a tangent vector to MatsN,  (H° (L )) if and 
only if there exist rational sections 	s N' and t _ ,gen 	, . • • 5 t E ‘n such 
that 

S 

SN 	 SN 

Proof The condition is equivalent to 

(Si + 

t11(, S, T) + Ac = 	 (ti + tfc, 	, tN t'NE), 

sN s'N E 

which in turn is equivalent to the matrix having rank 1. 	 LII 

We can rewrite the condition in the lemma as 

Si 

, tN) = — I 	(ti, 	, t'N ) -E A 
SN 	 SN 
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and interpret this in terms of its principal parts. Namely, at each point p E C it 
gives a congruence modulo the stalk L p , 

fs\ ( Si 

, 	 (ti, 	, 4)  mod L p . 

SN 	 SN 

The local ring OC , p is a unique factorisation domain, and so (using Remark 9.55) 
there exists a rational function hp  E k(C) such that 

s' Si 

	

: 	= h 	mod .1), 	 (9.31) 

	

(sN" 	P (SN: ) 

(t ip 	t'N ) 	 , tN) mod 

Although the function hp  itself is not uniquely defined, its principal part hp  

mod Oc,p  is. 

Definition 9.66. Let TT MatsN,i (H°(L)) be the tangent space to MatsN,i (H° (L)) 
at W. We define a linear map 

TTMatsN , (H°(L)) ----> H 1 (0c) 

by assigning to A E TT MatsN,i (H°(L)) the cohomology class of the principal 
part (h p)pEc E EB1pEc  k(C)/0c,, where hp  is the rational function defined 
by (9.31). 	 El 

Proposition 9.67. 

(i) The kernel of the linear map n-ty is equal to the tangent space at tlf E 

MatsN,l (H°(L)) to the orbit of the action GL(N , N) m MatsN,i (H° (L)). 
(ii) The linear map Trti, is surjective. 

In other words, denoting the Lie space of GL(N , N) by gl(N , N), we have 
an exact sequence 

gl(N , N) 	TTMatsN ,i (H°(L)) 	H i  (0 c) —> 0. 
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Proof 

(i) If (A) = 0, then there exists a rational function h E k(C) such that, at 
every point p E C, the components of the vectors 

—h mod 

and 

:= (t;, 	, t'N ) + h(ti, 	, tN) mod ip 

belong to H° (0 and H°(i), respectively. Then 

II 
S\  

	

s : f 	(ti, . . . , tN) + 	s ; 	(t;/  9 -- ( 

and it is therefore tangent to the GL(N, N)-orbit at 'W. 
(ii) Let 

a E ED k(C)/0c, 
pEC 

be an element of the principal part space. Multiplying by si , ti  we obtain 
elements 

otSi E 	genl.po, 	at1  E 	-...-genRp 
pEC 	 pEC 

whose cohomology classes are zero by the hypotheses made at the beginning 
of Section 9.4(a). We can therefore find rational sections s' E ., gen  and t E gen 

having asi , at as their principal parts. Then for each i, j we have s;tj  — sit'j  E 

H°  (L), and if we take this as (i, j)-th entry of a matrix A, then 7 (A) is precisely 
the cohomology class of a. LI 

Proposition 9.68. Tite-Open set MatsN,i (H°(L)) c MatN,i(H °(L)) of stable 
points for the action of G L(N , N) is nonsingular. 

Proof We will use Proposition 9.47. Let f : A' —> A be a surjective homo- 
morphism of Artinian local rings over k with maximal ideals n c A, n' c A'. 
As a vector space A = k 1 e n, and so an A-valued point of Maq,,i(H°(L)) 
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can be written 

(9.32) 

where aij  E H°(L) Ok A, and the matrix (9.32) has rank 1 over k(C) Ok A. 
This can therefore be expressed as 

f si +qi 

111 (, S,T)+ P — I 	(ti + 	• • • , tN 	rAr) 

sN 4-  qN 

for some rational sections qi  of the vector bundle 	n. on C and rj  of the 
vector bundle Ok n. The sections si , ti  are nonzero, and so the functions 

+ 1-1  E k(C) ok  A 
t 

have well-defined logarithms We define: 

qi 
s; = si  log (1 +—) E geri 

Si  
(  ti  log 1 -I- —''-- E -gen  ok rt• 

ti 

) 

These satisfy 

(s N') 

, . • • , tN ) : 	(t, .. . , t'N ) mod L Ok 

SN 

 n 

and therefore determine, by taking principal parts as in Definition 9.66, an 
element of H i  (Oc Ok n) which we will denote by n-  (log P). 

Now by Lemma 9.35 there exists an element a' E Hi  (0c Ok n') which maps 
under f to 7 (log 13 ). By the same argument as in the proof of Proposition 9.67(ii) 
we can construct an A'-valued point kW, S, T) Fil  E MatsN , 1 (H°(L)) for 
which r(log Pi) = a', and by using the exponential function for matrices 
we see that this maps under f to the A-valued point 'K4, S, T) P, as 
required. 

Remark 9.69. This proof makes implicit use of the series expansion 

(—x)n 
log(1 + x) = — 2_, 

12,1 	n 
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and is therefore only valid in characteristic zero. In fact, one could give an 
alternative proof which also works in positive characteristic, using the methods 
of Section 10.4(a) later on. 	 LI 

By Lemma 9.61, every closed orbit of the action GL(N, N) 
MatN,i(H° (L)) is isomorphic to GL(N , N), and hence from Proposition 9.68 
and Corollary 9.52 we conclude: 

Theorem 9.70. The projective variety Mat s 1 (11° (L))1 GL(N , N) is nonsin- 
gular, and at every point its tangent space is isomorphic to 11 1 (0c). 	CI 

9.5 Duality 

Let C be a (nonsingular projective) curve. By using a distinguished line bundle, 
the dualising line bundle on C, it is possible to express cohomology spaces 
as the duals of spaces of global sections, a tool which is endlessly useful. 
Although this duality has a very powerful abstract formulation, we will give a 
quite concrete account using differentials and residues. Later in the section we 
will define algebraic de Rham cohomology for use in Section 9.6. 

(a) Dualising line bundles 

We begin by re-examining the definition of the cohomology space H l (L). The 
stalk Lgen  at the generic point is a 1-dimensional vector space over k(C). We 
consider the diagonal linear map 

A : L —> ED L gen 	 gen 	f 	 f, • • • )- 

pEC 

Definition 9.71. We define 7-t' (L) to be the vector space of linear forms 

a : E L gen  —> k 
pEc 

which vanish on the diagonal A(L gen ). 	 LI 

Clearly 7-01 (L) is a vector space over k(C), and the dual of the cohomology 
space H 1  (L) can be identified with the k-linear subspace 

11 1 (L) v  = {a I a vanishes on E8pEc Lp} c 	(L). 

More generally, for any divisor D = Ep  tipp we can identify 

1-1 1 (L(—D)) v = {a I a vanishes on TpEc p( — npP)} C 7-tv  (L). 	(9.33) 
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The next definition gives a natural choice for the line bundle L and the linear 
map a. 

Definition 9.72. 

(i) A linear form a : Hi (L) —> k, viewed as an element of 7-C (L) 

a : ED Lgen  —> k, 	a o A =0, 
pEC 

is called nowhere vanishing if for all q E C it satisfies 

a (Lq (q) ED ED Li,) 0  0. 
p€C-{q} 

(ii) If there exists a nowhere vanishing linear form on H' (L), then L is called 

	

a dualising line bundle on C. 	 0 

One can see the existence of a dualising line bundle in the following way. Let 
L be a line bundle of maximal degree such that H l (L) 0 0— such a line bundle 
exists by Theorem 9.20 and turns out to be a dualising line bundle. This is 
because at every point q e C the cohomology of L(q) = L 0 0c(q) vanishes, 
so that 

(Lq(q)  @ ED Lp) + A(L gen) ------ ED Lgen• 

	

pEC-{q} 	 pEC 

Hence any nonzero a E H 1  (L)v c If' (L) is nowhere vanishing. 
Next, fixing a nonzero linear form a E Hl(L)v,  consider the k(C)-linear 

map 

k(C) —> 7-v(L) 	f I--* fa. 

This map is clearly injective, and its restriction to functions f such that (f)  + 
D > 0 determines a linear map H°(0c(D)) ----> H l (L( — D))v . - 

Theorem 9.73. If a E H i (L)v  is a nowhere vanishing linear form, then for 
any divisor D E Div C the map 

H°(0c(D)) —> 111 (L( — D)) v  , 	f I--r > fa 

is an isomorphism. Equivalently, the composition 

H°(0c(D)) x 11 1 (L(—D)) --->cup  H 1  (L) --(=>' k, 

where the cup product is (9.17), is a nondegenerate pairing. 
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To prove this we first need: 

Lemma 9.74. If a E H i (L) v  is nowhere vanishing and 13 E 11 1 (L(—D)) v 
 satisfies 13 = f a, then f E HC ( 9c(D)). 

Proof Let (f) = Ep  ap p and D = Ep  no p. The hypothesis that 13 E 

means that ep Ec L(—n pp)c ker 13, and so p , fa implies 
that 

ED LP(— (ap + np)p) c ker a. 
pEC 

But EDpEC L c ker a, and hence the assumption that a is nowhere vanishing P 
forces ap  + np  > 0 for all p E C. Hence (f) + D > 0. 	 El 

Proof of Theorem 9.73. (Weil [68].) We just have to show surjectivity; pick 
p E H 1 (L(—D))v.  . Then, for any positive divisor F > 0 we have injective 
linear maps 

H°(0c (F)) c--> 111 (L(—D — F)) v , , 	h 1--> hI3 

and 

H°(0c (D ± F)) c--> 111 (L(—D — F)) v , , 	h' F-± hl  a. 

If the degree of F is sufficiently large, then the dimension of H 1 (L(—D—F))v is 
just deg F plus a constant, and the same is true of the dimensions of H° (0c (F)) 
and H°(0c(D + F)). For F > 0 of sufficiently high degree, therefore, these 
two subspaces have nonzero intersection; that is, there exist h E HC ( 9C(F)) 
and h' E HC/(0c(D ± F)) satisfying IN3 = hia. Hence 13 = (10 h)a, 
and we just need to check that h' I h E H°(0c(D)). But this follows from 
Lemma 9.74. El 

A divisor K e-DiV - C such that L:--=-' 0c(K) is a dualising line bundle is 
called a canonical divisor. (Such divisors exist by Corollary 9.32.) Applying 
Theorem 9.73 to K and 0 E Div C we obtain the following. 

Corollary 9.75. If L is a dualising line bundle on C, then the vector spaces 
11 1 (0c) and H° (L) are dual and dim H i (L) = 1. 	 111 
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Combining this corollary with the Rieniann-Roch formula (9.15) yields 
g — 1 = dim H° (L) — dimil l (L) = deg L + 1 — g, and hence: 

Corollary 9.76. If L — 0 c (K) is a dualising line bundle, then deg K -= 2g —2, 
where g is the genus of C. 	 El 

(b) The canonical line bundle 

The cotangent bundle C2c ,  of a curve C is a line bundle whose total set Ok(c) is a 
1-dimensional vector space over k(C). This is called the canonical line bundle 
on C. At each point p E C the stalk CZ c , p  of Oc is generated by dtp , where 
tp  E rap  Oc, p  is a regular parameter. (See Section 9.3(a).) 

Now, the principal parts of S2 c,  have a very special property. Call an element 
0) E Ow) a rational differential. At each point p E C this has a Laurent 
expansion 

00 

E antpndtp  
n.—N 

with respect to a regular local parameter, and the coefficient a_1 is independent 
of the choice of this parameter. This coefficient is called the residue of co at p 
and denoted 

Res co := a_i. 
P 

The sum of residues over all points of the curve vanishes: 

Residue Theorem 9.77. Every rational differential co E E2k(C)  satisfies 

E pE,.- ,., Res co = 0. 
P 

Outline of the proof For any finite sheeted cover C ---> C' we can define a trace 
map on differentials, 

tr : C2 k(C)  

with the property that for any co E Ok(c) one has 

E Res co = 	Res tr (co). 
q 

pEC P 	qEC' 

(See, for example, Iwasawa [63].) To prove the theorem for a general curve C 
one can use this fact to reduce to the case of C' = IP 1 , for which the proof is a 
simple computation. 
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Alternatively, when the ground field is k = C, the curve C can be viewed as 
a compact Riemann surface. In this case we can take a triangulation containing 
all the poles of co in the interiors of faces and apply Cauchy's residue formula 
to the faces. The total integral vanishes since C is orientable, so that all the 
contour integrals along the edges cancel out. 0 

It follows from this result that 

C2k(c)I Qc , p  ---> k, (coy ) ,_÷ E Res CO  P 
P peC peC 

defines a nonzero linear form on H 1 (S2c ), and hence that H 1 (2c) 0 0. More 
than this, if we view a as an element of 1(v (C), then it is nowhere vanishing 
in the sense of Definition 9.72 — hence S.2c is a dualising line bundle. From 
Theorem 9.73 and Corollary 9.75 we get the following. 

Theorem 9.78. 

(i) For any divisor D E Div C the vector spaces H°  (0c(D)) and 

H 1 (S-2c (—D)) are canonically dual. 

(ii) The cohomology space H i  (0c) is canonically dual to the space H°(2c) of 

regular differentials (also called differentials of the first kind). In particular, 

the genus g of C is equal to the number of linearly independent regular 

differentials. (This is called the geometric genus.) 

(iii) dimf1 1 (Qc) = 1 and deg Q c  = 2g — 2. 	 [1:1 

It follows from the Residue Theorem 9.77 that 1/°(Qc(P)) = H ° (2c) for 
every point p E C. By Theorem 9.78(i), on the other hand, H 1 (2c(P)) = 0. It 
follows that for every positive divisor D > 0, 

dim H°(C2c(D)) = dim le(S2c) + deg D — 1. 

Applying this to D = np for n > 2 and to D — p + q for p , q E C, we obtain: 

Theorem 9.79. 

(i) (Existence of affferentials of the second kind.) For every point p E C and 

integer n > 2 there exists a rational differential with a pole of order n at p 

and regular elsewhere. 

(ii) (Existence of differentials of the third kind.) For every pair of distinct points 

p,q E C there exists a rational differential with a simple pole at each of 

p, q and regular elsewhere. Moreover, there exists such a differential with 

residues 1, —1 at p, q, respectively. 	 0 
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(c) De Rham cohomology 

A rational differential yo E Ok(c) with zero residue at every point is called a 
differential of the second kind. 

Example 9.80. The differential df of a rational function f E k(C), called an 
exact differential, is a differential of the second kind. 	 0 

Although this example is an extreme case, it is nevertheless the case that, 
given a differential yo of the second kind, there exists for every pE Ca rational 
function fp  E k(C) satisfying 

dfp  ,-=_ (pi mod S-2c , p . 

(This requires that the ground field k has characteristic zero, an assumption 
that we have not needed up to now.) The function fp  is uniquely determined 
modulo 0c , p , and taking the principal part at all points of the curves defines an 
element 

I c° := (fp)pEC E ED k(C)I0c,p. 
prin 	 pEC 

Theorem 9.79(i) says that there is an exact sequence: 

0 --->- H ° (S2 c ) ---> {differentials of thel fprin _____>. ED k(C)10 c  4) --->" 0. 
second kind 

(9.34) 

Definition 9.81. The quotient of the vector space of differentials of the second 
kind modulo exact differentials, 

{differentials  of the second kind 1  
HjR (C) :-=--- 

{df I f e k(C)} 

is called the algebraic de Rham cohomology space of the curve C. 	D 

Factoring out the sequence (9.34) by the exact differentials yields an exact 
sequence 

0 .--›- H° (S2c) ---> HR(C) ---> I/ 1 (0c ) ---> 0, 	(9.35) 

called the Hodge filtration of HjR (C). We are now going to construct a clisin-
guished bilinear form on the de Rham cohomology. 

pEC 
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Definition 9.82. Let co, 0.  E 2k(C) be differentials of the second kind. 

(i) Given a point p E C, define 

:= Res fp * E k, where fp  E k(C),dfp =---  co mod C,p• P 

(ii) Set ((P I *) = EpEc((p ICpE k. 	 0 

Clearly, ( I )p and ( I ) are both k-valued bilinear forms on the vector space of 
differentials of the second kind. 

Lemma 9.83. 

(i) ( I ) is skew-symmetric, that is, (yo I *) + (* 1 (p) = 0. 
(ii) (yo 1 df) = 0 for any rational function f E k(C). 

(iii) (co I *) = 0 if both cp, * E HCI (00- 	 0 

Proof 

(i) Pick p E C and suppose that df = co, dg = * at p. Then f * + gip = 
d( f g) at p and has has no residue at this point. Hence ( I )p is skew-
symmetric. 

(ii) (yo I df) = Ep  Res (f yo) = 0 by the Residue Theorem 9.77. 
(iii) is immediately clePar from the definition. 	 [1] 

It follows from part (ii) of the lemma that ( I ) induces a skew-symmetric 
bilinear form on algebraic de Rham cohomology, for which we will use the 
same notation: 

(I) : HR(C) x 1 -1 R (C) -÷ k. 	 (9.36) 

This is called the de Rham cup product. 

Proposition 9.84. The de Rham cup product is a nondegenerate pairing. 

Proof Pick a basis of Hl(C) extending a basis of H °(C2 c ). With respect to 
such a basis, according to Lemma 9.83, the cup product is represented by a 
(skew-symmetric) matrix 

1° A \ 
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The matrix A represents the cup product H°(S2 c ) x H 1 (0c ) —> k, which we 
have seen in Theorem 9.78 is degenerate. It follows that the above matrix has 
nonzero determinant, and so the de Rham cup product is nondegenerate. 	El 

Corollary 9.85. If 'clf E faR(C) annihilates H° (2c) in the cup product, that 

is, (Ili I (o) = 0 for all co E H° (Qc), then Ilf E le(C2C)- 	 [1 

9.6 The Jacobian as a complex manifold 

In this section we will let k be the field C of complex numbers and consider 
a nonsingular projective algebraic curve, which we shall view as a compact 
Riemann surface. In particular, the topology on C will be the usual complex 

topology. Fixing a point po  E C and choosing a basis of holomorphic differen-

tials wi , . .. , cog  C H°(S2 c ), we define a holomorphic map 

f P 	 P 

 AJ :C —> CIrc, 	p 1—> 	--M.  := (f P 0)19 • • • 9 f CO g)

t 

 9 	 (9.37) 
Po 	 Po 	 Po 

where Fc C C is the period lattice (9.1). This is called the Abel-Jacobi map. 

This map expends additively to the abelian group of divisors Div C, and we use 
the same symbol AJ to denote the Abel-Jacobi map on divisors. Note that its 
restriction to divisors of degree zero, 

AJ :Div ° C —> CIrc, 	D = Enp, , E np AJ(p), 

does not depend on the choice of base point po E C. Abel's Theorem says that 

ker A J c Div °  C is precisely the subgroup of principal divisors. 

Abel's Theorem 9.86. If D = E npp E DiV° C is a divisor of degree zero, 

then D is a principal divisor if and only if the abelian integral 

En P f P --m.  pE,,  	Po 

is contained in the period lattice rc C C. In other words, D is principal if 

and only if AJ(D) = 0. 	 0 

Note that the case g = 1 is Liouville's Theorem 1.44(iv) and its converse 
(Exercise 9.12). We will give a proof of Abel's Theorem below, but first we use 
it to show the following. 



Cg/period lattice 

Surface of genus g 

p * f 
■e\ 
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Theorem 9.87. When k = C, the quotient variety MatN,i(H°(L))1 GL(N , N) 

constructed in Section 9.4 is isomorphic to the complex torus cg/ Fc. In par-

ticular, it is irreducible. 

Proof Given a point 41  = (aij)1<i,j<N E MatsN , i (H°(L)), where aii  E 

let Ap,iDiv C be the greatest common divisor of the zero-sets (ai i )o, 1 < j < 
N, along the first row (see Definition 9.36). Then we consider the holomorphic 
map 

MatsAr , l (H°(L)) 	Cg/ Fe', 	‘111---> AJ(Dtp,i). 

Each GL(N , N) maps down to a single point, and so this induces a map 

: Mats N,i (H°(L))I GL(N , N) 	Cg/ Pc. 

Then 0 is holomorphic and, by Abel's Theorem, is injective. Since it is a map 
between compact complex manifolds of the same dimension, it is an isomor-
phism. 

Figure 9.6: The Abel-Jacobi map 
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(a) Compact Riemann surfaces 

If we regard the complex curve C as a Riemann surface, then we have a notion 
of holomorphic functions and meromorphic functions on C, the latter locally a 
ratio of holomorphic functions. If f (z) is a holomorphic function (where z is a 
complex coordinate on the Riemann surface), then, for small r > 0, 

1 f 27r  
f (z) = 	0  f (z + re16 )d9, 	 (9.38) 

and from this it follows that, if f (z) is nonconstant, then it cannot attain its 
maximum modulus at an interior point of its domain. (This is the maximum 

modulus principle.) Since C is compact, this implies that there are no noncon-
stant functions holomorphic everywhere on C. 

A rational function is meromorphic on its domain, and in fact the converse 
is also true: 

Proposition 9.88. Every meromorphic function on C is rational, that is, it 

belongs to C(C). 

Proof For any divisor D E Div C denote by A(D) the set of meromorphic 
functions satisfying (f) + D > 0. We have just shown, for example, that 
A (0) = C. Note that by the same reasoning as for (9.3) this space satisfies 

dim A an(D) < deg D 1. 

Now, given a meromorphic function f,  we fix a divisor D for which f E 

Aan(D), and for some positive divisor F > 0 we consider the two subspaces 
A(D F) and f A(F) c Aan(D + F). By Riemann's inequality (9.8), both 
subspaces have dimension bounded below by deg F+ constant, while we have 
just shown that dim Aan(D F) < deg F+ constant. Hence, when deg F is 
sufficiently large, 

A(D F) fl f A(F) 0 0. 

In other words, we can find rational functions g, h such that g = f h 0, and 
so f is itself rational. 	 0 

Next we will view C as a real 2-dimensional manifold and consider its 
homology groups Hi (C, Z). The alternating sum of its Betti numbers 

e(C) E(-1 )1bi  = 2 — b1, 	bi = rank zA(C, Z), 
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is called the Euler number of C, and it is well known that this can be computed 
from a triangulation as 

(number \(number ) + (number ) 
e(C) = 	 . 

of vertices) _ of edges ) 	of faces 

Proposition 9.89. If C has arithmetic genus g (Definition 9.11), then e(C) — 
2 — 2g. 

Sketch Proof For the Riemann sphere P it this is clear (Example 9.5 and Corol-
lary 9.21). For a general curve C it is enough, by Theorem 9.78(iii), to show 
that e(C) = — deg S2c, and to do this we use a finite cover 7 : C --4-  P = P it. 
Let pi, .. . , ph E C be the ramification points of 7, with ramification indices 
el, .. . , eh E N. Then the canonical line bundle on C is given by 

h 

7r * Q 	( P 0 Oc Dei — 1 )Pi . 
i.i 

Taking degrees on both sides, 

h 

deg S2c = d • deg S-211,, + E(ei  — 1), 
i=1 

where d = deg 71" is the degree of the cover. On the other hand, by taking 
suitable triangulations (so that on C lifts the triangulation on PL and all of the 
branch points in P olc  are vertices) the Euler numbers upstairs and downstairs are 
related by 

h 

e(C) = d - e(P) — E(ei  — 1), 
i...-.1 

and from these two identities it follows that e(C) = — deg Qc. 	0 

Corollary 9.90. A complex curve of genus g has Betti number b1 = 2g. 	0 

In other words, the genus coincides with the topological genus of C as a 
Riemann surface-= the-number of 'holes' in C, in its well-known guise as a 
rubber tube. 

(b) The comparison theorem and the Jacobian 

When k = C, a rational differential co E ..2C(c)  will be called an abelian 

differential. One can consider the contour integrals of co; in particular, if ot is a 
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closed contour on C avoiding the poles of yo, then 

fa  C 

is called a period of the abelian differential cp 

Lemma 9.91. An abelian differential (p is a closed 1-form, meaning that d(p = 0 
away from the poles of (p, where d is the exterior derivative on the real suiface C. 

Proof Locally (away from its poles) co can be written as f (z)dz, where z = 
x ,s/Tly is a local complex coordinate and f (z) is a holomorphic function. 
Let u(x, y), v(x, y) be the real and imaginary parts of f (z) so that 

vdy) vdx). d(p = (u 	/ —1v)(dx 	 = (udx —1(udy 

The exterior derivative is then 

dcp = (du 

	

A dx 	dv A dy) 

	

au 	a v 	au 

A dy 

a v 

dv A dx) 

= 
ay 	ax 	 a x ay 

and this vanishes by the Cauchy-Riemann equations. 

From this lemma and Stokes' Theorem, 

=  
fai3 	

f dco, 

it follows that the period yo around a closed contour a in C — {poles of (pl 

depends only on the homology class of a. If, in addition, yo is a differential of 
the second kind, that is, yo has no residues, then it follows that the period is also 
defined independently of how the contour winds around the poles, and hence 
depends only on the homology class of a in C. On the other hand, the periods of 
exact differentials df and logarithmic exact differentials dflf all vanish, and 
it follows that contour integration induces a bilinear pairing of abelian groups 

Hl (C , Z)xHR(C)C, 
a 

This can be re-expressed as 

Hi(C, Z) -± 

or as 

(9.39) 

1-4(C) -± Hom(111(C , Z), C) = H l (C, C). 	 (9.40) 

Let us call (9.40) the comparison map. 
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Proposition 9.92. The comparison map is an isomorphism HJR (C) 

Hl (C, C). 

Proof By Corollary 9.90 we only need to show that it is injective. Fix a base 
point pc)  E C and consider the path integral 

fP 

f (P) = 
Po 

as a function of a moving endpoint p E C, where yo is a differential of the second 
kind. To suppose that (the de Rham class) yo maps to zero under the comparison 
map means that f is a single-valued function on the Riemann surface C. But 
then f is meromorphic and (p = df,  , and so, using Proposition 9.88, (p is an 
exact differential. 

A Riemann surface carries a natural orientation, and so any two closed paths 
a, /3 have a well-defined intersection number (a /3) E Z. This depends only 
on the homology classes of the paths, and so it determines a bilinear form 

Z) x 	Z) —> Z. 	 (9.41) 

Poincare duality says that this pairing is unimodular: that is, there exist homol-
ogy bases 

lai, 	a2g1, 

with respect to which the intersection pairing is given by the identity matrix, (ai . 
ce) = Bij . The cup product of two cohomology classes fi , f2 E H i (C, C) 2=— J 
1{011(H1(C , Z), C) is then defined by 

2g 

.11 U 12 = E f1(ai)f2(e). 
j=1 

This does not depend on the choice of the bases. 

Proposition 9.93-(Bilinear relations for differentials of the second kind). 
The following diagram commutes, relating the comparison map and the cup 

products in cohomology. 

H JR (C) x HR(C) 

x27r, 

H 1  (C, C) x 11 1 (C, C) 	C 
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Proof Taking a symplectic basis of homology 

{al, - • • , ag 9 fib • • • • fig} 
	

(9.42) 

we can cut the Riemann surface open as in Figure 9.7. 
Since, for all 1 < i, j < g, 

(ai • ai) = ( fit • Si) = 0, (ai • fii) = 

a2  

(b) 

Figure 9.7: (a) Riemann surface C, and (b) the surface cut open. 
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the dual basis is 

{fib • • • 1 Pp — a1, • • • 9 -ad' 
What we have to show, therefore, given differentials of the second kind co, *, 

is the relation 

E (f cof *— f *1 co)  
i=1 	cei 	,ei 	cei 	Pi 

Consider, in the domain D obtained by cutting C open, the path integral 

f (p) = f P  *. 

This is a meromorphic function of p E D and can integrate the product f co 

around the boundary of D. By Cauchy's residue theorem this is 

f co = 2n-  _ i E Res f q), 
18.  D 	 pED P 

and the bilinear relation follows from this. 	 0 

From now on we will identify HR(C)  and H 1 (C, C) and simply write H 1 (C). 
The bilinear relations and the identification of Proposition 9.93 allow us to 

define the Jacobian by an analytic construction. In the first instance it is the real 
2g-dimensional torus 

R 	Hi  (C, R) 
(S 1 )2g = (9.43) 

27 -.N/-1Z2g 	2n-  N/-1 H 1 (C,Z) .  

From the Hodge filtration (9.35), 

0 —> H° ( -2c) —> H 1 (C) ---> H 1 (0c) -±0 

U 

H l (C, R) 

and Lemma 9.95 below we obtain an isomorphism of real vector spaces 
H l (C, R) -"=> H 1 (0c). 

Definition 9.94. The analytic Jacobian of C is the torus (9.43) equipped with 
the complex structure coming from the above isomorphism: 

H 1 (0c ) 
Jac an  C : = 	 . 

2rt- A/-1H 1 (C, Z) 

0 
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By Poincare duality we obtain an isomorphism 

JacanC  
Hi (C, Z) 

where rc C C is the period lattice (9.1) of C. An alternative expression again 
is 

H l (C) 	 H l (C, C*) 
JacanC = 

H°(C2c) + 221- f---fHl(C, Z) 	H°( -2c) . 

Lemma 9.95. H°(C2c) it H l (C, R) = 0 in H l (C). 

Proof Suppose co E H°(2c) 11 H l (C, R). Then the periods of co are all real 
numbers, so the imaginary part of the integral 

P 

f (P) = f co 

is a (single-valued) function on C and has the harmonicity property (9.38). 
By the maximum principle the imaginary part is therefore constant, and hence 
by the Cauchy-Riemann equations the function f itself is constant, and hence 
co = d f = 0. El 

(c) Abel's Theorem 

Given an abelian differential *, we can represent its residues as a divisor with 
complex coefficients 

Res * := E(  Res *) p E Div C Oz C. 
PEG P  

Definition 9.96. An abelian differential with only simple poles is said to be 
of logarithmic type, and if, in addition, the residue at every point is an integer, 
then a differential of logarithmic type is said to be of divisor type. 	D 

Example 9.97. For any rational function f E C(C) the logarithmic deriva-
tive df I f is an abelian differential of divisor type, called a logarithmic exact 

differential. Its residue Res dflf is just the principal divisor (f) E Div C 
determined by f (Definition 9.13). 0 



Differentials 
of the second 

kind 

0 E 	Periods Multiplicative D 1 
periods 

Logarithmic 
exact 

differentials 
dflf 

Differentials 
of divisor 

type 
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By the residue theorem, the divisor Res * has degree zero. By Theorem 9.79, 

therefore, there is an exact sequence 

abelian 	differentials Res 	0  
0 H°0 --> 

1 of divisor type 	

I 
--> DI 	---> Di C v0 0. 	(9.44) -2c) — -> 

Remark 9.98. The quotient 

abelian differentials of divisor type 
Del 	logarithmic exact differentials dflf 

is called the Deligne cohomology of C. Dividing (9.44) through by the group 

C(C)x then gives an exact sequence 

0 —> H°( -2c ) --->- Hi -,,i (C) --->- Pic ° C —> 0. 

Figure 9.8 summarises the geography of abelian differentials on a curve. 	11 

Consider the integral of an abelian differential * along a path a in C avoiding 

the poles of *. Replacing a by a path making one additional circuit of a pole 

p E C changes the integral by the addition of 27r -\/_ Res *; and so if * is of 
P 

Abelian differentials 

Figure 9.8: Abelian differentials 
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divisor type, then the quantities 

fa  *  

and 

exp 
 f

* EC* 
a 

depend only on the homology class of a in the curve. The exponential exp fc, * 
is called a multiplicative period and defines multiplicative versions of (9.39) 
and (9.40), 

I abelian differentials 1 
x Hi  (C, Z) ---> C* I of divisor type 

and 

1 abelian differentials 1 
P 

• 
	 —›- Hom(Hi(C , Z), C*) = H 1  (C, C*). 	(9.45) of divisor type 

By the same reasoning as in Proposition 9.92 we get the following. 

Proposition 9.99. The group homomorphism (9.45) has kernel ker p = 
{logarithmic exact differentials} , and so induces an isomorphism 

Hi(C) -1; H1  (C , C*) . 
El 

The bilinear relation for pairs of differentials of the second kind (Proposition 
9.93) can be extended to pairs consisting of a holomorphic differential and an 
abelian differential of divisor type: 

Proposition 9.100 (Bilinear relations for differentials of divisor type). The 
following diagram commutes. 

I abelian differentials I p 	
1 — --> 11 (C , C*) lof divisor type 

Res 4, 

Div°C 

4,  

AJ 
---> Jac an  C 

Proof Let (i be an abelian differential of divisor type and let ce3 
(0) 1 , . . . , CO,), where {wi , . .. , cog } is a basis of H ° (Qc). Using the symplectic 

= 
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basis (9.42) of Hi (C, Z), what we have to show is the relation 

ai 	 ce i 	fit 

modulo the period lattice. We use the same proof as for Proposition 9.93: define 
a holomorphic vector-valued function on the domain D 

r (I)) = f P  

and integrate the product * f>  around the boundary of D. By Cauchy's residue 
theorem 

f9D 
* = 2n-  N/-1 E Res * , 
 pED 

and the bilinear relation follows. 

Proof of Abel's Theorem 9.86. First, we apply the above bilinear relation to a 
logarithmic exact differential dflf. By Proposition 9.99, this maps under p to 
the trivial element, and hence Res df/f = (f) E Div°C lies in the kernel of the 
Abel-Jacobi map. So we have proved half of Abel's Theorem. For the converse, 
suppose that D E Div° C and A J (D) = 0. Since Res is surjective (Theorem 
9.79), we can write D = Res * for some abelian differential of divisor type *. 
By Proposition 9.100 again, p(*) is in the kernel of H 1  (C , C*) Jac'C, that 
is, p(*) is in the image of H°( -2c). In other words, there exists co E H°(Qc) 
such that all the multiplicative periods of * — w are trivial, 

IL (* 	E 27r,/-1Z for all a E Hi(C, Z). 

So by Proposition 9.99, * — w = dflf for some f E C(C), and hence 
D = Res ifr = Res (* — co) = (f) is a principal divisor. 	 LI 

Exercises 

1. Show that the two conditions of Definition 9.45 are equivalent, and prove 
Lemma 9.46. 

2. Show that a curve of genus 0 is isomorphic to 1P 1 . 
3. In the situation of Example 9.23, use the Weierstrass -function 

1 	 1 	z 
yEF—{0} 
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to show that there exists a meromorphic function on C/ F with a simple 

pole at each of p+ F, q+ F, and holomorphic elsewhere. (Consider linear 
combinations of - p) and — q).) 

4. If C is a nonsingular affine curve, show that the principal part map 

PP k(C) --->- ED k(C)/ OC,p 
pEC 

is surjective. 
5. If C c IP is a nonsingular projective curve, show that there exists a hy-

perplane H c Pn intersecting C transversally. (This means that at each 
intersection point the tangent spaces of C and H intersect transversally in 
the tangent space of Pn.) Hint: Use the discussion of Section 5.2(a) to show 

that the parameter space for hyperplanes not intersecting C transversally 
has dimension at most n — 1. 

6. Show that if a line bundle L E Pic C is generated by global sections, then 
it defines a morphism to projective space 

C 	, 	n = dim H°(L). 

(See Section 8.5(c).) Prove that this is an embedding if deg L > 2g + 1. 
7. If R is a ring generated over k by ai, 	, an , show that the differential 

module C2R/k is a generated as an R-module by dai, .. . , dan . 
8. Suppose that a ring R over k is nonsingular at every maximal ideal. Show 

that R is a direct sum of integral domains. 
9. Show that any two dualising line bundles on C are isomorphic. 

10. Prove that if the genus of C is positive, then the canonical line bundle Qc 
is generated by global sections. 

11. Let E be a vector bundle on a curve C. 
(i) If U C C is an affine open set, show that there is an exact sequence 

0 	H° (E) 	E(U) 	ED E p 	H 1  (E) ----> 0. 
pgU 

(Use the proof of Proposition 9.27.) 
(ii) If U, V cC are two open sets, show that there is an exact sequence 

0 	H° (E) 	E(U)@ E(V) --> E(U nv) 	Hi(E) 	0. 

12. In the setting of Exercise 9.3, let D=E n p be a divisor of degree zero 
P P 

on the complex toms C/ F. For the function 

f (z) = exp (27.1"..E np f(z — p)dz) 
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show the following. 
(i) f (z) is a meromorphic function on the complex plane C. 
(ii) If the sum EP  nPp€C belongs to the lattice F c C, then f(z) is 

doubly periodic with period lattice F. 
(iii) In case (ii), the principal divisor determined by f(z), viewed as a 

meromorphic function on C/ F, is equal to D. (This is a special case 
of Abel's Theorem.) 



10 

Stable vector bundles on curves 

As in the last chapter, C will be a nonsingular projective algebraic curve of 
genus g, which we just call a curve for short. In this chapter we are going 
to study vector bundles on C. The key point in the construction of a moduli 
space for vector bundles is the notion of stability introduced by Mumford [311 
(see Definition 10.20). The goal of this chapter is to show that, fixing any line 
bundle L on C, the set of isomorphism classes of stable vector bundles with 
determinant line bundle isomorphic to L 

SUc(2, L) : 
rank 2 stable vector bundles E 	somorphism 

I with det E L 	
/i 

can be given the structure of an algebraic variety. Briefly, the idea of the con-
struction is the following. Just as for the construction of the Jacobian in the 
previous chapter, we assume that L has sufficiently high degree to guarantee 
that E is generated by global sections, and we consider the skew-symmetric 
bilinear map 

H°(E) x H°(E) 	H°(L), 	(s, s') 	S A S i . 

This form has rank 2, and we denote by A1tN,2(H °(L)) the affine variety 
which parametrises such skew-symmetric forms of rank < 2 in dimension 
N = dim 11°(E). (See Section 10.3(b) for notation.) We will use this wedge 
product to reduce our moduli problem to the quotient problem for the action 
of GL(N) on AltN,2(IP(L))•  One encounters various difficulties that do not 
appear in the line bundle case of the last chapter, but it turns out that the notion 
of stability is the correct way to resolve these problems, and one proves the 
following. 

348 
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Theorem 10.1. Suppose that the line bundle L has degree > 4g — 1. 

(i) There exists a Proj quotient 

Alex,' , 2 (H°(L))11GL(N) 

which is a projective variety of dimension 3g — 3. 
(ii) The open set 

AltsN,2 (H°(L))1 G L(N) 

has an underlying set SUc (2, L). Moreover, it is nonsingular and at each 
point E E SUc (2, L) its tangent space is isomorphic to H 1 (51 E). 

