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Preface to the Second Edition

In the preface to the first edition of this book I remarked on the paucity of intro-
ductory texts devoted to the arithmetic of elliptic curves. That unfortunate state of
affairs has long since been remedied with the publication of many volumes, among
which may be mentioned books by Cassels [43], Cremona [54], Husemöller [118],
Knapp [127], McKean et. al [167], Milne [178], and Schmitt et. al [222] that high-
light the arithmetic and modular theory, and books by Blake et. al [22], Cohen et.
al [51], Hankerson et. al [107], and Washington [304] that concentrate on the use of
elliptic curves in cryptography. However, even among this cornucopia of literature, I
hope that this updated version of the original text will continue to be useful.

The past two decades have witnessed tremendous progress in the study of elliptic
curves. Among the many highlights are the proof by Merel [170] of uniform bound-
edness for torsion points on elliptic curves over number fields, results of Rubin [215]
and Kolyvagin [130] on the finiteness of Shafarevich–Tate groups and on the con-
jecture of Birch and Swinnerton-Dyer, the work of Wiles [311] on the modularity of
elliptic curves, and the proof by Elkies [77] that there exist infinitely many supersin-
gular primes. Although this introductory volume is unable to include proofs of these
deep results, it will guide the reader along the beginning of the trail that ultimately
leads to these summits.

My primary goals in preparing this second edition, over and above the pedagog-
ical aims of the first edition, are the following:

• Update and expand results and references, especially in Appendix C, which
includes a new section on the variation of the trace of Frobenius.

• Add a chapter devoted to algorithmic aspects of elliptic curves, with an em-
phasis on those features that are used in cryptography.

• Add a section on Szpiro’s conjecture and the ABC conjecture.

• Correct, clarify, and simplify the proofs of some results.

• Correct numerous typographical and minor mathematical errors. However,
since this volume has been entirely retypeset, I beg the reader’s indulgence
for any new typos that have been introduced.

• Significantly expand the selection of exercises.

It has been gratifying to see the first edition of this book become a standard
text and reference in the subject. In order to maintain backward compatibility of

v



vi Preface to the Second Edition

cross-references, I have taken some care to leave the numbering system unchanged.
Thus Proposition III.8.1 in the first edition remains Proposition III.8.1 in the second
edition, and similarly for Exercise 3.5. New material has been assigned new numbers,
and although there are many new exercises, they have been appended to the exercises
from the first edition.

Electronic Resources: There are many computer packages that perform computa-
tions on elliptic curves. Of particular note are two free packages, Sage [275] and
Pari [202], each of which implements an extensive collection of elliptic curve algo-
rithms. For additional links to online elliptic curve resources, and for other material,
the reader is invited to visit the Arithmetic of Elliptic Curves home page at

www.math.brown.edu/˜jhs/AECHome.html

No book is ever free from error or incapable of being improved. I would be
delighted to receive comments, positive or negative, and corrections from you, the
reader. You can send mail to me at

jhs@math.brown.edu

Acknowledgments for the Second Edition
Many people have sent me extensive comments and corrections since the appear-
ance of the first edition in 1986. To all of them, including in particular the following,
my deepest thanks: Jeffrey Achter, Andrew Bremner, Frank Calegari, Jesse Elliott,
Kirsten Eisenträger, Xander Faber, Joe Fendel, W. Fensch, Alexandru Ghitza, Grigor
Grigorov, Robert Gross, Harald Helfgott, Franz Lemmermeyer, Dino Lorenzini,
Ronald van Luijk, David Masser, Martin Olsson, Chol Park, Bjorn Poonen, Michael
Reid, Michael Rosen, Jordan Risov, Robert Sarvis, Ed Schaefer, René Schoof, Nigel
Smart, Jeroen Spandaw, Douglas Squirrel, Katherine Stange, Sinan Unver, John
Voight, Jianqiang Zhao, Michael Zieve.

Providence, Rhode Island JOSEPH H. SILVERMAN
November, 2008



Preface to the First Edition

The preface to a textbook frequently contains the author’s justification for offering
the public “another book” on a given subject. For our chosen topic, the arithmetic of
elliptic curves, there is little need for such an apologia. Considering the vast amount
of research currently being done in this area, the paucity of introductory texts is
somewhat surprising. Parts of the theory are contained in various books of Lang,
especially [135] and [140], and there are books of Koblitz [129] and Robert [210]
(the latter now out of print) that concentrate on the analytic and modular theory.
In addition, there are survey articles by Cassels [41], which is really a short book,
and Tate [289], which is beautifully written, but includes no proofs. Thus the author
hopes that this volume fills a real need, both for the serious student who wishes to
learn basic facts about the arithmetic of elliptic curves and for the research mathe-
matician who needs a reference source for those same basic facts.

Our approach is more algebraic than that taken in, say, [135] or [140], where
many of the basic theorems are derived using complex analytic methods and the Lef-
schetz principle. For this reason, we have had to rely somewhat more on techniques
from algebraic geometry. However, the geometry of (smooth) curves, which is es-
sentially all that we use, does not require a great deal of machinery. And the small
price paid in learning a little bit of algebraic geometry is amply repaid in a unity of
exposition that, to the author, seems to be lacking when one makes extensive use of
either the Lefschetz principle or lengthy, albeit elementary, calculations with explicit
polynomial equations.

This last point is worth amplifying. It has been the author’s experience that “ele-
mentary” proofs requiring page after page of algebra tend to be quite uninstructive.
A student may be able to verify such a proof, line by line, and at the end will agree
that the proof is complete. But little true understanding results from such a proce-
dure. In this book, our policy is always to state when a result can be proven by such
an elementary calculation, indicate briefly how that calculation might be done, and
then to give a more enlightening proof that is based on general principles.

The basic (global) theorems in the arithmetic of elliptic curves are the Mordell–
Weil theorem, which is proven in Chapter VIII and analyzed more closely in Chap-
ter X, and Siegel’s theorem, which is proven in Chapter IX. The reader desiring to
reach these results fairly rapidly might take the following path:

I and II (briefly review), III (§§1–8), IV (§§1–6), V (§1)
VII (§§1–5), VIII (§§1–6), IX (§§1–7), X (§§1–6).

vii



viii Preface to the First Edition

This material also makes a good one-semester course, possibly with some time left
at the end for special topics. The present volume is built around the notes for such
a course, taught by the author at M.I.T. during the spring term of 1983. Of course,
there are many other ways to structure a course. For example, one might include all
of chapters V and VI, skipping IX and, if pressed for time, X. Other important topics
in the arithmetic of elliptic curves, which do not appear in this volume due to time
and space limitations, are briefly discussed in Appendix C.

It is certainly true that some of the deepest results in the subject, such as Mazur’s
theorem bounding torsion over Q and Faltings’ proof of the isogeny conjecture, re-
quire many of the resources of modern “SGA-style” algebraic geometry. On the other
hand, one needs no machinery at all to write down the equation of an elliptic curve
and to do explicit computations with it; so there are many important theorems whose
proof requires nothing more than cleverness and hard work. Whether your inclination
leans toward heavy machinery or imaginative calculations, you will find much that
remains to be discovered in the arithmetic theory of elliptic curves. Happy Hunting!

Acknowledgements
In writing this book, I have consulted a great many sources. Citations have been
included for major theorems, but many results that are now considered “standard”
have been presented as such. In any case, I can claim no originality for any of the
unlabeled theorems in this book, and I apologize in advance to anyone who may
feel slighted. The excellent survey articles of Cassels [41] and Tate [289] served as
guidelines for organizing the material. (The reader is especially urged to peruse the
latter.) In addition to [41] and [289], other sources that were extensively consulted
include [135], [139], [186], [210], and [236].

It would not be possible to catalogue all of the mathematicians from whom I
learned this beautiful subject, but to all of them, my deepest thanks. I would espe-
cially like to thank John Tate, Barry Mazur, Serge Lang, and the “Elliptic Curves
Seminar” group at Harvard (1977–1982), whose help and inspiration set me on the
road that led to this book. I would also like to thank David Rohrlich and Bill McCal-
lum for their careful reading of the original draft, Gary Cornell and the editorial staff
at Springer-Verlag for encouraging me to undertake this project in the first place,
and Ann Clee for her meticulous preparation of the manuscript. Finally, I would like
to thank my wife, Susan, for her patience and understanding through the turbulent
times during which this book was written, and also Deborah and Daniel, for provid-
ing much of the turbulence.

Cambridge, Massachusetts JOSEPH H. SILVERMAN
September, 1985
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It has unfortunately not been possible to include in this second printing the
many important results proven during the past six years, such as the work of Koly-
vagin and Rubin on the Birch and Swinnerton-Dyer conjectures (C.16.5) and the
finiteness of the Shafarevich–Tate group (X.4.13), Ribet’s proof that the conjec-
ture of Shimuara–Taniyama–Weil (C.16.4) implies Fermat’s Last Theorem, and re-
cent work of Mestre on elliptic curves of high rank (C §20). The inclusion of such
material (and more) will have to await an eventual second edition, so the reader
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Introduction

The study of Diophantine equations, that is, the solution of polynomial equations
in integers or rational numbers, has a history stretching back to ancient Greece and
beyond. The term Diophantine geometry is of more recent origin and refers to the
study of Diophantine equations through a combination of techniques from algebraic
number theory and algebraic geometry. On the one hand, the problem of finding
integer and rational solutions to polynomial equations calls into play the tools of
algebraic number theory that describe the rings and fields wherein those solutions
lie. On the other hand, such a system of polynomial equations describes an algebraic
variety, which is a geometric object. It is the interplay between these two points of
view that is the subject of Diophantine geometry.

The simplest sort of equation is linear:

aX + bY = c, a, b, c ∈ Z, a or b �= 0.

Such an equation always has rational solutions. It has integer solutions if and only if
the greatest common divisor of a and b divides c, and if this occurs, then we can find
all solutions using the Euclidean algorithm.

Next in order of difficulty come quadratic equations:

aX2 + bXY + cY 2 + dX + eY + f = 0, a, . . . , f ∈ Z, a, b or c �= 0.

They describe conic sections, and by a suitable change of coordinates with rational
coefficients, we can transform a given equation into one of the following forms:

AX2 + BY 2 = C ellipse,

AX2 − BY 2 = C hyperbola,

AX + BY 2 = 0 parabola.

For quadratic equations we have the following powerful theorem that aids in their
solution.

Hasse–Minkowski Theorem 0.1. ([232, IV Theorem 8]) Let f(X,Y ) ∈ Q[X,Y ]
be a quadratic polynomial. The equation f(X,Y ) = 0 has a solution (x, y) ∈ Q2

if and only if it has a solution (x, y) ∈ R2 and a solution (x, y) ∈ Q2
p for every

prime p. (Here Qp is the field of p-adic numbers.)

xvii



xviii Introduction

In other words, a quadratic polynomial has a solution in Q if and only if it has a
solution in every completion of Q. Hensel’s lemma says that checking for solutions
in Qp is more or less the same as checking for solutions in the finite field Z/pZ,
and this is turn is easily accomplished using quadratic reciprocity. We summarize
the steps that go into the Diophantine analysis of quadratic equations.

(1) Analyze the equations over finite fields [quadratic reciprocity].
(2) Use this information to study the equations over complete local fields Qp

[Hensel’s lemma]. (We must also analyze them over R.)
(3) Piece together the local information to obtain results for the global field Q

[Hasse principle].

Where does the geometry appear? Linear and quadratic equations in two vari-
ables define curves of genus zero. The above discussion says that we have a fairly
good understanding of the arithmetic of such curves. The next simplest case, namely
the arithmetic properties of curves of genus one (which are given by cubic equations
in two variables), is our object of study in this book. The arithmetic of these so-called
elliptic curves already presents complexities on which much current research is cen-
tered. Further, they provide a standard testing ground for conjectures and techniques
that can then be fruitfully applied to the study of curves of higher genus and (abelian)
varieties of higher dimension.

Briefly, the organization of this book is as follows. After two introductory chap-
ters giving basic material on algebraic geometry, we start by studying the geometry
of elliptic curves over algebraically closed fields (Chapter III). We then follow the
program outlined above and investigate the properties of elliptic curves over finite
fields (Chapter V), local fields (Chapters VI, VII), and global (number) fields (Chap-
ters VIII, IX, X). Our understanding of elliptic curves over finite and local fields
will be fairly satisfactory. However, it turns out that the analogue of the Hasse–
Minkowski theorem is false for polynomials of degree greater than 2. This means
that the transition from local to global is far more tenuous than in the degree 2 case.
We study this problem in some detail in Chapter X. Finally, in Chapter XI we in-
vestigate computational aspects of the theory of elliptic curves, especially those that
have become important in the field of cryptography.

The theory of elliptic curves is rich, varied, and amazingly vast. The original aim
of this book was to provide an essentially self-contained introduction to the basic
arithmetic properties of elliptic curves. Even such a limited goal proved to be too
ambitious. The material described above is approximately half of what the author
had hoped to include. The reader will find a brief discussion and list of references for
the omitted topics in Appendix C, about half of which are covered in the companion
volume [266] to this book.

Our other goal, that of being self-contained, has been more successful. We have,
of course, felt free to state results that every reader should know, even when the
proofs are far beyond the scope of this book. However, we have endeavored not to use
such results for making further deductions. There are three major exceptions to this
general policy. First, we do not prove that every elliptic curve over C is uniformized
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by elliptic functions (VI.5.1). This result fits most naturally into a discussion of mod-
ular functions, which is one of the omitted topics; it is covered [266, I §4] in the
companion volume. Second, we do not prove that over a complete local field, the
“nonsingular” points sit with finite index inside the set of all points (VII.6.1). This
can be proven by quite explicit polynomial computations (cf. [283]), but they are
rather lengthy and have not been included for lack of space. (This result is proven in
the companion volume [266, IV §§8, 9].) Finally, in the study of integral points on
elliptic curves, we make use of Roth’s theorem (IX.1.4) without giving a proof. We
include a brief discussion of the proof in (IX §8), and the reader who wishes to see
the myriad details can proceed to one of the references listed there.

The prerequisites for reading this book are fairly modest. We assume that the
reader has had a first course in algebraic number theory, and thus is acquainted with
number fields, rings of integers, prime ideals, ramification, absolute values, comple-
tions, etc. The contents of any basic text on algebraic number theory, such as [142,
Part I] or [25], should more than suffice. Chapter VI, which deals with elliptic curves
over C, assumes a familiarity with the basic principles of complex analysis. In Chap-
ter X, we use a little bit of group cohomology, but just H0 and H1. The reader will
find in Appendix B the cohomological facts needed to read Chapter X. Finally, since
our approach is mainly algebraic, there is the question of background material in al-
gebraic geometry. On the one hand, since much of the theory of elliptic curves can
be obtained through the use of explicit equations and calculations, we do not want to
require that the reader already know a great deal of algebraic geometry. On the other
hand, this being a book on number theory and not algebraic geometry, it would not
be reasonable to spend half the book developing from first principles the algebro-
geometric facts that we will use. As a compromise, the first two chapters give an
introduction to the algebraic geometry of varieties and curves, stating all of the facts
that we need, giving complete references, and providing enough proofs so that the
reader can gain a flavor for some of the basic techniques used in algebraic geometry.

Numerous exercises have been included at the end of each chapter. The reader
desiring to gain a real understanding of the subject is urged to attempt as many as
possible. Some of these exercises are (special cases of) results that have appeared
in the literature. A list of comments and citations for the exercises may be found on
page 461. Exercises with a single asterisk are somewhat more difficult, while two
asterisks signal an unsolved problem.

References
Bibliographical references are enclosed in square brackets, e.g., [289, Theorem 6].
Cross-references to theorems, propositions, lemmas, etc., are given in full with the
chapter roman numeral or appendix letter, e.g., (IV.3.1) and (B.2.1). Reference to
an exercise is given by the chapter number followed by the exercise number, e.g.,
Exercise 3.6.



xx Introduction

Standard Notation
Throughout this book, we use the symbols

Z, Q, R, C, Fq, and Z�

to denote the integers, rational numbers, real numbers, complex numbers, a field
with q elements, and the �-adic integers, respectively. Further, if R is any ring,
then R∗ denotes the group of invertible elements of R, and if A is an abelian group,
then A[m] denotes the subgroup of A consisting of elements of order dividing m.
For a more complete list of notation, see page 467.



Chapter I

Algebraic Varieties

In this chapter we describe the basic objects that arise in the study of algebraic ge-
ometry. We set the following notation, which will be used throughout this book.

K a perfect field, i.e., every algebraic extension of K is separable.

K̄ a fixed algebraic closure of K.

GK̄/K the Galois group of K̄/K.

For this chapter, we also let m and n denote positive integers.
The assumption that K is a perfect field is made solely to simplify our exposition.

However, since our eventual goal is to do arithmetic, the field K will eventually be
taken to be an algebraic extension of Q, Qp, or Fp. Thus this restriction on K need
not concern us unduly.

For a more extensive exposition of the basic concepts that appear in this chap-
ter, we refer the reader to any introductory book on algebraic geometry, such
as [95], [109], [111], or [243].

I.1 Affine Varieties

We begin our study of algebraic geometry with Cartesian (or affine) n-space and its
subsets defined by zeros of polynomials.

Definition. Affine n-space (over K) is the set of n-tuples

An = An(K̄) =
{
P = (x1, . . . , xn) : xi ∈ K̄

}
.

Similarly, the set of K-rational points of An is the set

An(K) =
{
P = (x1, . . . , xn) ∈ An : xi ∈ K

}
.

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 1
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 I,
c© Springer Science+Business Media, LLC 2009



2 I. Algebraic Varieties

Notice that the Galois group GK̄/K acts on An; for σ ∈ GK̄/K and P ∈ An,

P σ = (xσ
1 , . . . , xσ

n).

Then An(K) may be characterized by

An(K) = {P ∈ An : P σ = P for all σ ∈ GK̄/K}.

Let K̄[X] = K̄[X1, . . . , Xn] be a polynomial ring in n variables, and let
I ⊂ K̄[X] be an ideal. To each such I we associate a subset of An,

VI =
{
P ∈ An : f(P ) = 0 for all f ∈ I

}
.

Definition. An (affine) algebraic set is any set of the form VI . If V is an algebraic
set, the ideal of V is given by

I(V ) =
{
f ∈ K̄[X] : f(P ) = 0 for all P ∈ V

}
.

An algebraic set is defined over K if its ideal I(V ) can be generated by polynomials
in K[X]. We denote this by V/K. If V is defined over K, then the set of K-rational
points of V is the set

V (K) = V ∩ An(K).

Remark 1.1. Note that by the Hilbert basis theorem [8, 7.6], [73, §1.4], all ideals
in K̄[X] and K[X] are finitely generated.

Remark 1.2. Let V be an algebraic set, and consider the ideal I(V/K) defined by

I(V/K) =
{
f ∈ K[X] : f(P ) = 0 for all P ∈ V

}
= I(V ) ∩ K[X].

Then we see that V is defined over K if and only if

I(V ) = I(V/K)K̄[X].

Now suppose that V is defined over K and let f1, . . . , fm ∈ K[X] be gener-
ators for I(V/K). Then V (K) is precisely the set of solutions (x1, . . . , xn) to the
simultaneous polynomial equations

f1(X) = · · · = fm(X) = 0 with x1, . . . , xn ∈ K.

Thus one of the fundamental problems in the subject of Diophantine geometry,
namely the solution of polynomial equations in rational numbers, may be said to
be the problem of describing sets of the form V (K) when K is a number field.

Notice that if f(X) ∈ K[X] and P ∈ An, then for any σ ∈ GK̄/K ,

f(P σ) = f(P )σ.

Hence if V is defined over K, then the action of GK̄/K on An induces an action
on V , and clearly

V (K) = {P ∈ V : P σ = P for all σ ∈ GK̄/K}.



I.1. Affine Varieties 3

Example 1.3.1. Let V be the algebraic set in A2 given by the single equation

X2 − Y 2 = 1.

Clearly V is defined over K for any field K. Let us assume that char(K) �= 2. Then
the set V (K) is in one-to-one correspondence with A1(K) � {0}, one possible map
being

A1(K) � {0} −→ V (K),

t �−→
(

t2 + 1
2t

,
t2 − 1

2t

)
.

Example 1.3.2. The algebraic set

V : Xn + Y n = 1

is defined over Q. Fermat’s last theorem, proven by Andrew Wiles in 1995 [291,
311], states that for all n ≥ 3,

V (Q) =

{{
(1, 0), (0, 1)

}
if n is odd,

{
(±1, 0), (0,±1)

}
if n is even.

Example 1.3.3. The algebraic set

V : Y 2 = X3 + 17

has many Q-rational points, for example

(−2, 3) (5234, 378661)
(

137
64

,
2651
512

)
.

In fact, the set V (Q) is infinite. See (I.2.8) and (III.2.4) for further discussion of this
example.

Definition. An affine algebraic set V is called an (affine) variety if I(V ) is a
prime ideal in K̄[X]. Note that if V is defined over K, it is not enough to check
that I(V/K) is prime in K[X]. For example, consider the ideal (X2

1 − 2X2
2 ) in

Q[X1,X2].
Let V/K be a variety, i.e., V is a variety defined over K. Then the affine coordi-

nate ring of V/K is defined by

K[V ] =
K[X]

I(V/K)
.

The ring K[V ] is an integral domain. Its quotient field (field of fractions) is denoted
by K(V ) and is called the function field of V/K. Similarly K̄[V ] and K̄(V ) are
defined by replacing K with K̄.
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Note that since an element f ∈ K̄[V ] is well-defined up to adding a polynomial
vanishing on V , it induces a well-defined function f : V → K̄. If f(X) ∈ K̄[X] is
any polynomial, then GK̄/K acts on f by acting on its coefficients. Hence if V is
defined over K, so GK̄/K takes I(V ) into itself, then we obtain an action of GK̄/K

on K̄[V ] and K̄(V ). One can check (Exercise 1.12) that K[V ] and K(V ) are, re-
spectively, the subsets of K̄[V ] and K̄(V ) fixed by GK̄/K . We denote the action
of σ ∈ GK̄/K on f by f �→ fσ . Then for all points P ∈ V ,

(
f(P )

)σ = fσ(P σ).

Definition. Let V be a variety. The dimension of V , denoted by dim(V ), is the
transcendence degree of K̄(V ) over K̄.

Example 1.4. The dimension of An is n, since K̄(An) = K̄(X1, . . . , Xn). Simi-
larly, if V ⊂ An is given by a single nonconstant polynomial equation

f(X1, . . . , Xn) = 0,

then dim(V ) = n − 1. (The converse is also true; see [111, I.1.2].) In particular, the
examples described in (I.1.3.1), (I.1.3.2), and (I.1.3.3) all have dimension one.

In studying a geometric object, we are naturally interested in whether it looks
reasonably “smooth.” The next definition formalizes this notion in terms of the usual
Jacobian criterion for the existence of a tangent plane.

Definition. Let V be a variety, P ∈ V , and f1, . . . , fm ∈ K̄[X] a set of generators
for I(V ). Then V is nonsingular (or smooth) at P if the m × n matrix

(
∂fi

∂Xj
(P )

)

1≤i≤m
1≤j≤n

has rank n − dim(V ). If V is nonsingular at every point, then we say that V is
nonsingular (or smooth).

Example 1.5. Let V be given by a single nonconstant polynomial equation

f(X1, . . . , Xn) = 0.

Then (I.1.4) tells us that dim(V ) = n−1, so P ∈ V is a singular point if and only if

∂f

∂X1
(P ) = · · · =

∂f

∂Xn
(P ) = 0.

Since P also satisfies f(P ) = 0, this gives n + 1 equations for the n coordinates of
any singular point. Thus for a “randomly chosen” polynomial f , one would expect V
to be nonsingular. We will not pursue this idea further, but see Exercise 1.1.
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y2 = x3 + x y2 = x3 + x2

Figure 1.1: A smooth curve and a singular curve.

Example 1.6. Consider the two varieties

V1 : Y 2 = X3 + X and V2 : Y 2 = X3 + X2.

Using (I.1.5), we see that any singular points on V1 and V2 satisfy, respectively,

V sing
1 : 3X2 + 1 = 2Y = 0 and V sing

2 : 3X2 + 2X = 2Y = 0.

Thus V1 is nonsingular, while V2 has one singular point, namely (0, 0). The graphs
of V1(R) and V2(R) illustrate the difference; see Figure 1.1.

There is another characterization of smoothness, in terms of the functions on the
variety V , that is often quite useful. For each point P ∈ V , we define an ideal MP

of K̄[V ] by
MP =

{
f ∈ K̄[V ] : f(P ) = 0

}
.

Notice that MP is a maximal ideal, since there is an isomorphism

K̄[V ]/MP −→ K̄ given by f �−→ f(P ).

The quotient MP /M2
P is a finite-dimensional K̄-vector space.

Proposition 1.7. Let V be a variety. A point P ∈ V is nonsingular if and only if

dimK̄ MP /M2
P = dim V.

PROOF. [111, I.5.1]. (See Exercise 1.3 for a special case.)

Example 1.8. Consider the point P = (0, 0) on the varieties V1 and V2 of (I.1.6).
In both cases, MP is the ideal of K̄[V ] generated by X and Y , and M2

P is the ideal
generated by X2, XY , and Y 2. For V1 we have

X = Y 2 − X3 ≡ 0 (mod M2
P ),

so MP /M2
P is generated by Y alone. On the other hand, for V2 there is no nontrivial

relationship between X and Y modulo M2
P , so MP /M2

P requires both X and Y as
generators. Since each Vi has dimension one, (I.1.7) implies that V1 is smooth at P
and V2 is not.
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Definition. The local ring of V at P , denoted by K̄[V ]P , is the localization of K̄[V ]
at MP . In other words,

K̄[V ]P =
{
F ∈ K̄(V ) : F = f/g for some f, g ∈ K̄[V ] with g(P ) �= 0

}
.

Notice that if F = f/g ∈ K̄[V ]P , then F (P ) = f(P )/g(P ) is well-defined. The
functions in K̄[V ]P are said to be regular (or defined) at P .

I.2 Projective Varieties
Historically, projective space arose through the process of adding “points at infinity”
to affine space. We define projective space to be the collection of lines through the
origin in affine space of one dimension higher.

Definition. Projective n-space (over K), denoted by Pn or Pn(K̄), is the set of all
(n + 1)-tuples

(x0, . . . , xn) ∈ An+1

such that at least one xi is nonzero, modulo the equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn)

if there exists a λ ∈ K̄∗ such that xi = λyi for all i. An equivalence class
{
(λx0, . . . , λxn) : λ ∈ K̄∗}

is denoted by [x0, . . . , xn], and the individual x0, . . . , xn are called homogeneous
coordinates for the corresponding point in Pn. The set of K-rational points in Pn is
the set

Pn(K) =
{
[x0, . . . , xn] ∈ Pn : all xi ∈ K

}
.

Remark 2.1. Note that if P = [x0, . . . , xn] ∈ Pn(K), it does not follow that
each xi ∈ K. However, choosing some i with xi �= 0, it does follow that xj/xi ∈ K
for every j.

Definition. Let P = [x0, . . . , xn] ∈ Pn(K̄). The minimal field of definition for P
(over K) is the field

K(P ) = K(x0/xi, . . . , xn/xi) for any i with xi �= 0.

The Galois group GK̄/K acts on Pn by acting on homogeneous coordinates,

[x0, . . . , xn]σ = [xσ
0 , . . . , xσ

n].

This action is well-defined, independent of choice of homogeneous coordinates,
since

[λx0, . . . , λxn]σ = [λσxσ
0 , . . . , λσxσ

n] = [xσ
0 , . . . , xσ

n].

It is not difficult to check that
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Pn(K) = {P ∈ Pn : P σ = P for all σ ∈ GK̄/K},
and that

K(P ) = fixed field of {σ ∈ GK̄/K : P σ = P};

see Exercise 1.12.

Definition. A polynomial f ∈ K̄[X] = K̄[X0, . . . , Xn] is homogeneous of degree d
if

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn) for all λ ∈ K̄.

An ideal I ⊂ K̄[X] is homogeneous if it is generated by homogeneous polynomials.

Let f be a homogeneous polynomial and let P ∈ Pn. It makes sense to ask
whether f(P ) = 0, since the answer is independent of the choice of homogeneous
coordinates for P . To each homogeneous ideal I we associate a subset of Pn by the
rule

VI =
{
P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ I

}
.

Definition. A (projective) algebraic set is any set of the form VI for a homogeneous
ideal I . If V is a projective algebraic set, the (homogeneous) ideal of V , denoted
by I(V ), is the ideal of K̄[X] generated by

{
f ∈ K̄[X] : f is homogeneous and f(P ) = 0 for all P ∈ V

}
.

Such a V is defined over K, denoted by V/K, if its ideal I(V ) can be generated
by homogeneous polynomials in K[X]. If V is defined over K, then the set of K-
rational points of V is the set

V (K) = V ∩ Pn(K).

As usual, V (K) may also be described as

V (K) = {P ∈ V : Pσ = P for all σ ∈ GK̄/K}.

Example 2.2. A line in P2 is an algebraic set given by a linear equation

aX + bY + cZ = 0

with a, b, c ∈ K̄ not all zero. If, say, c �= 0, then such a line is defined over any field
containing a/c and b/c. More generally, a hyperplane in Pn is given by an equation

a0X0 + a1X1 + · · · + anXn = 0

with ai ∈ K̄ not all zero.
Example 2.3. Let V be the algebraic set in P2 given by the single equation

X2 + Y 2 = Z2.

Then for any field K with char(K) �= 2, the set V (K) is isomorphic to P1(K), for
example by the map

P1(K) −→ V (K), [s, t] �−→ [s2 − t2, 2st, s2 + t2].

(For the precise definition of “isomorphic,” see (I.3.5).)
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Remark 2.4. A point of Pn(Q) has the form [x0, . . . , xn] with xi ∈ Q. Multiply-
ing by an appropriate λ ∈ Q, we can clear denominators and common factors from
the xi’s. In other words, every P ∈ Pn(Q) may be written with homogeneous coor-
dinates [x0, . . . , xn] satisfying

x0, . . . , xn ∈ Z and gcd(x0, . . . , xn) = 1.

Note that the xi’s are determined by P up to multiplication by −1.
Thus if an ideal of an algebraic set V/Q is generated by homogeneous polynomi-

als f1, . . . , fm ∈ Q[X], then describing V (Q) is equivalent to finding the solutions
to the homogeneous equations

f1(X0, . . . , Xn) = · · · = fm(X0, . . . , Xn) = 0

in relatively prime integers x0, . . . , xn.

Example 2.5. The algebraic set

V : X2 + Y 2 = 3Z2

is defined over Q. However, V (Q) = ∅. To see this, suppose that [x, y, z] ∈ V (Q)
with x, y, z ∈ Z and gcd(x, y, z) = 1. Then

x2 + y2 ≡ 0 (mod 3),

so the fact that −1 is not a square modulo 3 implies that

x ≡ y ≡ 0 (mod 3).

Hence x2 and y2 are divisible by 32. It follows from the equation for V that 3 also
divides z, which contradicts the assumption that gcd(x, y, z) = 1.

This example illustrates a fundamental tool used in the study of Diophantine
equations.

In order to show that an algebraic set V/Q has no Q-rational points, it
suffices to show that the corresponding homogeneous polynomial equa-
tions have no nonzero solutions modulo p for any one prime p (or even
for one prime power pr).

A more succinct way to phrase this is to say that if V (Q) is nonempty, then V (Qp) is
nonempty for every p-adic field Qp. Similarly, V (R) would also be nonempty. One of
the reasons that the study of Diophantine equations is so difficult is that the converse
to this statement, which is called the Hasse principle, does not hold in general. An
example, due to Selmer [225, 227], is the equation

V : 3X3 + 4Y 2 + 5Z3 = 0.

One can check that V (Qp) is nonempty for every prime p, yet V (Q) is empty. See,
e.g., [41, §4] for a proof. Other examples are given in (X.6.5).
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Definition. A projective algebraic set is called a (projective) variety if its homoge-
neous ideal I(V ) is a prime ideal in K̄[X].

It is clear that Pn contains many copies of An. For example, for each 0 ≤ i ≤ n,
there is an inclusion

φi : An −→ Pn,

(y1, . . . , yn) �−→ [y1, y2, . . . , yi−1, 1, yi, . . . , yn].

We let Hi denote the hyperplane in Pn given by Xi = 0,

Hi =
{
P = [x0, . . . , xn] ∈ Pn : xi = 0

}
,

and we let Ui be the complement of Hi,

Ui =
{
P = [x0, . . . , xn] ∈ Pn : xi �= 0

}
= Pn � Hi.

There is a natural bijection

φ−1
i : Ui −→ An,

[x0, . . . , xn] �−→
(

x0

xi
,
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn

xi
,

)
.

(Note that for any point of Pn with xi �= 0, the quantities xj/xi are well-defined.)
For a fixed i, we will normally identify An with the set Ui in Pn via the map φi.

Now let V be a projective algebraic set with homogeneous ideal I(V ) ⊂ K̄[X].
Then V ∩An, by which we mean φ−1

i (V ∩Ui) for some fixed i, is an affine algebraic
set with ideal I(V ∩ An) ⊂ K̄[Y ] given by

I(V ∩ An) =
{
f(Y1, . . . , Yi−1, 1, Yi+1, . . . , Yn) : f(X0, . . . , Xn) ∈ I(V )

}
.

Notice that the sets U0, . . . , Un cover all of Pn, so any projective variety V is cov-
ered by subsets V ∩ U0, . . . , V ∩ Un, each of which is an affine variety via an ap-
propriate φ−1

i . The process of replacing the polynomial f(X0, . . . , Xn) with the
polynomial f(Y1, . . . , Yi−1, 1, Yi+1, . . . , Yn) is called dehomogenization with re-
spect to Xi.

This process can be reversed. For any f(Y ) ∈ K̄[Y ], we define

f∗(X0, . . . , Xn) = Xd
i f

(
X0

Xi
,
X1

Xi
, . . . ,

Xi−1

Xi
,
Xi+1

Xi
, . . . ,

Xn

Xi

)
,

where d = deg(f) is the smallest integer for which f∗ is a polynomial. We say
that f∗ is the homogenization of f with respect to Xi.

Definition. Let V ⊂ An be an affine algebraic set with ideal I(V ), and consider V
as a subset of Pn via

V ⊂ An φi−−−−−→ Pn.

The projective closure of V , denoted by V̄ , is the projective algebraic set whose
homogeneous ideal I(V̄ ) is generated by

{
f∗(X) : f ∈ I(V )

}
.
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Proposition 2.6. (a) Let V be an affine variety. Then V̄ is a projective variety, and

V = V̄ ∩ An.

(b) Let V be a projective variety. Then V ∩ An is an affine variety, and either

V ∩ An = ∅ or V = V ∩ An.

(c) If an affine (respectively projective) variety V is defined over K, then V̄ (re-
spectively V ∩ An) is also defined over K.

PROOF. See [111, I.2.3] for (a) and (b). Part (c) is clear from the definitions.

Remark 2.7. In view of (I.2.6), each affine variety may be identified with a unique
projective variety. Notationally, since it is easier to deal with affine coordinates, we
will often say “let V be a projective variety” and write down some inhomogeneous
equations, with the understanding that V is the projective closure of the indicated
affine variety W . The points of V � W are called the points at infinity on V .
Example 2.8. Let V be the projective variety given by the equation

V : Y 2 = X3 + 17.

This really means that V is the variety in P2 given by the homogeneous equation

Ȳ 2Z̄ = X̄3 + 17Z̄3,

the identification being

X = X̄/Z̄, Y = Ȳ /Z̄.

This variety has one point at infinity, namely [0, 1, 0], obtained by setting Z̄ = 0.
Thus, for example,

V (Q) =
{
(x, y) ∈ A2(Q) : y2 = x3 + 17

}
∪
{
[0, 1, 0]

}
.

In (I.1.3.3) we listed several points in V (Q). The reader may verify (Exercise 1.5)
that the line connecting any two points of V (Q) intersects V in a third point of V (Q)
(provided that the line is not tangent to V ). Using this secant line procedure repeat-
edly leads to infinitely many points in V (Q), although this is by no means obvious.
The variety V is an elliptic curve, and as such, it provides the first example of the va-
rieties that will be our principal object of study in this book. See (III.2.4) for further
discussion of this example.

Many important properties of a projective variety V may now be defined in terms
of the affine subvariety V ∩ An.

Definition. Let V/K be a projective variety and choose An ⊂ Pn such that
V ∩ An �= ∅. The dimension of V is the dimension of V ∩ An.

The function field of V , denoted by K(V ), is the function field of V ∩ An, and
similarly for K̄(V ). We note that for different choices of An, the different K(V ) are
canonically isomorphic, so we may identify them. (See (I.2.9) for another description
of K(V ).)
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Definition. Let V be a projective variety, let P ∈ V , and choose An ⊂ Pn

with P ∈ An. Then V is nonsingular (or smooth) at P if V ∩ An is nonsingular
at P . The local ring of V at P , denoted by K̄[V ]P , is the local ring of V ∩ An at P .
A function F ∈ K̄(V ) is regular (or defined) at P if it is in K̄[V ]P , in which case it
makes sense to evaluate F at P .

Remark 2.9. The function field of Pn may also be described as the subfield
of K̄(X0, . . . , Xn) consisting of rational functions F (X) = f(X)/g(X) for
which f and g are homogeneous polynomials of the same degree. Such an ex-
pression gives a well-defined function on Pn at all point P where g(P ) �= 0.
Similarly, the function field of a projective variety V is the field of rational func-
tions F (X) = f(X)/g(X) such that:

(i) f and g are homogeneous of the same degree;

(ii) g /∈ I(V );

(iii) two functions f1/g1 and f2/g2 are identified if f1g2 − f2g1 ∈ I(V ).

I.3 Maps Between Varieties
In this section we look at algebraic maps between projective varieties. These are
maps that are defined by rational functions.

Definition. Let V1 and V2 ⊂ Pn be projective varieties. A rational map from V1

to V2 is a map of the form

f : V1 −→ V2, φ = [f0, . . . , fn],

where the functions f0, . . . , fn ∈ K̄(V1) have the property that for every point
P ∈ V1 at which f0, . . . , fn are all defined,

φ(P ) =
[
f0(P ), . . . , fn(P )

]
∈ V2.

If V1 and V2 are defined over K, then GK̄/K acts on φ in the obvious way,

φσ(P ) =
[
fσ
0 (P ), . . . , fσ

n (P )
]
.

Notice that we have the formula

φ(P )σ = φσ(P σ) for all σ ∈ GK̄/K and P ∈ V1.

If, in addition, there is some λ ∈ K̄∗ such that λf0, . . . , λfn ∈ K(V1), then φ is
said to be defined over K. Note that [f0, . . . , fn] and [λf0, . . . , λfn] give the same
map on points. As usual, it is true that φ is defined over K if and only if φ = φσ for
all σ ∈ GK̄/K ; see Exercise 1.12c.
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Remark 3.1. A rational map φ : V1 → V2 is not necessarily a well-defined func-
tion at every point of V1. However, it may be possible to evaluate φ(P ) at points P
of V1 where some fi is not regular by replacing each fi by gfi for an appropri-
ate g ∈ K̄(V1).

Definition. A rational map

φ = [f0, . . . , fn] : V1 −→ V2

is regular (or defined) at P ∈ V1 if there is a function g ∈ K̄(V1) such that

(i) each gfi is regular at P ;

(ii) there is some i for which (gfi)(P ) �= 0.

If such a g exists, then we set

φ(P ) =
[
(gf0)(P ), . . . , (gfn)(P )

]
.

N.B. It may be necessary to take different g’s for different points. A rational map that
is regular at every point is called a morphism.

Remark 3.2. Let V1 ⊂ Pm and V2 ⊂ Pn be projective varieties. Recall (I.2.9)
that the functions in K̄(V1) may be described as quotients of homogeneous poly-
nomials in K̄[X0, . . . , Xm] having the same degree. Thus by multiplying a rational
map φ = [f0, . . . , fn] by a homogeneous polynomial that “clears the denominators”
of the fi’s, we obtain the following alternative definition:

A rational map φ : V1 → V2 is a map of the form

φ =
[
φ0(X), . . . , φn(X)

]
,

where

(i) the φi(X) ∈ K̄[X] = K̄[X0, . . . , Xn] are homogeneous polynomials, not all
in I(V1), having the same degree;

(ii) for very f ∈ I(V2),

f
(
φ0(X), . . . , φn(X)

)
∈ I(V1).

Clearly, φ(P ) is well-defined provided that some φi(P ) �= 0. However, even if
all φi(P ) = 0, it may be possible to alter φ so as to make sense of φ(P ). We make
this precise as follows:

A rational map φ = [φ0, . . . , φn] : V1 → V2 as above is regular (or defined)
at P ∈ V1 if there exist homogeneous polynomials ψ0, . . . , ψn ∈ K̄[X] such that

(i) ψ0, . . . , ψn have the same degree;

(ii) φiψj ≡ φjψi (mod I(V1)) for all 0 ≤ i, j ≤ n;

(iii) ψ(P ) �= 0 for some i.
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If this occurs, then we set

φ(P ) =
[
ψ0(P ), . . . , ψn(P )

]
.

As above, a rational map that is everywhere regular is called a morphism.

Remark 3.3. Let φ = [φ0, . . . , φn] : Pm → Pn be a rational map as in (I.3.2), where
the φi ∈ K̄[X] are homogeneous polynomials of the same degree. Since K̄[X] is a
unique factorization domain (UFD), we may assume that the φi’s have no common
factor. Then φ is regular at a point P ∈ Pm if and only if some φi(P ) �= 0. (Note
that I(Pm) = (0), so there is no way to alter the φi’s.) Hence φ is a morphism if and
only if the φi’s have no common zero in Pm.

Definition. Let V1 and V2 be varieties. We say that V1 and V2 are isomorphic, and
write V1

∼= V2, if there are morphisms φ : V1 → V2 and ψ : V2 → V1 such
that ψ◦φ and φ◦ψ are the identity maps on V1 and V2, respectively. We say that V1/K
and V2/K are isomorphic over K if φ and ψ can be defined over K. Note that both φ
and ψ must be morphisms, not merely rational maps.

Remark 3.4. If φ : V1 → V2 is an isomorphism defined over K, then φ identi-
fies V1(K) with V2(K). Hence for Diophantine problems, it suffices to study any
one variety in a given K-isomorphism class of varieties.

Example 3.5. Assume that char(K) �= 2 and let V be the variety from (I.2.3),

V : X2 + Y 2 = Z2.

Consider the rational map

φ : V −→ P1, φ = [X + Z, Y ].

Clearly φ is regular at every point of V except possibly at [1, 0,−1], i.e., at the point
where X + Z = Y = 0. However, using

(X + Z)(X − Z) ≡ −Y 2 (mod I(V )),

we have

φ = [X + Z, Y ] = [X2 − Z2, Y (X − Z)] = [−Y 2, Y (X − Z)] = [−Y,X − Z].

Thus
φ
(
[1, 0,−1]

)
= [0, 2] = [0, 1],

so φ is regular at every point of V , i.e., φ is a morphism. One easily checks that the
map

ψ : P1 −→ V, ψ = [S2 − T 2, 2ST, S2 + T 2],

is a morphism and provides an inverse for φ, so V and P1 are isomorphic.
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Example 3.6. Using (I.3.3), we see that the rational map

φ : P2 −→ P2, φ = [X2,XY,Z2],

is regular everywhere except at the point [0, 1, 0].

Example 3.7. Let V be the variety

V : Y 2Z = X3 + X2Z

and consider the rational maps

ψ : P1 → V, ψ =
[
(S2 − T 2)T, (S2 − T 2)S, T 3

]
,

φ : V → P1, φ = [Y,X].

Here ψ is a morphism, while φ is not regular at [0, 0, 1]. Not coincidentally, the
point [0, 0, 1] is a singular point of V ; see (II.2.1). We emphasize that although the
compositions φ ◦ ψ and ψ ◦ φ are the identity map wherever they are defined, the
maps φ and ψ are not isomorphisms, because φ is not a morphism.

Example 3.8. Consider the varieties

V1 : X2 + Y 2 = Z2 and V2 : X2 + Y 2 = 3Z2.

They are not isomorphic over Q, since V2(Q) = ∅ from (I.2.5), while V1(Q) con-
tains lots of points. (More precisely, V1(Q) = P1(Q) from (I.3.5).) However, the
varieties V1 and V2 are isomorphic over Q(

√
3 ), an isomorphism being given by

φ : V2 −→ V1, φ = [X,Y,
√

3 Z].

Exercises
1.1. Let A, B ∈ K̄. Characterize the values of A and B for which each of the following
varieties is singular. In particular, as (A, B) ranges over A2, show that the “singular values” lie
on a one-dimensional subset of A2, so “most” values of (A, B) give a nonsingular variety.

(a) V : Y 2Z + AXY Z + BY Z2 = X3.
(b) V : Y 2Z = X3 + AXZ2 + BZ3. (You may assume that char(K) �= 2.)

1.2. Find the singular point(s) on each of the following varieties. Sketch V (R).
(a) V : Y 2 = X3 in A2.
(b) V : 4X2Y 2 = (X2 + Y 2)3 in A2.
(c) V : Y 2 = X4 + Y 4 in A2.
(d) V : X2 + Y 2 = (Z − 1)2 in A3.

1.3. Let V ⊂ An be a variety given by a single equation as in (I.1.4). Prove that a point P ∈ V
is nonsingular if and only if

dimK̄ MP /M2
P = dim V.

(Hint. Let f = 0 be the equation of V and define the tangent plane of V at P by
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T =

{

(y1, . . . , yn) ∈ A
n :

n∑

i=1

(
∂f

∂Xi
(P )

)
yi = 0

}

.

Show that the map

MP /M2
P × T −→ K̄, (g, y) �−→

n∑

i=1

(
∂g

∂Xi
(P )

)
yi,

is a well-defined perfect pairing of K̄-vector spaces. Now use (I.1.5).)

1.4. Let V/Q be the variety

V : 5X2 + 6XY + 2Y 2 = 2Y Z + Z2.

Prove that V (Q) = ∅.

1.5. Let V/Q be the projective variety

V : Y 2 = X3 + 17,

and let P1 = (x1, y1) and P2 = (x2, y2) be distinct points of V . Let L be the line through P1

and P2.
(a) Show that V ∩ L = {P1, P2, P3} and express P3 = (x3, y3) in terms of P1 and P2.

(If L is tangent to V , then P3 may equal P1 or P2.)
(b) Calculate P3 for P1 = (−1, 4) and P2 = (2, 5).
(c) Show that if P1, P2 ∈ V (Q), then P3 ∈ V (Q).

1.6. Let V be the variety
V : Y 2Z = X3 + Z3.

Show that the map
φ : V −→ P

2, φ = [X2, XY, Z2],

is a morphism. (Notice that φ does not give a morphism P2 → P2.)

1.7. Let V be the variety
V : Y 2Z = X3,

and let φ be the map
φ : P

1 −→ V, φ = [S2T, S3, T 3].

(a) Show that φ is a morphism.
(b) Find a rational map ψ : V → P1 such that φ◦ψ and ψ ◦φ are the identity map wherever

they are defined.
(c) Is φ an isomorphism?

1.8. Let Fq be a finite field with q elements and let V ⊂ Pn be a variety defined over Fq .
(a) Prove that the qth-power map

φ = [Xq
0 , . . . , Xq

n]

is a morphism φ : V → V . It is called the Frobenius morphism.
(b) Prove that φ is one-to-one and onto.
(c) Prove that φ is not an isomorphism.
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(d) Prove that V (Fq) =
{
P ∈ V : φ(P ) = P

}
.

1.9. If m > n, prove that there are no nonconstant morphisms Pm → Pn. (Hint. Use the
dimension theorem [111, I.7.2].)

1.10. For each prime p ≥ 3, let Vp ⊂ P2 be the variety given by the equation

Vp : X2 + Y 2 = pZ2.

(a) Prove that Vp is isomorphic to P1 over Q if and only if p ≡ 1 (mod 4).
(b) Prove that for p ≡ 3 (mod 4), no two of the Vp’s are isomorphic over Q.

1.11. (a) Let f ∈ K[X0, . . . , Xn] be a homogeneous polynomial, and let

V =
{
P ∈ P

n : f(P ) = 0
}

be the hypersurface defined by f . Prove that if a point P ∈ V is singular, then

∂f

∂X0
(P ) = · · · =

∂f

∂Xn
(P ) = 0.

Thus for hypersurfaces in projective space, we can check for smoothness using homoge-
neous coordinates.

(b) Let n ≥ 1, and let W ⊂ Pn be a smooth algebraic set, each of whose component
varieties has dimension n− 1. Prove that W is a variety. (Hint. First use Krull’s Haupt-
idealsatz [8, page 122], [73, Theorem 10.1], to show that W is the zero of a single
homogeneous polynomial.)

1.12. (a) Let V/K be an affine variety. Prove that

K[V ] =
{
f ∈ K̄[V ] : fσ = f for all σ ∈ GK̄/K

}
.

(Hint. One inclusion is clear. For the other, choose some polynomial F ∈ K̄[X] with
F ≡ f (mod I(V )). Show that the map GK̄/K → I(V ) defined by σ �→ F σ − F is a
1-cocycle; see (B §2). Now use (B.2.5a) to conclude that there exists a G ∈ I(V ) such
that F + G ∈ K[X].)

(b) Prove that
P

n(K) =
{
P ∈ P

n(K̄) : P σ = P for all σ ∈ GK̄/K

}
.

(Hint. Write P = [x0, . . . , xn]. If P = P σ , then there is a λσ ∈ K̄∗ such that
xσ

i = λσxi for all 0 ≤ i ≤ n. Show that the map σ �→ λσ gives a 1-cocycle
from GK̄/K to K̄∗. Now use Hilbert’s Theorem 90 (B.2.5b) to find an α ∈ K̄∗ such
that [αx0, . . . , αxn] ∈ Pn(K).)

(c) Let φ : V1 → V2 be a rational map of projective varieties. Prove that φ is defined over K
if and only if φσ = φ for every σ ∈ GK̄/K . (Hint. Use (a) and (b).)