(iii) If deg L is odd, then 

Alt' k 2 (11 °(L))1IGL(N) = Alt sN , 2(H0(L))1 GL(N) = SU c(2, L) 

is a smooth projective variety. 	 El 

One basic technique for working with vector bundles is, by passing to sub-
bundles and quotients, to reduce to the case of line bundles. In Section 10.1 we 
illustrate this method by proving various basic results that will be needed later. 
We prove the Riemann-Roch Theorem for vector bundles, the unique decom-
position of a bundle into indecomposable subbundles and the classification of 
extensions by their cohomology classes. In Section 10.2 we restrict our attention 
to rank 2 vector bundles and investigate some of their properties. In Section 10.3 
we introduce the notion of a Gieseker point of a rank 2 vector bundle, and we 
show that semistability under the action of the general linear group is equivalent 
to the semistability of the vector bundle. We prove this by direct construction of 
semiinvariants, using Pfaffians, and without recourse to the Hilbert-Mumford 
numerical criterion of Chapter 7. (The same statement is true with semistability 
replaced by stablility, but for that we do need the numerical criterion, and this 
is discussed briefly in Section 10.4(c).) In Section 10.4 we put all of these ideas 
together to prove Theorem 10.1. 

10.1 Some general theory 
Let E be a vector bundle on C. Thus E is an elementary sheaf with total set E gen , 
a finite-dimensional vector space over k(C), and for each nonempty open set 
U c C defines a Oc(U)-module E(U). We denote the stalk at a point p E C 
by Ep  c E gen . For each positive integer i we can define in a natural way a 
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vector bundle Ai E whose total set is the exterior power Ai Eger,. In particular, 
if r = r(E) is the rank of E, then 

det E := Ar  E 

is a line bundle, called the determinant line bundle of E. An Oc-module ho-
momorphism f : E —> F between vector bundles E, F will simply be called 
a homomorphism, and we denote the set of these by Hom(E, F). 

(a) Subbundles and quotient bundles 

Note that the following two definitions are not the same! 

Definition 10.2. A vector bundle F on C is a subsheaf of E if: 

(i) Fgen  C Egen  is a vector subspace over k(C); and 
(ii) F(U)c E(U) is a submodule over Oc(U), for every open set U c C. 

In this case we write E c F. 	 El 

Definition 10.3. A subbundle F c E is a subsheaf which satisfies, in addition: 
(iii) F(U) = E(U) 11 Fgeri  for every open set U c C. 	 o 

If D > 0 is a positive divisor, then Oc(—D) c 0c  is a subsheaf but not a 
subbundle. Indeed, a line bundle has no nonzero subbundles. More generally, 
if F c E is a subbundle, then F(—D) c E is a subsheaf, but not a subbundle 
if D 0 0. But in the other direction, starting with any subsheaf F C E we can 
construct a subbundle, called the saturation of F in E, as the elementary sheaf 

U 1—* E(U) n Fgen . 

If F c E is a subbundle, then, although for each open set U C C the quotient 
E(U)/F(U) is a submodule of the quotient vector space Egen/Fgen , in general 
the mapping U 1—* E(U)IF(U) does not define an elementary sheaf. However, 
using the stalks, the mapping 

U 1--> if € Egen /Fgen  1 f e Ep  /Fp  for all p e U} 

does define an elementary sheaf, and this is what we call the quotient E I F. 
Note that the natural projection maps 

E(U) —> (E I F)(U) 
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are not in general surjective, although they are surjective on the stalks, and so 
E E I F is called a surjective map of sheaves (see Definition 8.81). This is a 
delicate point in the theory of sheaves, and it is important to treat it with care. 

We now take an affine open cover {U 1 }, U = Spm Ri, of our curve. The 

restrictions El ui  and F I  ui  come from some Ri -module Mi  and submodule 

C M. The condition that F c E is a subbundle is equivalent to requiring 

that each quotient R 1 -module be torsion free, and the quotient bundle E F is 

the elementary sheaf obtained by gluing the modules Mi /Ni . Since the local 

ring Oc, p  at each point p E C is a discrete valuation ring, it follows that each 

Mi lNi is a locally free Ri -module (Corollary 8.38). From this we conclude: 

Lemma 10.4. If E is a vector bundle on a curve C and F C E is a subbundle, 
then the quotient E / F is a vector bundle. 	 I=1 

A sequence of vector bundle homomorphisms 

0 ---->F—>E-->G--->0 
	

(10.1) 

is exact if at each point p E C the stalk maps 

0 -± Fp  —> Ep  ---> Gp  —> 0 

form an exact sequence of Oc, p -modules. In this case we will view F as a 

subbundle of E and G as its quotient bundle E/F. 

Definition 10.5. The exact sequence (10.1) is split if any of the following 

equivalent conditions are satisfied. 

(i) There exists a subbundle (or subsheaf) G' C E for which the composition 

G' 	E —> G is an isomorphism. 
(ii) There exists a homomorphism f : G —> E for which the composition 

G 	E G is an isomorphism. 
(iii) There exists a homomorphism g : E 	F for which the composition 

F 	E 	is-an isomorphism. 

In this case, either of the maps f or g is called a splitting of the sequence. fl 

Let f : E —> F be a vector bundle homomorphism. Locally this is a ho-
momorphism of Cc-modules, and the image Im f is the sheaf obtained by 
gluing the image modules. This is a vector bundle with total set equal to 

Im {fgen : E gen  > Fged and is a subsheaf of F. It can also be defined as 
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follows. First note that 

U 1--> ker {E(U) ---> F (U)} 

defines an elementary sheaf with total set ker f gen . This is a subbundle ker f c 
E, and we can define the image sheaf to be the quotient 

Im f := Eficer f ,---->- F. 

A homomorphism f : E ----> F induces homomorphisms of exterior powers 

A f : A' E -÷ A1 F, 	0 < i 5._ min{r(E),r(F)}. 

If r(E) = r(F) = r, then we write det f = Ar  f for the homomorphism of 
determinant line bundles. 

Proposition 10.6. Let f: E ---> F be a homomorphism between vector bundles 
of the same rank. Then f is an isomorphism if and only ifdet f : det E --->- det F 
is an isomorphism of line bundles. 	 El 

(b) The Riemann-Roch formula 

Let E be a vector bundle of rank r. If N c E gen  is a vector subspace over k(C), 
then 

U-> E(U) n N 

defines a subbundle of E. In this way it is always possible to construct exact 
sequences of the form (10.1); and by using this one can deduce properties of E 
from properties of bundles of lower rank, and finally from line bundles. In this 
section we are going to use this method to derive a Riemann-Roch formula for 
vector bundles. 

Definition 10.7. The degree deg E E Z of a vector bundle is the degree of its 
determinant line bundle det E. 	 El 

If E lies in an exact sequence (10.1), then there is an isomorphism 

det F 0 det G' -'.. det E, 

and hence deg E = deg F ± deg G. In other words, degree is additive on exact 
sequences. 
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Recall from Section 9.2 that the spaces H°(E) and H i (E) are defined to be 
the kernel and cokernel of the principal part map: 

0 --->- H°  (E) --->- E gen —> el Egen/Ep  —>, H 1  (E) —> 0. 
p E C 

We will write h i  (E) = dim Ili  (E) for i = 0, 1. 
The exact sequence (10.1) gives rise to a long exact sequence of cohomology 

spaces as follows. First, it induces a commutative diagram, in which each row 
is exact: 

0 --> 
	Fgen 	 Egen 

	 Ggen 	0 

si,  

0 —>- epEc  Fgen /Fp  —>. epEc  Egen /Ep  ----> epec  Ggen /Gp  —> 0 

(10.2) 
Applying the Snake Lemma 8.57 to (10.2) yields an exact sequence 

0 —> H° (F) —> H°(E) --> H°(G) '> H l (F) ----> H i (E) ---> Hi  (G) —> 0. 
(10.3) 

The connecting map (3: H°(G) --* H l (F) is in this case called the cobound-

ary map. 

Proposition 10.8. For any vector bundle E on C the vector spaces H°(E) and 

11 1 (E) are both finite-dimensional over k. 

Proof When E is a line bundle this has been proved in the last chapter (see 
Section 9.2(c)). For higher rank we can use induction on the rank of E. Using 
any proper k(C)-vector subspace of E gen  we have an exact sequence (10.1), 
and hence an exact sequence (10.3). By the inductive hypothesis, the spaces 
H° (F), H°(G), H l (F), 11 1 (G) are all finite-dimensional, and hence so are 
H°(E), I/ 1(E). III 

Corollary 10.9. If E is a vector bundle, then the degree of its line subbundles 

L c E is bounded above. 	 D 

Proof Since H° (L) is a subspace of H°(E), we have h° (L) < h°(E). Then by 
Theorem 9.20 either deg L < 2g — 2 or deg L = h° (L) ± g — 1 < h°(E) ± 

g — 1. 	 D 
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Since the sequence (10.3) is exact, it follows that the alternating sum of the 
dimensions of its terms is zero (Exercise 10.3). Thus 

h°(E) — h l (E) = (h° (F) — h l (F)) ± (h° (G) — h l (G)). 

In other words, h° — h 1  is additive on exact sequences. 

Riemann-Roch Formula 10.10 (Weak form). If E is a vector bundle of rank r 
on a curve C of genus g, then 

h°(E) h 1 (E) = deg E — r(g — 1). 

Proof Let R R(E) = h °  (E) — h l  (E) — deg E + r (g — 1). We shall show that 
RR(E) = 0 by induction on r; in the line bundle case r = 1 we have already 
seen this in (9.15). In general, we can construct an exact sequence (10.1), and 
this sequence satisfies RR(E) = RR(F)± RR(G). But RR(F) = RR(G) = 0 
by the inductive hypothesis. 0 

In the same spirit, we can derive duality for vector bundles. This says that the 
cup product defines an isomorphism H1(E)H. 	o(Ev 0 Qc ‘v ,  , ) proved again 
by induction on the rank (see Exercise 10.4): 

Theorem 10.11. For any vector bundle E on a curve C the cup product 

H 1 (E) x H°(Ev  0 Qc) -± H I (Q() t.:.' k, 

where Qc is the canonical line bundle, is a nondegenerate pairing. 	El 

Finally, given two vector bundles E, F, we can define an elementary sheaf 
liom(E, F) of local homomorphisms from E to F by 

U 1---> Homo(u)(E(U), F(U)). 

This has total set Homk(c)(E gen, Fgen) and is isomorphic to Ev 0 F. It has stalk 
Homoc,(Ep , Fp ) at p E C, and its space of global sections is the vector space 
Hom(E, F) of (global) homomorphisms from E to F. In the case E = F we 
write 

End E =7-(om(E, E), sl E := ker Dr : End E —›- Ocl. 

Both of these bundles have degree zero, and so by Theorem 10.10 they satisfy 

h °(nd E) — h l (end E) = r2 (g — 1), 
h°(sl E) — h l (sl E) = (r2  — 1)(g — 1). 

(10.4) 
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(c) Indecomposable bundles and stable bundles 

Definition 10.12. A vector bundle E is decomposable if it is isomorphic to the 

direct sum Et  ED E2 of two nonzero vector bundles; otherwise, E is indecom- 

posable. 	 0 

Example 10.13. Every line bundle is indecomposable. 	 El 

If E admits an idempotent, that is, an endomorphism f E End E satisfying 

f 2 = f, then E = ker f ED ker (1 — f); and conversely, if E = E1 e E2, then 

f = (0, 1) is such an idempotent. Thus decomposability is equivalent to the 
existence of an idempotent not equal to 0 or 1 (the identity endomorphism) on 
E. An arbitrary vector bundle is isomorphic to a direct sum of indecomposable 
bundles, and this decomposition is unique in the following sense. 

Theorem 10.14 (Afiyah [70]). If a vector bundle E h as two direct sum decom-
positions into indecomposable bundles, E = Et ED - - • 0 Em  = Fi 0 • - • ED Fiz , 

then m = n and E1, . . . , Ern  are isomorphic to F1, . .. , Fm  after reordering 

suitably. El 

The completeness of the curve C is essential in this theorem, as Exercise 
10.5 shows. We prove the theorem first for the case of a rank 2 bundle. Suppose 
that 

E = Li El) L2 = M1 0 M29 

where L1, L2 and M1, M2 are line bundles. We have to show that either L1 •=-'- 

Mt, L2 L-'  M2 or L1-T .-' M2, L2 M1. For each M = M1  or M2 we have 

homomorphisms 

i : M -± E , 	j : E -->- M, 

where i is injective, j is surjective and j oi = idm . In terms of the decomposition 

E = L1 ED L2, we can write i = (i1, i2), where it : M --± L1, i2 : M ----> L2 

and j = it ± i2,-where,  ji : L1 ---> M, j2 : L2 -* M. These maps then satisfy 

ii 0 ii ± j2 0 i2 = idm . 

An endomorphism of the line bundle M is just multiplication by a scalar (i.e. 

an element of k) and so at least one of ji a i1 or j2 a i2 must be an isomorphism — 

suppose ji oil. But then M is a direct summand of L1, and since L1 is irreducible, 

we conclude that M = L1. III 
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The general case of Theorem 10.14 follows from: 

Proposition 10.15. The following conditions on a vector bundle E are 
equivalent. 

(1) E is indecomposable. 
(2) If fi,  f2 E End E and fi f2 is an isomorphism, then one of fi or f2 is 

an isomorphism. 

Remark 10.16. Condition (2) is equivalent to saying that End E is a local ring: 
that the set of noninvertible elements is the maximal ideal. 

Given an endomorphism f : E 	E, consider the determinant det f : 
det E 	det E. This is just multiplication by a scalar because det E is a line 
bundle, and this scalar is nonzero if and only if f is an isomorphism. Now, for 
an arbitrary scalar A consider det(f — Aid). This is a polynomial of degree r(E) 
in A and is the characteristic polynomial of the endomorphism f.  In particular, 
if a is an eigenvalue, then f — a • id fails to be an isomorphism. 

Lemma 10.17. If E is indecomposable, then f E End E has only one 
eigenvalue. 

Proof Suppose f has distinct eigenvalues a, fi. Then its characteristic poly-
nomial can be expressed as a product of two polynomials without common 
factors: 

det( f — A • id) = p(A)q(A), 	p(a) = q(fi) = 0. 

There exist polynomials a(X), b(A) satisfying 

p(A)a(A) q(A)b(A) = 1, 

so that the endomorphism h = p(f)a(f) E End E satisfies h(1 — h) = 
0 by the Cayley-Hamilton Theorem. This implies that E is the direct sum 
ker hIED ker (1 — h), and since h and 1 — h are both non-zero, we conclude that 
E is decomposable. 

Proof of Proposition 10.15. (1) 	> (2) Suppose that E is indecomposable 
and that f = 	f2 is an isomorphism but fi is not an isomorphism. Then 
fif 1  fails to be an isomorphism. By the lemma, its only eigenvalue is 0, so it 
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is nilpotent. But then f2 f -1  = 1 — Ii f 1  is an isomorphism, and this implies 
that f2 is an isomorphism. 

(2) 	> (1) If E is decomposable, then there exists a nonzero, nonidentity 
idempotent f = f2 . Then neither of f,  1 — f is an isomorphism, although the 
sum is an isomorphism. 

Definition 10.18. A vector bundle E is simple if its only endomorphisms are 
scalars, End E = k. 

A simple vector bundle is necessarily indecomposable, though the converse 
is not true, as we will see in the next section (Proposition 10.45). But (10.4) 
implies the following, which is relevant to the moduli theory for vector bundles 
(see Exercise 10.1). 

Lemma 10.19. If E is indecomposable, then 

h l (End E) = r2(g — 1) + 1, 
h l (lE) = (r2  — 1)(g — 1). 

0 

Definition 10.20. A vector bundle E is stable (or semistable, respectively) if 
every vector subbundle F c E satisfies 

deg F < deg E 

rank F rank E 
(or < respectively). 

The ratio p,( ) := deg E/rank E is called the slope of E, and the stability of E 
can be expressed as pc(F) < i(E) for all subbundles F c E. To avoid confusion 
with other notions of stability we shall sometimes refer to this property as the 
slope stability. LI 

Remark 10.21. Note that when deg E and rank E are coprime, stability and 
semistability are -e'quiValent. 	 El 

The following lemma follows from Exercise 10.1. 

Lemma 10.22. Let L be a line bundle on C. Then a vector bundle E is 
(semi)stable if and only if L 0 E is (semi)stable. 	 El 
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The stability of E can also be expressed by saying that p,(G) > p,(E) for 
every quotient bundle G = E/F of E. Passing to the dual bundle, quotients 
become subbundles and we see: 

Lemma 10.23. A vector bundle E is (semi)stable if and only if its dual bundle 
Ev is (semi)stable. 	 El 

The next fact will be important in the moduli theory. 

Proposition 10.24. Let E, E' be semistable vector bundles of the same rank 
and degree, and suppose that one of them is stable. Then every nonzero homo-
morphism between E and E' is an isomorphism. 

Proof Let r and d be the common rank and degree of the two bundles, and 
let f : E E' be a homomorphism with image F c E'. Since E, E' are 
semistable, we have 

—
r 

tt(F) —
r 

and so i(F) = dlr. If rank F < r, then this contradicts the stability of E 
or E', and hence rank F = r. In particular, this means that f : gen - —gen —± 
Egl en  is an isomorphism of vector spaces over k(C), and so det fgen  is also 
an isomorphism. This implies that det f : det E det E' is injective, and 
since deg E = deg E", it follows that det f is an isomorphism. Hence f is an 
isomorphism by Proposition 10.6. 

Corollary 10.25. Every stable vector bundle is simple. 

Proof An endomorphism f E End E induces, at each point p E C, an endo-
morphism of the fibre ElE(—p):',' . Let a E k be an eigenvalue of this 
map, and consider f — a id E End E. This is not an isomorphism, so by 
Proposition 10.24 it is zero. 111 

Recall that if L is a line bundle with deg L > 2g — 2, then 1/ 1 (L) = 0 
(Theorem 9.20). For general vector bundles this kind of vanishing condition 
on cohomology does not hold; however, for semistable bundles one can show 
something similar. 



	
10.1 Some general theory 	 359 

Proposition 10.26. If E is a semistable vector bundle with ,u(E) > 2g — 2, or 
if E is stable and 1,4E) > 2g — 2, then H i  (E) = 0. 

Proof By hypothesis, every quotient line bundle of E has degree greater than 
2g — 2. On the other hand, the canonical line bundle Qc has degree equal to 
2g —2, and so there is no nonzero homomorphism E S2c• Hence Hi  (E) = 0 
by Theorem 10.11. LI 

Proposition 9.38 also generalises to semistable vector bundles: 

Proposition 10.27. If E is sernistable and ,u(E) > 2g —1, or if E is stable and 
,u(E) > 2g — 1, then E is generated by global sections. 

Proof By the previous proposition, H i  (E (— p)) = 0 for every point p E C. It 
follows that, for every positive divisor D > 0, the restricted principal part map 

H° (E(D — p)) —>- E(D — p)I E(— p) 

is surjective. In particular, taking D = p shows that the evaluation map 
H° (E) —> ElE(—p) is surjective at every point p E C. 

(d) Grothendieck's Theorem 

Grothendieck's Theorem gives a complete classification of vector bundles on 
the projective line P l . First consider, on any curve, a short exact sequence of 
vector bundles 

E: 0 -->M-->-E--->L—)- O. 	 (10.5) 

Tensoring with the dual bundle Lv  gives a short exact sequence 

0 -->- 1-1orn(L , M) 	Horn(L, E) 	End(L) --> 0, 	(10.6) 

and its associated long exact sequence of vector spaces 

0 ---> Hom(L, M) 	Hom(L , E) 	End(L) 
--> H'(1-(ont(L;--M)) 	H 1 (7-tom(E, M)) 	H i  (End(L)) -->- 0. 

Definition 10.28. The image under the coboundary map 8 of id E End(L), 
which we will denote by 

8(E) E H i  (7-torn(L , M)), 

is called the extension class of the exact sequence (10.5). 
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By construction, if 8(E) = 0, then there exists a homomorphism f : L --> E 
for which the composition L ±.> E ---> L (where the second map is the 
surjection of (10.5)) is the identity endomorphism of L. In other words, the 
sequence (10.5) splits. In particular, we see: 

Proposition 10.29. If PP (Rom(L , M)) = 0, then every exact sequence (10.5) 
splits. 

We will apply this fact to Pl. Since the genus is zero, the cohomology of a 
line bundle L is particularly simple. Namely, 

H°(L) = 0 if deg L < —1, 
1-1 1  (L) = 0 if deg L > —1, 

while, by Riemann-Roch, 

h° (L) — h 1 (L) = deg L ± 1. 

Lemma 10.30. Every rank 2 vector bundle on P 1  is isomorphic to a direct sum 
of two line bundles. 

Proof Tensoring with a line bundle if necessary, it is enough to assume that 
deg E = 0 or —1. First, by the Riemann-Roch Theorem 10.10 we note that 
Ho(E) 0 0, and so E contains Oc as a subsheaf. This saturates to a line 
subbundle M c E, and M 'L' Gc (D) for some positive divisor D > 0. In 
particular, deg M > 0, and denoting the quotient by L = EIM we have an 
exact sequence 

However, deg L -1 0M = — deg E 4-2 deg M > —1, so that 11 1 (L -1 0M) = 0. 
By Proposition 10.29, therefore, the sequence splits. 	 0 

Grothendieck's Theorem 10.31. Every vector bundle on IP 1  is isomorphic to 
a direct sum of line bundles. 

Proof We prove this by induction on the rank r > 2 of E, starting with the 
previous lemma. By Corollary 10.9 there exists a line subbundle M c E whose 
degree m = deg M is maximal among line subbundles of E. 
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Claim: Every line subbundle L C F := E I M has deg L < m. 

Consider the preimage L c E of L under the projection E --> F. This is a rank 
2 vector bundle, and deg L = m ± deg L. By Lemma 10.30, it contains a line 
subbundle of degree at least deg L/2, so that, by the way M was chosen, we 
have (m ± deg L)/2 < deg L. The claim follows from this. 

By the inductive hypothesis, and the claim, the quotient bundle F is 
isomorphic to a direct sum L1 ED • L r_1 of line bundles of degrees 
deg Li < m. Since H' (L.' M) = 0 for each i, it follows that the exact 
sequence 

r -1 

splits. 

(e) Extensions of vector bundles 

Given vector bundles L and M, we are going to classify bundles E having M 
as a subbundle with quotient L. First of all, let us make precise the meaning of 
the classification problem. 

Definition 10.32. 

(i) A shortexact sequence (10.5) 

E: 0--->M--->E-->L--> 0 

is called an extension of L by M. 
(ii) Two extensions E and El  are equivalent if there exists an isomorphism of 

vector bundles f: E E' and a commutative diagram: 

0 	 E 

II 	f 	II 
0 	M 	E' ---> L --> 0 

Note that the extension class S(E) defined in Definition 10.28 depends only 
on the equivalence class of the extension in this sense. The main result of this 
section is the following. 
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Theorem 10.33. The assignment 

I of L by M
extensions I 

/equivalence 	H 1 (Rom(L , M)) 

given by Ei->- S(E) (Definition 10.28) is a bijection. 

We will prove this in the case when L is a line bundle. Tensoring with L -1 
 transforms the exact sequence of Definition 10.32(i) to 

0 L-1  M E Oc 0, 

and it is therefore enough to consider the case L = Oc: 

1K: 0 	M 	E 	Oc  -± O. 	 (10.7) 

The coboundary map in the induced long exact cohomology sequence is 

8: H°(0c ) —> H 1  (M), 

and the extension class 3(E) E H l (M) is the image under this map of the 
constant section 1 E H°(0c). 

First of all, let us follow carefully the construction of Lemma 8.57 which 
defines the coboundary map. We choose a rational section s E Egen  mapping to 
the constant section 1 E H° (0c). The principal part (s mod Ep )i„c  can then 
be viewed as belonging to the principal part space of M; let us denote this by 

E  EDpEC Mgen/Mp. The extension class 8(1E) is then a mod M —gen E H 1  (m) 
We are going to prove Theorem 10.33 by actually giving a finer classification 
using a and not just its cohomology class. 

Definition 10.34. 

(i) A framed extension is a pair (E, s) consisting of an extension E as in 
Definition 10.32(i) and a splitting s : L gen  ± Egen  of the exact sequence 
of vector spaces 

	

0 —>- Mgen 	Egen 	L gen 	0. 

(ii) Two framed extensions (E, s) and (E', s') are equivalent if there exists an 
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isomorphism of extensions f: E 	E' such that the diagram 

s 

	

Egen 	L gen  

fgen 4, 	II 

E' gen 
T  

gen 

commutes with the diagram in Definition 10.32(ii). 

In the case when L = Oc , a framed extension determines naturally an 
element a = a(E, s) E E BpEC Mgen/Mp, and again this depends only on the 
equivalence class of the framed extension. 

Proposition 10.35. The map 

I framed extensions} 
of Oc  by M 	

/equivalence 	EDmgenimp 
pEC 

given by (E, s) i—›- a (E, s) is a bijection. 

If we fix an extension of Oc  by the M, then the choice of a framing is 
up to an 'element of Mgen . Replacing s by s m for some rational section 
m E Mgen has the effect of adding the principal part of m (at each point of C) 
to a (E, s). Ttlhe  cohomology class of a(E, s) does not, therefore, depend on s, 
and this cohomology class is precisely 6(E) E H i (M). It follows that in the 
case L = Oc, Theorem 10.33 follows from Proposition 10.35. 

Proof of Proposition 10.35. We will construct an inverse map. As a simplest 
case let us construct an extension (10.7) starting from a point p E C and a 
rational section s - - - gen . To do this we first take an affine open neighbourhood 
U C C of the point, chosen small enough that s is regular on U — {p}. Here 
and below, when working on an affine variety we will always denote a module 
and its corresponding sheafof modules by the same symbol. We let 

Mlu X (p ,$) Cu C Mgen  k(U) = Mgen  k(C) 

be the Cu-submodule generated by M I u ED 0 and (s, 1): 

Mlu >1(p,$)Ou {(n f s, f) I m E Miu, f E 
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This submodule depends only on the principal part (s mod Mp ) E Mgen /Mp  of 
s at p. Clearly: 

(1) MI L/  X (p , $ ) Ou contains as a submodule MI u(= MI u  ED 0), with quotient 
module isomorphic to Cu; and 

(2) the two submodules 

MIU >(p,$) CU MILI El) Cu C Mgen  e k(C) 

are equal on U — {p}. 

Consequently, we obtain a vector bundle on C by gluing along U — {p} the two 
bundles: 

(a) Mk/  (p , $) (9u on U; 
(b) M Oc on C — {p}. 

We can denote the resulting bundle by M > (p,$) (9c. 

	

More generally, given a collection of points p i  , 	, pn  E C and rational 
sections Si, , sn  E Mgen , choose affine neighbourhoods pi  E U1  C C so that 
each si  is regular on Ui  — {p i }e Then, just as above, we can construct a vector 
bundle on C which restricts to: 

(a) MI u, >1 (pi si ) Oui  on each (-4; 
(b) M ED Oc on C {Pi, • • Pn}. 

This vector bundle depends only on the principal part 

a = (s)i<<n  E 	MgeniMpi, 
i=1 

and we will denote it by M >l a  Oc . By construction there is an exact sequence 

0 M M >l a  Oc Oc 0, 

and the assignment a 	M >l a  Cc is inverse to that of Proposition 10.35. I: 

It remains to prove Theorem 10.33 for a general cokernel line bundle L. 

The exact sequence (10.6) in Section 10.1(d) determines at the generic point an 
exact sequence of vector spaces over k(C), 

0 	Hom(Lgenl Mgen) 	Hom(Lgen, Egen) 	End Lgen 	0. 

Choosing a lift of the identity 1 E End Lgen  to Hom(L gen , Egen ) is equiva- 
lent to giving a framing of the extension E, and in just the same way as for 
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Proposition 10.35 one can prove: 

Proposition 10.36. The map 

(framed extensions I 
/equivalence --->- 	

Hom(L gen Mgen)  

1 of L by M 
 pEL, 
Hom(L p Mp) 

given by (E, s) 	3(E, s) is a bijection. 	 LI 

Dividing out this bijection by the action of Hom(L gen 7 Mgen) now yields 
Theorem 10.33. 

10.2 Rank 2 vector bundles 

We are now going to look at vector bundles of rank 2 in more detail. 

(a) Maximal line subbundles 

Given a vector bundle E, we have seen (Corollary 10.9) that the degrees of its 
line subbundles are bounded above. Let us look more closely at this in the case 
when E has rank 2. We suppose that E is an extension 

where L ,M are line bundles, and that N c E is a line subbundle. If N is a 
subsheaf of L, then N = L; if not, then the composition 

N E —> M 

is nonzero, and so N is isomorphic to a subsheaf of M. This shows: 

Lemma 10.37. If E is an extension of rank 2 as above and N c E is a line 
subbundle, then either N = L or deg N < deg M. In particular, every line 

subbundle satisfies deg N < max{deg L, deg M). 	 LI 

If E is not semistable, then it has a line subbundle of degree strictly greater 
than deg E/2. Such a_line bundle is called a destabilising line subbundle, and 
the lemma impliertheio- llowing. 

Proposition 10.38. A rank 2 vector bundle E has at most one destabilising line 

subbundle. 	 LI 

If E is indecomposable or simple, then the next two lemmas give upper 
bounds for the degree of its line subbundles in terms of the degree of E. 
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Lemma 10.39. If E is a simple vector bundle of rank 2, then every line sub-

bundle L c E satisfies 

2 deg L < deg E ± g - 2. 

Proof Let M be the quotient line bundle E I L. The simplicity of E implies that 
H° (M-1  0 L) = Hom(M, L) = 0. On the other hand, indecomposability and 
Proposition 10.29 imply that H 1 (M-1  0 L) 0 0. Applying Riemann-Roch to 
the line bundle M-1  0 L, therefore, we get 

-1 > h° (M-1  0 L) - h l  (M -1  0 L) = - deg M + deg L + 1- g. 

The inequality in the lemma follows from this and the relation deg E = deg L + 

deg M. 	 0 

The following is proved in a similar manner, and we omit the details. 

Lemma 10.40. If E is an indecomposable vector bundle of rank 2, then every 

line subbundle L C E satisfies 

2 deg L < deg E ± 2g - 2. 

1=1 

(b) Nonstable vector bundles 

Let us summarise some of the conclusions of the previous sections: 

indecomposable < 	simple < 	stable = semistable. 

The reverse implications, however, do not hold in general. Propositions 10.38 
and 10.45 below show that simple 7)- stable and indecomposable 7>. simple, 
respectively. 

Proposition 10.41. Let L, M be line bundles satisfying deg L > deg M and 

Hom(M, L) = 0. Then every nonsplit extension of M by L is simple. 

Proof Suppose that E is such an extension 

0 -L--E-->M--->0 

and that f is an endomorphism of E. By hypothesis, L is a destabilising sub- 
bundle of E, so that by Proposition 10.38 the image f (L) is either L or 0. If it 
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is 0, then f factors through the quotient M: 

f : E --> M --> E . 

But since the extension is nonsplit, Hom(M, E) = Hom(M, L) = 0, and so 
f = 0. 

Suppose, on the other hand, that f (L) = L. Then the restriction f1 L  : L ----> L 

is multiplication by some constant a E k. This implies that the endomorphism 
f — a • idE is zero on L, so, by the first part of the proof, it follows that f = 

a • idE. CI 

Example 10.42. Let C be a curve of genus g > 3. For each 1 < d < g — 2 
there exists a line bundle E Picd C with H° () = 0. By the Riemann-Roch 
Theorem, H 1 () 0 0, and so there exists a nontrivial extension 

which is unstable but simple. 	 El 

We next consider the case when E contains a line subbundle of degree exactly 
deg E/2. Letting M =EIL, we have an extension 

deg L = deg M. 	(10.8) 

In this case E is semistable but not stable. 

Definition 10.43. Given a bundle E as in (10.8) which is semistable but not 
stable, we let gr(E) = L e M. If E is stable, then gr(E) = E. 	 El 

Proposition 10.44. The direct sum gr(E) depends only on the vector bundle E 
and not on the choice of extension (10.8). 

Proof Suppose that L' c E is another line subbundle of degree deg E/2 and 
consider the composition L' E ---> M. If this is zero, then L' = L, otherwise, 
L' L' M. On the_otherliand, EIL' det E 0 L' 1 , and so the bundle gr(E) 
obtained from L' C E is isomorphic to L M. El 

Next, we construct indecomposable bundles which are not simple. 

Proposition 10.45. Let 0 —> L > E > M ---> 0 be a nonsplit extension with 

Hom(M, L) 0. Then E is indecomposable but not simple. 
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Proof It is enough to assume that L 	Oc • The exact sequnce can then be 
written as 

0 	Oc 	E 	Oc(— D) ---> 0, 	 (10.9) 

where D is some positive divisor. First note that H° (E) is 1-dimensional. If 
0 is an endomorphism of E, then we will denote by H ° (0) the induced linear 
automorphism of H° (E). 

Suppose that H° (0) = 0. Then 0 maps the line subbundle Oc  to zero and 
therefore factors through the quotient Oc (—D): 

: E ---> Oc(—D) --->- E. 

Since the sequence (10.9) is nonsplit, it follows that the composition of 0 
with the surjection E Oc (—D) is zero. In other words, the image of 0 is 
contained in the line subbundle Oc c E, so that 0 s induced by an element of 
Hom(Oc ( — D), 0c): 

: E 	Oc(—D)---> Oc 	E. 

If, on the other hand, H°(0) 0, then it is multiplication by a constant a E k. 
Then, by considering 0 — a idE we reduce to the previous case, and this shows 
that 

End E = k @Hom(Oc(—D), 0c). 

Hence E is not simple, and E is indecomposable by Proposition 10.15 	I=1 

Remarks 10.46. 

(i) Every rank 2 vector bundle which is indecomposable but not simple is 
described by the construction of this proposition. 

(ii) There exist exact sequences 

0 -->L—>E--->M--->0 

which are nonsplit but in which the vector bundle E is decomposable. For 
example, on the projective line P = P 1  with homogeneous coordinates 
(x : y): 

0 	> Op( —1) ---> 0113) IED Op --> 0111(1) 	0 

c 	(cy, —cx) 
(a, b 	ax + by 

This sequence is nonsplit by Theorem 10.14. 
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(c) Vector bundles on an elliptic curve 

We now suppose that C has genus 1. By the Riemann-Roch Theorem every line 
bundle L on C satisfies 

h° (L) h l (L) = deg L . 

Moreover: 

(i) if deg L > 0, then H 1  (L) = 0, 
(ii) if deg L < 0, then H° (L) = 0, 

(iii) if deg L = 0 and L Oc, then H°(L) = H 1  (L) = 0. 

We will give a complete classification of all indecomposable rank 2 vector 
bundles on the elliptic cure C. We consider first the case of odd degree. 

Proposition 10.47. On a curve of genus 1, given a line bundle L of odd degree, 
there exists, up to isomorphism, a unique indecomposable rank 2 vector bundle 
E with det E L. 

Proof It is enough to consider the case deg L = 1. Since H 1  (L -1 ) is 1- 
dimensional, there is, up to isomorphism, just one nonsplit exact sequence 

0 Oc  E L0. 

Claim: h° (E) = 1. 

Since H°(L) 0 0, it follows that L contains Oc as a subsheaf. Let E' c E 
be the inverse image of this subsheaf. The dual L -1  c--> Oc  of the inclusion 
Oc  c-÷ L induces an injective map 

H 1 (1, -1 ) C... 	(0 c), 

and it follows from this that E' is a nonsplit extension 

0 —> Oc  E' Oc 0. 

Hence h°(E') = 1 and, since h° (L) = 1, this shows that h°(E) = 1 too. 
The indecomposability of the vector bundle E can now be proved by the same 

reasoning as in the proof of Proposition 10.45. We have therefore proved the 
existence part of the proposition, and it remains to show uniqueness. Fixing L 
of degree 1 and E with det E L, we have H° (E) 0 by Riemann-Roch, so 
that E contains Oc as a subsheaf. But applying Lemma 10.40 to the saturation 
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of this subsheaf shows that O c  must be a line subbundle, and so E is precisely 
the bundle constructed above. 	 El 

In fact, the vector bundle constructed in Proposition 10.47 is also stable, and 
therefore simple. 

We next consider the case of even degree. 

Proposition 10.48. On a curve of genus 1 every indecomposable rank 2 vector 
bundle of even degree is an extension of the form 

0 --->M--->E-->M--> 0 

for some line bundle M on C. 

Proof It will be sufficient to consider the case deg E = 2. By Riemann-Roch, 
h°(E) > 2, so that we can use two linearly independent sections s, t E H° (E) 
to construct a homomorphism 

f :0c Oc 	E, 	(a, b) 1---> as ± bt 

Claim: f is injective. 

Suppose not. Then the image is a subsheaf of rank 1, and we denote its sat-
uration by L c E. Then deg L > 2 because h° (L) > 2. But this contradicts 
Lemma 10.40. 

Since deg E = 2, the homomorphism f cannot be surjective. In other words, 
there exists some point p E C at which the induced map kEDk ElE(—p) 
fails to be an isomorphism. This means that E contains 0 c  (p) as a subsheaf and, 
by Lemma 10.40, as a line subbundle. The quotient line bundle M = E/Oc(P) 
then has degree 1. But indecomposability of E implies that H 1 (M -1 (p)) 0 0, 
and hence M is isomorphic to Oc (p), proving the proposition. 171 

Putting these results together we obtain: 

Proposition 10.49 (Atiyah [71]). Let E be a rank 2 vector bundle over a curve 
C of genus 1, with determinant line bundle det E = L. 

(i) If deg L is odd, then E indecomposable < 	> E simple < 	> E stable 	 
E semistable. Moreover, SUc(2, L) is a single point. 

(ii) If deg L is even, then are no simple bundles (and therefore no stable bun-
dles), but E indecomposable 	> E semistable. 	 El 
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10.3 Stable bundles and Pfaffian semiinvariants 

Under the action of the algebraic group GL(N , N) on the affine space of square 
matrices MatN(k) the determinant function is a semiinvariant, and in the last 
chapter we used this fact to show stability under the group action on matri-
ces tlf(, S, T) (in MatN (H° (L)) for a fixed line bundle L) representing line 
bundles E Picd C. In this section, in the same spirit, we are going to study 
the semistability of Gieseker points associated to rank 2 vector bundles. For 
this, the central notion, with which we will build our semiinvariants, is that of 
the Pfaffian of a skew-symmetric matrix, and we begin with a discussion of 
Pfaffians. 

(a) Skew-symmetric matrices and Pfaffians 

Let AltN(k) be the vector space of skew-symmetric N x N matrices over k. 

A matrix A = (aij)i<i, i<N in AltN(k) has zeros on the main diagonal and is 
determined by the entries above the diagonal, and we will adopt the following 
notation: 

a12 ao - • 
a23 " • a2,N-1 	a2,N 

aN_2,s-1 aN- 2, N 

aN-1,N - 

Thus, for example, an element of A1t2(k) is written [a]. 
Such a matrix determines an element of degree 2 in the exterior algebra 

A (ei , • . . , es), which we will denote by 

2 

tj 	j 

	

E CrA 	E a-e. A e • 	 eN), 
1<i<j<N 

and this correspondence defines an isomorphism AltN(k)=>'-' A2  (ei , ... , es). 

The general linear group GL(N) acts on AltN(k) by 

A 1=-> X AX t  , 	A e AltN(k), X E GL(N). 

Under this action the rank of A is invariant; more precisely, the matrices A E 

AhN (k ) of any constant rank make up a single GL(N)-orbit. The following fact 
is fundamental here. 

Proposition 10.50. Every skew-symmetric matrix has even rank. 
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Because of this, the properties of the group action GL(N) ra- Alt N (k) depend 
in an essential way on whether N is even or odd. 

Even skew-symmetric matrices Let N e N.  be an even number. 

Definition 10.51. The Pfaffian of a skew-symmetric matrix A E AltN(k) is the 
number Pfaff A e k defined by 

N 
N/2 

a A  = CIA A .. . A CrA = (N/2)!(Pfaff A)ei A . . . A eN E Nei, ..., eN) L- k. 

El 

The Pfaffian is a homogeneous polynomial of degree N/2 in the entries 
of A and can be written 

Pfaff A = 	E sgn(f)af (1),/(2)af(3)f(4) • • • a f(N-1)f (N), 
N!! fEEN 

where EN is the symmetric group of permutations of N letters and N!! denotes 
the ' subfactorial' 

N! — N(N —2)(N-4)- - .6.4.2, 	(N —1)!! — N —1)(N —3) - - - 5-3 -1. 

Note that in the case N = 2 this is simply 

Pfaff [a] = a. 

For N > 2, the Pfaffian can be evaluated by expansion in a similar manner to the 
determinant: for i < j, let Aii denote the (N — 2) x (N — 2) skew-symmetric 
submatrix obtained from A by deleting the i-th and f-th rows and columns. 
Then 

N 

Pfaff A — E(_ni au Pfaff Au . 
j=2 

(10.10) 

As a polynomial, Pfaff A is a sum of (N 1)!! monomials with coefficients ±1. 

Example 10.52. In the case N = 4, 

1 

a12 a13 a14 

a23 a24 

a34_ 

Pfaff 

- 

= a12a34 — a13a24 + a14a23. 



a25 a26 

a45 a46 	a14Pfaff 

a56 a56 

1 a23 a25 a26 

a35 a36 

[ a24 

—ai3Pfaff 
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In the case N = 6, one sees: 

Pfaff 

ai2 a13 a14 a15 a16 
a23 a24 a25 a26 

a34 a35 a36 

a45 a46 

a56 

  

a34 a35 a36 
ai2Pfaff f 	a45 a46 

a56 

	

a23 a24 a26 	 a23 a24 a25 
—a15Pfaff 	a34 a36 	a16Pfaff 	a34 a35 

a46 	_ 	 a45 

= — det 
a14 a15 a16 

a24 a25 a26 

a34 a35 a36 

	

( a14 at5 a16 	a56 

+ (a23, —643, a12) a24 a25 a26 j —a46 

	

a34 a35 a36 	a45 

   

The following facts are easy to check. 

Proposition 10.53. 

(i) The Pfaffian is a square root of the determinant: 

det A = (Pfaff A) 2 . 

In particular, - Pfaff A 0 0 if and only i f A has rank N. 

(ii) For any N x N matrix X we have 

Pfaff (XAX t ) = (det X)(Pfaff A). 

Thus the Pfaffian is a semiinvariant of weight 1 (with respect to the char-

acter x = det)for the action GL(N) AltN(k). 
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(iii) For any B e MatN/2(k) and C e AltN  /2(k) we have 

N  1 Pfaff (_13°, 
1) 

= (-1) 7+  det B. 

0 

Odd skew-symmetric matrices Now let N be an odd number. The Pfaffian of 
A E AliN(k) is no longer defined, but instead we can consider the Pfaffians of 
its diagonal (N — 1) x (N — 1) minors. 

Definition 10.54. The radical vector of an odd skew-symmetric matrix A E 

AliN(k) is the N-vector 

/ 
	

Pfaff A1 	\ 
—Pfaff A2 

rad A = ((-1) i-l Pfaff A i),, i ,A, = 
	Pfaff A3 	

9 

\ (_0N—lpfaff AN) 

where A i  denotes the submatrix obtained from A by deleting the i-th row and 
column. 	 E 

We can begin by noting the following formula, which will be needed in 
Chapter 12. (The case N = 3 follows from Example 10.52.) 

Example 10.55. If A, A' are skew-symmetric N x N matrices, where N is 
odd, and B is any N x N matrix of rank < 2, then 

Pfaff  ( A 	B ') 
= (rad A)t /3(rad A'). 

—B t  A 

The radical vector is essentially the power 

N —1 

a
(N-1)/2 
A 	e A(ei , - • • , eN) 

of aA E A2 (e 1 , ... , eN). The following properties are easily verified. 

Proposition 10.56. Consider A E AltN(k). 

(i) rank A < n — 1, and rank A < n — 1 if and only ifrad A = 0. 
(ii) A • rad A = 0. 
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(iii) If X is an N x N matrix and X* is its matrix of cofactors, then 

rad (X AX t ) = X*' trad A. 

Although in this case the only semiinvariants of the action G L (N) r AltN (k) 

are the constants, we can nevertheless do the following. Given three skew-
symmetric matrices A, B,C E AltN(k), we can consider the scalar product 

(rad A) t T3 rad C. 	 (10.11) 

Under the action of X E GL(N), this product transforms to 

	

(rad A) t  X*(XBX t )(X*' t rad C) = (det X)2(rad A) t B rad C. 	(10.12) 

It follows that the expression (10.11) is a semiinvariant of weight 2 for the 
diagonal action of GL(N) on the direct sum 

AltN (k) ED AltN (k) AltN(k) 

(or direct product, if we view Alt N (k) as an affine space). 

Skew-symmetric matrices of rank 2 A skew-symmetric matrix A E AltN (k ) 

has rank A < 2 if and only if all of its 4 x 4 minor Pfaffians vanish. Matrices 
with this property will play an important role in what follows; the following is 
the skew-symmetric analogue of Lemma 9.55. 

Proposition 10.57. Let K be afield (or a local Artinian ring — this possibility 
will be needed in Section 10.4(a)) and let A e AltN(K). If A has rank 2, then 

there exists a 2 x N matrix 

(al a2 - • aN) 
W = 

b1 b2 	bN 

such that, for all 1 < i, j < N, the (i, j)-th entry of A is the (i, j)-th 2 x 2 
minor of W. In other words, 

A  =_ w, (0 1 ) 
—1 0 )w. 

Moreover, the matrix W is unique up to the action of SL(2, K) on the left. D 

We omit the proof of this result. The matrix W represents a point of the 
Grassmannian G(2, N), and the entries of A are the Pliicker coordinates of this 
point. 
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(b) Gieseker points 

We are now going to establish a one-to-one correspondence between isomor-
phism classes of rank 2 vector bundles satisfying some appropriate conditions 
and GL(N)-orbits in an affine space AltN ( V) of skew-symmetric matrices with 
entries in a suitable vector space V. The precise statement is Corollary 10.62, 
and this is the analogue of Proposition 9.58 in the line bundle case. This con-
struction is the key to proving Theorem 10.1. 

Notation 10.58. For the rest of this chapter we fix a line bundle L e Pic C and 
consider rank 2 vector bundles E with det E = L. By Riemann-Roch we have 

h° (E) - h l (E) = deg L + 2-  2g .: N. 

The natural number N will always take this value. 
A set S = {si, . . . , sN} C H° (E) of N linearly independent global sections 

is called a marking of the vector bundle E, and the pair (E, 5) is called a marked 

vector bundle. D 

In the line bundle case of the previous chapter (see Section 9.4(a)) we needed 
the key properties that: 

(i) H I (E) = O. 
(ii) E is generated by global sections. 

These properties were guaranteed by taking large enough degree. For rank E > 
2, this is no longer quite the case, and we will usually impose conditions (i) and 
(ii) as additional hypotheses - though note that they are satisfied by semistable 

bundles of sufficiently high degree, by Propositions 10.26 and 10.27. When 
they are satisfied we have N = 1P(E), and a marking S is a basis of H°(E). 
Moreover, generation by global sections means that the homomorphism 

(si, . . . , sN) : OCeN  -- E, 
N 

(f13 - - - 7 fN) 1—>" Efisi, 	(10.13) 
i =1 

is surjective. At the same time, there is a homomorphism 

(s1 A, ... , sNA) : E -± (det E) N  , 	t 1-± (Si A t, ... , 5N  A t) 	(10.14) 

which, if E is generated by global sections, is injective. To explain this, recall 
that the stalk at the generic point Egen  is a 2-dimensional vector space over the 
function field k(C), so there is a skew-symmmetric bilinear form 

A : Egen  X Egen 	det Egen -2:= k(C). 	 (10.15) 
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Thus s A s = 0 and s A s' s' A s = 0 for s, s' E Egen . Moreover, if s, s' are 
global sections of E, then s A s' is a global section of det E, and so restriction 
of (10.15) defines a skew-symmetric k-bilinear map 

	

H° (E) x H°(E) 	H° (det E), 	(s, 	s A S i' . 

The bilinear form (10.15) induces an isomorphism E gen  Hom(Egen , det Egen). 
In particular, each global section s E H°(E) determines a homomorphism 

	

s A : E 	det E , 	t 1--- S A t. 

Definition 10.59 (Gieseker [44]). Given a vector space V, we will denote by 
AltN(V) the set of skew-symmetric N x N matrices whose entries belong to 
V. Given a marked vector bundle (E, S) with det E = L, the skew-symmetric 
matrix 

( 

Si 

TE,S = 	:. 	A (Si, ... , SN) 

SN 

Si A S2 Si A S3 • • • Si A S 

52 A S3 • • • S2 A SN 
E AitN(HCI (L)) 

SN-1 A SN _ 

will be called the Gieseker matrix, or Gieseker point, of E corresponding to the 
marking S. 

Proposition 10.60. Given S = {s1, 	, sN} C H° (E), the composition of 
(10.13) and (10.14) 

(9 (1),, N 	E  (Si A,...,SN A) 
L 8N  

is given by the matrix TE,s E AttN(BAL)). 

Note that any matrix T E AitN(HAL)) determines a vector bundle map 

(T) : O Ec9N  -± Le N  , 

8N and this is skew-symmetric in the sense that the dual map (Ty (L-1)  

or , after tensoring with L, is equal to — (T). Moreover, because of Proposi-
tion 10.60, when T is a Gieseker matrix of a bundle E the image sheaf of (T) 
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is nothing other than E itself: 

Proposition 10.61. Suppose that H 1 (E) = 0 and that E is generated by global 
sections. Then, for any marking S. E is isomorphic to the image of the homo-
morphism 

TE, s : QN 
	LEBN 

defined by its Gieseker point. 	 LI 

We now consider the action GL(N) AltN(H °(L)) given by 

T XT X t  , 	T E AltN(H °(L)), X E GL(N), 

where we view AltN(H ° (L)) as an affine space An, where n = h° (L) x N(N — 
1)/2. This action is of ray type. If we assume H 1  (E) = 0, so that the marking 
S is a basis of H°(E), then the GL(N)-orbit of its Gieseker points depends 
only on the isomorphism class of E and not on the choice of S. Conversely, 
Proposition 10.61 guarantees that the vector bundle E can be recovered from 
any Gieseker point, and hence: 

Corollary 10.62. The mapping (in the setting of Notation 10.58) 

{

isomorphism classes of 
vector bundles E with 11 1  (E) = 0 
and generated by global sections 

sending E to the orbit of its Gieseker points TE,s is infective. 	 111 

Example 10.63. Suppose that E = EDI is a direct sum of line bundles, and 
that S c H°(E) = Ho (0 ED H°(4) is the union of sets {Si, . . • , sm} C WV) 
and {t1, , tn} C H °  (k).  Then L = 0 and 

Siti 

TE,S = ( _Wt 	
• • • Sitm  0 tlf 

where ‘If = 	 • 0 

In this case, everything we are going to do for rank 2 bundles reduces to the 
constructions of the preceding chapter for the action GL(N , N) r MatN,i 
(1/°(L)). LI 

GL(N)-orbits 
1 in AltN(H° (L)) 

Sntl • " Sntm 

We next ask for the stabilisers of these points. 
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Lemma 10.64. Suppose that H' (E) = 0, that E is generated by global sections 
and that E is simple. Given a marking S and a matrix X E GL(N), 

XTE,sX t  = TE,s if and only if X = 

Proof The hypothesis X TE,s X t  = TE,s is equivalent to the commutativity of 
the diagram: 

(T E, 	@IV 
Li 	S) T

c 	----> 

°c@iv (TE,SLN  

This diagram determines an endomorphism 4  of E, and the assumption that E 
is simple implies that çb = cid E  for some c E k. But then X = Xt = c - IN, and 
in particular, c 2  = 1. 

Remark 10.65. Note that 	GL(N) acts trivially on the whole space 
AltN (H°(L))- 

(c) Semistability of Gieseker points 

We now need to consider the question of (semi)stability of a point T E 
AitN(H ° (L)) under the action of G L(N), with respect to the determinant charac-
ter g det g. We will show that if E is a rank 2 vector bundle with H i  (E) = 0 
and deg E > 4g — 2, then the Gieseker points TES are semistable if and only 
if E is slope-semistable as a vector bundle. (Conversely, we will see that if 
deg L > 4g — 2, then every semistable T E AitN(H°(L)) is a Gieseker point 
of a semistable vector bundle — this is Proposition 10.81 below.) 

A semiinvariant of weight w is a polynomial function F = F(T) 
k[Alt N (H°  (L))] with the property 

F(g L T) = (det g)w F(T ), for all g E G L(N), 

and the unstable set in AltN (H° (L)) is the common zero-set of all semiinvariants 
of positive weight. Recall, moreover, that a point T is unstable if and only if the 
closure of its SL(N)-orbit contains the origin. A `Gieseker point' S, T) of 
a line bundle 4  is always stable (Proposition 9.62). However, for vector bundles 
this is no longer the case. For rank greater than 1 the following phenomenon 
appears. 
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Proposition 10.66. Let S be a marking and Mc Ea line subbundle of the 
vector bundle E, and consider the vector subspaces (S) c H ° (E) (of dimension 
N) and H °(M) c 11 ° (E). 

(i) If there exists M c E such that 

dim (H° (m) n (5)) > —N2  , 

then the Gieseker point TE,s E AitN (W(L)) is unstable. 
(ii) If there exists M c E such that 

N 
dim (H°(M) fl (S)) _> 

' 	2' 

then TE,s E AitN (H° (L)) fails to be stable. 

Proof. Let a = dim H°(M) CI (S) and b = N — a. Since the question is 
independent of the choice of Gieseker point within its GL(N)-orbit, it likewise 
depends only on the linear span (S) and not on S itself. We may therefore 
assume S chosen so that its first a vectors belong to H°(M) fl (S). The skew-
symmetric matrix TE,,s will then have a block decomposition in which the top 
left-hand a x a block contains only zeros: 

0 
TE,S — ( .....Bt  

B\ 
 C .  

We now consider the 1-parameter subgroup 

 

0 

i t -b 

t -b  
t F-3- g(t) = 

ta  

0 

\ 

E SL(N). 

ta  1 \ 

This acts by 

0 
TE,S I --> g(t)TE,setY = 	 (_ta-b Bt 

ta-b B\ 

t 2 61 C ) • 

  

In case (i) we are assuming that a > b. So letting t --> 0 shows that 0 e 
SL(N) • TE,s, so the Gieseker point is unstable. 
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For case (ii), assume that a = b. In this case the limit as t --> 0 is the matrix 

To = ( ° 
—B t  

  

B\  
0) •  

  

    

Either C = 0, so that TE,S = To already has a positive-dimensional stabiliser, 
or else C 0 0 but the orbit of TE , s contains the nonstable point To  in its closure 
and therefore fails to be closed. In either case, TE,s fails to be stable. 	El 

On account of this phenomenon we make the following definition. 

Definition 10.67. Let E be a rank 2 vector bundle. If 

0 (M) 	7  0 <- n (E) (resp. <) for every line subbundle M C E, 

then we say that E is H°-semistable (resp. H°-stable). 

If H 1 (E) = 0, then in Proposition 10.66 we have N = h° (E) and (S) = 
H°(E). The proposition therefore says: 

Corollary 10.68. Suppose that 11 1 (E) = 0 and let T = TE,s be any Gieseker 
point of E. Then: 

(i) if T is GL(N)-semistable, then E is H° -semistable; 
(ii) if T is GL(N)-stable, then E is H °-stable. 	 0 

The relationship with slope-semistability is given by the following (but see 
also Exercise 9.8): 

Proposition 10.69. Suppose that 11 1 (E) = 0 and deg E > 4g — 2. Then E is 
H°-semistable if and only if it is slope-semistable. 

Proof First observe that by Riemann-Roch any line bundle M satisfies 

h°(E) — h l  (E) 	 deg E 
h° (M) — h l (M) 	 = deg M ...,_ 	 2 	 2 

Since H 1 (E) = 0, this implies 

h°  (E) 	n 	hi  ) (E) 	n 	 deg E 
	 h° (M) _..._ (  2  	hu (m)) ± hi(m) 	 deg M. (10.16) 

2 	 2 

Letting M run through the line subbundles of E, this shows at once that H ° - 
semistability of E implies slope-semistability. 
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For the converse, suppose that there exists a line subbundle M c E for which 
the left-hand side of (10.16) is negative. Note that, by hypothesis, 

h° (E) = deg E + 2 — 2g > 2g, 

and therefore h°(M) > h°(E)/2 > g. By Lemma 9.22 this implies that 
H 1  (M) = 0, so equality holds in (10.16). Hence the right-hand side of (10.16) is 
negative. 

We next show the converse of Corollary 10.68(i). (We can also show the 
converse of part (ii) if we use the Hilbert-Mumford numerical criterion. For 
this, see Section 10.4(c).) 

Proposition 10.70. Suppose that H 1  (E) = 0. Then, if the vector bundle E is 

H° -semistable, then its Gieseker points TE,s E AitN (H° (L )) are semistable for 

the action of GL(N). 

The proof of this will occupy the remainder of this section. As preparation, 
we investigate some elementary properties of H °-semistability. 

A quotient line bundle Q = EIM of an H°-semistable vector bundle E 

satisfies 

h° (Q) _> h°(E) — h° (M) 	h°(E). 

Lemma 10.71. If E is 11 0  -semistable and h°(E) > 2, then E is generated by 

global sections at a general point p E C. In particular, h° (E(— p)) = h°(E)— 2 
at the general point. 

Proof Consider the evaluation homomorphism 

H°(E) Oc E. 

The image sheaf has h°(E) linearly independent sections; if it had rank 1, then 
its saturation would be a line bundle violating H°-semistability. So the image 
has rank 2. 	 0 

The following is the technical key to proving Proposition 10.70. 

Lemma 10.72. If E is H° -semistable and h °(E) > 4, then there exists a point 

p E C for which the bundle E(— p) is 110-semistable. 
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Proof (Raynaud [75]). Let h°(E) = n. At a general point p E C we have 
h°(E(— p)) = n — 2 by Lemma 10.71. We suppose that at every point the 
bundle E(— p) is H°-unstable and therefore contains some line subbundle, 
which we will denote by MP (— p) C E(—p), with 

—1. 

Claim: The line subbundle MP C E is independent of the choice of the general 
point p E C. 

Granted the claim, we have a line subbundle M (= MP) c E which satisfies 

h° (M(— p)) > —n2  — 1 

at a general point of the curve. But this implies h°(M) > n/2, contradicting the 
H°-semistability of E, and we are done. 

To prove the claim, let q E C be another, distinct, point. We first consider 
the case n > 5. Then 

h° (E(— p)) = n — 2> n  
2 

and this implies that E(— p) is generically generated by global sections (other-
wise we get a line subbundle of E(— p) c E violating the H °-semistability of 
E). Hence h°(E(—p — q)) = n — 4. On the other hand, 

h0 (MP p 	± ho (Mq 	=___ hOwp(_ P)) 1 ± kill q  q)) 

—1 > n — 4. 

This implies that 

0 H° (MP(—p — q)) n inmq(-p - q)) c H°(E(— p q)), 

and hence the line subbundles MP(—p — q)),Mq(—p q) c E(—p — q) 
coincide. Hence MP = Mg. 

Now consider:the-Case n = 4. We now have h° (E(—p)) — 2 and 
h°(MP(—p))?: 2, and so H°(E(—p))= H°(MP(—p)). In particular, 

H° (E(—p — q))= H °(MP(—p — q)) k. 

Similarly 

H°  (E(— p — q)) = H ° (Mq (—p — q)) k. 
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So again the two line subbundles MP(—p — q)), 	(—p q) c E(—p — q) 

have a common global section, and they therefore coincide. 	 LI 

Proof of Proposition 10.70. To show semistability of a Gieseker point TE,s we 
have to exhibit a semiinvariant of positive weight which is nonzero at TE , s. We 
consider separately the cases when N is even or odd. (Note that N--=- deg L 

mod 2.) 
When N is even we can construct semiinvariants as follows. For any linear 

form f H°(L) k we can evaluate f on the entries of a matrix T E 

AitN(H°(L)) to obtain a skew-symmetric matrix f (T) E AltN(k). Then, by 
Proposition 10.53(ii), the function 

AltN(H °(L)) 	k, 	T 	Pfaff f(T) 

is a semiinvariant of weight 1. 
By repeated use of Lemmas 10.71 and 10.72 we can find points 

Pi , • • • , PNI2 E C such that 

— PN/2)) = 0. 	 (10.17) 

If we let evi = ev p, : H°(L) 	k be the evaluation map at the i-th point, 
then (10.17) says that the linear map of N-dimensional vector spaces 

NI2 

g := (evi 	, evN/2) : H° (E) 	E/E(-pi) 
i=1 

is an isomorphism. Now consider the skew-symmetric pairing 

H°(E) x H°(E) 	H° (L) 	k, 

where f := evi +...  + evNi2 : H°(L) --± k. This pairing has matrix f(TE,$) 
and transforms via the isomorphism g to a skew-pairing k N  x k N 	k with 

matrix ( 0 
	IN/2)

. In other words, there is a commutative diagram: 

H°(E) x H° (E) 	H°(L) 

gxg 4. 	f 	 (10.18) 

kN x k N  

— INI2 0 

Using Proposition 10.53(ii), it follows that Pfaff f(TE,$) is equal to det g 0. 
Hence the Gieseker point TE,s E AitN(H° (L)) is semistable. 	 LI 
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We turn now to the case when N is odd. In this case the strategy for producing 
semiinvariants, using Proposition 10.56 and the remarks following, is to use 
triples of linear forms f, f', h : H °(L) k. From these and from T E 

AltN(H°(L)) we get vectors rad f(T), rad r(T) E k N  and a skew-symmetric 
matrix h(T) E AltN(k). We then form the scalar product 

AltN(H °(L)) 	k, 	T 	(rad f (T)) th(T)rad (T). 

By (10.12), this is a semiinvariant of weight 2. 

Remark 10.73. Since minus the identity —IN E GL(N) acts trivially on 
AltN(H°(L)), it follows that if F is a semiinvariant of weight w, then F = 

det(—/N)W F. When N is odd this implies that there are no nonzero semiinvari-
ants of odd weight. 

We now choose N points pi, , pN E C, and we let evi : H°(L) 	k be 
the i-th evaluation map, as before. We set 

f = ev + • • - + ev N-27 1,  f' =evN+1 ± • • • + evN-1, h = evN- 
2 

The proof of Proposition 10.70 is now completed by the following: 

Lemma 10.74. If E is H °-semistable, then there exist points pi, 	, pN E C 
such that, for any marking S C H ° (E), 

(rad f(TE,$)) t h(TE,$)rad f ' (TE,$) 0, 

where f, f',  h are defined as above. 

Proof Let n := (N — 1)/2. The function f : H°(L) 	k is the sum of the 
evaluation maps at the points Pi, 1, • • • • Pn E C, and by Proposition 10.56(i) 

rad f(Ts,E) 0 	h°(E( — pi — • • — pa)) = 1. 

Moreover, via the diagram (10.18) one sees that if these equivalent conditions 
hold, then the vector rad f(Ts,E) spans the 1-dimensional space 

H° (E(—pi — • • • — pa)) = ker {(evi, 	, evn ) : H°(E) 	k2n}, 

relative to the basis S C H °(E). 

Now by repeated use of Lemma 10.72 we can find points pi . . . , p n -1 E C 

such that E(— pi— • • • — p n_i) is H°-semistable and h° (E(— pi— - • -- p n_i)) — 
3. We then pick two general points pn , pn+ i E C and two global sections 
s, t E H°(E(— pi — • • — p n_i)) such that s(p) = t(p1) = 0. These 
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sections are necessarily linearly independent and, by H °-semistability, generate 
a subsheaf of rank 2. Thus if pi, is general, then the fibre at this point will be 
generated by global sections. Hence, with respect to the N points 

• • • , Pn-1, Pn; Pn+1, pi, • . •  

the scalar product of the lemma is nonzero. 

10.4 An algebraic variety with SlIc (2, L) as its set of points 

Our aim is now to prove Theorem 10.1. For this we need to study the GL(N)-

orbits in the affine space AltN(H °(L)) coming from vector bundles via Corol-
lary 10.62. 

By identifying L Oc (D) for some divisor D E DivC we can view elements 
T E AitN(H ° (L)) as skew-symmetric matrices with entries in the function field 
k(C); we then observe that the Gieseker points TE,s, as matrices over k(C), have 
rank 2 (Proposition 10.60). 

Definition 10.75. The set of matrices T E AltN(H° (L)) of rank < 2 over k(C) 
is a closed subvariety which we denote by A1tN,2(1r(L)) C AltN(H c) (L)). 

Let 47) , for 1 < i, j < N and 1 < a < h°(L), be coordinates in the 
affine space AltN(H °(L)). Then A1tN,2(H °W) C AltN(H° (L)) is defined by 
(N4 )h °(L 2) equations determined by the vanishing of global sections, 

[ xii 
Pfaff 

Xik Xil 

Xjk Xj1 = Xij 0  Xkl — Xik 0 Xji Xil 0 Xjk E HAL 2 ), 
Xkl 

for 1 <i<j<k<l<N, and where xii 	(475 1<<ho (L)  E H°(L) and 
o: H°(L) x H°(L) 	H°(L 2) is the natural multiplication map. 

If T 0, then the rank condition is equivalent to saying that the image E of 
the sheaf homomorphism 

is a rank 2 vector bundle. 

Remarks 10.76. 

(i) E can also be described in the following way. The rank condition of Defi-
nition 10.75 together with Proposition 10.57 says that 

wt  ( 0 1 ) 
—1 0 
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for some 2 x N matrix 

w  (fi f2 • • fx) 

g2 • • • gN ) 

of functions fi, g i  E k(C). The N columns of W span a subsheaf of the 
constant sheaf k(C) k(C), and this subsheaf is precisely E. 

(ii) Alternatively, E is then the Oc-module spanned by the two rows of W in 
k(C)ED N . In other words, we are viewing E as a point in the Grassmannian 
G(2, N) over the function field k(C), S as a choice of homogeneous coor-
dinates inPkN(c,— )1 , and the Gieseker point TE , s as the corresponding matrix 
of Plucker coordinates of E. 

(a) Tangent vectors and smoothness 

In this section we will prove the following. 

Proposition 10.77. Let E be a rank 2 vector bundle with det E = L and 

11 1 (E) = 0. Then: 

(i) A1tN,2(H ° (L)) is smooth at each Gieseker point TE,S. 
(ii) If E is simple, then the quotient of the tangent space to A1tN,2(H°(L)) at a 

Gieseker point TE,s by the Lie space gl(N) is isomorphic to H 1 (51 E): 

TTE,s AltN ,2(11 ° 
 
(L))I gl(N) 	H 1 (s-1 E). 

Given vector spaces U, V. the space Hom(U, V) of linear maps f : U 	V 

can be viewed as an affine space. There is then, for each natural number r, a 
subset Homr (U, V) c Hom(U, V) consisting of linear maps of rank < r and 
defined as a closed subvariety by the vanishing of all the (r + 1) x (r ± 1) 
minors. 

Lemma 10.78. Suppose that f E Homr (U, V) has rank exactly equal to r. 

Then the tangent space to Homr  (U, V) at f is equal to 

:= {h I  h(ker f) c Im f} c Hom(U, V). 

Proof Choose bases of U and V so that the matrix representing f : U 	V 
is in canonical form diag(1, 	, 1, 0, . , 0). If h : U 	V is another linear 
map, then f ch, where € 2  = 0, E 0, is represented by a matrix 

(Jr  

    

B 
D 
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Since 62  = 0, the only possible nonzero (r ± 1) x (r ± 1) minors in this matrix 
are the entries of D (concatenated with the block 4). Hence the condition that 
all (r +1) x (r ± 1) minors be zero is equivalent to D = 0. But this is the case 
if and only if h(ker f) c Im f. 111 

In the tangent vector space Sf there are two vector subspaces to consider. One 
consists of h satisfying h(ker f) = 0, which is equivalent to factoring through 
an element of Hom(Im f, V). The other consists of h satisfying h(U) c Im f 
or, in other words, h comes from an element of Hom(U, Im f). The intersection 
consists of endomorphisms of Im f,  and in this way we obtain an exact sequence 
of vector spaces: 

0 --->- End(Im f) ---o- Hom(Im f, V) ED Hom(U, Im f) -+ Sf  ---> 0. 	(10.19) 

Now suppose that V = UV, and consider the subset Hom- (U, UV) of skew-
symmetric linear maps: those f : U ---o- UV,  that is, equal to minus their 
transpose (dual) map. Suppose that f E Hom- (U, U") has rank < r. This 
means that all its (r ± 2) x (r ± 2) Pfaffian minors vanish, and these Pfaffians 
define a closed subvariety Horn,: (U, UV) c Hom- (U, Uv). 

Lemma 10.79. Suppose that f : U ---> U" is skew-symmetric and has rank 
equal to r. Then the tangent space to Horn; (U, UV) at f is equal to 

S-   -= {h I h(ker f) c Im f}  c Hom- (U, tn. f ' 

0 

We will skip the proof as it is exactly the same as that of the previous lemma, 
replacing determinants with Pfaffians. 

The two subspaces {h I h(ker f) = 0} and {h I h(U) cirri. f}, when the maps 
f, h are skew-symmetric, are exchanged by taking the transpose; moreover, the 
intersection 

{h I h(ker f) .= 0} n {h I h(U) C Im f} II Hom-(U, UV) 

is exactly the space of endomorphisms of Im f which preserve a skew-
symmetric form. We will denote this space by End - (Tm f). In the case r = 2, 
for example, this is just the subspace s/(Im f) c End(Tm f) of linear endo-
morphisms with trace zero. From (10.19) we obtain an exact sequence: 

0 --> End- (Im f) ---> Hom(U, Im f) -+ SI --> 0. 	(10.20) 
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In order to prove Proposition 10.77, we are going to apply Lemma 10.79 over 
the function field k(C). Before doing that we will use Lemma 10.78 to show 
again that the Picard variety constructed in the last chapter has tangent space 
I/ 1 (0c). 

Second proof of Proposition 9.67. From a double marked line bundle S, T) 
we have constructed a matrix 

( 

sN it 

xli = kii( , S , T ) = 	i 

SNt1 

This determines a sheaf homomorphism ('P) : 0N 	LE9N  whose image is 
isomorphic to and we consider the subsheaf 

:= {h I  h(ker ( 1P)) C 	C Hom(Or,EDL N )  L EDA/2 .  

This is a subbundle, and we will apply Lemma 10.78 to the map on stalks at 
the generic point 

(IP)gen : k(C)eN  --+ LEDgeNn  . 

This says that the tangent space to MatN, (L gen) at ( 11 ) gen is the space of global 
sections H°(Skp). Corresponding to (10.19), there is an exact sequence of vector 
bundles on C 

0 ---> End —> 7-(om(, L E") Hom(Or, --* Sq, --> 0, 

and hence 

oc  _± 'FEW ED  ED N __> sw  __> 0 .  

Now I/ 1 () = H 1 (F) = 0 by the hypotheses made at the beginning of Sec-
tion 9.4(a), so that taking global sections gives an exact sequence: 

0 	H-0(00  ____, H0()  ,E9 HA-4) 	Ho(st) 	H  (0 c)  ____>. 0 

gl(N) e pl(N) 

This is exactly the sequence asserted in Proposition 9.67. 

The vector bundle case is entirely similar. 

Proof of Proposition 10. 77(u). Let E be a simple rank 2 vector bundle with 
Gieseker point T = TE, s E AitN,2(H° (L)). We apply Lemma 10.79 to the map 
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on stalks at the generic point coming from (T) : Or ---> LEBN (whose image 
is E). This determines a subbundle 

:= {h I  h(ker (T)) C El Cliom -  (Or,  , LEM) LeN(N-1)12. 

The tangent space to AltN,2(L gen) at (T) gen  is then the space of rational sections 
of Si, and that of A1tN,2(H °(L)) is Ir(S7-7). Corresponding to (10.20), we have 
an exact sequence of vector bundles on C: 

0 -* E Rom(OT, N  , E) -› ST-  O. 

But 7-tom(Or,  , E) Lj. Elst' N  while I/ 1 (E) by hypothesis, and so taking global 
sections gives: 

0 	H° (el E) ---> Hom(0t,N  , E) ---> H°(877.) --> H1 (sl E) ---> 0 

gl(N) 

Since E is simple, we have sl E = 0, while Hom(Or,  , E) is the tangent space 
at the Gieseker point of the GL(N)-orbit. 	 Li 

Proof of Proposition 10.77(i). We will use Proposition 9.47. Let f : A' --> A 
be a surjective homomorphism of local Artinian rings, with maximal ideals 
n c A, n' c A'. Let T = (ajj)i<i,j<N be an A-valued point of A 1tN,2(1P(L)) 
whose reduction modulo n is the Gieseker matrix T. We have to show that this 
lifts to an A'-valued point. It is enough to prove this for the case dim ker f = 1. 

Let € be a vector spanning ker f.  By Proposition 10.57, the matrix T can be 
expressed as 

	

Si A 52 S1 A S3 • • - 	Si A SN 

	

S2 A S3 • • • 	S2 A SN 

SN-1 A SN _ 

for some rational sections si  E Egen  Ok A. Since this is an A-valued point of 
A1tN,2(1-0(L)), the entries aij  := si A Sj belong to H° (L Ok A). Since f is 
surjective, we can lift each si  to an element s; E Egen Ok A' and each aij  to an 
element a;1  E HCI (L Ok A'), preserving the skew-symmetry. The matrix 

(s l. A s - 
1)1<i,j<N 

(10.21) 



10.4 An algebraic variety with SUc(2, L) as its set of points 	391 

then determines a rational section of '1-i onr (Or, L) ®k  A', and since this 
section vanishes when we apply f, it is in fact a rational section of 

Hon - (or , L eN,. - k  ) ker f =Horn-  (0EdN  , L eN )E. 

Moreover, its principal part is (4 A S)i <i,j <N and is contained in ST—  Ok A'. 
It follows that at each point p E C this matrix determines a principal part in 
the vector bundle ST—  Ok ker f. By hypothesis, H 1  (ST- ) = 0, and so these 
principal parts come from a global rational section. In other words, there exist 

. .. , S 	Eger, such that (10.21) is everywhere the principal part of 

(( 	SE) A (.7 ./ 	SjE)) 1<ij<N  — (57i A  -57i)1<i,j<N 

where j is the reduction of si modulo n. Hence, if we set 

T1 = ((s; + 41 E) A (S i. ± Sli  J 	/1<i 

then the entries of T' are everywhere regular and T' is an A'-valued point of 
A1tN,2(H °(L)) lifting T. 

(b) Proof of Theorem 10.1 

We now take our fixed line bundle L to have degree > 4g — 1, and we consider 
the action GL(N) r A1tN,2(H°(L)). 

Suppose that E E SU(' (2, L). Then by Proposition 10.26 we have 11 1 (E) — 
0, so the orbit GL(N) • TE,s of a Gieseker point depends only on E and not 
on the marking S. By Proposition 10.27, moreover, E is generated by global 
sections and is therefore recovered up to isomorphism from its Gieseker points 
(Lemma 10.61). And by Propositions 10.69 and 10.70, the Gieseker points of 
E are semistable for the action of GL(N). 

Conversely, suppose that T E A1tN,2(H° (L)) is a semistable point for the 
GL(N) action. The columns of T are vectors in H°(L)e N  , and as for Proposi-
tion 9.63 in the line bundle case we can show the following. 

Lemma 10.80. If T E A1tN,2(H°(L))  is semistable, then the N columns of T 
are linearly independent vectors in 11° (L) 63N  over k. 

Proof Suppose not. Then by a suitable change of basis (that is, by moving 
within the GL(N)-orbit) we can assume that the first row and column of 



The action of the 1-parameter subgroup 

( t -N+1  

t 

t 

) E SL(N) 

( 
0 t2* • 

g(t)T g(t) t  = 	
t2 * 
0 ) 0 0 • 

. . . 

0 t 2 * 2 t * 
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T are zero: 

00 
0 * 

T= 

0* 

- - • 

• • • 

maps T to 

and letting t — ›- 0 shows that the origin is in the closure of the SL(N)-orbit, so 
T is unstable. 	 El 

Given a semistable point T E A1t N , 2 (H°(L)), let E c LE9N  be the image of 
the homomorphism 

(T) : Or _>. LeN . 

Proposition 10.81. Suppose that deg L > 4g — 2 and that T E A 1tN,2(11 °(L)) 
is semistable for the action of GL(N). Then E =Im (T) c LEe' N  satisfies: 

(i) 11 1 (E) = 0; 
(ii) det E L' L; 

(iii) E is semistable. 

Proof 

(0 Let V c 1-1° (E) be the space of global sections coming from the surjection 
Or --›- E. Lemma 10.80 implies that dim V = N, and, in particular, that 
h°(E) > N. By Theorem 10.11, the vanishing of H i  (E) implies that there 
is a nonzero homomorphism f : E -- - Qc, and this induces a linear 
map V --›- H ° (C2 c). The kernel of this map then has dimension at least 
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N — g > g, and so, letting M := ker f C E, we have 

dim H°(M) n V> —2  . 