Chapter II

Algebraic Curves

In this chapter we present basic facts about algebraic curves, i.e., projective varieties
of dimension one, that will be needed for our study of elliptic curves. Actually, since
elliptic curves are curves of genus one, one of our tasks will be to define the genus
of a curve. As in Chapter I, we give references for those proofs that are not included.
There are many books in which the reader will find more material on the subject of
algebraic curves, for example [111, Chapter IV], [133], [180], [243], [99, Chapter 2],
and [302].

We recall the following notation from Chapter I that will be used in this chapter.
Here C denotes a curve and P ∈ C is a point of C.

C/K C is defined over K.

K̄(C) the function field of C over K̄.

K(C) the function field of C over K.

K̄[C]P the local ring of C at P .

MP the maximal ideal of K̄[C]P .

II.1 Curves
By a curve we will always mean a projective variety of dimension one. We generally
deal with curves that are smooth. Examples of smooth curves include P1, (I.2.3),
and (I.2.8). We start by describing the local rings at points on a smooth curve.

Proposition 1.1. Let C be a curve and P ∈ C a smooth point. Then K̄[C]P is a
discrete valuation ring.

PROOF. From (I.1.7), the vector space MP /M2
P is a one-dimensional vector space

over the field K̄ = K̄[C]P /MP . Now use [8, Proposition 9.2] or Exercise 2.1.

Definition. Let C be a curve and P ∈ C a smooth point. The (normalized) valuation
on K̄[C]P is given by

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 17
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 II,
c© Springer Science+Business Media, LLC 2009
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ordP : K̄[C]P −→ {0, 1, 2, . . .} ∪ {∞},
ordP (f) = sup{d ∈ Z : f ∈ Md

P }.

Using ordP (f/g) = ordP (f) − ordP (g), we extend ordP to K̄(C),

ordP : K̄(C) −→ Z ∪ ∞.

A uniformizer for C at P is any function t ∈ K̄(C) with ordP (t) = 1, i.e., a
generator for the ideal MP .

Remark 1.1.1. If P ∈ C(K), then it is not hard to show that K(C) contains uni-
formizers for P ; see Exercise 2.16.

Definition. Let C and P be as above, and let f ∈ K̄(C). The order of f at P is
ordP (f). If ordP (f) > 0, then f has a zero at P , and if ordP (f) < 0, then f
has a pole at P . If ordP (f) ≥ 0, then f is regular (or defined) at P and we can
evaluate f(P ). Otherwise f has a pole at P and we write f(P ) = ∞.

Proposition 1.2. Let C be a smooth curve and f ∈ K̄(C) with f �= 0. Then there
are only finitely many points of C at which f has a pole or zero. Further, if f has no
poles, then f ∈ K̄.

PROOF. See [111, I.6.5], [111, II.6.1], or [243, III §1] for the finiteness of the number
of poles. To deal with the zeros, look instead at 1/f . The last statement is [111,
I.3.4a] or [243, I §5, Corollary 1].

Example 1.3. Consider the two curves

C1 : Y 2 = X3 + X and C2 : Y 2 = X3 + X2.

(Remember our convention (I.2.7) concerning affine equations for projective vari-
eties. Each of C1 and C2 has a single point at infinity.) Let P = (0, 0). Then C1

is smooth at P and C2 is not (I.1.6). The maximal ideal MP of K̄[C1]P has the
property that MP /M2

P is generated by Y (I.1.8), so for example,

ordP (Y ) = 1, ordP (X) = 2, ordP (2Y 2 − X) = 2.

(For the last, note that 2Y 2 − X = 2X3 + X .) On the other hand, K̄[C2]P is not a
discrete valuation ring.

The next proposition is useful in dealing with curves over fields of characteristic
p > 0. (See also Exercise 2.15.)

Proposition 1.4. Let C/K be a curve, and let t ∈ K(C) be a uniformizer at some
nonsingular point P ∈ C(K). Then K(C) is a finite separable extension of K(t).

PROOF. The field K(C) is clearly a finite (algebraic) extension of K(t), since it is
finitely generated over K, has transcendence degree one over K (since C is a curve),
and t /∈ K. Let x ∈ K(C). We claim that x is separable over K(t).
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In any case, x is algebraic over K(t), so it satisfies some polynomial relation
∑

aijt
ixj = 0, where Φ(T,X) =

∑
aijT

iXj ∈ K[X,T ].

We may further assume that Φ is chosen so as to have minimal degree in X ,
i.e., Φ(t,X) is a minimal polynomial for x over K(t). Let p = char(K). If Φ
contains a nonzero term aijT

iXj with j �≡ 0 (mod p), then ∂Φ(t,X)/∂X is not
identically 0, so x is separable over K(t).

Suppose instead that Φ(T,X) = Ψ(T,Xp). We proceed to derive a contra-
diction. The main point to note is that if F (T,X) ∈ K[T,X] is any polynomial,
then F (T p,Xp) is a pth power. This is true because we have assumed that K is
perfect, which implies that every element of K is a pth power. Thus if F (T,X) =∑

αijT
iXj , then writing αij = βp

ij gives F (T p,Xp) =
(∑

βijT
iXj

)p
.

We regroup the terms in Φ(T,X) = Ψ(T,Xp) according to powers of T mod-
ulo p. Thus

Φ(T,X) = Ψ(T,Xp) =
p−1∑

k=0

⎛

⎝
∑

i,j

bijkT ipXjp

⎞

⎠T k =
p−1∑

k=0

φk(T,X)pT k.

By assumption we have Φ(t, x) = 0. On the other hand, since t is a uniformizer
at P , we have

ordP

(
φk(t, x)ptk

)
= p ordP

(
φk(t, x)

)
+ k ordP (t) ≡ k (mod p).

Hence each of the terms in the sum
∑

φk(t, x)ptk has a distinct order at P , so every
term must vanish,

φ0(t, x) = φ1(t, x) = · · · = φp−1(t, x) = 0.

But at least one of the φk(T,X)’s must involve X , and for that k, the rela-
tion φk(t, x) = 0 contradicts our choice of Φ(t,X) as a minimal polynomial for x
over K(t). (Note that degX φk(T,X) ≤ 1

p degX Φ(T,X).) This contradiction com-
pletes the proof that x is separable over K(t).

II.2 Maps Between Curves
We start with the fundamental result that for smooth curves, a rational map is defined
at every point.

Proposition 2.1. Let C be a curve, let V ⊂ PN be a variety, let P ∈ C be a smooth
point, and let φ : C → V be a rational map. Then φ is regular at P . In particular,
if C is smooth, then φ is a morphism.

PROOF. Write φ = [f0, . . . , fN ] with functions fi ∈ K̄(C), and choose a uni-
formizer t ∈ K̄(C) for C at P . Let
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n = min
0≤i≤N

ordP (fi).

Then

ordP (t−nfi) ≥ 0 for all i and ordP (t−nfj) = 0 for some j.

Hence every t−nfi is regular at P , and (t−nfj)(P ) �= 0. Therefore φ is regular
at P .

See (I.3.6) and (I.3.7) for examples where (II.2.1) is false if P is not smooth or
if C has dimension greater than 1.

Example 2.2. Let C/K be a smooth curve and let f ∈ K(C) be a function. Then f
defines a rational map, which we also denote by f ,

f : C −→ P1, P �−→
[
f(P ), 1

]
.

From (II.2.1), this map is actually a morphism. It is given explicitly by

f(P ) =

{[
f(P ), 1

]
if f is regular at P ,

[1, 0] if f has a pole at P .

Conversely, let
φ : C −→ P1, φ = [f, g],

be a rational map defined over K. Then either g = 0, in which case φ is the constant
map φ = [1, 0], or else φ is the map corresponding to the function f/g ∈ K(C).
Denoting the former map by ∞, we thus have a one-to-one correspondence

K(C) ∪ {∞} ←→ {maps C → P1 defined over K}.

We will often implicitly identify these two sets.

Theorem 2.3. Let φ : C1 → C2 be a morphism of curves. Then φ is either constant
or surjective.

PROOF. See [111, II.6.8] or [243, I §5, Theorem 4].

Let C1/K and C2/K be curves and let φ : C1 → C2 be a nonconstant rational
map defined over K. Then composition with φ induces an injection of function fields
fixing K,

φ∗ : K(C2) −→ K(C1), φ∗f = f ◦ φ.

Theorem 2.4. Let C1/K and C2/K be curves.
(a) Let φ : C1 → C2 be a nonconstant map defined over K. Then K(C1) is a finite

extension of φ∗(K(C2)).
(b) Let ι : K(C2) → K(C1) be an injection of function fields fixing K. Then

there exists a unique nonconstant map φ : C1 → C2 (defined over K) such
that φ∗ = ι.
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(c) Let K ⊂ K(C1) be a subfield of finite index containing K. Then there ex-
ist a smooth curve C ′/K, unique up to K-isomorphism, and a nonconstant
map φ : C1 → C ′ defined over K such that φ∗K(C ′) = K.

PROOF. (a) [111, II.6.8].
(b) Let C1 ⊂ PN , and for each i, let gi ∈ K(C2) be the function on C2 correspond-
ing to Xi/X0. (Relabeling if necessary, we may assume that C2 is not contained in
the hyperplane X0 = 0.) Then

φ =
[
1, ι(g1), . . . , ι(gN )

]

gives a map φ : C1 → C2 with φ∗ = ι. (Note that φ is not constant, since the gi’s
cannot all be constant and ι is injective.) Finally, if ψ = [f0, . . . , fN ] is another map
with ψ∗ = ι, then for each i,

fi/f0 = ψ∗gi = φ∗gi = ι(gi),

which shows that ψ = φ.
(c) See [111, I.6.12] for the case that K is algebraically closed. The general case

can be proven similarly, or it may be deduced from the algebraically closed case by
examining GK̄/K-invariants.

Definition. Let φ : C1 → C2 be a map of curves defined over K. If φ is constant,
we define the degree of φ to be 0. Otherwise we say that φ is a finite map and we
define its degree to be

deg φ =
[
K(C1) : φ∗K(C2)

]
.

We say that φ is separable, inseparable, or purely inseparable if the field exten-
sion K(C1)/φ∗K(C2) has the corresponding property, and we denote the separable
and inseparable degrees of the extension by degs φ and degi φ, respectively.

Definition. Let φ : C1 → C2 be a nonconstant map of curves defined over K.
From (II.2.4a) we know that K(C1) is a finite extension of φ∗K(C2). We use the
norm map relative to φ∗ to define a map in the other direction,

φ∗ : K(C1) �−→ K(C2), φ∗ = (φ∗)−1 ◦ NK(C1)/φ∗K(C2) .

Corollary 2.4.1. Let C1 and C2 be smooth curves, and let φ : C1 → C2 be a map
of degree one. Then φ is an isomorphism.

PROOF. By definition, deg φ = 1 means that φ∗K̄(C2) = K̄(C1), so φ∗ is an
isomorphism of function fields. Hence from (II.2.5b), corresponding to the inverse
map (φ∗)−1 : K̄(C1)

∼−→ K̄(C2), there is a rational map ψ : C2 → C1 such
that ψ∗ = (φ∗)−1. Further, since C2 is smooth, (II.2.1) tells us that ψ is actually a
morphism. Finally, since (φ ◦ ψ)∗ = ψ∗ ◦ φ∗ is the identity map on K̄(C2), and
similarly (ψ ◦φ)∗ = φ∗ ◦ψ∗ is the identity map on K̄(C1), the uniqueness assertion
of (II.2.4b) implies that φ ◦ ψ and ψ ◦ φ are, respectively, the identity maps on C2

and C1. Hence φ and ψ are isomorphisms.
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Remark 2.5. The above result (II.2.4) shows the close connection between (smooth)
curves and their function fields. This can be made precise by stating that the follow-
ing map is an equivalence of categories. (See [111, I §6] for details.)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Objects: smooth curves
defined over K
Maps: nonconstant rational
maps (equivalently
surjective morphisms)
defined over K

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Objects: finitely generated
extensions K/K of
transcendence degree one with
K ∩ K̄ = K
Maps: field injections fixing K

⎤

⎥
⎥
⎥
⎦

�

�C/K K(C)

�φ : C1 → C2 φ∗ : K(C2) → K(C1)

Example 2.5.1. Hyperelliptic Curves. We assume that char(K) �= 2. We choose a
polynomial f(x) ∈ K[x] of degree d and consider the affine curve C0/K given by
the equation

C0 : y2 = f(x) = a0x
d + a1x

d−1 + · · · + ad.

Suppose that the point P = (x0, y0) ∈ C0 is singular. Then

2y0 = f ′(x0) = 0,

which means that y0 = 0 and x0 is a double root of f(x). Hence, if we assume that
disc(f) �= 0, then the affine curve y2 = f(x) will be nonsingular.

If we treat C0 as a curve in P2 by homogenizing its affine equation, then one
easily checks that the point(s) at infinity are singular whenever d ≥ 4. On the other
hand, (II.2.4c) assures us that there exists some smooth projective curve C/K whose
function field equals K(C0) = K(x, y). The problem is that this smooth curve is not
a subset of P2.

For example, consider the case d = 4. (See also Exercise 2.14.) Then C0 has an
affine equation

C0 : y2 = a0x
4 + a1x

3 + a2x
2 + a3x + a4.

We define a map
[1, x, y, x2] : C0 −→ P3.

Letting [X0,X1,X2,X3] = [1, x, y, x2], the ideal of the image clearly contains the
two homogeneous polynomials

F = X3X0 − X2
1 ,

G = X2
2X2

0 − a0X
4
1 − a1X

3
1X0 − a2X

2
1X2

0 − a3X1X
3
0 − a4X

4
0 .

However, the zero set of these two polynomials cannot be the desired curve C, since
it includes the line X0 = X1 = 0. So we substitute X2

1 = X0X3 into G and cancel
an X2

0 to obtain the quadratic polynomial
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H = X2
2 − a0X

2
3 − a1X1X3 − a2X0X3 − a3X0X1 − a4X

2
0 .

We claim that the ideal generated by F and H gives a smooth curve C.
To see this, note first that if X0 �= 0, then dehomogenization with respect to X0

gives the affine curve (setting x = X1/X0, y = X2/X0, and z = X3/X0)

z = x2 and y2 = a0z
2 + a1xz + a2z + a3x + a4.

Substituting the first equation into the second gives us back the original curve C0.
Thus C0

∼= C ∩ {X0 �= 0}.
Next, if X0 = 0, then necessarily X1 = 0, and then X2 = ±√

a0 X3. Thus C
has two points

[
0, 0,±√

a0, 1
]

on the hyperplane X0 = 0. (Note that a0 �= 0, since
we have assumed that f(x) has degree exactly four.) To check that C is nonsingular
at these two points, we dehomogenize with respect to X3, setting u = X0/X3,
v = X1/X3, and w = X2/X3. This gives the equations

u = v2 and w2 = a0 + a1v + a2u + a3uv + a4u
2,

from which we obtain the single affine equation

w2 = a0 + a1v + a2v
2 + a3v

3 + a4v
4.

Again using the assumption that the polynomial f(x) has no double roots, we see
that the points (v, w) =

(
0,±√

a0

)
are nonsingular.

We summarize the preceding discussion in the following proposition, which will
be used in Chapter X.

Proposition 2.5.2. Let f(X) ∈ K[x] be a polynomial of degree 4 with disc(f) �= 0.
There exists a smooth projective curve C ⊂ P3 with the following properties:

(i) The intersection of C with A3 = {X0 �= 0} is isomorphic to the affine
curve y2 = f(x).

(ii) Let f(x) = a0x
4 + · · · + a4. Then the intersection of C with the hyper-

plane X0 = 0 consists of the two points
[
0, 0,±√

a0, 1
]
.

We next look at the behavior of a map in the neighborhood of a point.

Definition. Let φ : C1 → C2 be a nonconstant map of smooth curves, and let
P ∈ C1. The ramification index of φ at P , denoted by eφ(P ), is the quantity

eφ(P ) = ordP

(
φ∗tφ(P )

)
,

where tφ(P ) ∈ K(C2) is a uniformizer at φ(P ). Note that eφ(P ) ≥ 1. We say that φ
is unramified at P if eφ(P ) = 1, and that φ is unramified if it is unramified at every
point of C1.

Proposition 2.6. Let φ : C1 → C2 be a nonconstant map of smooth curves.
(a) For every Q ∈ C2, ∑

P∈φ−1(Q)

eφ(P ) = deg(φ).
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(b) For all but finitely many Q ∈ C2,

#φ−1(Q) = degs(φ).

(c) Let ψ : C2 → C3 be another nonconstant map of smooth curves. Then for all
P ∈ C1,

eψ◦φ(P ) = eφ(P )eψ(φP ).

PROOF. (a) Use [111, II.6.9] with Y = P1 and D = (0), or see [142, Proposition 2],
[233, I Proposition 10], or [243, III §2, Theorem 1].
(b) See [111, II.6.8].
(c) Let tφP and tψφP be uniformizers at the indicated points. By definition, the

functions
t
eψ(φP )
φP and ψ∗tψφP

have the same order at φ(P ). Applying φ∗ and taking orders at P yields

ordP

(
φ∗t

eψ(φP )
φP

)
= ordP

(
(ψφ)∗tψφP

)
,

which is the desired result.

Corollary 2.7. A map a φ : C1 → C2 is unramified if and only if

#φ−1(Q) = deg(φ) for all Q ∈ C2.

PROOF. From (II.2.6a), we see that #φ−1(Q) = deg(φ) if and only if
∑

P∈φ−1(Q)

eφ(P ) = #φ−1(Q).

Since eφ(P ) ≥ 1, this occurs if and only if each eφ(P ) = 1.

Remark 2.8. The content of (II.2.6) is exactly analogous to the theorems describ-
ing the ramification of primes in number fields. Thus let L/K be number fields.
Then (II.2.6a) is the analogue of the

∑
eifi = [K : Q] theorem ([142, I, Proposi-

tion 21], [233, I, Proposition 10]), while (II.2.6b) is analogous to the fact that only
finitely many primes of K ramify in L, and (II.2.6c) gives the multiplicativity of ram-
ification degrees in towers of fields. Of course, (II.2.6) and the analogous results for
number fields are both merely special cases of the basic theorems describing finite
extensions of Dedekind domains.
Example 2.9. Consider the map

φ : P1 −→ P1, φ
(
[X,Y ]

)
= [X3(X − Y )2, Y 5].

Then φ is ramified at the points [0, 1] and [1, 1]. Further,

eφ

(
[0, 1]

)
= 3 and eφ

(
[1, 1]

)
= 2,

so ∑

P∈φ−1([0,1])

eφ(P ) = eφ

(
[0, 1]

)
+ eφ

(
[1, 1]

)
= 5 = deg φ,

which is in accordance with (II.2.6a).
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The Frobenius Map

Assume that char(K) = p > 0 and let q = pr. For any polynomial f ∈ K[X],
let f (q) be the polynomial obtained from f by raising each coefficient of f to the qth

power. Then for any curve C/K, we can define a new curve C(q)/K as the curve
whose homogeneous ideal is given by

I(C(q)) = ideal generated by {f (q) : f ∈ I(C)}.

Further, there is a natural map from C to C(q), called the qth-power Frobenius mor-
phism, given by

φ : C −→ C(q), φ
(
[x0, . . . , xn]

)
= [xq

0, . . . , x
q
n].

To see that φ maps C to C(q), it suffices to show that for every point

P = [x0, . . . , xn] ∈ C,

the image φ(P ) is a zero of each generator f (q) of I(C(q)). We compute

f (q)
(
φ(P )

)
= f (q)(xq

0, . . . , x
q
n)

=
(
f(x0, . . . , xn)

)q
since char(K) = p,

= 0 since f(P ) = 0.

Example 2.10. Let C be the curve in P2 given by the single equation

C : Y 2Z = X2 + aXZ2 + bZ3.

Then C(q) is the curve given by the equation

C(q) : Y 2Z = X2 + aqXZ2 + bqZ3.

The next proposition describes the basic properties of the Frobenius map.

Proposition 2.11. Let K be a field of characteristic p > 0, let q = pr, let C/K be
a curve, and let φ : C → C(q) be the qth-power Frobenius morphism.
(a) φ∗K(C(q)) = K(C)q =

{
fq : f ∈ K(C)

}
.

(b) φ is purely inseparable.
(c) deg φ = q.

(N.B. We are assuming that K is perfect. If K is not perfect, then (b) and (c) remain
true, but (a) must be modified.)

PROOF. (a) Using the description (I.2.9) of K(C) as consisting of quotients f/g of
homogeneous polynomials of the same degree, we see that φ∗K(C(q)) is the subfield
of K(C) given by quotients

φ∗
(

f

g

)
=

f(Xq
0 , . . . , Xq

n)
g(Xq

0 , . . . , Xq
n)

.
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Similarly, K(C)q is the subfield of K(C) given by quotients

f(X0, . . . , Xn)q

g(X0, . . . , Xn)q
.

However, since K is perfect, we know that every element of K is a qth power, so
(
K[X0, . . . , Xn]

)q = K[Xq
0 , . . . , Xq

n].

Thus the set of quotients f(Xq
i )/g(Xq

i ) and the set of quotients f(Xi)q/g(Xi)q give
the exact same subfield of K(C).
(b) Immediate from (a).
(c) Taking a finite extension of K if necessary, we may assume that there is

a smooth point P ∈ K(C). Let t ∈ K(C) be a uniformizer at P (II.1.1.1).
Then (II.1.4) says that K(C) is separable over K(t). Consider the tower of fields

�
�

�
�

�
��

�
�

K(t)

K(C)q(t)

K(C)
�

�
�

�
�

��
�

�
K(C)q

separable purely
inseparable

It follows that K(C) = K(C)q(t), so from (a),

deg φ =
[
K(C)q(t) : K(C)q

]
.

Now tq ∈ K(C)q , so in order to prove that deg φ = q, we need merely show that
tq/p /∈ K(C)q . But if tq/p = fq for some f ∈ K(C), then

q

p
= ordP (tq/p) = q ordP (f),

which is impossible, since ordP (f) must be an integer.

Corollary 2.12. Every map ψ : C1 → C2 of (smooth) curves over a field of charac-
teristic p > 0 factors as

C1
φ−−−−→ C

(q)
1

λ−−−−→ C2,

where q = degi(ψ), the map φ is the qth-power Frobenius map, and the map λ is
separable.

PROOF. Let K be the separable closure of ψ∗K(C2) in K(C1). Then K(C1)/K is
purely inseparable of degree q, so K(C1)q ⊂ K. From (II.2.11a,c) we have,

K(C1)q = φ∗(K(C(q)
1 )

)
and

[
K(C1) : φ∗(K(C(q)

1 ))
]

= q.
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Comparing degrees, we conclude that K = φ∗(C(q)
1 ). We now have a tower of func-

tion fields
K(C1)

/
φ∗K(C(q)

1 )
/

ψ∗K(C2),

and from (II.2.4b), this corresponds to maps

C1
φ−−−−→ C

(q)
1

λ−−−−→ C2
�

ψ

II.3 Divisors
The divisor group of a curve C, denoted by Div(C), is the free abelian group gener-
ated by the points of C. Thus a divisor D ∈ Div(C) is a formal sum

D =
∑

P∈C

nP (P ),

where nP ∈ Z and nP = 0 for all but finitely many P ∈ C. The degree of D is
defined by

deg D =
∑

P∈C

nP .

The divisors of degree 0 form a subgroup of Div(C), which we denote by

Div0(C) =
{
D ∈ Div(C) : deg D = 0

}
.

If C is defined over K, we let GK̄/K act on Div(C) and Div0(C) in the obvious
way,

Dσ =
∑

P∈C

nP (P σ).

Then D is defined over K if Dσ = D for all σ ∈ GK̄/K . We note that if D =
n1(P1) + · · · + nr(Pr) with n1, . . . , nr �= 0, then to say that D is defined over K
does not mean that P1, . . . , Pr ∈ C(K). It suffices for the group GK̄/K to permute
the Pi’s in an appropriate fashion. We denote the group of divisors defined over K
by DivK(C), and similarly for Div0

K(C).
Assume now that the curve C is smooth, and let f ∈ K̄(C)∗. Then we can

associate to f the divisor div(f) given by

div(f) =
∑

P∈C

ordP (f)(P ).

This is a divisor by (II.1.2). If σ ∈ GK̄/K , then it is easy to see that

div(fσ) =
(
div(f)

)σ
.
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In particular, if f ∈ K(C), then div(f) ∈ DivK(C).
Since each ordP is a valuation, the map

div : K̄(C)∗ −→ Div(C)

is a homomorphism of abelian groups. It is analogous to the map that sends an ele-
ment of a number field to the corresponding fractional ideal. This prompts the fol-
lowing definitions.

Definition. A divisor D ∈ Div(C) is principal if it has the form D = div(f)
for some f ∈ K̄(C)∗. Two divisors are linearly equivalent, written D1 ∼ D2,
if D1 − D2 is principal. The divisor class group (or Picard group) of C, denoted
by Pic(C), is the quotient of Div(C) by its subgroup of principal divisors. We let
PicK(C) be the subgroup of Pic(C) fixed by GK̄/K . N.B. In general, PicK(C)
is not the quotient of DivK(C) by its subgroup of principal divisors. But see ex-
ericse 2.13 for a case in which this is true.

Proposition 3.1. Let C be a smooth curve and let f ∈ K̄(C)∗.
(a) div(f) = 0 if and only if f ∈ K̄∗.
(b) deg

(
div(f)

)
= 0.

PROOF. (a) If div(f) = 0, then f has no poles, so the associated map f : C → P1

as defined in (II.2.2) is not surjective. Then (II.2.3) tells us that the map is constant,
so f ∈ K̄∗. The converse is clear.
(b) See [111, II.6.10], [243, III 2, corollary to Theorem 1], or (II.3.7).

Example 3.2. On P1, every divisor of degree 0 is principal To see this, suppose
that D =

∑
nP (P ) has degree 0. Writing P = [αP , βP ] ∈ P1, we see that D is the

divisor of the function ∏

P∈P1

(βP X − αP Y )nP .

Note that
∑

nP = 0 ensures that this function is in K(P1). It follows that the degree
map deg : Pic(P1) → Z is an isomorphism. The converse is also true, i.e., if C is a
smooth curve and Pic(C) ∼= Z, then C is isomorphic to P1.
Example 3.3. Assume that char(K) �= 2. Let e1, e2, e3 ∈ K̄ be distinct, and con-
sider the curve

C : y2 = (x − e1)(x − e2)(x − e3).

One can check that C is smooth and that it has a single point at infinity, which we
denote by P∞. For i = 1, 2, 3, let Pi = (ei, 0) ∈ C. Then

div(x − ei) = 2(Pi) − 2(P∞),
div(y) = (P1) + (P2) + (P3) − 3(P∞).

Definition. It follows from (II.3.1b) that the principal divisors form a subgroup
of Div0(C). We define the degree-0 part of the divisor class group of C to be
the quotient of Div0(C) by the subgroup of principal divisors. We denote this
group by Pic0(C). Similarly, we write Pic0

K(C) for the subgroup of Pic0(C) fixed
by GK̄/K .
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Remark 3.4. The above definitions and (II.3.1) may be summarized by saying that
there is an exact sequence

1 −→ K̄∗ −→ K̄(C)∗ div−−−−−→ Div0(C) −→ Pic0(C) −→ 0.

This sequence is the function field analogue of the fundamental exact sequence in
algebraic number theory, which for a number field K reads

1 −→
(

units
of K

)
−→ K∗ −→

(
fractional
ideals of K

)
−→

(
ideal class
group of K

)
−→ 1.

Let φ : C1 → C2 be a nonconstant map of smooth curves. As we have seen, φ
induces maps on the function fields of C1 and C2,

φ∗ : K̄(C2) −→ K̄(C1) and φ∗ : K̄(C1) −→ K̄(C2).

We similarly define maps of divisor groups as follows:

φ∗ : Div(C2) −→ Div(C1), φ∗ : Div(C1) −→ Div(C2),

(Q) �−→
∑

P∈φ−1(Q)

eφ(P )(P ), (P ) �−→ (φP ),

and extend Z-linearly to arbitrary divisors.

Example 3.5. Let C be a smooth curve, let f ∈ K̄(C) be a nonconstant function,
and let f : C → P1 be the corresponding map (II.2.2). Then directly from the
definitions,

div(f) = f∗((0) − (∞)
)
.

Proposition 3.6. Let φ : C1 → C2 be a nonconstant map of smooth curves.

(a) deg(φ∗D) = (deg φ)(deg D) for all D ∈ Div(C2).

(b) φ∗(div f) = div(φ∗f) for all f ∈ K̄(C2)∗.

(c) deg(φ∗D) = deg D for all D ∈ Div(C1).

(d) φ∗(div f) = div(φ∗f) for all f ∈ K̄(C1)∗.

(e) φ∗ ◦ φ∗ acts as multiplication by deg φ on Div(C2).

(f) If ψ : C2 → C3 is another such map, then

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ and (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

PROOF. (a) Follows directly from (II.2.6a).
(b) Follows from the definitions and the easy fact (Exercise 2.2) that for all P ∈ C1,

ordP (φ∗f) = eφ(P ) ordφP (f).

(c) Clear from the definitions.
(d) See [142, Chapter 1, Proposition 22] or [233, I, Proposition 14].
(e) Follows directly from (II.2.6a).
(f) The first equality follows from (II.2.6c). The second is obvious.
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Remark 3.7. From (II.3.6) we see that φ∗ and φ∗ take divisors of degree 0 to divisors
of degree 0, and principal divisors to principal divisors. They thus induce maps

φ∗ : Pic0(C2) −→ Pic0(C1) and φ∗ : Pic0(C1) −→ Pic0(C2).

In particular, if f ∈ K̄(C) gives the map f : C → P1, then

deg div(f) = deg f∗((0) − (∞)
)

= deg f − deg f = 0.

This provides a proof of (II.3.1b)

II.4 Differentials
In this section we discuss the vector space of differential forms on a curve. This vec-
tor space serves two distinct purposes. First, it performs the traditional calculus role
of linearization. (See (III §5), especially (III.5.2).) Second, it gives a useful criterion
for determining when an algebraic map is separable. (See (II.4.2) and its utilization
in the proof of (III.5.5).) Of course, the latter is also a familiar use of calculus, since
a field extension is separable if and only if the minimal polynomial of each element
has a nonzero derivative

Definition. Let C be a curve. The space of (meromorphic) differential forms
on C, denoted by ΩC , is the K̄-vector space generated by symbols of the form dx
for x ∈ K̄(C), subject to the usual relations:

(i) d(x + y) = dx + dy for all x, y ∈ K̄(C).

(ii) d(xy) = x dy + y dx for all x, y ∈ K̄(C).

(iii) da = 0 for all a ∈ K̄.

Remark 4.1. There is, of course, a functorial definition of ΩC . See, for example,
[164, Chapter 10], [111, II.8], or [210, II §3].

Let φ : C1 → C2 be a nonconstant map of curves. The associated function field
map φ∗ : K̄(C2) → K̄(C1) induces a map on differentials,

φ∗ : ΩC2 −→ ΩC1 , φ∗
(∑

fi dxi

)
=

∑
(φ∗fi)d(φ∗xi).

This map provides a useful criterion for determining when φ is separable.

Proposition 4.2. Let C be a curve.
(a) ΩC is a 1-dimensional K̄(C)-vector space.
(b) Let x ∈ K̄(C). Then dx is a K̄(C)-basis for ΩC if and only if K̄(C)/K̄(x) is

a finite separable extension.
(c) Let φ : C1 → C2 be a nonconstant map of curves. Then φ is separable if and

only if the map
φ∗ : ΩC2 −→ ΩC1

is injective (equivalently, nonzero).
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PROOF. (a) See [164, 27.A,B], [210, II.3.4], or [243, III §4, Theorem 3].
(b) See [164, 27A,B] or [243, III §4, Theorem 4].
(c) Using (a) and (b), choose y ∈ K̄(C2) such that ΩC2 = K̄(C2) dy and such

that K̄(C2)/K̄(y) is a separable extension. Note that φ∗K̄(C2) is then separable
over φ∗K̄(y) = K̄(φ∗y). Now

φ∗ is injective ⇐⇒ d(φ∗y) �= 0
⇐⇒ d(φ∗y) is a basis for ΩC1 (from (a)),
⇐⇒ K̄(C1)/K̄(φ∗y) is separable (from (b)),
⇐⇒ K̄(C1)/φ∗K̄(C2) is separable,

where the last equivalence follows because we already know that φ∗K̄(C2)/K̄(φ∗y)
is separable.

Proposition 4.3. Let C be a curve, let P ∈ C, and let t ∈ K̄(C) be a unformizer
at P .
(a) For every ω ∈ ΩC there exists a unique function g ∈ K̄(C), depending on ω

and t, satisfying
ω = g dt.

We denote g by ω/dt.
(b) Let f ∈ K̄(C) be regular at P . Then df/dt is also regular at P .
(c) Let ω ∈ ΩC with ω �= 0. The quantity

ordP (ω/dt)

depends only on ω and P , independent of the choice of uniformizer t. We call
this value the order of ω at P and denote it by ordP (ω).

(d) Let x, f ∈ K̄(C) with x(P ) = 0, and let p = char K. Then

ordP (f dx) = ordP (f) + ordP (x) − 1, if p = 0 or p � ordP (x),
ordP (f dx) ≥ ordP (f) + ordP (x), if p > 0 and p | ordP (x).

(e) Let ω ∈ ΩC with ω �= 0. Then

ordP (ω) = 0 for all but finitely many P ∈ C.

PROOF. (a) This follows from (II.1.4) and (4.2ab).
(b) See [111, comment following IV.2.1] or [210, II.3.10].
(c) Let t′ be another uniformizer at P . Then from (b) we see that dt/dt′ and dt′/dt

are both regular at P , so ordP (dt′/dt) = 0. The desired result then follows from

ω = g dt′ = g(dt′/dt) dt.

(d) Write x = utn with n = ordP (x) ≥ 1, so ordP (u) = 0. Then

dx =
[
nutn−1 + (du/dt)tn

]
dt.
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From (b) we know that du/dt is regular at P . Hence if n �= 0, then the first term
dominates, which gives the desired equality

ordP (f dx) = ordP (fnutn−1 dt) = ordP (f) + n − 1.

On the other hand, if p > 0 and p | n, then the first term vanishes and we find that

ordP (f dx) = ordP (f(du/dt)tn dt) ≥ ordP (f) + n.

(e) Choose some x ∈ K̄(C) such that K̄(C)/K̄(x) is separable and write ω =
f dx. From [111, IV.2.2a], the map x : C → P1 ramifies at only finitely many points
of C. Hence discarding finitely many points, we may restrict attention to points P ∈
C such that

f(P ) �= 0, f(P ) �= ∞, x(P ) �= ∞,

and the map x : C → P1 is unramified at P . The two conditions on x imply
that x − x(P ) is a uniformizer at P , so

ordP (ω) = ordP

(
f d(x − x(P ))

)
= 0.

Hence ordP (ω) = 0 for all but finitely many P .

Definition. Let ω ∈ ΩC . The divisor associated to ω is

div(ω) =
∑

P∈C

ordP (ω)(P ) ∈ Div(C).

The differential ω ∈ ΩC is regular (or holomorphic) if

ordP (ω) ≥ 0 for all P ∈ C.

It is nonvanishing if
ordP (ω) ≤ 0 for all P ∈ C.

Remark 4.4. If ω1, ω2 ∈ ΩC are nonzero differentials, then (II.4.2a) implies that
there is a function f ∈ K̄(C)∗ such that ω1 = fω2. Thus

div(ω1) = div(f) + div(ω2),

which shows that the following definition makes sense.

Definition. The canonical divisor class on C is the image in Pic(C) of div(ω)
for any nonzero differential ω ∈ ΩC . Any divisor in this divisor class is called a
canonical divisor.

Example 4.5. We are going to show that there are no holomorphic differentials
on P1. First, if t is a coordinate function on P1, then

div(dt) = −2(∞).
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To see this, note that for all α ∈ K̄, the function t − α is a uniformizer at α, so

ordα(dt) = ordα

(
d(t − α)

)
= 0.

However, at ∞ ∈ P1 we need to use a function such as 1/t as our uniformizer, so

ord∞(dt) = ord∞

(
−t2 d

(
1
t

))
= −2.

Thus dt is not holomorphic. But now for any nonzero ω ∈ ΩP1 , we can use (II.4.3a)
to compute

deg div(ω) = deg div(dt) = −2,

so ω cannot be holomorphic either.
Example 4.6. Let C be the curve

C : y2 = (x − e1)(x − e2)(x − e3),

where we continue with the notation from (II.3.3). Then

div(dx) = (P1) + (P2) + (P3) − 3(P∞).

(Note that dx = d(x − ei) = −x2 d(1/x).) We thus see that

div(dx/y) = 0.

Hence the differential dx/y is both holomorphic and nonvanishing.

II.5 The Riemann–Roch Theorem
Let C be a curve. We put a partial order on Div(C) in the following way.

Definition. A divisor D =
∑

nP (P ) is positive (or effective), denoted by

D ≥ 0,

if nP ≥ 0 for every P ∈ C. Similarly, for any two divisors D1,D2 ∈ Div(C), we
write

D1 ≥ D2

to indicate that D1 − D2 is positive.

Example 5.1. Let f ∈ K̄(C)∗ be a function that is regular everywhere except at
one point P ∈ C, and suppose that it has a pole of order at most n at P . These
requirements on f may be succinctly summarized by the inequality

div(f) ≥ −n(P ).

Similarly,
div(f) ≥ (Q) − n(P )

says that in addition, f has a zero at Q. Thus divisorial inequalities are a useful tool
for describing poles and/or zeros of functions.
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Definition. Let D ∈ Div(C). We associate to D the set of functions

L(D) =
{
f ∈ K̄(C)∗ : div(f) ≥ −D

}
∪ {0}.

The set L(D) is a finite-dimensional K̄-vector space (see (II.5.2b) below), and we
denote its dimension by

�(D) = dimK̄ L(D).

Proposition 5.2. Let D ∈ Div(C).
(a) If deg D < 0, then

L(D) = {0} and �(D) = 0.

(b) L(D) is a finite-dimensional K̄-vector space.
(c) If D′ ∈ Div(C) is linearly equivalent to D, then

L(D) ∼= L(D′), and so �(D) = �(D′).

PROOF. (a) Let f ∈ L(D) with f �= 0. Then (II.3.1b) tells us that

0 = deg div(f) ≥ deg(−D) = −deg D,

so deg D ≥ 0.
(b) See [111, II.5.19] or Exercise 2.4.
(c) If D = D′ + div(g), then the map

L(D) −→ L(D′), f �−→ fg

is an isomorphism.

Example 5.3. Let KC ∈ Div(C) be a canonical divisor on C, say

KC = div(ω).

Then each function f ∈ L(KC) has the property that

div(f) ≥ −div(ω), so div(fω) ≥ 0.

In other words, fω is holomorphic. Conversely, if the differential fω is holomorphic,
then f ∈ L(KC). Since every differential on C has the form fω for some f , we have
established an isomorphism of K̄-vector spaces,

L(KC) ∼= {ω ∈ ΩC : ω is holomorphic}.

The dimension �(KC) of these spaces is an important invariant of the curve C.

We are now ready to state a fundamental result in the algebraic geometry of
curves. Its importance, as we will see amply demonstrated in (III §3), lies in its
ability to tell us that there are functions on C having prescribed zeros and poles.
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Theorem 5.4. (Riemann–Roch) Let C be a smooth curve and let KC be a canonical
divisor on C. There is an integer g ≥ 0, called the genus of C, such that for every
divisor D ∈ Div(C),

�(D) − �(KC − D) = deg D − g + 1.

PROOF. For a fancy proof using Serre duality, see [111, IV §1]. A more elementary
proof, due to Weil, is given in [136, Chapter 1].

Corollary 5.5. (a) �(KC) = g.
(b) deg KC = 2g − 2.
(c) If deg D > 2g − 2, then

�(D) = deg D − g + 1.

PROOF. (a) Use (II.5.4) with D = 0. Note that L(0) = K̄ from (II.1.2), so �(0) = 1.
(b) Use (a) and (II.5.4) with D = KC .
(c) From (b) we have deg(KC − D) < 0. Now use (II.5.4) and (II.5.2a).

Example 5.6. Let C = P1. Then (II.4.5) says that there are no holomorphic dif-
ferentials on C, so using the identification from (II.5.3), we see that �(KC) = 0.
Then (II.5.5a) says that P1 has genus 0, and the Riemann–Roch theorem reads

�(D) − �(−2(∞) − D) = deg D + 1.

In particular, if deg D ≥ −1, then

�(D) = deg D + 1.

(See Exercise 2.3b.)

Example 5.7. Let C be the curve

C : y2 = (x − e1)(x − e2)(x − e3),

where we continue with the notation of (II.3.3) and (II.4.6). We have seen in (II.4.6)
that

div(dx/y) = 0,

so the canonical class on C is trivial, i.e., we may take KC = 0. Hence using (II.5.5a)
we find that

g = �(KC) = �(0) = 1,

so C has genus one. The Riemann–Roch theorem (II.5.5c) then tells us that

�(D) = deg D provided deg D ≥ 1.

We consider several special cases.
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(i) Let P ∈ C. Then �
(
(P )

)
= 1. But L

(
(P )

)
certainly contains the constant

functions, which have no poles, so this shows that there are no functions on C
having a single simple pole.

(ii) Recall that P∞ is the point at infinity on C. Then �
(
2(P∞)

)
= 2, and {1, x}

provides a basis for L
(
2(P∞)

)
.

(iii) Similarly, the set {1, x, y} is a basis for L
(
3(P∞)

)
, and {1, x, y, x2} is a basis

for L
(
4(P∞)

)
.

(iv) Now we observe that the seven functions 1, x, y, x2, xy, x3, y2 are all in
L
(
6(P∞)

)
, but �

(
6(P∞)

)
= 6, so these seven functions must be K̄-linearly

dependent. Of course, the equation y2 = (x − e1)(x − e2)(x − e3) used to
define C gives an equation of linear dependence among them.

The next result says that if C and D are defined over K, then so is L(D).

Proposition 5.8. Let C/K be a smooth curve and let D ∈ DivK(C). Then L(D)
has a basis consisting of functions in K(C).

PROOF. Since D is defined over K, we have

fσ ∈ L(Dσ) = L(D) for all f ∈ L(D) and all σ ∈ GK̄/K .

Thus GK̄/K acts on L(D), and the desired conclusion follows from the following
general lemma.

Lemma 5.8.1. Let V be a K̄-vector space, and assume that GK̄/K acts continuously
on V in a manner compatible with its action on K̄. Let

VK = V GK̄/K = {v ∈ V : vσ = v for all σ ∈ GK̄/K}.
Then

V ∼= K̄ ⊗K VK ,

i.e., the vector space V has a basis of GK̄/K-invariant vectors.

PROOF. It is clear that VK is a K-vector space, so it suffices to show that ev-
ery v ∈ V is a K̄-linear combination of vectors in VK . Let v ∈ V and let L/K be
a finite Galois extension such that v is fixed by GK̄/L. (The assumption that GK̄/K

acts continuously on V means precisely that the subgroup {σ ∈ GK̄/K : vσ = v}
has finite index in K, so we can take L to be the Galois closure of its fixed field.)
Let {α1, . . . , αn} be a basis for L/K, and let {σ1, . . . , σn} = GL/K . For each
1 ≤ i ≤ n, consider the vector

wi =
n∑

j=1

(αiv)σj = TraceL/K(αiv).

It is clear that wi is GK̄/K invariant, so wi ∈ VK . A basic result from field the-
ory [142, III, Proposition 9] says that the matrix

(
α

σj

i

)
1≤i,j≤n

is nonsingular, so
each vσj , and in particular v, is an L-linear combination of the wi’s. (For a fancier
proof, see Exercise 2.12.)
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We conclude this section with a classic relationship connecting the genera of
curves linked by a nonconstant map.

Theorem 5.9. (Hurwitz) Let φ : C1 → C2 be a nonconstant separable map of
smooth curves of genera g1 and g2, respectively. Then

2g1 − 2 ≥ (deg φ)(2g2 − 2) +
∑

P∈C1

(
eφ(P ) − 1

)
.

Further, equality holds if and only if one of the following two conditions is true:
(i) char(K) = 0.

(ii) char(K) = p > 0 and p does not divide eφ(P ) for all P ∈ C1.

PROOF. Let ω ∈ ΩC be a nonzero differential, let P ∈ C1, and let Q = φ(P ).
Since φ is separable, (II.4.2c) tells us that φ∗ω �= 0. We need to relate the val-
ues of ordP (φ∗ω) and ordQ(ω). Write ω = f dt with t ∈ K̄(C2) a uniformizer
at Q. Letting e = eφ(P ), we have φ∗t = use, where s is a uniformizer at P and
u(P ) �= 0,∞. Hence

φ∗ω = (φ∗f)d(φ∗t) = (φ∗f)d(use) = (φ∗f)
[
euse−1 + (du/ds)se

]
ds.

Now ordP (du/ds) ≥ 0 from (II.4.3b), so we see that

ordP (φ∗ω) ≥ ordP (φ∗f) + e − 1,

with equality if and only if e �= 0 in K. Further,

ordP (φ∗f) = eφ(P ) ordQ(f) = eφ(P ) ordQ(ω).

Hence adding over all P ∈ C1 yields

deg div(φ∗ω) ≥
∑

P∈C1

[
eφ(P ) ordφ(P )(ω) + eφ(P ) − 1

]

=
∑

Q∈C2

∑

P∈φ−1(Q)

eφ(P ) ordQ(ω) +
∑

P∈C1

(
eφ(P ) − 1

)

= (deg φ)(deg div(ω)) +
∑

P∈C1

(
eφ(P ) − 1

)
,

where the last equality follows from (II.2.6a). Now Hurwitz’s formula is a conse-
quence of (II.5.5b), which says that on a curve of genus g, the divisor of any nonzero
differential has degree 2g − 2.

Exercises
2.1. Let R be a Noetherian local domain that is not a field, let M be its maximal ideal, and
let k = R/M be its residue field. Prove that the following are equivalent:

(i) R is a discrete valuation ring.
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(ii) M is principal.
(iii) dimk M/M

2 = 1.
(Note that this lemma was used in (II.1.1) to show that on a smooth curve, the local
rings K̄[C]P are discrete valuation rings.)

2.2. Let φ : C1 → C2 be a nonconstant map of smooth curves, let f ∈ K̄(C2)
∗, and

let P ∈ C1. Prove that
ordP (φ∗f) = eφ(P ) ordφ(P )(f).

2.3. Verify directly that each of the following results from the text is true for the particular
case of the curve C = P1.

(a) Prove the two parts of (II.2.6):

(i)
∑

P∈φ−1(Q)

eφ(P ) = deg φ for all Q ∈ P
1.

(ii) #φ−1(Q) = degs(φ) for all but finitely many Q ∈ P
1.

(b) Prove the Riemann–Roch theorem (II.5.4) for P1.
(c) Prove Hurwitz’s theorem (II.5.9) for a nonconstant separable map φ : P1 → P1.

2.4. Let C be a smooth curve and let D ∈ Div(C). Without using the Riemann–Roch theo-
rem, prove the following statements.

(a) L(D) is a K̄-vector space.
(b) If deg D ≥ 0, then

�(D) ≤ deg D + 1.

2.5. Let C be a smooth curve. Prove that the following are equivalent (over K̄):
(i) C is isomorphic to P1.

(ii) C has genus 0.
(iii) There exist distinct points P, Q ∈ C satisfying (P ) ∼ (Q).

2.6. Let C be a smooth curve of genus one, and fix a base point P0 ∈ C.
(a) Prove that for all P, Q ∈ C there exists a unique R ∈ C such that

(P ) + (Q) ∼ (R) + (P0).

Denote this point R by σ(P, Q).
(b) Prove that the map σ : C×C → C from (a) makes C into an abelian group with identity

element P0.
(c) Define a map

κ : C −→ Pic0(C), P �−→ divisor class of (P ) − (P0).

Prove that κ is a bijection of sets, and hence that κ can be used to make C into a group
via the rule

P + Q = κ−1
(
κ(P ) + κ(Q)

)
.

(d) Prove that the group operations on C defined in (b) and (c) are the same.
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2.7. Let F (X, Y, Z) ∈ K[X, Y, Z] be a homogeneous polynomial of degree d ≥ 1, and
assume that the curve C in P2 given by the equation F = 0 is nonsingular. Prove that

genus(C) =
(d − 1)(d − 2)

2
.

(Hint. Define a map C → P1 and use (II.5.9).)

2.8. Let φ : C1 → C2 be a nonconstant separable map of smooth curves.
(a) Prove that genus(C1) ≥ genus(C2).
(b) Prove that if C1 and C2 have the same genus g, then one of the following is true:

(i) g = 0.
(ii) g = 1 and φ is unramified.

(iii) g ≥ 2 and φ is an isomorphism.

2.9. Let a, b, c, d be squarefree integers with a > b > c > 0, and let C be the curve in P2

given by the equation
C : aX3 + bY 3 + cZ3 + dXY Z = 0.

Let P = [x, y, z] ∈ C and let L be the tangent line to C at P .
(a) Show that C ∩ L = {P, P ′} and calculate P ′ = [x′, y′, z′] in terms of a, b, c, d, x, y, z.
(b) Show that if P ∈ C(Q), then P ′ ∈ C(Q).
(c) Let P ∈ C(Q). Choose homogeneous coordinates for P and P ′ that are integers satis-

fying gcd(x, y, z) = 1 and gcd(x′, y′, z′) = 1. Prove that

|x′y′z′| > |xyz|.

(Note the strict inequality.)
(d) Conclude that either C(Q) = ∅ or else C(Q) is an infinite set.
(e) ** Characterize, in terms of a, b, c, d, whether C(Q) contains any points.