From (the proof of) Proposition 10.66, it follows that T is unstable. 
(ii) Consider the bilinear pairing 

x OedN 	L, 	 u t Tv. 

This is skew-symmetric and vanishes if u or V E ker (T), and hence defines 
a sheaf homomorphism 

A2  E L. 

We have to show that this is an isomorphism, and for this it is enough to 
check that deg L < deg E (and hence deg L = deg E). But by construction 

deg L — 2g + 2 = N < h°(E), 

while by part (i) I/ 1 (E) = 0, so that 

h°(E) = deg E — 2g + 2, 

and we are done. 
(iii) By construction T is a Gieseker point of the vector bundle E, and so 

semistablility follows from Propositions 10.66 and 10.70. 

Proof of Theorem 10.1. In view of Remark 6.14(vi), we have a Proj quotient 
once we know that the semistable set Alts; ,2(10(L)) is smooth. But this follows 
from Proposition 10.81(i), which guarantees the condition H 1  (E) = 0, together 
with Proposition 10.77(i). 

Now consider the open set AltsN,2(H° (L))/ GL(N) of stable orbits. First 
note that, for each stable Gieseker point T, the vector bundle E = Im (T) is 
stable. This follows from Corollary 10.68 and the proof of Proposition 10.69. 
Conversely, if E is stable as a vector bundle, then it is simple, so by Lemma 10.64 
its Gieseker pointsj baye a finite stabiliser and hence are stable for the G L (N) - 
action. We therefore arrive at a bijection: 

StIc(2, L) -74 AWN ,2 (H°  (L))I GL(N). 

By Lemma 10.64, moreover, under the action G L(N)1 {± N} (Th ,  Alt sN 2  ( H ° (L)) 
all orbits are free closed orbits. Thus, by Corollary 9.52, the open set 
AltsN,2(H° (L)) is nonsingular. 
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Moreover, when E is stable, 

dim H 1  (l E) = 3g — 3 

by Lemma 10.19. This proves parts (i) and (ii). For part (iii) we note that when 
deg L is odd, stability and semistability of E are equivalent by Remark 10.21, 
and so the conclusions of parts (i) and (ii) coincide. 	 0 

(c) Remarks on higher rank vector bundles 

One can generalise the Gieseker matrices of this chapter to higher rank vector 
bundles. Let E be a vector bundle on C of rank r, and suppose that det E-2-:= L. 
The total set Eger, is an r-dimensional vector space over the function field k(C), 
and one can consider skew-symmetric multilinear maps 

Egen  X • • • X Egen ---*" /igen- 

Such a map defines by restriction a skew-symmetric multilinear map over k 

H°(E) x • - • x H °  (E) --> H°  (L), 	(s1, . .. , Sr) 1—›- Si A ... A Sr. 

If N := dim 1-1° (E), then, after choosing a basis, this defines an element of 
Horn Or  k eN , W(L)), called a Gieseker point of E. There is a natural group 
action on the Gieseker points, 

r 
GL(N) (--, Hom (A keN , H° (L)) , 

coming from the action on V or, equivalently, by changing basis in H°(E). 

Definition 10.82. A vector bundle E is called H° -semistable if 

h° (F) < h° (E) 

rank F — rank E 

El 

The following extends (and gives an alternative proof of) Proposition 10.70. 

Proposition 10.83 (Gieseker 1172]). If avector bundle E is 1-1 0  -semistable and 
is generated by global sections, except possibly at finitely many points, then its 

Gieseker points are semistable for the action of GL(N). 

for every subbundle F c E. 

Proof Notationally this is rather cumbersome in general, so we will just il- 
lustrate the proof by giving it in the case of rank r = 4. Let us suppose that 
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some Gieseker point TE E Horn (A' Gk HOrL1 ) is unstable. By the numerical 
criterion (7.2) this means that some 1-PS X : 	SL(N) satisfies 

11111 A(t) T E = 0. 
t—)-0 

Take a basis S = {s1, s2, 	, sN} of H°(E) which diagonalises X, that is: 

X : t 
t r2  

t rN ) 

where r 1 	- rN  = 0 and 
ri < r2 < • • • < rN . 

Now, each (si, Si, sk, Si) E H/3 (E) X • - X TO(E) maps, under X(t) TE, to 
tri-Erj-Frk+ri si A Sj A sk A Si. By hypothesis, then, 

Si A Sj A Sk A Si ------- 0 

whenever ri  ri  rk 	< 0. 
We now introduce three conditions on the basis S C H°(E): 

*1 S1 A 5i+1 = 0 E H°(A 2  E) for all i < N/4. 
*2 S1 A Si+1 A S1+1 0 E /1°(A3  E) for all i < N/4 and j < N /2. 
*3 Si A Si±i ASj±i A Sk±i = OE  H0(A4  E) = H° (L) for all i < N/4, j N/2 

and k < 3N/4. 

ri±ri±1±ri+14-rk±1 < 0 whenever i < N/4, j < N/2 and k < 3N/4. 

This claim, which we will prove in a moment, implies that *3 is always satisfied. 
Suppose that *2 is not. Then some suitable choice of si , s1 + 1, 5j+1 E S spans a 
subsheaf whose saturation is a rank 3 subbundle F c E. Condition *3 tells us 
that for each k < 3N/4 the section sk +1 is contained in 1/°(F) c H°(E), and 
this implies that i is—R°  -unstable. 

If *2 is satisfied but *1 is not, then similarly we can construct a rank 2 sub-
bundle with enough sections to violate H °-semistability; while if *1 is satisfied, 
then we get a destabilising line subbundle. In each case we have a contradiction. 
It just remains to prove the claim. 

For this, consider the step function f(x) defined on the half-open interval 
[0, N) by f(x) = rp+1 for x E [p, p 1). By monotonicity of the function 
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we have 

r1 ri±i  ri±i  rk±i  = PO) f (i) + f (i) + f (k) 

(2/4V 

< 4 f N 	4 
_ N 0  f(x)dx = 	N ri  = 0. 

EJ 

Using Proposition 10.83, one can construct a quasiprojective moduli 
space SUc(r, L) for stable vector bundles of rank r and fixed determi-
nant line bundle L, as the quotient by GL(N) of a closed subvariety of 
Horn OrEON ,  HO(Ll .  ) (More precisely, a subscheme, though the subset of 
semistable points that we quotient is in fact nonsingular.) When the rank r and 
degree of L are coprime, stability and semistability coincide and the quotient is 
a nonsingular projective variety. There even exists, in these cases, a universal 
vector bundle on the product C x Ric (r, L). 

Exercises 

1. Let E be a vector bundle of rank r on a curve C. Show the following. 
(i) If L is a line bundle, then deg(E 0 L) = deg E r deg L. 

(ii) If F is a vector bundle of rank s, then 

deg(E F) = s deg E r deg F,  

2. For a rank 2 vector bundle E, prove the following isomorphism: 

Ev  E (det E) -1 . 

3. If 

0 —÷ 	---> V2 	- • • 	Vn  __. 1 --> Vn 	0 

is an exact sequence of vector spaces, show that EL, (-1) 1  dim Vi  = 0. 
4. (i) The Five Lemma. In the commutative diagram of abelian groups 

—›- U2 -->- U3 -->- U4 —>- U5 

—> V2 --> V3 —> V4 —> V5 

the rows are exact and the vertical maps Ui  ---> Vi  are isomorphisms for 
i = 1, 2, 4, 5. Show that U3 	V3 is an isomorphism. 

(ii) Use the Five Lemma to complete the proof of Theorem 10.11 
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5. (i) In the ring of integers R = Z[4[3] of the algebraic number field 
QkF-751, show that the ideal a = (2, 1 ±,Nif---5) is a direct summand of 
the free module R e R. 

(ii) Let R = k[x,/ x 3  + 1]. Show that the ideal a = (x — 2, ,‘/X 3  + 1 - 3) 
is a direct summand of the free module R R and is not isomorphic to 
R. 

6. If E, E' are semistable vector bundles on a curve satisfying ii(E) > 
show that Hom(E, E') = 0. 

7. Given a vector bundle E on a curve, show that the slopes of all subbundles 
of E are bounded above. 

8. Prove Proposition 10.69 without the hypothesis H i (E) = 0. 
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Moduli functors 

'A moduli space is an algebraic variety which parametrises the set of equivalence 
classes of some objects.' This explanation is reassuring psychologically, but it 
is not terribly precise. A moduli space of vector bundles, for example, ought to 
carry a family of bundles which 'controls' all equivalence classes. (Similarly for 
a moduli space of varieties, although we do not treat this case in this book.) In 
Chapter 9 we constructed a projective variety, as a quotient of MatN, I (IP(L)) 
(for some fixed line bundle L), whose underlying set was Pied  C, the set of line 
bundles of degree d. But this raises some obvious questions: 

(I) The set Pied  C is uniquely determined by the curve C, but is the same true 
of the algebraic variety with Pied  C as its set of points? In particular, our 
construction depended on the choice of a line bundle L. Is the isomorphism 
class of the quotient variety independent of this choice? 

(2) By tensoring with line bundles we get surjective maps Pie d  C --> Pic' C. 
With respect to the algebraic variety structures that we have constructed 
on these sets, do these maps become morphisms (that is, polynomial 
maps)? 

In order to answer these questions, the fundamental notion is that of a family 
and, following from this, the notions of fine and coarse moduli space, which we 
explain in Section 11.1(a). The variety Pied  C not only has the set of isomorphism 
classes of line bundles as its set of points — it actually supports a family of line 
bundles in which each isomorphism class is uniquely represented. This is the 
first main result in this chapter: 

Theorem 11.1. The quotient variety Mel,/  , i 1 GL(N , N) represents the Picard 
functor Pic for families of line bundles of degee d on C. 	 0 

398 



- 

IGL(N, N) 

Equivalence 	
E 

, 
Category i 
of groups 

... 	 

{Line bundles L over CA I  

11 Moduli functors 	 399 

{Double  marked line bundles  (L,  S,  T) over CAI  E 

 Equivalence 

p 
Category 

of sets 
■ 	i 

Figure 11.1: The Picard functor 

In particular, it will follow from this that the projective variety Pic d C does 
not depend on the choice of auxiliary line bundle L. It is called the algebraic 

Jacobian (or Picard variety) of the curve. 
The answer to question (2) is also affirmative: 

Corollary 11.2. Pic° C is an algebraic group. 

The linear algebraic groups that we have considered so far in this book, such 
as G L(N) and G L(N , N), are affine algebraic groups. Pic ° C is not, and it has 
very different properties. It is a projective algebraic group, and in particular it 
is complete. (A complete algebraic group is called an abelian variety.) 

In the second part of this chapter we study the analogue of the Picard functor 
for rank 2 vector bundles. Although the definition is very simple, it turns out 
that we lose many good properties enjoyed by the Picard functor. To begin 
with, the functor no longer takes values in the category of groups, but only 
sets. Second, because of the jumping phenomenon, the moduli functor is not 
representable by an algebraic variety and does not even admit a coarse moduli 
space (Definition 11.6). It admits a best approximation by an algebraic variety 
only after we restrict the class of vector bundles which we study: namely, the 
(semi)stable bundles. We therefore restrict our attention mainly to the moduli 
functor S Uc (2, L) for stable rank 2 vector bundles with fixed determinant line 
bundle L. In the-ease-when deg L is odd we can obtain results similar to those 
for the Picard functor. (When deg L is odd, N := deg L ± 2 — 2g is also odd. 
See Section 10.3(b).) 

Theorem 11.3. Assume that deg L is odd. Then the projective quotient 

AltsN,2 (H° (L))I GUN) is a fine moduli space for stable rank 2 vector bundles 
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on C with determinant line bundle L. In other words, it represents the moduli 
functor SU c (2, L). 

The main tools used to prove these two theorems are direct images and co-
homology modules, and we explain these in Section 11.1. In particular, the 
key idea here is the Base Change Theorem 11.15. We then introduce the Pi-
card functor, and prove Theorem 11.1 at the end of this section. For this we 
have to construct the Poincare line bundle. This really comes out of the quo-
tient construction, using rings of invariants, of the Jacobian: the affine variety 
MatN,i(H° (L)) carries a line bundle, or more fundamentally a module over the 
coordinate ring, and the Poincare line bundle is constructed as the submodule 
of invariant elements. 

In Section 11.2, as well as proving Theorem 11.3, we consider the mod-
uli problem for vector bundles of even degree deg L. In this case, the mod-
uli space that we obtain by considering only stable vector bundles is not 
complete but is contained as an open set in the projective quotient variety 
A1tN,2(H °(L))11GL(N). This open set parametrises isomorphism classes of 
stable vector bundles; its complement is the quotient of the Jacobian of C 
by ±1 (the Kummer variety) and parametrises S-equivalence classes (Proposi-
tion 11.37) of semistable bundles. 

Finally, in Section 11.3 we present various explicit examples. We also touch 
a little on the question of moduli over nonalgebraically closed ground fields. 

11.1 The Picard functor 

(a) Fine moduli and coarse moduli 

Typically, a 'moduli problem' for some class of objects in algebraic geometry 
consists of a notion of family parametrised by affine varieties Spm R, and the 
problem is thought of as solved if there is a universal family parametrised by a 
variety X with the property that every family over Spm R is uniquely induced 
by pulling back via a morphism Spm R X. 

Formally, the moduli problem is a functor: 

F: {algebras over lc} 	{sets}, 	R 1--> (set of familes over Spm R) 

On the other hand, recall from Section 3.3(a) the interpretation of a variety 
X as a functor X from (finitely generated) k-algebras to sets, by assigning to 
an algebra R the set of solutions over R to the equations defining X. More 
precisely, it follows from (3.10) that, given a k-algebra R, the set X(R) can be 
identified with the set of morphisms Spm R -÷ X. 
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Definition 11.4. Suppose that F, G are two functors from the category of 
k-algebras to the category of sets. A natural transformation (orfunctorial mor-

phism) p : F -- > G is a family 

{P(R) : F(R) ---> G(R)} R 

assigning a set mapping p(R) to every k-algebra R and such that, for every 
k-algebra homomorphism f: R ---> S, the following diagram commutes: 

p(R) 
F(R) ---> G(R) 

F(f) 1, 	1, G(f) 

p(S) 
F(S) ---> G(S) 

If there exist natural transformations p : F ---> G and r : G ---> F satisfying 
tp= idF and pr =--- idG (where idF means the natural transformation F --> F, 

which is the identity mapping on every set), then the functors F, G are said to 
be isomorphic. D 

Now, every morphism of varieties X --> Y induces a natural transformation 
of functors X —> Y; and conversely it can be shown that every natural transfor-
mation X ---> Y arises from a morphism of varieties in this way. (This is easy 
in the case when X and Y are both affine varieties.) 

Returning to our moduli problem, a solution, or 'moduli space', is an iso-
morphism of the functor F with the functor 

X : {algebras over k} ----> {sets}, 	R i--> (set of morphisms Spm R ---> X). 

Definition 11.5. A functor F from k-algebras to sets is said to be repre-

sentable, and to be represented by a variety X (or more generally a scheme 
X), if it is isomorphic to the functor X. X is called a fine moduli space for the 
functor F. El 

Unfortunately, in–many moduli problems one cannot expect to have a rep-
resentable functor. (See Example 11.32 below.) For this reason the following 
notion of 'coarse moduli' was proposed by Mumford. 

Definition 11.6. Given a functor 

F: {algebras over k} 	sets}, 
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a variety (or scheme) X is said to be a best approximation to F if it satisfies the 
following condition. 

(i) There exists a natural transformation p : F ---> X which is universal among 
natural transformations from F to variety functors (or, more precisely, 
scheme functors). In other words, given any t : F ---> Y there exists a 
unique morphism f : X ---> Y making the following diagram commute: 

F — *X 

Y. 

A best approximation X is called a coarse moduli space for the functor F 
if it satisfies, in addition: 

(ii) for every algebraically closed field k' D k, the (set) map p(k l) : F (k') --- 
X(k') is bijective. 	 0 

There are two immediate remarks to make: first, that fine implies coarse, and 
second, that coarse (or best approximation) implies unique. That is, if Y is also 
a coarse moduli space for the functor F, then by the universal property there 
are natural transformations between X and Y in both directions, and these are 
inverse to each other and hence come from an isomorphism X'._=-:_ Y. 

Example 11.7. By Proposition 8.89, the variety G(r, n) is a fine moduli space 
for the Grassmann functor g r(r, n). 	 0 

Example 11.8. Approximation of the quotient functor. We can explain the 
meaning of the affine quotient map of Chapter 5 from this point of view. Recall 
that for an algebraic group G the functor G takes values in the category of 
groups. Moreover, if G acts on a variety X, then the functor G acts on the 
functor X and so determines a quotient functor 

X IG : {algebras over k} ---> {sets}, 	R i--> X(R)IG(R). 

The affine quotient map 043. : X --›- X II G is characterised as being a best 
approximation of the quotient functor XIG. In other words, cl) has the following 
universal property: given any morphism 0 : X --›- Y which is constant on 
G-orbits in X, there exists a unique morphism f : XIIG ---> Y making the 
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following diagram commute: 

X—±X//G 

\ 

Y. 

By Corollary 5.17, moreover, the open subset X' G is a coarse moduli space 
for the functor Xs /G 	 El  

(b) Cohomology modules and direct images 

Let A be a finitely generated algebra over k. We shall consider the extension 
A Ok k(C) of A, extending coefficients from k to the function field k(C). Also, 
we denote by A ®k (9c the elementary sheaf on C defined by the ring extensions 

U 1--->- A Ok Oc(U). 

The pair consisting of the topological space C and the elementary sheaf A ®k 0c 

we denote by CA. 

Definition 11.9. A vector bundle on CA is an elementary sheaf E of A Ok 0c 

modules satisfying the following conditions. 

(i) The total set (denoted E gen ) is a locally free A Ok k(C)-module. 
(ii) If U c C is an affine open set, then E(U) is a locally free A Ok Oc(U)- 

module. 	 El 

In the case A = k, of course, E is nothing but a vector bundle on the curve C. 

In what follows we will only consider A-modules of finite rank. Since the 
rank of a locally free module is locally constant, this number depends only on 
the connected component of Spm A. 

Let E be a vector bundle on CA and let f : A 	A' be a ring homomorphism. 
Then we can define a vector bundle on CA',  denoted E OA A', by taking the total 
set Egen  OA A' aliC1 a's—Signing to each open set U c C the extension E(U) OA A'. 
The vector bundle E OA A' is called the pullback under the morphism Spm A' 
Spm A. In the case A c--->• A', we also refer to extension of coefficients from A 
to A' and, when A' = A I , to reduction modulo an ideal 1 c A. In particular, 
if m c A is a maximal ideal, then we get a vector bundle E OA (A/m) = E !me 

on C. If this maximal ideal corresponds to a point t E Spm A, then this vector 
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bundle is denoted by Elcxt, or simply by Et  when this is not likely to lead to 
confusion. 

For vector bundles on CA, just as for vector bundles on C, we can define a 
space of global sections H °  and cohomology space H 1 . Namely, the stalk of E 
at a point, 

is a module over A Ok Oc, p . We then define H °  and H 1  to be the kernel and 
cokernel, respectively, of the principal part map: 

0 	H°(E) 	Eger, 	. 	 Egen/Ep 	111 (E) —> O- 
PEC 

This is an exact sequence of A-modules. 

Definition 11.10. The A-module H°(E) is called the (zeroth) direct image of E 
on Spm A. The A-module H 1  (E) is called the cohomology module, or the first 
direct image of E on Spm A. El 

Example 11.11. If E is a vector bundle on C and E = E Ok A, then H°(E) -=- 
H°(E) 0 A and H i (E) = Hl (E) 0 A. For example, if E = Oc Ok A, then 
H°(E) = A and H 1 (6') = H 1 (0c) 0 A AE131g. 

In this example we see that each Hi  (5) is a finitely generated free A-module. 
More generally: 

Theorem 11.12. lf e is a vector bundle on CA, then H ° (E), 11 1 (E) are both 
finitely generated A-modules. 

Corollary 11.13. If S is a vector bundle on CA, then Hi(E Oc(D)) 0 fo 
some positive divisor D > 0. 

Proof For each point t E Spm A there exists some positive divisor Dt  on C sat-
isfying H 1  (Sic xt(D1)) = 0. By Nakayama's Lemma 8.23 (and Theorem 11.12) 
t has an open neighbourhood Ut  C Spm A such that H 1 (eicxe(Dt)) = 0 for 
every t' E U. One can cover Spm A with finitely many such neighbourhoods 
and then take D to be a divisor bounding the corresponding divisors D. El 
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In order to prove the theorem we need: 

Lemma 11.14. For any vector bundle E on CA there exists a finite set of line 
bundle sLi, LN on C together with a surjective sheaf homommphism (L ED 
• • • ED LN) Ok A —> E. 

Proof The stalk at the generic point Eger, is generated by finitely many ele- 
ments as a module over k(C)0k A. This means that there is a positive divisor 
D > 0 and a sheaf homomorphism Oc(—D)° 	E which is surjective 
away from finitely many points p i , 	, pr, E C. We can then find rational 
sections si, . . . , sN(i) E Egen which are regular away from p1 and generate the 
stalk epi  . Hence there exists some positive divisor D1 > 0 and a sheaf ho-
momorphism Oc (— D)EI)N" Oc(— Di ) ED N (I)  ---> E surjective away from the 
points p2, . . . ,p,. Repeating this construction at the remaining points, we get 
the lemma. 

Proof of Theorem 11.12. Let k be the kernel of the homomorphism given in 
the lemma, and consider the exact sequence 

0 	1C 	(Li El) • • • El) L N ) Ok  A 	O. 

From the part of the exact cohomology sequence 

(1/ 1 (L1) el • • • e H' (L)) Ok A 	11 1 (E) —> 0, 

where each H I- (L i ) is a finite-dimensional vector space, it follows that H 1 (5) 
is a finitely generated A-module. In particular, H 1 (10 is also finitely generated, 
and so the part of the cohomology sequence 

(H° (Li) e • • • ED H°(LN)) Ok A 	H°(5) 	H 1 (1C) 

shows that H°(E) is also finitely generated. 	 LI 

Base Change Theorem 11.15. Let 5 be a vector bundle on CA. Then for 
any ring homomorphism A ---> A' there exists, for each i > 0, a natural 
homomorphism,af A"zmodules 

Hi  (E) OA A' —> H i  (E OA A'). 	 (11.1) 

In particular, it will be important to understand the case 

	

H1 (5) OA A/m Hi (E OA A/m), 	 (11.2) 

where A' = A/m at some maximal ideal m c A. 
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By right-exactness of the tensor product (Lemma 8.55) together with 
Nakayama's Lemma and Lemma 8.31 we obtain the following facts. 

Lemma 11.16. 

(i) For i = 1 the base change homomorphisms (11.1) and ( 1 L2) are surjective. 
(ii) If H 1  (S,)= 0 for every t E Spm A, then 11 1 (E) = 0. 	 0 

If we express H 1  (S) as the cokernel of a homomorphism of free A-modules 

f : A" --> AcB N  1 

then we have 

dim H i (E OA A/m) . N — rank (f OA A/M). 

The rank of a linear map is a lower semicontinuous function, and so we obtain: 

Lemma 11.17. For any vector bundle E on CA the function 

Spm A ---> Z, 	t i--> dim H l  (Et) 

is upper semicontinuous with respect to the Zariski topology. In other words, 
for each a E Z, 

It I dim H i (Et ) > a} C Spm A 

is a closed subset. 	 I: 

For H°(E) the following facts are fundamental. 

Theorem 11.18. Suppose E is a vector bundle on CA with 11 1 (E) = 0. Then 
the following hold: 

(i) H° (E) is locally free as an A-module; and 
(ii) for every ring homomorphism A -->- A' the base change homomorphism 

H° (S) OA A' ----> H°(E OA A') 

is an isomorphism. 

Proof 

(i) Let {U, V} be an affine open cover of C. By the same reasoning as for 
Exercise 8.11 there is an exact sequence 

0 ---> H°  (E) ---. E(U) ED E(V) --> E(U n V) —> fi l (E) —> 0. 
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Note that E(U), g(V), E(Un V) are all flat as A-modules. Since H I (e) = 0, 
therefore, it follows from Proposition 8.54 that H °  (E) is also flat. But H°(E) 
is finitely generated by Theorem 11.12, so by Proposition 8.48 it is locally 
free. 

(ii) By Lemma 8.58, tensoring with any A-algebra A' preserves exact-
ness of the above sequence, and this implies that H°(E) OA A' 
H° (E OA A'). 	 111 

Remark 11.19. In fact, a little more than this is true when Spm A is reduced 
(that is, A contains no nilpotents). Namely, the A-module H° (E) is flat, and 
hence the conclusions (i) and (ii) of the theorem hold, provided the dimension 
h°(Et ) is constant over Spm A. (See Mumford [81], pp. 50-51.) El 

Intuitively, H ° (E) can be thought of as the vector bundle on Spm A whose 
fibre at t E Spm A is the space of global sections H°(Et) = 	lc xt). 

Corollary 11.20. If E is a vector bundle on CA, then the function Spm A --> Z, 
t 	deg Et  is constant on connected components of Spm A. 

Proof We apply Theorem 11.18 to the vector bundle E(D), where D is the 
divisor constructed in Corollary 11.13. This satisfies the requirement that H 1 

 vanishes, so the function t 1—)- dim H° (E,(D)) is locally constant (using Propo-
sition 8.49). By Riemann-Roch, therefore, deg Et (D) is locally constant. El 

It follows from Corollary 11.20 and Riemann-Roch that the integer h°(Et ) 

(Et ) is locally constant on Spm A. Combining this with Lemma 11.17 we 
see: 

Proposition 11.21. For any vector bundle E on CA the function 

Spm A --> Z, 	t 	dim H° (Et) 

is upper semicontinuous: for each a E Z the subset It I dim H° (Et ) > al C 

Spm A is close& 	 El 

(c) Families of line bundles and the Picard functor 

A vector bundle E on CA associates to each point t E Spm A (corresponding to a 
maximal ideal m c A) a vector bundle 5, on C (by pull-back via Spm A/m 
Spm A), and we can observe that this correspondence does not change if E is 
replaced with E OA M for any invertible A-module M. 
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Definition 11.22. 
(i) Two vector bundles E, E' on CA are equivalent if r--l= E OA M for some 

invertible A-module M. 
(ii) By an algebraic family of vector bundles on C parametrised by Spm A we 

mean an equivalence class (in the sense of (i)) of vector bundles on CA. 

The set of families of line bundles parametrised by Spm A becomes a group 
under a tensor product, and this group is just Pic C A /Pic A. Furthermore, given 
a ring homomorphism f : A ---> A', the pullback of a family via Spm A' ---> 
Spm A is well defined (if E and E' are equivalent, then so are E OA A' and 
Et  OA A'), and the pullback of families of line bundles is a group homomorphism 

	

Of : Pic CA /Pic A --›- Pic CAP /Pie A', 	LI-- L OA A'. 

If g : A' --> A" is another ring homomorphism, then this operation satisfies 

(0g)(0f) = Ogf. 

Definition 11.23. The covariant functor 

1 finitely generated 	'groups 1 

which assigns A i--> Pic C A/Pic A is called the Picard functor for the 
curve C. 	 III 

Given a family of line bundles L E Pic CA /Pie A, the degree of L I c xt  is 
constant on connected components of Spm A (Corollary 11.20). We will denote 
by Pic c Picc the subfunctor which assigns families of line bundles of 
degree d. The following proposition is then half of Theorem 11.1; the remaining 
part, that the moduli space is fine, will be proved in Section 11.1(d). 

Proposition 11.24. Let L E Pic2d C, where d > 2g, and let N = d +I. — g, as 
in Section 9.4(a). Then the projective quotient Mat. i (H°(L))1 GL(N , N) is a 
coarse moduli space for the Picard functor Pica. 	 E] 

Corollary 11.25. The isomorphism class of the variety Jd := MatV 1  
(H° (L))I GL(N , N) depends only on C and d, and not on the line bundle 
L  E  pie2d c.  

Picc : I . 
nngs over k 

Proof of Proposition 11.24. The idea is similar to that of Proposition 8.89 for 
the Grassmann functor. For each finitely generated k-algebra A, our aim is to 
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find a natural bijection between line bundles E on C A such that deg E = d 

at every t E Spm A, up to equivalence, and morphisms Spm A 	Jd• Let 
:= LA 00 E. Then by Theorem 11.18 both of H °(E), H° ( -E.--) are localy 

free A-modules of rank N, and their fibres at a point t E Spm A are the 
spaces H° (C, Et ), H° (C, Et ). There then exists a bilinear homomorphism of 
A-modules: 

H° (E) x H° ( --2) 	H° (L) Ok A. 	 (11.3) 

Step 1. We first consider the case when both of H °(E), H°(2) are free 
A-modules. Let S, S be free bases. Via (11.3), these determine an N x N matrix 
with entries in H°(L) Ok A, and so we get a morphism to an (affine) space of 
matrices, Spm A MatN(H °(L)). This maps into the closed subvariety 

MatN,i(H°(L)) C MatN (1e(L)) 

defined by the vanishing of the 2 x 2 minors and, moreover, into the open set 

MatsN,i(H°(L)), since for all t E Spm A, the line bundles, E t  are generated 
by global sections. We will denote this map by 

: Spm A Mats:"(H°(L)) 

and the composition of r-p with the quotient map by 

co : Spm A —> Jd = MatsN,i (H°(L))/ GL(N , N) 

The map co depends only on the equivalence class of 	(in the sense of 
Definition 11.22) and not on the choice of S, S. 

Step 2. We now take an affine open cover 

Spm A = U U 

such that the A-modules H °(E) and H° (2) restrict to free modules on each U1 . 
For each i, by choosing free bases of H°(E)lui  and H°(E)I u, we obtain a map 

:U1 —> Mat 1 (11°(L)) as in Step 1, and on intersections Ui  fl U1 the maps -cot 

and -0./ differ only by the choice of free bases of H°(E)luinu;  and H°(E)I vi nui  • 
It follows that the corresponding maps coi : Jci  and (p j  : U j  Jd agree 
on the intersectiein U fl U, and by gluing we therefore obtain a morphism 

co : Spm A —> Jd. 

This is called the classifying map for the family of line bundles E. 
Let E, E' be two line bundles on CA which are locally equivalent as families 

of line bundles on C. By this we mean that there is an open cover of Spm A as 
above, such that on each open set the restrictions E I u i  and I ui  are equivalent. 
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For these line bundles the classifying maps co, co' : Spm A ---> d are the same, 
and in particular we see that cp depends only on the equivalence class of E 
(Definition 11.22). This verifies the first requirement for Jd to be a coarse moduli 
space: we have constructed a natural transformation of functors Picg, Jcl• 

Moreover, it follows from the results of Chapter 9 that over an algebraically 
closed field this is bijective in the sense of Definition 11.6(h), as required. 

Step 3. Finally, we have to show universality (Definition 11.6(i)). Suppose 
that we have a natural transformation IA' : 2i4 ---> Y for some variety Y. 
Over the product C x MatN, i (H°(L)) there is a tautological homomorphism of 
vector bundles 

(-VxNMat (L Oma) N  • 

Restricted to the open set C x MatiN , i (H° (L)), this map has rank 1 at each point, 
and its image is a line bundle. We denote this line bundle on C x MatsN, i (H° (L)) 
by Q, called the universal line bundle. Composing the natural transformation 
MatsN,  (H°(L)) --> Pic, defined in the obvious way by the pullback of Q, 
with tfr gives a natural transformation of functors 

MatsN,i(le(L)) 	> 	Xi. 

Since the line bundle Q is trivial on GL(N , N)-orbits, it follows that the corre-
sponding morphism Mat i (fr(L)) ---> Y descends to the quotient, and so we 
obtain a morphism Jd  Y with the required properties. 

(d) Poincare line bundles 

We begin by returning to Section 9.3(c) and extending the discussion of that 
section from ideals (that is, orbits) to modules (vector bundles). Let G be a 
linearly reductive algebraic group acting on an affine variety X = Spm R, 
and let M be an R -module with a G-linearisation (Definition 6.23). Thus M is 
also a representation of G and has a subset of invariants M G  c M which, by 
definition of a linearisation, is an R G  -module. 

Lemma 11.26. If M is a finitely generated module over a Noetherian ring R, 
then M G  is finitely generated as an R'-module. 

Proof The idea of the proof is the same as that of Hilbert's Theorem 4.51. 
Denote by M' c M the submodule generated by MG.  Since R (and M) are 
Noetherian, it follows that M is finitely generated. Letting mk,...,m, E M' 
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be generators, the map 

	

R ED - - 1ED R 	M', 	(a1, 	, an ) 	aimi ± • • • + anmn 

is surjective, and hence by linear reductivity the induced map 

	

R G  ED • • • ED R G 	(MI ) G  = M G  

is surjective, so that M G  is generated as an RG-module by mi, • - • , mn• 

Proposition 11.27. Suppose that all orbits of G Spm R are free closed orbits 

and that M is a locally free R-module. Then M G  is a locally free R G  -module 

and M M G  R G R. 

Proof Let / c R be the ideal of an orbit, with corrsponding maximal ideal 
m = / fl R G  c R G . Then M//M is a k[G]-module with a G-linearisation 
and so is a free k[G1-module by Lemma 9.49. By linear reductivity we can 
find m i , . , m r  E M G  whose residue classes mi, , m1,. E MiiM are a free 
basis, and hence the natural homomorphism of R-modules 

M G  RG R M 

is an isomorphism along each orbit. Since, by Lemma 11.26, MG is finitely 
generated, it follows from Nakayama's Lemma that this homomorphism is 
surjective. But it is also injective because M is locally free. 	 111 

The projective quotient map in the direction of some character x E 

Hom(G, Gm), 

= (1) x  : X" 	X I x G, 

is locally an affine quotient map, and so we obtain: 

Corollary 11.28. Suppose that all semistable points are stable and that every 

orbit of the action G X's .------- XS is a free closed orbit. Then, given a vector 

bundle E on X with a G-linearisation, there exists a vector bundle E0 on Xs I G 

such that E 4:)* E0. LI 

We now return to the proof of Proposition 11.24, and we will apply 
Corollary 11.28 to the universal line bundle Q. This had the property that 

(1 x -0)*Q r.€ under 1 x : C x Spm A --> C x MatsAr,i(H°(L)). 
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Let R be the coordinate ring of the affine variety Mat N , (H° (L)). There is a 
tautological homomorphism of R-modules r : RN --->- RN  Oki-113(0 given in 
the obvious way by matrix multiplication. Given a linear map f : H°(L) --> k, 
we then get a homomorphism of R-modules as the composition 

f : RE"' 	RN 0k H°  (L) (L) 	R Ok k RN .  

When f is the evaluation map at a point p E C this homomorphism has rank < 1 
everywhere, and on the open set MatsN,i (H°(L)) its image is precisely the line 
bundle 

Qp 	QipxMat- 

The group GL(N) x GL(N) acts on R, and using this action we let it act on 
the source and target RN  of the homomorphism Of , respectively, by 

g 

A 

1 
(

• 

)1%1 ) fN 	 g • fN 

g 

g • fN 

The map Of is then a G L(N) x GL(N)-homomorphism, and in particular 
G L(N) x G L(N) acts on the R-module Qp . Similarly, the universal line bundle 
Q carries a GL(N) x GL(N)-linearisation, under which (t, t -1 ) E GL(N) x 
GL(N) acts nontrivially. However, this element acts trivially on the line bundle 
Q Qp-1  with its induced linearisation, and so this line bundle possesses a 
GL(N, N)-linearisation. According to Corollary 11.28, therefore, Q Qp-1  is 
the pullback of some line bundle 

Pd E Pic C x Jd. 

This is called the Poincare line bundle. 

Remark 11.29. More generally, let D = Ei  mipi E DivC be a divisor of 
degree 1. Then the line bundle Q OR fl ,

Qp-iini descends to C x 41• 

Lemma 11.30. Let E be a line bundle on CA with classifying map ço: Spm A 
Jd. Then E is equivalent to the pullback (1 x co)*Pd  via 1 x co : CA 	C X Jd. 

Proof Let ,C = (1 x 0*Pd . By construction of the classifying map, E is already 
locally isomorphic to L. In other words, Elc x  uiLIcu,  over some affine x 
open cover Spm A = Ui U . U Un . Thus M := H° (E L-1 ) is an invertible 
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A-module, and the natural homomorphism 

is an isomorphism. Hence E and L are equivalent. 

This lemma gives the crucial 'universal' property of the Poincare line bundle, 
which makes Jd a fine, and not just a coarse, moduli space. Precisely, it says that 
the correspondence go 1—> (1 x go)*Pd  gives a natural transformation of functors 

Picca, 

which is inverse to the natural transformation given in Proposition 11.24. Hence 
the Picard functor Pi4 is represented by the quotient variety Jd, and we have 
proved Theorem 11.1. 

11.2 The moduli functor for vector bundles 

Given a finitely generated ring A over k, a family of vector bundles of rank r on 
C parametrised by Spm A is an equivalence class of vector bundles of rank r on 
CA (Definition 11.22). Denote the set of such families by VBc(r)(A). Given a 
ring homomorphism f : A A', let VB c(r)(f) : VB c(r)(A) --> VB c (r)(A') 
denote the pullback of families via Spm A' -± Spm A. We have then defined a 
covariant functor 

finitely generated 
--> 

V Bc(r)  I rings over k 
{sets' 

called the moduliftmctor for vector bundles of rank r on the curve C. Of course, 
the case r = 1 is (after forgetting the group structure) the Picard functor 

VBc ( 1) = Pic. 

Figure 11.2: The moduli functor for vector bundles 
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If E is a vector bundle on CA, then its determinant det E is a line bundle on 
CA, and this operation commutes with pullback under morphisms Spm At --> 

Spm A. Moreover, if E and Ei  are equivalent vector bundles, then det E and 
det E' are equivalent line bundles, and so the determinant is well defined on 
families. We therefore have a natural transformation of functors, 

det : VBc(r) ---> Picc • 

In particular, if L is any line bundle on C, then we can define (for any A) a 
family LA := L Ok A on CA. This is called a constant family, and we consider 
its preimage under det (the 'fibre functor'): 

Definition 11.31. Given L E Pic C, we denote by 

VBc(r, L) : 
f finitely generated' 	1 sets' _÷ 

ngs over k 

the functor which associates to objects A the set of families E on CA for which 
det E is equivalent to the constant family LA E Pice(A). 