2.10. Let C be a smooth curve. The support of a divisor D =
∑

nP (P ) ∈ Div(C) is the set
of points P ∈ C for which nP �= 0. Let f ∈ K̄(C)∗ be a function such that div(f) and D
have disjoint supports. Then it makes sense to define

f(D) =
∏

P∈C

f(P )nP .

Let φ : C1 → C2 be a nonconstant map of smooth curves. Prove that the following two
equalities are valid in the sense that if both sides are well-defined, then they are equal.

(a) f(φ∗D) = (φ∗f)(D) for all f ∈ K̄(C1)
∗ and all D ∈ Div(C2).

(b) f(φ∗D) = (φ∗f)(D) for all f ∈ K̄(C2)
∗ and all D ∈ Div(C1).

2.11. Let C be a smooth curve and let f, g ∈ K̄(C)∗ be functions such that div(f) and div(g)
have disjoint support. (See Exercise 2.10.) Prove Weil’s reciprocity law

f
(
div(g)

)
= g

(
div(f)

)

using the following two steps:
(a) Verify Weil’s reciprocity law directly for C = P1.
(b) Now prove it for arbitrary C by using the map g : C → P1 to reduce to (a).
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2.12. Use the extension of Hilbert’s Theorem 90 (B.3.2), which says that

H1
(
GK̄/K , GLn(K̄)

)
= 0,

to give another proof of (II.5.8.1).

2.13. Let C/K be a curve.
(a) Prove that the following sequence is exact:

1 −→ K∗ −→ K(C)∗ −→ Div0
K(C) −→ Pic0

K(C).

(b) Suppose that C has genus one and that C(K) �= ∅. Prove that the map

Div0
K(C) −→ Pic0

K(C)

is surjective.

2.14. For this exercise we assume that char K �= 2. Let f(x) ∈ K[x] be a polynomial of
degree d ≥ 1 with nonzero discriminant, let C0/K be the affine curve given by the equation

C0 : y2 = f(x) = a0x
d + a1x

d−1 + · · · + ad−1x + ad,

and let g be the unique integer satisfying d − 3 < 2g ≤ d − 1.
(a) Let C be the closure of the image of C0 via the map

[1, x, x2, . . . , xg−1, y] : C0 −→ P
g+2.

Prove that C is smooth and that C ∩ {X0 �= 0} is isomorphic to C0. The curve C is
called a hyperelliptic curve.

(b) Let

f∗(v) = v2g+2f(1/v) =

{
a0 + a1v + · · · + ad−1v

d−1 + advd if d is even,
a0v + a1v

2 + · · · + ad−1v
d + advd+1 if d is odd.

Show that C consists of two affine pieces

C0 : y2 = f(x) and C1 : w2 = f∗(v),

“glued together” via the maps

C0 −→ C1, C1 −→ C0,
(x, y) �−→ (1/x, y/xg+1), (v, w) �−→ (1/v, w/vg+1).

(c) Calculate the divisor of the differential dx/y on C and use the result to show that C
has genus g. Check your answer by applying Hurwitz’s formula (II.5.9) to the map
[1, x] : C → P1. (Note that Exercise 2.7 does not apply, since C �⊂ P2.)

(d) Find a basis for the holomorphic differentials on C. (Hint. Consider the set of differential
forms {xi dx/y : i = 0, 1, 2, . . .}. How many elements in this set are holomorphic?)

2.15. Let C/K be a smooth curve defined over a field of characteristic p > 0, and
let t ∈ K(C). Prove that the following are equivalent:

(i) K(C) is a finite separable extension of K(t).
(ii) For all but finitely many pointsP ∈ C, the function t − t(P ) is a uniformizer at P .

(iii) t /∈ K(C)p.

2.16. Let C/K be a curve that is defined over K and let P ∈ C(K). Prove that K(C) con-
tains uniformizers for C at P , i.e., prove that there are uniformizers that are defined over K.



Chapter III

The Geometry of Elliptic
Curves

Elliptic curves, our principal object of study in this book, are curves of genus one
having a specified base point. Our ultimate goal, as the title of the book indicates,
is to study the arithmetic properties of these curves. In other words, we will be in-
terested in analyzing their points defined over arithmetically interesting fields, such
as finite fields, local (p-adic) fields, and global (number) fields. However, before do-
ing so we are well advised to study the properties of these curves in the simpler
situation of an algebraically closed field, i.e., to study their geometry. This reflects
the general principle in Diophantine geometry that in attempting to study any sig-
nificant problem, it is essential to have a thorough understanding of the geometry
before one can hope to make progress on the number theory. It is the purpose of this
chapter to make an intensive study of the geometry of elliptic curves over arbitrary
algebraically closed fields. (The particular case of elliptic curves over the complex
numbers is studied in more detail in Chapter VI.)

We start in the first two sections by looking at elliptic curves given by explicit
polynomial equations called Weierstrass equations. Using these explicit equations,
we show, among other things, that the set of points of an elliptic curve forms an
abelian group, and that the group law is given by rational functions. Then, in Sec-
tion 3, we use the Riemann–Roch theorem to study arbitrary elliptic curves and to
show that every elliptic curve has a Weierstrass equation, so the results from the first
two sections in fact apply generally. The remainder of the chapter studies, in various
guises, the algebraic maps between elliptic curves. In particular, since the points of
an elliptic curve form a group, for each integer m there is a multiplication-by-m map
from the curve to itself. It would be difficult to overestimate the importance of these
multiplication maps in any attempt to study the arithmetic of elliptic curves, which
will explain why we devote so much space to them in this chapter.

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 41
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 III,
c© Springer Science+Business Media, LLC 2009
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III.1 Weierstrass Equations
Our primary objects of study are elliptic curves, which are curves of genus one hav-
ing a specified base point. As we will see in (III §3), every such curve can be written
as the locus in P2 of a cubic equation with only one point, the base point, on the line
at ∞. Then, after X and Y are scaled appropriately, an elliptic curve has an equation
of the form

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3.

Here O = [0, 1, 0] is the base point and a1, . . . , a6 ∈ K̄. (It will become clear later
why the coefficients are labeled in this way.) In this section and the next, we study
the curves given by such Weierstrass equations, using explicit formulas as much as
possible to replace the need for general theory.

To ease notation, we generally write the Weierstrass equation for our elliptic
curve using non-homogeneous coordinates x = X/Z and y = Y/Z,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

always remembering that there is an extra point O = [0, 1, 0] out at infinity. As usual,
if a1, . . . , a6 ∈ K, then E is said to be defined over K.

If char(K̄) �= 2, then we can simplify the equation by completing the square.
Thus the substitution

y �−→ 1
2
(y − a1x − a3)

gives an equation of the form

E : y2 = 4x3 + b2x
2 + 2b4x + b6,

where
b2 = a2

1 + 4a4, b4 = 2a4 + a1a3, b6 = a2
3 + 4a6.

We also define quantities

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b2
2 − 24b4,

c6 = −b3
2 + 36b2b4 − 216b6,

Δ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

j = c3
4/Δ,

ω =
dx

2y + a1x + a3
=

dy

3x2 + 2a2x + a4 − a1y
.

One easily verifies that they satisfy the relations

4b8 = b2b6 − b2
4 and 1728Δ = c3

4 − c2
6.

If further char(K̄) �= 2, 3, then the substitution



III.1. Weierstrass Equations 43

y2 = x3 − 3x + 3
Δ = 2160

y2 = x3 + x

Δ = −64
y2 = x3 − x

Δ = 64

Figure 3.1: Three elliptic curves

y2 = x3

Δ = 0

Cusp: one tangent
direction

y2 = x3 + x2

Δ = 0

Node: two distinct
tangent directions

Figure 3.2: Two singular cubic curves.

(x, y) �−→
(

x − 3b2

36
,

y

108

)

eliminates the x2 term, yielding the simpler equation

E : y2 = x3 − 27c4x − 54c6.

Definition. The quantity Δ is the discriminant of the Weierstrass equation, the quan-
tity j is the j-invariant of the elliptic curve, and ω is the invariant differential asso-
ciated to the Weierstrass equation.

Example 1.1. It is easy to graph the real locus of a Weierstrass equation. Some repre-
sentative examples are shown in Figure 3.1. If Δ = 0, then we will see later (III.1.4)
that the curve is singular. Two sorts of behavior can occur, as illustrated in Figure 3.2.

With these singular examples in mind, we consider the general situation. Let P =
(x0, y0) be a point satisfying a Weierstrass equation

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6 = 0,
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and assume that P is a singular point on the curve f(x, y) = 0.Then from (I.1.5) we
have

∂f

∂x
(P ) =

∂f

∂y
(P ) = 0.

It follows that there are α, β ∈ K̄ such that the Taylor series expansion of f(x, y)
at P has the form

f(x, y) − f(x0, y0)

=
(
(y − y0) − α(x − x0)

)(
(y − y0) − β(x − x0)

)
− (x − x0)3.

Definition. With notation as above, the singular point P is a node if α �= β. In this
case, the lines

y − y0 = α(x − x0) and y − y0 = β(x − x0)

are the tangent lines at P . Conversely, if α = β, then we say that P is a cusp, in
which case the tangent line at P is given by

y − y0 = α(x − x0).

To what extent is the Weierstrass equation for an elliptic curve unique? Assuming
that the line at infinity, i.e., the line Z = 0 in P2, is required to intersect E only
at the one point [0, 1, 0], we will see (III.3.1b) that the only change of variables
fixing [0, 1, 0] and preserving the Weierstrass form of the equation is

x = u2x′ + r and y = u3y′ + u2sx′ + t,

where u, r, s, t ∈ K̄ and u �= 0. It is now a simple (but tedious) matter to make this
substitution and compute the a′

i coefficients and associated quantities for the new
equation. The results are compiled in Table 3.1.

It is now clear why the j-invariant has been so named; it is an invariant of the
isomorphism class of the curve, and does not depend on the particular equation cho-
sen. For algebraically closed fields, the converse is true, a fact that we establish later
in this section (III.1.4b).

Remark 1.3. As we have seen, if the characteristic of K is different from 2 and 3,
then any elliptic curve over K has a Weierstrass equation of a particularly simple
kind. Thus any proof that involves extensive algebraic manipulation with Weierstrass
equation, for example that of (III.1.4) later in this section, tends to be much shorter
if K is so restricted. On the other hand, even if one is primarily interested in charac-
teristic 0, e.g., K = Q, an important tool is the process of reducing the coefficients
of an equation modulo p for various primes p, including p = 2 and p = 3. So even
for K = Q, it is important to understand elliptic curves in all characteristics. Con-
sequently, we adopt the following policy. All theorems will be stated for a general
Weierstrass equation, but if it makes the proof substantially shorter, we will make the
assumption that the characteristic of K is not 2 or 3 and give the proof in that case.
Then, in the interest of completeness, we return to these theorems in Appendix A
and give the proofs for general Weierstrass equations and arbitrary characteristic.
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ua′
1 = a1 + 2s

u2a′
2 = a2 − sa1 + 3r − s2

u3a′
3 = a3 + ra1 + 2t

u4a′
4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st

u6a′
6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

u2b′2 = b2 + 12r
u4b′4 = b4 + rb2 + 6r2

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u4c′4 = c4

u6c′6 = c6

u12Δ′ = Δ
j′ = j

u−1ω′ = ω

Table 3.1: Change-of-variable formulas for Weierstrass equations.

Assuming now that the characteristic of K is not 2 or 3, our elliptic curve(s) have
Weierstrass equation(s) of the form

E : y2 = x3 + Ax + B.

Associated to this equation are the quantities

Δ = −16(4A3 + 27B2) and j = −1728
(4A)3

Δ
.

The only change of variables preserving this form of the equation is

x = u2x′ and y = u3y′ for some u ∈ K̄∗;

and then
u4A′ = A, u6B′ = B, u12Δ′ = Δ.

Proposition 1.4. (a) The curve given by a Weierstrass equation satisfies:

(i) It is nonsingular if and only if Δ = 0.
(ii) It has a node if and only if Δ = 0 and c4 �= 0.

(iii) It has a cusp if and only if Δ = c4 = 0.

In cases (ii) and (iii), there is only the one singular point.
(b) Two elliptic curves are isomorphic over K̄ if and only if they both have the

same j-invariant.
(c) Let j0 ∈ K̄. There exists an elliptic curve defined over K(j0) whose j-invariant

is equal to j0.

PROOF. Let E be given by the Weierstrass equation
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E : f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6 = 0.

We start by showing that the point at infinity is never singular. Thus we look at the
curve in P2 with homogeneous equation

F (X,Y,Z) = Y 2Z + a1XY Z + a3Y Z2 − X3 − a2X
2Z − a4XZ2 − a6Z

3

= 0

and at the point O = [0, 1, 0]. Since

∂F

∂Z
(O) = 1 �= 0,

we see that O is a nonsingular point of E.
Next suppose that E is singular, say at P0 = (x0, y0). The substitution

x = x′ + x0 y = y′ + y0

leaves Δ and c4 invariant (III.1.2), so without loss of generality we may assume
that E is singular at (0, 0). Then

a6 = f(0, 0) = 0, a4 =
∂f

∂x
(0, 0) = 0, a3 =

∂f

∂y
(0, 0) = 0,

so the equation for E takes the form

E : f(x, y) = y2 + a1xy − a2x
2 − x3 = 0.

This equation has associated quantities

c4 = (a2
1 + 4a2)2 and Δ = 0.

By definition, E has a node (respectively cusp) at (0, 0) if the quadratic form y2 +
a1xy − a2x

2 has distinct (respectively equal) factors, which occurs if and only if the
discriminant of this quadratic form satisfies

a2
1 + 4a2 �= 0 (respectively a2

1 + 4a2 = 0).

This proves the “only if” part of (ii) and (iii).
To complete the proof of (i)–(iii), it remains to show that if E is nonsingular,

then Δ �= 0. To simplify the computation, we assume that char(K) �= 2 and consider
a Weierstrass equation of the form

E : y2 = 4x3 + b2x
2 + 2b4x + b6.

(See (III.1.3) and (A.1.2a).) The curve E is singular if and only if there is a point
(x0, y0) ∈ E satisfying

2y0 = 12x2
0 + 2b2x0 + 2b4 = 0.
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In other words, the singular points are exactly the points of the form (x0, 0) such
that x0 is a double root of the cubic polynomial 4x3 + b2x

2 + 2b4x + b6. This poly-
nomial has a double root if and only if its discriminant, which equals 16Δ, vanishes.
This completes the proof of (i)–(iii). Further, since a cubic polynomial cannot have
two double roots, E has at most one singular point.
(b) If two elliptic curves are isomorphic, then the transformation formulas (III.1.2)
show that they have the same j-invariant. For the converse, we will assume that
char(K) ≥ 5 (see (III.1.3) and (A.1.2b)). Let E and E′ be elliptic curves with the
same j-invariant, say with Weierstrass equations

E : y2 = x3 + Ax + B,

E′ : y′2 = x′3 + A′x′ + B′.

Then the assumption that j(E) = j(E′) means that

(4A)3

4A3 + 27B2
=

(4A′)3

4A′3 + 27B′2 ,

which yields
A3B′2 = A′3B2.

We look for an isomorphism of the form (x, y) = (u2x′, u3y′) and consider three
cases:

Case 1. A = 0 (j = 0). Then B �= 0, since Δ �= 0, so A′ = 0, and we obtain an
isomorphism using u = (B/B′)1/6.

Case 2. B = 0 (j = 1728). Then A �= 0, so B′ = 0, and we take u = (A/A′)1/4.

Case 3. AB �= 0 (j �= 0, 1728). Then A′B′ �= 0, since if one of them were 0,
then both of them would be 0, contradicting Δ′ �= 0. Taking u = (A/A′)1/4 =
(B/B′)1/6 gives the desired isomorphism.
(c) Assume that j0 �= 0, 1728 and consider the curve

E : y2 + xy = x3 − 36
j0 − 1728

x − 1
j0 − 1728

.

A simple calculations yields

Δ =
j3
0

(j0 − 1728)3
and j = j0.

This gives the desired elliptic curve (in any characteristic) provided that j0 �= 0, 1728.
To complete the list, we use the two curves

E : y2 + y = x3, Δ = −27, j = 0,

E : y2 = x3 + x, Δ = −64, j = 1728.

(Notice that in characteristic 2 or 3 we have 1728 = 0, so even in these cases one of
the two curves will be nonsingular and fill in the missing value of j.)
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Proposition 1.5. Let E be an elliptic curve. Then the invariant differential ω as-
sociated to a Weierstrass equation for E is holomorphic and nonvanishing, i.e.,
div(ω) = 0.

PROOF. Let P = (x0, y0) ∈ E and

E : F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6 = 0,

so

ω =
d(x − x0)
Fy(x, y)

= −d(y − y0)
Fx(x, y)

.

Thus P cannot be a pole of ω, since otherwise Fy(P ) = Fx(P ) = 0, which would
say that P is a singular point of E. The map

E −→ P1, [x, y, 1] �−→ [x, 1],

is of degree 2, so ordP (x − x0) ≤ 2, and we have equality ordP (x − x0) = 2
if and only if the quadratic polynomial F (x0, y) has a double root. In other words,
either ordP (x − x0) = 1, or else ordP (x − x0) = 2 and Fy(x0, y0) = 0. Thus in
both cases, we can use (II.4.3) to compute

ordP (ω) = ordP (x − x0) − ordP (Fy) − 1 = 0.

This shows that ω has no poles or zeros of the form (x0, y0), so it remains to check
what happens at O.

Let t be a uniformizer at O. Since ordO(x) = −2 and ordO(y) = −3, we
see that x = t−2f and y = t−3g for functions f and g satisfying f(O) �= 0,∞
and g(O) �= 0,∞. Now

ω =
dx

Fy(x, y)
=

−2t−3f + t−2f ′

2t−3g + a1t−2f + a3
dt =

−2f + tf ′

2g + a1tf + a3t3
dt.

Here we are writing f ′ = df/dt; cf. (II.4.3). In particular, (II.4.3b) tells us that f ′ is
regular at O. Hence assuming that char(K) �= 2, the function

−2f + tf ′

2g + a1tf + a3t3

is regular and nonvanishing at O, and thus

ordO(ω) = 0.

Finally, if char(K) = 2, then the same result follows from a similar calculation using
ω = dy/Fx(x, y). We leave the details to the reader.

Next we look at what happens when a Weierstrass equation is singular.

Proposition 1.6. If a curve E given by a Weierstrass equation is singular, then there
exists a rational map φ : E → P1 of degree one, i.e., the curve E is birational to P1.
(Note that since E is singular, we cannot use (II.2.4.1) to conclude that E ∼= P1.)
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PROOF. Making a linear change of variables, we may assume that the singular point
is (x, y) = (0, 0). Checking partial derivatives, we see that the Weierstrass equation
has the form

E : y2 + a1xy = x3 + a2x
2.

Then the rational map

E −→ P1, (x, y) → [x, y],

has degree one, since it has an inverse given by

P1 −→ E, [1, t] �−→ (t2 + a1t − a2, t
3 + a1t

2 − a2t).

(To derive this formula, let t = y/x and note that dividing the Weierstrass equation
of E by x2 yields t2 + a1t = x + a2. This shows that both x and y = xt are
in K̄(t).)

Legendre Form

There is another form of Weierstrass equation that is sometimes convenient.

Definition. A Weierstrass equation is in Legendre form if it can be written as

y2 = x(x − 1)(x − λ).

Proposition 1.7. Assume that char(K) �= 2.
(a) Every elliptic curve is isomorphic (over K̄) to an elliptic curve in Legendre form

Eλ : y2 = x(x − 1)(x − λ)

for some λ ∈ K̄ with λ �= 0, 1.
(b) The j-invariant of Eλ is

j(Eλ) = 28 (λ2 − λ + 1)3

λ2(λ − 1)2
.

(c) The association

K̄ � {0, 1} −→ K̄, λ �−→ j(Eλ),

is surjective and exactly six-to-one except above j = 0 and j = 1728, where
it is two-to-one and three-to-one, respectively (unless char(K) = 3, in which
case it is one-to-one above j = 0 = 1728).

PROOF. (a) Since char(K) �= 2, we know that E has a Weierstrass equation of the
form

y2 = 4x3 + b2x
2 + 2b4x + b6.
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Replacing (x, y) by (x, 2y) and factoring the cubic yields an equation of the form

y2 = (x − e1)(x − e2)(x − e3)

for some e1, e2, e3 ∈ K̄. Further, since

Δ = 16(e1 − e2)2(e1 − e3)2(e2 − e3)2 �= 0,

we see that the ei’s are distinct. Now the substitution

x = (e2 − e1)x′ + e1, y = (e2 − e1)3/2y′

gives an equation in Legendre form with

λ =
e3 − e1

e2 − e1
∈ K̄, λ �= 0, 1.

(b) Calculation.
(c) One can work directly from the formula for j(Eλ) in (b), an approach that we

leave to the reader. Instead, we use the fact that the j-invariant classifies an ellip-
tic curve up to isomorphism (III.1.4b). Thus suppose that j(Eλ) = j(Eμ). Then
Eλ

∼= Eμ, so their Weierstrass equations (in Legendre form) are related by a change
of variables

x = u2x′ + r, y = u3y′.

Equating

x(x − 1)(x − μ) =
(
x +

r

u2

)(
x +

r − 1
u2

)(
x +

r − λ

u2

)
,

there are six ways of assigning the linear terms to one another, and one easily checks
that these lead to six possible values for μ in terms of λ,

μ ∈
{

λ,
1
λ

, 1 − λ,
1

1 − λ
,

λ

λ − 1
,
λ − 1

λ

}
.

Hence λ �→ j(Eλ) is exactly six-to-one unless two or more of these values for μ
coincide. Equating them by pairs shows that this occurs if and only if

λ ∈
{
−1, 2,

1
2

}
=⇒ association is three-to-one

or
λ2 − λ + 1 = 0 =⇒ association is two-to-one.

These λ values correspond, respectively, to j = 1728 and j = 0. Finally, if K has
characteristic 3, then these λ values coincide and the equation j(λ) = 0 = 1728 has
the unique solution λ = −1.
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T ⊕ T = O

Adding a point to itself

Figure 3.3: The composition law.

III.2 The Group Law
Let E be an elliptic curve given by a Weierstrass equation. Thus E ⊂ P2 con-
sists of the points P = (x, y) satisfying the Weierstrass equation, together with the
point O = [0, 1, 0] at infinity. Let L ⊂ P2 be a line. Then, since the equation has
degree three, the line L intersects E at exactly three points, say P,Q,R. Of course,
if L is tangent to E, then P,Q,R need not be distinct. The fact that L ∩ E, taken
with multiplicities, consists of exactly three points is a special case of Bézout’s theo-
rem [111, I.7.8]. However, since we give explicit formulas later in this section, there
is no need to use a general theorem.

We define a composition law ⊕ on E by the following rule:

Composition Law 2.1. Let P,Q ∈ E, let L be the line through P and Q (if P = Q,
let L be the tangent line to E at P ), and let R be the third point of intersection of L
with E. Let L′ be the line through R and O. Then L′ intersects E at R, O, and a
third point. We denote that third point by P ⊕ Q.

Various instances of the composition law (III.2.1) are illustrated in Figure 3.3.
We now justify the use of the symbol ⊕.

Proposition 2.2. The composition law (III.2.1) has the following properties:
(a) If a line L intersects E at the (not necessarily distinct) points P,Q,R, then

(P ⊕ Q) ⊕ R = O.

(b) P ⊕ O = P for all P ∈ E.
(c) P ⊕ Q = Q ⊕ P for all P,Q ∈ E.
(d) Let P ∈ E. There is a point of E, denoted by �P , satisfying

P ⊕ (�P ) = O.

(e) Let P,Q,R ∈ E. Then

(P ⊕ Q) ⊕ R = P ⊕ (Q ⊕ R).
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In other words, the composition law (III.2.1) makes E into an abelian group with
identity element O. Further:
(f) Suppose that E is defined over K. Then

E(K) =
{
(x, y) ∈ K2 : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6

}
∪ {O}

is a subgroup of E.

PROOF. All of this is easy except for the associativity (e).
(a) This is obvious from (III.2.1), or look at Figure 3.3 and note that the tangent
line to E at O intersects E with multiplicity 3 at O.
(b) Taking Q = O in (III.2.1), we see that the lines L and L′ coincide. The former
intersects E at P,O,R and the latter at R,O, P ⊕ O, so P ⊕ O = P .
(c) This is also clear, since the construction of P ⊕Q in (III.2.1) is symmetric in P

and Q.
(d) Let the line through P and Q also intersect E at R. Then using (a) and (b), we
find that

O = (P ⊕ O) ⊕ R = P ⊕ R.

(e) Using the explicit formulas given later in this section (III.2.3), one can labo-
riously verify the associative law case by case. We leave this task to the reader. A
more enlightening proof using the Riemann–Roch theorem is given in the next sec-
tion (III.3.4e). For a geometric proof, see [95].
(f) If P and Q have coordinates in K, then the equation of the line connecting

them has coefficients in K. If, further, E is defined over K, then the third point of
intersection has coordinates given by a rational combination of the coordinates of
coefficients of the line and of E, so will be in K. (If this is not clear, see (III.2.3) in
this section for explicit formulas.)

Notation. From here on, we drop the special symbols ⊕ and � and simply write +
and − for the group operation on an elliptic curve E. For m ∈ Z and P ∈ E, we let

[m]P =

m terms if m > 0
︷ ︸︸ ︷
P + · · · + P , [m]P =

|m| terms if m < 0
︷ ︸︸ ︷
−P − · · · − P , [0]P = O.

As promised, we now derive explicit formulas for the group operations on E.
Let E be an elliptic curve given by a Weierstrass equation

F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6 = 0,

and let P0 = (x0, y0) ∈ E. Following the proof of (III.2.2d), in order to calcu-
late −P0, we take the line L through P0 and O and find its third point of intersection
with E. The line L is given by

L : x − x0 = 0.

Substituting this into the equation for E, we see that the quadratic polynomial
F (x0, y) has roots y0 and y′

0, where −P = (x0, y
′
0). Writing out
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F (x0, y) = c(y − y0)(y − y′
0)

and equating the coefficients of y2 gives c = 1, and similarly equating the coeffi-
cients of y gives y′

0 = −y0 − a1x0 − a3. This yields

−P0 = −(x0, y0) = (x0,−y0 − a1x0 − a3).

Next we derive a formula for the addition law. Let

P1 = (x1, y1) and P2 = (x2, y2)

be points of E. If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then we have already
shown that P1 + P2 = O. Otherwise the line L through P1 and P2 (or the tangent
line to E if P1 = P2) has an equation of the form

L : y = λx + ν;

formulas for λ and ν are given below. Substituting the equation of L into the equation
of E, we see that F (x, λx + ν) has roots x1, x2, x3, where P3 = (x3, y3) is the third
point of L ∩ E. From (III.2.2a) we have

P1 + P2 + P3 = O.

We write out
F (x, λx + ν) = x(x − x1)(x − x2)(x − x3)

and equate coefficients. The coefficient of x3 gives c = −1, and then the coefficient
of x2 yields

x1 + x2 + x3 = λ2 + aaλ − a2.

This gives a formula for x3, and substituting into the equation of L gives the value
of y3 = λx3 + ν. Finally, to find P1 + P2 = −P3, we apply the negation formula
to P3. All of this is summarized in the following algorithm.

Group Law Algorithm 2.3. Let E be an elliptic curve given by a Weierstrass equa-
tion

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

(a) Let P0 = (x0, y0). Then

−P0 = (x0,−y0 − a1x0 − a3).

Next let

P1 + P2 = P3 with Pi = (xi, yi) ∈ E for i = 1, 2, 3.

(b) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P1 + P2 = O.
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Otherwise, define λ and ν by the following formulas:

λ ν

x1 �= x2
y2 − y1

x2 − x1

y1x2 − y2x1

x2 − x1

x1 = x2
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

Then y = λx + ν is the line through P1 and P2, or tangent to E if P1 = P2.
(c) With notation as in (b), P3 = P1 + P2 has coordinates

x3 = λ2 + a1λ − a2 − x1 − x2,

y3 = −(λ + a1)x3 − ν − a3.

(d) As special cases of (c), we have for P1 �= ±P2,

x(P1 + P2) =
(

y2 − y1

x2 − x1

)2

+ a1

(
y2 − y1

x2 − x1

)
− a2 − x1 − x2,

and the duplication formula for P = (x, y) ∈ E,

x
(
[2]P

)
=

x4 − b4x
2 − 2b6x − b8

4x3 + b2x2 + 2b4x + b6
,

where b2, b4, b6, b8 are the polynomials in the ai’s given in (III §1). (See also
Exercise 3.25.)

Corollary 2.3.1. With notation as in (III.2.3), a function f ∈ K̄(E) = K̄(x, y) is
said to be even if f(P ) = f(−P ) for all P ∈ E. Then

f is even if and only if f ∈ K̄(x).

PROOF. From (III.2.3), if P = (x0, y0), then −P = (x0,−y0 − a1x0 − a3). It fol-
lows immediately that every element of K̄(x) is even. Suppose now that f ∈ K̄(x, y)
is even. Using the Weierstrass equation for E, we can write f in the form

f(x, y) = g(x) + h(x)y for some g, h ∈ K̄(x).

Then the assumed evenness of f implies that

f(x, y) = f(x,−y − a1x − a3),
g(x) + h(x)y = f(x) + h(x)(−y − a1x − a3),

(2y + a1x + a3)h(x) = 0.

This holds for all (x, y) ∈ E, so either h is identically 0, or else 2 = a1 = a3 = 0.
The latter implies that the discriminant satisfies Δ = 0, contradicting our assump-
tion that the Weierstrass equation is nonsingular (III.1.4a). Hence h = 0, and
so f(x, y) = g(x) ∈ K̄(x).
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Example 2.4. Let E/Q be the elliptic curve

E : y2 = x3 + 17.

A brief inspection reveals some points with integer coordinates,

P1 = (−2, 3), P2 = (−1, 4), P3 = (2, 5), P4 = (4, 9), P5 = (8, 23),

and a short computer search gives some others,

P6 = (43, 282), P7 = (52, 375), P8 = (5234, 378661).

Using the addition formula, one easily verifies relations such as

P5 = [−2]P1, P4 = P1 − P3, [3]P1 − P3 = P7.

Of course, there also are lots of points with nonintegral rational coordinates, for
example

[2]P2 =
(

127
64

,−2651
512

)
, P2 + P3 =

(
−8

9
,−109

27

)
.

Now it is true, but not so easy to prove, that every rational point P ∈ E(Q) can
be written in the form

P = [m]P1 + [n]P3 for some m,n ∈ Z,

and with this identification, the group E(Q) is isomorphic to Z × Z. Further, there
are only 16 integral points P = (x, y) ∈ E, i.e., points with x, y ∈ Z, namely
{±P1, . . . ,±P8}. (See [190].) These facts illustrate two fundamental theorems in
the arithmetic of elliptic curves, namely that the group of rational points on an elliptic
curve is finitely generated (the Mordell–Weil theorem, proven in Chapter VIII) and
that the set of integral points on an elliptic curve is finite (Siegel’s theorem, proven
in Chapter IX).

Singular Weierstrass Equations

Suppose that a given Weierstrass equation has discriminant Δ = 0, so (III.1.4a) tells
us that it has a singular point. To what extent does our analysis of the composition
law fail in this case? As we will see, everything is fine provided that we discard the
singular point; and in fact, the resulting group has a particularly simple structure.

The reason that we will be interested in this situation is best illustrated by an
example. Consider again the elliptic curve from (III.2.4),

E : y2 = x3 + 17.

This is an elliptic curve defined over Q with discriminant Δ = 243317. It is often
useful to reduce the coefficients of E modulo p for various primes p and to con-
sider E as a curve defined over the finite field Fp. For almost all primes, namely
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those for which Δ �≡ 0 (mod p), the “reduced” curve is nonsingular, and hence is an
elliptic curve defined over Fp. However, for primes p that divide Δ, so in this exam-
ple for p ∈ {2, 3, 17}, the “reduced” curve has a singular point, so it is no longer an
elliptic curve. Thus even when dealing with nonsingular elliptic curves, say defined
over Q, we find singular curves naturally appearing. We will return to this reduction
process in more detail in Chapter VII.

Definition. Let E be a (possibly singular) curve given by a Weierstrass equation. The
nonsingular part of E, denoted by Ens, is the set of nonsingular points of E. Simi-
larly, if E is defined over K, then Ens(K) is the set of nonsingular points of E(K).

We recall from (III.1.4a) that if E is singular, then there are two possibilities for
the singularity, namely a node or a cusp, determined by whether c4 = 0 or c4 �= 0,
respectively.

Proposition 2.5. Let E be a curve given by a Weierstrass equation with Δ = 0, so E
has a singular point S. Then the composition law (III.2.1) makes Ens into an abelian
group.
(a) Suppose that E has a node, so c4 �= 0, and let

y = α1x + β1 and y = α2x + β2

be the distinct tangent lines to E at S. Then the map

Ens −→ K̄∗, (x, y) �−→ y − α1x − β1

y − α2x − β2

is an isomorphism of abelian groups.
(b) Suppose that E has a cusp, so c4 = 0, and let

y = αx + β

be the tangent line to E at S. Then the map

Ens −→ K̄+, (x, y) �−→ x − x(S)
y − αx − β

is an isomorphism of abelian groups.

Remark 2.6. For a group-theoretic description of Ens(K) when K is not alge-
braically closed, see Exercise 3.5.

PROOF. We first observe that Ens is closed under the composition law (III.2.1), since
if a line L intersects Ens at two (not necessarily distinct) points, then L cannot contain
the point S. This is true because S is a singular point of E, so S has multiplicity at
least two in the intersection E ∩ L; see Exercise 3.28. Thus if L also contains S,
then E ∩ L would consist of four points (counted with multiplicity), contradicting
Bézout’s theorem [111, I.7.8].
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We will verify that the maps in (a) and (b) are set bijections with the property that
if a line L not hitting S intersects Ens in three not necessarily distinct points, then the
images of these three points in K̄∗ (respectively K̄+) multiply to 1 (respectively sum
to 0). Using this property, we will prove that the composition law (III.2.1) makes Ens
into an abelian group and that the maps in (a) and (b) are group isomorphisms.

Since the composition law (III.2.1) and the maps (a) and (b) are defined in terms
of lines in P2, it suffices to prove the theorem after making a linear change of vari-
ables. We start by moving the singular point to (0, 0), yielding the Weierstrass equa-
tion

y2 + a1xy = x3 + a2x
2.

Let s ∈ K̄ be a root of s2 + a1s − a2 = 0. Replacing y by y + sx eliminates
the x2 term, giving the following equation for E, which we now write using homo-
geneous coordinates:

E : Y 2Z + AXY Z − X3 = 0.

Note that E has a node if A �= 0 and a cusp if A = 0.
(a) The tangent lines to E at S = [0, 0, 1] are Y = 0 and Y + AX = 0, so we are
looking at the map

Ens −→ K̄∗, [X,Y,Z] �−→ 1 +
AX

Y
.

It is convenient to make one more variable change, so we let

X = A2X ′ − A2Y ′, Y = A3Y ′, Z = Z ′.

Dropping the primes, this gives the equation

E : XY Z − (X − Y )2 = 0.

We now dehomogenize by setting Y = 1, so x = X/Y and z = Z/Y , which yields
the equation

E : xz − (x − 1)3 = 0

and the map
Ens −→ K̄∗, (x, z) �−→ x.

(Notice that in this new coordinate system, the singular point is now a point at infin-
ity.) The inverse map is

K̄∗ −→ Ens, t �−→
(

t,
(t − 1)3

t

)
,

so we have a bijection of sets K̄∗ ∼←→ Ens. It remains to show that if a line, not
going through [0, 0, 1], intersects E at the three points (x1, z1), (x2, z2), and (x3, z3),
then x1x2x3 = 1. (See Figure 3.4.) Any such line has the form z = ax + b, so the
three x-coordinates x1, x2, and x3 are the roots of the cubic polynomial

x(ax + b) − (x − 1)3 = −x3 + (a + 3)x2 + (b − 3)x + 1.
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Figure 3.4: The curve xz − (x − 1)3 = 0.

Looking at the constant term, we see that x1x2x3 = 1, as desired.
(b) In this case A = 0 and the tangent line to E at S = [0, 0, 1] is Y = 0, so we are
looking at the map

Ens −→ K̄+, [X,Y,Z] �−→ X/Y.

Again dehomogenizing by setting Y = 1, we obtain

E : z − x3 = 0,

Ens −→ K̄+, (x, z) �−→ x.

The inverse map is t �→ (t, t3). Finally, if the line z = ax + b intersects E at the
three points (x1, z1), (x2, z2), and (x3, z3), then the absence of an x2-term in

(ax + b) − x3

implies that x1 + x2 + x3 = 0.

III.3 Elliptic Curves
Let E be a smooth curve of genus one. For example, the nonsingular Weierstrass
equations studied in (III §1) and (III §2) define curves of this sort. As we have seen,
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such Weierstrass curves can be given the structure of an abelian group. In order to
make a set into a group, clearly an initial requirement is to choose a distinguished
(identity) element. This leads to the following definition.

Definition. An elliptic curve is a pair (E,O), where E is a nonsingular curve of
genus one and O ∈ E. (We generally denote the elliptic curve by E, the point O
being understood.) The elliptic curve E is defined over K, written E/K, if E is
defined over K as a curve and O ∈ E(K).

In order to connect this definition with the material in (III §1) and (III §2), we
begin by using the Riemann–Roch theorem to show that every elliptic curve can be
written as a plane cubic, and conversely, every smooth Weierstrass plane cubic curve
is an elliptic curve.

Proposition 3.1. Let E be an elliptic curve defined over K.
(a) There exist functions x, y ∈ K(E) such that the map

φ : E −→ P2, φ = [x, y, 1],

gives an isomorphism of E/K onto a curve given by a Weierstrass equation

C : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with coefficients a1, . . . , a6 ∈ K and satisfying φ(O) = [0, 1, 0]. The func-
tions x and y are called Weierstrass coordinates for the elliptic curve E.

(b) Any two Weierstrass equations for E as in (a) are related by a linear change of
variables of the form

X = u2X ′ + r, Y = u3Y ′ + su2X ′ + t,

with u ∈ K∗ and r, s, t ∈ K.
(c) Conversely, every smooth cubic curve C given by a Weierstrass equation as

in (a) is an elliptic curve defined over K with base point O = [0, 1, 0].

PROOF. (a) We look at the vector spaces L
(
n(O)

)
for n = 1, 2, . . . . By the

Riemann–Roch theorem, more specifically from (II.5.5c) with g = 1, we have

�
(
n(O)

)
= dimL

(
n(O)

)
= n for all n ≥ 1.

Thus we can choose functions x, y ∈ K(E) as in (II.5.8) so that {1, x} is a basis
for L

(
2(O)

)
and so that {1, x, y} is a basis for L

(
3(O)

)
. Note that x must have a

pole of exact order 2 at O, and similarly y must have a pole of exact order 3 at O.
Now we observe that L

(
6(O)

)
has dimension 6, but it contains the seven func-

tions
1, x, y, x2, xy, y2, x3.

It follows that there is a linear relation

A1 + A2x + A3y + A4x
2 + A5xy + A6y

2 + A7x
3 = 0,
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where by (II.5.8) we may take A1, . . . , A7 ∈ K. Note that A6A7 �= 0, since other-
wise every term would have a pole at O of a different order, and so all of the Aj’s
would vanish. Replacing x and y by −A6A7x and A6A

2
7y, respectively, and dividing

by A3
6A

4
7, we get a cubic equation in Weierstrass form. This gives a map

φ : E −→ P2, φ = [x, y, 1],

whose image C lies in the locus described by a Weierstrass equation. Note that
φ : E → C is a morphism from (II.2.1), and that it is surjective from (II.2.3). Further,
we have φ(O) = [0, 1, 0], since y has a higher-order pole than x at the point O.

The next step is to show that the map φ : E → C ⊂ P2 has degree-one,
or equivalently, to show that K(E) = K(x, y). Consider the map [x, 1] : E → P1.
Since x has a double pole at O and no other poles, (II.2.6a) says that this map has de-
gree 2. Thus

[
K(E) : K(x)

]
= 2. Similarly, the map [y, 1] : E → P1 has degree 3,

so
[
K(E) : K(y)

]
= 3. Therefore

[
K(E) : K(x, y)

]
divides both 2 and 3, so it must

equal 1.
Next we show that C is smooth. Suppose that C is singular. Then from (III.1.6),

there is a rational map ψ : C → P1 of degree one. It follows that the composition
ψ ◦ φ : E → P1 is a map of degree one between smooth curves, so from (II.2.4.1), it
is an isomorphism. This contradicts the fact that E has genus one and P1 has genus
zero (II.5.6). Therefore C is smooth, and now another application of (II.2.4.1) shows
that the degree one map φ : E → C is an isomorphism.
(b) Let {x, y} and {x′, y′} be two sets of Weierstrass coordinate functions on E.
Then x and x′ have poles of order 2 at O, and y and y′ have poles of order 3
at O. Hence {1, x} and {1, x′} are both bases for L

(
2(O)

)
, and similarly {1, x, y}

and {1, x′, y′} are both bases for L
(
3(O)

)
. Thus there are constants

u1, u2 ∈ K∗ and r, s2, t ∈ K

such that
x = u1x

′ + r and y = u2y
′ + s2x

′ + t.

Since both (x, y) and (x′, y′) satisfy Weierstrass equations in which the Y 2 and X3

terms have coefficient 1, we have u3
1 = u2

2. Letting u = u2/u1 and s = s2/u2 puts
the change of variables formula into the desired form.
(c) Let E be given by a nonsingular Weierstrass equation. We have seen (III.1.5)

that the differential

ω =
dx

2y + a1x + a3
∈ ΩE

has neither zeros nor poles, so div(ω) = 0. The Riemann–Roch theorem (II.5.5b)
then tells us that

2 genus(E) − 2 = deg div(ω) = 0,

so E has genus one, and taking [0, 1, 0] as the base point makes E into an ellip-
tic curve. (For an alternative proof of (c) using the Hurwitz genus formula, see
Exercise 2.7.)
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Corollary 3.1.1. Let E/K be an elliptic curve with Weierstrass coordinate func-
tions x and y. Then

K(E) = K(x, y) and
[
K(E) : K(x)

]
= 2.

PROOF. These two facts were proven during the course of proving (III.3.1a).

Remark 3.2. Note that (III.3.1b) does not imply that if two Weierstrass equations
have coefficients in a given field K, then every change of variables mapping one to
the other has coefficients in K. A simple example is the equation

y2 = x3 − x.

It has coefficients in Q, yet it is mapped to itself by the substitution

x = −x′, y =
√
−1 y′.

We next use the Riemann–Roch theorem to describe a group law on the points
of an elliptic curve E. Of course, this will turn out to be the group law described
by (III.2.1) when E is given by a Weierstrass equation. We start with a simple lemma
that serves to distinguish P1 from curves of genus one; see Exercise 2.5 for a gener-
alization.

Lemma 3.3. Let C be a curve of genus one and let P,Q ∈ C. Then

(P ) ∼ (Q) if and only if P = Q.

PROOF. Suppose that (P ) ∼ (Q) and choose f ∈ K̄(C) such that

div(f) = (P ) − (Q).

Then f ∈ L
(
(Q)

)
. The Riemann–Roch theorem (II.5.5c) tells us that

dimL
(
(Q)

)
= 1.

But L
(
(Q)

)
certainly contains the constant functions; hence f ∈ K̄ and P = Q.

Proposition 3.4. Let (E,O) be an elliptic curve.
(a) For every degree-0 divisor D ∈ Div0(E) there exists a unique point P ∈ E

satisfying
D ∼ (P ) − (O).

Define
σ : Div0(E) −→ E

to be the map that sends D to its associated P .
(b) The map σ is surjective.
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(c) Let D1,D2 ∈ Div0(E). Then

σ(D1) = σ(D2) if and only if D1 ∼ D2.

Thus σ induces a bijection of sets (which we also denote by σ),

σ : Pic0(E) ∼−−−−−→ E.

(d) The inverse to σ is the map

κ : E
∼−−−−−→ Pic0(E), P �−→

(
divisor class of (P ) − (O)

)
.

(e) If E is given by a Weierstrass equation, then the “geometric group law” on E
described by (III.2.1) and the “algebraic group law” induced from Pic0(E)
using σ are the same.

PROOF. (a) Since E has genus one, the Riemann–Roch theorem (II.5.5c) says that

dimL
(
D + (O)

)
= 1.

Let f ∈ K̄(E) be a nonzero element of L
(
D + (O)

)
, so f is a basis for this one-

dimensional vector space. Since

div(f) ≥ −D − (O) and deg(div(f)) = 0,

it follows that
div(f) = −D − (O) + (P )

for some P ∈ E. Hence
D ∼ (P ) − (O),

which gives the existence of a point with the desired property.
Next suppose that P ′ ∈ E has the same property. Then

(P ) ∼ D + (O) ∼ (P ′),

so (III.3.3) tells us that P = P ′. Hence P is unique.
(b) For any P ∈ E, we have

σ
(
(P ) − (O)

)
= P.

(c) Let D1,D2 ∈ Div0(E), and set Pi = σ(Di) for i = 1, 2. Then from the
definition of σ we have

(P1) − (P2) ∼ D1 − D2.

Thus if P1 = P2, then D1 ∼ D2; and conversely, if D1 ∼ D2, then (P1) ∼ (P2),
so P1 = P2 from (III.3.3).
(d) Clear.
(e) Let E be given by a Weierstrass equation and let P,Q,∈ E. It suffices to show

that
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κ(P + Q) = κ(P ) + κ(Q).

(N.B. The first + is addition on E using (III.2.1), while the second + is addition of
divisor classes in Pic0(E).)

Let
f(X,Y,Z) = αX + βY + γZ = 0

give the line L in P2 going through P and Q, let R be the third point of intersection
of L with E, and let

f ′(X,Y,Z) = α′X + β′Y + γ′Z = 0

be the line L′ through R and O. Then from the definition of addition on E (III.2.1)
and the fact that the line Z = 0 intersects E at O with multiplicity 3, we have

div(f/Z) = (P ) + (Q) + (R) − 3(O),
div(f ′/Z) = (R) + (P + Q) − 2(O).

Hence

(P + Q) − (P ) − (Q) + (O) = div(f ′/f) ∼ 0,

so
κ(P + Q) − κ(P ) − κ(Q) = 0.

This proves that κ is a group homomorphism.

Corollary 3.5. Let E be an elliptic curve and let D =
∑

nP (P ) ∈ Div(E). Then D
is a principal divisor if and only if

∑

P∈E

nP = 0 and
∑

P∈E

[nP ]P = O.

(Note that the first sum is of integers, while the second is addition on E.)

PROOF. From (II.3.1b), every principal divisor has degree 0. Next let D ∈ Div0(E).
We use (III.3.4a,e) to deduce that

D ∼ 0 ⇐⇒ σ(D) = O ⇐⇒
∑

P∈E

[nP ]σ
(
(P ) − (O)

)
= O.

This is the desired result, since σ
(
(P ) − (O)

)
= P .

Remark 3.5.1. If we combine (III.3.4) and (II.3.4), we see that every elliptic
curve E/K fits into an exact sequence

1 −→ K̄∗ −→ K̄(E)∗ div−−−→ Div0(E) σ−−−−→ E −→ 0,

where σ is the operation “sum the points in the divisor using the group law on E.”
Further, Exercise 2.13b implies that the sequence remains exact if we take GK̄/K-
invariants,
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1 −→ K∗ −→ K(E)∗ div−−−→ Div0
K(E) σ−−−−→ E(K) −→ 0.

(See also (X.3.8).)

We now prove the fundamental fact that the addition law on an elliptic curve is a
morphism. Addition is a map E×E → E and the variety E×E has dimension 2, so
we cannot use (II.2.1) directly; but (II.2.1) will play a crucial role in the proof. One
can also give a proof using explicit equations, but the algebra is somewhat lengthy;
see (III.3.6.1).

Theorem 3.6. Let E/K be an elliptic curve. Then the equations (III.2.3) giving the
group law on E define morphisms

+ : E × E −→ E, and − : E −→ E,
(P1, P2) �−→ P1 + P2, P �−→ −P.

PROOF. First, the negation map

(x, y) �−→ (x,−y − a1x − a3)

is clearly a rational map E → E. Since E is smooth, it follows from (II.2.1) that
negation is a morphism.

Next we fix a point Q �= O on E and consider the translation-by-Q map

τ : E −→ E, τ(P ) = P + Q.

From the addition formula given in (III.2.3c), this is clearly a rational map; and
thus, again using (II.2.1), it is a morphism. In fact, since τ has an inverse, namely
P �→ P − Q, it is an isomorphism.

Finally, consider the general addition map + : E × E → E. From (III.2.3c) we
see that it is a morphism except possibly at pairs of points having one of the following
forms,

(P, P ), (P,−P ), (P,O), (O,P ),

since for pairs of points not of this form, the rational functions

λ =
y2 − y1

x2 − x1
and ν =

y1x2 − y2x1

x2 − x1

on E × E are well-defined.
To deal with the four exceptional cases, we could work directly with the defini-

tion of morphism; see (III.3.6.1). However, we prefer to let the group law assist us.
Thus let τ1 and τ2 be translation maps as above for points Q1 and Q2, respectively.
Consider the composition of maps

φ : E × E
τ1×τ2−−−−−−→ E × E

+−−−−−→ E
τ−1
1−−−−→ E

τ−1
2−−−−→ E.

Since the group law on E is associative and commutative (III.2.2), the net effect of
the above maps is as follows:
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(P1, P2)
τ1×τ2−−−−−→ (P1 + Q1, P2 + Q2)

+−−−−−→ P1 + Q1 + P2 + Q2

τ−1
1−−−−−→ P1 + P2 + Q2

τ−1
2−−−−−→ P1 + P2.

Thus the rational map φ agrees with the addition map wherever they are both defined.
Further, since the τi’s are isomorphisms, it follows from the above discussion

that φ is a morphism except possibly at pairs of points of the form

(P − Q1, P − Q2), (P − Q1,−P − Q2), (P − Q1,−Q2), (−Q1, P − Q2).

But Q1 and Q2 are arbitrary points. Hence by varying Q1 and Q2, we can find a
finite set of rational maps

φ1, φ2, . . . , φn : E × E −→ E

with the following properties:

(i) φ1 is the addition map given in (III.2.3c).

(ii) For each (P1, P2) ∈ E × E, some φi is defined at (P1, P2).

(iii) If φi and φj are both defined at (P1, P2), then φi(P1, P2) = φj(P1, P2).

It follows that addition is defined on all of E × E, so it is a morphism.

Remark 3.6.1. During the course of proving (III.3.6), we noted that the formulas
in (III.2.3c) make it clear that the addition map + : E × E → E is a morphism ex-
cept possibly at pairs of points of the form (P,±P ), (P,O), or (O,P ). Rather than
using translation maps to circumvent this difficulty, one can work directly with the
definition of morphism using explicit equations. It turns out that this involves con-
sideration of quite a few cases; we do one to illustrate the method.

Thus let (x1, y1;x2, y2) be Weierstrass coordinates on E × E. We will show
explicitly that addition is a morphism at points of the form (P, P ) with P �= O and
[2]P �= O. Note that addition is defined in general by the formulas given in (III.2.3c):

λ =
y2 − y1

x2 − x1
, ν =

y1x2 − y2x1

x2 − x1
= y1 − λx1,

x3 = λ2 + a1λ − a2 − x1 − x2, y3 = −(λ + a1)x3 − ν − a3.

Here we view λ, ν, x3, y3 as functions on E × E, and addition is given by the map
[x3, y3, 1] : E × E → E. Thus to show that addition is a morphism at (P, P ), it suf-
fices to show that λ is a morphism at (P, P ). By assumption, both pairs of func-
tions (x1, y1) and (x2, y2) satisfy the same Weierstrass equation. Subtracting one
equation from the other and factoring yields
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(y1 − y2)(y1 + y2 + a1x1 + a3)

= (x1 − x2)(x2
1 + x1x2 + x2

2 + a2x1 + a2x2 + a4 − a1y2).

Thus λ, considered as a function on E × E, may also be written as

λ(P1, P2) =
x2

1 + x1x2 + x2
2 + a2x1 + a2x2 + a4 − a1y2

y1 + y2 + a1x1 + a3
.

Therefore, letting P = (x, y), we have

λ(P, P ) =
3x2 + 2a2x + a4 − a1y

2y + a1x + a3
.

Hence λ is a morphism at (P, P ) provided that 2y(P ) + a1x(P ) + a3 �= 0, and we
have excluded this case by our assumption that [2]P �= O. We leave it as an exercise
for the reader to deal similarly with the other cases.

III.4 Isogenies
Having examined in some detail the geometry of individual elliptic curves, we turn
now to the study of the maps between curves. Since an elliptic curve has a distin-
guished zero point, it is natural to single out the maps that respect this property.

Definition. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a mor-
phism

φ : E1 −→ E2 satisfying φ(O) = O.

Two elliptic curves E1 and E2 are isogenous if there is an isogeny from E1 to E2

with φ(E1) �= {O}. We will see later (III.6.1) that this is an equivalence relation.

It follows from (II.2.3) that an isogeny satisfies either

φ(E1) = {O} or φ(E1) = E2.

Thus except for the zero isogeny defined by [0](P ) = O for all P ∈ E1, every other
isogeny is a finite map of curves. Hence we obtain the usual injection of function
fields (II §2),

φ∗ : K̄(E2) −→ K̄(E1).

The degree of φ, which is denoted by deg φ, is the degree of the finite extension
K̄(E1)/φ∗K̄(E2), and similarly for the separable and inseparable degrees, denoted
respectively by degs φ and degi φ. We also refer to the map φ as being separable,
inseparable, or purely inseparable according to the corresponding property of the
field extension. Further, by convention we set

deg[0] = 0.

This convention ensures that we have
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deg(ψ ◦ φ) = deg(ψ) deg(φ) for all chains of isogenies E1
φ−→ E2

ψ−→ E3.

Elliptic curves are abelian groups, so the maps between them form groups. We
denote the set of isogenies from E1 to E2 by

Hom(E1, E2) = {isogenies E1 → E2}.

The sum of two isogenies is defined by

(φ + ψ)(P ) = φ(P ) + ψ(P ),

and (III.3.6) implies that φ+ψ is a morphism, so it is an isogeny. Hence Hom(E1, E2)
is a group.

If E1 = E2, then we can also compose isogenies. Thus if E is an elliptic curve,
we let

End(E) = Hom(E,E)

be the ring whose addition law is as given above and whose multiplication is com-
position,

(φψ)(P ) = φ
(
ψ(P )

)
.

(It is not obvious that the distributive law holds, but we will prove it later in this
section; see (III.4.8).) The ring End(E) is called the endomorphism ring of E. The
invertible elements of End(E) form the automorphism group of E, which is denoted
by Aut(E). The endomorphism ring of an elliptic curve E is an important invariant
of E that we will study in some detail throughout the rest of this chapter.

Of course, if E1, E2, and E are defined over a field K, then we can restrict
attention to those isogenies that are defined over K. The corresponding groups of
isogenies are denoted with the usual subscripts; thus

HomK(E1, E2), EndK(E), AutK(E).

We have already seen an example (III.3.2) showing that Aut(E) may be strictly
larger than AutK(E).

Example 4.1. For each m ∈ Z we define the multiplication-by-m isogeny

[m] : E −→ E

in the natural way. Thus if m > 0, then

[m](P ) = P + P + · · · + P︸ ︷︷ ︸
m terms

.

For m < 0, we set [m](P ) = [−m](−P ), and we have already defined [0](P ) = O.
Using (III.3.6), an easy induction shows that [m] is a morphism, hence an isogeny,
since it clearly sends O to O.

Notice that if E is defined over K, then [m] is defined over K. We start our
analysis of the group of isogenies by showing that if m �= 0, then the multiplication-
by-m map is nonconstant.
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Proposition 4.2. (a) Let E/K be an elliptic curve and let m ∈ Z with m �= 0. Then
the multiplication-by-m map

[m] : E −→ E

is nonconstant.
(b) Let E1 and E2 be elliptic curves. Then the group of isogenies

Hom(E1, E2)

is a torsion-free Z-module.
(c) Let E be an elliptic curve. Then the endomorphism ring End(E) is a (not nec-

essarily commutative) ring of characteristic 0 with no zero divisors.

PROOF. (a) We start by showing that [2] �= [0]. The duplication formula (III.2.3d)
says that if a point P = (x, y) ∈ E has order 2, then it must satisfy

4x3 + b2x
2 + 2b4x + b6 = 0.

If char(K) �= 2, this shows immediately that there are only finitely many such
points. Further, even for char(K) = 2, the only way to have [2] = [0] is for the
cubic polynomial to be identically 0, which means that b2 = b6 = 0, which in
turn implies that Δ = 0. Hence in all cases we have [2] �= [0]. Now, using the fact
that [mn] = [m] ◦ [n], we are reduced to considering the case that m is odd.

Assume now that char(K) �= 2. Then, using long division, it is easy to verify
that the polynomial

4x3 + b2x
2 + 2b4x + b6

does not divide the polynomial

x4 − b4x
2 − 2b6x − b8.

More precisely, if the first polynomial divides the second, then Δ = 0; see
Exercise 3.1. Hence we can find an x0 ∈ K̄ such that the first polynomial
vanishes to higher order at x0 than does the second. Choosing y0 ∈ K̄ so
that P0 = (x0, y0) ∈ E, the doubling formula implies that [2]P0 = O. In other
words, we have shown that E has a nontrivial point P0 of order 2. Then for odd
integers m we have

[m]P0 = P0 �= O,

so clearly [m] �= [0].
Finally, if char(K) = 2, then one can proceed as above using the “triplication

formula” (Exercise 3.2) to produce a point of order 3. We leave this approach to the
reader, since later in this chapter we prove a result (III.5.4) that includes the case
of char(K) = 2 and m odd.
(b) This follows immediately from (a). Suppose that φ ∈ Hom(E1, E2) and m ∈ Z

satisfy
[m] ◦ φ = [0].
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Taking degrees gives (
deg[m]

)
(deg φ) = 0,

so either m = 0, or else (a) implies that deg[m] ≥ 1, in which case we must have
φ = [0].
(c) From (b), the endomorphism ring End(E) has characteristic 0. Suppose that
φ, ψ ∈ End(E) satisfy φ ◦ ψ = [0]. Then

(deg φ)(deg ψ) = deg(φ ◦ ψ) = 0.

It follows that either φ = [0] or ψ = [0]. Therefore End(E) is an integral domain.

Definition. Let E be an elliptic curve and let m ∈ Z with m ≥ 1. The m-torsion
subgroup of E, denoted by E[m], is the set of points of E of order m,

E[m] =
{
P ∈ E : [m]P = O

}
.

The torsion subgroup of E, denoted by Etors, is the set of points of finite order,

Etors =
∞⋃

m=1

E[m].

If E is defined over K, then Etors(K) denotes the points of finite order in E(K).

The most important fact about the multiplication-by-m map is that it has de-
gree m2, from which one can deduce the structure of the finite group E[m]. We do
not prove this result here, because it is an immediate corollary of the material on
dual isogenies covered in (III §6). However, the reader should be aware that there
are completely elementary, but rather messy, proofs that deg[m] = m2 using explicit
formulas and induction. (See exercises 3.7, 3.8, and 3.9 for various approaches.)

Remark 4.3. Suppose that char(K) = 0. Then the map

[ ] : Z −→ End(E)

is usually the whole story, i.e., End(E) ∼= Z. If E is strictly larger than Z, then we
say that E has complex multiplication, or CM for short. Elliptic curves with complex
multiplication have many special properties; see (C §11) for a brief dicussion. On the
other hand, if K is a finite field, then End(E) is always larger than Z; see (V §3).

Example 4.4. Assume that char(K) �= 2 and let i ∈ K̄ be a primitive fourth root of
unity, i.e., i2 = −1. Then, as noted in (III.3.2), the elliptic curve E/K given by the
equation

E : y2 = x3 − x

has endomorphism ring End(E) strictly larger than Z, since it contains a map, which
we denote by [i], given by

[i] : (x, y) �−→ (−x, iy).
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Thus E has complex multiplication. Clearly [i] is defined over K if and only if i ∈ K.
Hence even if E is defined over K, it may happen that EndK(E) is strictly smaller
than End(E).

Continuing with this example, we observe that

[i] ◦ [i](x, y) = [i](−x, iy) = (x,−y) = −(x, y),

so [i] ◦ [i] = [−1]. There is thus a ring homomorphism

Z[i] −→ End(E), m + ni �−→ [m] + [n] ◦ [i].

If char(K) = 0, this map is an isomorphism, Z[i] ∼= End(E), in which case

Aut(E) ∼= Z[i]∗ = {±1,±i}

is a cyclic group of order 4.
Example 4.5. Again assume that char(K) �= 2 and let a, b ∈ K satisfy b �= 0 and
r = a2 − 4b �= 0. Consider the two elliptic curves

E1 : y2 = x3 + ax2 + bx,

E2 : Y 2 = X3 − 2aX2 + rX.

There are isogenies of degree 2 connecting these curves,

φ : E1 −→ E2, φ̂ : E2 −→ E1,

(x, y) �−→
(

y2

x2
,
y(b − x2)

x2

)
, (X,Y ) �−→

(
Y 2

4X2
,
Y (r − X2)

8X2

)
.

A direct computation shows that φ̂ ◦ φ = [2] on E1 and φ ◦ φ̂ = [2] on E2. The
maps φ and φ̂ are examples of dual isogenies, which we discuss further in (III §6).
Example 4.6. Let K be a field of characteristic p > 0, let q = pr, and let E/K
be an elliptic curve given by a Weierstrass equation. We recall from (II §2) that
the curve E(q)/K is defined by raising the coefficients of the equation for E to
the qth power, and the Frobenius morphism φq is defined by

φq : E −→ E(q), (x, y) �−→ (xq, yq).

Since E(q) is the zero locus of a Weierstrass equation, it will be an elliptic curve pro-
vided that its equation is nonsingular. Writing everything out in terms of Weierstrass
coefficients and using the fact that the qth-power map K → K is a homomorphism,
it is clear that

Δ(E(q)) = Δ(E)q and j(E(q)) = j(E)q.

In particular, the equation for E(q) is nonsingular.
Now suppose that K = Fq is a finite field with q elements. Then the qth-power

map on K is the identity, so E(q) = E and φq is an endomorphism of E, called
the Frobenius endomorphism. The set of points fixed by φq is exactly the finite
group E(Fq). This fact lies at the heart of Hasse’s proof of an estimate for #E(Fq);
see (V §1).
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Example 4.7. Let E/K be an elliptic curve and let Q ∈ E. Then we can define a
translation-by-Q map

τQ : E −→ E, P �−→ P + Q.

The map τQ is clearly an isomorphism, since τ−Q provides an inverse. Of course, it
is not an isogeny unless Q = O.

Now consider an arbitrary morphism

F : E1 −→ E2

of elliptic curves. The composition

φ = τ−F (O) ◦ F

is an isogeny, since φ(O) = O. This proves that any morphism F between elliptic
curves can be written as

F = τF (O) ◦ φ,

the composition of an isogeny and a translation.
An isogeny is a map between elliptic curves that sends O to O. Since an elliptic

curve is a group, it might seem more natural to focus on those isogenies that are
group homomorphisms. However, as we now show, it turns out that every isogeny is
automatically a homomorphism.

Theorem 4.8. Let
φ : E1 −→ E2

be an isogeny. Then

φ(P + Q) = φ(P ) + φ(Q) for all P,Q ∈ E1.

PROOF. If φ(P ) = O for all P ∈ E, there is nothing to prove. Otherwise, φ is a
finite map, so by (II.3.7), it induces a homomorphism

φ∗ : Pic0(E1) −→ Pic0(E2)
defined by

φ∗
(
class of

∑
ni(Pi)

)
= class of

∑
ni(φPi).

On the other hand, from (III.3.4) we have group isomorphisms

κi : Ei −→ Pic0(Ei), P �−→ class of (P ) − (O).

Then, since φ(O) = O, we obtain the following commutative diagram:

E1

∼=−−−−→
κ1

Pic0(E1)

φ

⏐
⏐
$

⏐
⏐
$φ∗

E2

∼=−−−−→
κ2

Pic0(E2).

Since κ1, κ2, and φ∗ are all group homomorphisms and κ2 is injective, it follows
that φ is also a homomorphism.
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Corollary 4.9. Let φ : E1 → E2 be a nonzero isogeny. Then

ker φ = φ−1(O)

is a finite group.

PROOF. It is a subgroup of E from (III.4.8), and it is finite (of order at most deg φ)
from (II.2.6a).

The next three results, (III.4.10), (III.4.11), and (III.4.12), encompass the basic
Galois theory of elliptic function fields.

Theorem 4.10. Let φ : E1 → E2 be a nonzero isogeny.
(a) For every Q ∈ E2,

#φ−1(Q) = degs φ.

Further, for every P ∈ E1,

eφ(P ) = degi φ.

(b) The map

ker φ −→ Aut
(
K̄(E1)/φ∗K̄(E2)

)
, T �−→ τ∗

T ,

is an isomorphism. (Here τT is the translation-by-T map (III.4.7) and τ∗
T is the

automorphism that τT induces on K̄(EQ).)
(c) Suppose that φ is separable. Then φ is unramified,

#ker φ = deg φ,

and K̄(E1) is a Galois extension of φ∗K̄(E2).

PROOF. (a) From (II.2.6b) we know that

#φ−1(Q) = degs φ for all but finitely many Q ∈ E2.

But for any Q,Q′ ∈ E2, if we choose some R ∈ E1 with φ(R) = Q′ − Q, then the
fact that φ is a homomorphism implies that there is a one-to-one correspondence

φ−1(Q) −→ φ−1(Q′), P �−→ P + R.

Hence
#φ−1(Q) = degs φ for all Q ∈ E2,

which proves the first assertion.
Now let P, P ′ ∈ E1 with φ(P ) = φ(P ′) = Q, and let R = P ′ − P . Then

φ(R) = O, so φ ◦ τR = φ. Therefore, using (II.2.6c) and the fact that τR is an iso-
morphism,

eφ(P ) = eφ◦τR
(P ) = eφ

(
τR(P )

)
eτR

(P ) = eφ(P ′).
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Hence every point in φ−1(Q) has the same ramification index. We compute

(degs φ)(degi φ) = deg φ =
∑

P∈φ−1(Q)

eφ(P ) from (II.2.6a),

=
(
#φ−1(Q)

)
eφ(P ) for any P ∈ φ−1(Q),

= (degs φ)eφ(P ) from above.

Canceling degs φ gives the second assertion.
(b) First, if T ∈ ker φ and f ∈ K̄(E2), then

τ∗
T (φ∗f) = (φ ◦ τT )∗f = φ∗f,

since φ◦ τT = φ. Hence as an automorphism of K̄(E1), the map τ∗
T fixes φ∗K̄(E2),

so the map in (b) is well-defined. Next, since

τS ◦ τT = τS+T = τT ◦ τS ,

the map in (b) is a homomorphism. Finally, from (a) we have

#ker φ = degs φ,

while a basic result from Galois theory says that

#Aut
(
K̄(E1)/φ∗K̄(E2)

)
≤ degs φ.

Hence to prove that the map T → τ∗
T is an isomorphism, it suffices to show that

it is injective. But if τ∗
T fixes K̄(E1), then in particular every function on E1 takes

the same value at T and O. This clearly implies that T = O, since for example, the
coordinate function x has a pole at O and no other poles.
(c) If φ is separable, then from (a) we see that

#φ−1(Q) = deg φ for all Q ∈ E2.

Hence φ is unramified (II.2.7), and putting Q = O gives

#ker φ = deg φ.

Then from (b) we find that

#Aut
(
K̄(E1)/φ∗K̄(E2)

)
=

[
K̄(E1) : φ∗K̄(E2)

]
,

so K̄(E1)/φ∗K̄(E2) is a Galois extension.

Corollary 4.11. Let

φ : E1 −→ E2 and ψ : E1 −→ E3

be nonconstant isogenies, and assume that φ is separable. If
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ker φ ⊂ ker ψ,

then there is a unique isogeny

λ : E2 −→ E3

satisfying ψ = λ ◦ φ.

PROOF. Since φ is separable, (III.4.10c) says that K̄(E1) is a Galois extension
of φ∗K̄(E2). Then the inclusion ker φ ⊂ ker ψ and the identification (III.4.10b) im-
ply that every element of Gal

(
K̄(E1)/φ∗K̄(E2)

)
fixes ψ∗K̄(E3). Hence by Galois

theory, there are field inclusions

ψ∗K̄(E3) ⊂ φ∗K̄(E2) ⊂ K̄(E1).

Now (II.2.4b) gives a map
λ : E2 −→ E3

satisfying
φ∗(λ∗K̄(E3)

)
= ψ∗K̄(E3),

and this in turn implies that
λ ◦ φ = ψ.

Finally, λ is an isogeny, since

λ(O) = λ
(
φ(O)

)
= ψ(O) = O.

Proposition 4.12. Let E be an elliptic curve and let Φ be a finite subgroup of E.
There are a unique elliptic curve E′ and a separable isogeny

φ : E −→ E′ satisfying ker φ = Φ.

Remark 4.13.1. The elliptic curve whose existence is asserted in this corollary is
often denoted by the quotient E/Φ. This notation clearly indicates the group struc-
ture, but there is no a priori reason why this quotient group should correspond to
the points of an elliptic curve, nor why the natural group homomorphism E → E/Φ
should be a morphism. In general, it turns out that the quotient of any variety by a
finite group of automorphisms is again a variety (see [186, §7]). The case of curves
is done in Exercise 3.13.

Remark 4.13.2. Suppose that E is defined over K and that Φ is GK̄/K-invariant.
In other words, if T ∈ Φ, then T σ ∈ Φ for all σ ∈ GK̄/K . Then the curve E′ and
isogeny φ described in (III.4.12) can be defined over K; see Exercise 3.13e.

Remark 4.13.3. For a given curve E and subgroup Φ, Velu [297] describes how to
explicitly write down equations for the curve E′ = E/Φ and isogeny φ : E → E′.
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PROOF OF (III.4.12). As in (III.4.10b), each point T ∈ Φ gives rise to an automor-
phism τ∗

T of K̄(E). Let K̄(E)Φ be the subfield of K̄(E) fixed by every element
of Φ. Then Galois theory tells us that K̄(E) is a Galois extension of K̄(E)Φ with
Galois group isomorphic to Φ.

The field K̄(E)Φ has transcendence degree one over K̄, so from (II.2.4c) there
are a unique smooth curve C/K̄ and a finite morphism

φ : E −→ C satisfying φ∗K̄(C) = K̄(E)Φ.

We next show that φ is unramified. Let P ∈ E and T ∈ Φ. Then for every
function f ∈ K̄(C),

f
(
φ(P + T )

)
=

(
(τ∗

T ◦ φ∗)f
(
P ) = (φ∗f)(P ) = f

(
φ(P )

)
,

where the middle equality uses the fact that τ∗
T fixes every element of φ∗K̄(C).

It follows that φ(P + T ) = φ(P ). Now let Q ∈ C and choose any point P ∈ E
with φ(P ) = Q. Then

φ−1(Q) ⊃ {P + T : T ∈ Φ}.

However, we also know from (II.2.7) that

#φ−1(Q) ≤ deg φ = #Φ,

with equality if and only if φ is unramified. Since the points P + T are distinct as T
ranges over the elements of Φ, we conclude that φ is unramified at Q; and since Q
was arbitrary, the map φ is unramified.

Finally, we apply the Hurwitz genus formula (II.2.7) to φ. Since φ is unramified,
the formula reads

2 genus(E) − 2 = (deg φ)(genus(C) − 2).

From this we conclude that C also has genus one, and hence C becomes an elliptic
curve and φ becomes an isogeny if we take φ(O) to be the “zero point” on C.

III.5 The Invariant Differential
Let E/K be an elliptic curve given by the usual Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

We have seen (III.1.5) that the differential

ω =
dx

2y + a1x + a3
∈ ΩE

has neither zeros nor poles. We now justify its name of invariant differential by
proving that it is invariant under translation.
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Proposition 5.1. Let E and ω be as above, let Q ∈ E, and let τQ : E → E be the
translation-by-Q map (III.4.7). Then

τ∗
Qω = ω.

PROOF. One can prove this proposition by a straightforward, but messy and un-
enlightening, calculation as follows. Write x(P + Q) and y(P + Q) in terms
of x(P ), x(Q), y(P ), and y(Q) using the addition formula (III.2.3c). Then use stan-
dard differentiation rules to calculate dx(P +Q) as a rational function times dx(P ),
treating x(Q) and y(Q) as constants. In this way one can directly verify that for a
fixed value of Q,

dx(P + Q)
2y(P + Q)) + a1x(P + Q) + a3

=
dx(P )

2y(P )) + a1x(P ) + a3
.

We leave the details of this calculation to the reader and instead give a more illumi-
nating proof.

Since ΩE is a one-dimensional K̄(E)-vector space (II.4.2), there is function
aQ ∈ K̄(E)∗, depending a priori on Q, such that

τ∗
Qω = aQω.

(Note that aQ �= 0, because τQ is an isomorphism.) We compute

div(aQ) = div(τ∗
Qω) − div(ω)

= τ∗
Q div(ω) − div(ω)

= 0 since div(ω) = 0 from (III.1.5).

Hence aQ is a function on E having neither zeros nor poles, so (II.1.2) tells us that
it is constant, i.e., aQ ∈ K̄∗.

Next consider the map

f : E −→ P1, Q �−→ [aQ, 1].

From the calculation sketched earlier, even without doing it explicitly, it is clear
that aQ can be expressed as a rational function of x(Q) and y(Q). Hence f is a ra-
tional map from E to P1, and it is not surjective, since it misses both [0, 1] and [1, 0].
We conclude from (II.2.1) and (II.2.3) that f is constant. Thus aQ does not depend
on Q, and we find its value by noting that

aQ = aO = 1 for all Q ∈ E.

This completes the proof that τ∗
Qω = ω.

Differential calculus is, in essence, a linearization tool. It will thus come as no
surprise to learn that the enormous utility of the invariant differential on an elliptic
curve lies in its ability to linearize the otherwise quite complicated addition law on
the curve.
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Theorem 5.2. Let E and E′ be elliptic curves, let ω be an invariant differential
on E, and let

φ, ψ : E′ −→ E

be isogenies. Then
(φ + ψ)∗ω = φ∗ω + ψ∗ω.

N.B. The two plus signs in this equation represent completely different operations.
The first is addition in Hom(E′, E), which is essentially addition using the group
law on E. The second is the usual addition in the vector space of differentials ΩE .

PROOF. If φ = [0] or ψ = [0], the result is clear. Next, if φ + ψ = [0], then using
the fact that

ψ∗ = (−φ)∗ = φ∗ ◦ [−1]∗,

it suffices to check that
[−1]∗ω = −ω.

The negation formula

[−1](x, y) = (x,−y − a1x − a3)

allows us to calculate

[−1]∗
(

dx

2y + a1x + a3

)
=

dx

2(−y − a1x − a3) + a1x + a3

= − dx

2y + a1x + a3
,

which is the desired result. We now assume that φ, ψ, and φ + ψ are all nonzero.
Let (x1, y1) and (x2, y2) be “independent” Weierstrass coordinates on E. By this

we mean that they satisfy the given Weierstrass equation for E, but satisfy no other
algebraic relations. More formally,

(
[x1, y1, 1], [x2, y2, 1]

)

give coordinates for E×E sitting inside P2×P2. (Alternatively, (x1, y1) and (x2, y2)
are “independent generic points of E” in the sense of Weil; see [41].)

Let
(x3, y3) = (x1, y1) + (x2, y2),

so x3 and y3 are rational combinations of x1, x2, y1, y2 given by the addition for-
mula (III.2.3c) on E. Further, for any (x, y), let ω(x, y) denote the corresponding
invariant differential,

ω(x, y) =
dx

2y + a1x + a3
.

Then, using the addition formula (III.2.3c) and standard rules for differentiation, we
can express ω(x3, y3) in terms of ω(x1, y2) and ω(x2, y2). This yields

ω(x3, y3) = f(x1, y1, x2, y2)ω(x1, y1) + g(x1, y1, x2, y2)ω(x2, y2),
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where f and g are rational functions of the indicated variables. In doing this cal-
culation, remember that since xi and yi satisfy the given Weierstrass equation, the
differentials dxi and dyi are related by

(2yi + a1xi + a3) dyi = (3x2
i + 2a2xi + a4 − a1yi) dxi.

In this way, ω(x3, y3) can be expressed as a K̄(x1, y1, x2, y2)-linear combination
of dx1 and dx2.

We claim that both f and g are identically 1. Clearly this can be proven by an ex-
plicit calculation, a painful task that we leave for the reader. Instead, we use (III.5.1)
to obtain the desired result. Suppose that we assign fixed values to x2 and y2, say by
choosing some Q ∈ E and setting

x2 = x(Q) and y2 = y(Q).

Then
dx2 = dx(Q) = 0, so ω(x2, y2) = 0,

while (III.5.1) tells us that

ω(x3, y3) = τ∗
Qω(x1, y1) = ω(x1, y1).

Substituting these into the expression for ω(x3, y3), we find that

f
(
x1, y1, x(Q), y(Q)

)
= 1

as a rational function in K̄(x1, y1). Thus f does not depend on x1 and y1, so
f ∈ K̄(x2, y2). But we also know that f(x2, y2) satisfies f

(
x(Q), y(Q)

)
= 1 for

every point Q ∈ E, so f must be identically 1. The same argument using x2 and y2

in place of x1 and y1 shows that g is also identically 1.
To recapitulate, we have shown that if

(x3, y3) = (x1, y1) + (x2, y2) (+ is addition on E),
then

ω(x3, y3) = ω(x1, y1) + ω(x2, y2) (+ is addition in ΩE).

Now let (x′, y′) be Weierstrass coordinates on E′ and set

(x1, y1) = φ(x′, y′), (x2, y2) = ψ(x′, y′), (x3, y3) = (φ + ψ)(x′, y′).

Substituting this into ω(x3, y3) = ω(x1, y1) + ω(x2, y2) yields
(
ω ◦ (φ + ψ)

)
(x′, y′) = (ω ◦ φ)(x′, y′) + (ω ◦ ψ)(x′, y′),

which says exactly that
(φ + ψ)∗ω = φ∗ω + ψ∗ω.
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Corollary 5.3. Let ω be an invariant differential on an elliptic curve E. Let m ∈ Z.
Then

[m]∗ω = mω.

PROOF. The assertion is true for m = 0, since [0] is the constant map, and it is true
for m = 1, since [1] is the identity map. We use (III.5.2) with φ = [m] and ψ = [1]
to obtain

[m + 1]∗ω = [m]∗ω + ω.

The desired result now follows by ascending and descending induction.

As a first indication of the utility of the invariant differential, we give a new, less
computational, proof of part of (III.4.2a).

Corollary 5.4. Let E/K be an elliptic curve and let m ∈ Z. Assume that m �= 0
in K. Then the multiplication-by-m map on E is a finite separable endomorphism.

PROOF. Let ω be an invariant differential on E. Then (III.5.3) and our assumption
on m implies that

[m]∗ω = mω �= 0,

so certainly [m] �= [0]. Hence [m] is finite, and (II.4.2c) tells us that [m] is separable.

As a second application of (III.5.2) and (III.5.3), we examine when a linear com-
bination involving the Frobenius morphism is separable.

Corollary 5.5. Let E be an elliptic curve defined over a finite field Fq of char-
acteristic p, let φ : E → E be the qth-power Frobenius morphism (III.4.6), and
let m,n ∈ Z. Then the map

m + nφ : E −→ E

is separable if and only if p � m. In particular, the map 1 − φ is separable.

PROOF. Let ω be an invariant differential on E. From (II.4.2c) we know that a
map ψ : E → E is inseparable if and only if ψ∗ω = 0. We apply this criterion to
the map ψ = m + nφ. Using (III.5.2) and (III.5.3), we compute

(m + nφ)∗ω = mω + nφ∗ω.

Note that φ∗ω = 0, since φ is inseparable, or, by direct calculation,

φ∗
(

dx

2y + a1x + a3

)
=

d(xq)
2yq + a1xq + a3

=
qxq−1dx

2yq + a1xq + a3
= 0.

Hence
(m + nφ)∗ω = [m]∗ω + [n]∗ ◦ φ∗ω = mω.

Since mω = 0 if and only if p | m, this gives the desired result.
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Corollary 5.6. Let E/K be an elliptic curve and let ω be a nonzero invariant dif-
ferential on E. We define a map from End(E) to K̄ in the following way:

End(E) −→ K̄, φ �−→ aφ such that φ∗ω = aφω.

(a) The map φ �→ aφ is a ring homomorphism.
(b) The kernel of φ �→ aφ is the set of inseparable endomorphisms of E.
(c) If char(K) = 0, then End(E) is a commutative ring.

PROOF. As in the proof of (III.5.1), the fact that ΩE is a one-dimensional K̄(E)-
vector space (II.4.2) implies that φ∗ω = aφω for some function aφ ∈ K̄(E). We
claim that aφ ∈ K̄. This is clear if aφ = 0, while if aφ �= 0, we use the fact
that div(ω) = 0 to compute

div(aφ) = div(φ∗ω) − div(ω) = φ∗ div(ω) − div(ω) = 0.

Hence aφ has no zeros or poles, so (II.1.2) says that aφ ∈ K̄.
(a) We use (III.5.2) to compute

aφ+ψω = (φ + ψ)∗ω = φ∗ω + ψ∗ω = aφω + aψω = (aφ + aψ)ω.

This gives aφ+ψ = aφ + aψ . Similarly,

aφ◦ψω = (φ ◦ ψ)∗ω = ψ∗(φ∗ω) = ψ∗(aφω) = aφψ∗(ω) = aφaψω,

which proves that aφ◦ψ = aφaψ .
(b) We have

aφ = 0 ⇐⇒ φ∗ω = 0 ⇐⇒ φ is inseparable (II.4.2c).

(c) If char(K) = 0, then every endomorphism is separable, so (b) says
that End(E) injects into K̄∗. Hence End(E) is commutative.

III.6 The Dual Isogeny
Let φ : E1 → E2 be a nonconstant isogeny. We have seen (II.3.7) that φ induces a
map

φ∗ : Pic0(E1) −→ Pic0(E1).

On the other hand, for i = 1 and 2 we have group isomorphisms (III.3.4)

κi : Ei −→ Pic0(Ei), P �−→ class of (P ) − (O).

This gives a homomorphism going in the opposite direction to φ, namely the com-
position

E2
κ2−−−−−→ Pic0(E2)

φ∗

−−−−−→ Pic0(E1)
κ−1
1−−−−−−→ E1.
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Later in this section we will verify that this map may be computed as follows.
Let Q ∈ E2, and choose any P ∈ E1 satisfying φ(P ) = Q. Then

κ−1
1 ◦ φ∗ ◦ κ2(Q) = [deg φ](P ).

It is by no means clear that the homomorphism κ−1
1 ◦ φ∗ ◦ κ2 is an isogeny,

i.e., that it is given by a rational map. The process of finding a point P satisfy-
ing φ(P ) = Q involves taking roots of various polynomial equations. If φ is sep-
arable, one needs to check that applying [deg φ] to P causes the conjugate roots to
appear symmetrically. (It is actually reasonably clear that this is true if one explicitly
writes out κ−1

1 ◦ φ∗ ◦ κ2.) If φ is inseparable, this approach is more complicated. We
now show that in all cases there is an actual isogeny that may be computed in the
manner described above.

Theorem 6.1. Let E1 → E2 be a nonconstant isogeny of degree m.
(a) There exists a unique isogeny

φ̂ : E2 −→ E1 satisfying φ̂ ◦ φ = [m].

(b) As a group homomorphism, φ̂ equals the composition

E2 −→ Div0(E2)
φ∗

−−−−−→ Div0(E1)
sum−−−−→ E1,

Q �−→ (Q) − (O)
∑

nP (P ) �−→
∑

[nP ]P.

PROOF. (a) First we show uniqueness. Suppose that φ̂ and φ̂′ are two such isogenies.
Then

(φ̂ − φ̂′) ◦ φ = [m] − [m] = [0].

Since φ is nonconstant, it follows from (II.2.3) that φ̂ − φ̂′ must be constant,
so φ̂ = φ̂′.

Next suppose that ψ : E2 → E3 is another nonconstant isogeny, say of degree n,
and suppose that we know that φ̂ and ψ̂ exist. Then

(φ̂ ◦ ψ̂) ◦ (ψ ◦ φ) = φ̂ ◦ [n] ◦ φ = [n] ◦ φ̂ ◦ φ = [nm].

Thus φ̂ ◦ ψ̂ has the requisite property to be ψ̂ ◦ φ. Hence using (II.2.12) to write an
arbitrary isogeny φ as a composition, it suffices to prove the existence of φ̂ when φ
is either separable or equal to the Frobenius morphism.

Case 1. φ is separable Since φ has degree m, we have (III.4.10c)

#ker φ = m,

so every element of ker φ has order dividing m, i.e.,

ker φ ⊂ ker[m].

It follows immediately from (III.4.11) that there is an isogeny
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φ̂ : E2 −→ E1 satisfying φ̂ ◦ φ = [m].

Case 2. φ is a Frobenius morphism If φ is the qth-power Frobenius morphism
with q = pe, then φ is clearly the composition of the pth-power Frobenius morphism
with itself e times. Hence it suffices to prove that φ̂ exists if φ is the pth-power
Frobenius morphism, so in particular, deg φ = p from (II.2.11).

We look at the multiplication-by-p map on E. Let ω be an invariant differential.
Then from (III.5.3) and the fact that char(K) = p, we see that

[p]∗ω = pω = 0.

We conclude from (III.4.2c) that [p] is not separable, and thus when we decom-
pose [p] as a Frobenius morphism followed by a separable map (II.2.12), the Frobe-
nius morphism does appear. In other words,

[p] = ψ ◦ φe

for some integer e ≥ 1 and some separable isogeny ψ. Then we can take

φ̂ = ψ ◦ φe−1.

(b) Let Q ∈ E2. Then the image of Q under the indicated composition is

sum
(
φ∗((Q) − (O)

))

=
∑

P∈φ−1(Q)

[eφ(P )]P −
∑

T∈φ−1(O)

[eφ(T )]T by definition of φ∗,

= [degi φ]

⎛

⎝
∑

P∈φ−1(Q)

P −
∑

T∈φ−1(O)

T

⎞

⎠ from (III.4.10a),

= [degi φ] ◦ [#φ−1(Q)]P for any P ∈ φ−1(Q),
= [deg φ]P from (III.4.10a).

But by construction,
φ̂(Q) = φ̂ ◦ φ(P ) = [deg φ]P,

so the two maps are the same.

Definition. Let φ : E1 → E2 be an isogeny. The dual isogeny to φ is the isogeny

φ̂ : E2 −→ E1

given by (III.6.1a). (This assumes that φ �= [0]. If φ = [0], then we set φ̂ = [0].)

The next theorem gives the basic properties of the dual isogeny. From these basic
facts we will be able to deduce a number of very important corollaries, including a
good description of the kernel of the multiplication-by-m map.
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Theorem 6.2. Let
φ : E1 −→ E2

be an isogeny.
(a) Let m = deg φ. Then

φ̂ ◦ φ = [m] on E1 and φ ◦ φ̂ = [m] on E2.

(b) Let λ : E2 → E3 be another isogeny. Then

λ̂ ◦ φ = φ̂ ◦ λ̂.

(c) Let ψ : E1 → E2 be another isogeny. Then

φ̂ + ψ = φ̂ + ψ̂.

(d) For all m ∈ Z,

[̂m] = [m] and deg[m] = m2.

(e) deg φ̂ = deg φ.

(f) ˆ̂
φ = φ.

PROOF. If φ is constant, then the entire theorem is trivial, and similarly (b) and (c)
are trivial if λ or ψ is constant. We may thus assume that all isogenies are noncon-
stant.
(a) The first statement is the defining property of φ̂. For the second, consider

(φ ◦ φ̂) ◦ φ = φ ◦ [m] = [m] ◦ φ.

Hence φ ◦ φ̂ = [m], since φ is not constant.
(b) Letting n = deg λ, we have

(φ̂ ◦ λ̂) ◦ (λ ◦ φ) = φ̂ ◦ [n] ◦ φ = [n] ◦ φ̂ ◦ φ = [nm].

The uniqueness statement in (III.6.1a) implies that

φ̂ ◦ λ̂ = λ̂ ◦ φ.

(c) We give a proof in characteristic 0. See Exercise 3.31 for a proof in arbitrary
characteristic.

Let x1, y1 ∈ K(E1) and x2, y2 ∈ K(E2) be Weierstrass coordinates. We start
by looking at E2 considered as an elliptic curve defined over the field K(E1) =
K(x1, y1).1 Then another way of saying that φ : E1 → E2 is an isogeny is to note
that φ(x1, y1) ∈ E2

(
K(x1, y1)

)
, and similarly for ψ(x1, y1) and (φ + ψ)(x1, y1).

Now consider the divisor
1This is where we use the characteristic 0 assumption, since all of our results on elliptic curves have

assumed that the base field is perfect.
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D = div
(
(φ + ψ)(x1, y1)

)
− div

(
φ(x1, y1)

)
+ div

(
ψ(x1, y1)

)
+ (O)

∈ DivK(x1,y1)(E2).

The definition of φ + ψ implies that D sums to O, so (III.3.5) tells us that D is
linearly equivalent to 0. Thus there is a function

f ∈ K(x1, y1)(E2) = K(x1, y1, x2, y2)

that, when considered as a function of x2 and y2, has divisor D.
We now switch perspective and look at f as a function of x1 and y1. In other

words, we treat f as a function on E1 considered as an elliptic curve defined
over K(x2, y2). Suppose that P1 ∈ E1

(
K(x2, y2)

)
is a point satisfying φ(P1) =

(x2, y2). Then examining D, specifically the term −div
(
φ(x1, y1)

)
, we see that f

has a pole at P1, i.e., the function f(x1, y1;x2, y2) has a pole if x1, y1, x2, y2 sat-
isfy (x2, y2) = φ(x1, y1). Further,

ordP1(f) = eφ(P1).

Similarly, f has a pole at P1 if (x2, y2) = ψ(P1), and it has a zero at P1

if (x2, y2) = (φ + ψ)(P1). It follows that as a function of x1 and y1, the divisor
of f has the form

(φ+ψ)∗
(
(x2, y2)

)
−φ∗((x2, y2)

)
−ψ∗((x2, y2)

)
+
∑

ni(Pi) ∈ Div
K(x2,y2)

(E1),

where the Pi’s are in E1(K̄), i.e.,
∑

ni(Pi) ∈ DivK̄(E1). Since this is the divisor
of a function, it sums to O, so using (III.6.1b), we conclude that the point

(φ̂ + ψ)(x2, y2) − φ̂(x2, y2) − ψ̂(x2, y2)

does not depend on (x2, y2), i.e., it is in E1(K̄). Putting (x2, y2) = O shows that it
is equal to O, which completes the proof that

φ̂ + ψ = φ̂ + ψ̂.

(d) This is true for m = 0 by definition, and it is clearly true for m = 1. Using (c)
with φ = [m] and ψ = [1] yields

̂[m + 1] = [̂m] + [̂1],

and ascending and descending induction shows that [̂m] = [m] holds for all m.
Now let d = deg[m] and consider the multiplication-by-d map. Thus

[d] = [̂m] ◦ [m] definition of dual isogeny,

= [m2] since [̂m] = [m].

Using the fact (III.4.2b) that the endomorphism ring of an elliptic curve is a torsion-
free Z-module, it follows that d = m2.
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(e) Let m = deg φ. Then using (d) and (a), we find that

m2 = deg[m] = deg(φ ◦ φ̂) = (deg φ)(deg φ̂) = m(deg φ̂).

Hence m = deg φ̂.
(f) Again let m = deg φ. Then using (a), (b), and (d) yields

φ̂ ◦ φ = [m] = [̂m] = ̂̂φ ◦ φ = φ̂ ◦ ˆ̂
φ.

Therefore
φ = ˆ̂

φ.

Definition. Let A be an abelian group. A function

d : A −→ R

is a quadratic form if it satisfies the following conditions:

(i) d(α) = d(−α) for all α ∈ A.

(ii) The pairing

A × A −→ R, (α, β) �−→ d(α + β) − d(α) − d(β),

is bilinear.

A quadratic form d is positive definite if it further satisfies:

(iii) d(α) ≥ 0 for all α ∈ A.

(iv) d(α) = 0 if and only if α = 0.

Corollary 6.3. Let E1 and E2 be elliptic curves. The degree map

deg : Hom(E1, E2) −→ Z

is a positive definite quadratic form.

PROOF. Everything is clear except for the fact that the pairing

〈φ, ψ〉 = deg(φ + ψ) − deg(φ) − deg(ψ)

is bilinear. To verify this, we use the injection

[ ] : Z −→ End(E1)

and compute
[
〈φ, ψ〉

]
=

[
deg(φ + ψ)

]
−

[
deg(φ)

]
−

[
deg(ψ)

]

= ̂(φ + ψ) ◦ (φ + ψ) − φ̂ ◦ φ − ψ̂ ◦ ψ

= φ̂ ◦ ψ + ψ̂ ◦ φ from (III.6.2c).

Using (III.6.2c) a second time, we see that this last expression is linear in both φ
and ψ.



86 III. The Geometry of Elliptic Curves

Corollary 6.4. Let E be an elliptic curve and let m ∈ Z with m �= 0.
(a) deg[m] = m2.
(b) If m �= 0 in K, i.e., if either char(K) = 0 or p = char(K) > 0 and p � m, then

E[m] =
Z

mZ
× Z

mZ
.

(c) If char(K) = p > 0, then one of the following is true:

(i) E[pe] = {O} for all e = 1, 2, 3, . . . .

(ii) E[pe] =
Z

peZ
for all e = 1, 2, 3, . . . .

(Recall that E[m] is another notation for ker[m], the set of points of order m on E.)

PROOF. (a) This was proven in (III.6.2d). We record it again here in order to point
out that there are other ways of proving that [m] has degree m2; see for example
exercises 3.7, 3.8, and 3.11. Then the fundamental description of E[m] in (b) follows
formally from (a).
(b) The assumption on m and the fact that deg[m] = m2 tells us that [m] is a finite
separable map. Hence from (III.4.10c),

#E[m] = deg[m] = m2.

Further, for every integer d dividing m, we similarly have

#E[d] = d2.

Writing the finite group E[m] as a product of cyclic groups, it is easy to see that the
only possibility is

E[m] =
Z

mZ
× Z

mZ
.

(See Exercise 3.30.)
(c) Let φ be the pth-power Frobenius morphism. Then

#E[pe] = degs[p
e] from (III.4.10a),

=
(
degs(φ̂ ◦ φ)

)e
from (III.6.2a),

= (degs φ̂)e from (II.2.11b).

From (III.6.2e) and (II.2.11c) we have

deg φ̂ = deg φ = p,

so there are two cases. If φ̂ is inseparable, then degs φ̂ = 1, so

#E[pe] = 1 for all e.

Otherwise φ̂ is separable, so degs φ̂ = p and
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#E[pe] = pe for all e.

Again writing E[pe] as a product of cyclic groups, it is easy to see that this implies
that

E[pe] =
Z

peZ
.

(For a more detailed analysis of E[pe] in characteristic p and its relationship to the
endomorphism ring End(E), see (V §3).)

III.7 The Tate Module
Let E/K be an elliptic curve and let m ≥ 2 be an integer, prime to char(K)
if char(K) > 0. As we have seen,

E[m] ∼= Z

mZ
× Z

mZ
,

the isomorphism being one between abstract groups. However, the group E[m]
comes equipped with considerably more structure than an abstract group. For ex-
ample, each element σ of the Galois group GK̄/K acts on E[m], since if [m]P = O,
then

[m](P σ) =
(
[m]P

)σ = Oσ = O.

We thus obtain a representation

GK̄/K −→ Aut
(
E[m]

) ∼= GL2(Z/mZ),

where the latter isomorphism involves choosing a basis for E[m]. Individually, for
each m, these representations are not completely satisfactory, since it is generally
easiesr to deal with representations whose matrices have coefficients in a ring of
characteristic 0. We are going to fit together these mod m representations for vary-
ing m in order to create a characteristic 0 representation. To do this, we mimic the
inverse limit construction of the �-adic integers Z� from the finite groups Z/�nZ.

Definition. Let E be an elliptic curve and let � ∈ Z be a prime. The (�-adic) Tate
module of E is the group

T�(E) = lim←−
n

E[�n],

the inverse limit being taken with respect to the natural maps

E[�n+1]
[�]−−−−−→ E[�n].

Since each E[�n] is a Z/�nZ-module, we see that the Tate module has a natural
structure as a Z�-module. Further, since the multiplication-by-� maps are surjective,
the inverse limit topology on T�(E) is equivalent to the �-adic topology that it gains
by being a Z�-module.
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Proposition 7.1. As a Z�-module, the Tate module has the following structure:

(a) T�(E) ∼= Z� × Z� if � �= char(K).

(b) Tp(E) ∼= {0} or Zp if p = char(K) > 0.

PROOF. This follows immediately from (III.6.4b,c).

The action of GK̄/K on each E[�n] commutes with the multiplication-by-� map
used to form the inverse limit, so GK̄/K also acts on T�(E). Further, since the profi-
nite group GK̄/K acts continuously on each finite (discrete) group E[�n], the result-
ing action on T�(E) is also continuous.

Definition. The �-adic representation (of GK̄/K associated to E) is the homomor-
phism

ρ� : GK̄/K −→ Aut
(
T�(E)

)

induced by the action of GK̄/K on the �n-torsion points of E.

Convention. From here on, the number � always refers to a prime number that is
different from the characteristic of K.

Remark 7.2. If we choose a Z�-basis for T�(E), we obtain a representation

GK̄/K −→ GL2(Z�),

and then the natural inclusion Z� ⊂ Q� gives a representation

GK̄/K −→ GL2(Q�).

In this way we obtain a two-dimensional representation of GK̄/K over a field of char-
acteristic 0. More intrinsically, we can avoid choosing a basis by using the natural
map

ρ� : GK̄/K −→ Aut
(
T�(E)

)
↪−→ Aut

(
T�(E)

)
⊗Z�

Q�.

Remark 7.3. The above construction is analogous to the following, which may be
more familiar to the reader. Let

μ�n ⊂ K̄∗

be the group of (�n)th roots of unity. Raising to the �th power gives maps

μ�n+1
ζ 
→ζ�

−−−→ μ�n ,

and then taking the inverse limit yields the Tate module of K,

T�(μ) = lim←−
n

μ�n .

(More formally, T�(μ) is the Tate module of the multiplicative group K̄∗.) As ab-
stract groups, we have

μ�n
∼= Z/�nZ and T�(μ) ∼= Z�.
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Further, the natural action of GK̄/K on each μ�n induces an action on T�(μ), so we
obtain a 1-dimensional representation

GK̄/K −→ Aut
(
T�(μ)

) ∼= Z∗
� .

For K = Q, this cyclotomic representation is surjective, because the �-power cyclo-
tomic polynomials are irreducible over Q.

Remark 7.3.1. In Chapter VI, when we study elliptic curves over the complex
numbers, we will see (VI.5.6) that there is a natural way in which the m-torsion
subgroup E[m] may be identified with the homology group H1(E, Z/mZ), and sim-
ilarly T�(E) with H1(E, Z�). The utility of this identification is that while homology
groups do not generally admit a Galois action, the torsion subgroup E[m] and Tate
module T�(E) do admit such an action. This idea has been vastly generalized by
Grothendieck and others in the theory of étale cohomology.

The Tate module is a useful tool for studying isogenies. Let

φ : E1 −→ E2

be an isogeny of elliptic curves. Then φ induces maps

φ : E1[�n] −→ E2[�n],

and hence it induces a Z�-linear map

φ� : T�(E1) −→ T�(E2).