A 'moduli space' for vector bundles (of rank r) is an object which in some 
suitable sense approximates the functor VBc(r) (or its 'connected components' 
of vector bundles with fixed degree) or VB c (r, L). However, as soon as r > 2, 
a coarse moduli space, or a best approximation in the sense of Definition 11.6, 
cannot exist for the following reason. 

Example 11.32. The jumping phenomenon. There exist families of vector 
bundles of rank > 2, say E parametrised by T = Spm A, with the following 
property. For some dense open set U c T and all u E U,t E T, 

sti l'eu tett 
if t E U, 

if tET —U. 

For example, let L E Pic C be a line bundle and fix an extension of Oc by 
L with (nonzero) extension class e E H i  (L). Then each a E k determines an 
extension 

0 ---> L ---> E a  ---> 0 c -÷ 0 

with extension class ae E H 1  (L). This illustrates the jumping phenomenon, 
with T = A l- , because Ea  'L"' El for all a 0, and we can guarantee that this is 
indecomposable by choosing H° (L) 0 0 (by Proposition 10.45) while, on the 
other hand, E0L--' L ED Oc El. 
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How do we see that this is an algebraic family of vector bundles? We claim 
that there exists an exact sequence of vector bundles on CA, where A = k [si, 

0 	L 	k[s] 	E 	C9c 0k k[s] -->- 0 

with the property that for every a E k the reduction of E modulo m = (s — a) c 
k[s] is isomorphic to Ea , that is, 

eicxa = Ea. 

To prove this, we let {U, V} be an open cover of C and represent the extension 
class e E H 1 (L) by an element b E L(U II V) (Exercise 8.11). The vector 
bundle E1 is then obtained by gluing the bundles Ou EB Lu and Ov  ED L v  along 

U 11 V using the transition matr ix 
(1 b)

. The extension E is then defined 
0 1 

by gluing (Cu G Lu) Ok k[s] and (Dv  ED Lv) Ok k[s] along U fl V using the 
1 bs 

transition matrix ( 
0 1 

Now suppose that X were a coarse moduli space for the moduli functor 
VBc(r), r > 2, and fethET  some jumping family as above. By the coarse 
moduli property there is then a morphism f : T ---> X with the property that 
some dense open set U c T maps to a single point, but whose image f(T) c X 

contains more than one point, a contradiction. 
This phenomenon forces us, if we want to construct a moduli space as an 

algebraic variety, to restrict to some smaller class among the vector bundles 
that we are considering. 

Definition 11.33. Given a line bundle L E Pic C, we denote by SU c(r, L) c 

V8c(r, L) the subfunctor which associates to a ring A the set of families E on 
CA for which Et  is stable for all points t E Spm A. 

Note that stability depends only on the equivalence class of the vector bundle 
E on CA representing the family (Lemma 10.22). For the same reason, tensoring 
with any line burildlel' .  E Pic C, E E 00c  4 induces an isomorphism of 
functors 

SU c(r, L) 	SU c(r, L r). 	(11.4) 

It follows that the isomorphism class of the functor SU c (r, L) depends only on 
deg L mod r, and not on L itself. In the rest of this section we restrict to r = 2 
and consider separately the cases when deg L is odd or even. 
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(a) Rank 2 vector bundles of odd degree 

When deg L is odd we have already shown in the last chapter that the quotient 
variety AltsN,2 (1/ ° (L))1GL(N) has S Uc (2, L) as its underlying set of points. 
In this section we are going to prove Theorem 11.3. 

As in the last chapter (see Theorem 10.1) we assume that deg L > 4g — 1 
and we let N = deg L ± 2 — 2g. 

Proposition 11.34. Suppose that deg L > 4g — 1 is odd. Then the quotient 
variety ML := ,2(H°  (L))11 GL (N) is a coarse moduli space for the functor 
SU c (2, L). 

The proof is similar to that of Proposition 11.24 for the Jacobian case. First 
we construct a natural transformation of functors 

SU c(2, L) 	ML, 	 (11.5) 

and then we show that this satisfies the universal property. 
Let A be a finitely generated ring over the field k and S be a rank 2 vector 

bundle on CA. We suppose that Et  is stable for all t E Spm A and that det S 
LA M for some invertible A-module M (that is, for some line bundle on 
Spm A). We consider the A-module H°(E) of global sections (Definition 11.10). 
By Proposition 10.26 and Theorem 11.18, this is a locally free A-module of 
rank N. We will consider the skew-symmetric A-bilinear map: 

H° (E) x H° (E) --->- H ° (det E) = H°  (L) Ok M, 	 S A t. 

Step I. We first consider the case where H° (E) and M are both free 
A-modules. Then, by choosing free bases, the above map determines a skew-
symmetric N x N matrix with entries in He ) (L) Ok A. In other words, we get 
a morphism 

: Spm A --->- AltN(H°(L)). 

The image of this map is contained in the zero-set of the 4 x 4 Pfaffian minors 

A1tN , 2 (H°(L)) c AltN (H°(L)), 

and by Theorem 11.18 the image of each t E Spm A is exactly a Gieseker 
point of the vector bundle Et  = Sic xt• As we saw in the last chapter, this is 
stable for the action of G L(N), and so the morphism maps into the open 
set AltsN,2 (H°(L)). We denote the composition of Fdp with the quotient map 
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AltsN,2(H°(L)) --> ML by 

co : Spm A -->- ML. 

This map depends only on E and not on the choice of basis for H° (E). 

Step 2. Choose an affine open cover 

Spm A = U • • • U Un  

such that the restriction of H °(e) and M to each U1  are both free modules. Just as 
for the Picard functor, this gives, using Step 1, a morphism co : Spm A -± ML. 

Step 3. We have therefore constructed the natural transformation (11.5), and 
we will now check that it has the universal property. On the product C x 
AltN(H°(L)) there is a natural tautological homomorphism, 

°EC xN  Alt —* (L IZ 0 Ait) N  

given by matrix multiplication, whose restriction to C x A1tN,2(H°(L)) has 
rank 2. The image is then a rank 2 vector bundle whose restriction to C x 
AltsN,2(H° (L)) we denote by Q. 

Now suppose that we have a natural transformation of functors S Uc (2, L) -÷ 

X for some other variety X. Applying it to the vector bundle Q then determines 
a morphism AltsN,2 (H°(L)) X; and since Q is preserved by the action of 
GL(N), this descends to a morphism of the quotient M L  --> X. 

Proof of Theorem 11.3. It is enough to show that the vector bundle Q descends 
to the product C x ML. However, by construction Q comes with a natural 
GL(N)-linearisation in which the element —IN  E GL(N) (which acts trivially 
on AltsN,2 (H° (L))) acts as —1, so that Q cannot descend as it is. We can solve 
this problem by 'twisting' Q as a GR-module (where G = GL(N) and R is 
the coordinate ring of AltsN,2 (H°(L))). That is, we consider Q' := Q OR D, 

where D denotes the trivial R-module linearised by det g for g E GL(N). Here 
IN acts trivially, and we have a line bundle Q' which carries a GL(N)1 

linearisation. (Note that this is only possible when deg L, and hence N, is odd!) 
By Lemma 10.64,01 the orbits of the action GL(N)1 ± N  r Alt' A r ,2 (I-1° (L)) 

are free closed orbits, so that, by Corollary 11.28, Q' is the pullback of some 
vector bundle U on C x M L . Pulling back U via morphisms Spm A --> M L  

then defines an inverse of the natural transformation (11.5), and hence the 
functor Sc  (2, L) is represented by the variety ML. 

More precisely, the functor St. I c(2, L) is represented by the pair consisting 
of ML and the vector bundle /4 on C x ML.  This is called the universal bundle. 
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(b) Irreducibility and rationality 

It follows from (11.4) that the functor SU c  (2, L) is represented by an algebraic 
variety for every line bundle L of odd degree, and from now on we will denote 
this variety by SUc(2, L). It is independent of L up to isomorphism, and we 
will show that it is irreducible and rational. 

Consider a stable vector bundle E E SUc(2, L) when deg L = 2g — 1. 
By Riemann-Roch we have h°(E) — h 1 (E) = 1, so that h° (E) > 0 and E 
contains Oc  as a subsheaf. The saturation of this subsheaf is a line subbundle 
isomorphic to Oc  (D) for some positive divisor D E DivC, and there is an exact 
sequence: 

0 -->- 0 c(D) -->- E -÷ L(— D) ---> 0. 	 (11.6) 

Note that stability of E implies that d := deg D < g — 1. 
Let us first consider the case D = 0. Here, the equivalence class of the 

extension 

0 -* Oc —>E —>L —>0 

is parametrised by the cohomology space H i  (L -1 ), and by Riemann-Roch this 
has dimension 3g —2. The isomorphism class of the bundle is parametrised by 
the projectivisation of this space, and there is a moduli map from the open set 
U0 parametrising stable bundles: 

U0 	C PH1 (L -1 ) -̀-_-'.P38-3  

fo 1, 

SUc(2, L) 

What about the case D > 0? Positive divisors of degree d on C are 
parametrised by the d-fold symmetric product Sym d C. (This is a nonsingu-
lar variety of dimension d.) For each D E Symd C, the extensions (11.6) are 
parametrised by the cohomology space I-1 1 (L -1 (2D)), which has dimension 
3g — 2 — 2d, and in this case we obtain a moduli map from the open set Ud of 
stable bundles in a projective bundle over S ym d  C with fibre PH 1 (L -1 (2D)): 

Ud 	C P3g-3-2d  -bUrldle --> SymdC 

fd 4,  

SUc(2, L) 
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The images of the maps fd  : Ud -÷ StIc(2, L) for 0 < d < g — 1 cover the 
moduli space. On the other hand, each Ud, if nonempty, has dimension 3g-3—d; 
since dim StIc(2, L) = 3g — 3, it follows that U0 must be nonempty. The map 
fo is therefore dominant; and since U0 is irreducible, it follows at once that 
SUc(2, L) is irreducible. 

Proposition 11.35. SUc(2, L) is a rational variety when deg L is odd. 

Proof We have seen that a general stable bundle E E StIc(2, L) is a (nonsplit) 
extension of L by O. In particular, h° (E) > 1. If h°(E) > 1 for a general stable 
bundle, then the general fibre of fo wold be positive-dimensional, contradicting 
the fact that dim Uo = dim SUc (2, L). Hence h° (E) = 1 for general E E 

SUc (2, L), and so fo  is birational — that is, it is an isomorphism over an open 
subset of the moduli space. El 

(c) Rank 2 vector bundles of even degree 

We showed in the last chapter that when deg L is even the Gieseker points 
TE , s of a semistable vector bundle E E SUc(2, L) are semistable for the 
action of GL(N) on A1tN,2(H°(L)) (Propositions 10.69 and 10.70). In a mo-
ment we will show that if E is a stable vector bundle, then its Gieseker points 
TE,s are GL(N)-stable. This implies, in particular, that the quotient variety 
AltsN,2 (H°(L))I GL(N) has SUc  (2, L) as its underlying set of points. However, 
unlike the odd degree case, there are now semistable vector bundles which are 
not stable, and as a consequence the quotient variety AltsN , 2 (H°(L))/ GL(N) is 
not complete. It is contained as an open set in the projective variety 

SU c(2, L) := Alts; ,2 (H°  (0)// G MN), 

and one can ask what the geometric points of this bigger variety correspond to 
in terms of vector bundles. This is answered by Proposition 11.37. 

We will assume that deg L > 4g — 2. 

Proposition 11.S6. The Gleseker points of a stable vector bundle are GL(N)-

stable. 

Proof We have already observed in the proof of Theorem 10.1 (Section 10.4(b)) 
that a Gieseker point TE,s of a stable bundle E has a finite stabiliser, using 
Lemma 10.64 and the fact that E is simple. So we just have to show that the 
orbit of TE,s is closed. 
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So suppose that T E A1tN,2(10(L)) is in the closure W of the orbit GL(N) - 

TE , s of E. We have seen in Section 10.4(b) that such T is the Gieseker point of 
some semistable vector bundle E'. Moreover, there exists a vector bundle S on 
C x W such that Sic xt  E for t in an open set of W and Si c xt  E' for t in the 
boundary. Namely, S is the restriction of the universal bundle Q constructed in 
the proof of Proposition 11.34. If we apply semicontinuity (Proposition 11.21) 
to the bundle Ey 0 5, we see that 

dim Hom(E , E') > dim Hom(E , E) > 1, 

so that there exists a nonzero homomorphism E ---> E'. But this is then an 
isomorphism by Proposition 10.24. This shows that the orbit GL(N) • TE , s is 
closed. 

Proposition 11.37. If E, E' are rank 2 vector bundles with the same deter-
minant line bundle L and Gieseker points TE TE ,  ,si, then the following are 
equivalent: 

(i) gr E gr E' (see Definition 10.43); 
TE,s, TEP,st are closure-equivalent under the action of GL(N). 

Bundles E, E' satisfying condition (i) are said to be S-equivalent. 

Proof By Proposition 11.36, the Gieseker orbit of a stable vector bundle is 
closed and of maximal dimension; so if either of E, E' is stable, then (by 
Corollary 5.5 and its proof) condition (ii) is equivalent to TES,  TEI,s ,  being 
in the same GL(N)-orbit. We therefore only need to consider the case where 
neither of E, E' is stable: in other words, we assume that they are extensions 
of line bundles: 

0--->L--->E--*M--> 0, 	deg L = deg M 
0 	L' ---> E' ---> M' ---> 0, 	deg L' = deg M'. 

Since, by hypothesis, deg L = deg M > 2g — 1, it follows that h° (L) = 
h°(M) = h°(E)/2. So let S = {Si, 	S N} be a basis of H°(E) in which 
Si, 	, SN 12, are a basis of H°(L) c H°(E). Then TE,s has the form 

B\ 

C. 

(0B,  



E SL(N). g(t) — 

\ 
o 

t i 

Then, as we have already seen in the proof of Proposition 10.66, 
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Now let 

limg(t)TE,sg(t) t  = 
( 0 

1----A 	 —B t  

  

B\  
0 1 

  

    

But this is the Gieseker point of the decomposable vector bundle LM = gr(E), 
and we see that Tgr(as is contained in the closure of the orbit GL(N) • TE , s. 
Hence we have shown that (i) implies (ii). 

For the converse, the idea is the same as in the proof of Proposition 11.36. 
Suppose that the two orbit closures have an intersection point: 

T E GL(N) • TE,s n GL(N) • TE ,S' • 

Then T is a Gieseker point of some semistable vector bundle F, and, as in the 
proof of Proposition 11.36, we can find a family of vector bundles E which is 
equal to E on an open set and jumps to F on the boundary. We then apply upper 
semicontinuity (Proposition 11.21) to the family L 1  0 5, where L C E is the 
same line subbundle as above. This gives 

dim Hom(L , F) > dim Hom(L , E)> 1, 

so that L is contained as a line subbundle in F. By the same reasoning L' is 
also a line subbundle of F. But since F is semistable, this implies that either 
L :,1-'. L' or FL',--_,' L ED L'. Either way, we conclude that gr(E)2 --...' gr(E'). 	0 

Recall that if 4 i a line bundle, i ---= L 0 4 -1 , and the multiplication map 

How x RAZ) ____>. "iv)  

is represented by a matrix T, then the vector bundle E = thF has as a Gieseker 
point the matrix 

(O _ Tt  To) 
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(Example 10.63). This means that the map 

Picd/2 C --> SU c(2, L),  

is induced in the quotient by the map 

(
0 T 

MatN 12,,i(H ° (L)) ---> AltN,2(H °(L)), 	T 1—>  
..-1' t  o) . 

Thus SU c (2, L) contains StIc(2, L) as a an open set, with complement (the 
semistable boundary) equal to the image of Picd/ 2 C (called the Kummer variety). 

Remark 11.38. Unlike the odd degree case, SUc(2, L) is not a fine moduli 
space. That is, it can be shown that there is no universal vector bundle on the 
product C x SUc  (2, L). (See Ramanan [74].) 

11.3 Examples 

In this section we explain, first, how one can write down explicitly the con-
struction of the Jacobian given in Section 9.4, and then we give some examples 
of moduli spaces of vector bundles. 

(a) The Jacobian of a plane quartic 

Let C c P2  be a nonsingular plane curve of degree e defined by a homogeneous 
polynomial equation fe (x, y, z) = 0. As we saw in Section 9.2, this has genus 
g = (e — 1)(e — 2)/2. For the auxiliary line bundle L of degree 2d used in 
Section 9.4 we will take the restriction to C of 072 (e —1), with d = e(e — 1)12. 
When e = 3, 4 we have d > 2g, so that by the methods of Section 9.4 we can 
construct Pic 4 C as the quotient variety 

Matse,1 (H°(L))1GL(e, e). 

We may identify H°(L) with the set of homogeneous polynomials of degree 
e — 1 in coordinates x, y, z. 

Let us consider the case of a plane quartic curve — that is, e = 4. In this 
case, 

Pic6 C = Mats4,1 ( H°  (L ))/ GL (4, 4), 



11.3 Examples 	 423 

where Mat4,1(H °(L)) consists of 4 x 4 matrices 

dii(x, y, z) d12(x, y, z) d13(x, y, z) d14(x, y, z) ( 
d21(x, y, z) 
d31(x , y, z) 
d41(x , y, z) 

of cubic forms d 3  (x, y, z) all of whose 2 x 2 minors vanish on C; in other 
words, these 2 x 2 minors are 36 sextics which are divisible by the quartic 
./4(x , y, z) defining C c P2 . 

Proposition 11.39. A matrix A c Mat4,1(H°(L)), as above, is stable under the 

G L(4, 4) action if and only if it is of one of the following forms. 

(1) A is the matrix of cofactors of a 4 x 4 matrix of linear forms 

M = 	(X y Z))1<i, j<4, where det M = f4(x , y, z). 

(2) A is of the form, up to the action of G L(4, 4), 

    

A=( 
 d(x y , z) 

(x , y, z)x 

  

q(x, y,  z)xt 

(x , y,  z)xx t  

  

    

where deg/ = I, deg q = deg q' = 2, deg d = 3, and qq' — ld = 

Proof By Propositions 9.62 and 9.63, stability is equivalent to the matrix having 
rank 4 over the field k. We consider the cofactor matrix A* of A. Recall that for 
an N x N matrix this has the properties: 

(i) (A*)* = (det A) N-2 A; 	(ii) det A* = (det A) N-1 . 

In the present case, A* is a 4 x 4 matrix of forms of degree 9, and these are all 
divisible by fi. There are therefore two possibilities: either A* 0, or A* = 
f42 M, where M = (111(x, y, z)) is a nonzero matrix of linear forms. Let us first 
deal with the latter case. Taking determinants, we have (det A) 3  = f$ det M, 

and by unique factorisation this implies that det M = f4, det A = fi. Hence 

(A*)* 	I 	1 	2  
A = (det A)2 = — (A*)* = —(f4  M)* = M*, 

and we have case (1) of the proposition. 
The second case is when A* vanishes identically or, equivalently, A has rank 2 

over the function field k(C). In this case, up to the G L(4, 4) action A can be 

A d22(x, y, z) d23(x, y, z) d24(x, y, z) 

d32(x, y, z) d33(x, y , z) d34(X y, z) 

d42(x, y, z) d43(x, y, z) d44(x, y, z) 
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written 

where B is a 3 x 3 matrix of cubic forms with rank 1. By Remark 9.55 it is 
easy to see that, up to the action of GL(4, 4), the block B can be written as 
/(x, y, z)xxt  for some linear form 1. Since A has rank 1 along the curve C c P2 , 
this forces it to take the form (2) of the proposition. EI 

The second case corresponds to an element of Pic 6 C of the form 0c(1) 
Oc(p p') for some points p, p' E C, while all other line bundles correspond 
to the first case. We can identify the same quotient with Pic 2 C by the bijection 

Pic2C 	Pic6 C, 	1-* 0 (9c(1), 

and then the set of matrices (2) is the theta divisor 

= {Oc(p p') I  p, p' E C} Sym2 C, 

while the set of matrices (1) is its complement. 

(b) The affine Jacobian of a spectral curve 

For any curve of genus g the set 

e := {oc(pi + • • + pg_i) I pi, 	, .130_1 E C} C Pie -1 C 

is called the theta divisor in Picg-1 C, and its complement is an affine variety. 
As we have seen in Section 9.4(b), Picg -1 C is a projective variety and by 
construction there exists a semiinvariant whose zero-set is 0 (or, more precisely, 
is 20). This complement, 

Aff.Jac C := Picg -1 C — 6, 

is called the affine Jacobian of C. The affine Jacobian of a plane curve of degree 
e can be described explicitly in the following way. 

Proposition 11.40. Given a homogeneous polynomial Mx, y, z) of degree e, 
denote by Mate  (x, y, z; fe) the set of e x e matrices of linear forms 

Al'= 	y, Z))1<i,j:5,e such that det M = fe(x, y, z). 
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This is a closed subvariety in an affine space An, n = 3e2, which is acted on by 
SL(e) x SL(e) via M gMg'. Then the plane curve C = { f e (x , y, z) = 01 C 
P2  has an affine Jacobian equal to the affine quotient 

Aff.Jac C = Matse (x, y, z; fe)/sL(e) x SL(e). 

This proposition is a special case of Theorem 11.41 below. When e = 3 or 
4, we obtain a completion (or, in other words, a compactification) of the affine 
Jacobian by assigning to a matrix M E Mate  (x, y, z; fe ) its matrix of cofactors. 

	

The e-sheeted cover C 	defined by the equation 

r  e fm(x y)r e—i f2m(x ) re-2 +...  + fie-1)m(X, 31 )T 

+feni(x, y) = 0, 	 (11.7) 

where each fi (x, y) is homogeneous of degree i, if it is nonsingular, is called a 
spectral curve of degree e and index m. In particular, every nonsingular plane 
curve C c P2  is a spectral curve of index 1. 

Theorem 11.41. Let C -± IP1  be the spectral curve (11.7) and denote by 
Mate (x , y; C) the set of e x e matrices M = (hii(x, y))1<i, i< e  of homogeneous 
polynomials of degree m, with a fixed characteristic polynomial 

	

det(M 	/e) = left-hand side of (11.7). 

Then Mate (x, y; C) is an affine variety on which SL(e) acts by conjugation, 
M 	gMg -1 , g E SL(e), and the affine quotient is the affine Jacobian of C, 

Aff.Jac C = Maee (x , y; C)I S L(e). 

0 

This theorem is the analogue for function fields of Theorem 8.66. It can be 
proved in a similar manner, making use also of Grothendieck's Theorem 10.31. 
We omit the details here, but see Beauville et al. [78], [79]. 

(c)-  The Jacobian of a curve of genus I 

Let C be a curve of genus 1. Over an algebraically closed field the variety Pie d  C 
is always isomorphic to C. Here we shall consider what happens when the field 
k is not necessarily algebraically closed. (For example, the rational numbers 
k = Q. For simplicity we shall, nevertheless, continue to assume that k has 
characteristic zero.) 
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First of all, note that C need not necessarily possess any rational points over 
k. If C does have a rational point, then by taking this to be on the line at infinity 
in the projective plane C can be represented as the plane cubic 

	

y 2  = 4x 3  - g2x — g3, 	g27 g3 E k 

This is called the Weierstrass canonical form of a plane cubic. 

Definition 11.42. Let C be a curve of genus 1 over k. A curve J over k which 
possesses a rational point over k and which is isomorphic to C over the algebraic 
closure k is said to be arithmetically the Jacobian of C. 

In the construction of Pic d C given in Section 9.4, suppose that the auxiliary 
line bundle L is defined over k. Then the quotient variety Pic d  C is also defined 
over k. 

Remark 11.43. We are not assuming here that the Poincare line bundle is 
defined over k, and so we view Pied  C only as a coarse moduli space. However, 
it is clear from the construction that there will exist such a Poincare line bundle 
provided C possesses a k-rational point or, more generally, a divisor of degree 1 
defined over k. (See Remark 11.29.) LI 

When C is defined over k there exists some positive line bundle Lo defined 
over k. 

deg Lo = 1. In this case, by taking the zero-set of a global section we get a 
rational point of C over k, and hence C is arithmetically its own Jacobian. 

When deg Lo > 2, we see by taking L = L (2)  in the quotient construction of 
Section 9.4 that Pied  C is arithmetically the Jacobian of C. This can be identified 
with Pic° C by OLo : Pic°C Pic" C. 

deg Lo = 2. In this case dim H ° (Lo) = 2, and the ratio of two linearly inde-
pendent global sections determines a 2-sheeted cover C P1 . This has four 
branch points, which are the zeros of a binary quartic 

A 	 A,- 	 A (a 0 x, y) = a0x 4  + 1-aix3  y + oa2x2 y 2  + 4a3xy3 ± a4y 4 , 

and C can be represented as 

2 C : r = a0x4  4aix3  y + 6a2x 2  y 2  + 4a3xy3  + a4Y4  

Since C is defined over k, the coefficients ao, . . . , a4 belong to k. 

(11.8) 
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Theorem 11.44. JIG is the genus 1 curve (11.8), then the arithmetic Jacobian 
Pic° C is the affine plane curve 

y 2 = det 
2\ ( ao  al a2 ) 

x ( 	—1 	— at a2 a3 
2 	 a2 a3  a4 

 

together with its point at infinity. 

Remark 11.45. The right-hand side in this equation is the cubic used in the 
solution by radicals of the quartic (a0x , y) = 0. We have already used this 
equation in Section 1.3(b) (See Remark 1.26.) 	 I=1 

Theorem 11.44 will follow from the next proposition. If L is any line bundle of 
degree 4, then dim H°(L) = 4, and four linearly independent sections define an 
embedding C (--* P3 , whose image is a curve of degree 4 and is the intersection 
of two quadric surfaces q0(xo, xi , x2, x3) = qi (xo, xl, x2, x3) = 0. For each 
i = 0, 1 we can write 

qi(xo, xi, x2, x3) = Ye Qix, 	X = (X0, .11, X2, X3) 

for symmetric 4 x 4 matrices Q0, Qi, and we consider the relative characteristic 
polynomial 

det(x Qo + yQi). 

This is a binary quartic in x, y. 

Proposition 11.46. If C is the genus I curve q0(xo, xl, X2, x3) = 

qi (xo, x1, x2, x3) = 0, then the arithmetic JacobianPic2C is the double cover 

of Pl  with equation 

T 2  = det(xQo ± YQ1). 

0 

Proof of Theorem 11.44. Let L = ql:, and let x 2 , 2xy, y2 , r E H° (L) be a 
basis for the global sections, where x, y E H°(L0). This basis determines an 
embedding, 

(x : y : r)i—)- (x 2  : 2xy : y 2  : r) =: (x0 : xi : X2 : X3), 
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whose image is contained in the quadric surfaces 

4 - 44x2 = 0, 
aoxci + 2aixoxi + ai(2x0x2 +4) ± 2a3xix2 ± a44 —4 . 0. 

The relative characteristic polynomial of these quadrics is 

          

det 
—1 

2 

 

(

ao al a2 
al a2 a3 
a2 a3 a4 

  

      

      

          

and this is the right-hand side of the equation in the theorem. 	 0 

In order to prove Proposition 11.46 we follow the construction of Section 9.4 
when d = 2 and the auxiliary line bundle is L as above. Pic2 C is the quotient 
variety 

Mat2,1(H°  (L))11 G L(2, 2), 	 (11.9) 

where Mat2,1(H°(L))  consists of 2 x 2 matrices of linear forms in x = 
(X0, .X1, x2, .7C3) 

( li 1 (x ) 112(x)) 
V21(x) 122(x)) 

whose determinant vanishes on C c P3 . In other words, the determinant of 
such a matrix is a linear combination of q0(x) and qi (x). It happens that the ring 
of semiinvariants determining the quotient variety (11.9) is well known and can 
be written down explicitly. 

Theorem 11.47. Let Mat2(xo, .. . , x m ) be the set of 2 x 2 matrices of linear 
forms in xo, .. . , x m . This space is acted on by GL(2, 2), and the ring of semi-
invariants has the following generators. 

(1) Weight /. The (m ± 1)(m + 2)/2 coefficients of the quadratic form 
det M(x), where M(x) E Mat2(xo, . .. , xm ). These are quadratic forms on 
Mat2(xo, . • . , xm). 

(2) Weight 2. Writing M(x) E Mat2(xo , . .. , xm ) as 

Moxo ± *xi ± • • • + Mmxm , 

the r4+1) determinants det I Mi  , M1, Mk, M1I for i < j < k < 1, where 
each Mi  is viewed as a vector in k 4. These are quartic forms on Mat2 
(Xo, . • • / Xm). 	 0 
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This follows from the next result, due to Weyl ( [60] Theorems (2.9A) and 
(2.17A)). The 4-dimensional vector space of 2 x 2 matrices V = Mat2(k) carries 
an inner product, 

M, 	tr (M*M'), 

where M* denotes the matrix of cofactors of M. With respect to this inner 
product the action of the image of SL(2) x SL(2) in GL(2, 2) lives in the 
special orthogonal group S 0(V). 

Theorem 11.48. Let V, ( , ) be any n-dimensional inner product space. Under 
the diagonal action of S 0(V) on a direct sum V ED • • ED V = (D r  V, the 
ring of invariants has the following generators. Moreover, when r < n these 
generators are algebraically independent. 

(1) The (V) inner products fii (vi, 	, vr) := (vi , v)for 1 <i <j < r. 
(2) The ( nr) determinants fi(vi, 	, vr) := det I vi„ 	, vin  I, where I = {1 < 

< • • < 	< rl. 

The quotient 

Mat2(xo, x1, x2, x3)//GL(2, 2) 

is a variety of dimension 4 x 4— 7 = 9, and by Theorem 11.47 it is embedded 
in 10-dimensional weighted projective space P(1 1°  : 2). The square of the 
semiinvariant (2) can be expressed as a quartic form in the semiinvariants (1) (in 
fact the determinant), and hence the quotient is a quartic hypersurface in P(1 1°  : 
2). To say this another way, it is a double cover 

2:1  
: Mat2(xo, xl, x2, x3)//GL(2, 2) 	P

9 
 = {quadrics in 1P 3 } 

branched over a quartic hypersurface B cr. 

Proof of Proposition 11.46. The variety Pic2 C for the curve C c IP3  is the 
inverse image it -1 (P1 ), where P 1  c P9  is the span of Qo and Q1. The intersec-  
tion of this line with B is the zero-set of the relative characteristic polynomial, 
so the proposition follows. CI 

deg  Lo = 3. In this case dim H °(L0) = 3 and the ratios of the global sections 
define an embedding of the curve as a plane cubic C c P 2 . Since Lo is defined 
over k, the equation f3(x, y, z) = 0 of the cubic has coefficients in k. By 
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Proposition 11.40, the affine Jacobian of C is the quotient variety 

Mat3 (x, y, z; f3)//SL(3) x S L(3), 

and the arithmetic Jacobian of C is the one-point compactification of this variety. 
Let us denote a general element of Mat3(x, y, z; f3) by M = Mox+ Mly + M2z. 

Proposition 11.49. The ring of semiinvariants of the action G L(3, 3) r- - 
Mat3(x, y, z) has Hilbert series 

1 - t 6  
(1 — 0 1°(l — t 2 )(1 — t 3 ) 

and has the following 12 generators. 

(1) Weight 1. The 10 coefficients (that is, mixed determinants) of the cubic form 

det(Mox + Mi y + M2z). 

(2) Weight 2. The trace 

f(M) = tr (M8'Mi'M;), 

where /1/;' is the matrix of cofactors of M. 
(3) Weight 3. The trace 

g(M) = tr (MoM1M2M0//i'M). 

(This proposition is a rephrasing of the results of Teranishi [87] on the ring 
of invariants of the conjugation action S L (3) ra- Mat3(x , y, z).) 

From the Hilbert series and the known weights of the generators it follows 
that there must be a relation among these generators of the form 

g2 ± a3g = aof3 ± a2 f 2 ± a4 f ± a6, 	(11.10) 

in which each ai  is a homogeneous polynomial of degree i in the 10 generators 
of weight 1. This shows that the affine Jacobian of the plane cubic C is the 
plane cubic (11.10) in which the a• are obtained by specialising the 10 weight 1 
semiinvariants to the 10 coefficients of the defining equation f3(x , y, z) of C. 

Remark 11.50. The arithmetic Jacobian of a curve of genus 1 in degree 2 was 
investigated by Weil in [88]. In a remark on this paper in his collected works 
he makes the following observation. 

The `covariants' of a plane cubic f(x , y, z) = 0 are generated by three forms 
denoted classically by H, J, 0 (see Salmon [35]). Of these, H = H(f) is the 
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Hessian (see Example 5.26), of degree 3, and J, e are both sextics. This means 
that every covariant plane curve with respect to the action of the projective 
group is a polynomial in H, J, 0 with coefficients in k[V2,3iSL (3) = k[S,T]. 
(For example, the degree 9 covariant consisting of the inflectional lines of the 
cubic can be shown to have equation 5Sf 2H(f) — H(f) 3  — f g(f) = 0.) 

These generating covariants satisfy a single relation: 

y 2 = 4x 3 ± 108SXZ2  — 27Tz3 , where x = 0, y = J , z = H 2 . 

Weil's observation is that this is precisely the equation of the arithmetic Jacobian 
of f(x, y, z) = O. 	 0 

(d) Vector bundles on a spectral curve 

We will extend Theorem 11.41 in this section to describe the moduli of rank 2 
vector bundles on the spectral curve (11.7). First, let us make some remarks 
about the cofactors of a skew-symmetric e x e matrix. Let A = (aij ) be such a 
matrix, where e is even, and denote by A i,/  the skew-symmetric (e —2) x (e — 2) 
submatrix obtained by deleting the i-th and j-th rows and columns of A. 

Definition 11.51. The cofactor matrix of a 2 x 2 skew-symmetric matrix is 
defined to be 

) adj 	(
0 —1 ( 0 a 

0 ) • .----a 0 	1 

If A is an N x N skew-symmetric matrix for even N > 4, then its cofactor 
matrix A adj is defined to be minus the N x N skew-symmetric matrix whose 
(i, j)-th entry is (-1) 1 +-iPfaff A ii . 	 El 

For example, when N = 4, 

_ 
a b c 

de,  

adj 

 

_ 	-1 	_ 

f —e d - 
c —b 

a _ 

t 	_ 
-f e —d -

-c b 
—a _ 

= 

 

 

_ 

Corresponding to the identity AA* = (det AV , where A* is the matrix of 
cofactors (transposed) of a general square matrix A, the cofactor matrix of a 
skew-symmetric matrix satisfies: 

A Aadi = (Pfaff A)I. 
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Before we come to general spectral curves, let us return to plane quartics 
C c P2 • With respect to the line bundle L = Oc(3), the compactified moduli 
space of semistable vector bundles SUc (2, L) is the projective quotient 

A1t8,2(1/ °(0c  (3)))1IGL (8), 

where A1t8,2(H°(0 c  (3))) is the affine variety of 8 x 8 skew-symmetric matrices 
[dij  (x, y, z)] whose entries are cubic forms in the homogenous coordinates 
x, y, z and whose 70 4 x 4 Pfaffian minors are all divisible by the quartic 

y, z) which defines the curve. 
Moreover, mapping A 1--> Aadi defines a morphism 

A1t8,2(H°(0c(1)))//51, (8) —>- Alt8,2(H ° 
 
(0c(3)))11GL(8) SUc(2, L), 

where the left-hand space is the affine quotient of the affine variety 
Alt8,2(H°(0c  (1))) (in the affine space A 84 ) of 8 x 8 skew-symmetric matrices 
of linear forms in x, y, z with Pfaffian equal to f4(x, y, z). This map is an open 
immersion and its image is the set of (S-equivalence classes of) semistable 
vector bundles E satisfying H°(E(-1)) = 0. 

Note that det E(-1) '=d Qc  . More generally, suppose that E is a vector bundle 
with canonical determinant det E S2c,  on a curve C. If H°(E) = 0, then E 
is semistable, and this condition defines an open subset of SU c(2, L). In fact, 
as we saw in the proof of Proposition 10.70, its complement is the zero-set of 
a semiinvariant and this open subset is therefore an affine variety, 

SUacff(2, S2 c ) = {E I  H°(E) = 0} c SU c(2 ,Qc). 

Proposition 11.40 and Theorem 11.41 now extend to the following. 

Proposition 11.52. If C is the plane curve {fe(x, y, z) = 0} c P2, then 

SU affc  (2, Qc)=== Alt2e(x, y, z; fe)IISL (2e), 

where Alt2 e (x, y, z; fe) is the affine variety of skew-symmetric 2e x 2e matrices 
with Pfaffian equal to Mx, y, z). 	 0 

Theorem 11.53. Let C 	P1  be the spectral curve (11.7) of degree e and 
index m, 

Te + fm(x, Y)Te -1  + f2m(x, Y)Te -2  + • • • + f(e—oni(x, Y)T + fem(x, y) = 0. 

Let Alt2 e (x , y, z; C) be the set of 2e x 2e skew-symmetric matrices A = 
y)) of homogeneous polynomials of degree m, with fixed characteristic 



Pf(A-kr 
l 

(0
e 

 

Then 
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polynomial 

re + fm(x, y)re -1  + f2m(x, y)re -2  + - • • 

. • • + .fie-om(x, Y)r + fem(x, y). 

SUacff(2, Q c) = Alt2e (x, y, z; C)//Sp(2e). 

Ill 

(e) Vector bundles on a curve of genus 2 

A curve that can be expressed as a double cover C L:1-> P i  of the projective line 
is called a hyperelliptic curve (Example 9.7). The number of branch points is 
always even and is 2g +2, where g is the genus. We will consider here the case 
g = 2. Then, if we take homogeneous coordinates (x : y) on P i , the curve can 
be expressed as 

C: T
2 

= f6(X, y) 

for some sextic form f6  (x,  y) = (ao, • . - , a6 x, y). We denote by Oc (1) the 
pullback of the tautological line bundle on P'. (In terms of divisors, this 
is Oc (p + q), where {p, q} c C is the inverse image of a point of P i .) 
Since deg Oc(1) = 2 and h °(0c(1)) > 2, it follows from Riemann-Roch 
that Oc(1) L' nc, the canonical line bundle, and that h ci(Oc(1)) = 2. By 
Riemann-Roch and the Vanishing Theorem 9.20 we have h °(0c(2)) = 3 and 
h°(0c(3)) = 5. We can therefore take as bases 

x 2 , 2xy, y2  E le(Oc(2)), 	x3, 3X 2Y, 3XY2 , y 3 , T G le(Oc(3)). 

The latter determines an embedding C c--> Ill4  whose image is the intersection 
of four quadrics (using homogeneous coordinates (x0 : x 1  : x2  : x3  : x4)) 

, 	 ,2 X0X2 - Al2 	 A. = X0X3 - X1X2 = X1X3 - 2 = 0 
aoxg -I- 2aixoxi...+ a2(2xox2 + xf) + 2a3(xox3 + xix2) 	 (11.11) 

-Fa4(2x1x3 + 4) + 2a5x2x3 -I- a6x1 = x . 