We thus obtain a natural homomorphism

Hom(E1, E2) −→ Hom
(
T�(E1), T�(E2)

)
.

Further, if E1 = E2 = E, then the map

End(E) −→ End
(
T�(E)

)

is even a homomorphism of rings. It is not hard to show that these maps are injective
(see Exercise 3.14), but the following result gives much stronger information about
the structure of Hom(E1, E2).

Theorem 7.4. Let E1 and E2 be elliptic curves and let � �= char(K) be a prime.
Then the natural map

Hom(E1, E2) ⊗ Z� −→ Hom
(
T�(E1), T�(E2)

)
, φ �−→ φ�,

is injective

PROOF. We start by proving the following statement:
⎡

⎢
⎣

Let M ⊂ Hom(E1, E2) be a finitely generated subgroup, and let

M div =
{
φ ∈ Hom(E1, E2) : [m] ◦ φ ∈ M for some integer m ≥ 1

}
.

Then M div is finitely generated.

⎤

⎥
⎦ (∗)
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To prove (∗), we extend the degree mapping to the finite-dimensional real vector
space M ⊗ R, which we equip with the natural topology inherited from R. Then the
degree mapping is clearly continuous, so the set

U = {φ ∈ M ⊗ R : deg φ < 1}

is an open neighborhood of 0. Further, since Hom(E1, E2) is a torsion-free Z-
module (III.4.2b), there is a natural inclusion

M div ⊂ M ⊗ R.

Further, it is clear that
M div ∩ U = {0},

since every nonzero isogeny has degree at least one. Hence M div is a discrete sub-
group of the finite-dimensional vector space M ⊗ R, so it is finitely generated. This
completes the proof of (∗).

We now turn to the proof of (III.7.4). Let φ ∈ Hom(E1, E2) ⊗ Z�, and suppose
that φ� = 0. Let

M ⊂ Hom(E1, E2)

be some finitely generated subgroup with the property that φ ∈ M ⊗ Z�. Then,
with notation as above, the group M div is finitely generated, so it is also free,
since (III.4.2b) tells us that it is torsion-free. Let

ψ1, . . . , ψt ∈ Hom(E1, E2)

be a basis for M div, and write

φ = α1ψ1 + · · · + αtψt with α1, . . . , αt ∈ Z�.

Now fix some n ≥ 1 and choose a1, . . . , at ∈ Z with

ai ≡ αi (mod �n).

Then the assumption that φ� = 0 implies that the isogeny

ψ = [a1] ◦ ψ1 + · · · + [at] ◦ ψt ∈ Hom(E1, E2)

annihilates E1[�n]. It follows from (III.4.11) that ψ factors through [�n], so there is
an isogeny

λ ∈ Hom(E1, E2) satisfying ψ = [�n] ◦ λ.

Further, λ is in M div, so there are integers bi ∈ Z such that

λ = [b1] ◦ ψ1 + · · · + [bt] ◦ ψt.

Then, since the ψi’s form a Z-basis for M div, the fact that ψ = [�n] ◦ λ implies that
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ai = �nbi,

and hence
αi ≡ 0 (mod �n).

This holds for all n, so we conclude that αi = 0, and hence that φ = 0. (N.B. The
reason that we need to use M div, rather than working in M , is because it is essential
that φ, ψ, and λ be written in terms of a Z-basis that does not depend on the choice
of �n.)

Corollary 7.5. Let E1 and E2 be elliptic curves. Then

Hom(E1, E2)

is a free Z-module of rank at most 4.

PROOF. We know from (III.4.2b) that Hom(E1, E2) is torsion-free. This implies
that

rankZ Hom(E1, E2) = rankZ�
Hom(E1, E2) ⊗ Z�,

in the sense that if one is finite, then the other is finite and they are equal. Next,
from (III.7.4) we have the estimate

rankZ�
Hom(E1, E2) ⊗ Z� ≤ rankZ�

Hom
(
T�(E1), T�(E2)

)
.

Finally, choosing a Z�-basis for T�(E1) and T�(E2), we see from (III.7.1a) that

Hom
(
T�(E1), T�(E2)

)
= M2(Z�)

is the additive group of 2 × 2 matrices with Z�-coefficients. The Z�-rank of M2(Z�)
is 4, which proves that rankZ Hom(E1, E2) is at most 4.

Remark 7.6. By definition, an isogeny is defined over K if it commutes with the
action of GK̄/K . Similarly, we can define

HomK

(
T�(E1), T�(E2)

)

to be the group of Z�-linear maps from T�(E1) to T�(E2) that commute with the ac-
tion of GK̄/K as given by the �-adic representation. Then we have a homomorphism

HomK(E1, E2) ⊗ Z� −→ HomK

(
T�(E1), T�(E2)

)
,

and (III.7.4) tells us that this homomorphism is injective. It turns out that in many
cases, it is an isomorphism.

Isogeny Theorem 7.7. Let � �= char(K) be a prime. The natural map

HomK(E1, E2) ⊗ Z� −→ HomK

(
T�(E1), T�(E2)

)

is an isomorphism in the following two situations:
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(a) K is a finite field. (Tate [282])
(b) K is a number field. (Faltings [82, 84])

The original proofs of both parts of (III.7.7) make heavy use of abelian varieties
(higher-dimensional analogues of elliptic curves) and are thus unfortunately beyond
the scope of this book. Indeed, the methods used to prove (III.7.7b) include virtually
all of the tools needed for Faltings’ proof of the Mordell conjecture. See also [237]
for a proof of (III.7.7b) in the case that j(E) is nonintegral, and [45, 160, 163] for
alternative proofs of (III.7.7b).

One way to interpret (III.7.7) is to view the Tate modules as homology groups,
specifically as the first homology with Z�-coefficients (III.7.3.1). Then (III.7.7) char-
acterizes when a map between homology groups comes from an actual geometric
map between the curves.

Remark 7.8. It is also natural to ask about the size of the image of ρ�(GK̄/K)
in Aut

(
T�(E)

)
. The following theorem of Serre provides an answer for number

fields. We do not include the proof. (But see (IX.6.3) and Exercise 9.7.)

Theorem 7.9. (Serre) Let K be a number field and let E/K be an elliptic curve
without complex multiplication.
(a) ρ�(GK̄/K) is of finite index in Aut

(
T�(E)

)
for all primes � �= char(K).

(b) ρ�(GK̄/K) = Aut
(
T�(E)

)
for all but finitely many primes �.

PROOF. See [237] and [231].

Remark 7.10. Let E/K be an elliptic curve. Then the elements of EndK(E) com-
mute with the elements of GK̄/K in their action on T�(E). If

EndK(E) = Z,

this gives no additional information. However, if E has complex multiplication, then
one can show (Exercise 3.24) that this forces the action of GalK̄/K on T�(E) to
be abelian, i.e., the image ρ�(GalK̄/K) is an abelian subgroup of Aut

(
T�(E)

) ∼=
GL2(Z�). In particular, adjoining the coordinates of �n-torsion points to K leads to
explicitly constructed abelian extensions of K, in much the same way that abelian
extensions of Q are obtained by adjoining roots of unity. See (C §11) for a brief dis-
cussion, and [140, Part II], [249, Chapter 5], or [266, Chapter II] for further details.

III.8 The Weil Pairing
Let E/K be an elliptic curve. For this section we fix an integer m ≥ 2, which we
assume to be prime to p = char(K) if p > 0.

As an abstract group, the group of m-torsion points E[m] has the form (III.6.4b)

E[m] ∼= Z/mZ × Z/mZ.
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Thus E[m] is a free Z/mZ-module of rank two. Every free module comes equipped
with a natural nondegenerate alternating multilinear map, the determinant. Choosing
a basis {T1, T2} for E[m], the determinant pairing on E[m] is given by

det : E[m] −→ Z/mZ, det(aT1 + bT2, cT1 + dT2) = ad − bc,

where the value is, of course, independent of the choice of basis. However, a draw-
back of the determinant pairing on E[m] is that it is not Galois invariant, i.e.,
if P,Q ∈ E[m] and σ ∈ GK̄/K , then the values of det(P σ, Qσ) and det(P,Q)σ

need not be the same.
We can achieve Galois invariance by using instead a modified pairing of the form

ζdet(P,Q), where ζ is a primitive mth root of unity. In order to define this pairing in-
trinsically, we will make frequent use of (III.3.5), which says that a divisor

∑
ni(Pi)

is the divisor of a function if and only if both
∑

ni = 0 and
∑

[ni]Pi = O.
Let T ∈ E[m]. Then there is a function f ∈ K̄(E) satisfying

div(f) = m(T ) − m(O).

Next take T ′ ∈ E to be a point with [m]T ′ = T . Then there is similarly a func-
tion g ∈ K̄(E) satisfying

div(g) = [m]∗(T ) − [m]∗(O) =
∑

R∈E[m]

(T ′ + R) − (R).

(To see that this divisor sums to O, we observe that #E[m] = m2 from (III.6.4b)
and that [m2]T ′ = O.) It is easy to verify that the functions f ◦ [m] and gm have the
same divisor, so multiplying f by an appropriate constant from K̄∗, we may assume
that

f ◦ [m] = gm.

Now let S ∈ E[m] be another m-torsion point, where we allow S = T . Then for
any point X ∈ E, we have

g(X + S)m = f
(
[m]X + [m]S

)
= f

(
[m]X

)
= g(X)m.

Thus considered as a function of X , the function g(X + S)/g(X) takes on only
finitely many values, i.e., for every X , it is an mth root of unity. In particular, the
morphism

E −→ P1, S �−→ g(X + S)/g(X)

is not surjective, so (II.2.3) says that it is constant. This allows us to define a pairing

em : E[m] × E[m] −→ μm

by setting

em(S, T ) =
g(X + S)

g(X)
,
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where X ∈ E is any point such that g(X + S) and g(X) are both defined and
nonzero. (As usual, μm denotes the group of mth roots of unity.) Note that although
the function g is well-defined only up to multiplication by an element of K̄∗, the
value of em(S, T ) does not depend on this choice. The pairing that we have just de-
fined is called the Weil em-pairing. We begin by proving some of its basic properties.

Proposition 8.1. The Weil em-pairing has the following properties:
(a) It is bilinear:

em(S1 + S2, T ) = em(S1, T )em(S2, T ),
em(S, T1 + T2) = em(S, T1)em(S, T2).

(b) It is alternating:
em(T, T ) = 1.

So in particular, em(S, T ) = em(T, S)−1.
(c) It is nondegenerate:

If em(S, T ) = 1 for all S ∈ E[m], then T = O.

(d) It is Galois invariant:

em(S, T )σ = em(Sσ, T σ) for all σ ∈ GK̄/K .

(e) It is compatible:

emm′(S, T ) = em

(
[m′]S, T

)
for all S ∈ E[mm′] and T ∈ E[m].

PROOF. (a) Linearity in the first factor is easy:

em(S1 + S2, T ) =
g(X + S1 + S2)

g(X)
=

g(X + S1 + S2)
g(X + S1)

g(X + S1)
g(X)

= em(S2, T )em(S1, T ).

Note how useful it is that in computing em(S2, T ) = g(Y + S2)/g(Y ), we may
choose any value for Y , for example we may take Y = X + S1.

In order to prove linearity in the second factor, let f1, f2, f3, g1, g2, g3 be the
appropriate functions for the points T1, T2, and T3 = T1 + T2. Choose a func-
tion h ∈ K̄(E) with divisor

div(h) = (T1 + T2) − (T1) − (T2) + (O).
Then

div
(

f3

f1f2

)
= m div(h),

so
f3 = cf1f2h

m for some c ∈ K̄∗.
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We compose with the multiplication-by-m map, use the fact that fi ◦ [m] = gm
i , and

take mth roots to obtain

g3 = c′ · g1 · g2 ·
(
h ◦ [m]

)
for some c′ ∈ K̄∗.

This allows us to compute

em(S, T1 + T2) =
g3(X + S)

g3(X)
=

g1(X + S)g2(X + S)h
(
[m]X + [m]S

)

g1(X)g2(X)h
(
[m]X

)

= em(S, T1)em(S, T2), since [m]S = O.

(b) From (a) we have

em(S + T, S + T ) = em(S, S)em(S, T )em(T, S)em(T, T ),

so it suffices to show that em(T, T ) = 1 for all T ∈ E[m]. For any P ∈ E, recall
that τP : E → E denotes the translation-by-P map (III.4.7). We compute

div

(
m−1∏

i=0

f ◦ τ[i]T

)

= m

m−1∑

i=0

(
[1 − i]T

)
−

(
[−i]T

)
= 0.

It follows that
m−1∏

i=0

f ◦ τ[i]T

is constant, and if we choose some T ′ ∈ E satisfying [m]T ′ = T , then

m−1∏

i=0

g ◦ τ[i]T ′

is also constant, because its mth power is the above product of f ’s. Therefore the
product of the g’s takes on the same value at X and at X + T ′,

m−1∏

i=0

g
(
X + [i]T ′) =

m−1∏

i=0

g
(
X + [i + 1]T ′).

Canceling like terms from each side gives

g(X) = g
(
X + [m]T ′) = g(X + T ),

and hence

em(T, T ) =
g(X + T )

g(X)
= 1.

(c) If em(S, T ) = 1 for all S ∈ E[m], then g(X + S) = g(X) for all S ∈ E[m],
so (III.4.10b) tells us that g = h ◦ [m] for some function h ∈ K̄(E). But then
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(
h ◦ [m]

)m = gm = f ◦ [m],

which implies that f = hm. Hence

m div(h) = div(f) = m(T ) − m(O),

so
div(h) = (T ) − (O).

It follows from (III.3.3) that T = O.
(d) Let σ ∈ GK̄/K . If f and g are the functions for T as above, then clearly fσ

and gσ are the corresponding functions for T σ . Then

em(Sσ, T σ) =
gσ(Xσ + Sσ)

gσ(Xσ)
=

(
g(X + S)

g(X)

)σ

= em(S, T )σ.

(e) Taking f and g as usual, we have

div(fm′
) = mm′(T ) − mm′(O)

and
(
g ◦ [m′]

)mm′
=

(
f ◦ [mm′]

)m′
.

Then directly from the definition of emm′ and em, we compute

emm′(S, T ) =
g ◦ [m′](X + S)

g ◦ [m′](X)
=

g
(
Y + [m′]S

)

g(Y )
= em

(
[m′]S, T

)
.

The basic properties of the Weil pairing imply its surjectivity, as in the next result.

Corollary 8.1.1. There exist points S, T ∈ E[m] such that em(S, T ) is a primi-
tive mth root of unity. In particular, if E[m] ⊂ E(K), then μm ⊂ K∗.

PROOF. The image of em(S, T ) as S and T range over E[m] is a subgroup of μm,
say equal to μd. It follows that

1 = em(S, T )d = em

(
[d]S, T

)
for all S, T ∈ E[m].

The nondegeneracy of the em-pairing implies that [d]S = O, and since S is arbi-
trary, it follows from (III.6.4) that d = m. Finally, if E[m] ⊂ E(K), then the Galois
invariance of the em-pairing implies that em(S, T ) ∈ K∗ for all S, T ∈ E[m].
Hence μm ⊂ K∗.

Recall from (III §6) that associated to any isogeny φ : E1 → E2 is a dual
isogeny φ̂ : E2 → E1 going in the opposite direction. The next proposition says
that φ and φ̂ are dual (or adjoint) with respect to the Weil pairing.
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Proposition 8.2. Let φ : E1 → E2 be an isogeny of elliptic curves. Then for all m-
torsion points S ∈ E1[m] and T ∈ E2[m],

em

(
S, φ̂(T )

)
= em

(
φ(S), T

)
.

PROOF. Let

div(f) = m(T ) − m(O) and f ◦ [m] = gm

be as usual. Then

em(φS, T ) =
g(X + φS)

g(X)
.

Choose a function h ∈ K̄(E1) satisfying

φ∗((T )
)
− φ∗((O)

)
= (φ̂T ) − (O) + div(h).

Such an h exists because ((III.6.1ab) tells us that φ̂T is precisely the sum of the
points of the divisor on the left-hand side of this equality. Now we observe that

div
(

f ◦ φ

hm

)
= φ∗ div(f) − m div(h) = m(φ̂T ) − m(O)

and (
g ◦ φ

h ◦ [m]

)m

=
f ◦ [m] ◦ φ
(
h ◦ [m]

)m =
(

f ◦ φ

hm

)
◦ [m].

Then directly from the definition of the em-pairing we obtain

em(S, φ̂T ) =

(
g ◦ φ/h ◦ [m]

)
(X + S)

(
g ◦ φ/h ◦ [m]

)
(X)

=
g(φX + φS)

g(φX)
·

h
(
[m]X

)

h
(
[m]X + [m]S

)

= em(φS, T ).

Let � be a prime number different from char(K). We are going to combine the
pairings

e�n : E[�n] × E[�n] −→ μ�n

for n = 1, 2, . . . in order to create an �-adic Weil pairing on the Tate module,

e : T�(E) × T�(E) −→ T�(μ).

Recall that the inverse limits for T�(E) and T�(μ) are formed using the maps

E[�n+1]
[�]−−−−−→ E[�n] and μ�n+1

ζ 
→ζ�

−−−→ μ�n .
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Thus in order to show that the e�n-pairings are compatible with taking the inverse
limits, we must show that

e�n+1(S, T )� = e�n

(
[�]S, [�]T

)
for all S, T ∈ E[�n+1].

We use linearity (III.8.1a) to observe that

e�n+1(S, T )� = e�n+1(S, [�]T ),

and then the desired compatibility relation follows by applying (III.8.1e) to the
points S and [�]T with m = �n and m′ = �. This proves that the pairing
e : T�(E) × T�(E) → T�(μ) is well-defined. Further, it inherits all of the proper-
ties described in (III.8.1) and (III.8.2), which completes the proof of the following
result.

Proposition 8.3. There exists a bilinear, alternating, nondegenerate, Galois invari-
ant pairing

e : T�(E) × T�(E) −→ T�(μ).

Further, if φ : E1 → E2 is an isogeny, then φ and its dual φ̂ are adjoints for the
pairing, i.e., e(φS, T ) = e(S, φ̂T ).

Remark 8.4. More generally, if φ : E1 → E2 is any nonconstant isogeny, then there
is a Weil pairing

eφ : ker φ × ker φ̂ −→ μm.

See Exercise 3.15.

Remark 8.5. There is an alternative definition of the Weil pairing em(S, T ) that
works as follows. Choose arbitrary points X,Y ∈ E and functions fS , fT ∈ K̄(E)
satisfying

div(fS) = m(X + S) − m(X) and div(fT ) = m(Y + T ) − m(Y ).

Then

em(S, T ) =
fS(Y + T )

fS(Y )

/
fT (X + S)

fT (X)
.

We leave to the reader to prove that this quantity is well-defined and equal to the
Weil pairing; see Exercise 3.16.

Recall that we have a representation (III §7)

End(E) −→ End
(
T�(E)

)
, φ �−→ φ�.

Choosing a Z�-basis for T�(E), we can write φ� as a 2 × 2 matrix, and in particular
we can compute

det(φ�) ∈ Z� and tr(φ�) ∈ Z�.

Of course, the value of the determinant and trace do not depend on the choice of
basis.
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The next result, whose proof uses the Weil pairing, shows how the determinant
and trace values may be employed to compute the degree of an isogeny. These for-
mulas are applied in Chapter V to count the number of points on an elliptic curve
defined over a finite field (V.2.3.1). If we view the Tate module as a homology
group (III.7.3.1), then (III.8.6) says that the degree of an isogeny can be computed
topologically via its action on H1(E, Z�).

Proposition 8.6. Let φ ∈ End(E), and let φ� : T�(E) → T�(E) be the map that φ
induces on the Tate module of E. Then

det(φ�) = deg(φ) and tr(φ�) = 1 + deg(φ) − deg(1 − φ).

In particular, det(φ�) and tr(φ�) are in Z and are independent of �.

PROOF. Let {v1, v2} be a Z�-basis for T�(E) and write

φ�(v1) = av1 + bv2, φ�(v2) = cv1 + dv2,

so the matrix of φ� relative to this basis is

φ� =
(

a b
c d

)
.

Using properties of the Weil pairing (III.8.3), we compute

e(v1, v2)deg φ = e
(
[deg φ]v1, v2

)
bilinearity of e,

= e(φ̂�φ�v1, v2) (III.6.1a),
= e(φ�v1, φ�v2) (III.8.3) and (III.6.2f),
= e(av1 + cv2, bv1 + dv2)

= e(v1, v2)ad−bc since e is bilinear and alternating,

= e(v1, v2)det φ� .

Since e is nondegenerate, we conclude that deg φ = det φ�. Finally, for any 2 × 2
matrix A, a trivial calculation yields

tr(A) = 1 + det(A) − det(1 − A).

III.9 The Endomorphism Ring
Let E be an elliptic curve. In this section we characterize which rings may occur as
the endomorphism ring of E. So far we have accumulated the following information:

(i) End(E) has characteristic 0, no zero divisors, and rank at most four as a Z-
module (III.4.2c), (III.7.5).
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(ii) End(E) possesses an anti-involution φ �→ φ̂ (III.6.2bcf).

(iii) For φ ∈ End(E), the product φφ̂ is a non-negative integer, and further, φφ̂ = 0
if and only if φ = 0 (III.6.2a), (III.6.3).

It turns out that any ring satisfying (i)–(iii) is of a very special sort. After giving the
relevant definitions, we describe the general classification of rings satisfying (i)–(iii).
This may then be applied to the particular case of End(E).

Definition. Let K be a (not necessarily commutative) Q-algebra that is finitely gen-
erated over Q. An order R of K is a subring of K that is finitely generated as a
Z-module and satisfies R ⊗ Q = K.

Example 9.1. Let K be an imaginary quadratic field and let O be its ring of integers.
Then for each integer f ≥ 1, the ring Z + fO is an order of K. In fact, these are all
of the orders of K; see Exercise 3.20.

Definition. A quaternion algebra is an algebra of the form

K = Q + Qα + Qβ + Qαβ

whose multiplication satisfies

α2, β2 ∈ Q, α2 < 0, β2 < 0, βα = −αβ.

Remark 9.2. These quaternion algebras are more properly called definite quaternion
algebras over Q, but since these are the only quaternion algebras that we use in this
book, we generally drop the “definite” appellation.

Theorem 9.3. Let R be a ring of characteristic 0 having no zero divisors, and as-
sume that R has the following properties:

(i) R has rank at most four as a Z-module.
(ii) R has an anti-involution α �→ α̂ satisfying

α̂ + β = α̂ + β̂, α̂β = β̂α̂, ˆ̂α = α, â = a for a ∈ Z ⊂ R.

(iii) For α ∈ R, the product αα̂ is a nonnegative integer, and αα̂ = 0 if and only
if α = 0.

Then R is one of the following types of rings:
(a) R ∼= Z.
(b) R is an order in an imaginary quadratic extension of Q.
(c) R is an order in a quaternion algebra over Q.

PROOF. Let K = R ⊗ Q. Since R is finitely generated as a Z-module, it suffices to
prove that K is either Q, an imaginary quadratic field, or a quaternion algebra. We
extend the anti-involution to K and define a (reduced) norm and trace from K to Q

by
Nα = αα̂ and Tα = α + α̂.
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We make several observations about the trace. First, since

Tα = 1 + Nα − N(α − 1),

we see that Tα ∈ Q. Second, the trace is Q-linear, since the involution fixes Q.
Third, if α ∈ Q, then Tα = 2α. Finally, if α ∈ K satisfies Tα = 0, then

0 = (α − α)(α − α̂) = α2 − (Tα)α + Nα = α2 + Nα,

so α2 = −Nα. Thus

α �= 0 and Tα = 0 =⇒ α2 ∈ Q and α2 < 0.

If K = Q, there is nothing to prove. Otherwise we can find some α ∈ K
with α /∈ Q. Replacing α by α − 1

2 Tα, we may assume that Tα = 0. Then α2 ∈ Q

and α2 < 0, so Q(α) is a quadratic imaginary field. If K = Q(α), we are again done.
Suppose now that K �= Q(α) and choose some β ∈ K with β /∈ Q(α). We may

replace β with

β − 1
2

Tβ − T(αβ)
2α2

α.

We know that Tα = 0 and α2 ∈ Q∗, so an easy calculation shows that

Tβ = T(αβ) = 0.

In particular, β2 ∈ Q and β2 < 0. We next write

Tα = 0, Tβ = 0, T(αβ) = 0
as

α = −α̂, β = −β̂, αβ = −β̂α̂

and substitute the first two equalities into the third to obtain

αβ = −βα.

Hence
Q[α, β] = Q + Qα + Qβ + Qαβ

is a quaternion algebra. It remains to prove that Q[α, β] = K, and to do this, it
suffices to show that 1, α, β, αβ are Q-linearly independent, since then Q[α, β] and K
both have dimension 4 over Q.

Suppose that

w + xα + yβ + zαβ = 0 with w, x, y, z ∈ Q.

Taking the trace yields
2w = 0, so w = 0.

Next we multiply by α on the left and by β on the right to obtain
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(xα2)β + (yβ2)α + zα2β2 = 0.

We know that 1, α, and β are Q-linearly independent, since α /∈ Q and β /∈ Q(α).
Hence this equation implies that

xα2 = yβ2 = zα2β2 = 0,

and so x = y = z = 0, which completes the proof that 1, α, β, and αβ are Q-linearly
independent. (We have used several times the fact that α2 and β2 are in Q∗.)

Corollary 9.4. The endomorphism ring of an elliptic curve E/K is either Z,
an order in an imaginary quadratic field, or an order in a quaternion algebra.
If char(K) = 0, then only the first two are possible.

PROOF. We have proven in (III.4.2b), (III.6.2), and (III.6.3) all of the facts needed
to apply (III.9.3) to the ring End(E). This proves the first part of the corollary.
If char(K) = 0, then (III.5.6c) says that End(E) is commutative, so in this
case End(E) cannot be an order in a quaternion algebra. (See also Exercise 3.33
for a proof of this corollary that does not require knowing a priori that End(E) has
rank at most four.)

Remark 9.4.1. If char(K) = 0, then (III.5.6c) tells us that End(E)⊗Q is commu-
tative, so it cannot be a quaternion algebra. (For alternative proofs of this important
fact, see (VI.6.1b) and Exercise 3.18b.) On the other hand, if K is a finite field Fq,
then we will later see that End(E) is always larger than Z (V.3.1) and that there
are always elliptic curves defined over Fp2 with End(E) ⊗ Q a quaternion alge-
bra (V.4.1c). The complete description of End(E) is given in Deuring’s comprehen-
sive article [60].

The next definition and theorem are used in the exercises.

Definition. Let p be a prime or ∞, let Qp be the p-adic rationals if p is finite, and
let Q∞ = R. A quaternion algebra K is said to split at p if

K ⊗Q Qp
∼= M2(Qp),

where M2(K) is the algebra of 2 × 2 matrices with coefficients in K. Otherwise K
is said to be ramified at p. The invariant of K at p is defined by

invp K =

{
0 if K splits at p,
1
2 if K ramifies at p.

Theorem 9.5. Let K be a quaternion algebra.
(a) We have invp(K) = 0 for all but finitely many p, and

∑

p

invp(K) ∈ Z.

(Note that the sum includes p = ∞.)
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(b) Two quaternion algebras K and K′ are isomorphic as Q-algebras if and only
if invp(K) = invp(K′) for all p.

PROOF. This is a very special case of the fact that the central simple algebras over
a field K are classified by the Brauer group Br(K) = H2(GK̄/K , K̄∗) [233, X §5],
and the fundamental exact sequence from class field theory [288, §9.6]

0 −→ Br(Q) −→
⊕

p

Br(Qp)

∑
p

invp

−−−−−−−−−→ Q

Z
−→ 0,

where

Br(Qp)
∼−−−−−−→

invp

{
Q/Z if p �= ∞,
{
0, 1

2

}
if p = ∞.

Quaternion algebras (definite and indefinite) correspond to elements of order 2 in
Br(Q).

III.10 The Automorphism Group
If an elliptic curve is given by a Weierstrass equation, it is generally a nontrivial
matter to determine the exact structure of its endomorphism ring. The situation is
much simpler for the automorphism group.

Theorem 10.1. Let E/K be an elliptic curve. Then its automorphism group Aut(E)
is a finite group of order dividing 24. More precisely, the order of Aut(E) is given
by the following table:

#Aut(E) j(E) char(K)
2 j(E) �= 0, 1728 —
4 j(E) = 1728 char(K) �= 2, 3
6 j(E) = 0 char(K) �= 2, 3
12 j(E) = 0 = 1728 char(K) = 3
24 j(E) = 0 = 1728 char(K) = 2

PROOF. We restrict attention to char(K) �= 2, 3; see (III.1.3) and (A.1.2c). Then E
is given by an equation

E : y2 = x3 + Ax + B,

and every automorphism of E has the form

x = u2x′, y = u3y′,

for some u ∈ K̄∗. Such a substitution gives an automorphism of E if and only if

u−4A = A and u−6B = B.

If AB �= 0, i.e., if j(E) �= 0, 1728, then the only possibilities are u = ±1.
Similarly, if B = 0, then j(E) = 1728 and u4 = 1, and if A = 0, then j(E) = 0
and u6 = 1. Hence Aut(E) is cyclic of order 2, 4, or 6, depending on whether
AB �= 0, B = 0, or A = 0.
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It is worth remarking that the proof of (III.10.1) gives the structure of Aut(E) as
a GK̄/K-module, at least for char(K) �= 2, 3. We record this as a corollary.

Corollary 10.2. Let E/K be a curve over a field of characteristic not equal to 2
or 3, and let

n =

⎧
⎪⎨

⎪⎩

2 if j(E) �= 0, 1728,
4 if j(E) = 1728,
6 if j(E) = 0.

Then there is a natural isomorphism of GK̄/K-modules

Aut(E) ∼= μn.

PROOF. While proving (III.10.1), we showed that the map

[ ] : μn −→ E, [ζ](x, y) = (ζ2x, ζ3y),

is an isomorphism of abstract groups. It is clear that this map commutes with the
action of GK̄/K , and hence it is an isomorphism of GK̄/K-modules.

Exercises
3.1. Show that the polynomials

x4 − b4x
2 − 2b6x − b8 and 4x3 + b2x

2 + 2b4x + b6

appearing in the duplication formula (III.2.3d) are relatively prime if and only if the discrimi-
nant of the associated Weierstrass equation is nonzero.

3.2. (a) Derive a triplication formula, analogous to to the duplication formula (III.2.3), i.e.,
express x

(
[3]P

)
as a rational function of x(P ) and a1, . . . , a6.

(b) Use the result from (a) to show that if char(K) �= 3, then E has a nontrivial point of
order 3. Conclude that if gcd(m, 3) = 1, then [m] �= [0]. (Warning. You’ll probably
want to use a computer algebra package for this problem.)

3.3. Assume that char(K) �= 3 and let A ∈ K∗. Then Exercise 2.7 tells us that the curve

E : X3 + Y 3 = AZ3

is a curve of genus one, so together with the point O = [1,−1, 0], it is an elliptic curve.
(a) Prove that three points on E add to O if and only if they are collinear.
(b) Let P = [X, Y, Z] ∈ E. Prove the formulas

−P = [Y, X, Z],

[2]P =
[
−Y (X3 + AZ3), X(Y 3 + AZ3), X3Z − Y 3Z

]
.

(c) Develop an analogous formula for the sum of two distinct points.
(d) Prove that E has j-invariant 0.
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3.4. Referring to (III.2.4), express each of the points P2, P4, P5, P6, P7, P8 in the form
[m]P1 + [n]P3 with m, n ∈ Z.

3.5. Let E/K be given by a singular Weierstrass equation.
(a) Suppose that E has a node, and let the tangent lines at the node be

y = α1x + β1 and y = α2x + β2.

(i) If α1 ∈ K, prove that α2 ∈ K and

Ens(K) ∼= K∗.

(ii) If α1 /∈ K, prove that L = K(α1, α2) is a quadratic extension of K. Note that (i)
tells us that Ens(K) ⊂ Ens(L) ∼= L∗. Prove that

Ens(K) ∼=
{
t ∈ L∗ : NL/K(t) = 1

}
.

(b) Suppose that E has a cusp. Prove that

Ens(K) ∼= K+.

3.6. Let C be a smooth curve of genus g, let P0 ∈ C, and let n ≥ 2g + 1 be an integer.
Choose a basis {f0, . . . , fm} for L

(
n(P0)

)
and define a map

φ : [f0, . . . , fm] : C −→ P
m.

(a) Prove that the image C′ = φ(C) is a curve in Pm.
(b) Prove that the map φ : C −→ C′ has degree one.
(c) * Prove that C′ is smooth and that φ : C −→ C′ is an isomorphism.

3.7. This exercise gives an elementary, highly computational, proof that the multiplication-
by-m map has degree m2. Let E be given be the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

and let b2, b4, b6, b8 be the usual quantities. (If you’re content to work with char(K) �= 2, 3,
you may find it easier to use the short Weierstrass form E : y2 = x3 + Ax + B.)

We define division polynomials ψm ∈ Z[a1, . . . , a6, x, y] using initial values

ψ1 = 1,

ψ2 = 2y + a1x + a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8,

ψ4 = ψ2 ·
(
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x + (b4b8 − b2

6)
)
,

and then inductively by the formulas

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2,

ψ2ψ2m = ψ2
m−1ψmψm+2 − ψm−2ψmψ2

m+1 for m ≥ 3.

Verify that ψ2m is a polynomial for all m ≥ 1, and then define further polynomials φm

and ωm by

φm = xψ2
m − ψm+1ψm−1,

4yωm = ψ2
m−1ψm+2 + ψm−2ψ

2
m+1.
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(a) Prove that if m is odd, then ψm, φm, and y−1ωm are polynomials in

Z
[
a1, . . . , a6, x, (2y + a1x + a3)

2
]
,

and similarly for (2y)−1ψm, φm, and ωm if m is even. So replacing (2y + a1x + a3)
2

by 4x3 + b2x
2 + 2b4x + b6, we may treat each of these quantities as a polynomial

in Z[a1, . . . , a6, x].
(b) As polynomials in x, show that

φm(x) = xm2
+ (lower order terms),

ψm(x)2 = m2xm2−1 + (lower order terms).

(c) If Δ �= 0, prove that φm(x) and ψm(x)2 are relatively prime polynomials in K[x].
(d) Continuing with the assumption that Δ �= 0, so E is an elliptic curve, prove that for any

point P = (x0, y0) ∈ E we have

[m]P =

(
φm(P )

ψm(P )2
,

ωm(P )

ψm(P )3

)
.

(e) Prove that the map [m] : E → E has degree m2.
(f) Prove that the function ψn ∈ K(E) has divisor

div(ψn) =
∑

T∈E[n]

(T ) − n2(O).

Thus ψn vanishes at precisely the nontrivial n-torsion points and has a corresponding
pole at O.

(g) Prove that

ψn+mψn−mψ2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n for all n > m > r.

3.8. (a) Let E/C be an elliptic curve. We will prove later (VI.5.1.1) that there are a lat-
tice L ⊂ C and a complex analytic isomorphism of groups C/L ∼= E(C). (N.B. This
isomorphism is given by convergent power series, not by rational functions.) Assuming
this fact, prove that

deg[m] = m2 and E[m] =
Z

mZ
× Z

mZ
.

(b) Let K be a field with char(K) = 0 and let E/K be an elliptic curve. Use (a) to prove
that deg[m] = m2. (Hint. If K can be embedded into C, then the result follows imme-
diately from (a). Reduce to this case.)

3.9. Let E/K be an elliptic curve over a field K with char(K) �= 2, 3, and fix a a homoge-
neous Weierstrass equation for E,

F (X0, X1, X2) = X2
1X2 − X3

0 − AX0X
2
2 − BX3

2 = 0,

i.e., x = X0/X2 and y = X1/X2 are affine Weierstrass coordinates. Let P ∈ E.
(a) Prove that [3]P = O if and only if the tangent line to E at P intersects E only at P .
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(b) Prove that [3]P = O if and only if the Hessian matrix

(
∂2F

∂XiXj
(P )

)

0≤i,j≤2

has determinant 0.
(c) Prove that E[3] consists of nine points.

3.10. Let E/K be an elliptic curve with Weierstrass coordinate functions x and y.
(a) Show that the map

φ : E −→ P
2, f = [1, x, y, x2],

maps E isomorphically onto the intersection of two quadric surfaces in P3. (A quadric
surface in P3 is the zero set of a homogeneous polynomial of degree two.) In particular,
if H ⊂ P3 is a hyperplane, then H ∩ φ(E) consists of exactly four points, counted with
appropriate multiplicities.

(b) Show that φ(O) = [0, 0, 0, 1], and that the hyperplane {T0 = 0} intersects φ(E) at the
single point φ(O) with multiplicity 4.

(c) Let P, Q, R, S ∈ E. Prove that P + Q + R + S = O if and only if the four
points φ(P ), φ(Q), φ(R), φ(S) are coplanar, i.e., if and only if there is a plane H ⊂ P3

such that the intersection E ∩H , counted with appropriate multiplicities, consists of the
points φ(P ), φ(Q), φ(R), φ(S).

(d) Let P ∈ E. Prove that [4]P = O if and only if there exists a hyperplane H ⊂ P3

satisfying H ∩ φ(E) = {P}. If char(K) �= 2, prove that there are exactly 16 such
hyperplanes, and hence that #E[4] = 16.

(e) Continuing with the assumption that char(K) �= 2, prove that there is a K̄-linear change
of coordinates such that φ(E) is given by equations of the form

T 2
0 + T 2

2 = T0T3 and T 2
1 + αT 2

2 = T2T3.

For what value(s) of α do these equations define a nonsingular curve?
(f) Using the model in (e) and the addition law described in (c), find formulas for −P ,

for P1 + P2, and for [2]P , analogous to the formulas given in (III.2.3).
(g) What is the j-invariant of the elliptic curve described in (e)?

3.11. Generalize Exercise 3.10 as follows. Let E/K be an elliptic curve and choose a basis
f1, . . . , fm for L

(
m(O)

)
. For m ≥ 3, it follows from Exercise 3.6 that the map

φ : E −→ P
m−1, φ = [f1, . . . , fm],

is an isomorphism of E onto its image.
(a) Show that φ(E) is a curve of degree m, i.e., prove that the intersection of φ(E) and a

hyperplane consists of m points, counted with appropriate multiplicities. (Hint. Find a
hyperplane that intersects φ(E) at the single point φ(O) and show that it intersects with
multiplicity m.)

(b) Let P1, . . . , Pm ∈ E. Prove that P1 + · · · + Pm = O if and only if the points
φ(P1), φ(P2), . . . , φ(Pm) lie on a hyperplane. (Note that if some of the Pi’s coincide,
then the hyperplane is required to intersect φ(E) with correspondingly higher multiplic-
ities at such points.)
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(c) * Let P ∈ E. Prove that [m]P = O if and only if there is a hyperplane H ⊂ Pm−1

satisfying H ∩ φ(E) = {P}. If char(K) = 0 or char(K) > m, prove that there are
exactly m2 such points. Use this to deduce that deg[m] = m2.

3.12. Let m ≥ 2 be an integer, prime to char(K) if char(K) > 0. Prove that the natural map

Aut(E) −→ Aut
(
E[m]

)

is injective except for m = 2, where the kernel is [±1]. (You should be able to prove this
directly, without using (III.10.1).)

3.13. Generalize (III.4.12) as follows. Let C/K̄ be a smooth curve, and let Φ be a finite
group of isomorphisms from C to itself. (For example, if E is an elliptic curve, then Φ might
contain some translations by torsion points and [±1].) We observe that an element α ∈ Φ acts
on K̄(C) via the map

α∗ : K̄(C) −→ K̄(C), α∗(f) = f ◦ α.

(a) Prove that there exist a unique smooth curve C′/K̄ and a finite separable morphism
φ : C → C′ such that φ∗K̄(C′) = K̄(C)Φ, where K̄(C)Φ denotes the subfield
of K̄(C) fixed by every element of Φ.

(b) Let P ∈ C. Prove that

eφ(P ) = #{α ∈ Φ : αP = P}.

(c) Prove that φ is unramified if and only if every nontrivial element of Φ has no fixed points.
(d) Express the genus of C′ in terms of the genus of C, the number of elements in Φ, and

the number of fixed points of elements of Φ.
(e) * Suppose that C is defined over K and that Φ is GK̄/K -invariant. The latter condition

means that for all α ∈ Φ and all σ ∈ GK̄/K we have ασ ∈ Φ. Prove that it is possible
to find C′ and φ as in (a) such that C′ and φ are defined over K. Prove further that C is
unique up to isomorphism over K.

3.14. Prove directly that the natural map

Hom(E1, E2) −→ Hom
(
T�(E1), T�(E2)

)

is injective. (Hint. If φ : E1 → E2 satisfies φ� = 0, then E1[�
n] ⊂ ker φ for all n ≥ 1.)

Note that this result is not as strong as (III.7.4).

3.15. Let E1/K and E2/K be elliptic curves, and let φ : E1 → E2 be an isogeny of
degree m defined over K, where m is prime to char(K) if char(K) > 0.

(a) Mimic the construction in (III §8) to construct a pairing

eφ : ker φ × ker φ̂ −→ μm.

(b) Prove that eφ is bilinear, nondegenerate, and Galois invariant.
(c) Prove that eφ is compatible in the sense that if ψ : E2 → E3 is another isogeny, then

eψ◦φ(P, Q) = eψ(φP, Q) for all P ∈ ker(ψ ◦ φ) and Q ∈ ker(ψ̂).
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3.16. Alternative Definition of the Weil Pairing. Let E be an elliptic curve. We define a pairing

ẽm : E[m] × E[m] −→ μm

as follows: Let P, Q ∈ E[m] and choose divisors DP and DQ in Div0(E) that add to P
and Q, respectively, i.e., such that σ(DP ) = P and σ(DQ) = Q, where σ is as in (III.3.4a).
Assume further that DP and DQ are chosen with disjoint supports. Since P and Q have
order m, there are functions fP , fQ ∈ K̄(E) satisfying

div(fP ) = mDP and div(fQ) = mDQ.

We define

ẽm =
fP (DQ)

fQ(DP )
.

(See Exercise 2.10 for the definition of the value of a function at a divisor.)
(a) Prove that ẽm(P, Q) is well-defined, i.e., its value depends only on P and Q, inde-

pendent of the various choices of DP , DQ, fP , and fQ. (Hint. Use Weil reciprocity,
Exercise 2.11.)

(b) Prove that ẽm(P, Q) ∈ μm.
(c) * Prove that ẽm = em, where em is the Weil pairing defined in (III §8).

3.17. Let K be a definite quaternion algebra. Prove that K is ramified at ∞. (Hint. The
ring M2(R) contains zero divisors.)

3.18. Let E/K be an elliptic curve and suppose that K = End(E) ⊗ Q is a quaternion
algebra.

(a) Prove that if p �= ∞ and p �= char(K), then K splits at p. (Hint. Use (III.7.4).)
(b) Deduce that char(K) > 0. (This gives an alternative proof of (III.5.6c).)
(c) Prove that K is the unique quaternion algebra that is ramified at ∞ and char(K) and

nowhere else.
(d) * Prove that End(E) is a maximal order in K. (Note that unlike number fields, a quater-

nion algebra may have more than one maximal order.)

3.19. Let K be a quaternion algebra.
(a) Prove that K ⊗ Q̄ ∼= M2(Q̄).
(b) Prove that K⊗K ∼= M4(Q). This shows that K corresponds to an element of order 2 in

the Brauer group Br(Q). (Hint. First show that K ⊗ K is simple, i.e., has no two-sided
ideals. Then prove that the map

K ⊗K −→ End(K), a ⊗ b �−→ (x �→ axb),

is an isomorphism.)

3.20. Let K be an imaginary quadratic field with ring of integers O. Prove that the orders of K
are precisely the rings Z + fO for integers f > 0. The integer f is called the conductor of
the order.

3.21. Let C/K̄ be a curve of genus one. For any point O ∈ C, we can associate to the
elliptic curve (C, O) its j-invariant j(C, O). This exercise asks you to prove that the value
of j(C, O) is independent of the choice of the base point O. Thus we can assign a j-invariant
to any curve C of genus one.



110 III. The Geometry of Elliptic Curves

(a) Let (C, O) and (C′, O′) be curves of genus one with associated base points, and sup-
pose that there is an isomorphism of curves φ : C → C′ satisfying φ(O) = O′. Prove
that j(C, O) = j(C′, O′). (Hint. The j-invariant, which is defined in terms of the coef-
ficients of a Weierstrass equation, is independent of the choice of the equation.)

(b) Prove that given any two points O, O′ ∈ C, there is an automorphism of C taking O
to O′.

(c) Use (a) and (b) to conclude that j(C, O) = j(C, O′).

3.22. Let C be a curve of genus one defined over K.
(a) Prove that j(C) ∈ K.
(b) Prove that C is an elliptic curve over K if and only if C(K) �= ∅.
(c) Prove that C is always isomorphic, over K̄, to an elliptic curve defined over K.

3.23. Deuring Normal Form. The following normal form for a Weierstrass equation is some-
times useful when dealing with elliptic curves over (algebraically closed) fields of arbitrary
characteristic.

(a) Let E/K be an elliptic curve, and assume that either char(K) �= 3 or j(E) �= 0. Prove
that E has a Weierstrass equation over K̄ of the form

E : y2 + αxy + y = x3 with α ∈ K̄.

(b) For the Weierstrass equation in (a), prove that (0, 0) ∈ E[3].
(c) For what value(s) of α is the Weierstrass equation in (a) singular?
(d) Verify that

j(E) =
α3(α3 − 24)2

α3 − 27
.

3.24. Let E/K be an elliptic curve with complex multiplication over K, i.e., such that
EndK(E) is strictly larger than Z. Prove that for all primes � �= char(K), the action of GK̄/K

on the Tate module T�(E) is abelian. (Hint. use the fact that the endomorphisms in EndK(E)
commute with the action of GK̄/K on T�(E).)

3.25. Let E be an elliptic curve and let P = (x, y) ∈ E. As a supplement to the duplication
formula (III.2.3d) for x, prove that the quantity Y

(
[2]P

)
= 2y

(
[2]P

)
+ a1x

(
[2]P

)
+ a3 is

given by the formula

Y
(
[2]P

)
=

2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x + (b4b8 − b2
6)

(2y + a1x + a3)3
.

3.26. Let E be the elliptic curve y2 = x3 + x having complex multiplication by Z[i],
let m ≥ 2 be an integer, and let T ∈ E[m] be a point of exact order m. In each of the
following situations, prove that

{
T, [i]T

}
is a basis for E[m], and thus that em

(
T, [i]T

)
is a

primitive mth root of unity.
(a) m ≡ 3 (mod 4).
(b) m is prime, K is a field with i /∈ K, and E(K)[m] is nonzero.

The map φ is an example of a distortion map.

3.27. Let E/K be an elliptic curve and let m �= 0 be an integer.
(a) Prove that x ◦ [m] ∈ K(x). In other words, prove that there is a rational func-

tion Fm(x) ∈ K(x) satisfying x
(
[m]P

)
= Fm

(
x(P )

)
for all P ∈ E.

(b) Prove that Fm

(
Fn(x)

)
= Fmn(x).
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(c) Compute F2(x) and F3(x) in terms of a given Weierstrass equation for E.
(d) A more intrinsic description of Fm is that it is the unique rational map Fm : P1 → P1

fitting into the commutative diagram

E −−−−−→ E/{±1} x−−−−−→ P1

[m]

⏐
⏐
$ Fm

⏐
⏐
$

E −−−−−→ E/{±1} x−−−−−→ P1.

Where is Fm ramified and what are the ramification indices at the ramification points?
(e) Find the fixed points of Fm(x), i.e., the points x ∈ P1(K̄) satisfying Fm(x) = x.
(f) For each fixed point x ∈ P1(K̄) of Fm(x), compute the value of the multiplier F ′

m(x).
(Hint. The value should depend only on m, independent of the curve E.)

(g) A point x ∈ P1(K̄) is called preperiodic for Fm if its forward orbit
{
x, Fm(x), Fm(Fm(x)), Fm(Fm(Fm(x))), . . .

}

is finite. Prove that the preperiodic points for Fm are exactly the points in x
(
E(K̄)tors

)
.

The rational map Fm : P1 → P1 is an example of a Lattès map. Lattès maps are important
in the theory of dynamical systems. In particular, Lattès proved that over C, the map Fm is
everywhere chaotic on P1(C). For further information about elliptic curves and dynamical
systems, see for example [14, §4.3], [179], or [267, §§1.6.3, 6.4–6.7].

3.28. Let E ⊂ P2 be a possibly singular curve given by a Weierstrass equation, and let L ⊂
P2 be a line.

(a) Prove directly from the equations that, counted with appropriate multiplicities, the in-
tersection E ∩ L consists of exactly three points. (This is a special case of Bézout’s
theorem.)

(b) Let S be a singular point of E and suppose that S ∈ L. Prove that L intersects E at S
with multiplicity at least two. Deduce that E ∩ L consists of S and at most one other
point.

(c) More generally, let C ⊂ P2 be a curve, let S ∈ C be a singular point of C, and let L be
a line containing S. Prove that L intersects C at S with multiplicity at least two.

3.29. Let E be an elliptic curve.
(a) Fix a Weierstrass equation for E, fix a nonzero point T ∈ E, and write x(P + T ) =

f
(
x(P ), y(P )

)
for some function f ∈ K(E) = K(x, y). Prove that f is a linear frac-

tional transformation if and only if T ∈ E[3], where a linear fractional transformation is
a function of the form

αx + βy + γ

α′x + β′y + γ′ .

(b) More generally, let m ≥ 3, use a basis for L
(
m(O)

)
to embed E ↪→ Pm−1, and

let T ∈ E. Prove that the translation-by-T map τT : E → E extends to an automor-
phism of Pm−1 if and only if T ∈ E[m].

3.30. Let A be a finite abelian group of order Nr . Suppose that for every D | N we
have #A[D] = Dr , where A[D] denotes the subgroup consisting of all elements of order D.
Prove that

A ∼=
(

Z

NZ

)r

.
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3.31. This exercise sketches an elementary proof of (III.6.2c) in arbitrary characteristic. We
start with the case char(K) �= 2. Let E/K be an elliptic curve.

(a) Use explicit formulas to prove that the doubling map [2] : E → E has degree 4.
(b) Use (a) to prove that deg[2n] = 4n for all n ≥ 1.
(c) Use (b) and (III.4.10c) to deduce that #E[2n] = 4n for all n ≥ 1. (This is where we

use the assumption that char(K) �= 2.)
(d) Use (c) and Exercise 3.30 to conclude that E[2n] ∼= Z/2nZ × Z/2nZ for all n ≥ 1.
(e) Verify that the proof of the existence of dual isogenies (III.6.1) is valid in all character-

istics.
(f) Suppose that m ≥ 1 is an integer for which we know, a priori, that #E[m] = m2.

Show that this suffices to prove the existence and basic properties of the Weil pair-
ing em : E[m] × E[m] → μm as described in (III.8.1) and (III.8.2).

(g) Let φ : E1 → E2 and ψ : E1 → E2 be isogenies of elliptic curves. Let m = 2n,
so (c) and (f) give the existence of the Weil pairing em on E1 and E2. Let T1 ∈ E1[m]
and T2 ∈ E2[m] be m-torsion points. Use properties of the Weil pairing to prove that

em

(
T1, ̂(φ + ψ)(T2)

)
= em

(
T1, φ̂(T2) + ψ̂(T2)

)
.

Since this holds for all m = 2n, use the nondegeneracy of the Weil pairing to deduce
that φ̂ + ψ = φ̂ + ψ̂.

(h) Use (g) to deduce that

ˆ[m] = [m] and deg[m] = m2 for all integers m.

(Cf. (III.6.2d).)
(i) Let m be any integer such that m �= 0 in K. Use (h) to prove that #E[m] = m2, and

then observe that (f) gives the existence and standard properties of the Weil em-pairing.
(j) Finally, if char(K) = 2, replace (a) with a proof via explicit equations that deg[3] = 9.

Redo the rest of the exercise with 2n replaced by 3n.

3.32. Let φ ∈ End(E) be an endomorphism, and let

d = deg φ and a = 1 + deg φ − deg(1 − φ).

(a) Prove that φ2 − [a] ◦ φ + [d] = [0] in End(E).
(b) Let α, β ∈ C be the complex roots of the polynomial t2 − at + d. Prove that

|α| = |β| =
√

d.

(c) Prove that deg(1 − φn) = 1 + dn − αn − βn for all n ≥ 1, and deduce that
∣
∣deg(1 − φn) − 1 − dn

∣
∣ ≤ 2dn/2.

(d) Prove that

exp

(
∞∑

n=1

deg(1 − φn)

n
Xn

)

=
1 − aX + dX2

(1 − X)(1 − dX)
,

where the power series converges for |X| < d−1.
(Hint. Use (III.8.6). For (b), use the fact that deg([m] + [n] ◦ φ) ≥ 0 for all m, n ∈ Z.)
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3.33. Let K be a Q-division algebra, i.e., K is a (not necessarily commutative) Q-algebra in
which every nonzero element has a multiplicative inverse. This exercise sketches a proof of
the following theorem, which can be used instead of (III.9.3) to prove (III.9.4). In particular,
it is not necessary to know, a priori, that End(E) has rank at most four (III.7.4), (III.7.5).

Theorem. Suppose that every element of K satisfies a quadratic equation with coefficients
in Q. Then either K = Q, K is a quadratic field, or K is a quaternion algebra.

(a) Let α, β ∈ K. Prove that if β /∈ Q(α), then Q(α) ∩ Q(β) = Q.
(b) Let α, β ∈ K. Prove that if α /∈ Q and αβ = βα, then β ∈ Q(α).
(c) Let α, β ∈ K. Prove that if α2, β2 ∈ Q, α /∈ Q, and β /∈ Q(α), then αβ + βα ∈ Q.
(d) Let α ∈ K. Prove that there exists an α′ ∈ K such that Q(α) = Q(α′) and α′2 ∈ Q.
(e) Let α, β ∈ K∗ satisfy α2, β2 ∈ Q. Prove that there exists a β′ ∈ K such that

Q(α, β) = Q(α, β′) and β′2, (αβ′)2 ∈ Q.
(f) Let α, β ∈ K satisfy α /∈ Q, β /∈ Q(α), and α2, β2, (αβ)2 ∈ Q. Prove that αβ = −βα.
(g) Prove the theorem.
(h) Use the theorem to prove (III.9.4).

3.34. Let K be a field. An elliptic divisibility sequence (EDS) over K is a sequence (Wn)n≥1

defined by four initial conditions W1, W2, W3, W4 ∈ K and satisfying the recurrence

Wm+nWm−nW 2
1 = Wm+1Wm−1W

2
n − Wn+1Wn−1W

2
m for all m > n > 0.

An EDS in nondegenerate if W1W2W3 �= 0.
(a) Prove that a sequence (Wn)n≥1 of elements of K with W1W2W3 �= 0 is an EDS if and

only if it satisfies the two conditions

W2n+1W
3
1 = Wn+2W

3
n − Wn−1W

3
n+1 for all n ≥ 2,

W2nW2W
2
1 = Wn(Wn+1W

2
n−1 − Wn−2W

2
n+1) for all n ≥ 3.

(b) Prove that an EDS satisfies the more general recurrence

Wm+nWm−nW 2
r = Wm+rWm−rW

2
n−Wn+rWn−rW

2
m for all m > n > r > 0.

(c) Let (Wn) be an EDS and let c ∈ K∗. Prove that (cn2−1Wn) is also an EDS.
(d) Let (Wn) be a nondegenerate EDS. Prove that (Wn/W1) is an EDS. More generally,

if Wm �= 0, prove that (Wmn/Wm)n≥1 is an EDS.

3.35. This exercise gives some examples of elliptic divisibility sequences (EDS).
(a) Prove that the sequence 1, 2, 3, . . . is an EDS.
(b) Prove that the Fibonacci sequence is an EDS.
(c) More generally, let (Ln)n≥1 be defined by a linear recurrence of the form

L1 = 1, L2 = A, Ln+2 = ALn+1 − Ln for n ≥ 1.

Prove that (Ln) is an EDS.
(d) The most interesting EDS are associated to points on elliptic curves. Let E/K be an

elliptic curve and let P ∈ E(K) be a nonzero point. Define a sequence

Wn = ψn(P ) for n ≥ 1,

where ψn is the nth division polynomial for E as defined in Exercise 3.7. Prove that (Wn)
is an EDS.
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(e) Let (Wn) be an EDS associated to an elliptic curve E/K and nonzero point P ∈ E(K)
as in (d). Prove that P is a point of finite order at least 4 if and only if Wn = 0 for some
n ≥ 4.

(f) * Let (Wn) be an EDS associated to an elliptic curve E/K and a nonzero point
P ∈ E(K) of finite order. Let r ≥ 2 be the smallest index such that Wr = 0. (The
number r is called the rank of apparition of the sequence.) Assuming that r ≥ 4, prove
that there exist A, B ∈ K∗ such that

Wri+j = WjA
ijBi2 for all i ≥ 0 and all j ≥ 1.

(g) Suppose that K is a finite field and that the rank of apparition r of (Wn) is at least 4.
Prove that the sequence (Wn) is periodic with period that is a multiple of r.

3.36. Let R be an integral domain, and let (Wn)n≥1 be a nondegenerate elliptic divisibility
sequence with Wi ∈ R such that W1 divides each of W2, W3, and W4, and such that W2

divides W4.
(a) Prove that (Wn) is a divisibility sequence, in the sense that

m | n =⇒ Wm | Wn.

(b) Suppose further that R is a principal ideal domain and that gcd(W3, W4) = 1. Prove
that (Wn) satisfies the stronger divisibility relation

Wgcd(m,n) = gcd(Wm, Wn) for all m, n ≥ 1.



Chapter IV

The Formal Group
of an Elliptic Curve

Let E be an elliptic curve. In this chapter we study an “infinitesimal” neighborhood
of E centered at the origin O. To do this, we start with the local ring K[E]O and
take the completion of this ring at its maximal ideal. This leads to a power series
ring in one variable, say K[[z]], for some uniformizer z at O. We then write the
Weierstrass coordinate functions x and y as formal Laurent power series in z, and
we construct a power series F (z1, z2) ∈ K[[z1, z2]] that formally gives the group law
on E. Such a power series, which might be described as a “group law without any
group elements,” is an example of a formal group. In the remainder of this chapter
we study in some detail the principal properties of arbitrary (one-parameter) formal
groups. The advantage of suppressing all mention of the elliptic curve that motivated
our study in the first place is that working with formal power series tends to be easier
than working with quotients of polynomial rings. Then, of course, having obtained
results for arbitrary formal groups, we can apply them in particular to the formal
group associated to our original elliptic curve.

IV.1 Expansion Around O

In this section we investigate the structure of an elliptic curve and its addition law
“close to the origin.” To do this, it is convenient to make a change of variables, so we
let

z = −x

y
and w = −1

y
, so x =

z

w
and y = − 1

w
.

The origin O on E is now the point (z, w) = (0, 0), and z is a local uniformizer
at O, i.e., the function z has a zero of order one at O. The usual Weierstrass equation
for E becomes

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw2 + a6w
3 = f(z, w).

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 115
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 IV,
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The idea now is to substitute this equation into itself recursively so as to ex-
press w as a power series in z. Thus

w = z3 + (a1z + a2z
2)w + (a3 + a4z)w2 + a6w

3

= z3 + (a1z + a2z
2)
[
z3 + (a1z + a2z

2)w + (a3 + a4z)w2 + a6w
3
]

+ (a3 + a4z)
[
z3 + (a1z + a2z

2)w + (a3 + a4z)w2 + a6w
3
]2

+ a6

[
z3 + (a1z + a2z

2)w + (a3 + a4z)w2 + a6w
3
]

...

= z3 + a1z
4 + (a2

1 + a2)z5 + (a3
1 + 2a1a2 + a3)z6

+ (a4
1 + 3a2

1a2 + 3a1a3 + a2
2 + a4)z7 + · · ·

= z3(1 + A1z + A2z
2 + · · · ),

where each An ∈ Z[a1, . . . , a6] is a polynomial in the coefficients of E. Of course,
we need to prove that this procedure converges to a power series

w(z) ∈ Z[a1, . . . , a6][[z]],

and we want the equality
w(z) = f

(
z, w(z)

)

to be true in the ring Z[a1, . . . , a6][[z]].
To describe more precisely the algorithm for producing w(z), we define a se-

quence of polynomials by

f1(z, w) = f(z, w) and fm+1(z, w) = fm

(
z, f(z, w)

)
.

Then we set
w(z) = lim

m→∞
fm(z, 0),

provided that this limit makes sense in Z[a1, . . . , a6][[z]].

Proposition 1.1. (a) The procedure described above gives a power series

w(z) = z3(1 + A1z + A2z
2 + · · · ) ∈ Z[a1, . . . , a6][[z]].

(b) The series w(z) is the unique power series in Z[a1, . . . , a6][[z]] satisfying

w(z) = f
(
z, w(z)

)
.

(c) If Z[a1, . . . , a6] is made into a graded ring by assigning weights wt(ai) = i,
then An is a homogeneous polynomial of weight n.

PROOF. Parts (a) and (b) are special cases of Hensel’s lemma, which we prove later
in this section (IV.1.2). To prove the present proposition, use (IV.1.2) with
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R = Z[a1, . . . , a6][[z]], I = (z),
F (w) = f(z, w) − w, a = 0, α = −1.

Finally, to prove (c), we assign weights to z and w by setting

wt(z) = −1 and wt(w) = −3.

Then f(z, w) is homogeneous of weight −3 in the graded ring Z[a1, . . . , a6, z, w],
and an easy induction on m shows that fm(z, w) is homogeneous of weight −3 for
every m ≥ 1. In particular,

fm(z, 0) = z3(1 + B1z + B2z
2 + · · · + BNzN )

is homogeneous of weight −3, so each Bn ∈ Z[a1, . . . , a6] is homogeneous of
weight n. Hence the An’s have the same property, since fm(z, 0) converges to w(z)
as m → ∞.

Lemma 1.2. (Hensel’s Lemma) Let R be a ring that is complete with respect to
some ideal I ⊂ R, and let F (w) ∈ R[w] be a polynomial. Suppose that there are an
integer n ≥ 1 and an element a ∈ R satisfying

F (a) ∈ In and F ′(a) ∈ R∗.

Then for any α ∈ R satisfying α ≡ F ′(a) (mod I), the sequence

w0 = a, wm+1 = wm − F (wm)
α

converges to an element b ∈ R satisfying

F (b) = 0 and b ≡ a (mod In).

If R is an integral domain, then these conditions determine b uniquely.

PROOF. To ease notation, we replace F (w) by F (w + a)/α, so we are now dealing
with the recurrence

w0 = 0, F (0) ∈ In, F ′(0) ≡ 1 (mod I), wm+1 = wm − F (wm).

Since F (0) ∈ In, it is clear that

wm ∈ In =⇒ wm − F (wm) ∈ In,

from which it follows that

wm ∈ In for all m ≥ 0.

We now show by induction that

wm ≡ wm+1 (mod Im+n) for all m ≥ 0.
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For m = 0, this just says that F (0) ≡ 0 (mod In), which is one of our initial
assumptions. Assume now that the desired congruence is true for all integers strictly
smaller than m. Let X and Y be new variables and factor

F (X) − F (Y ) = (X − Y )
(
F ′(0) + XG(X,Y ) + Y H(X,Y )

)
,

where G and H are polynomials in R[X,Y ]. Then

wm+1 − wm =
(
wm − F (wm)

)
−

(
wm−1 − F (wm−1)

)

= (wm − wm−1) −
(
F (wm) − F (wm−1)

)

= (wm − wm−1)
(
1 − F ′(0) − wmG(wm, wm−1)

− wm−1H(wm, wm−1)
)
∈ Im+n.

Here the last line follows from the induction hypothesis and the assumptions that
F ′(0) ≡ 1 (mod I) and wm, wm−1 ∈ In. This proves that

wm − wm+1 ∈ Im+n for all m ≥ 0.

Since R is complete with respect to I , it follows that the sequence wm converges
to an element b ∈ R; and since every wm ∈ In, we see that b ∈ In. Further, taking
the limit of the relation wm+1 = wm − F (wm) as m → ∞ yields b = b − F (b), so
F (b) = 0.

Finally, to show uniqueness (under the assumption that R is an integral domain),
suppose that c ∈ In satisfies F (c) = 0. Then

0 = F (b) − F (c) = (b − c)
(
F ′(0) + bG(b, c) + cH(b, c)

)
.

If b �= c, then F ′(0) + bG(b, c) + cH(b, c) = 0, which would imply that

F ′(0) = −bG(b, c) − cH(b, c) ∈ I.

This contradicts the assumption that F ′(0) ≡ 1 (mod I). Hence b = c.

Using the power series w(z) from (IV.1.1), we derive Laurent series for x and y,

x(z) =
z

w(z)
=

1
z2

− a1

z
− a2 − a3z − (a4 + a1a3)z2 − · · · ,

y(z) = − 1
w(z)

= − 1
z3

+
a1

z2
+

a2

z
+ a3 + (a4 + a1a3)z − · · · .

Similarly, the invariant differential has an expansion

ω(z) =
dx(z)

2y(z) + a1x(z) + a3

=
(
1 + a1z + (a2

1 + a2)z2 + (a3
1 + 2a1a2 + 2a3)z3

+ (a4
1 + 3a2

1a2 + 6a1a3 + a2
2 + 2a4)z4 + · · ·

)
dz.
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We note that the series for x(z), y(z), and ω(z) have coefficients in Z[a1, . . . , a6].
This is clear for x(z) and y(z), while for ω(z) it follows from the two expressions

ω(z)
dz

=
dx(z)/dz

2y + a1x + a3
=

−2z−3 + · · ·
−2z−3 + · · · ∈ Z

[
1
2
, a1, . . . , a6

]
[[z]],

ω(z)
dz

=
dy(z)/dz

3x2 + 2a2x + a4 − a1y
=

−3z−4 + · · ·
−3z−4 + · · · ∈ Z

[
1
3
, a1, . . . , a6

]
[[z]],

which show that any denominator is simultaneously a power of 2 and a power of 3.
The pair

(
x(z), y(z)

)
provides a formal solution to the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

i.e., a solution in the quotient field of the ring of formal power series. If E is de-
fined over a field K, we might try to create points on E by evaluating these power
series at z ∈ K. In general, there is no obvious way to assign a value to an in-
finite series such as x(z) evaluated at some z ∈ K. However, suppose that K is
a complete local field with ring of integers R and maximal ideal M, and further
suppose that a1, . . . , a6 ∈ R. Then the power series x(z) and y(z) will converge
for any z ∈ M and the result will be a point

(
x(z), y(z)

)
∈ E(K). This gives an

injective map
M −→ E(K), z �−→

(
x(z), y(z)

)
.

(The map is injective, since it has an inverse (x, y) �→ −x/y.) It is easy to character-
ize the image as consisting of those points (x, y) with x−1 ∈ M. This map will be a
key tool when we study elliptic curves over local fields in Chapter VII.

Returning now to formal power series, we look for the power series formally
giving the addition law on E. Let z1 and z2 be independent indeterminates, and
let w1 = w(z1) and w2 = w(z2). In the (z, w)-plane, the line connecting (z1, w1)
to (z2, w2) has slope

λ = λ(z1, z2) =
w2 − w1

z2 − z1
=

∞∑

n=3

An−3
zn
2 − zn

1

z2 − z1
∈ Z[a1, . . . , a6][[z1, z2]].

Note that λ(z1, z2) has no constant or linear terms, and that the An values come
from (IV.1.1a). Letting

ν = ν(z1, z2) = w1 − λz1 ∈ Z[a1, . . . , a6][[z1, z2]],

the connecting line has equation w = λz − ν. Substituting this into the Weierstrass
equation gives a cubic in z, two of whose roots are z1 and z2. Looking at the quadratic
term, we see that the third root (say z3) can be expressed as a power series in z1

and z2,

z3 = z3(z1, z2)

= −z1 − z2 +
a1λ + a3λ

2 − a2y − 2a4λν − 3a6λ
2ν

1 + a2λ + a4λ2 + a6λ3

∈ Z[a1, . . . , a6][[z1, z2]].
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Letting
w3 = λ(z1, z2)z3(z1, z2) + ν(z1, z2),

the three points (z1, w1), (z2, w2), and (z3, w3) are collinear on E, so they add
to O using the group law. Further, the fact that (z3, w3) is on E means that w3 =
f(z3, w3), while (IV.1.1b) says that the power series w(z) described in (IV.1.1a) is
the unique power series satisfying w(z) = f

(
z, w(z)

)
. Hence w3 = w(z3), i.e.,

we can compute the w-coordinate of −(x1, y1) − (x2, y2) using the power series
from (IV.1.1a).

In order to compute the sum of the first two points, we need the formula for the
inverse. In the (x, y)-plane, the inverse of (x, y) is (x,−y−a1x−a3). Remembering
that z = −x/y, we find that the inverse of (z, w) has z-coordinate

i(z) =
x(z)

y(z) + a1x(z) + a3
=

z−2 − a1z
−1 − · · ·

−z−3 + 2a1z−2 + · · · ∈ Z[a1, . . . , a6][[z]],

and an argument similar to that given above shows that the w-coordinate of the in-
verse (x,−y − a1x − a3) is equal to w

(
i(z)

)
. This gives the formal addition law

F (z1, z2) = i
(
z3(z1, z2)

)

= z1 + z + 2 − a1z1z2 − a2(z2
1z2 + z1z

2
2)

+
(
2a3z

3
1z2 + (a1a2 − 3a3)z2

1z2
2 + 2a3z1z

3
2

)
+ · · ·

∈ Z[a1, . . . , a6][[z1, z2]].

From properties of the addition law on E, we deduce that F (z1, z2) has the corre-
sponding properties:

F (z1, z2) = F (z2, z1) (commutativity),

F
(
z1, F (z2, z)

)
= F

(
F (z1, z2), z

)
(associativity),

F
(
z, i(z)

)
= 0 (inverse).

The power series F (z1, z2) might be described as “a group law without any group
elements.” Such objects are called formal groups. We could now continue with the
study of the particular formal group coming from our elliptic curve, but it is little
more difficult to analyze arbitrary (one-parameter) formal groups, and in fact the
abstraction tends to clarify the underlying structure, so we take the latter approach.
The reader should, however, keep in mind the example of an elliptic curve while
reading the remainder of this chapter.

IV.2 Formal Groups
In this section we define and prove some basic properties of formal groups.

Definition. Let R be a ring. A (one-parameter commutative) formal group F over R
is a power series F (X,Y ) ∈ R[[X,Y ]] with the following properties:
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(a) F (X,Y ) = X + Y + (terms of degree ≥ 2).

(b) F
(
X,F (Y,Z)

)
= F

(
F (X,Y ), Z

)
(associativity).

(c) F (X,Y ) = F (Y,X) (commutativity).

(d) There is a unique power series i(T ) ∈ R[[T ]] such that F
(
T, i(T )

)
= 0 (in-

verse).

(e) F (X, 0) = X and F (0, Y ) = Y .

We call F (X,Y ) the formal group law of F .

Remark 2.1. It is easy to prove that (a) and (b) imply (d) and (e); see Exercise 4.1. It
is also true that (a) and (b) imply (c), provided that the ring R has no torsion nilpotent
elements; see Exercise 4.2b. In this section we prove this last assertion when R has
no torsion elements.

Definition. Let (F , F ) and (G, G) be formal groups defined over R. A homomor-
phism from F to G defined over R is a power series f ∈ R[[T ]] (with no constant
term) that satisfies

f
(
F (X,Y )

)
= G

(
f(X), f(Y )

)
.

The formal groups F and G are isomorphic over R if there are homomorphisms
f : F → G and g : G → F defined over R such that

f
(
g(T )

)
= g

(
f(T )

)
= T.

Example 2.2.1. The formal additive group, denoted by Ĝa, is defined by

F (X,Y ) = X + Y.

Example 2.2.2. The formal multiplicative group, denoted by Ĝm, is defined by

F (X,Y ) = X + Y + XY = (1 + X)(1 + Y ) − 1.

Example 2.2.3. Let E be an elliptic curve given by a Weierstrass equation with
coefficients in R. The formal group associated to E is denoted by Ê. It is defined by
the power series F (z1, z2) described in (IV §1).
Example 2.2.4. Let (F , F ) be a formal group. We define homomorphisms

[m] : F −→ F

inductively for m ∈ Z by

[0](T ) = 0, [m + 1](T ) = F
(
[m](T ), T

)
, [m − 1](T ) = F

(
[m](T ), i(T )

)
.

One may easily check by induction that [m] is a homomorphism. We call [m] the
multiplication-by-m map. The following elementary proposition, which explains
when [m] is an isomorphism, will be of great importance. More precisely, the chain
of implications

(IV.2.3) =⇒ (IV.3.2b) =⇒ (VII.3.1)

proves a key fact required for the proof of the weak Mordell–Weil theorem (VIII.1.1).
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Proposition 2.3. Let F be a formal group over the ring R and let m ∈ Z.
(a) [m](T ) = mT + (higher-order terms).
(b) If m ∈ R∗, then [m] : F → F is an isomorphism.

PROOF. (a) For m ≥ 0, the stated result is a trivial induction using the recursive
definition of [m] and the fact that F (X,Y ) = X + Y + · · · . Then, using

0 = F
(
T, i(T )

)
= T + i(T ) + · · · ,

we see that i(T ) = −T + · · · , and now the downward induction for m < 0 is also
clear.
(b) This follows from (a) and the following useful lemma.

Lemma 2.4. Let a ∈ R∗ and let f(T ) ∈ R[[T ]] be a power series of the form

f(T ) = at + (higher-order terms).

Then there is a unique power series g(T ) ∈ R[[T ]] satisfying

f
(
g(T )

)
= T.

The series g(T ) also satisfies g
(
f(T )

)
= T .

PROOF. We construct a sequence of polynomials gn(T ) ∈ R[T ] satisfying

f
(
gn(T )

)
≡ T (mod Tn+1) and gn+1(T ) ≡ gn(T ) (mod Tn+1).

Then the limit g(T ) = lim gn(T ) exists in R[[T ]] and clearly satisfies f
(
g(T )

)
= T .

To start the induction, let g1(T ) = a−1T . Now suppose that gn−1(T ) has been
constructed and has the desired properties. Then gn(T ) must have the form

gn(T ) = gn−1(T ) + λTn

for some λ ∈ R, and we look for a value of λ that makes

f
(
gn(T )

)
≡ T (mod Tn+1).

To do this, we use the induction hypothesis to compute

f
(
gn(T )

)
= f

(
gn−1(T ) + λTn

)

≡ f
(
gn−1(T )

)
+ aλTn (mod Tn+1)

≡ T + bTn + aλTn (mod Tn+1) for some b ∈ R.

It thus suffices to take λ = −a−1b, which we may do since a ∈ R∗. This completes
the proof that g(T ) exists.

Next we apply what we have proven, using the power series g(T ) = a−1T + · · ·
in place of f(T ). This gives us a power series h(T ) satisfying g

(
h(T )

)
= T . Then

g
(
f(T )

)
= g

(
f
(
g
(
h(T )

)))
= g

(
f ◦ g

(
h(T )

))
= g

(
h(T )

)
= T.

Finally, suppose that G(T ) ∈ R[[T ]] is another power series satisfying f
(
G(t)

)
= T .

Then
g(T ) = g

(
f
(
G(T )

))
= (g ◦ f)

(
G(T )

)
= G(T ),

which shows that g(T ) is unique.
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IV.3 Groups Associated to Formal Groups
A formal group is, in general, merely a group operation with no actual underlying
group. However, if the ring R is local and complete and if the variables are assigned
values in the maximal ideal M of R, then the power series defining the formal group
converge and thus give M the structure of a group. This section is devoted to an
initial analysis of such groups. We fix the following notation:

R a complete local ring.

M the maximal ideal of R.

k the residue field R/M.

F a formal group defined over R, with formal group law F (X,Y ).

Definition. The group associated to F/R, denoted by F(M), is the set M endowed
with the group operations

x ⊕F y = F (x, y) (addition) for x, y ∈ M,
�Fx = i(x) (inversion) for x ∈ M.

Similarly, for n ≥ 1, we define F(Mn) to be the subgroup of F(M) consisting of
the set Mn together with the above group laws.

The assumption that R is complete ensures that the power series F (x, y) and i(x)
converge in R for all x, y ∈ M. The formal group axioms immediately imply
that F(M) is a group and that F(Mn) is a subgroup of F(M).

Example 3.1.1. The additive group Ĝa(M) is just M with its usual addition law.
Notice the exact sequence (of additive groups)

0 −→ Ĝa(M) −→ R −→ k −→ 0.

Example 3.1.2. The multiplicative group Ĝm(M) is the group of 1-units, i.e., the
set 1 + M with group law multiplication. Notice that we again have an exact se-
quence,

0 −→ Ĝm(M) z 
→1+z−−−−−−−−→ R∗ −→ k∗ −→ 1.

Example 3.1.3. Let Ê be the formal group associated to an elliptic curve E/K as
described in (IV.2.2.3), where K is the field of fractions of the complete local ring R.
Then, as noted in (IV §1), the power series x(z) and y(z) give a well-defined map

M −→ E(K), z −→ Pz =
(
x(z), y(z)

)
.

The construction of the power series for Ê imply that this map is a homomorphism
of Ê(M) to E(K).1

1More precisely, they imply that PF (z,z′) = Pz + Pz′ for distinct z, z′ ∈ M. For z = z′, we can
let z′ �→ z and use the fact that the map z �→ Pz and the addition law on E(K) are continuous for the
topology induced from K. Alternatively, we could do an explicit, albeit messy, calculation with power
series and the duplication formula.
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As we will see in Chapter VII, there is often an exact sequence

0 −→ Ê(M) −→ E(K) −→ Ẽ(k) −→ 0,

where Ẽ is a certain elliptic curve defined over the residue field k. In this way, the
study of E(K) is reduced to the study of the formal group Ẽ(M) and the study of
an elliptic curve over the smaller, and hopefully simpler, field k.

Proposition 3.2. Let F/R be a formal group defined over a complete local ring.
(a) For each n ≥ 1, the map

F(Mn)
F(Mn+1)

−→ Mn

Mn+1

induced by the identity map on sets is an isomorphism of groups.
(b) Let p be the characteristic of the residue field k, where p is allowed to equal 0.

Then every element of finite order in F(M) has order that is a power of p.
(See (IV §6) for a more precise description of the torsion subgroup of F(M).)

PROOF. (a) Since the underlying sets are the same, it suffices to show that the map
is a homomorphism. But this is clear, since for any x, y ∈ Mn we have

x ⊕F y = F (x, y)
= x + y + (higher-order terms)

≡ x + y (mod M2n).

(b) We give two proofs of this important fact. Multiplying an arbitrary torsion el-
ement by an appropriate power of p, it suffices to prove that there are no nonzero
torsion elements of order prime to p. So we let m ≥ 1 with p � m (if p = 0, then m
is arbitrary) and we suppose that x ∈ F(M) satisfies [m](x) = 0. We must show
that x = 0.

For our first proof, we note that since m is prime to p, we have m /∈ M,
so m ∈ R∗, since R is a local ring. It follows from (IV.2.3b) that [m] is an auto-
morphism of the formal group F/R, so it induces an isomorphism

[m] : F(M) ∼−−−−−→ F(M).

In particular, multiplication-by-m has trivial kernel, so x = 0.
For the second proof, we assume that R is Noetherian and show inductively

that x ∈ Mn for all n ≥ 1. This will imply that x = 0 by Krull’s theorem [8, Corol-
lary 10.20], [73, Corollary 5.4]. We know that x ∈ M. Suppose that x ∈ Mn and
consider the image x̄ of x in F(Mn)/F(Mn+1). On the one hand, x̄ has order divid-
ing m. On the other hand, from (a) we know that the quotient F(Mn)/F(Mn+1)
is isomorphic to the k-vector space Mn/Mn+1, hence has only p-torsion. There-
fore x̄ = 0, so x ∈ Mn+1.
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IV.4 The Invariant Differential
We return to the study of a formal group F defined over an arbitrary ring R. In
a formal setting of this sort, a differential form is simply an expression P (T ) dT
with P (T ) ∈ R[[T ]]. Of particular interest are those differential forms that respect
the group structure of F .

Definition. An invariant differential on a formal group F/R is a differential form

ω(T ) = P (T ) dT ∈ R[[T ]] dt

satisfying
ω ◦ F (T, S) = ω(T ).

Writing this out, ω(T ) = P (T ) dT is an invariant differential if it satisfies

P
(
F (T, S)

)
FX(T, S) = P (T ),

where FX(X,Y ) is the partial derivative of F with respect to its first variable. An
invariant differential is said to be normalized if P (0) = 1.

Example 4.1.1. On the additive group Ĝa, the differential ω = dT is invariant.

Example 4.1.2. On the multiplicative group Ĝm, the following is an invariant dif-
ferential:

ω =
dT

1 + T
= (1 − T + T 2 − T 3 + · · · ) dT.

Proposition 4.2. Let F/R be a formal group. There exists a unique normalized
invariant differential on F/R. It is given by the formula

ω = FX(0, T )−1 dT.

Every invariant differential on F/R is of the form aω for some a ∈ R.

PROOF. Suppose that P (T ) dT is an invariant differential on F/R, so it satisfies

P
(
F (T, S)

)
FX(T, S) = P (T ),

Putting T = 0 and remembering that F (0, S) = S gives

P (S)FX(0, S) = P (0).

Since FX(0, S) = 1 + · · · , we see that P (T ) is completely determined by the
value P (0), and further that every invariant differential is of the form aω with a ∈ R
and

ω = FX(0, T )−1 dT.

Since this differential ω is normalized, it remains only to show that it is invariant.
We must prove that
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FX

(
0, F (T, S)

)−1
FX(T, S) = FX(0, T )−1.

To do this, we differentiate the associative law

F
(
U,F (T, S)

)
= F

(
F (U, T ), S

)

with respect to U to obtain (using the chain rule!)

FX

(
U,F (T, S)

)
= FX

(
F (U, T ), S

)
FX(U, T ).

Putting U = 0 and using the fact that F (0, T ) = T yields

FX

(
0, F (T, S)

)
= FX(T, S)FX(0, T ),

which is the desired result.

Before stating the first corollary, we set the notation f ′(T ) for the formal deriva-
tive of a power series f(T ) ∈ R[[T ]], i.e., f ′(T ) is obtained by formally differentiat-
ing f(T ) term by term.

Corollary 4.3. Let F/R and G/R be formal groups with normalized differentials ωF
and ωG . Let f : F → G be a homomorphism. Then

ωG ◦ f = f ′(0)ωF .

PROOF. Let F (X,Y ) and G(X,Y ) be the formal group laws for F and G. We claim
that ωG ◦ f is an invariant differential for F . To prove this, we compute

(ωG ◦ f)
(
F (T, S)

)
= ωG

(
G
(
f(T ), f(S)

))
since f is a homomorphism,

= (ωG ◦ f)(T ) since ωG is invariant for G.

It follows from (IV.4.2) that ωG ◦ f is equal to aωF for some a ∈ R. Comparing
coefficients of T on each side gives a = f ′(0).

Corollary 4.4. Let F/R be a formal group and let p ∈ Z be a prime. There there
are power series f(T ), g(T ) ∈ R[[T ]] with f(0) = g(0) = 0 such that

[p](T ) = pf(T ) + g(T p).

PROOF. Let ω(T ) be the normalized invariant differential on F . From (IV.2.3a) we
have [p]′(0) = p, so (IV.4.3) implies that

pω(T ) =
(
ω ◦ [p]

)
(T ) = (1 + · · · )[p]′(T ) dT.

The series (1 + · · · ) is invertible in R[[T ]], from which it follows that

[p]′(T ) ∈ pR[[T ]].

Therefore every term aTn in the series [p](T ) satisfies either a ∈ pR or p | n.
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IV.5 The Formal Logarithm
Integrating an invariant differential might, one hopes, yield a homomorphism to the
additive group. Unfortunately, integration tends to introduce denominators, but at
least in characteristic 0 things work fairly well.

Definition. Let R be a torsion-free2 ring, let K = R ⊗ Q, let F/R be a formal
group, and let

ω(T ) = (1 + c1T + c2T
2 + c3T

3 + · · · ) dT

be the normalized invariant differential on F/R. The formal logarithm of F/R is
the power series

logF (T ) =
∫

ω(T ) = T +
c1

2
T 2 +

c2

3
T 3 + · · · ∈ K[[T ]].

The formal exponential of F/R is the unique power series expF (T ) ∈ K[[T ]] satis-
fying

logF ◦ expF (T ) = expF (T ) ◦ logF (T ) = T.

The existence and uniqueness of expF are ensured by (IV.2.4).

Example 5.1. The formal group law and invariant differential of the formal multi-
plicative group F = Ĝm are

FF (X,Y ) = X + Y + XY and ωF (T ) = (1 + T )−1dT.

Then the formal logarithm and exponential are given by

logF (T ) =
∫

(1 + T )−1dT =
∞∑

n=1

(−1)n−1Tn

n
,

expF (T ) =
∞∑

n=1

Tn

n!
.

(We recall that the “identity element” is at T = 0, so logF (T ) and expF (T ) are the
standard Taylor series expansions of log(1 + T ) and eT − 1.)

Proposition 5.2. Let R be a torsion-free ring and let F/R be a formal group. Then

logF : F −→ Ĝa

is an isomorphism of formal groups over K = R⊗Q. (N.B. The presence of denom-
inators in the coefficients of the power series logF (T ) means that logF generally
does not give an isomorphism of formal groups over R.)

2The assumption that R has no torsion elements means that if n ∈ Z and α ∈ R satisfy nα = 0, then
either n = 0 or α = 0. Equivalently, the natural map R → K = R ⊗ Q is an injection.
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PROOF. Let ω(T ) be the normalized invariant differential on F/R, so

ω
(
F (T, S)

)
= ω(T ).

Integrating with respect to T gives

logF F (T, S) = logF(T ) + C(S)

for some “constant of integration” C(S) ∈ K[[S]]. Taking T = 0 shows that C(S) =
logF (S), which proves that logF is a homomorphism. Further, it has expF as its
inverse, so logF is an isomorphism.

Application 5.3. Let R be a torsion-free ring and suppose that F (X,Y ) ∈ R[[X,Y ]]
is a power series satisfying

F
(
X,F (Y,Z)

)
= F

(
F (X,Y ), Z

)
, F (X, 0) = 0, F (0, Y ) = Y.

We observe that the construction of the invariant differential, formal logarithm, and
formal exponential, and the proofs of their basic properties used only these three
properties of F (X,Y ). Thus letting K = R ⊗ Q, this proves the existence of power
series log(T ), exp(T ) ∈ K[[T ]] satisfying

F (X,Y ) = exp
(
log(X) + log(Y )

)
.

In particular, we see that F (X,Y ) = F (Y,X). In other words, every one-parameter
formal group over a torsion-free ring is automatically commutative. (See Exer-
cise 4.2b for a more precise statement.)

For certain applications it is useful to have a bound on the denominators ap-
pearing in logF and expF . The answer for logF is clear from the definition, while
for expF we use the following calculation.

Lemma 5.4. Let R be a torsion-free ring, let K = R ⊗ Q, and let

f(T ) =
∞∑

n=1

an

n!
Tn ∈ K[[T ]]

be a power series with an ∈ R and a1 ∈ R∗. Then there is a unique power se-
ries g(T ) ∈ K[[T ]] satisfying f

(
g(T )

)
= T ; cf. (IV.2.4). The series g(T ) has the

form

g(T ) =
∞∑

n=1

bn

n!
Tn

with bn ∈ R.

PROOF. Differentiating f
(
g(T )

)
= T gives

f ′(g(T )
)
g′(T ) = 1.
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and evaluating at T = 0 shows that

b1 = g′(0) =
1

f ′(0)
=

1
a1

∈ R∗.

Differentiating again yields

f ′(g(T )
)
g′′(T ) + f ′′(g(T )

)
g′(T )2 = 0.

Repeated differentiation shows that for every n ≥ 2, the quantity f ′(g(T )
)
g(n)(T )

can be expressed as a polynomial (with integer coefficients) in the variables

f (i)
(
g(T )

)
with 1 ≤ i ≤ n and g(j)(T ) with 1 ≤ j ≤ n − 1.

Evaluating at T = 0 expresses a1bn as a polynomial in a1, . . . , an, b1, . . . , bn−1.
Since a1, b1 ∈ R∗, an easy induction shows that every bn ∈ R.

Proposition 5.5. Let R be a torsion-free ring and let F/R be a formal group. Then

logF (T ) =
∞∑

n=1

an

n
Tn and expF (T ) =

∞∑

n=1

bn

n!
Tn

with an, bn ∈ R and a1 = b1 = 1.

PROOF. The expression for logF follows directly from the definition of the formal
logarithm, and then (IV.5.4) implies that expF has the specified form.

IV.6 Formal Groups over Discrete Valuation Rings
Let R be a complete local ring with maximal ideal M, and let F/R be a formal
group. As we have seen (IV.3.2b), the associated group F(M) has no torsion of
order prime to p = char(R/M). We analyze more closely the p-primary torsion
when R is a discrete valuation ring.

Theorem 6.1. Let R be a discrete valuation ring that is complete with respect to its
maximal ideal M, let p = char(R/M), and let v be the valuation on R. Let F/R
be a formal group, and suppose that x ∈ F(M) has exact order pn for some n ≥ 1,
i.e.,

[pn](x) = 0 and [pn−1](x) �= 0.

Then

v(x) ≤ v(p)
pn − pn−1

.

PROOF. The statement is trivial (and uninteresting) if char(R) �= 0 or if p = 0, since
then v(p) = ∞, so we may assume that char(R) = 0 and that p > 0. From (IV.4.4)
we know that there are power series f(T ), g(T ) ∈ R[[T ]] such that
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[p](T ) = pf(T ) + g(T p),

and (IV.2.3a) tells us that f(T ) = T + · · · . We are going to prove the theorem by
induction on n.

Suppose first that x �= 0 and [p](x) = 0. Thus

0 = pf(x) + g(xp).

Since R is a discrete valuation ring and the linear term of f(T ) is T , the only way
that the leading term of pf(x) can be eliminated is to have

v(px) ≥ v(xp).
Hence

v(p) ≥ (p − 1)v(x).

Now assume that the theorem is true for n, and let x ∈ F(M) have exact or-
der pn+1. Then

v
(
[p](x)

)
= v

(
pf(x) + g(xp)

)
≥ min

{
v(px), v(xp)

}
.

The point [p](x) has exact order pn, so the induction hypothesis tells us that

v(p)
pn − pn−1

≥ v
(
[p](x)

)
,

and therefore
v(p)

pn − pn−1
≥ min

{
v(px), v(xp)

}
.

Since v(x) > 0 and n ≥ 1, it is not possible to have

v(p)
pn − pn−1

≥ v(px).

We conclude that
v(p)

pn − pn−1
≥ v(xp) = pv(x),

which is the desired result.

Example 6.1.1. Let F be a formal group defined over Zp, the ring of p-adic integers.
If p ≥ 2, then (IV.6.1) says that F(pZp) has no torsion at all, and even for p = 2 it
has at most elements of order 2. The same holds for the ring of integers in any finite
unramified extension of Qp. For a general finite extension, the determining factor for
possible p-primary torsion is the ramification degree of the extension, i.e., the value
of v(p) if one takes v to be a normalized valuation.

Next we show that a large piece of F(M) looks like the additive group. The
idea is to use the formal logarithm to define a map, but the presence of denominators
means that convergence is no longer automatic. The following two lemmas will thus
be useful.
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Lemma 6.2. Let v be a valuation and let p ∈ Z be a prime such that 0 < v(p) < ∞.
Then for all integers n ≥ 1,

v(n!) ≤ (n − 1)v(p)
p − 1

.

PROOF. We compute

v(n!) =
∞∑

i=1

[
n

pi

]
v(p) ≤

[logp n]∑

i=1

nv(p)
pi

=
nv(p)
p − 1

(
1 − p−[logp n]

)
≤ (n − 1)v(p)

p − 1
.

Lemma 6.3. Let R be a ring of characteristic 0 that is complete with respect to a
discrete valuation v, and let p ∈ Z be a prime with v(p) > 0.
(a) Let f(T ) be a power series of the form

f(T ) =
∞∑

n=1

an

n
Tn with an ∈ R.

If x ∈ R satisfies v(x) > 0, then f(x) converges in R.
(b) Let g(T ) be a power series of the form

g(T ) =
∞∑

n=1

bn

n!
Tn with bn ∈ R.

If x ∈ R satisfies v(x) > v(p)/(p − 1), then g(x) converges in R. If further
b1 ∈ R∗, then

v
(
g(x)

)
= v(x).

PROOF. (a) For a general term of f(x) we have

v(anxn/n) ≥ nv(x) − v(n) since an ∈ R,
≥ nv(x) − (logp n)v(p).

This last expression goes to ∞ as n goes to infinity. Since v is nonarchimedean and R
is complete, the series f(x) converges.
(b) For a general term of the series g(x), we have

v(bnxn/n!) ≥ nv(x) − v(n!) since bn ∈ R,

≥ nv(x) − (n − 1)
v(p)
p − 1

from (IV.6.2),

= v(x) + (n − 1)
(

v(x) − v(p)
p − 1

)
.

We are assuming that v(x) > v(p)/(p − 1), so
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v(bnxn/n!) → ∞ as n → ∞,

and
v(bnxn/n!) > v(x) for all n ≥ 2.

Since v is nonarchimedean, the former implies that g(x) converges; and if b1 ∈ R∗,
so v(b1x) = v(x), then the latter shows that the leading term dominates.

Theorem 6.4. Let K be a field of characteristic 0 that is complete with respect to a
normalized discrete valuation v, i.e., v(K∗) = Z, let R be the valuation ring of K,
let M be the maximal ideal of R, and let p be a prime with v(p) > 0. Consider a
formal group F/R.
(a) The formal logarithm induces a homomorphism

logF : F(M) −→ K,

where the group law on K is addition.
(b) Let r > v(p)/(p − 1) be an integer. Then the formal logarithm induces an

isomorphism
logF : F(Mr) ∼−−−−−→ Ĝa(Mr).

PROOF. (a) From (IV.5.2) we have an identity of power series

logF
(
F (X,Y )

)
= logF (X) + logF (Y ).

Hence logF will be a homomorphism on M provided that logF (x) converges
for x ∈ M. The convergence follows from (IV.5.5) and (IV.6.3a).
(b) Similarly, since (IV.5.2) says that logF and expF are inverse maps as formal
power series, it suffices to show that for all x ∈ Mr, the power series logF (x)
and expF (x) converge to values in Mr. This follows directly from the estimates
given in (IV.5.5) and (IV.6.3b). (Note that since v is normalized, the conditions
x ∈ Mr and v(x) ≥ r are equivalent.)

Remark 6.5. If r > v(p)/(p− 1), then (IV.6.4) implies that F(Mr) is torsion-free,
since Ĝa(Mr) certainly has no torsion. We thus recover the n = 1 case of (IV.6.1).

IV.7 Formal Groups in Characteristic p

For this section we let R be a ring of characteristic p > 0.

Definition. Let F/R and G/R be formal groups, and let f : F → G be a homo-
morphism defined over R. The height of f , denoted by ht(f), is the largest integer h
such that

f(T ) = g(T ph

)

for some power series g(T ) ∈ R[[T ]]. (If f = 0, we set ht(f) = ∞.) The height
of the formal group F , denoted by ht(F), is the height of the multiplication-by-p
map [p] : F → F .
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Remark 7.1. If m ≥ 1 is prime to p, then ht
(
[m]

)
= 0, since (IV.2.3a) says

that [m](T ) = mT + · · · . On the other hand, (IV.4.4) implies that ht
(
[p]

)
≥ 1, so

the height of a formal group over a ring of positive characteristic is always positive.

Proposition 7.2. Let F/R and G/R be formal groups, and let f : F → G be a
homomorphism defined over R.
(a) If f ′(0) = 0, then f(T ) = f1(T p) for some f1 ∈ R[[T ]].
(b) Write f(T ) = g(T ph

) with h = ht(f). Then g′(0) �= 0.

PROOF. (a) Let ωF and ωG be the normalized invariant differentials on F and G.
Then

0 = f ′(0)ωF (T ) since f ′(0) = 0,

= ωG
(
f(T )

)
from (IV.4.3),

= (1 + · · · )f ′(T ) dT.

Hence f ′(T ) = 0, so f(T ) = f1(T p).
(b) Let q = ph, and if F (X,Y ) =

∑
aijX

iY j is the power series defining
the formal group F , let F (q) denote the formal group defined by the power se-
ries F (q)(X,Y ) =

∑
aq

ijX
iY j . Using the fact that char(R) = p, it is easy to check

that F (q) is a formal group. We claim that g is a homomorphism from F (q) to G. To
prove this, we compute:

g
(
F (q)(X,Y )

)
= g

(
F (S, T )q

)
writing Sq = X and T q = Y ,

= f
(
F (S, T )

)

= G
(
f(S), f(T )

)
since f is a homomorphism,

= G
(
g(Sq), g(T q)

)

= G
(
g(X), g(Y )

)
.

Suppose that g′(0) equals 0. Then from (a) we have g(T ) = g1(T p), which implies
that

f(T ) = g(T ph

) = g1(T ph+1
).

This contradicts the assumption that h = ht(f). Therefore g′(0) �= 0.

Next we show that the height behaves well under composition.

Proposition 7.3. Let F/R, G/R, and H/R be formal groups, and let

F f−−−−→ G g−−−−→ H

be a chain of homomorphisms defined over R. Then

ht(g ◦ f) = ht(f) + ht(g).
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PROOF. Write

f(T ) = f1(T pht(f)
) and g(T ) = g1(T pht(g)

).

Then
(g ◦ f)(T ) = g1

(
f1(T pht(f)

)ht(g)
)

= g1

(
f̃1(T pht(f)+ht(g)

)
)
,

where f̃1 is obtained from f1 by raising each coefficient of f1 to the pht(g) power.
We know from (IV.7.2b) that g1 and f1 have nonzero linear terms, so it follows that

ht(g ◦ f) = ht(f) + ht(g).

We now resume our study of elliptic curves by giving a relationship between
the inseparable degree of an isogeny and the height of the associated map of formal
groups.

Theorem 7.4. Let K be a field of characteristic p > 0, let E1/K and E2/K be
elliptic curves, and let φ : E1 → E2 be a nonzero isogeny defined over K. Further,
let f : Ê1 → Ê2 be the homomorphism of formal groups induced by φ. Then

degi(φ) = pht(f).

Corollary 7.5. Let E/K be an elliptic curve defined over a field of positive charac-
teristic. Then

ht(Ê) = 1 or 2.

PROOF. We start with two special cases.

Case 1. φ is the pr-power Frobenius map.
Then (II.2.11) says that degi φ = pr, while f(T ) = T pr

, so clearly ht(f) = r.

Case 2. φ is separable.
Let ω be an invariant differential on E2/K, and let ω(T ) be the corresponding dif-
ferential on the formal group Ê2. Since φ is separable by assumption, (II.4.2c) tells
us that φ∗ω �= 0, so using (IV.4.3) we conclude that

(ω ◦ f)(T ) = f ′(0)ω(T ) �= 0.

It follows that f ′(0) �= 0, and hence ht(f) = 0.

We now use the fact (II.2.12) that every isogeny is the composition of a Frobenius
map and a separable map. The theorem then follows from the two cases already
considered, since inseparable degrees multiply under composition, while (IV.7.3)
tells us that heights add under composition.