The construction of Chapter 10 gave a variety of parametrising rank 2 vector 
bundles E with det E"L---.' L, for some line bundle L E Pic C, which satisfy 
H 1  (E) = 0 and the condition that E is generated by global sections. By Propo-
sitions 10.26 and 10.27, these two conditions are guaranteed for all semistable 
bundles if deg L > 4g and for all stable bundles if deg L > 4g — 2. For g = 2, 
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let us take L = 0c(3) and construct the moduli space SUc (2, Oc (3)) of stable 
vector bundles with this determinant. 

In this case, a stable bundle E has h°(E) equal to N = 4 (see Notation 10.58), 
and so Ric (2, Oc (3)) is the open set of stable points in the projective quotient 
of the action 

G L(4) ra, A1t4,2(H°(0c(3))). 

An element of A1t4,2(1-1°(0c(3))) is a 4 x 4 skew-symmetric matrix of linear 
forms in x0, . , x4  which has rank 2 along the curve C c P4 , or, in other 
words, whose Pfaffian is a linear combination of the four quadrics (11.11). 

First of all, we consider the action of G L(4) on the affine space 
Alt4(xo, xi , x2, x3, x4) = Alt4(k) 0 H°(Oc (3)) of matrices without any rank 
condition. The 6-dimensional vector space Alt4(k) comes with an inner product, 

(X, Y) 	tr Xadj  Y, 

and this inner product is preserved by the subgroup S L(4) C G L(4), that is, 
S L(4) acts on Alt4(xo, xl, x2, x3, x4) by S L(4) —a- S 0 (6). We can therefore 
apply Theorem 11.48 to obtain: 

Proposition 11.54. The ring of semiinvariants of the action G L(4) ra, 
Alt4(xo, xl, x2, x3, x4) has 15 algebraically independent generators of weight 1. 
These are the coefficients Pl ii  of the quadratic form 

Pfaff A = 	 A E A1t4(Xo, xl, X29 X39 X4). 
i<j 

It follows that the projective quotient Alt4(x0, X1, x2, x3, x4)//GL(4) is iso-
morphic to P14  and that 

linear span of 4 points 
Alt4,2(xo, xi , x2, x3, x4)//GL(4) = corresponding to the :_.-_' p3  

quadrics (11.11) 
( 	 c  p14 .  

One can be more precise than this. Let (A : ,u, : v : p) be homogeneous 
coordinates in the P 3  spanned by the quadrics (11.11). Then the general quadric 
in this space has discriminant 

det 
( 

Ii V 

)1/4. 

—2v 
v 

+ p 

) ao 
al 
a2 
a3 

al 
a2 
a3 
a4 

a2  
a3 
a4 

 as 

a3 
a4 
a5 

a6 
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The zero-set of this determinant is a quartic surface 1C4 c P3 , and the moduli 
space SUc(2, Oc(3)) is precisely the complement P3  - 1C4 . In fact, 1C4  is a 
well-known surface called the Kummer quartic surface (see, for example, Hud-
son [80]): it is the quotient of the Jacobian of C by the involution [-1] and has 
exactly 16 nodes. 

Remark 11.55. The four quadrics (11.11) can be used to define a rational map 
P4  - - -›- V, indeterminate along the curve C c--+ P4 . This resolves to a 
morphism of the blow-up along the curve: 

f : B1cP4  -›. P3 . 

There are three possibilities for the preimage of a point p E P3 . 

(i) If p E P3  - iC4, then f -1 (p) is a nonsingular conic (isomorphic to P 1 ). 
(ii) If p E K4 - (16 nodes), then f -1 (p) is a reducible conic (a pair of lines). 

(iii) If p E (16 nodes of 1C4), then f -1 (p) is a cone over a twisted cubic P1 . 

When g > 3 and L has odd degree, the moduli space SU c (2, L) of semistable 
vector bundles is singular along the boundary. However, it has a good desingu-
larisation S Uc (2, L) and also a conic bundle: 

I' --2÷ SU c (2, L) ----7-4 SU c(2, L). 

That is, 7r is an isomorphism over the open set SUc(2, L) of stable bun-
dles, and the fibres of co are conics. These conics are nonsingular (irreducible) 
over 7 -1 SUc(2, L) and are line pairs over the boundary. See Seshadri [86] or 
Narasimhan and Ramanan [82]. D 

Finally, we remark that one can construct moduli spaces not only for stable 
bundles, but more generally for simple bundles. Let us see what sort of object 
this is in the case of genus 2 that we have been considering. Consider the set 
Simc  (2, Cc) of simple rank 2 vector bundles with a trivial determinant. It fol-
lows from Lemma 10.39 that every simple vector bundle is semistable, and this 
makes it quite easy to-describe the space Simc (2, Cc)  as there is a surjective map 

Simc(2, Cc) -›, P 3  - 116 nodes of 1C41 C SU c(2, Cc). 	(11.12) 

Away from the Kummer surface K. this map is an isomorphism, while 
the simple bundles which are not stable are parametrised by the Jacobian 
Jc := Pic°C away from its 2-torsion points k [2], in the following way. Given 
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a c k, a2  Oc, we can associate extensions 

0 —a a -1  —a Ei —> —> 0, 

Each Ei  is simple if and only if the extension is nonsplit, and in this case it 
is unique up to isomorphism since h 1  (a 2) = 1. As vector bundles, E1 and 
E2 are not isomorphic, but they represent the same point of SU c(2, Oc) by 
Proposition 11.37. Hence the map (11.12) is 2-to-1 over the Kummer surface 
1C4. Thus Simc(2, (9c) is a nonseparated algebraic space, or (over k = C) a 
non-Hausdorff complex space, and cannot be made into a variety or scheme. 

Remark 11.56. On the other hand, when g = 2 and L has odd degree (so sta-
ble and semistable are equivalent) it happens that Sim c  (2, L) = SUc(2, L). 
Moreover, it was shown by Newstead that this variety embeds in P 5  as a 
complete intersection of two quadrics. (See Newstead [83] or Desale and 
Ramanan [91].) 

Exercises 

1. Prove the following claims concerning the tangent space of functors 
(Definition 8.90). 
(i) The tangent space of the Picard functor Picc is isomorphic at every 

point to H i  (0 c) . 
(ii) The functors VBc(r) and VBc(r) have tangent spaces, at a vector bundle 

E, isomorphic to H 1  (end E) and H i  (1 E), respectively. 
2. Let C c P2  be a nonsingular plane cubic f3(x , y, z) = 0. Let 

(qii(x, Y, z) q12(x, Y, z) q13(x, Y, z) 
M := q21 (x, y, z) q22(x, y, z) q23(x, y, z) 

Di(x, y, z) q32(x, y, z) q33(x, y, z) 

be a 3 x 3 matrix of quadratic forms, all of whose 2 x 2 minors are divisible 
by f3(x , y, z). Show that M is stable under the action of GL(3, 3) if and 
only if one of the following holds: 
(i) M is the matrix of cofactors of a 3 x 3 matrix of linear forms N = 

(lii (x , y, z)) satisfying det N = h (x, y, z); or 

(
x2  xy xz 

(ii) M = xy y 2  y z . 
xz yz z 2 



12 
Intersection numbers and the Verlinde formula 

Let C be a curve of genus g and let L be a line bundle on C. In Chapter 10 we 
constructed a projective moduli space SU c(2, L) for semistable rank 2 vector 
bundles on C with determinant line bundle L. As a variety this depends only 
on the parity of deg L, so there are two cases: when deg L is odd it is equal 
to SUc(2, L) and is nonsingular; when deg L is even it is the completion of 
Stic(2, L) by adding the Kummer variety. Let us denote it by .Kt or .A/ -c7 for 
the even and or odd cases, respectively. On Ar c±  there exists (in each case) a 
naturally defined standard line bundle L (see Section 12.3), and these satisfy 
the Verlinde formulae: 

dim Hooq, Lek )  = (k + 2)g-1 kt-1 	1  
2 ) (sin 	2" 

k+2) 

w- rok) _ 	
2k+1 

dim Ho 

	

(k og-1 E 	  

(sin 21cT2)2g-2  

(12.1) 

(12.2) 

On account of their beauty and importance, these formulae have attracted the 
interest of many mathematicians since Thaddeus [111]. 

In this chapterwe will restrict ourselves to the odd degree case, for which 
the moduli space is fine, and we will prove the Verlinde formula (12.2) via the 
intersection numbers among cohomology classes 

ci(L) = a c H2 (.111-E), fi c H 4 (Arc7), y E H 2 (Arc- ), 

defined by means of the universal vector bundle. These classes are called the 

437 
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Newstead classes, and the full intersection formula among them is 

for m + 2n + 3p = 3g - 3, 

(12.3) 

where bk  E Q is a rational number defined by the Taylor expansion x/ sin x = 
Ek bkX 2k  when k > 0 and is zero when k < 0. In fact, we only need this for 
p - 0, 

(a'') = (-1)nm!4g -lbg_i_,,, 	m + 2n = 3g 3, 	(12.4) 

and it this form of the formula that we prove here. 
The first two sections of the chapter introduce some background for proving 

the Verlinde formula (12.2). In Section 12.1 we show that the right-hand side 
is a polynomial in k; in Section 12.2 we review the Riemann-Roch Theorem in 
order to show that the left-hand side is a polynomial in k. 

The heart of the chapter is Section 12.3, where we begin by defining the 
standard line bundle L on JV-g- . This is closely tied up with the invariant theoretic 
construction of SUc  (2, L) from Chapter 10 - in fact, the space of global sections 
H°Q\, , i-  Lk ) for k > 0, is exactly the space of weight 2k semiininvariants g   
under the action GL(n) r, A1t2, N(H°(L)) from which the moduli space was 
constructed as quotient. 

As a differentiable manifold, Arc-  is the same for all curves C of genus g. 
In fact, by a theorem of Narasimhan and Seshadri [73] and Donaldson [92], it 
is essentially the parameter space for equivalence classes of representations of 
the fundamental group (more precisely, a central extension of the fundamental 
group) 71(C) in SU(2). Consequently it depends only on the topology of C. 
We can therefore choose the curve to be hyperelliptic, and for this case we 
consider the first direct image W of a certain line bundle on C x Arc- . This W 
is a vector bundle on JVc-  of rank 4g on which the hyperelliptic involution of 
C induces an involution which decomposes it as a direct sum W+ ED W -  . By 
the Riemann-Roch Theorem for curves with involution, the bundles W+ and 
W-  have ranks 3g + 1 and g - 1, respectively, and a consequence of this is 
that: 

cg(W) = cg+i(W - ) = cg+2(W- ) = 0. 	(12.5) 

Moreover, by Grothendieck-Riemann-Roch with involution these Chem classes 
can be expressed explicitly as polynomials in the Newstead classes ot, 13, y, 
and the identities (12.5) therefore give relations among these cohomology 
classes. These are called the Mumford relations (Atiyah and Bott [89] §9, 

(amP n Y P ) = (-1)n22"-P  g lml   b , 
(g  _ p)! g-  I -n-p 



2/ 	1)ni 
dim H° (M,n, OH 10) = 

21+1 E 
i=0 (sin 	 

)

n-2' 
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Zagier [115] §6) and are precisely analogous to the relatons cn-r+i (2) = 
c(Q) = 0 in the cohomology ring of the Grassmannian G(r, n) (Sec-
tion 8.1(e)). 

In Section 12.4 we deduce (12.2) and (12.4) from the Mumford relations. 
Although this is purely an exercise in computation, it turns out not to be so easy. 
The ring we have to work with is 

Q[a, y]/(cg (W - ), cg+i (W- ), cg+2(47- )), 

and as a limbering-up exercise we examine the subring y = 0 (called the secant 

ring for genus g). In this case the intersection numbers that we get are none 
other than the natural numbers called the secant numbers (Definition 12.9). 

The Verlinde formula can be generalised to the moduli spaces ,N-g,n  of rank 2 
stable quasiparabolic vector bundles on a curve C of genus g with n marked 
points. When g = 0 (that is, when the curve is P1 ) the formula is 

(12.6) 

where 0(-K) is the anticanonical line bundle, that is, the determinant of the 
tangent bundle, and 0(-1K) = 0(-K)® 1 , (When n is odd the anticanonical 
line bundle is primitive and 1 E Z; when n is even it possesses a square root and 
1 E -1.Z.) We prove this, just in the case when n is odd, in the final section of the 
chapter. Here again one can define standard cohomology classes a, 13 satisfying 
Mumford relations of the form cg  (W) = cg+i (W) = 0 for some vector bundle 
on the moduli space. In this case, in fact, the classes a, fi generate the secant ring 
of genus g, and so again the Verlinde formula can be proved using a Riemann-
Roch theorem. Finally, we indicate an alternative proof of (12.6) using the 
birational geometry of the moduli space 

A warning: this chapter differs from its predecessors in being an exposition 
of some relatively recent research. For this reason it is less self-contained, and 
some difficult topics may be treated with less explanation, or fewer references 
to the literature-, Thaiinight be desirable. I hope that the reader will bear this in 
mind. 

12.1 Sums of inverse powers of trigonometric functions 

(a) Sine sums 

To begin, given natural numbers n, k E N we define the following sum, which 
can be thought of as taken over the vertices in the upper half-plane of a 
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regular 2k-gon: 

k —1 

V,(k) := E 
=I. 

 (

„k. n. )  2n ' 
sin ) 

Dividing by k2" and taking the limit as k 	oo one obtains 

V(k) 	24(2n) 

where is the Riemann zeta function 

“s) = 1 + +
1 	1 

2 	3s±4s± • • • 

Proposition 12.1. 
CO 

E V,(k)sin 2n  x = 1 — k tan x cot kx. 
n=1 

lim 
oo k2n 	n. 2n ' 

(12.7) 

We will prove this in a moment. 

Remark 12.2. Substituting x 1 k for x and letting k —> cc yields the identity: 
oo 	 x )2n 

2 E (2n) (-- = 1 — x cot x . 

Moreover, by using Cauchy's residue theorem one can deduce: 

Corollary 12.3. 

—k cot kx 
V(k) = Res 	 x=0  [ sin2n x  

Proof of Proposition 12.1. Using cos kx i sin kx = (cos x i sin x) k  we see 
that 

Ei  (— ( ki ) cot1 -2i  x 
cot kx 

	

	  
Ei (-1>i (2i  k+i) CO tic-2i —1  X • 

This implies that y = cot (x + i÷r ) for j = 0, 1, . , k — 1 are the distinct 
roots of an equation of degree k, 

— COt kx 
2i —1)1( 2i 

k ))7k —1 = 0. 
 + 1 
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Reading off the linear coefficient gives an expression for the sum of roots, 

k-1 n- 
k cot kx = E cot (x 	, 

i=o 

and from this we deduce: 

k tan x cot kx = 1 + 
tan X k-1 

2 
Cot (X —) cot — . 

sin2 x 
= 1 _ E 	 

j=1  sin2 	— sin2 x 

00 

= 1 _ E Vn (k) sin 2n x 
n=1 

El 

It follows from Corollary 12.3 that V, (k) is a polynomial in k of degree 2n, 
whose coefficients can be expressed in terms of the Laurent coefficients of cot x 
and cosec 2nx at x = 0. In particular, (12.7) gives its leading term: 

V(k) = 
(4(2n))  272  

k 	- - . 	 (12.8) 
71-2n 

(b) Variations 

The sum V(k) corresponded to the Riemann zeta function via (12.7). Corre-
sponding to the series 

1 	1 	1 
1 — — + — — + - 

28 	3s 	4s 

	

(-1)n 	1 
1+ 	 

3s 	5s 

we introduce, respectively, the trigonometric sums 

1( 	)..1 -1  
V n-  (k) E 	2n' 

:1=1  (sin • .r ) 

k-1 

U(k) := E  (- 1 )0 

3=-0 (sin (2j+1)7r  \n 
2k 

Remark 12.4. Note that in terms of the numbers Vn (k), V -  (k) and Un (k), the 
Ver1inde formulae (12.2), (12.1) and (12.6) can be written: 

k 	g-1  dim H° (Arct, L° k ) = 	2 	Vg- (k + 2), 

i7r ) I 
k-1 



0. E Vn-  (k)sin2n x = 
k

.
tan x 

sin kx n=0 
when k is even, and 

Vn-  (k) = Res 
x=o I sin kx sin 2n x 

k 
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dim 11° (A1c-  , L® k ) = (k + 1)g-1  Vg1 1 (2k + 2), 

dim H° (A[0,, 0(-1K)) = U_2 (21 + 1 ). 21 ± 
1 

 

Clearly 

Vn-  (k) = V(k) — 2Vn (k/2) (when k is even) 

U2(k) = V(2k) — Vn (k). 

So from Proposition 12.1 and the relations 

we deduce: 

1 	x 
	 = Cot —

2 
— cot x, 

sin x 
tan x = cot x — 2 cot 2x , 

Proposition 12.5. 

1 

0. 

E U2n (k)sin2n  x = k tan x tan kx . 
n=1 

Corollary 12.6. If k is even, then 

Next, observe that U(k) has an alternative expression using cosines: 

k-1 
(_0(k—l)n/2 E 	  Un (k) = 	

1 

i=o (cos —2j7 1 • k 

Proposition 12.7. Suppose k is odd. Then 

00 	 k(1 + sin  kx)  E Un (k)sinn -1  x = 	. 
cos x cos kx n=1 
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Proof Using the trigonometric identity 

cos kx = 	( 1)i (k
i
)

sin2  x COSk-21  x 
2 

we see that y = cos (x -3-0 for j = 0, 1, 	, k 1 are the roots of an 
equation of degree k, 

E( 
oi (2k  i )(1 y 2)ti y k-2i = COS kx. 

Since k is odd, the linear term in this equation is (-1) (k-1) /2 ky. Hence, by the 
relation between the coefficients of an equation and sum of reciprocals of its 
roots we obtain 

k-1 
1 (_0(k-1)12  k 

cos kx E 

and from this it follows that 

k-1 	 1 
1)(k-1) /2  

1  
1 

	= 	 V 	  
COS kx 	 2 1---di=o cos (x ,) cos (x — 211,r ) 

k-1 	 2 jr 
= (_1)(k-1)/2 V  COS X cos 

-Z COS2 	— sin2 x  f=   

00 

= cos x E u2m±i (k)sin 2in x , 
m=0 

where, in the last line, we have expanded (1 — u) -1  = 1 u u2  + • • - with 
u = sin x/ cos(2/g/k). This gives an equality between the even part of the 
series in the proposition and the even part of the function of x on the right-
hand side. The corresponding statement for the odd part of the series follows 
immediately frain Pibposition 12.5. 

Corollary 12.8. lf k is odd, then 

U(k) 
= Res 

[1 ± 	sin kx 
dx . 

x=o cos kx sing x 

In particular, Un (k)I k is a polynomial in k of degree n. 
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(c) Tangent numbers and secant numbers 

Definition 12.9. In the Taylor expansion 

1 + sin x x 2 
= E0 + EiX + E2 -

2! 

oc) 
X

n _  E En  — 
n! 11,0 

 

the coefficient En  is called the n-th secant number, or Euler number, if n is 
even (these are the coefficients of sec x, in other words), and is called a tangent 
number if n is odd (the coefficients of tan x). 	 El 

For low values of n these numbers look like: 

n even 0246 8 10 12 14 
En  1 1 5 61 1385 50521 2702765 199360981 
n odd 1 3 5 7 9 11 13 15 
En  1 2 16 272 7936 353792 22368256 1903757312 

They can be expressed as: 

	

2n+2n! 	1 	1 	1 
En  — 	 zn+1 (1 + (_3)n-F1 	 ___ 5n+1 	(7)n+1 	9n-F1 	+ 	+ 	+ 	+ - - -) . 	(12.9) 

To see this, multiply both sides of Proposition 12.7 by sin x , to give (for k odd) 

00 k tan x(1 + sin kx) 
E,Un(k) sin' x . 
n=1 

In this identity replace x by x I k and let k ---> oo. Noting, from the definition 
of Un (k), that asymptotically 

U(k) 

kn 

k-1 	(-1)j2 

j=o 

( 	\ n  

( (2j + 1)7 ) 

for large k, the identity (12.9) follows. 
There is a third way to present the numbers En , which we will describe next. 

This is analogous to the Pascal triangle construction of the Catalan numbers 
(Section 8.1(e)). First we need: 

Lemma 12.10. For each integer n > 0 there exists a polynomial P(y) c Z[Y] 
with the property that 

cos x (—d  Y ( 	1  ) = Pn (tan x). 
dx 	cos x 

cos kx 
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Proof We use induction on n, starting with the trivial case Po(y) = 1. For the 
inductive step, differentiate both sides of the equation with respect to x to give 

d ) n±1 ( I. 	 d y [  1  ) 	1  
t cos X (— 	 ) sin x ( 

dx 	
= 2 P,; (tan x). 

dx 	\\ cos  x 	 cos x 	cos x 

This shows that 

Pi(y) = Y Pn(Y) + ( 1  ± Y 2 ) 13,;(Y)- 

As we see from this proof, the sequence of polynomials {Pn(Y)}n>0 is deter-
mined by the initial condition Po(y) = 1 and the recurrence relation (12.10). In 
particular, one sees that for even and odd values of n, P(y) is an even or odd 
function, respectively, and can therefore be written as 

P(y) = En,nY n  ± En,n-2Y n  2  ± En,n-4Y n-4 
 
+ • 

If n is even, then the constant coefficient is 

En,0 = P"n — (d 	COS X 

d x y (  1   ) 
x=0 

= secant number E. 

 

The recurrence relation (12.10) implies, for the coefficients En,k, 

En+1,k = kEn,k-1 + (k + 1)En,k±1. 

In other words, the numbers En, k occupy a 'twisted' Pascal triangle, in which 
each entry is the sum of the adjacent entries in the preceding row, multiplied 
by k whenever the diagonal is between columns k — 1 and k: 

Secant numbers and En,k for nEL--  k mod 2 

0 	1 	2 	3 	4 n\k 
o 1 

4 

6 

8 

1 
1 	2 

5 	6 
5 	28 	24 

61 	180 	• • • 

61 	662 	• • • 
1385 	• • • 

1385 
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This table generates the secant numbers recursively. Namely, the diagonal is 
just the sequence En ,, = n!, as follows from (12.11). We then twist and add 
down to the left. 

The tangent numbers can be described in a similar manner. For n > 0 there 
exist polynomials Qn  (y) c Z[y] such that 

(ddx 

y 
tan x = Q n (tanx), 

and these satisfy a recurrence relation 

Q+1(Y) = ( 1+ Y2)Q;i (y). 

Together with the initial condition Q0(y) = y, this determines a sequence of 
functions { Qn (y)},>0 which are even or odd as n is odd or even, respectively. 
In this case, for n> 1 

Q(y) = En,n-FiY n+1  En,n-iy n 1  + En,n-3Y n  3 + ... , 

where the En, k satisfy the same recurrence relation (12.11) as above and occupy 
a twisted Pascal triangle: 

Tangent numbers and En_Lk for n k mod 2 

n\k 1 2 3 4 5 • • 	• 

1 1 
1 

3 2 2 
8 6 

5 16 40 24 
136 240 • • 	. 

7 272 1232 . 	• 
1385 

9 7936 . 	 . 	 . 

As in the previous case, the numbers in the first column are precisely the tangent 
numbers: 

dQn_i 
En-1,1= dy ( —d  ) tan x 

dx 
= tangent number E. 

  

The tangent and secant numbers En  are the 'zigzag numbers' in the book [53] 
of Conway and Guy. 
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12.2 Riemann-Roeh theorems 

Given a holomorphic vector bundle E on a compact complex manifold X, one 
often needs to know the dimension of the vector space H°(X, E) of global 
sections. In general this is difficult to measure, and one considers instead the 
easier quantity 

x(X, E) := dim H°(E) — dim H 1  (E) ± dim 112 (E) — dim H3 (E) + • - - , 

where Hi  (E) = Hi  (X, E) is the i-th cohomology group with coefficients in 
the sheaf of sections of E. This is called the Euler-Poincare characteristic of 
E. For any exact sequence 

0 -->- El -->- E2 ---> E3 ---> 0 

it satisfies 

X(X, Et) — X(X, E2) ± X(X, E3) = O. 

What we will see is that x (X, E) can be computed just from the topological 
invariants of X and E. For more details we refer the reader to Hirzebruch [98] 
or Fulton [94]. 

Let Ox be the cotangent vector bundle on X, and let cox be its determinant 
line bundle, called the canonical line bundle on X. (For the case when X is an 
algebraic curve see Section 9.5.) 

Kodaira Vanishing Theorem 12.11. If L is a holomorphic line bundle on X 
for which L 0 (oi l  is ample, then H i  (X, L) = 0 for all i > 0. 	0 

In this situation, the dimension of the space 11° (X, L) of global sections 
reduces to the (simpler) Euler characteristic x (X, L). 

Remarks 12.12. 

(i) Suppose that the set of all global sections of a line bundle M on X has no 
common zeros. These sections then define a morphism X --> PN  , where 
N + 1 is the dimension of the space of sections. If this morphism is an 
embedding, Then the fine bundle M is said to be very ample. If some tensor 
power of M is very ample, then M is ample. 

(ii) If X is a curve, then a line bundle is ample if and only if its degree is 
positive. In this case, therefore, the Kodaira Vanishing Theorem reduces to 
Theorem 9.20. In the general case it is known that ampleness of a line bundle 
M depends only on its Chern class c 1  (M). (See, for example, Griffiths and 
Harris [54] chapter 1.) 	 0 
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(a) Some preliminaries 

Let X be a compact complex manifold and E a rank r complex vector bundle 
on X. This has a (total) Chern class 

	

c(E) = 1+ ci(E)± c2(E)+ - • • 4- cr(E) E 11* (X, Z), 	c(E) E H21 (X, Z). 

On exact sequences 

O— Ei --> E2— E3 —* 0 

this satisfies 

c(E1)c(E3) = c(E2); 	 (12.12) 

and the Chem class of the dual vector bundle E v  is given by 

ci (Ev ) = (-0' ci (E). 

In particular, the Chern class of X is defined to be the Chern class of its tangent 
bundle Tx : 

c(X) := c(Tx) = 1 + ci(Tx) + c2(Tx) + • • • + cn(Tx), where n = dim X. 

Next we consider the formal power series expansion, in the ring of power 
series in infinitely many variables Q[ki , x2, . .11, of the infinite product: 

Xi 	X2 
	 X 	 X . . . 
1 — e —xl 	1 — e-x2 

The term of degree m in this expansion is a symmetric homogeneous polynomial 
in the variables x1, x2, . .. and can therefore be expressed as a polynomial in 
the elementary symmetric polynomials a l  , . . . , am . (See Macdonald [101].) If 
we denote this polynomial by Tdm(ai , .. . , um), then: 

Xi = E Tdm (0-i , .. • , am) 
in -=-0 

1 1 	 1 
= 1  ± —2

al + —12 (cri.
2 

+ 0'2) + —
24

0'10'2 + • • • . 

1 — e -x ,  

Definition 12.13. 

(i) The Todd class of a vector bundle E of rank r is 

r 

td E := E Tdmcci(E), ... , cr (E)) E H*  (X, Q). 
nr=-0 
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(ii) The Todd class of a complex manifold X is defined to be that of its tangent 
bundle, 

td X := td Tx. 

The component in top degree td, (X) E H2' (X, Q) = Q, where n = dim X, 
is called the Todd characteristic of X. 	 0 

Like the Chern class, the Todd class is multiplicative on exact sequences. 
That is, if 

0 ---> El ---> E2 ---> E3 	0, 

then it follows from (12.12) that 

td(Ei)td(E3) = td(E2). 	 (12.13) 

The Todd class can also be computed as follows. We can write 

 

x/2 
=ex' x 	 

sinh x /2 1 — e -x 

The last factor here is a power series in x 2 . Letting 7rm (xi ) = a(x) be the 
elementary symmetric polynomial in the squares 4, x, . . ., the homogeneous 
term of degree 2m in the expansion of the infinite product 

00 xi/2 
II sinh x i  /2 t=i 

is a polynomial in 7t1, . 	, 7r,, which we denote by 71.(71, 
have 

00 	 00 

- • , 7m). Then we 

r, 

Given a vector buridle_E 

i=1 

Pi(E) 

xi 	
el/2 	Am(71, 1  _ e _xi  = 	E 	72, ••• 

i=1 

of rank r, set 

= (- 1) i  c2i(E ED E"), 	i = 1, . 

called the Pontryagin classes of E. In this language, the Todd class is given by 

00 

td E = ec1(E)I2  E qm(pi(E), P2(E), 	Pm(E)). 
	(12.14) 

i=1 



1 
Res 	 =1. 
x.o (1 — e -x)n± 1  

(12.15) 
fpn (1 — e-h 

h  ) n+1  
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(b) Hirzebruch-Riemann-Roch 

If X is a complex manifold of dimension n with its natural orientation, the 
top component of the rational cohomology ring H2n(X, Q) is canonically 
isomorphic to Q by evaluation on the fundamental class of X, and we de-
note the composition of this isomorphism with projection of cohomology to 
H2n(X, Q) by 

fx : II*(X, 1:2) ---> Q. 

For a E H2n(X, Q) we shall also use the symbol (a) to denote fx  a E Q. 

Theorem 12.14. Hirzebruch-Riemann-Roch for the structure sheaf. The 
Euler-Poincare characteristic of the structure sheaf of a complex manifold X 
is equal to the Todd characteristic of X, 

x(X, O x ) = f  td X. 

In the curve case n = 1, this says x (X, O x ) = deg ci (X), which we have 
already shown in Chapter 9 (Propositions 9.25 and 9.89). In the surface case 
n = 2, it says 

X (X, Ox) = (ci(X) 2  + c2(X)) . 

In the theory of algebraic surfaces this is called Noether's formula. 

Example 12.15. Let X be projective space F. Here there exists an exact se-
quence, called the Euler sequence, 

0 —›- 011). —> (9 pn (1)Vn  +1)  ----> Tpn --> 0. 

Letting h = ci (Op, (1)), it follows from (12.13) that 

td Pn = td 0111,,(1)(1)0+1) = 
(1 	e-h) 

n+1 

The class h is Poincare dual to a hyperplane in Pn and has self-intersection 
number (le) = 1. So, applying the Hirzebruch-Riemann-Roch Theorem, we 
obtain 



ect(L) ci(L) m  
E H*(X, Q). 

   

m ! m >0 
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The last identity can be proved by induction on n using the fact that cd-17  (1 — 

e'rn = n(1 — e')_ n — n(1 — 	 0 

Remark 12.16. More precisely, one can say that dim H °(011.) = 1 while 
(Or) = 0 for all i > 0. The dimensions of these cohomology spaces are 

birational invariants, and in particular this shows that x (0x) = 1 whenever X 

is a rational variety. 

Next we consider a line bundle L on X and its Chem class ci (L) E H2 (X, Z). 

The exponential function of Cl (L) is a finite sum and determines a rational 
cohomology class 

Theorem 12.17. Hirzebruch-Riemann-Roch for a line bundle. The Euler-

Poincare characteristic of a (holomorphic) line bundle L on a complex manifold 

X is given by: 

L) = f  ec l (L)  td X. 

In particular, x(X, L k ) is a polynomial in k of degree n = dim X. 

Example 12.18. Let X be projective space Pn  and L = apn (1) be its hyperplane 
line bundle. In this case Hirzebruch-Riemann-Roch says 

x(OP
h\n+1) 

R (k)) = f (ekh  
( 1— e -11  

= Res 
x=_cl (1 — e-x)n± 1  

k\ 

) 

Of course, this is the number of linearly independent forms of degree k in 
n 1 variables. (See the remark following Example 1.8.) 

Example 12.19. If X is a complex torus, then the tangent bundle Tx is trivial 
and so td (X) = 1. Hence in this case 

(ci(L)n) 

n! 

ekx 
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In other words, the Euler characteristic is equal to the self-intersection of the 
line bundle divided by n!. In particular, this shows that the self-intersection of 
a line bundle on an n-dimensional complex torus is always divisible by n!. 

The (analytic) Jacobian Jac C of a curve C of genus g is a g-dimensional 
complex torus, and its cohomology ring is therefore equal to the exterior algebra 
generated by H I  (C , Z): 

H*(Jac C, Z) 	H i (C, Z). 

Letting al, 	, C g , ,61, 	, fig  E H i  (C , Z) be a symplectic basis (the dual 
basis of (9.42)), it is known that the theta line bundle Of (8) on the Jacobian 
has Chern class 

ci(0) = 01 A th A • • • A ag  A )6g E H2 (Jac C, Z). 

Thus 

	

(al A th A • - • A ag  A fig)g  = g! 	ai  A 

and hence Of  (0) has self-intersection g!. It follows from Hirzebruch-Riemann-
Roch above that 

dim H°(Jac C, 0(k0)) = kg. 	 (12.16) 

The Verlinde formulae (12.1) and (12.2) can be viewed as nonabelian versions 
of this formula. 

In order to generalise from line bundles to vector bundles we need to replace 
the class e"()  by the Chern character: 

Definition 12.20. The sum of powers Ei  xr is for each m > 1 a symmetric 
polynomial in the variables x i  and is therefore a polynomial in the elementary 
symmetric polynomials at, , am , which we denote by sm(cri ( m ). If E 
is a vector bundle, then we define 

1 
cho(E) = rank E, 	chm (E) = --

m!
sWci(E), 	, cm (E)) for m > 1. 

The sum 

ch E = E chin  (E) E H*(X, Q) 
m>o 

is called the Chem character of E. 	 0 
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Note that the Chern character of a line bundle L is ch L = eci(L). 

Example 12.21. In general, if E has Chern classes cl, c2, c3, ..., then 

chi(E) = Cl, 

Ch2(E) = 	C21 

ch3 (E) = -16-4 — 	c3 . 

0 

The Chem character, unlike the Chem class, is additive on exact sequences, 
that is, 

0 —> 	E2 	E3 —> 0 	ch E1 — ch E2 ch E3 = 0. (12.17) 

Theorem 12.22. Hirzebruch-Riemann-Roch for a vector bundle. The Euler-
Poincare characteristic of a (holomorphic) vector bundle E on a complex man-
ifold X is given by: 

X(X , E) 
	

I x  ch(E)td(X). 

(c) Grothendieck-Riemann-Roch for curves 

Given a proper morphism f : X —> V between algebraic varieties and an 
algebraic vector bundle E on X, one can define its direct image sheaf f,,E and 
its higher direct images Rq f* E , for q > 0, on Y (Definition 11.10). In general, 
these sheaves are not vector bundles, but let us pretend that they are. (This 
assumption is justified by the fact that the direct images are coherent sheaves. 
This means that they have resolutions by locally free sheaves, so that the Chan 
character is defined using the additivity property on exact sequences.) Then it 
is possible to express the alternating sum of Chem characters 

E(-1)qch Rq fE E H*(Y, Q) 

in terms of the Chern character ch E and the 'Todd character' of f.  This 
generalises Hirzebruch-Riemann-Roch (where IT is a point) and is called the 
Grothendieck-Riemann-Roch Theorem. Here we shall consider only the special 
case X = C x Y, where C is a curve and where f:CxY —> 17  is the 
projection to the second factor. (For a more general statement the reader may 
refer to Fulton [94], for example.) 
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First, take an affine open cover LJ  Spm A i  of Y and consider the restriction 
of E to each open set C x Spm A i . This defines a vector bundle on the curve 
CA i  in the sense of Definition 11.9 and so determines A i  modules H°(51 ) and 
Hi (Ei ). If these are locally free modules, then they define, by gluing over the 
open cover, a pair of vector bundles f),E and R 1  f.S, which are the direct image 
bundles. 

Kiinneth's Theorem says that the cohomology ring of the product C x Y is 
the tensor product of the cohomology rings of C and Y. In other words, there 
is an isomorphism of graded rings 

H*(C x Y) H*(C) 0 H*(Y). 

The cohomology of the curve C has three components H°(C), H 1  (C) and 
H2 (C), and so the cohomology of C x V is the direct sum of three pieces: 

H°(C) H*(Y), H 1  (C) H*(Y), H 2 (C) H*(Y). 

The Chem character of a vector bundle E on the product C x V can therefore 
be decomposed as 

eh S = ch" E ch(1 12)  E ch(1)  , chS c H 21 (C) 0 H*(Y). 

Now ch(°) E can be viewed as an element of H*(Y). On the other hand, the 
fundamental class of a point is E H2 (C, Z) determines a natural isomorphism 
fc  : H2(C, Q) Q, and using this isomorphism we can view ch (1)E as an 
element of H*(Y), which we will denote by ch (1) (E)/n. 

Theorem 12.23. Grothendieck-Riemann-Roch for f :Cx Y —> V. 

ch fS — ch R I LE = ch(1) (E)In — (g 1)ch(°) (E). 

When Y is a point this is nothing but the Riemann-Roch formula 10.10. 	LI 

From this formula one reads off the Chem character (of LE or R 1  f,,E). The 
following remark is useful for recovering the Chern classes from the Chem 
character in general. First, for any vector bundle F consider the derived Chem 
class 

c'(F) = E i ci (F). 	 (12.18) 
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From the relations between elementary symmetric polynomials and sums of 
powers, this derived class satisfies 

(F) = (E(- 1) i _ 1  i! chi (F)) c(F). 	 (12.19) 

Since the logarithmic derivative c'(F)Ic(F) of the Chem class is additive on 
exact sequences, it follows that the Chem class can be written 

c(F) = exp f 
(F) 

 c(F)' 

where f denotes the formal inverse of the derivative (12.18). Hence 

c(F) = exp f 	chi (F). 
i>1 

(d) Riemann-Roch with involution 

Suppose that the curve C has an involution a : C 	C (that is, an automoiphism 
of order 2), and suppose that a lifts to a vector bundle E (still with order 2). In 
this case a acts also on the vector spaces H° (E) and H i (E). We will denote 
the invariant and anti-invariant subspaces (that is, the eigenspaces of +1) by 
Hi  (E)+ and Hi  (E) -  , and write 

X (E) ±  = dim H°(E) ± - dim 1/ 1 (E)± . 

Moreover, if p E C is a fixed point of a, then the involution acts in the fibre 
Ep  and we denote by Ep+,Ep-  CEp  the invariant and antiinvariant subspaces. 
The following is proved in Desale and Ramaman [91]. 

Proposition 12.24. Given an involution a acting on a vector bundle E as 
above, we have 

1 
X (E)±  X (E)= -

2 
2 (dim E p+  — dim ET;) , 

where Fix(a) c C denotes the set of fixed points. 	 El 

Example 12.25. Let F be any vector bundle on the curve C. 
(i) If E := F o- * F , then x(E) +  - x(E) -  = 0. 

pEFix(a) 
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(ii) If E := F a*F, then 

X(E) +  — X(Er = 	dim S 2 Fp  -  .
ina  2 

p 

 F) 
= -

1
rank F x IFix(cr)l. 2 

1 

Let f: F 	F' be a homomorphism of rank 2 vector bundles, and suppose 
that the two bundles have an isomorphic determinant line bundle. Then, by 
tensoring the dual map f y  : Fly  -> Fv  with det F = det F' we obtain a 
bundle map 

fadj := rv 
1 det : 	--> F, 

called the adjoint of f.  (See also Exercise 10.2.) 

Example 12.26. Suppose that F is a rank 2 vector bundle on C whose determi-
nant is a-invariant, that is, det F a* det F. Given any (local) homomorphism 
f: F --> a*F, we can pull back the adjoint map f adj : a* F -> F to obtain a 
homomorphism a* r adj 

: F 	cr* F . Moreover, the mapping 

f 	cr  * f adj 

composed with itself, recovers f.  It therefore defines a lift of a to the vector 
bundle 

E := Hom(F, o- * F) = Fv   

At a fixed point p E C, the invariant subspace E p+ is 1-dimensional (spanned 
by the identity endomorphism in Fp ) while the antiinvariant subspace E is the 
3-dimensional space 5l(F) of tracefree endomorphisms. It follows that 

X(E) +  - X(E) - = 

Proposition 12.24 can be globalised in much the same way as the Riemann-
Roch Theorem globalises to Grothendieck-Riemann-Roch. Let Y be a complete 
nonsingular variety, and suppose that the involution a x l y  of C x Y lifts to a 
vector bundle E on the product. Then the involution acts in the direct images 
n-* E and R 1 7r* E, where 7r:CxY Y is the projection, and we set 

- ch(R 1 7E)± . 

For each fixed point p E C the vector bundle Elpxy  decomposes into invariant 
and antiinvariant subbundles El±xY'  and we have: p 

pEFix(a) 
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Proposition 12.27. 

(E)+ 	 = 	 (Ch(E I p+  xy) Ch(E x1 1 )) • 
p€Fix(a) 

0 

12.3 The standard line bundle and the Mumford relations 

Let C be a (complete nonsingular algebraic) curve of genus g, let L be a line 
bundle on C of odd degree, and let U be a universal vector bundle on the product 
C x SUc(2, L). For every E E SUc (2, L) the restriction to C x [E] of the 
determinant line bundle det /4 is isomorphic to L, and so det /A can be expressed 
as a tensor product, 

det 	L 	 (12.20) 

where (I) is some line bundle pulled back from SUc (2, L). (It is enough to take 
(Foto be the direct image of det /A 0 L. That this is a line bundle follows from 
the base change theorem in the form of Remark 11.19.) In particular, the first 
Chern class of U can be written: 

ci(U) = Cl(L) 0 1 + 1 0 0, 	= C1(0) E H 2 (SUc(2, L)). 
	(12.21) 

(a) The standard line bundle 

We are now going to define a natural line bundle on the moduli variety 
S Uc (2, L): this is the line bundle which appears in the left-hand side of (12.2). 
First of all, we observe that by using the universal bundle U we can construct, 
given a point p E C, two vector bundles on SUc (2, L), namely the direct image 
and the restriction: 

Ulp x S tIc(2,1,), 

where n-  : C x SUc(2, L) 	SUc(2, L) is projection on the second factor. In 
order for 7rU to be a xector bundle we assume that d := deg L is sufficiently 
large, so that 	- 

H 1 (E) = 0 for all E E SUc(2, L), 	 (12.22) 

and the direct image is locally free by Lemma 11.16 and Theorem 11.18. As in 
Chapters 10 and 11, we set N := d ± 2 — 2g: this is the dimension of H°(E) 
for each E E SUc (2, L) and hence the rank of 7r),/l. 
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Definition 12.28. 

(i) If L E Pic C satisfies the condition (12.22), then the standard line bundle 
(not to be confused with the canonical line bundle!) on the moduli variety 
S Uc (2, L) is defined to be 

L := (cletUlpxsuc.(2,0 N  0 (det74/4) -2  . 

This is also called the determinant line bundle. 
(ii) If L E Pic C does not satisfy the condition (12.22), then we choose a line 

bundle 4 on C of sufficiently high degree that L 0 4 2  satisfies (12.22). The 
standard line bundle on SUc (2, L) is then defined to be the pullback of r 
under the isomorphism 

oig 
SU c(2, L) ----> SU c(2, L 0 2'). 

0 

At first sight it appears that this definition depends on various choices, but 
in fact this is not the case. First of all, det PI px suc (2,L)) is isomorphic to the 
line bundle (1) in (12.20), and this shows that L does not depend on the choice 
of p E C. How about its dependence on U? Any other universal bundle is of 
the form U 0 exii, where kli is some line bundle on SU c (2, L), and replacing 
U with /4 0 IT * kV has the effect of tensoring det PI p x suc (2,L)) by 11/ 2 . On the 
other hand, it follows from the projection formula 

7r),(74 0 71- *‘11 ) = kli 0 71- * //1 

that detz,U gets tensored by W N  . Hence the tensor product in the definition 
remains unchanged, and so r as defined in 12.28(i) is independent of the choice 
of universal bundle. 

Proposition 12.29. The standard line bundle defined in Definition 12.28(ii) is 
independent of the choice of . 	 0 

Proof It is sufficient to prove this in the case 4 = 0c (q) for some point q E C. 
The pull-back of r under (g) is the line bundle defined as in (i) but using the 
(pulled back) universal bundle U' := 0c(q) 0 U. In part (i) of the definition 
we note that Up  x suc  (2,L) remains unchanged when we replace U by U'. On the 
other hand, 7r*be fits into an exact sequence 

0 —> g*U —> 7r*U' --->14xStfc (2,L) -> 0 , 
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so that N becomes N ± 2, while det 7-t-*/1 gets tensored by det x su,(2,L)• 
Altogether, then, replacing U by U' has the effect of tensoring by 

\ 2 	 \-2 
(detinpxSUc (2,L)) 	(detinqxSUc (2,L)) • 

But we have already noted that each determinant is isomorphic to (I), and so the 
product is trivial. 	 El 

We are now going to construct global sections of the standard line bundle. 
We consider a vector bundle obtained by 'pinching' the trivial rank 2 bundle 
Oc Oc at points pl, , pN E C. This means the subsheaf F C Oc Oc 
that is constructed as follows. For each i = 1, . . . , N we choose (ai : bi) E 1P1  

and define 

F = {(s, t) I  ai s + bit _= 0 mod mi  for all i = 1, . . . , N} C (9c 

(12.23) 

where mi C Oc is the maximal ideal of the point pi . By pulling F back to 
C x SLIc(2, L), tensoring with U and then taking the direct image, we obtain 
an exact sequence of vector bundles on St lc(2, L): 

Tr* (F U) 	Tr* (UEI)2 ) 	Ul x SUc(2,L) 
	R i  n-  * (F U) 

1 =1 

(12.24) 

In this sequence, f is a bundle map between vector bundles of equal rank 2N. 
Consequently, its determinant det f defines a global section of 

(det TC * (14 E92)) -1  0 det ( i\E T. D Ul m  x suc (2,L) 	r. 
1=1 

At a point [E] in the moduli space f has fibre map 

(eV p„ , eV pN ) : inEY D2  ED E/mi E, 

with kernel H°(E-7-R8) -P). Thus the zero set of the global section det f E H° (L) 
consists exactly of points [E] for which H°(E F) 0. 

Remark 12.30. While the homomorphism f depends on the choices made 
in (12.23), the global section of depends only on the isomorphism class 
of F. This is because the zero-set of det f corresponds to the Fitting ideal 

of the torsion sheaf R 1 74(F U). (For uniqueness of the Fitting ideal see 



460 	12 Intersection numbers and the Verlinde formula 

Northcott [1051.) The section det f E 10(r) is called the determinantal section 

defined by F. 

Recall the construction of SLIc (2, L) in Chapter 10, as Proj of the ring of 
semiinvariants of the group action GL(N) A1t N , 2 (H°(L)). It therefore car-
ries line bundles of the form 0(i) (see Section 8.5(b)) whose space of global 
sections is the space of semiinvariants of weight i. In fact, we have already 
observed in Remark 10.73 that (when deg L is odd) there are no semiinvariants 
of odd weight. In this case, therefore, there is no line bundle 0(1), and we will 
refer to 0(2) as the tautological line bundle. 

Proposition 12.31. The standard line bundle L on SUc(2, L) is isomorphic to 

the tautological line bundle 0(2) on the Proj quotient A1tsN,2 (H° (L))I GL(N). 

Moreover, under this identification the determinantal section of F, at a Gieseker 

matrix T E AitN(HAL)), is 

Pfaff (evp, (Y'(ai,b1)) ± • • • ± eVpN  (1(aN ,bN ))) 
	

(12.25) 

where 

( a 2  T abT 
(a,b) E Ait2N(HAL))• 

abT b2 T 

Proof For each p E C there is a skew-symmetric isomorphism 

UlpxSUc(2,L) 	Uv  I px StIc (2,L) 	(1) . 

Now consider the following composition of f from (12.24) with its tranpose 
tensored with 0: 

7r*ue2 	el) I pi  
c/E I xStIc(2,L) 	Uv  I pi x SUc(2,L) 	(1)  --->- (7-t-*UEB ) v  (8) 0. 

ir--i 

By construction this is skew-symmetric and has rank 2 everywhere. Its pullback 
via the quotient map 

AWN ,2 (H°(L)) —> SU c (2, L) 

is a homomorphism of rank 2N trivial vector bundles which is represented at 
T E AitsN,2 (liAL)) by the matrix 

eV pl  (i(al ,b1 )) 4-  • • • ± eV pN (TaN,bN)) 

It is clear that the function which assigns to T the Pfaffian of this matrix is 
a weight 2 semiinvariant, and hence so is the determinantal section of the 
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vector bundle F. But this implies that the standard line bundle is isomorphic 
to 0(2). 

Remark 12.32. In our proof of stability of Gieseker points in Chapter 10 (see 
Lemma 10.74) we actually used the special case of the above proposition in 
which: 

1(1 : 0) if 1 < i < N2-1  
(ai:bi) = (0 : 1) if N-21-1  <i<N-1 

(1 : 1) if i = N . 

In this case (12.25) takes the form (in the notation of Lemma 10.74) 

(f (T) ev pN T \ 
Pfaff 

ev 1,,,,T fr(T) ) • 

The matrix evp, T has rank < 2, and so by the formula of Example 10.55 the 
Pfaffian above is equal to the semiinvariant (rad f (T))th(T)rad f'(T) used in 
the proof of Proposition 10.70. (In this case the vector bundle F is obtained 
from the direct sum of two line bundles by pinching at one point.) 0 

(b) The Newstead classes 

In this section we are assuming that deg is odd, so SUc(2, L) = Mc-  in the 
notation of the introduction to this chapter, and we will often write just Ai to 
denote this moduli space. The second Chem class of the universal bundle has a 
Kiinneth decomposition which we will write as: 

c2(/.1) = 0 + 

where ri E H2(C) is the fundamental class of a point and 

E H2(Jf), 	* E H3 (M) Hi (C), 	X E H4(J'1). 

By (12.21) and Grothendieck-Riemann-Roch, the direct image 714 has the first 
Chem class 

„ci(7.14) = -co + (d + 1 - ,g)0. 

Hence, by Definition 12.28, the standard line bundle r has the Chem class 

ci(r) = (d + 2 - 2g)4) - 2(-cv (d + 1 - g)(/)) = 2co - 	=: a. 

One can see the uniqueness of the class a - that is, its independence of the 
choice of universal bundle U - again in the following way. Since U is unique 
up to tensoring with a line bundle from .111, the tensor product bly  U does not 
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depend on the choice of U and therefore neither does the second Chern class 
or its Kiinneth decomposition 

c2(Uv  U) = 4c2(U) ci(U) 2 	(2to — 6/0) 4- 41fr — 1  0 (02  — 4X). 

In particular, the first term 2ri 0 a, and hence a, is independent of U. But the 
same is true also of the last term, which we will denote by 

13 := 02  — 4;< E H4 (Af). 

Finally, the middle term * is uniquely determined, but this is not itself a coho-
mology class on Al. Squaring, however, does determine a class on the moduli 
space: 

1112 = 	y 	y E  H600.  

These three cohomology classes a, i3, y on Al are called the Newstead classes 

on the moduli space (Newstead [104]). In terms of these we can now take the 
first step towards the Verlinde formula (12.2). 

Proposition 12.33. 

dim H°  (A1, Lk) 
=
f e(k-I-1)ce 	,f/3/2  

sinh ,/T/2 

) 2g-2 

• 

We prove this by applying Hirzebruch-Riemann-Roch to the line bundle Lk. 

This says: 

(Al, L ic) = f eka  td(M). 	 (12.26) 

To compute the Todd class we use: 

Lemma 12.34. The tangent bundle of .A1 .  is isomorphic to R 1 7..61 U. 	LII 

We have seen in Theorem 10.1 that the tangent space at the point [E] is the 
vector space H 1  (sl E). The isomorphism 

Tv -,[E] 	H 1 (sl E) 

is called the Kodaira-Spencer map, and the proof of the lemma involves glob-
alising this to an isomorphism of vector bundles on Al, though we omit the 
details here. 
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Proof of Proposition 12.33. We apply Grothendieck-Riemann-Roch for the 
projection 7 : C x N ---> .AT to the bundle .6/ U. By definition of the Newstead 
classes we have 

c2(5/ /it) = c2(/// v  /A) = 2?-1 a -I- 4* — 1 13. 

The total Chem class of s/ U is just 1+ c2(s/ U), so the odd degree components 
of the Chem character vanish and the even degree components are 

2( — Wc2(s/ /A)T 
ch2r (5/ U) = 

(2r)! 	• 

By the Grothendieck-Riemann-Roch Theorem 12.23, therefore, 

2(g — 
ci(TAr) = 2a, 	ch2,-(TAr) = 	 for r > 0. 	(12.27) 

(2r)! 

In particular, 

ch(TAr) ch(TZr) = 6g —6 -I- 
E 4(g _l)' 

(2r)! r>0 

and it follows from (12.19) that the logarithmic derivative of the Chern class of 
TAi TAvr iS 

	

(TAr T.Zr) 	
4(g 
	or  —4(g — 1)0 

	

c(TAT TAvr) 	g 	2-dr>o = 
	

1 

Hence c(Tv- ED TAvf) = (1 — /3)2g-2 . So by (12.14) the Todd class is 

(  4/2  )2g-2 
WOO = ec1(T2 7-1(V) = 

sinh 472 

Hence from (12.26) we obtain 

//2  )
2g-2 

X (E 	Jr 	sinh 4/2) 	• 

Since ci (TN-) = 2a (by (12.27)), it follows that the anticanonical line bundle 
Ick -r1  is ample (Remark 12.12), and so the proposition follows from the Kodaira 
Vanishing Theorem124 11. 

(c) The Mumford relations 

We will assume now that C is a hyperelliptic curve, that is, a 2-sheeted cover 
of the projective line C 21-* P1  (see Example 9.7). We let a : C C be 
the covering involution. The fixed points of a are the ramification points of 
C over IP 1 , and there are precisely 2g + 2 of them which we will denote by 
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Pt, • - • / P25+2 E C. We fix one of these points p = pi and consider the 
moduli space SUc(2, (.9  c(p)). If E is a stable rank 2 vector bundle on C with 
det E'="1  Oc (P), then by Exercise 10.6 we have 

Hom(E, o- *E(-p)) = 0. 	 (12.28) 

We consider the vector bundle F := E" o- * E Oc(-p). This is a bundle 
of rank 4 to which the involution a lifts, and with H°(F) = 0 by (12.28). 
By Riemann-Roch, x(F) = -4g and therefore H l (F) has dimension 4g. By 
Example 12.26, its invariant and antiinvariant subspaces satisfy 

- dim H 1 (F) + + dim Hl (Fr = 2g 2, 

and hence 

dim H l (F)+  = 3g + 1, 	dim H l (F)-  g 1. 	(12.29) 

We can globalise this bundle over the moduli space. The hyperelliptic involution 
induces an involution, which we will also denote by a, on C x SUc (2, Oc (P)) 
by acting on the first factor. Let 

W := R 1 7. (Uv  a*U 0oc  Oc(-P)) 

Again by (12.28) this is a vector bundle on SUc(2, (.9c(p))  of rank 4g. Since 
the (0-th) direct image is zero, Grothendieck-Riemann-Roch 12.23 says: 

-ch(W) = ch(1)  (Uv  o- */4 Oc(-p)) /77 - (g - 1)chn 

	

(Uv  a*U 0 O(-p)). 	 (12.30) 

The hyperelliptic involution a acts on the cohomology groups Hi  (C , Z) as 
multiplication by (- pi , so that 

ci(a*U) = ci(U), 	c2(a *U) = 	w - 	l 0 X, 

and hence 

ci(Uv  a*U) = c3(Uv  a*U) = 0, 
c2(iir a*U) = 2n 0 a - 1 0 

We now compute using the logarithmic derivative of the Chem class of W. 
Using (12.30) and the base change Theorem 11.15 we obtain 

c'(W) (1 - g)(-218) - 2(a - + 2y) = 2(a - + 2y) 
c(W) 	 1 - 	 1 - 	" 



e(W)  a - (2g +  +  2y 	(W - ) 	+ f  + 2y 
c(W) 	1—/3 	 c(W - ) 	1 — 13 • 

(12.31) 
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We now decompose W under the involution. By base change and (12.29) the 
subbundles W+, W-  have ranks 3g + 1 and g - 1, respectively; while by 
Proposition 12.27 their Chern characters satisfy 

1 2g+2 
-ch(W+) ch(W -) = -27  E (ch(0A,-) — ch(El Ul pi  )) 

= -(g + 1) (e1I3  - 	. 

It follows that 

c)(W±) c' (W - ) 	(  fig 	41:6 =  (2 g +  2) f3 
c(W) = (g ± 1 ) 1 ± ,f13-  1 - 	) 	1 

and hence 

Now, since W-  has rank g - 1, it follows that in the expansion of 

f ± + 2y 
= exp 	

 
1- t 

all terms of degree > 2g vanish. The resulting relations among the Newstead 
classes a, )3, y E H* (V), generated by 

cg (W) = cg+ i(W-) = cg+2(W - ) = 0, 	(12.5) 

are called the Mumford relations. 

12.4 From the Mumford relations to the Verlinde formula 
We consider the polynomial ring in three indeterminates Q[A, B, C] in which 
the degree of a polynomial is computed using weights 

flegd = 1, deg B = 2, deg C = 3. 

A, B C will correspond to the Newstead classes a, 13,2y, and we can interpret 
the second identity in (12.31), from which the Mumford relations are to be read 
off, as follows. If ci  (IV - ) = (a, 13, 2y), then the sequence of polynomials 
can be put together in a generating function 

F(t) := E 	B, C)t r  E Q[A, B C][rtl], 
r>0 
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and this function satisfies a differential equation: 

dF 
(1 — Br)—

dt 
= (A + Bt + Ct2)F(t), 	F(0) = 1. 	(12.32) 

This initial value problem is equivalent to the following recurrence relation for 
the coefficients: 

6 = 1, 	(r 	= 	r 	+ Qr_2, for r > 0, 	(12.33) 

where we let 4'r  = 0 when r < 0. For example, i = A, 6 = (A2  B) and 
= -'6 (A3  + 5AB + 2C). 
Equivalently, the differential equation can also be solved to give 

F(t) = 	1-Bt2 exp -Ct 
	
2(CB)  tanh-1 v Bt) 

A/ 	B 

(12.34) 
C+AB 

1 	1±1V-13) 2B ,F13  

A/1-Bt 2  (1- tNIT3 

By the Mumford relations we will mean the ideal of Q[A, B, C] generated by 
B, C), 	B, C), . . 

(a) Warming up: secant rings 

As a warm-up we are going to examine the case where C = 0. Although it will 
not be needed in the proof of (12.2), it is an interesting exercise in itself and 
will reappear in Section 12.5 (b). 

In this case we have a sequence of polynomials in two variables 4',.(A, B), 
determined by a differential equation 

r(t) A + Bt 

F(t) 	1 — Bt 2  

for the generating function F(t) = Er>o 	B)tr . This is equivalent to a 
recurrence relation: 

(r 1)r+1(A, B) = ,gr(A, B) r B4" r_i(A, B), 

6 = 1, 4r = 0 for r < 0. 	 (12.35) 

The polynomials 1 (A, B) for r > g generate a homogeneous ideal / 0  C 
0:2[A , B], and because of the recurrence relation (12.35) this is generated by 
just two polynomials, (A, B) and 8,r +1. (A , B). The residue ring 

Rg  := Q[A, 	Ig  

is a graded ring, called the secant ring of genus g. What we will see is that 
it generates the secant numbers of Section 12.1(c) in the same way that the 

F(0) = 1, 
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cohomology ring of the Grassmannian G(2, n) generates the Catalan numbers 
(Section 8.1(e)). 

Example 12.35. One sees 6 = A, 42 = A 2  + B, 33 = A(A2  + B) 2AB 
and 444 = 	+ 5AB) + i(A2  + B)B. Hence 

= Q[A, B]/(A, A2  + B) = Q[A, B]/(A, B) = Q, 

R2 = Q[A, B]/(A 2  + B, A3  + 5AB) = Q[A]/(A 3 ), 

R3 = Q[A, B]/(A 3  + 5AB, A4  + 14A2 B + 9B2). 

We will denote by a, fi E R g  the residue classes modulo /0  of A, B E 

Q[A, /3]. 

Proposition 12.36. 

(i) The polynomials 4-,(A, B)Bs , as r, s range though all nonnegative integers, 

are a basis for Q[A , B] as a vector space over Q. 
(ii) The subset of 	B)Bs with r s > g is a basis for lg . 

(iii) The secant ring has basis {4-1.(01, 18)fi s ir+s<g - 1• 

Proof 

(i) Monomials ArBs can be ordered lexicographically with A > B. With 
this ordering, the recurrence relation (12.35) implies that the maximal 
monomial (with nonzero coefficient) in 4 r(A, B) is Ar . Hence for every 
r, s the monomial A rB s  appears as the maximal monomial in 4.1- (4, B)Bs . 
The elements "1.(A, B)Bs are therefore expressed in terms of the basis 
{Ar  Bs} by a unimodular triangular matrix. 

(ii) Let Jg  C Q[A, B] be the vector subspace with basis {4'r (a, fi)fi s }r+s?:g - 
Clearly B Jg  C Jg , and so it follows from (12.35) that AJg  C Jg  as well. 
Hence Jg  is an ideal. On the other hand, 4" g , 4.g4-1 e Jg , so that /g  c Jg . So 
we just have to show that 4.r (a, mfis belongs to /8„ whenever r + s > g, 

and for this,we_tise induction on s. For s = 0 it is true by definition of /8„ 
while if 3s E 4 for s > 0, then 

1 	 r ± 2 
= ( 7- B)B s 	A( 

r + 1 	
r_FiBs) + 

r + 1 
4.,-+2Bs E 

(iii) This is an immediate consequence of (i) and (ii). 

Corollary 12.37. Let R g  = ED(Rg)(ni) as a graded ring. Then (Rg)(2g-2) is 

spanned by fig -1 , while (R g )(m)  vanishes for m > 2g — 1. 
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B 5 	
2B4  

3B3  

B 4 
	

2B3  

1B3 
	

3B2 
	

5B 

B 3 
	

2B  -u 
\ 	

4B 

Ideal 

B2 
	

2B 

Ring R5 

1 

Figure 12.1: The secant ring R5 

Corollary 12.38. The secant ring Rg has dimension g(g + 1)/2 over 0, and 
Hilbert series 

(1 — tg)(1 — 
2g-2 

tm din1Q(Rd(m) = (1 — t)(1 — t2) 

Remark 12.39. More generally, suppose that QUI, ..• xnl/(Fi, • • • , Fn) 
is finite-dimensional, where F1, 	, Fn E Q[Xi 	, xn] and degrees are 
weighted by deg xi  = ai  E N. Then the quotient Q[xi, 	xn]/(Fi, • • • , Fn) 
has dimension ni  deg Fi  I fl i  ai  and Hilbert series (as a graded ring) ij 1 (1 — 
tdeg fl( l _ t.). (See Proposition 1.9 in Chapter 1.) 	 El 

R g  is generated in top degree by (—,8)g -1 , and we shall use this element to 
identify (Rg )(2g_2) 	Q. Composing with projection Rg  > (Rg )(2g_2) defines 
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a linear map which we will formally denote by 

f : R g  Q. 

If we consider the 'intersection numbers' f i ce-i(-0)k  (where i j + 2k = 

2g - 2, and so only depends on i, k), then we find nothing other than the two 
index secant numbers of Section 12.1(c): 

Proposition 12.40. For i, j, k satisfying i 4- j + 2k = 2g - 2 we have 

f Ma, Ma i  (- )6)k  - 0- - E2 2 2k 

In particular, f 012g -2  is equal to the secant number E28 -2. 

Proof Each side is defined by the same recurrence relation, (12.35) and (12.11), 
respectively, and so the identity follows inductively. 

The basis of R5  and the twisted Pascal triangle of its intersection numbers 

degree 8 - 2k - i\i 0 	1 	234 

8 1 

1 
1 	2 

5 	6 
5 	28 	24 

61 	180 
61 	662 

1385 
1385 

0 

1/93  
3 	42)82 
	

2 

1_fi 2 	4.3fl 
/32 	-213 
	

4 

1 ■8 	6 
fi 	4.2 
	 6 

1 
	

8 

6 

4 

2 

0 

Remark 12.41. Notice that the secant ring R g  is isomorphic to the intersection 
ring of the Grassmannian G(2, g 1) additively, though not multiplicatively. 
What we see is that, just as the Pascal triangle of Section 8.1(e) tabulates the 
degrees of the cohomology classes si  B k  with respect to the Pliicker hyperplane 
class A, so the Pascal triangle above records the degrees of the classes 
with respect to the typerplane class' a = ci(r). El 

This proposition implies that 

f eka(-/3)" 
k2g-2-2n 

2-,28-2-2n 
	  = Res 

(2g - 2 - 2n)! 	x=o 

[ x2ndx 

x 2g-1  cos kx 
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and from this it follows that for any power series f (x) we have 

Res 
f (x 2)dx 1 

x=o x 2g-1  cos kx 

In particular, taking f (x) = 	sin ,F028-1  and applying Corollary 12.8 
yields: 

f eka 	'43  )
2g-1 E 	dx  

sinh ,fiff 	= Res 
x=0 coskxsin 2g -1  x ] 

(12.36) 
U28. -1(k)  when k is odd. 

This illustrates our strategy for evaluating the right-hand side of Proposi-
tion 12.33 in order to prove the Verlinde formula. Of course, to do this we 
must work in the full ring Q[A, B, C1/4 without the restriction C = 0. 

(b) The proof of formulae (12.2) and (12.4) 

We now return to consider the original polynomials in three variables defined by 
the recurrence relation (12.33) and to the homogeneous ideal Ig  c 6:2[A , B, C] 

generated by ,.(A , B, C) for r > g. Because of (12.33) it is generated by 
the three polynomials 4g' g _F2. Our aim is to study the residue ring 
Q[A, B, 

Just as for the secant rings, we can construct a basis of Q[A , B, C]//8, as a 
rational vector space, but in this case polynomials such as (A, B, C)Cs are 
not enough, and we have to work a bit harder. Let t 1 , t2  be independent variables 
and consider the product F(t1 )F(t2) of two generating functions, each defined 
by the differential equation (12.32) with coefficients 4",-(A, B, C). This product 
is symmetric in ti  t2  and can therefore be expressed as a power series in the 
elementary symmetric polynomials, which we will write as 

X = t1 + 	y = — tit2 • 

(We change the sign of t 1  t2  in order to be consistent with the literature.) This 
series can be written, then, as 

H(x , y) := Rti)F (t2) = E 4.r,sxrc—YY 
	

(12.37) 
r,s>0 

for some coefficients ,Pr,s 	4;-,s(A, B, C) E Q[A, B, C]. Note that deg 4'r,s = 

r 2s, where A, B, C have degrees 1, 2, 3. 

Remark 12.42. Each 	is a polynomial in i ,4-2, 6, .... For example, by 
multiplying out (12.37) we find 4"1,o = i, o, 1 = 	— 42, 2,(3s = 2 and 
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= i 2 — 36. These polynomials can also be read off by observing that the 
left-hand side of (12.37) is nothing other than the formal resultant of F(t) = 

Er>0 4-rtr and G(t) := t2  xt y, that is: 

1 	4-1 	42 	6 	4 	6 	4-6 	47 

1 	41 	2 	6 	4.4 	4-5 	6 	-7 

—y —x 1 
—y —x 1 

— Y —x 1 
—y —x 1 

—y —x 1 

• • • 

—y —x 1 

—Y —x 1 

(See Section 1.3(a).) For example, by noting that the xr term comes from the 
top-left (r + 2) x (r 2) block, we see that O 

We now look for recurrence relations satisfied by the polynomials 
t-,s (A, B, C). First of all, by the chain rule, the partial derivatives satisfy 

aH aH  aH 	aH _aH aH 
1.2 - , ati 	ax 	ay 	at2 	ax 	tl 	• ay   

Solving these equations we get: 

( aH _ 	1 	aH 	aH) 
t 1 	t2 - 

8x — t1-12 	ati 	at2 

1 	ti(A 	  t2(A B t2 CO) 
 H (x , y) 

- t2 	1 — Bti2 	1 — Bt 2  2 

(1— By)(A  ± Cy) + x(B  + C x) 
H(x, y), 

Ry) 2  — B x 2  

811 (8H 	— By)(B  Cx) Bx(A ± Cy) 
H(x,y). 

ay 	t2 at" 	at2 ) 	(1— By) 2  — Bx 2  

These equations can be written in matrix form as 

(81//ax) 	m  (A + Cy 	 ( 1 — By 	x 
where M = 

8H/49y 	detM 	Cx) 
H 	

Bx 1 — By ) 

H(x, y) = 
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Inverting, it follows that 

0H 0H 
—Bx — +(1 — By)— = (B + Cx)H(x , y), 

ax 	 ay 

aH aH 
— By)—ax  — x —ay  =(A + Cy)H(x, y). 

From these equations we obtain two recurrence relations (in which we take 
= 0 if r or s < 0): 

—(r + s)BE 1 9 	 (12.38)  

(r + 1-)r-F1,s 	(r + 1)134-r+i,s-i — 	Mr-1,s+1 = Ak4-r,s 

(12.39) 

The first of these determines all the polynomials 4 s , given the boundary polyno-
mials 1., ciand 6,s • It also determines 6,, = (—B)s (since 6,0 = 1). The bound-
ary polynomials 4r,o, on the other hand, are equal to 4 -r , as we have observed in 
Remark 12.42, or as can be seen using (12.38) (with s = 1) and (12.39) (with 
s = 0), which together show that 1-,0 satisfies the recurrence relation (12.33). 
The polynomials r, s  E Q[A , B, C] are therefore completely determined. , 

Proposition 12.43. 

(i) As a vector space over Q the polynomial ring Q[A, B, C] has basis 
B, C)C t, where r, s, t range through all nonnegative integers. 

(ii) The subset consisting of 1., s  (A, B, C)C t  for r +s+t > g is a basis for the 
ideal lg C Q[A, B, C]. 

Proof For both parts the idea is exactly the same as for Proposition 12.36. 

(i) We order monomials lexicographically with A > B > C and note that, 
by (12.33), the maximal monomial appearing (with nonzero coefficient) in 

B, C) is A'. Hence by the recurrence relation (12.38) and the fact 
that 4.1.,0 = (Remark 12.42), A r  B s  appears as the maximal monomial in 

B, C), and this implies that the set of 4r, s (A, B, C)Ct is a basis of 
the polyomial ring. 

(ii) Denote by Jg  c Q[A, B, C] the vector subspace spanned by 
C)Ct  with r+s+t > g. This is an ideal: it is clear that C Jg C 

and AJg  C Jg , B Jg  c Jg  follow from (12.33) and (12.38). 

Since 4,- E Jg  for all r > g, it follows that g C fg. So it just remains to see 
that 4r, s (A, B, C)Ct  E 1g for all r + s + t > g. This can be shown by a double 
induction using Remark 12.42. El 
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It follows from this proposition that the residue ring Q[A, B, C]/ Ig  has a 
basis 

B, C)Ct  mod 	r+s+t<g- 1. 	(12.40) 

The basis element with (strictly) highest degree is Cg-1  with degree 3g - 3 
(noting that deg 4-r,s (A, B, C)C t  = r + 2s + 3t), and we see that Cg -1  spans 
all monomials of degree 3g - 3 modulo / g • 

Proposition 12.44. Let m, n > 0 be nonnegative integers satisfying m +2n = 
3g-3. Then 

m 
Ain  Ir (-1) n b g_i 	Cg -1  mod 1g , 

g! 

where bk E Q is a rational number defined by the Taylor expansion x/ sin x = 
Ek  bkX 2k  when k > 0 and is zero when k < 0. 

Proof We introduce a polynomial ring in one variable (AT] and define a linear 
map 

00 

E : Q[A, B, C] 	Q[T], 	f 	EEh(f) T, 	(12.41) 
h.o 

where Eh is a linear map Q{A, B, C] Q defined on monomials by 

Eh : n  B n  CP 
 F-* I - onm

h + 1) 

) 
bh—n—p if m +2n +3p = 3h, 

0 	 otherwise. 
(12.42) 

(Note that (12.41) is a finite sum since, for any polynomial f,  the number Eh(f) 
is nonzero for only finitely many h.) 

Claim: Under the linear map Q[A, B, C][[x , y]] 	Q[T] [[x, y]] induced by 
E, the generating function H(x, y) of (12.37) transforms to the constant 1 E 
(2[Tli[X, y]]. 

The claim shows that E kills all (A, B, C) with r, s not both zero. By Propo-
sition 12.43 and (12.40) it follows that E descends to the residue ring 

Q[A, B, C]/ Ig  -÷ Q[T], 

with the 1-dimensional image coming from the component in the top degree 
(Cg -1 ). The proof of the proposition is then completed by applying E to each 



C* 
(1  ± xV -13  — 

By) 12B113 

H(x, y) = 
1 

-V(1 — By) 2  — B x 2  1 — xV -13 — By 
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of Cg-1  and Am 	(that is, applying Eg_i to each of these): 

E 	i-+ 	Am .8" 1-* (— 	!bg_l Tg-1 . 

Since both monomials belong, modulo /g , to the span (Cg -1 ), on which E is 
injective, the proposition follows. 

Before proving the claim, we will write down the map E in terms of A, B, C* 
where C* := C + AB. This is given by 

Eh (A nt  B n  (C1P) 
	

Eh(A m±i  B n+i  CP—i ) 
=0 

= (_op --3 (in 	(h + 1\ 

1.0 	 )13— 

We now use the binomial coefficient identity 

te_op_i  (a + 	 _ j)(b + 19) (a — b) 
. — 	 (12.43) 

j.o 	./ ) P — . 1 ) 	P ) 

with a = m,b = h +1—  p to deduce that (12.42) is equivalent to the following. 
We write k := h — n — p. 

(-1)km!(2k — 0! 

Eh : A m  B n  (C * )P  H 	(2k — 1 — 14! 	 (12.44) I 	  

0 	

bk if m + 2n + 3p 3h, 

otherwise.  

We now prove the claim. First, substituting (12.34) into the defining formulae 
(12.37) gives 

1 	 Cx 	C* 
	tanh-1 	x  2    exp 

B B N/B 	1 — ByI 
— 	- BY) V 1 	(i BLy)2 

sinh 9 
	 xe p Ax + 	° 	

x )

*} , 
xvrB 	 B 

where we have set 

xV -13 
0 = 0(B) := tanh-1 

1— By 
. 
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From (12.44) we see that 

-V x 3  T E  (B n eAx+c* z) = x n Tn 	  

sinh (Vx3 T(1 + zT)) .  

So for general power series f (B), w(B) we have 

E (f (B)e A x +c*w (B) ) = f (xT) 

Applying this to 

sinh 9(B) 	 0(B) 	x 
f (B) = 	 w(B) = 

x -‘/T3 	 BVB B' 

we obtain E (H(x, y)) = 1, as claimed. 	 El 

We can now prove the intersection formula (12.4) and the Verlinde for-
mula (12.2). We will compute the right-hand side of Proposition 12.33 by the 
same methods that we used for (12.36). 

First of all, since the Newstead classes a, i8, y satisfy the Mumford relations, 
it follows from Proposition 12.44 that they satisfy 

m! 
(am  13n ) = (—On 	

g! 
(2Y)g-1 

This identity implies that 

X 2n  kdx -1 = Ck3g-3-2n 13L g._ 1 = ckg Res 	  
x=0 X2g -2  sin kx 

where c := (2y)g-1  /g!. An arbitrary power series f (x) therefore satisfies 

af(-0 
f (x 2)kdx 

) = cks-1  Res 
x=o [X2g-2  sin kx 

In particular, if we take 

f (x) = 
(  N5/2  Vg-2  

sin \/X72 

x 3  T 

sinh 	T (1 + w(xT)T)) •  
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and apply Corollary 12.6, then we obtain: 

ek 	f/2  (   	)
2 	

kdx 
g-2 

	

	

Res 	 
ckg -1  

\sinh ,/#/2) 	4g-1  x=0 sin kx sin2g-2 (x /2) 

g- 
V 

 g-1
(2k). 

4 1   

On the other hand, irreducibility of .AT (see Section 11.2(a)) implies that when 
k = 1 the left-hand side of Proposition 12.33 is 1, and hence c = 4g-1 • From 
this and Proposition 12.33, the formulae (12.2), (12.4) and also 

(yg- 1) = g !2g - 1 

all follow. 

12.5 An excursion: the Verlinde formula for quasiparabolic bundles 
The Verlinde formula has various generalisations. One can replace vector bun-
dles of rank 2 by higher rank bundles, or one can replace the structure group 
S L(2) by more general algebraic groups. Here, however, we shall generalise 
the curve C to a curve with marked points and prove the formula (12.6). 

(a) Quasiparabolic vector bundles 

On the projective line 1P there do not exist stable vector bundles of rank greater 
than 1 (Theorem 10.31). However, there do exist stable quasiparabolic vector 
bundles, and one can construct a moduli space for these. 

Definition 12.45. 
(i) A quasiparabolic vector bundle of rank r on a curve C is a pair consisting 

of a vector bundle E of rank r and a subsheaf E' c E which is a vector 
bundle of the same rank r. 