The corollary is immediate on applying the theorem with φ = [p], since the
map [p] has degree p2 from (III.6.4a).
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Exercises
4.1. Let F (X, Y ) ∈ R[[X, Y ]] be a power series satisfying

F (X, Y ) = X + Y + · · · and F
(
X, F (Y, Z)

)
= F

(
F (X, Y ), Z

)
.

(a) Show that there is a unique power series i(T ) ∈ R[[T ]] satisfying F
(
T, i(T )

)
= 0. Prove

that i(T ) also satisfies F
(
i(T ), T

)
= 0.

(b) Prove that F (X, 0) = X and F (0, Y ) = Y .

4.2. (a) Let R = Fp[ε]/(ε2). Prove that

F (X, Y ) = X + Y + εXY p

defines a noncommutative formal group, i.e., F has all of the properties to be a formal
group law except that F (X, Y ) �= F (Y, X).

(b) * Let R be a ring. Prove that there exists a noncommutative formal group defined over R
if and only if there are a nonzero element ε ∈ R and positive integers m and n such
that mε = εn = 0.

4.3. Let R be the ring of integers in a finite extension of Qp, and let F/R be a formal group.
(a) Prove that for every x ∈ F(M),

lim
n→∞

[pn](x) = 0.

(b) Prove that for every α ∈ Zp there exists a unique homomorphism [a] : F → F satisfy-
ing

[α](T ) = αT + · · · ∈ R[[T ]].

4.4. Let R and F/R be as in Exercise 4.3, and let h be the height of the formal group over
the residue field R/M obtained by reducing modulo M the coefficients of the formal group
law for F . Prove that there is a finite extension R′ of R with maximal ideal M′ such that
the p-torsion in F(M′) is isomorphic to (Z/pZ)h. (Hint. Use the p-adic version of the Weier-
strass preparation theorem [143, Chapter 5, Theorem 11.2].) This provides an alternative proof
of (IV.7.5).

4.5. Let E be the elliptic curve y2 = x3 + Ax.
(a) Let w(z) =

∑
Anzn be the power series for E described in (IV §1). Prove that

An = 0 for all n �≡ 3 (mod 4).

(b) Let F (X, Y ) =
∑

Fn(X, Y ) be the formal group law for E, where Fn(X, Y ) is a
homogeneous polynomial of degree n. Prove that

Fn = 0 for all n �≡ 1 (mod 4).

(c) Prove results analogous to (a) and (b) for the curve y2 = x3 + B.

4.6. Using the notation from (IV.6.1), let k = R/M, and let h be the height of the formal
group F̃/k obtained by reducing the coefficients of the formal group law F (X, Y ) mod-
ulo M. Suppose that x ∈ F(M) has exact order pn+1. Prove that

v(x) ≤
[

v(p)

phn(ph − 1)

]
.

Since every formal group has height h ≥ 1, this strengthens (IV.6.1).



Chapter V

Elliptic Curves over Finite
Fields

In this chapter we study elliptic curves defined over a finite field Fq. The most im-
portant arithmetic quantity associated to such a curve is its number of rational points.
We start by a proving a theorem of Hasse that says that if E/Fq is an elliptic curve,
then E(Fq) has approximately q points, with an error of no more than 2

√
q. Follow-

ing Weil, we then reinterpret and extend this result in terms of a certain generating
function, the zeta function of the curve. In the final two sections we study in some
detail the endomorphism ring of an elliptic curve defined over a finite field, and in
particular we give a relationship between End(E) and the existence of nontrivial
p-torsion points. We fix the following notation for Chapter V:

q a power of a prime p.

Fq a finite field with q elements.

F̄q an algebraic closure of Fq.

V.1 Number of Rational Points
Let E/Fq be an elliptic curve defined over a finite field. We wish to estimate the
number of points in E(Fq), or equivalently, one more than the number of solutions
to the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 with (x, y) ∈ F2

q .

Since each value of x yields at most two values for y, a trivial upper bound is

#E(Fq) ≤ 2q + 1.

However, since a “randomly chosen” quadratic equation has a 50% chance of being
solvable in Fq , we expect that the right order of magnitude should be q, rather than 2q.
J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 137
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 V,
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138 V. Elliptic Curves over Finite Fields

The next result, which was conjectured by E. Artin in his thesis and proven by Hasse
in the 1930s, shows that this heuristic reasoning is correct.

Theorem 1.1. (Hasse) Let E/Fq be an elliptic curve defined over a finite field. Then
∣
∣#E(Fq) − q − 1

∣
∣ ≤ 2

√
q.

PROOF. Choose a Weierstrass equation for E with coefficients in Fq, and let

φ : E −→ E, (x, y) �−→ (xq, yq),

be the qth-power Frobenius morphism (III.4.6). Since the Galois group GF̄q/Fq

is (topologically) generated by the qth-power map on F̄q , we see that for any
point P ∈ E(F̄q),

P ∈ E(Fq) if and only if φ(P ) = P.

Thus
E(Fq) = ker(1 − φ),

so using (III.5.5) and (III.4.10c), we find that

#E(Fq) = #ker(1 − φ) = deg(1 − φ).

(Note the importance of knowing that the map 1 − φ is separable.) Since the degree
map on End(E) is a positive definite quadratic form (III.6.3) and since deg φ = q,
the following version of the Cauchy–Schwarz inequality gives the desired result.

Lemma 1.2. Let A be an abelian group, and let

d : A −→ Z

be a positive definite quadratic form. Then
∣
∣d(ψ − φ) − d(φ) − d(ψ)

∣
∣ ≤ 2

√
d(φ)d(ψ) for all ψ, φ ∈ A.

PROOF. For ψ, φ ∈ A, let

L(ψ, φ) = d(ψ − φ) − d(φ) − d(ψ)

be the bilinear form associated to the quadratic form d. Since d is positive definite,
we have for all m,n ∈ Z,

0 ≤ d(mψ − nφ) = m2d(ψ) + mnL(ψ, φ) + n2d(φ).

In particular, taking

m = −L(ψ, φ) and n = 2d(ψ)
yields

0 ≤ d(ψ)
(
4d(ψ)d(φ) − L(ψ, φ)2

)
.

This gives the desired inequality, provided that ψ �= 0, while for ψ = 0 the original
inequality is trivial.
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Application 1.3. Let Fq be a finite field with q odd. We can use Hasse’s result to
estimate the value of certain character sums on Fq. Thus let

f(x) = ax3 + bx2 + cx + d ∈ K[x]

be a cubic polynomial with distinct roots in F̄q, and let

χ : F∗
q −→ {±1}

be the unique nontrivial character of order 2, i.e., χ(t) = 1 if and only if t is a square
in F∗

q . Extend χ to Fq by setting χ(0) = 0. We can use χ to count the Fq-rational
points on the elliptic curve

E : y2 = f(x).

Each x ∈ Fq yields zero, one, or two points (x, y) ∈ E(Fq) according to whether
the value f(x) is, respectively, a nonsquare, equal to zero, or a square in Fq. Thus in
terms of χ we obtain (remember the extra point at infinity)

#E(Fq) = 1 +
∑

x∈Fq

(
1 + χ

(
f(x)

))

= 1 + q +
∑

x∈Fq

χ
(
f(x)

)
.

Comparing this with (V.1.1) yields the following result.

Corollary 1.4. With notation as above,
∣
∣
∣
∣
∣

∑

x∈Fq

χ
(
f(x)

)
∣
∣
∣
∣
∣
≤ 2

√
q.

We note that the sum in (V.1.4) consists of q terms, each of which is ±1,
so (V.1.4) says that as x runs through Fq, the values of the cubic polynomial f(x)
tend to be equally distributed between squares and nonsquares. Indeed, if one takes
a random sequence (ε1, . . . , εq) of ones and negative ones, then the expected value
of |ε1 + · · · + εq|2 is q, so (V.1.4) says that the set of values of

(
χ
(
f(x)

))
x∈Fq

looks
like a random sequence.

Remark 1.5. Hasse’s theorem (V.1.1) gives a bound for the number of points
in E(Fq), but it does not provide a practical algorithm for computing #E(Fq)
when q is large. See (XI §3).

Remark 1.6. Let E/Fq be an elliptic curve, and let P,Q ∈ E(Fq) be points such
that Q is in the subgroup generated by P . The elliptic curve discrete logarithm prob-
lem (ECDLP) asks for an integer m satisfying Q = [m]P . If q is small, we can
compute P, [2]P, [3]P, . . . until we find Q, but for large values of q it is quite diffi-
cult to find m. This has led people to create public key cryptosystems based on the
difficulty of solving the ECDLP. See (XI §§4–7) for a discussion of elliptic curve
cryptography and the ECDLP.
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V.2 The Weil Conjectures
In 1949, André Weil made a series of remarkable conjectures concerning the num-
ber of points on varieties defined over finite fields. In this section we state Weil’s
conjectures and prove them for elliptic curves.

For each integer n ≥ 1, let Fqn be the extension of Fq of degree n,
so #Fqn = qn. Let V/Fq be a projective variety, say V is the set of solutions
to

f1(x0, . . . , xN ) = · · · = fm(x0, . . . , xN ) = 0,

where f1, . . . , fm are homogeneous polynomials with coefficients in Fq. Then
V (Fqn) is the set of points of V with coordinates in Fqn . We encode the number
of points in V (Fqn) for all n ≥ 1 into a generating function.

Definition. The zeta function of V/Fq is the power series

Z(V/Fq;T ) = exp

( ∞∑

n=1

(
#V (Fqn)

)Tn

n

)

.

Here, for any power series F (T ) ∈ Q[[T ]] with no constant term, we define the
power series exp

(
F (T )

)
to be the series

∑
k≥0 F (T )k/k!. Note that if we know the

series Z(V/Fq;T ), then we can recover the numbers #V (Fqn) by the formula

#V (Fqn) =
1

(n − 1)!
dn

dTn
log Z(V/Fq;T )

∣
∣
∣
∣
T=0

.

The reason for defining Z(V/Fq;T ) in this way, rather than using the more natural
series

∑
#V (Fqn)Tn, will soon be apparent.

Example 2.1. Let V = PN . Then a point of V (Fqn) is given by homogeneous
coordinates [x0, . . . , xN ] with xi ∈ Fqn not all zero. Two sets of coordinates give
the same point if they differ by multiplication by an element of F∗

qn . Hence

#PN (Fqn) =
qn(N+1) − 1

qn − 1
=

N∑

i=0

qni,

so

log Z(Pn/Fq;T ) =
∞∑

n=1

(
N∑

i=0

qni

)
Tn

n
=

N∑

i=0

− log(1 − qiT ).

Thus
Z(Pn/Fq;T ) =

1
(1 − T )(1 − qT ) · · · (1 − qNT )

.

Notice that in this case the zeta function is actually in Q(T ). In general, if there are
numbers α1, . . . , αr ∈ C such that

#V (Fqn) = ±αn
1 ± · · · ± αn

r for all n = 1, 2, . . .,

then Z(V/Fq;T ) is a rational function.
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Theorem 2.2. (Weil Conjectures) Let V/Fq be a smooth projective variety of di-
mension N .
(a) Rationality

Z(V/Fq;T ) ∈ Q(T ).

(b) Functional Equation
There is an integer ε, called the Euler characteristic of V , such that

Z(V/Fq; 1/qNT ) = ±qNε/2T εZ(V/Fq;T ).

(c) Riemann Hypothesis
The zeta function factors as

Z(V/Fq;T ) =
P1(T ) · · ·P2N−1(T )

P0(T )P2(T ) · · ·P2N (T )

with each Pi(T ) ∈ Z[T ], with

P0(T ) = 1 − T and P2N (T ) = 1 − qNT,

and such that for every 0 ≤ i ≤ 2N , the polynomial Pi(T ) factors over C as

Pi(T ) =
bi∏

j=1

(1 − αijT ) with |αij | = q1/2.

The quantity bi, i.e., the degree of Pi(T ), is called the ith Betti number of V .

This conjecture was proposed by Weil in 1949 [305] and proven by him for
curves and for abelian varieties. The rationality of the zeta function in general was
established by Dwork [70] in 1960 using techniques of p-adic functional analysis.
Soon thereafter the �-adic cohomology theory developed by M. Artin, Grothendieck,
and others was used to give another proof of rationality and to establish the func-
tional equation. Then, in 1973, Deligne [60] proved the Riemann hypothesis. For a
nice overview of Deligne’s proof, see [123].

We are going to prove the Weil conjectures for elliptic curves. Let � be a prime
different from p = char(Fq). Recall that there is a representation (III §7)

End(E) −→ End
(
T�(E)

)
, ψ �−→ ψ�,

and choosing a Z�-basis for T�(E), we can write ψ� as a 2 × 2 matrix and compute
its determinant and trace, det(ψ�), tr(ψ�) ∈ Z�.

Proposition 2.3. Let ψ ∈ End(E). Then

det(ψ�) = deg(ψ) and tr(ψ�) = 1 + deg(ψ) − deg(1 − ψ).

In particular, det(ψ�) and tr(ψ�) are in Z and are independent of �.

PROOF. We already proved this result (III.8.6).
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We apply (V.2.3) to an elliptic curve over a finite field. This enables us to com-
pute the number of points and to deduce an important property of the Frobenius
endomorphism.

Theorem 2.3.1. Let E/Fq be an elliptic curve, let

φ : E −→ E, (x, y) �−→ (xq, yq),

be the qth-power Frobenius endomorphism, and let

a = q + 1 − #E(Fq).

(a) Let α, β ∈ C be the roots of the polynomial T 2 − aT + q. Then α and β are
complex conjugates satisfying |α| = |β| =

√
q, and for every n ≥ 1,

#E(Fqn) = qn + 1 − αn − βn.

(b) The Frobenius endomorphism satisfies

φ2 − aφ + q = 0 in End(E).

PROOF. We observed in (V §1) that (III.5.5) and (III.4.10c) imply that

#E(Fq) = deg(1 − φ).

We use (V.2.3) to compute

det(φ�) = deg(φ) = q,

tr(φ�) = 1 + deg(φ) − deg(1 − φ) = 1 + q − #E(Fq) = a.

Hence the characteristic polynomial of φ� is

det(T − φ�) = T 2 − tr(φ�)T + det(φ�) = T 2 − aT + q.

(a) Since the characteristic polynomial of φ� has coefficients in Z, we can factor it
over C as

det(T − φ�) = T 2 − aT + q = (T − α)(T − β).

For every rational number m/n ∈ Q we have

det
(m

n
− φ�

)
=

det(m − nφ�)
n2

=
deg(m − nφ)

n2
≥ 0.

Thus the quadratic polynomial det(T − φ�) = T 2 − aT + q ∈ Z[T ] is nonnegative
for all T ∈ R, so either it has complex conjugate roots or it has a double root. In
either case we have |α| = |β|, and then from

αβ = det φ� = deg φ = q,

we deduce that



V.2. The Weil Conjectures 143

|α| = |β| =
√

q.

This gives the first part of (a).
Similarly, for each integer n ≥ 1, the (qn)th-power Frobenius endomorphism

satisfies
#E(Fqn) = deg(1 − φn).

It follows that the characteristic polynomial of φn
� is given by

det(T − φn
� ) = (T − αn)(T − βn).

(To see this, put φ� into Jordan normal form, so it is upper triangular with α and β
on the diagonal.) In particular,

#E(Fqn) = deg(1 − φn)
= det(1 − φn

� ) from (V.2.3),
= 1 − αn − βn + qn.

(b) The Cayley–Hamilton theorem tells us that φ� satisfies its characteristic poly-
nomial, so φ2

� − aφ� + q = 0. Applying (V.2.3) gives

deg(φ2 − aφ + q) = det(φ2
� − aφ� + q) = det(0) = 0,

so φ2 − aφ + q is the zero map in End(E).

Using (V.2.3.1a), it is easy to verify the Weil conjectures for elliptic curves.

Theorem 2.4. Let E/Fq be an elliptic curve. Then there is an a ∈ Z such that

Z(E/Fq;T ) =
1 − aT + qT 2

(1 − T )(1 − qT )
.

Further,

Z(E/Fq; 1/qT ) = Z(E/Fq;T ),
and

1 − aT + qT 2 = (1 − αT )(1 − βT ) with |α| = |β| =
√

q.

PROOF. We compute

log Z(E/Fq;T ) =
∞∑

n=1

#E(Fqn)Tn

n
by definition,

=
∞∑

n=1

(1 − αn − βn + qn)Tn

n
from (V.2.3.1a),

= − log(1 − T ) + log(1 − αT ) + log(1 − βT ) − log(1 − qT ).

Hence
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Z(E/Fq;T ) =
(1 − αT )(1 − βT )
(1 − T )(1 − qT )

.

This is the desired result, since (V.2.3.1a) says that α and β are complex conjugates
of absolute value

√
q and that they satisfy

a = α + β = tr(φ�) = 1 + q − deg(1 − φ) ∈ Z.

Finally, the functional equation is immediate (with ε = 0).

Remark 2.5. To see why (V.2.2c) is called the Riemann hypothesis, we make a
change of variables by setting T = q−s. This gives a function of s,

ζE/Fq
(s) = Z(E/Fq; q−s) =

1 − aq−s + q1−2s

(1 − q−s)(1 − q1−s)
.

The functional equation reads

ζE/Fq
(s) = ζE/Fq

(1 − s),

which certainly looks familiar. Further, the Riemann hypothesis for Z(E/Fq;T ) says
that if ζE/Fq

(s) = 0, then |qs| =
√

q, which is equivalent to Re(s) = 1
2 .

Remark 2.6. Let E/Fq be an elliptic curve. The quantity

a = q + 1 − #E(Fq)

is called the trace of Frobenius, because, as we saw during the proof of (V.2.3.1), it is
equal to the trace of the q-power Frobenius map considered as a linear transformation
of T�(E). Thus if φ denotes the q-power Frobenius map, then (V.2.3) gives

tr(φ�) = 1 + deg(φ) − deg(1 − φ) = 1 + q − #E(Fq) = a.

V.3 The Endomorphism Ring
Let K be a (not necessarily finite) field of characteristic p, and let E/K be an elliptic
curve. We have seen (III.6.4) that there are two possibilities for the group of p-torsion
points E[p], namely 0 and Z/pZ. Similarly, as described in (III §9), there are several
possibilities for the endomorphism ring End(E). We now show that the seemingly
unrelated values of E[p] and End(E) are in fact far from independent.

Theorem 3.1. ([60]) Let K be a field of characteristic p, and let E/K be an elliptic
curve. For each integer r ≥ 1, let

φr : E −→ E(pr) and φ̂r : E(pr) −→ E

be the pr-power Frobenius map and its dual.
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(a) The following are equivalent.
(i) E[pr] = 0 for one (all) r ≥ 1.

(ii) φ̂r is (purely) inseparable for one (all) r ≥ 1.
(iii) The map [p] : E → E is purely inseparable and j(E) ∈ Fp2 .
(iv) End(E) is an order in a quaternion algebra.
(v) The formal group Ê/K associated to E has height 2. (See (IV §7).)

(b) If the equivalent conditions in (a) do not hold, then

E[pr] = Z/prZ for all r ≥ 1,

and the formal group Ê/K has height 1. If further j(E) ∈ F̄p, then End(E) is
an order of a quadratic imaginary field. (For the case that j(E) is transcenden-
tal over Fp, see Exercise 5.8.)

Definition. If E has the properties given in (V.3.1a), then we say that E is super-
singular, or that E has Hasse invariant 0. Otherwise we say that E is ordinary, or
that E has Hasse invariant 1.

Remark 3.2.1. There are other characterizations of supersingular elliptic curves that
are important in various applications. See [111, IV §4] for a description in terms of
sheaf cohomology and [140, Appendix 2 §5] for a description involving residues of
differentials.

Remark 3.2.2. Do not confuse the notions of singularity and supersingularity. A
supersingular elliptic curve is, by definition, an elliptic curve, so it is nonsingular.
The origin of this potentially confusing terminology is as follows. Historically, ellip-
tic curves defined over C whose endomorphism rings are larger than Z were called
singular, where “singular” was used in the sense of “unusual” or “rare.” However, in
this sense, all elliptic curves defined over F̄p are singular! The endomorphism rings
of most elliptic curves over F̄p are orders in imaginary quadratic fields. It is only the
rare and unusual curve whose endomorphism ring is an order in a quaternion algebra,
whence the term “supersingular.”

PROOF OF V.3.1. Conditions (i)–(v) are invariant under field extension, so we may
assume that K is algebraically closed, and in particular, a perfect field. For notational
convenience, we let φ = φ1.
(a) Since the Frobenius map is purely inseparable (II.2.11b), we have

degs(φ̂r) = degs[p
r] =

(
degs[p]

)r =
(
degs φ̂

)r
.

Combining this with (III.4.10a) yields

#E[pr] = degs

(
φ̂r

)
= deg

(
φ̂
)r

,

from which the equivalence of (i) and (ii) follows immediately.
Next, from (IV.7.4) and the fact that φ is purely inseparable, we have

degi φ̂ =
degi[p]

p
= pht(Ê)−1.
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Since φ̂ has degree p, this shows that (ii) and (v) are equivalent.
We now prove that (ii) ⇒ (iii) ⇒ (iv) ⇒ (ii).

(ii) ⇒ (iii). From (ii) it is immediate that [p] = φ̂◦φ is purely inseparable, so we
must show that j(E) ∈ Fp2 . We apply (II.2.12) to the map φ̂ : E(p) → E. Since φ̂
is purely inseparable by assumption, it follows from (II.2.12) and comparison of
degrees that φ̂ factors as

E(p) �φ̂
E

E(p2)

�
�

�� �
�

��
φ′ ψ

where φ′ is the pth-power Frobenius map on E(p) and where ψ has degree one. It
follows from (II.2.4.1) that ψ is an isomorphism, so

j(E) = j
(
E(p2)

)
= j(E)p2

.

(For the second equality, see (III.4.6).) Hence j(E) ∈ Fp2 .

(iii) ⇒ (iv). Suppose that End(E) is not an order in a quaternion algebra. We
proceed to derive a contradiction. From (III.9.4) we find that

K = End(E) ⊗ Q

is a number field, since it is either Q or an imaginary quadratic extension of Q.
Let E′ be any elliptic curve that is isogenous to E, say ψ : E → E′. Since

ψ ◦ [p] = [p] ◦ ψ, and since [p] : E → E is purely inseparable by assumption, com-
paring inseparability degrees shows that [p] : E′ → E′ is also purely inseparable.
Hence

#E′[p] = degs[p] = 1,

so from the already proven implications (i) ⇒ (ii) ⇒ (iii), we conclude that
j(E′) ∈ Fp2 . This shows that up to isomorphism, there are only finitely many el-
liptic curves that are isogenous to E.

Now choose a prime � ∈ Z with � �= p such that � remains prime in End(E′)
for every elliptic curve E′ that is isogenous to E. Since there are only finitely many
such End(E′) and each is a subring of K, it is easy to find such an �; see Exercise 5.5.
From (III.6.4b) we know that

E[�i] ∼= Z/�iZ × Z/�iZ,

so we can choose a sequence of subgroups

Φ1 ⊂ Φ2 ⊂ · · · ⊂ E with Φi
∼= Z/�iZ.

Let Ei = E/Φi be the quotient of E by Φi, so from (III.4.12) there is an
isogeny E → Ei with kernel Φi. We know from above that up to isomorphism,
there are only finitely many distinct Ei, so we can choose integers m,n > 0 such
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that Em+n and Em are isomorphic. Composing this isomorphism with the natural
projection from Em to Em+n yields an endomorphism of Em,

λ : Em
proj−−−−−→ Em+n

∼= Em.

Note that the kernel of λ is cyclic of order �n, since ker(λ) = Φm+n/Φm. But � is
prime in the ring End(Em), so by comparing degrees we must have λ = u ◦ [�n/2]
for some u ∈ Aut(Em). (Also n must be even.) However, the kernel of [�n/2] is
not cyclic for any n > 0. This contradiction proves that K is not a number field, and
hence that End(E) is an order in a quaternion algebra.

(iv) ⇒ (ii). Suppose that (ii) is false, so φ̂r is separable for all r ≥ 1. We will
prove that End(E) is commutative, which contradicts (iv).

First we show that the natural map

End(E) −→ End
(
Tp(E)

)

is injective. Suppose that ψ ∈ End(E) goes to 0. Then from the definition of Tp(E)
we have ψ

(
E[pr]

)
for all r ≥ 1. Since [pr] = φr ◦ φ̂r and since φr is surjec-

tive (II.2.3), it follows that

φr(ker ψ) ⊃ ker φ̂r,

and thus
#ker ψ ≥ #ker φ̂r for all r ≥ 1.

On the other hand, we know that

#ker φ̂r = deg φ̂r from (III.4.10c), since φ̂r is separable,

deg φ̂r = deg φr from (III.6.2e),
deg φr = pr from (II.2.11c).

Therefore #ker ψ ≥ pr for all r ≥ 1, which implies that ψ = 0.
Next, from (III.7.1b) we see that Tp(E) is either 0 or Zp. Further, we have

Tp(E)/pTp(E) ∼= E[p], and by assumption E[p] �= 0, so we have Tp(E) = Zp.
Combining this fact with the injection proven earlier, we have

End(E) ↪−→ End
(
Tp(E)

) ∼= End(Zp) ∼= Zp.

Therefore End(E) is commutative.
(b) From (III.6.4c) we know that E[pr] is equal to either 0 or Z/prZ for ev-
ery r ≥ 1. Hence if condition (i) of (a) is false, then we must have

E[pr] ∼= Z/prZ for all r ≥ 1.

Further, since (v) is assumed to be false, we can use (IV.7.5) to conclude that Ê/K
has height 1.
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Next we suppose that j(E) ∈ F̄p and that E does not satisfy the conditions
in (a). We use (III.1.4b,c) to find an elliptic curve E′ defined over a finite field Fpr

such that E′ is isomorphic to E. Then φr is an endomorphism of E′. Suppose that

φr ∈ Z ⊂ End(E′).

Comparing degrees yields
φr = [±pr/2]

for some (even) integer r, and then (III.4.10) and (II.2.11b) tell us that

#E[pr/2] = degs φr = 1.

This contradicts the assumption that (i) is false. Therefore φr /∈ Z, so End(E′) is
strictly larger than Z. By assumption, it is not an order in a quaternion algebra, so
from (III.9.4), the only remaining possibility is that End(E′) is an order in an imagi-
nary quadratic field. Since End(E′) = End(E), this completes the proof of (b).

V.4 Calculating the Hasse Invariant
From (V.3.1a) we see that up to isomorphism, there are only finitely many ellip-
tic curves with Hasse invariant 0, since each such curve has j-invariant in Fp2 .
For p = 2, one easily checks that the only supersingular curve (over F̄2) is

E : y2 + y = x3.

(See also Exercise 5.7.) For p > 2, the next theorem gives a criterion for determining
whether an elliptic curve is supersingular.

Theorem 4.1. Let Fq be a finite field of characteristic p ≥ 3.
(a) Let E/Fq be an elliptic curve given by a Weierstrass equation

E : y2 = f(x),

where f(x) ∈ Fq[x] is a cubic polynomial with distinct roots in F̄q. Then E is
supersingular if and only if the coefficient of xp−1 in f(x)(p−1)/2 is zero.

(b) Let m = (p − 1)/2, and define a polynomial

Hp(t) =
m∑

i=0

(
m

i

)2

ti.

Let λ ∈ F̄q with λ �= 0, 1. Then the elliptic curve

E : y2 = x(x − 1)(x − λ)

is supersingular if and only if Hp(λ) = 0.
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(c) The polynomial Hp(t) has distinct roots in F̄q . There is one supersingular curve
in characteristic 3, and for p ≥ 5, the number of supersingular elliptic curves
(up to F̄q-isomorphism) is

[ p

12

]
+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if p ≡ 1 (mod 12),
1 if p ≡ 5 (mod 12),
1 if p ≡ 7 (mod 12),
2 if p ≡ 11 (mod 12).

Remark 4.1.1. The results of (V.4.1) (and more) are mostly in [60]. Our proof of (a)
follows [154], and the proof of (c) is from [119]. For a beautiful generalization to
curves of higher genus, see [154].

PROOF. Let
χ : F∗

q −→ {±1}
be the unique nontrivial character of order 2, and extend χ to Fq by setting χ(0) = 0.
As we have seen in (V.1.3), the character χ can be used to count the number of points
of E,

#E(Fq) = 1 + q +
∑

x∈Fq

χ
(
f(x)

)
.

Since F∗
q is cyclic of order q − 1, for any z ∈ Fq we have

χ(z) = z(q−1)/2 in Fq.

Hence
#E(Fq) = 1 +

∑

x∈Fq

f(x)(q−1)/2 as an equality in Fq.

Again using the cyclic nature of F∗
q , we have the easy result

∑

x∈Fq

xi =

{
−1 if q − 1 | i,
0 if q − 1 � i.

Since f(x) is a polynomial of degree 3, if we expand f(x)(q−1)/2, we see that the
expansion has terms of the form xn for 0 ≤ n ≤ 3

2 (q − 1). Hence when we sum
over x ∈ Fq , the only nonzero term comes from xq−1. Thus if we let

Aq = coefficient of xq−1 in f(x)(q−1)/2,

then
#E(Fq) = 1 − Aq.

However, note that this equality is taking place in Fq , so it is actually only a formula
for #E(Fq) modulo p.

On the other hand, letting φ : E → E be the q-power Frobenius endomorphism,
we have (V §2)
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#E(Fq) = deg(1 − φ) = 1 − a + q,

where
a = 1 − deg(1 − φ) + deg(φ).

(Thus [a] = φ + φ̂.) Equating these two expressions for #E(Fq), we find that

a = Aq as an equality in Fq .

Since a is an integer, this proves that

Aq = 0 ⇐⇒ a ≡ 0 (mod p).

But φ̂ = [a] − φ, so we find that

a ≡ 0 (mod p) ⇐⇒ φ̂ is inseparable (III.5.5),
⇐⇒ E is supersingular (V.3.1a(ii)).

This proves that
Aq = 0 ⇐⇒ E is supersingular.

It remains to show that Aq = 0 if and only if Ap = 0. Writing

f(x)(p
r+1−1)/2 = f(x)(p

2−1)/2
(
f(x)(p−1)/2

)pr

and equating coefficients (remembering that f is a cubic) yields

Apr+1 = AprA
pr

p .

An easy induction on r gives the desired result.
(b) This is a special case of (a). We need the coefficient of xp−1 in the expres-
sion

(
x(x − 1)(x − λ)

)m
, so the coefficient of xm in (x − 1)m(x − λ)m. That co-

efficient is
m∑

i=0

(
m

i

)
(−λ)i

(
m

m − i

)
(−1)m−i,

which differs from Hp(λ) by a factor of (−1)m.
(b) Let D be the differential operator

D = 4t(1 − t)
d2

dt2
+ 4(1 − 2t)

d

dt
− 1.

Then by a direct calculation and using the fact that m = (p − 1)/2, we find that

DHp(t) = p

m∑

i=0

(p − 2 − 4i)
(

m

i

)2

ti.

In particular, since char(Fq) = p, we see that
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DHp(t) = 0 in Fq[t].

Hence the only possible multiple roots of Hp(t) in F̄q are t = 0 and t = 1. We
compute directly

Hp(0) = 1 and Hp(1) =
(

p − 1
m

)
≡ (−1)m (mod p).

Thus the roots of Hp(t) are distinct, and each root λ gives a supersingular elliptic
curve

Eλ : y2 = x(x − 1)(x − λ).

It remains to determine to what extent the resulting Eλ are isomorphic to one another.
For p = 3 we have Hp(t) = 1 + t, so there is exactly one supersingular elliptic

curve in characteristic 3. It has j-invariant j(−1) = 1728 = 0.
Assume now that p ≥ 5. We recall from (III.1.7) that the association

λ → j(λ) = j(Eλ)

is six-to-one except over j = 0 and j = 1728, where it is, respectively, two-to-one
and three-to-one. Further, if Hp(λ) = 0, then for every λ′ satisfying j(λ) = j(λ′) we
must have Hp(λ′) = 0, since Eλ

∼= Eλ′ and the roots of Hp(t) are precisely those
values of λ for which Eλ is supersingular.

For convenience, let εp(j) = 1 if the elliptic curve with the indicated j-invariant
is supersingular, and let εp(j) = 0 if it is ordinary. Then, using the fact that Hp(t) has
distinct roots, the above discussion shows that the number of supersingular elliptic
curves in characteristic p ≥ 5 is

1
6

(
p − 1

2
− 2εp(0) − 3εp(1728)

)
+ εp(0) + εp(1728)

=
p − 1
12

+
1
2
εp(0) +

1
2
εp(1728).

We will compute below in (V.4.4) and (V.4.5) that

εp(0) =

{
0 if p ≡ 1 (mod 3),
1 if p ≡ 2 (mod 3),

and εp(1728) =

{
0 if p ≡ 1 (mod 4),
1 if p ≡ 3 (mod 4).

Taking the four possibilities for p (mod 12) gives the stated result.

Remark 4.2. The differential operator D that we used to prove (V.4.1c) may seem
mysterious. It is called a Picard–Fuchs differential operator for the Legendre equa-
tion

y2 = x(x − 1)(x − t).

It arises quite naturally when one views the Legendre equation as defining a family
of elliptic curves parametrized by the complex variable t, i.e., when E is viewed as
an elliptic surface over P1. For an instructive discussion of this connection, see [46,
§2.10].
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Example 4.3. For p = 11 we have

H11(t) = t5 + 3t4 + t3 + t2 + 3t + 1

≡ (t2 − t + 1)(t + 1)(t − 2)(t + 5) (mod 11).

The supersingular j-invariants in characteristic 11 are j = 0 and j = 1728 = 1.

Example 4.4. We compute for which primes p ≥ 5 the elliptic curve

E : y2 = x3 + 1

with j = 0 is supersingular. The criterion (V.4.1a) says that we need to compute the
coefficient of xp−1 in the polynomial (x3 + 1)(p−1)/2. If p ≡ 2 (mod 3), then there
is no xp−1 term, so E is supersingular. On the other hand, if p ≡ 1 (mod 3), then
the coefficient of xp−1 is

(
(p−1)/2
(p−1)/3

)
, which is nonzero modulo p, so in this case E is

ordinary.

Example 4.5. Similarly, we compute for which primes p ≥ 3 the elliptic curve

E : y2 = x3 + x

with j = 1728 is supersingular. This is determined by the coefficient of x(p−1)/2

in the polynomial (x2 + 1)(p−1)/2. This coefficient is equal to 0 if p ≡ 3 (mod 4)
and to

(
(p−1)/2
(p−1)/4

)
if p ≡ 1 (mod 4). Hence E is supersingular if p ≡ 3 (mod 4) and

ordinary if p ≡ 1 (mod 4).

These examples might suggest that for a given Weierstrass equation with coeffi-
cients in Z, the resulting elliptic curve is supersingular in characteristic p for half of
the primes. This is in fact true, provided that the elliptic curve has complex multipli-
cation over Q̄, as do the j = 0 and j = 1728 curves. (There is a more precise result
due to Deuring that we do not give, but see for example [266, exercise 2.30].) The
situation for elliptic curves not having complex multiplication is quite different. For
such curves, supersingular primes seem to be very rare.

Example 4.6. Let E be the elliptic curve given by the equation

E : y2 + y = x3 − x2 − 10x − 20,

so j(E) = −212313/115. Then either by using the criterion (V.4.1a) directly, or else
using Exercise 5.1 and [19, Table 3], one finds that the only primes p < 100 for
which E is supersingular in characteristic p are p ∈ {2, 19, 29}. More generally,
D.H. Lehmer calculated that there are exactly 27 primes p < 31500 for which E is
supersingular.

It is not hard to prove that for any elliptic curve E/Q, there are infinitely many
primes p such that E is ordinary; see Exercise 5.11. We conclude by stating two
theorems and one conjecture; the proofs of the theorems are unfortunately beyond the
scope of this book. For simplicity we state everything over Q, but suitable versions
apply over any number field.
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Theorem 4.7. (Serre [234], Elkies [78]) Let E/Q be an elliptic curve without com-
plex multiplication. Then the set of supersingular primes has density 0. More pre-
cisely, for every ε > 0 we have

#{p < x : E/Fp is supersingular} � x3/4+ε.

Conjecture 4.8. (Lang–Trotter [145]) Let E/Q be an elliptic curve without com-
plex multiplication. Then

#{p < x : E/Fp is supersingular} ∼ c
√

x

log x

as x → ∞, where c > 0 is a constant depending on E.

Although (V.4.8) is still an open question, a weaker result due to Elkies says that
there are infinitely many supersingular primes.

Theorem 4.9. (Elkies [77]; see also [30]) Let E/Q be an elliptic curve without
complex multiplication. Then there are infinitely many primes p for which E/Fp is
supersingular.

Exercises
5.1. Verify the Weil conjectures for V = PN .

5.2. Let V/Fq be a smooth projective variety of dimension N defined over a finite field, and
let ε be the Euler characteristic of V as described in (V.2.2b). Prove that up to ±1, the function

qεs/2Z(V/Fq; q
−s)

is invariant under the substitution s �→ N − s.

5.3. Let A be a square matrix with coefficients in a field. Prove that

exp

(
∞∑

n=1

(tr An)T n

n

)

=
1

det(1 − AT )
.

5.4. Let E/Fq and E′/Fq be elliptic curves defined over a finite field.
(a) If E and E′ are isogenous over Fq , prove that

#E(Fq) = #E′(Fq).

Deduce that Z(E/Fq, T ) = Z(E′/Fq, T ).
(b) Prove the converse, i.e., if #E(Fq) = #E′(Fq), then E and E′ are isogenous.

(Hint. Use (III.7.7a).)

5.5. Let K/Q be an imaginary quadratic field, and let R1, . . . ,Rn be orders in K. Prove that
there is a prime � ∈ Z such that �Ri is a prime ideal of Ri for all i = 1, 2, . . . , n.

5.6. Let E/Fq be an elliptic curve.
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(a) Prove that there are integers m ≥ 1 and n ≥ 1 with gcd(m, q) = 1 such that
E(Fq) ∼= Z/mZ × Z/mnZ.

(b) With notation as in (a), prove that q ≡ 1 (mod m).
(c) Suppose that q = p ≥ 5 is prime and that E is supersingular. Prove that either m = 1

or m = 2. If p ≡ 1 (mod 4), prove that m = 1.

5.7. Let K be a field of characteristic 2 and let E/K be an elliptic curve defined over K.
Prove that E is supersingular if and only if j(E) = 0.

5.8. * Let char(K) = p > 0, and let E/K be an elliptic curve with j(E) /∈ F̄p. Prove
that End(E) = Z. (Hint. From (III.9.4), it suffices to show that End(E) is not an order in an
imaginary quadratic field.)

5.9. Prove the following mass formula of Eichler and Deuring:

∑

E/F̄p

supersingular

1

#Aut(E)
=

p − 1

24
.

5.10. Let E/Fq be an elliptic curve, let φ : E → E be the qth-power Frobenius endomor-
phism, and let p = char(Fq).

(a) Prove that E is supersingular if and only if

tr(φ) ≡ 0 (mod p).

(The trace of φ is computed in End
(
T�(E)

)
for any prime � �= p.)

(b) Suppose that q = p ≥ 5 is prime. Prove that E is supersingular if and only if

#E(Fp) = p + 1.

(c) Write down all elliptic curves E/F3, determine which ones are supersingular by explic-
itly calculating #E(F3) and using (a), and show that (b) is false when p = 3.

(d) Repeat (c) for p = 2.
(e) Let pi be the largest power of p such that p2i | q. Prove that

tr(φ) ≡ 0 (mod p) ⇐⇒ tr(φ) ≡ 0 (mod pi).

(f) Prove that there do not exist any elliptic curves E/F8 satisfying either #E(F8) = 7
or #E(F8) = 11. (Hint. Use (e).)

5.11. Let E be an elliptic curve defined over Q, and fix a Weierstrass equation for E having
coefficients in Z. Prove that there are infinitely many primes p ∈ Z such that the reduced
curve E/Fp has Hasse invariant 1. (Hint. Fix a prime � and consider those primes p that split
completely in the field Q

(
E[�]

)
obtained by adjoining to Q the coordinates of all �-torsion

points of E. Then use Exercise 5.10.)

5.12. Prove that for every prime p ≥ 3, the elliptic curve

E : y2 = x3 + x

satisfies

#E(Fp) ≡ 0 (mod 4).
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5.13. Let E/Fq be an elliptic curve, and for each n ≥ 1, let

an = qn + 1 − #E(Fqn).

(By convention, we set a0 = 2.) Prove that

an+2 = a1an+1 − qan for all n ≥ 0.

(This linear recurrence gives a way to compute an from the initial values a0 = 2 and a1 =
q + 1 − #E(Fq).)

5.14. Let E/Fq be an elliptic curve, let m ≥ 1 be an integer satisfying gcd(q − 1, m) = 1,
let P ∈ E(Fq) be a point of exact order m, and let d be an integer such that qd ≡ 1 (mod m).
Prove that E[m] ⊂ E(Fqd). (Hint. Note that μm ⊂ Fqd and use the Weil em-pairing to study
the action of the Frobenius map on a basis for E[m].)

5.15. Let E/Fp be a supersingular elliptic curve with p ≥ 5 prime, and let n ≥ 1 be an
integer. Prove that

#E(Fpn) =

{
pn + 1 if n is odd,(
pn/2 − (−1)n/2

)2
if n is even.

5.16. Let E/Fp2 be a supersingular elliptic curve.
(a) Prove that the multiplication-by-p map may be written in the form

[p](x, y) =
(
g(xp2

, yp2
), h(xp2

, yp2
)
)

with rational functions g, h ∈ Fp2(X, Y ).
(b) Prove that g and h are polynomials, i.e., g, h ∈ Fp2 [X, Y ] .
(c) Assume that p ≥ 3 and take a Weierstrass equation for E with a1 = a3 = 0. Prove

that g = X and h = ±Y .
(d) Assume that p ≥ 5 and that E is defined over Fp. Prove that h = −Y . Let φ : E → E

be the pth-power Frobenius map on E. Prove that φ2 = [−p] and that φ̂ = −φ.

5.17. Let E/Fq be an elliptic curve and suppose that we know, a priori, that the zeta function
of E has the form

Z(E/K; T ) =
1 − aT + qT 2

(1 − T )(1 − qT )
=

(1 − αT )(1 − βT )

(1 − T )(1 − qT )

with a ∈ Z and α, β ∈ C. Use this formula to prove that (cf. (V.2.3.1))

#E(Fqn) = qn + 1 − αn − βn.

(Hint. Take the logarithmic derivative, i.e., take the logarithm of both sides and then differen-
tiate with respect to T .)

5.18. Let E/Fq be an elliptic curve, let P, Q ∈ E(Fq) be points such that Q is in the subgroup
generated by P , and let n be the order of P in the group E(Fq). Suppose that we want to solve
the ECDLP, i.e., find an integer m satisfying Q = [m]P .

(a) If we naively compute P, [2]P, [3]P, . . . until we find Q, approximately how many mul-
tiples of P would we expect to compute?
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(b) Let N ≥ 1 be an integer, let R = [−N ]P , and consider the following two lists:

List 1: P, [2]P, [3]P, . . . , [N ]P.

List 2: Q + R, Q + [2]R, Q + [3]R, . . . , Q + [N ]R.

How large should we choose N (in terms of n) to guarantee that the two lists contain a
common element?

(c) Show how to use a match between the two lists in order to solve the ECDLP.



Chapter VI

Elliptic Curves over C

Evaluation of the integral giving arc length on a circle, namely
∫

dx/
√

1 − x2, leads
to an inverse trigonometric function. The analogous problem for the arc length of
an ellipse yields an integral that is not computable in terms of so-called elementary
functions. The indeterminacy of the sign of the square root means that such integrals
are not well-defined on C; instead, they are more naturally studied on an associated
Riemann surface. For the arc length integral of an ellipse, this Riemann surface turns
out to be the set of complex points on an elliptic curve E. We thus begin our study of
elliptic curves over C by studying certain elliptic integrals, which are line integrals
on E(C). Indeed, the reason that elliptic curves are so named is because they are the
Riemann surfaces associated to arc length integrals of ellipses. In terms of their ge-
ometry, ellipses and elliptic curves actually have little in common, the former having
genus zero and the latter genus one.

The study of elliptic integrals leads to questions that are fairly difficult to answer
if one restricts attention to integrals. However, just as for the more familiar circular
(trigonometric) functions, it is much easier to develop a theory of the inverse func-
tion to the integral. Thus trigonometry is not generally built up around the function∫

dx/
√

1 − x2, but rather around its inverse sin(x). In (VI §§2, 3) we give the rudi-
ments of the theory of elliptic functions, which are meromorphic functions having
two R-linearly independent periods. We then relate this theory back to our original
study of elliptic integrals and use the relationship to make various deductions about
elliptic curves over C. In the final section of this chapter we amplify on the remark
that the study of elliptic curves over C essentially encompasses the theory of elliptic
curves over arbitrary algebraically closed fields of characteristic 0.

The analytic theory of elliptic functions and integrals is a beautiful, but vast, body
of knowledge. The contents of this chapter represent a very modest beginning in the
study of that theory. Further, we have restricted ourselves to the function theory of a
single elliptic curve. There is another sort of function theory that is quite important,
namely the theory of modular functions, in which one studies functions whose do-
main is the set of all elliptic curves over C. We do not discuss modular functions in
the body of this book, but see (C §12) for a brief discussion and a list of references
for further reading.
J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 157
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 VI,
c© Springer Science+Business Media, LLC 2009
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Figure 6.1: Three paths for a line integral.

VI.1 Elliptic Integrals
Let E be an elliptic curve defined over C. Since char(C) = 0 and C is algebraically
closed, there is a Weierstrass equation for E in Legendre form (III.1.7),

E : Y 2 = x(x − 1)(x − λ).

The natural map
E(C) −→ P1(C), (x, y) �−→ x,

is a double cover ramified over precisely the four points 0, 1, λ,∞ ∈ P1(C).
We know from (III.1.5) that ω = dx/y is a holomorphic differential form on E.

Suppose that we try to define a map by the rule

E(C) ?−−−−→ C, P �−→
∫ P

O

ω ,

where the integral is along some path connecting O to P . Unfortunately, this map is
not well-defined, since it depends on the choice of path. We let P = (x, y) ∈ E(C)
and look more closely at what is happening in P1(C).

We are attempting to compute the complex line integral
∫ x

∞

dt
√

t(t − 1)(t − λ)
.

This line integral is not path-independent, because the square root is not single-
valued. Thus in Figure 6.1, the three integral

∫
α

ω,
∫

β
ω, and

∫
γ

ω need not be equal.
In order to make the integral well-defined, it is necessary to make branch cuts. For

example, the integral will be path-independent on the complement of the branch cuts
illustrated in Figure 6.2, because in this region it is possible to define a single-valued
branch of

√
t(t − 1)(t − λ). More generally, since the square root is double-valued,
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Figure 6.2: Branch cuts that make the integral single-valued.
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Figure 6.3: Branch cuts on the sphere.

we should take two copies of P1(C), make branch cuts as indicated in Figure 6.3,
and glue them together along the branch cuts to form the Riemann surface illustrated
in Figure 6.4. (Note that P1(C) = C ∪ {∞} is topologically a 2-sphere.) It is readily
seen that the resulting Riemann surface is a torus, and it is on this surface that we
should study the integral

∫
dt/

√
t(t − 1)(t − λ). In fact, elliptic curves arose when

people began to study such integrals, and the reason that elliptic curves acquired their
name is because such “elliptic integrals” arise when one attempts to calculate the arc
length of an ellipse. (See Exercise 6.13b.)

Returning now to our hypothetical map

E(C) −→ C, P �−→
∫ P

O

ω ,

we see that the indeterminacy comes from integrating across branch cuts in P1(C),
or equivalently around noncontractible loops on the torus. Figure 6.5 illustrates two
closed paths α and β for which the integrals

∫
α

ω and
∫

β
ω may be nonzero. We thus

obtain two complex numbers, which are called periods of E,

ω1 =
∫

α

ω and ω2 =
∫

β

ω.

Notice that the paths α and β generate the first homology group of the torus. Thus
any two paths from O to P differ by a path that is homologous to n1α + n2β for
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Figure 6.4: Joining two copies of the sphere to form a torus.
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Figure 6.5: Paths on P1(C) and on the torus.

some integers n1, n2 ∈ Z. Thus the integral
∫ P

O
ω is well-defined up to addition of a

number of the form n1ω1 + n2ω2, which suggests that we should look at the set

Λ = {n1ω1 + n2ω2 : n1, n2 ∈ Z}.

The preceding discussion shows that there is a well-defined map

F : E(C) −→ C/Λ, P �−→
∫ P

O

ω (mod Λ).

The set Λ is clearly a subgroup of C, so the quotient C/Λ is a group. Using the
translation invariance of ω that we proved in (III.5.1), we easily verify that F is a
homomorphism:

∫ P+Q

O

ω ≡
∫ P

O

ω +
∫ P+Q

P

ω ≡
∫ P

O

ω +
∫ Q

O

τ∗
P ω ≡

∫ P

O

ω +
∫ Q

O

ω (mod Λ).

The quotient space C/Λ will be a Riemann surface, i.e., a one-dimensional com-
plex manifold, if and only if Λ is a lattice, or equivalently, if and only if the peri-
ods ω1 and ω2 that generate Λ are linearly independent over R. This turns out to
be the case, and further, the map F is a complex analytic isomorphism from E(C)
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to C/Λ. However, rather than proving these statements here, we instead turn to the
study of the space C/Λ for a given lattice Λ. In (VI §3) we construct the inverse
to the map F and prove that C/Λ is analytically isomorphic to EΛ(C) for a certain
elliptic curve EΛ/C. We then apply the uniformization theorem (VI.5.1), which says
that every elliptic curve E/C is isomorphic to some EΛ, to deduce (VI.5.2) that the
periods of E/C are R-linearly independent and that F is a complex analytic iso-
morphism. (For a direct proof of the R-linear independence of ω1 and ω2 using only
Stokes’s theorem in R2, see [46, §2.9].)