(ii) The degree of a quasiparabolic vector bundle is 

deg(E' c E) • 1. (deg E' + deg E). 

(iii) A rank 2 quasiparabolic vector bundle E' c E is stable if every line 
subbundle c E satisfies 

deg(4' c 4) < deg(E' c E), where 4-1  := n E'. 

(As usual, if < is replaced by <, then E' c E is semistable.) 	CI 

ckg -1  
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A quasiparabolic vector bundle (E' c E) has a determinant (quasiparabolic) 
line bundle 

det(E' c E) := (det El  c det E). 

We necessarily have 

det E' = det E 0 Oc(— D) 

for some positive divisor D, and this divisor is uniquely determined by the 
inclusion homomorphism E' c E. In what follows we will consider the case 
where D = pid--• • -+pn  for distinct points pi,  . . . , pn  E C. The quasiparabolic 
bundle E' c E is then equivalent to data consisting of the vector bundle E 

together with a codimension 1 vector subspace Ili c E pi  in the fibre of E at 
each point pi , . . . , pn  (Figure 12.2). 

Figure 12.2: A rank 2 quasiparabolic vector bundle 

For a fixed quasiparabolic line bundle L' C L we denote: 

stable quasiparabolic rank 2 
vector bundles E' c E 

SUrr(2, L l  C L) := with det(E' c E) -.Pd-. (L' C I 
isomorphism. 

L) 

If (L' C L) = (L( — pi 
— - - - — pn) C L) (with the standard inclusion — that is, 

as the sheaf of local sections of L vanishing at the points pi ), then E' c E can 
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be viewed as a quasiparabolic bundle on the marked curve (C; pi, - , pn ). In 
this case we shall also use the notation SUr (2, L; p i , 	, pn ). 

Theorem 12.46. (Mehta-Seshadri [102] for g > 2; Bauer [90] when g = 0.) 
Let p i , ,p, E C be distinct points on a curve C of genus g. Then there 
exists a nonsingular quasiprojective variety Arg , n  of dimension 3g — 3 + n with 
SUrr(2, L; p i , , pin ) as its set of points and with the following properties. 

(i) If n is odd, then Arg ,n represents the moduli functor for a stable, quasi-
parabolic of rank 2 and determinant L(—pi  — •• — p n ) c L. This means 
that there exists a universal quasiparabolic bundle U' c U on C x Arg,n, 
from which every family of stable quasiparabolic bundles is obtained (up 
to equivalence) as a pull-back. Moreover, Arg , n  is projective in this case. 

(ii) If n is even, then .Arg , n  is a best approximation to the functor for stable 
quasiparabolic bundles. 

(iii) At the point [E' c Eli E Arg  n  corresponding to a stable quasiparabolic 
bundle (E' c E) the tangent space is isomorphic to 

T[E , cEiNg,n = H1  (C , zl(E' C E)). 

Remark 12.47. Although we will not carry this out here, we will indicate 
briefly how one can prove this theorem in the same spirit as the construction of 
SUc  (2, L) as a quotient variety in Chapter 10. There, we represented SUc (2, L) 
as the underlying points of Alt N ,2(H° (L))11GL(N), where AltN,2(H ° (L)) con-
sists of N x N skew-symmetric matrices with entries in H°(L) and rank < 2 
over the function field k(C). We will modify this by considering the diagonal 
action of GL(N) on 

AltN,2(H° (L)) x 	x • • x AN , 
n times 

where each AN  has the natural linear action of GL(N). In this product consider 
the subset 

Agit ,y (H °  (L)) = {(T u , • • • , u n ) I ev p i (T) u = 0 for all 

It is easy to see that this is an affine subvariety which is preserved by the 
GL(N) action. Moreover, this action extends to the larger group G = GL(N) x 
Gm  x • - • x Gm, where Gm  x • • x Gm  acts diagonally on AN  X • • • X AN  

by homotheties. With these definitions one can show that Arg ,, is the quotient 
variety Agli:2"-Pn (H°  (L)) // G LI 
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The last statement in Theorem 12.46 has the following meaning. Let 
End(E' c E) be the vector bundle of (local) endomorphisms of E which map 
the subsheaf E' to itself. The trace of an element of End(E' c E) takes values 
in the line bundle Oc (—pi — • • — p„), and there is a direct sum decomposition 

End(E' C E) Lj-  Oc( — pi —  • • • — 1311)(131-el(E' c E), 

where WE' c E) denotes the subbundle of tracefree endomorphisms. 
Part (iii) of the theorem globalises as follows. 

Proposition 12.48. When n is odd the tangent bundle of Ar g,, is isomorphic to 
the 1st direct image: 

Tj = R 1 7,01(li C U), 	: C x Ng,n 

where (14' c U) is the universal quasiparabolic bundle. 	 0 

Let E' c E and F' C F be two rank 2 quasiparabolic vector bundles. 

Definition 12.49. A quasiparabolic homomorphism from E' c E to F' c F 
is a bundle homomorphism E --> F which maps E' -± F ' ; we denote the space 
of quasiparabolic homomorphisms by Horn ((E' c E), (F' c F)). These are 
the global sections of a subsheaf 

7-torn ((E' c E), (F' C F)) c Rom(E , F) 

consisting of local homomorphisms which take E' —* F'. This is a vector 
bundle of rank 4. 

The following is a quasiparabolic version of Exercise 10.6. 

Lemma 12.50. Let E' c E and F' c F be semistable rank 2 quasi-
parabolic vector bundles with deg(E' c E) > deg(F' c F). Then Horn 
((E' c E), (F' c F)) =0. El 

Suppose that e CE is a rank 2 quasiparabolic bundle with det E' = det E 

Oc(— pi — • • — 1 ,13. Then E" := E 0 Oc(— Pi — • — pn ) is a subsheaf of 
E' and so we obtain a new quasiparabolic bundle E" c E'. It is then easy to 
show the following. 

Lemma 12.51. E' c E is (semi)stable if and only if E" c E' is 
(semi)stable. 
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Since deg(E” c E') = deg(E' c E) — n, we can put these two lemmas 
together to obtain: 

Proposition 12.52. Suppose that a rank 2 quasiparabolic bundle E' c E is 
semistable and that is a line bundle with deg 4 > n/2, where det E' = 
det E Oc(—  Pi — • • — Pn). Then 

Horn ((E" c E') 	(E' c E)) = 0. 

Now consider the 4-dimensional vector space End(E gen) over k(C). This is 
self-dual via the trace inner product 

End(Egen) x End(Egen ) -± Oc, 
	(f, g)1—> tr fg. 

The two vector bundles End(E' c E) and Horn ((E" c E'), (E' c E)) both 
have End(Egen) as their total set and, in fact, they are mutually dual with re-
spect to this inner product. Combining this observation with the duality Theo-
rem 10.11 we deduce: 

Corollary 12.53. If E' c E is a semistable rank 2 quasiparabolic bundle and 
is any line bundle with deg 4 > n/2, where det E' = det E00c ( — pi —• • — Pn), 
then 

H 1  (C, End(E' C E) 0 Qc 0 — 

(b) A proof of (12.6) using Riemann-Roch and the Mumford relations 

From now on we take C = 1P 1  and fix an odd number n > 3, and n points 
pi, • - pn  E Pl . By Theorem 12.46 we have a moduli space Aro, n  for rank 2 
stable quasiparabolic vector bundles on IP 1 , and .V0,„ is a nonsingular projective 
variety of dimension n — 3. Moreover, there exists a universal quasiparabolic 
bundle U' c U on x Aro and this determines cohomology classes 010  G 
H2 (N3, n ) and 0 E H4  (..Mp m ) by 

c2 (EndU) = 2h 0 ao — 1 0 0, 	 (12.45) 

where h E H2 (1P 1 ) is the class of a point in P l  (that is, h = ci(OIPA ( 1 ))). 
For each of the points pi, . , pn  E 1P 1  we can consider the restriction 

Ul pi >04, . In this restriction the subsheaf U' defines a line subbundle and its 
quotient: 

quo 0  _> mrb 	uiptx)vo,n 	.A4 	0, 
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and for each i = 1, . . . , n these line bundles determine a class 

si 	ci(m ro) ci(m rb) c H -2 (Aro,n).  

By definition of (12.45) it follows that 

,8. 	 (12.46) 

We will also put 

a := 2a0 + Di • 	 (12.47) 

We now apply Grothendieck-Riemann-Roch to the rank 3 vector bundle 
51(be c U) on the product P 1  x Mom . Using the exact sequence (alternatively, 
one can just compute directly) 

0 __> 7.51 be 	IED(A4rb) -1 	Aro R 1 74sl(lie C U) 	0 	(12.48) 

we obtain 

td (R 1 7s/(bC c U)) = td(7s/ /4')-1 fltd ((Mrbr1 ® Mr) 
i=1 

= eck
, 	Ni/g/2   ) 2 eEsi /2 	'N11672   ) n  

sinh 	 /2) 	sinh -IT3/2) 

= e 	'1-13/2
\n 2 

sinh Nif1/2) 	• 

By Proposition 12.48 we note that this is equal to the Todd class of Aro and 
in particular a = ci(Tivor ). Thus, by Hirzebruch-Riemann-Roch: 

x (Aro,n, 0(- 1,10)- 
fAr 

e td Aio, 	
n 	n-2 

la n  = f e (21+1)°1i2 	L  
.A1 	sinh 	 /2 	• 

(12.49) 

We will now write n = 2g ± 1 (where g > 1) and consider the direct image 
sheaf 

W 	(WU' C U) 	(g 1 
)) 



1 	2/ 

X W0,2g-1-1 , C9(-40 = 21 	± 1  
(-1) 

i= (sin 2j+1 7) 4/+2 
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This is a vector bundle by Corollary 12.53, and by Grothendieck-Riemann-Roch 
(we leave the computation to the reader) 

c' (W) _ 

c(W) 	1 - 13 .  

The classes a, # therefore satisfy the relations of the secant ring Rg  (Sec-
tion 12.4(a)). In other words, since by Riemann-Roch the vector bundle W has , 
rank g - 1, we see that 

1-(ct, 0) = 0 for all r > g. 

One can call these the quasiparabolic Mumford relations (and, by the usual 
recurrence relations, they are generated by the two relations for r = g, g ± 1). 

As we saw in Proposition 12.40 (taking i = 0), these relations imply that 

(a-l ie) = E2g-2-k(8 g  1) for j + 2k = 2g - 2. 

Hence, using (12.49) and (12.36) we obtain 

X (0,2g+1, CA—HO) = f e (21+Da12  (  ,113/2   ) 2g 1  

./V 	 Shlh N/13/2 

= 
21 1 - 

U2Q_1(2/ ± 1)(0/4) g-1 . 
±  

We shall see shortly (Theorem 12.56) that the varieties Aro,n are rational. This 
implies that x (1r0,4+1, 0) = 1 (Remark 12.16), and so the case 1 =-. 0 of the 
above formula says that (j3)g -1  = 4g-1 . From this we obtain the quasiparabolic 
Verlinde formula (12.6) 

1 

On the other hand, the line bundle 0(-K) is ample, and so by Kodaira Vanish-
ing 12.11 this formula actually computes, for 1 > 0, the dimension of the space 
H0W0,2g±1, (9(-1K)). 

Remark 12.54. Here is a table of low values of h °  Wo,n , (.9(-1D)) coming 
from the Verlinde formula (12.6), where D generates the Picard group of 



5 6 7 8 

1 1 1 1 
6 7 8 9 
61 85 113 145 
76 119 
3101 • • 	• 
• 

4 

1 
5 
41 
45 
1401 
461 
• • • 

1 ± Eg. 22J-1 

o L I A r 
n YVO,n, 0(-2D)) = 

when n = 2g + 2, 

when n = 2g + 1. 1 + 4 Eg, (28+1)51—i 
f=i 2j 
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Aro, n  - that is, D = K when n is odd, and D = K/2 when n is even: 

01 2 3 

3 11 1 1 
4 12 3 4 
5 1 5 13 25 
6 1 4 11 24 
7 1 21 141 521 
8 1 8 43 160 

9 1 85 1485 10569 
10 1 16 171 • • 	• 

11 1 341 15565 • • 	• 

Notice that at level 1: 

	

\ 	2g 	 when n = 2g + 2, 

	

h°  Oro,n• (-9(-D)) 	+4+42 +  • • • + 48-1  when n = 2g + 1. 

Similarly, at level 1 

(c) Birational geometry 

One can express Definition 12.45(iii) by saying that 'stability of a quasiparabolic 
vector bundle E' c E is the average of stability of the vector bundles E and E". 

Generalising this idea, one can consider a 'weighted average' of the stabilities 
of E and E'. In other words, one can define a degree 

dega (E' c E) = (1 - a) deg E + a deg E' , 	a E R, 

and then define stability accordingly for each value of the parameter a E R. If 

we note that deg a(E' c E) = deg E - an, where n = deg E - deg E', then 
we see that there is a further generalisation. Namely, suppose that det E' = 

Oc(-p i  — • p n-) -0 det E, and attach a number ai  E R (called a weight) to 

each point pi  E C. Then we can define a degree 

dega(E' c E) := deg E - E ai lengthpi  (E I E'), 	where a = 	• • • , an). 
1=1 

We then define stability for the pair E' C E using this notion of degree. 
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Definition 12.55. 

(i) A quasiparabolic vector bundle E' c E together with assigned weights 

al , 	, an  E IR at the points n 	C, where det E' - Oc(-pi -• • • Pi 1, • • • 9 P n E  

— pn ) det E, is called a parabolic vector bundle. 
(ii) A parabolic vector bundle (E' c E;ai, 	, an ) of rank 2 is stable if, for 

every line subbundle c E, 

dega(r c < dega(E' C E), 	where r = n E'. 
CI 

Note that if the weights ai are all 0, then this coincides with the stability of 
the vector bundle E; if all ai  = 1, then it coincides with the stability of E'; and 
if all ai  = 1/2, then it coincides with the stability of E' c E as a quasiparabolic 
bundle (Definition 12.45). 

Of course, the key point here is that there should exist a moduli space for 
parabolic vector bundles with fixed determinant det(E' c E) and weights 
a = (a1 , , an), and this is indeed the case, by Mehta and Seshadri [102]. 

Now restrict, as in the last section, to the projective line C = IP1 , with an odd 
number n = 2g +1 of points pi , . . . , p2g± 1 E P1  fixed. We let Pi • • • , E 
P28-2  be the images of P1,  . . . , P2g±i under the Veronese embedding v : 
IP28-2  of degree 2g - 2. For a E 2g+ 1 , let Aro, a  be the moduli space of rank 2 
stable parabolic bundles on (1P 1 ; pi, . • , P2g-I-1) with weights a. 

Theorem 12.56 (Bauer [90]). For g suitably chosen weights a(1)) , a(1) , 
E 2g+ 1  the moduli spaces 

NO,a(i) =: 	2 9 
	0 < i < g - 1, 

are nonsingular projective varieties of dimension 2g - 2 and have the following 
structure. 

(0 (g)-2  is isomorphic to P2g-2  

(ii) P2( f)-2  is the blow-up of p2 g-2 at the points 75% , • • • , 

(iii) fE; (2ig+-12)  is obtained from TP 2  by the following flop (or more precisely, a 

reverse flip). (See Section 6.3(a).) fOr 2  is blown up along a finite number 

± (2g + 1) 

+1 

(2g + 1) 

-1 

+ 1) (2g 

i - 3 
- 	• 	• 

of subvarieties 	Pi , and then the exceptional divisors are contracted 
down in a different direction to subvarieties 	; 4-2  " 111  ""i  (i+1)• 
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. 	"ng-2 . . (iv) P(g-1) is isomorphic to the moduli space of quasiparabolic bundles 

Ar0,2g-1-1- 	 El 

	

p2g-2 	 /- 
r ( 1 ) 	 (2) 	 (g - 2) 	-r(g-1) = IV0,2g-F1 

4, Big Bang 

p2g-2 

Examples 12.57. g = 2. In this case JV-0,5 is the blow-up of P2  at 5 points. 
This is called the quartic del Pezzo surface and embeds in P4  as a complete 
intersection of two quadrics. 

g = 3. In this case Arm is obtained from the blow-up I154(1)  of P4  at 7 points 
by flopping along 22 lines, each line transforming to a P 2  in the moduli space. 
These lines are 

(a) the proper transforms of the ( 72) = 21 lines in P4  joining pairs of the points 
Pi • • P7; and 

(b) the proper transform of the rational normal quartic v(P 1 ) c P4  through the 
7 points. 

g = 4. The moduli space „Arco is obtained from P6  as follows. First blow 
up at 9 points. Then flop along the following 37 lines, transforming them 
into IPA  s: 

(a) the proper transforms of the ( 29) = 36 lines in P6  joining pairs of the 9 
points; and 

(b) the proper transform of the rational normal sextic v(P 1 ) c P6  through the 
9 points. 

Finally, flop along the following 93 P2s, transforming them into P 3 s: 

(c) the proper transforms of the ( 39) = 84 planes in P6  containing 3 of the 9 
points; and 

(d) the proper transforms of the 9 cones over v (P 1 ) c P6  with vertices at each 
of the 9 points. 

An alternative proof of the Verlinde formula for quasiparabolic bundles might 
be given by analysing how the Euler-Poincare characteristic()V 	0(-1K)) X v,  

changes under the flops described by Theorem 12.56. (This is a parabolic version 
of Thaddeus's proof [112] of the Verlinde formula (12.2).) 
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We will not do this here, but just remark on the following interesting con-
sequence. The sequence of flops determines a birational isomorphism between 

and Ar0,2g±1, which is an isomorphism in codimension 1. This gives us an 
isomorphism between spaces of global sections of corresponding line bundles, 
and in particular it gives us an equality: 

1 	2/ 	
(-1)i 	U2g_i(21 ± 1) 

dim le(f0(2f)-2 , 0(-11C)) = 	 
21 + 1 (sin 2i+1 	21 	1 	• i=O 42/i +21  7r) 

(12.50) 
This gives the dimension of the vector space of forms of degree 1(2g — 1) 
in the homogeneous coordinates xo, x1, , X2g-2 which vanish at the points 
To • - 7 i-52g-1-1 	p2g  

Now, in the case of the plane (that is, g = 2) such linear systems blowing up 
finite sets of points have been thoroughly studied classically; for < 8 points in a 
general position, for example, the resulting surfaces are the del Pezzo surfaces, 
which play an important role in various different geometrical contexts. For 
P3 , too, the blow-ups along finite point sets are also fairly well understood. 
(See, for example, Semple and Roth [107] chapter 8 §2.) However, for P 4  and 
higher, such an extraordinary formula as (12.50) is completely unexpected and 
is, I think, a truly remarkable discovery. Yet all that is needed is to pass to the 
nice model 1V0,2g+ 1 , and the dimension formula simply reduces, using Kodaira 
vanishing, to a Riemann-Roch calculation. 
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first fundamental theorem of invariant theory, 
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fractional ideal, 270 
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free basis, 257 
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free module, 234, 257, 286 
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functorial morphism, 401 
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Galois group, 32 
gap value, 287, 290 
Gauss, 273 
Gauss's Lemma, 51, 275 
general linear group, xi, 26, 102, 127, 195, 212 

GL(n) is linearly reductive, 132 
characters of, 121 

generated by global sections, 346, 359 
generating function, 11 
generic point, 277 
genus, 287 

equals dim H 1  (Dc), 299 
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equals number of gap values, 297 
equals number of regular differentials, 331 
is finite, 294 
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genus of a curve, xix 
geography of abelian differentials, 343 
geometric genus, 331 
geometric interpretation of stability, 219 
Geometric Invariant Theory, xiii, xviii, 181 
geometric quotient, 159, 195 
geometric reductivity, 117, 155 
Gieseker matrices, xiv, 211, 377 
Gieseker point, 349, 371, 376-379, 419 

as matrix of Phicker coordinates, 387 
for higher rank vector bundles, 394 

global sections, space of, 306 
gluing, 35, 77, 91, 92, 95, 96, 108, 174, 189, 

364 
gluing principles, 256 
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Gorenstein ring of codimension 3, 152 
graded bundle gr(E), 367 
graded ring, 11, 69, 115, 188, 202 

of semiinvariant, 192 
graph of a gluing, 93 
Grassmann finictor, 282, 402 
Grassmannian, xviii, 234, 375, 387 

as a projective variety, 245-247 
as a quotient variety, 235-250 
as projective spectrum, 236 
cohomology ring, 249 
degree of G(2, n), 246, 247 
Hilbert series, 237 
homogenous coordinate ring of G(2, n), 242 
is nonsingular, 312 

Grothendieck, xi 
Grothendieck-Riemann-Roch, 438 

for curves, 453-455 
for a projection, 454 

Grothendieck's Theorem, 359, 360 
group law on a plane cubic, 100 
group ring, 101 

H°  -semistable, 381, 394 
1-10-stable, 381 
Hausdorff, 93, 94, 115, 161 
height 1 prime ideal, 57 
Hermite reciprocity, 147 
Hessian, 173, 431 
Hessian cubic, 49 
Hessian determinant, 19 
Hessian form, 24 
Hilbert, xi, 135 
Hilbert polynomial, 245 
Hilbert scheme, xviii 
Hilbert series, 1, 9, 11, 13, 26, 43, 137, 286, 

468 
for binary forms, 146, 148 
of a classical binary invariant ring, 143 

Hilbert's 14th problem, 51, 68 
Hilbert's Basis Theorem, xiii, 51, 116 
Hilbert's Nullstellensatz, xiii, 51, 61, 82, 162 
Hilbert-Mumford numerical criterion, xviii, 

212, 349, 382 
Hirzebruch-Riemann-Roch for a line bundle, 

451 
Hirzebruch-Riemann-Roch for a vector 

bundle, 453 
Hirzebruch-Riemann-Roch for the structure 

sheaf, 450 
Hodge filtration, 332, 341 
holomorphic functions, 336 
homogeneous element in field of fractions of a 

graded ring, 96 
homogeneous polynomial, 11, 23, 25, 35, 72, 

167 
homomorphism of algebraic groups, 126 
homomorphism of elementary sheaves, 279 
Hopf fibration, 103 
hyperbola, 6 
hyperelliptic curve, 291, 433, 463 

of genus p, 276 
hyperplane intersecting a curve transversally, 

346 

icosahedron, 17 
ideal, finitely generated, 52 
idempotent, 263, 286, 355 
image sheaf, 351, 377 
imaginary area, 7 
imaginary quadratic field, 234, 286 
imaginary region, 5 
Implicit Function Theorem, 33 
indecomposable vector bundle, 355, 356, 366 
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index of speciality, xix, 295, 297 
infinitesimal neighbourhood, 89 
inflection point, 47 
inflectional tangent, 224 
integral, over a ring, 58 
integral domain, 55, 76, 84, 88, 189, 269, 276 
integral quadratic form, 272 
integral ring extension, 86 
intersection formula, 438 
intersection numbers, 247, 437, 469 
invariant, 9 
invariant field, 183 
invariant function field, 183, 200 
invariant polynomial, 3, 9 
invariant ring, 18, 158, 189 

finitely generated, 137 
size and shape of, 12 

inverse flip, 205 
invertible GR-module, 182 
invertible ideal, 268, 286 
invertible modules, 234 
invertible ring element, 55 
invertible R-module, 199, 268, 286 
invertible sheaf, 279 
irreducible plane curve, 39 
irreducible ring element, 55 
irreducible topological space, 84 
irrelevant ideal, 186, 190 
irrelevant set, 196, 212 

upper semicontinuous, 406 
Italian problem, 182, 183, 200 

j-invariant, xv 
Jacobian variety, xii, xv, 234, 287, 316, 400 
Jacobian as a complex manifold, 334-345 
Jacobian determinant, 19 
Jacobian of a curve of genus 1, 29, 425-431 
Jacobian of a plane quartic, 422 
jumping phenomenon, 399, 414 

k-algebra, 60, 78, 98 
Kepler's Principle, 6 
Klein subgroup of S4, 32 
Kodaira Vanishing Theorem, 447 
Kodaira-Spencer map, 462 
Krull's intersection theorem, 311 
Krull's Principal Ideal Theorem, 171 
Kummer quartic suff6ce,455 
Kummer variety, 400,422 
Kahler differential module, 310 
Kahler manifolds, 182 
Kiinneth decomposition, 461 

language of functors, 98 
Laplace expansion, 244 
lattice, 42 
lattice of periods, 287; see also period lattice  

Laurent polynomials, 93, 108 
leading term, 53-54 

principle of, 53 
Leibniz rule, 122 
Lie algebra, 124, 126, 156 
Lie group, xv 
Lie space, xii, 116, 124, 324 
lift, 312 
limit, of a 1-parameter subgroup, 110, 212 
line bundle, 279 

generated by global sections, 308 
linear equivalence, 294 
linear reductivity, 161, 315 

of S L(2), 152 
linear representation, 117 
linearisation, 197-201 
linearly reductive, 116, 130, 157, 159, 183, 

318 
Liouville's Theorem, 44, 51, 73, 290, 298, 

334 
local Artinian ring, 375, 390 
local distribution, 123 
local freeness 

in terms of localisations, 262 
local models, 77 
local property, 91 
local ring, 93, 252 
local versus global, 254-257 
localisation, 174, 234, 288 

at a prime ideal, 252 
localisation R ut , discrete valuation ring, 288 
localisation at one element, 252 
locally factorial, 200 
locally free module, 234, 262 
locally free sheaf, 279 
locally integral, 189 
locally nilpotent, 120 
localness, 255 
logarithmic derivative of the Chem class, 455, 

464 
logarithmic exact differential, 342 
logarithmic type, 342 
long exact sequence of cohomology, 353 

M-valued derivation, 122 
M sheaf associated to a module M, 277 
manifold, 77, 91, 336 
marked vector bundle, 376 
maximal homogeneous ideals, 186 
maximal ideal, 64,76 

in a polynomial ring, 82 
maximal line subbundles, 365-366 
maximal spectrum, 82 
maximum modulus principle, 336 
meromorphic functions, 336 
minimal model, 204 
minimal system of generators of a module, 253 



500 	 Index 

Mittag-Leffler's problem, 298; see also 
Cousin's problem 

model of an algebraic function field, 91 
modular group, see SL(2, Z), 43 
modules over a ring, 234, 251-267 
moduli functor for vector bundles, 413 
Moduli prism, xviii 
moduli problem, xviii, 400 
moduli space, xvii, 179, 398, 401 

for plane conics, 5 
moduli space of hypersurfaces, 177 
moduli space of semistable cubic surfaces, 

230 
moduli space of smooth hypersurfaces, 

172 
moduli space of stable hypersurfaces, 

179 
moduli space of vector bundles, 398 
Molien's Formula, 1, 13 
Molien series, See Hilbert series, 11 
Molien's Theorem, 18, 144 
moment map, 182, 208 
Mordell's Conjecture, xvii 
morphism, 86, 398 

image, not necessarily a variety, 87 
of algebraic varieties, 94 

Morse function, 209 
moving quotients, 201-210 
multiplicative period, 344 
multiplicative principal parts, 300 
multiplicative version of Cousin's problem, 

300 
multiplicatively closed, 252 
multiplicity of a point on a plane curve, 34, 37, 

72 
Mumford, xiii, 161, 179,401 
Mumford relations, 438, 465, 466, 475 

Nagata, xiii, 68-69, 161 
Nagata's trick, 70-73 
Nagata-Mumford Theorem, 178 
Nakayama's Lemma, 253, 262, 269, 288, 315, 

404, 406, 411 
natural transformation, 401 
nef polyhedron, 207 
Newstead classes, 438, 461-463, 465, 475 
nilpotent, 76, 88 

element in a ring, 60 
Noether's formula, 450 
Noetherian ring, 51, 54, 83 
nonseparated algebraic space, 436 
nonsingular, 169 

affine quotient, 316 
nonsingular algebraic curve, 289 
nonsingular implies stable, 179 
nonsingular point on a variety, 311 
nonsingular variety, 312 

nonsingularity of quotient spaces, 316, 
308-316 

nonstable vector bundles, 366-368 
nullform, 175, 182, 221 
numerical criterion, 173 

octahedron, 16, 17 
open immersion, 90, 115 
orbit, 158, 185 

of binary quartics, 29 
order of vanishing at a point, 307 
ordinary double point, 35, 224 
oriented area, 41 

p-adic integers, 64 
Pappus, 7 
parabola, 6 
parabolic bundles, xiv 
parabolic vector bundle, 484 
parameter space, 1, 9, 319 

of binary quartics is A 1 , 30 
partial derivatives, 122 
partial ordering, 226 
partition of unity, 91, 254 
Pascal triangle, truncated, 248 
path integral, 341 
pencil of plane conics, 28 
period lattice, 342 
period of an abelian differential, 338 
period parallelogram, 41, 44, 49, 73 
Pfaffian of a skew-symmetric matrix, 372, 349 
Pfaffian semiinvariants, 371 
Picard functor, 398, 399, 408 
Picard group, 234 

of a curve, 287 
of a hyperelliptic curve, 275 
of a ring, 268 
of a variety, 280 
of an imaginary quadratic field, 273 

Picard group of a curve, isomorphic to its 
divisor class group, 306 

Picard variety, 389, 399 
pinching, 459 
plane conic, 1 
plane cubics, 73, 172, 178, 221 
plane curves, 72, 290 
plane quartics, 223, 432 
Platonic solid, 17 
Phicker coordinates, xx, 375 
Plucker embedding, 245 
Plucker relations, xx, 244 
Poincare duality, 339, 342 
Poincare line bundle, 400, 412, 426 
Poincard series, See Hilbert series, 11 
points of inflection, 49 
pole of order PI, 289 
polyhedral groups, 15 
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polynomial ring, regular at all maximal ideal, 
312 

Pontryagin classes, 449 
positive characteristic, 117, 155, 156, 327 
positive divisor, 292 
power series rings, 61-62 
primary ring, 88, 115, 278 
prime ideal, 88 
prime, ring element, 55 
primitive polynomial, 56 
principal divisor, 294 
principal fractional ideal, 270 
principal part, 298 
principal part map, 292, 298, 346, 353 

for a vector bundle, 306 
principal part space, 298 
products of varieties, 87 
Proj, 174, 181, 186 

as a quotient by G., 189 
as projective, 96 

Proj quotient, xi, xviii, 190, 319, 393 
coming from a GR-module, 200 
is complete, 197 
is locally an affine quotient, 190 
is moduli space for G-orbits, 194 
satisfies Italian condition, 195 

Proj quotient in direction x, 192 
Proj quotient map, 182 
Proj quotient map in direction x, 193 
Proj R, complete, 114 
projective, 96 
projective geometry, 37 
projective line, 31, 345 

as a toric variety, 109 
projective plane, as a toric variety, 110 
projective quotient map, 177, 411 
projective space, 95, 181, 185, 451 

is complete, 106 
is nonsingular, 312 

projective spectrum, 186-189 
projective variety, xvi 
projectively equivalent, 38 
pull-back, 280, 403 

q-binomial coefficients, 145 
q-Hilbert series, 144 
quadratic form, 24 
quadratic number field, 272' 
quadratic straightening, 245 
quadric hypersurface, 170, 203 
quantum field theory, xxii 
quartic del Pezzo surface, 485 
quasiparabolic homomoiphism, 479 
quasiparabolic Mumford relations, 482 
quasiparabolic vector bundle, 439, 476 

semistable, 476 
stable, 476  

quaternion group, 15, 16 
Quot scheme, xiii, xiv, xviii 
quotient bundle, 351 
quotient functor, 402 
quotient singularity, 5 
quotient space, 19, 42, 43 
quotient varieties, xvii, 156, 158, 181 

R-module, 251 
R -valued 

derivation, 122 
points, 98 

radical, 164 
radical ideal, 82 
radical vector of an odd skew-symmetric 

matrix, 374 
rank 2 vector bundles, 365-370 
rank of a conic, 39 
rank of a double point, 224 
rank of a free module, 258 
rank of a locally free module, 263 
rational differential, 330 
rational double point, 19, 20 
rational function field, 25, 50, 95, 290 
rational function regular at a point, 289 
ray type, 159, 189, 192, 201 

not of, 205 
reducible topological space, 84 
reduction modulo an ideal, 403 
reduction of a module, 251 
Rees, 76 
regular, at a maximal ideal, 311 
regular functions, 4 
regular parameter at the maximal ideal m, 288 
regular system of parameters, 311 
relative characteristic polynomial, 27 
representability of a functor, xix, 401 
representation, linear, 13 
representation, locally finite-dimensional, 118 
representations of the fundamental group, 

438 
residue, 330 
resultant, 20, 471 
reverse characteristic polynomial, 13 
reverse flip, 484 
Reynold's operator, 131, 132, 135 
Riemann, xvii 
Riemann sphere, 17, 18 
Riemann surface, xvi, 1, 47, 291, 334, 340 
Riemann zeta function, 440,441 
Riemann's inequality, xix, 287, 294 
Riemann-Roch for vector bundle, 349, 352, 

354 
Riemann-Roch formula, 288, 304, 438, 

447-457 
Riemann-Roch with involution, 455-457 
right exactness of OR, 265 
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ring of germs of holomorphic functions, 214 
ring of invariants, 10 
rotation group, 3 
rubber tube, 337 

S L(2, C), 15 
S L(2, Z), 42,272 
SO(3), 27 
SO(6), 434 
SU (2), 143, 438 
S-equivalence, 420, 432 
S-equivalence classes of semistable bundles, 

400 
saturated subsemigroup, 111 
saturation, 350, 369, 418 
secant number, 444 
secant ring, 439, 466, 468 
second fundamental theorem of invariant 

theory, 244 
Segre map, 239 
Segre variety, 202, 205, 240, 247 
semigroup, 69 
semiinvariant, xviii, 121, 122, 191, 319 
semiinvariant ring, as invariant ring, 193 
semistable, 175, 192, 211 

point set, 231 
semistable vector bundle, 357, 366 
separable, 161 
separated algebraic variety, 93 
separated gluing, 93 
separation of orbits, 156 
Seshadri, 155-156 
sextic binary forms, 50 
sextic del Pezzo surface, 205, 208 
sheaf homomorphism, 278 
sheaf quotient, 350 
Shioda, 151-157 
short exact sequence, 265 
simple gluing, 92 
simple rank 2 vector bundles, 435 
simple singularity, 35 
simple vector bundle, 357, 366 
singular point, 34, 37, 49, 169 

of a plane curve, 33 
skew-symmetric matrices, 371 
skyscraper sheaf, 278 
slope, 357 
slope stability, 357 
slope-semistable, 381 
smooth hypersurface, 159, 167 
Snake Lemma, 266, 353 
solution of the general quartic equation, 28 
space curve, 302 
space of differentials, 309 
special linear group, 100, 102, 128, 132 

is linearly reductive, 132 
specialisation map, 62  

spectral curve, 425 
spectrum of a ring, 82 
sphere, 103, 209 
split exact sequence, 351 
splitting, 351 
splitting field, 25 
stabiliser, 161, 165 
stability, 159, 165, 179, 348 
stability of Gieseker points, 461 
stable implies semiistable, 175 
stable points, xviii 
stable set, 166 
stable vector bundle, 348, 357, 366 

simple, 358 
stable with respect to x, 195 
stack, xviii 
stalk, 277 

at the generic point, 276 
of the structure sheaf, 277, 289 

standard line bundle, 437,458 
standard monomial, 240, 244 
standard tableau, 242 
Stokes' Theorem, 338 
straightening higher monomials, 241 
straightening quadratic monomials, 240 
structure morphism, 188 
structure sheaf, 78, 186 

of Spm R, 85 
subbundle, 350 
subfactorial, 372 
submersion, 165 
subsheaf, 350 
Sylvester, 23 
symmetric group, 10,50 
symmetric product, 230 
symmetric product Symd C, 418 
symplectic reductions of symplectic 

manifolds, 182 

tacnode, 223-224 
tangent number, 444 
tangent space, 323, 387 

of Jacobian, H 1 (0c), 327 
tangent space of a fitnctor, 436 
tangent space of the Grassmann functor, 

268-284 
tangent vectors, 284 
tautological line bundle on I" , 281 
tautological line bundle on Proj R, 281 
tautological line bundle on projective space, 

305 
tautological subbundle, 248 
Taylor expansion, 34 
tensor product, 234, 259, 260 
theta divisor, 322, 424 
theta functions, 287 
theta line bundle on the Jacobian, 452 
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Todd characteristic, 449 
Todd class, 448, 462 
topological genus, 337 
toric varieties, 78, 107, 109, 182 
torsion free, 254 
torsion module, 254 
total Chern class, 448 
total fraction module, 254, 310 
total fraction ring, 89, 252 
total set of a sheaf, 276 
trace, 3, 50 
transcendence degree, 185, 310 
trivial vector bundle, 279 
twisted Pascal triangle, 445, 446, 469 

unique factorisation domain, 55 
universal bundle, 417 
universal line bundle, 410 
universal quasiparabolic bundle, 479 
universal subbundle on G(r, n), 282 
universal vector bundle, 396, 437 
unstable, 175, 182, 192 
unstable orbits, 201 
upper semicontinuous, 407 

valuation, 63 
of a formal Laurent series, 62 

valuation group, 63, 215 
valuation ring, 51, 63, 64 

not discrete, 67 
see also local ring 

Valuative Criterion for completeness, 51, 78, 
105-106 

vanishing condition on cohomology, 358 
Vanishing Theorem, 296 
variety, 77 
variety as a functor, 98-99 
vector bundle, rank of a, 279 
vector bundle on CA, 403 

vector bundle on a curve, 346 
vector bundles on a curve of genus 2, 

433-436 
vector bundles on a spectral curve, 431-433 
vector bundles on an elliptic curve, 369-370 
vector bundles on the projective line, 359 
Verlinde formula, xii 
Verlinde formula for quasiparabolic bundles, 

476-486 
Verlinde formulae, xx, 437, 452 
Veronese embedding, 484 
very ample, 447 

wall crossing, 205 
Weierstrass p-function, 44-46, 291 
Weierstrass -function, 345 
Weierstrass canonical form of a plane cubic, 

426 
weight decomposition, 119 
weight of an automorphic function, 43 
weight of a semiinvariant, 122 
weight shift, 140 
weighted hypersurface, 177 
weighted projective line, 9, 177, 178 
weighted projective space, 97, 113, 115, 429 
Weil, 431 
Weyl, 429 
Weyl measure, 142-143 

Young diagram, 241 
Young tableau, 242 

Zariski tangent space, 124, 284, 309 
Zariski tangent vector, 310 
Zariski topology, 77, 78, 186 

of an affine space, 79 
on Spm R, 83 

zeroth direct image, 404 
zigzag numbers, 446 
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