VI.2 Elliptic Functions
Let Λ ⊂ C be a lattice, that is, Λ is a discrete subgroup of C that contains an R-basis
for C. In this section we study meromorphic functions on the quotient space C/Λ,
or equivalently, meromorphic functions on C that are periodic with respect to the
lattice Λ.

Definition. An elliptic function (relative to the lattice Λ) is a meromorphic func-
tion f(z) on C that satisfies

f(z + ω) = f(z) for all z ∈ C and all ω ∈ Λ.

The set of all such functions is denoted by C(Λ). It is clear that C(Λ) is a field.

Definition. A fundamental parallelogram for Λ is a set of the form

D = {a + t1ω1 + t2ω2 : 0 ≤ t1, t2 < 1},

where a ∈ C and {ω1, ω2} is a basis for Λ. Note that the definition of D implies that
the natural map D → C/Λ is bijective. We denote the closure of D in C by D̄. A
lattice and three different fundamental parallelograms are illustrated in Figure 6.6.

Proposition 2.1. A holomorphic elliptic function, i.e., an elliptic function with no
poles, is constant. Similarly, an elliptic function with no zeros is constant.

PROOF. Suppose that f(z) ∈ C(Λ) is holomorphic. Let D be a fundamental paral-
lelogram for Λ. The periodicity of f implies that

sup
z∈C

∣
∣f(z)

∣
∣ = sup

z∈D̄

∣
∣f(z)

∣
∣.

The function f is continuous and the set D̄ is compact, so
∣
∣f(z)

∣
∣ is bounded on D̄.

Hence f is bounded on all of C, so Liouville’s theorem [3, Chapter 4, §2.3] tells us
that f is constant. This proves the first statement. Finally, if f has no zeros, then 1/f
is holomorphic, hence constant.

Let f be an elliptic function and let w ∈ C. Then, just as for any meromorphic
function, we can look at its order of vanishing and its residue, which we denote by
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Figure 6.6: A lattice and three fundamental parallelograms.

ordw(f) = order of vanishing of f at w,
resw(f) = residue of f at w.

(See [3, Chapter 4, §§3.2, 5.1].) The fact that f is elliptic implies that the order and
the residue of f do not change if we replace w by w+ω for any ω ∈ Λ. This prompts
the following convention.

Notation. The notation
∑

w∈C/Λ denotes a sum over w ∈ D, where D is a funda-
mental parallelogram for Λ. By implication, the value of the sum is independent of
the choice of D and only finitely many terms of the sum are nonzero.

Notice that (VI.2.1) is the complex analogue of (II.1.2), which says that an alge-
braic function that has no poles is constant. The next theorem and corollary continue
this theme by proving for C/Λ results that are analogous to (II.3.1) and (III.3.5)

Theorem 2.2. Let f ∈ C(Λ) be an elliptic function relative to Λ.

(a)
∑

w∈C/Λ

resw(f) = 0.

(b)
∑

w∈C/Λ

ordw(f) = 0.

(c)
∑

w∈C/Λ

ordw(f)w ∈ Λ.
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PROOF. Let D be a fundamental parallelogram for Λ such that f(z) has no zeros
or poles on the boundary ∂D of D. All three parts of the theorem are simple appli-
cations of the residue theorem [3, Chapter 4, Theorem 19] applied to appropriately
chosen functions on D.
(a) The residue theorem tells us that

∑

w∈C/Λ

resw(f) =
1

2πi

∫

∂D

f(z) dz.

The periodicity of f implies that the integrals along the opposite sides of the paral-
lelogram cancel, so the total integral around the boundary of D is zero.
(b) The periodicity of f(z) implies that f ′(z) is also periodic, so applying (a) to the
elliptic function f ′(z)/f(z) gives

∑

w∈C/Λ

resw(f ′/f) = 0.

Since resw(f ′/f) = ordw(f), this is the desired result.
(c) We apply the residue theorem to the function zf ′(z)/f(z) to obtain

∑

w∈C/Λ

ordw(f)w =
1

2πi

∫

∂D

zf ′(z)
f(z)

dz

=
1

2πi

(∫ a+ω1

a

+
∫ a+ω1+ω2

a+ω1

+
∫ a+ω2

a+ω1+ω2

+
∫ a

a+ω2

)
zf ′(z)
f(z)

dz.

In the second (respectively third) integral we make the change of variable
z �→ z + ω1 (respectively z �→ z + ω2). Then the periodicity of f ′(z)/f(z) yields

∑

w∈C/Λ

ordw(f)w = − ω2

2πi

∫ a+ω1

a

f ′(z)
f(z)

dz +
ω1

2πi

∫ a+ω2

a

f ′(z)
f(z)

dz.

If g(z) is any meromorphic function, then the integral

1
2πi

∫ b

a

g′(z)
g(z)

dz

is the winding number around 0 of the path

[0, 1] −→ C, t �−→ g
(
(1 − t)a + tb

)
.

In particular, if g(a) = g(b), then the integral is an integer. Thus the periodicity
of f ′(z)/f(z) implies that

∑
ordw(f)w has the form −ω2n2 +ω1n1 for integers n1

and n2, so it is in Λ.
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Definition. The order of an elliptic function is its number of poles (counted with
multiplicity) in a fundamental parallelogram. Equivalently, (VI.2.2b) says that the
order is the number of zeros.

Corollary 2.3. A nonconstant elliptic function has order at least 2.

PROOF. If f(z) has a single simple pole, then (VI.2.2a) tells us that the residue at
that pole is 0, so f(z) is actually holomorphic. Now apply (VI.2.1).

We now define the divisor group of C/Λ, denoted by Div(C/Λ), to be the group
of formal linear combinations

∑

w∈C/Λ

nw(w) with nw ∈ Z and nw = 0 for all but finitely many w.

Then for D =
∑

nw(w) ∈ Div(C/Λ), we define

deg D = degree of D =
∑

nw

and
Div0(C/Λ) =

{
D ∈ Div(C/Λ) : deg D = 0

}
.

Further, for any f ∈ C(Λ)∗ we define the divisor of f to be

div(f) =
∑

w∈C/Λ

ordw(f)(w).

We see from (VI.2.2b) that div(f) ∈ Div0(C/Λ). The map

div : C(Λ)∗ → Div0(C/Λ)

is clearly a homomorphism, since each ordw is a valuation. Finally, we define a
summation map

sum : Div0(C/Λ) −→ C/Λ, sum
(∑

nw(w)
)

=
∑

nww (mod Λ).

The next result gives an exact sequence that encompasses our main results so far
for C/Λ, plus one fact (VI.3.4) that will be proven in the next section.

Theorem 2.4. The following is an exact sequence:

1 −→ C∗ −→ C(Λ)∗ div−−−−−→ Div0(C/Λ) sum−−−−−−→ C/Λ −→ 0.

PROOF. Exactness on the left is clear, and exactness on the right follows from
sum

(
(w) − (0)

)
= w. Exactness at C(Λ)∗ is (VI.2.1), and exactness at Div0(C/Λ)

is (VI.2.2c) and (VI.3.4).
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VI.3 Construction of Elliptic Functions
In order to show that the results of (VI §2) are not vacuous, we must construct some
nonconstant elliptic functions. We know from (VI.2.3) that any such function has
order at least 2. Following Weierstrass, we look for a function with a pole of order 2
at z = 0.

Definition. Let Λ ⊂ C be a lattice. The Weierstrass ℘-function (relative to Λ) is
defined by the series

℘(z; Λ) =
1
z2

+
∑

ω∈Λ
ω =0

(
1

(z − ω)2
− 1

ω2

)
.

The Eisenstein series of weight 2k (for Λ) is the series

G2k(Λ) =
∑

ω∈Λ
ω =0

ω−2k.

(For notational convenience, we write ℘(z) and G2k if the lattice Λ has been fixed.)

Theorem 3.1. Let Λ ⊂ C be a lattice.
(a) The Eisenstein series G2k(Λ) is absolutely convergent for all k > 1.
(b) The series defining the Weierstrass ℘-function converges absolutely and uni-

formly on every compact subset of C � Λ. The series defines a meromorphic
function on C having a double pole with residue 0 at each lattice point and no
other poles

(c) The Weierstrass ℘-function is an even elliptic function.

PROOF. Since Λ is discrete in C, it is not hard to see that there is a constant c = c(Λ)
such that for all N ≥ 1, the number of points in an annulus satisfies

#
{
ω ∈ Λ : N ≤ |ω| < N + 1

}
< cN.

(See Exercise 6.2.) This allows us to estimate

∑

ω∈Λ
|ω|≥1

1
|ω|2k

≤
∞∑

N=1

#
{
ω ∈ Λ : N ≤ |ω| < N + 1

}

N2k
<

∞∑

N=1

c

N2k−1
< ∞.

(b) If |ω| > 2|z|, then
∣
∣
∣
∣

1
(z − ω)2

− 1
ω2

∣
∣
∣
∣ =

∣
∣
∣
∣

z(2ω − z)
ω2(z − ω)2

∣
∣
∣
∣ ≤

|z|
(
2|ω| + |z|

)

|ω|2
(
|ω| − |z|

)2 ≤ 10|z|
|ω|2 .

It follows from (a) that the series for ℘(z) is absolutely convergent for all z ∈ C�Λ,
and that it is uniformly convergent on every compact subset of C � Λ. Therefore
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the series defines a holomorphic function on C � Λ, and it is clear from the series
expansion that ℘(z) has a double pole with residue 0 at each point in Λ.
(c) Replacing ω by −ω in the series for ℘, it is clear that ℘(z) = ℘(−z), so ℘ is an

even function. We know from (b) that the series for ℘ is uniformly convergent, so we
can compute its derivative by differentiating term by term,

℘′(z) = −2
∑

ω∈Λ

1
(z − ω)2

.

It is clear from this expression that ℘′ is an elliptic function, so ℘′(z + ω) = ℘′(z)
for all ω ∈ Λ. Integrating this equality with respect to z yields

℘(z + ω) = ℘(z) + c(ω) for all z ∈ C,

where c(ω) ∈ C is independent of z. Setting z = − 1
2ω and using the evenness

of ℘(z) shows that c(ω) = 0, so ℘ is an elliptic function.

Next we show that every elliptic function is a rational function of the Weier-
strsss ℘-function and its derivative. This result is the analytic analogue of (III.3.1.1).

Theorem 3.2. Let Λ ⊂ C be a lattice. Then

C(Λ) = C
(
℘(z), ℘′(z)

)
,

i.e., every elliptic function is a rational combination of ℘ and ℘′.

PROOF. Let f(z) ∈ C(Λ). Writing

f(z) =
f(z) + f(−z)

2
+

f(z) − f(−z)
2

,

we see that it suffices to prove the theorem for functions that are either odd or even.
Further, if f(z) is odd, then f(z)℘′(z) is even, so we are reduced to the case that f
is an even elliptic function.

The assumption that f is even implies that

ordw f = ord−w f for every w ∈ C.

Further, we claim that if 2w ∈ Λ, then ordw f is even. To see this, we differenti-
ate f(z) = f(−z) repeatedly to obtain

f (i)(z) = (−1)i−1f (i)(−z).

If 2w ∈ Λ, then f (i)(z) has the same value at w and −w, so

f (i)(w) = f (i)(−w) = (−1)i−1f (i)(w).

Thus f (i)(w) = 0 for odd values of i, so ordw f is even.
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Figure 6.7: Half a fundamental parallelogram.

Let D be a fundamental parallelogram for Λ, and let H be “half” of D. In other
words, H is a fundamental domain for (C/Λ)/{±1}, or equivalently, C is a disjoint
union

C = (H + Λ) ∪ (−H + Λ),

as illustrated in Figure 6.7. The above discussion implies that the divisor of f has the
form ∑

w∈H

nw

(
(w) + (−w)

)

for certain integers nw ∈ Z. Note that for 2w ∈ Λ, we are using the fact that ordw f
is even.

Consider the function

g(z) =
∏

w∈H�{0}

(
℘(z) − ℘(w)

)nw
.

The divisor of ℘(z)−℘(w) is (w)+(−w)−2(0), so we see that f and g have exactly
the same zeros and poles except possibly at w = 0. But then (VI.2.2b) implies
that they have the same order at 0, too. Thus f(z)/g(z) is a holomorphic elliptic
function; hence it is constant from (VI.2.1). Therefore there is a constant c such
that f(z) = cg(z) ∈ C

(
℘(z), ℘′(z)

)
.

In order to prove a converse to (VI.2.2), it is convenient to introduce a “theta
function” for Λ.

Definition. The Weierstrass σ-function (relative to Λ) is the function defined by the
product

σ(z) = σ(z; Λ) = z
∏

ω∈Λ
ω =0

(
1 − z

ω

)
e(z/ω)+ 1

2 (z/ω)2 .

The next lemma describes the basic facts about σ(z) that are needed for our
applications. For further material about σ, see exercises 6.3 and 6.4 and [266, I §5].

Lemma 3.3. (a) The infinite product for σ(z) defines a holomorphic function on all
of C. It has simple zeros at each z ∈ Λ and no other zeros.
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(b)
d2

dz2
log σ(z) = −℘(z) for all z ∈ C � Λ.

(c) For every ω ∈ Λ there are constants a, b ∈ C, depending on ω, such that

σ(z + ω) = eaz+bσ(z) for all z ∈ C.

PROOF. (a) The absolute and uniform convergence of the infinite product on C fol-
lows from (VI.3.1a) and standard facts about convergence of infinite products [3,
Chapter 5, §2.3]. The location and order of the zeros is clear by inspection.
(b) The logarithm of σ(z) is

log σ(z) = log z +
∑

ω∈Λ
ω =0

{
log

(
1 − z

ω

)
− z

ω
− 1

2

( z

ω

)2
}

,

and (a) tells us that we may differentiate term by term. The second derivative, up to
sign, is exactly the series defining ℘(z).
(c) The Weierstrass ℘-function is elliptic (VI.3.1c), so ℘(z + ω) = ℘(z). Integrat-

ing twice with respect to z and using (b) yields

log σ(z + ω) = log σ(z) + az + b

for constants of integration a, b ∈ C.

Proposition 3.4. Let n1, . . . , nr ∈ Z and z1, . . . , zr ∈ C satisfy
∑

ni = 0 and
∑

nizi ∈ Λ.

Then there exists an elliptic function f(z) ∈ C(Λ) satisfying

div(f) =
∑

ni(zi).

More precisely, if we choose the ni and zi to satisfy
∑

nizi = 0, then we may take

f(z) =
∏

σ(z − zi)ni .

PROOF. Let λ =
∑

nizi ∈ Λ. Replacing

n1(z1) + · · · + nr(zr) by n1(z1) + · · · + nr(zr) + (0) − (λ),

we may assume that
∑

nizi = 0. Then (VI.3.3a) implies that

f(z) =
∏

σ(z − zi)ni

has the correct zeros and poles, while (VI.3.3c) allows us to compute (for any ω ∈ Λ)

f(z + ω)
f(z)

=
∏

e(a(z−zi)+b)ni = e(az+b)Σni · e−aΣnizi = 1.

Therefore f(z) ∈ C(Λ).
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We next derive the Laurent series expansions for ℘(z) around z = 0, from which
we will deduce the fundamental algebraic relation satisfied by ℘(z) and ℘′(z).

Theorem 3.5. (a) The Laurent series for ℘(z) around z = 0 is given by

℘(z) =
1
z2

+
∞∑

k=1

(2k + 1)G2k+2z
2k.

(b) For all z ∈ C � Λ, the Weierstrass ℘-function and its derivative satisfy the
relation

℘′(z)2 = 4℘(z)3 − 60G4℘(z) − 140G6.

PROOF. (a) For all z with |z| < |ω| we have

1
(z − ω)2

− 1
ω2

=
1
ω2

(
1

(1 − z/ω)2
− 1

)
=

∞∑

n=1

(n + 1)
zn

ωn+2
.

Substituting this formula into the series for ℘(z) and reversing the order of summa-
tion gives the desired result.
(b) We write out the first few terms of various Laurent expansions:

℘′(z)2 = 4z−6 − 24G4z
−2 − 80G6 + · · · ,

℘(z)3 = z−6 + 9G4z
−2 + 15G6 + · · · ,

℘(z) = z−2 + 3G4z
2 + · · · .

Comparing these expansions, we see that the function

f(z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6

is holomorphic at z = 0 and satisfies f(0) = 0. But f(z) is an elliptic func-
tion relative to Λ, and from (VI.3.1b) it is holomorphic away from Λ, so f(z) is
a holomorphic elliptic function. Then (VI.2.1) says that f(z) is constant, and the fact
that f(0) = 0 implies that f is identically zero.

Remark 3.5.1. It is standard notation to set

g2 = g2(Λ) = 60G4(Λ) and g3 = g3(Λ) = 140G6(Λ).

Then the algebraic relation satisfied by ℘(z) and ℘′(z) reads

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3.

Let E/C be an elliptic curve. The group law E × E → E is given by everywhere
locally defined rational functions (III.3.6), so we see in particular that E = E(C) is
a complex Lie group, i.e., it is a complex manifold with a group law given locally by
complex analytic functions. Similarly, if Λ ⊂ C is a lattice, then C/Λ with its natural
addition is a complex Lie group. The next result says that C/Λ is always complex
analytically isomorphic to an elliptic curve.
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Proposition 3.6. Let g2 = g2(Λ) and g3 = g3(Λ) be the quantities associated to a
lattice Λ ⊂ C.
(a) The polynomial

f(x) = 4x2 − g2x − g3

has distinct roots, so its discriminant

Δ(Λ) = g3
2 − 27g3

3

is nonzero.
(b) Let E/C be the curve

E : y2 = 4x2 − g2x − g3,

which from (a) is an elliptic curve. Then the map

φ : C/Λ −→ E(C) ⊂ P2(C), z �−→
[
℘(z), ℘′(z), 1

]
,

is a complex analytic isomorphism of complex Lie groups, i.e., it is an isomor-
phism of Riemann surfaces that is also a group homomorphism.

PROOF. (a) Let {ω1, ω2} be a basis for Λ and let ω3 = ω1 + ω2. Then, since ℘′(z)
is an odd elliptic function, we see that

℘′
(ωi

2

)
= −℘′

(−ωi

2

)
= −℘′

(ωi

2

)
,

so ℘′(ωi/2) = 0. It follows from (VI.3.5b) that f(x) vanishes at each of the val-
ues x = ℘(ωi/2), so it suffices to show that these three values are distinct.

The function ℘(z)−℘(ωi/2) is even, so it has at least a double zero at z = ωi/2.
However, it is an elliptic function of order 2, so it has only these zeros in an appro-
priate fundamental parallelogram. Hence ℘(ωj/2) �= ℘(ωi/2) for j �= i.
(b) The image of φ is contained in E(C) from (VI.3.5b). To see that φ is surjective,
let (x, y) ∈ E(C). Then ℘(z) − x is a nonconstant elliptic function, so from (VI.2.1)
it has a zero, say z = a. It follows that ℘′(a)2 = y2, so replacing a by −a if neces-
sary, we obtain ℘′(a) = y. Then φ(a) = (x, y).

Next suppose that φ(z1) = φ(z2). Assume first that 2z1 /∈ Λ. Then the func-
tion ℘(z) − ℘(z1) is an elliptic function of order 2 that vanishes at z1, −z1, and z2.
It follows that two of these values are congruent modulo Λ, so the assumption
that 2z1 /∈ Λ tells us that z2 ≡ ±z1 (mod Λ) for some choice of sign. Then

℘′(z1) = ℘′(z2) = ℘′(±z1) = ±℘′(z1)

implies that z2 ≡ z1 (mod Λ). (Note that ℘′(z1) �= 0 from the proof of (a).) Similarly,
if 2z1 ∈ Λ, then ℘(z) − ℘(z1) has a double zero at z1 and vanishes at z2, so we again
conclude that z2 ≡ z1 (mod Λ). This proves that φ is injective.

Next we show that φ is an analytic isomorphism by computing its effect on
the cotangent spaces of C/Λ and E(C). At every point of E(C), the differential
form dx/y is holomorphic and nonvanishing. Further, we see that
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φ∗
(

dx

dy

)
=

d℘(z)
℘′(z)

= dz

is also holomorphic and nonvanishing at every point of C/Λ. Hence φ is a local
analytic isomorphism, and the bijectivity of φ then implies that it is a global isomor-
phism.

Finally, we must check that φ is a homomorphism. Let z1, z2 ∈ C. Us-
ing (VI.3.4), we can find a function f(z) ∈ C(Λ) with divisor

div(f) = (z1 + z2) − (z1) − (z2) + (0).

Then (VI.3.2) allows us to write f(z) = F
(
℘(z), ℘′(z)

)
for a rational function

F (X,Y ) ∈ C(X,Y ). Treating F (x, y) as an element of C(x, y) = C(E), we have

div(F ) =
(
φ(z1 + z2)

)
+

(
φ(z1)

)
+

(
φ(z2)

)
+

(
φ(0)

)
.

It follows from (III.3.5) that

φ(z1 + z2) = φ(z1) + φ(z2),

which completes the proof of the proposition.

VI.4 Maps Analytic and Maps Algebraic

In this section we investigate complex analytic maps between complex tori. It turns
out that they all have a particularly simple form, and, somewhat more surprisingly,
the maps that they induce on the corresponding elliptic curves via (VI.3.6b) turn out
to be isogenies, i.e., they are given by rational functions.

Let Λ1 and Λ2 be lattices in C, and suppose that α ∈ C has the property
that αΛ1 ⊂ Λ2. Then scalar multiplication by α induces a well-defined holomor-
phic homomorphism

φα : C/Λ1 −→ C/Λ2, φα(z) = αz (mod Λ2).

We now show that these are essentially the only holomorphic maps from C/Λ1

to C/Λ2.

Theorem 4.1. (a) With notation as above, the association

{α ∈ C : αΛ1 ⊂ Λ2} −→

⎧
⎨

⎩

holomorphic maps
φ : C/Λ1 → C/Λ2

with φ(0) = 0

⎫
⎬

⎭

α �−→ φα

is a bijection.
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(b) Let E1 and E2 be elliptic curves corresponding to lattices Λ1 and Λ2, respec-
tively, as in (VI.3.6b). Then the natural inclusion

{isogenies φ : E1 → E2} −→

⎧
⎨

⎩

holomorphic maps
φ : C/Λ1 → C/Λ2

with φ(0) = 0

⎫
⎬

⎭

is a bijection.

PROOF. (a) If φα = φβ , then

αz ≡ βz (mod Λ2) for all z ∈ C.

Hence the map z �→ (α − β)z sends C to Λ2. But Λ2 is discrete, so the map must be
constant, which implies that α = β.

Next let φ : C/Λ1 → C/Λ2 be a holomorphic map with φ(0) = 0. Then, since C

is simply connected, we can lift φ to a holomorphic map f : C → C with f(0) = 0
so that the following diagram commutes:

C
f−−−−→ C

⏐
⏐
$

⏐
⏐
$

C/Λ1
φ−−−−→ C/Λ2.

Thus

f(z + ω) ≡ f(z) (mod Λ2) for all ω ∈ Λ1 and all z ∈ C.

Again using the discreteness of Λ2, we see that the difference f(z + ω) − f(z) must
be independent of z. Differentiating, we find that

f ′(z + ω) = f ′(z) for all ω ∈ Λ1 and all z ∈ C,

so f ′(z) is a holomorphic elliptic function. It follows from (VI.2.1) that f ′(z) is con-
stant, so f(z) = αz + γ for some α, γ ∈ C. The assumption that f(0) = 0 implies
that γ = 0, and now f(Λ1) ⊂ Λ2 tells us that αΛ1 ⊂ Λ2. Hence φ = φα.
(b) First note that since an isogeny is given locally by everywhere defined rational
functions, i.e., an isogeny is a morphism, the map induced between the corresponding
complex tori is holomorphic. Thus our association

Hom(E1, E2) −→ Holomorphic Maps(C/Λ1, C/Λ2)

is well-defined, and it is clearly injective.
It remains to prove surjectivity. From (a) it suffices to consider a map of the

form φα, where α ∈ C∗ satisfies αΛ1 ⊂ Λ2. The induced map on Weierstrass
equations is given by

E1 −→ E2,
[
℘(z,Λ1), ℘′(z,Λ1), 1

]
�−→

[
℘(αz,Λ2), ℘′(αz,Λ2), 1

]
,
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so we must show that ℘(αz,Λ2) and ℘′(αz,Λ2) can be expressed as rational ex-
pressions in ℘(z,Λ1) and ℘′(z,Λ1). Using the fact that αΛ1 ⊂ Λ2, we see that for
any ω1 ∈ Λ1,

℘
(
α(z + ω),Λ2

)
= ℘(αz + αω,Λ2) = ℘(αz,Λ2),

and similarly for ℘′(αz,Λ2). Thus ℘(αz,Λ2) and ℘′(αz,Λ2) are in the field C(Λ1).
The desired result now follows immediately from (VI.3.2), which tells us that
C(Λ1) = C

(
℘(z,Λ1), ℘′(z,Λ1)

)
.

Corollary 4.1.1. Let E1/C and E2/C be elliptic curves corresponding to lattices Λ1

and Λ2 as in (VI.3.6b). Then E1 and E2 are isomorphic over C if and only if Λ1

and Λ2 are homothetic, i.e., there exists some α ∈ C∗ such that Λ1 = αΛ2.

Remark 4.2. Since the maps φα are clearly homomorphisms, (VI.4.1.1) implies
that every complex analytic map from E1(C) to E2(C) taking O to O is necessarily
a homomorphism. This is the analytic analogue of (III.4.8), which says that every
isogeny of elliptic curves is a homomorphism.

VI.5 Uniformization
The uniformization theorem for elliptic curves says that every elliptic curve over C is
parametrized by elliptic functions. The most natural proof of this fact uses the theory
of modular functions, that is, functions whose domain is the set of lattices in C. For
example, g2(Λ) and g3(Λ) are modular functions. The proof is not difficult, but it
would take us rather far afield, so we are content to state the result and use it to make
various deductions.

Theorem 5.1. (Uniformization Theorem) Let A,B ∈ C be complex numbers satis-
fying 4A3 − 27B2 �= 0. Then there exists a unique lattice Λ ⊂ C satisfying

g2(Λ) = A and g3(Λ) = B.

PROOF. The proof may be found in many textbooks; see for example [5, Theo-
rem 2.9], [210, I.3.13], [249, §4.2], [266, I.4.3], or [232, VII Proposition 5].

Corollary 5.1.1. Let E/C be an elliptic curve. There exist a lattice Λ ⊂ C, unique
up to homothety, and a complex analytic isomorphism

φ : C/Λ −→ E(C), φ(z) =
[
℘(z,Λ), ℘′(z,Λ), 1

]
,

of complex Lie groups.

PROOF. The existence is immediate from (VI.3.6b) and (VI.5.1), and the uniqueness
is (VI.4.1.1).

We are now in a position to prove the results left undone in (VI §1).
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Proposition 5.2. Let E/C be an elliptic curve with Weierstrass coordinate func-
tions x and y.
(a) Let α and β be closed paths on E(C) giving a basis for H1(E, Z). Then the

periods

ω1 =
∫

α

dx

y
and ω2 =

∫

β

dx

y

are R-linearly independent.
(b) Let Λ be the lattice generated by ω1 and ω2. Then the map

F : E(C) −→ C/Λ, F (P ) =
∫ P

O

dx

y
(mod Λ),

is a complex analytic isomorphism of Lie groups. Its inverse is the map de-
scribed in (VI.5.1.1).

PROOF. (a) From (VI.5.1.1), there exists some lattice Λ1 such that the map

φ1 : C/Λ1 −→ E(C), φ1(z) =
[
℘(z,Λ1), ℘′(z,Λ1), 1

]
,

is a complex analytic isomorphism. It follows that φ−1
1 ◦ α and φ−1

1 ◦ β are a ba-
sis for H1(C/Λ1, Z). (Here we are viewing α and β as continuous maps from the
unit circle to E(C).) We observe that H1(C/Λ, Z) is naturally isomorphic to the
lattice Λ1 via the map γ �→

∫
γ

dz, while the differential dx/y on E pulls back to

φ∗
1

(
dx

y

)
=

d℘(z)
℘′(z)

= dz on C/Λ1.

Therefore the periods

ω1 =
∫

α

dx

y
=

∫

φ−1
1 ◦α

dz and ω2 =
∫

β

dx

y
=

∫

φ−1
1 ◦β

dz

are a basis for Λ1, so in particular, they are linearly independent.
(b) We have just shown that the lattice Λ1 corresponding to E in (VI.5.1.1) is pre-
cisely the lattice Λ generated by the periods of E. The composition F ◦ φ thus gives
an analytic map

F ◦ φ : C/Λ −→ C/Λ, (F ◦ φ)(z) =
∫ (℘(z),℘′(z))

O

dx

y
.

Since

F ∗(dz) =
dx

y
and φ∗

(
dx

y

)
=

d℘(z)
℘′(z)

= dz,

we see that
(F ◦ φ)∗dz = dz.

On the other hand, (VI.4.1a) says that any analytic map C/Λ → C/Λ has the
form ψa(z) = az for some number a ∈ C∗. Since ψ∗

a(dz) = a dz, we see that
(F ◦φ)(z) = z, i.e., the composition F ◦φ is the identity map. But we already know
from (VI.3.6b) that φ is an analytic isomorphism, so F = φ−1 is, too.
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Much of the preceding material may be summarized as an equivalence of cate-
gories.

Theorem 5.3. The following categories are equivalent:
(a) Objects: Elliptic curves over C.

Maps: Isogenies.
(b) Objects: Elliptic curves over C.

Maps: Complex analytic maps taking O to O.
(c) Objects: Lattices Λ ⊂ C, up to homothety.

Maps: Map(Λ1,Λ2) = {α ∈ C : αΛ1 ⊂ Λ2}.

PROOF. The one-to-one correspondence between elliptic curves over C and lattices
modulo homothety follows from (VI.3.6b), (VI.5.1.1), and (VI.5.2). The matchup of
the maps in (a), (b), and (c) is precisely the content of (VI.4.1).

Remark 5.3.1. The equivalence of (a) and (b) in (VI.5.3) is a very special case of
a general principle called GAGA (Géométrie Algébrique et Géométrie Analytique;
see [229]). GAGA says (among other things) that any complex analytic map be-
tween projective varieties over C is necessarily given by rational functions. For an
introductory discussion, see [111, Appendix B].

We now use the uniformization theorem (really (VI.5.1.1)) to make some gen-
eral deductions about elliptic curves over C. It is worth remarking that even without
knowing (VI.5.1.1), everything that we are about to prove would at least apply to
those elliptic curves that occur in (VI.3.6b). The uniformization theorem merely says
that this class of curves includes every elliptic curve over C.

Proposition 5.4. Let E/C be an elliptic curve and let m ≥ 1 be an integer.
(a) There is an isomorphism of abstract groups

E[m] ∼= Z/mZ × Z/mZ.

(b) The multiplication-by-m map [m] : E → E has degree m2.

PROOF. (a) From (VI.5.1.1), we know that E(C) is isomorphic to C/Λ for some
lattice Λ ⊂ C. Hence

E[m] ∼=
(

C

Λ

)
[m] ∼=

1
mΛ
Λ

∼=
(

Z

mZ

)2

.

(b) Since char(C) = 0 and the map [m] is unramified, the degree of [m] is equal to
the number of points in E[m] = [m]−1{O}.

Let E/C be an elliptic curve. Note that (VI.4.1) allows us to identify End(E)
with a certain subring of C. Thus if E(C) ∼= C/Λ as in (VI.5.1.1), then

End(E) ∼= {α ∈ C : αΛ ⊂ Λ}.

Since Λ is unique up to homothety (VI.4.1.1), this ring is independent of the choice
of Λ. We use this description of End(E) to completely characterize the endomor-
phism rings that may occur. We recall the following definition from (III §9).
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Definition. Let K be a number field. An order R of K is a subring of K that is
finitely generated as a Z-module and satisfies R ⊗ Q = K.

Theorem 5.5. Let E/C be an elliptic curve, and let ω1 and ω2 be generators for the
lattice Λ associated to E by (VI.5.1.1). Then one of the following is true:

(i) End(E) = Z.
(ii) The field Q(ω2/ω1) is an imaginary quadratic extension of Q, and End(E) is

isomorphic to an order in Q(ω1/ω2).

PROOF. Let τ = ω1/ω2. Multiplying Λ by ω1/ω2 shows that Λ is homothetic
to Z + Zτ , so we may replace Λ by Z + Zτ . Let

R = {α ∈ C : αΛ ⊂ Λ},

so R ∼= End(E) from (VI.4.1). Then, for any α ∈ R, there are integers a, b, c, d
such that

α = a + bτ and ατ = c + dτ.

Eliminating τ from these equations yields

α2 − (a + d)α + ad − bc = 0.

This proves that R is an integral extension of Z.
Now suppose that R �= Z and choose some α ∈ R � Z. Then, with notation as

above, we have b �= 0, so eliminating α gives a nontrivial equation

bτ2 − (a − d)τ − c = 0.

It follows that Q(τ) is an imaginary quadratic extension of Q (note that τ /∈ R).
Finally, since R ⊂ Q(τ) and R is integral over Z, it follows that R is an order
in Q(τ).

Proposition 5.6. Let E/C be an elliptic curve, and fix a lattice Λ and an isomor-
phism E(C) ∼= C/Λ.
(a) There is a natural isomorphism

H1

(
E(C), Z

) ∼−−−→ Λ, γ �−→
∫

γ

dz.

(b) There is a natural isomorphism

H1

(
E(C), Z/mZ

) ∼−−−→ E[m].

PROOF. (a) We proved this during the course of proving (VI.5.2a).
(b) From (a) we have

H1

(
E(C), Z/mZ

) ∼= H1

(
E(C), Z

)
⊗ Z/mZ ∼= Λ ⊗ Z/mZ ∼= Λ/mΛ.

On the other hand, using the identification E(C) ∼= C/Λ, we obtain an isomorphism

E(C)[m] ∼= (C/Λ)[m] = {z ∈ C : mz ∈ Λ}/Λ ∼−−−−−→
z→mz

Λ/mΛ.
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VI.6 The Lefschetz Principle
The Lefschetz principle says, roughly, that algebraic geometry over an arbitrary alge-
braically closed field of characteristic 0 is “the same” as algebraic geometry over C.
One can, of course, make this precise by formulating an equivalence of suitably de-
fined categories, but we will be content here to give an informal presentation.

Our first observation is that if the given field K can be embedded as a subfield
of C, then everything proceeds smoothly. For example, if K ⊂ C is any field and
if E/K is an elliptic curve, then the fact that [m] : E → E is a finite algebraic map
implies that E[m] ⊂ E(K̄) ⊂ E(C). (To see this, note that for any P ∈ E(K̄),
the set [m]−1(P ) is finite and invariant under GK̄/K , so every point in [m]−1(P ) is
defined over K̄.) Hence, using (VI.5.4), we obtain a proof that

E[m] = E(K̄)[m] = E(C)[m] ∼= (Z/mZ)2.

Note that the embedding K ⊂ C need not be topological (assuming that K has
a topology in the first place). It does not matter that we may have used the topology
of C to reach our conclusions, e.g., using the analytic isomorphism E(C) ∼= C/Λ,
as long as our hypotheses and conclusions are purely algebraic

Our second observation is that theorems in algebraic geometry generally deal
with finite (or sometimes countable) sets. For example, any variety is defined by a
finite set of polynomial equations (Hilbert basis theorem), and each equation has only
finitely many coefficients. Similarly, an algebraic map between varieties is given by
a finite set of polynomials, each having a finite number of coefficients. Now suppose
that {V1, V2, . . .} is a finite (or countable) set of varieties defined over some field K
of characteristic 0, and suppose that {φ1, φ2, . . .} is a finite (or countable) set of
rational maps defined over K that map the various Vi to one another. Let K0 ⊂ K
be the field generated over Q by all of the coefficients of all of the polynomials
defining all of the Vi and all of the φj . It is clear that the transcendence degree of K0

over Q has cardinality at most that of the natural numbers, so we can use Zorn’s
lemma to embed K0 in C. Then using the above discussion concerning subfields
of C, we are able to reduce most algebro-geometric questions concerning the Vi and
the φj to the corresponding questions over C, where we may be able to profitably
employ techniques from complex analysis and differential geometry.

To illustrate the Lefschetz principle, we prove two results.

Theorem 6.1. Let K be a field of characteristic 0 and let E/K be an elliptic
curve.
(a) Let m ≥ 1 be an integer. Then

E[m] ∼= Z/mZ × Z/mZ.

(b) The endomorphism ring of E is either Z or an order in a quadratic imaginary
extension of Q, cf. (III.5.6c) and (III.9.4).

PROOF. (a) This is immediate from (VI.5.4) and the Lefschetz principle.
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(b) Here we can apply the Lefschetz principle to (VI.5.5), once we note
that End(E) is countably (in fact, finitely) generated from (III.7.5). Alternatively,
even without (III.7.5), we can argue as follows. If End(E) is neither Z nor quadratic
imaginary, then it contains a finitely generated subring that is neither Z nor imagi-
nary quadratic. Applying the Lefschetz principle to the maps in this subring contra-
dicts (VI.5.5).

Exercises
6.1. Let Λ = Zω1+Zω2 be a lattice. Suppose that θ(z) is an entire function, i.e., holomorphic
on all of C, with the property that there are constants a1, a2 ∈ C such that

θ(z + ω1) = a1θ(z) and θ(z + ω2) = a2θ(z) for all z ∈ C.

Prove that
θ(z) = becz for some b, c ∈ C.

6.2. Let Λ ⊂ C be a lattice.
(a) Prove that every fundamental parallelogram for Λ has the same area. Denote this area

by A(Λ).
(b) Prove that as R → ∞,

#
{
ω ∈ Λ : |ω| ≤ R

}
=

πR2

A(Λ)
+ O(R).

(The big-O constant depends on Λ, of course.)
(c) Prove that there is a constant c(Λ) such that for all R > 0,

#
{
ω ∈ Λ : R ≤ |ω| < R + 1

}
< cR.

6.3. (a) Prove that for all z, a ∈ C � Λ,

℘(z) − ℘(a) = −σ(z + a)σ(z − a)

σ(z)2σ(a)2
.

(Hint. Compare zeros and poles.)
(b) Prove that

℘′(z) = −σ(2z)

σ(z)4
.

(c) Prove that for every integer n, the function σ(nz)/σ(z)n2
is in C(Λ).

(d) More precisely, prove that

(−1)n−1
(
1!2! · · · (n − 1)!

)2 σ(nz)

σ(z)n2 = det
(
℘(i+j−1)(z)

)
1≤i,j≤n−1

.

(See also exercises 6.15 and 6.16.)

6.4. Define the Weierstrass ζ-function ζ(z) (not to be confused with the Riemann ζ-function)
by the series

ζ(z) =
1

z
+

∑

ω∈Λ
ω 
=0

(
1

z − ω
+

1

ω
+

z

ω2

)
.
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(a) Prove that
d

dz
log σ(z) = ζ(z) and

d

dz
ζ(z) = −℘(z).

(b) Prove that
ζ(−z) = −ζ(z),

and that for all ω ∈ Λ there exists a constant η(ω) ∈ C satisfying

ζ(z + ω) = ζ(z) + η(ω).

If ω /∈ 2Λ, prove that η(ω) = 2ζ(ω/2).
(c) Prove that the map η : Λ → C given in (b) is bilinear.
(d) Write Λ = Zω1 + Zω2 with Im(ω1/ω2) > 0. Prove Legendre’s relation

ω1η(ω2) − ω2η(ω1) = 2πi.

(Hint. Integrate ζ(z) around a fundamental parallelogram.) The two numbers η(ω1)
and η(ω2) are called quasiperiods.

(e) Prove that
σ(z + ω) = ±eη(ω)(z+ω/2)σ(z),

where the sign is positive if ω ∈ 2Λ and negative otherwise.
(f) Extend η : Λ → C to an R-linear map η : C → C by identifying Λ ⊗Z R with C. Let

G(z) = e−zη(z)/2σ(z).

Prove that ∣
∣G(z + ω)

∣
∣ =

∣
∣G(z)

∣
∣ for all ω ∈ Λ and all z ∈ C.

Thus
∣
∣G(z)

∣
∣ defines a real analytic function from (C/Λ) � {0} to R.

6.5. Verify the values of the following indefinite integrals.

(a)
∫

℘(z)2 dz =
1

6
℘′(z) +

1

12
g2z + C.

(b)
∫

℘(z)3 dz =
1

120
℘′′′(z) − 3

20
g2ζ(z) +

1

10
g3z + C.

6.6. For a lattice Λ ⊂ C, let g2(Λ) and g3(Λ) be as in (VI.3.5.1), and define

Δ(Λ) = g2(Λ)3 − 27g3(Λ)2 and j(Λ) = 1728
g2(Λ)3

Δ(Λ)
.

(a) Let α ∈ C∗. Prove that

g2(αΛ) = α−4g2(Λ) and g3(αΛ) = α−6g3(Λ),

and deduce that

Δ(αΛ) = α−12Δ(Λ) and j(αΛ) = j(Λ).

(b) Prove that j(Λ1) = j(Λ2) if and only if there is an α ∈ C∗ such that αΛ1 = Λ2, i.e., if
and only if Λ1 and Λ2 are homothetic.
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(c) Prove that
j(Z + Zi) = 1728 and j(Z + Ze2πi/3) = 0.

6.7. Elliptic curves over R. Let E/C be an elliptic curve corresponding to a lattice Λ ⊂ C.
(a) Prove that E is isomorphic to a curve defined over R if and only if there is an α ∈ C∗

such that αΛ is mapped to itself by complex conjugation. (Hint. First prove that j(Λ) =
j(Λ).)

(b) Suppose that E is defined over R and that we have chosen a lattice Λ for E as in (a),
so Λ is invariant under complex conjugation. Prove that Δ(Λ) ∈ R, and that E(R) is
connected if and only if Δ(Λ) < 0.

(c) Let E/C be given by a Legendre equation

E : y2 = x(x − 1)(x − λ).

Prove that λ ∈ R if and only if E can be defined over R and E[2] ⊂ E(R).
(d) If E is defined over R and E[2] ⊂ E(R), prove that there is a lattice for E that is

rectangular, i.e., of the form Zω1 + Zω2i with ω1, ω2 ∈ R.

6.8. Let K/Q be an imaginary quadratic field, let R be the ring of integers of K, and let hR
denote the class number of R.

(a) Prove that up to isomorphism, there are exactly hR elliptic curves E/C with endomor-
phism ring End(E) ∼= R.

(b) If E is a curve as in (a), prove that j(E) is an algebraic number and that its degree
satisfies [

K
(
j(E)

)
: K

]
≤ hR.

In fact, K
(
j(E)

)
is the Hilbert class field of K, so the inequality in (b) is an equality.

See (C §11) and the references listed there.

6.9. Let E1/C and E2/C be elliptic curves, and assume that E1 has complex multiplication.
Prove that E1 is isogenous to E2 if and only if

End(E1) ⊗ Q ∼= End(E2) ⊗ Q.

6.10. Let φ : E1 → E2 be an isogeny of elliptic curves over C, and let φα : C/Λ1 → C/Λ2

be the corresponding analytic map induced by z �→ αz as in (VI.4.1), so in particular we
have αΛ1 ⊂ Λ2.

(a) Prove that deg φ equals the index (Λ2 : αΛ1).
(b) Let m = deg φ. Prove that the dual isogeny φ̂ : E2 → E1 corresponds to the analytic

map induced by z �→ mα−1z.
(c) Assume that Λ1 = Λ2. Prove that deg φ = NQ(α)/Q(α). Deduce that φ̂ corresponds to

the analytic map induced by z �→ ᾱz, where ᾱ is the complex conjugate of α.

Elliptic Integrals. Exercises 6.11–6.13 develop a minute portion of the classical theory of
elliptic integrals.

6.11. Let E/C be an elliptic curve given by a Legendre equation

E : Y 2 = X(X − 1)(X − λ).
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(a) Prove that there is a k ∈ C � {0,±1} such that E has an equation of the form

E; y2 = (1 − x2)(1 − k2x2).

(Hint. Let X = (ax + b)/(cx + d) and Y = ey/(cx + d)2 for an appropriate choice
of a, b, c, d, e ∈ C.)

(b) For a given value of λ, find all possible values of k. Conversely, given k, find all values
of λ.

(c) Express the j-invariant j(E) in terms of k.
(d) Suppose that λ ∈ R. (See Exercise 6.7.) Show that k may be chosen to be real and to

satisfy 0 < k < 1.

6.12. Complete Elliptic Integrals. Let E be an elliptic curve given by an equation

E : y2 = (1 − x2)(1 − k2x2).

To simplify matters, assume that 0 < k < 1 (cf. Exercise 6.11d). Define complete elliptic
integrals to the modulus k by

K(k) =

∫ 1

0

dx

y
=

∫ 1

0

1√
(1 − x2)(1 − k2x2)

dx,

T (k) =

∫ 1

0

y

1 − x2
dx =

∫ 1

0

√
1 − k2x2

1 − x2
dx.

(a) Make appropriate branch cuts and prove that the lattice for E is generated by the periods

4

∫ 1

0

1√
(1 − x2)(1 − k2x2)

dx and 2i

∫ 1/k

1

1√
(1 − x2)(1 − k2x2)

dx.

(b) The complementary modulus to k is the quantity k′ defined by

k2 + k′2 = 1 and 0 < k′ < 1.

Prove that
∫ 1/k

1

1√
(1 − x2)(1 − k2x2)

dx =

∫ 1

0

1√
(1 − X2)(1 − k′2X2)

dX.

(Hint. Let x = (1 − k′2X2)−1/2.) Conclude that the period lattice of the elliptic
curve E/C is generated by 4K(k) and 2iK(k′).

(c) Prove the transformation formulas

K

(
2
√

k

1 + k

)
= (1 + k)K(k) and K

(
1 − k

1 + k

)
=

1 + k

2
K(k′).

6.13. (a) Show that the complete elliptic integrals defined in Exercise 6.12 may also be writ-
ten as

K(k) =

∫ π/2

0

dθ√
1 − k2 sin2 θ

and T (k) =

∫ π/2

0

√
1 − k2 sin2 θ dθ.
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(b) Prove that the arc length of the ellipse

x2/a2 + y2/b2 = 1 with a ≥ b > 0

is given by the complete elliptic integral

4aT

(√

1 −
(

b

a

)2
)

.

(c) Prove that the arc length of the lemniscate

r2 = cos(2θ)

is given by the complete elliptic integral 2
√

2K
(
1/

√
2
)

. Prove that it also equals

4

∫ 1

0

dx√
1 − x4

.

Thus the integral giving the arc length of the lemniscate resembles the integral giving the
arc length of the unit circle, i.e., 2π = 4

∫ 1

0
dx/

√
1 − x2.

6.14. The Arithmetic–Geometric Mean. For initial values a, b ∈ R with a ≥ b > 0, we define
sequences {an} and {bn} recursively by

a0 = a, b0 = b, an+1 =
an + bn

2
, bn =

√
anbn.

(a) Prove that

0 ≤ an+1 − bn+1 ≤ 1

2
(an − bn).

Deduce that the limit
M(a, b) = lim

n→∞
an = lim

n→∞
bn

exists. The quantity M(a, b) is called the arithmetic–geometric mean of a and b.
(b) Prove that

M(a, b) = M(a1, b1) = M(a2, b2) = · · ·
and

M(ca, cb) = cM(a, b) for c > 0.

(c) Define an integral I(a, b) by

I(a, b) =

∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

.

Prove that I(a, b) is related to the complete elliptic integrals described in exercises 6.12
and 6.13 by showing that

I(a, b) = a−1K

(
2
√

k

1 + k

)
and I(a1, b1) = a−2

1 K(k)

for k = (a − b)/(a + b).
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(d) Prove that
M(a, b)I(a, b) = π/2.

(Hint. Use (c) and Exercise 6.12c to prove that I(a, b) = I(a1, b1). Then calculate the
limit of I(an, bn) as n → ∞.)
Combining (c) and (d), observe that the complete elliptic integral K(k) for 0 < k < 1
may be computed in terms of the arithmetic–geometric mean.

(e) Prove that the rate of convergence of M(a, b) predicted by (a), namely

an − bn ≤ 2−n(a − b),

is far slower than in reality. More precisely, use (b) to show that it suffices to com-
pute M(a, b) in the case that b ≥ 1, and under this assumption, prove that

an+m − bn+m ≤ 8
(

an − bn

8

)2m

for all m, n ≥ 0.

In particular, since eventually an − bn < 8, the sequences {an} and {bn} converge
doubly exponentially.

(f) Prove that ∫ 1

0

dz√
1 − z4

=
π

2
M

(√
2, 1

)
,

and use this equality to numerically calculate the value of the complete elliptic integral
on the left-hand side. It was the observation that these two numbers, calculated indepen-
dently, agree to eleven decimal places that led Gauss to initiate an extensive study of the
arithmetic–geometric mean. For a fascinating account of this subject, see [52].

6.15. Let E/C be an elliptic curve and let ψn be the division polynomial defined in Exer-
cise 3.7. Considered as a function on C/Λ, prove that ψn(z) is given by

ψn(z) = (−1)n+1 σ(nz)

σ(z)n2 .

(Hint. Use the description of div(ψn) in Exercise 3.7f. Then evaluate zn2−1ψn(z) as z → 0
to find the constant.)

6.16. Let (Wn)n≥1 be an elliptic divisibility sequence over C. (See Exercise 3.34 for the
definition of elliptic divisibility sequence.) Assume that W1 = 1 and W2W3W4 �= 0. Prove
that there are a lattice Λ ⊂ C and a complex number u ∈ C such that

Wn =
σ(nu)

σ(u)n2 for all n ≥ 1.

More precisely, prove that Λ and u exist, provided that a certain polynomial in W2, W3,
and W4 does not vanish.



Chapter VII

Elliptic Curves over Local
Fields

In this chapter we study the group of rational points on an elliptic curve defined over
a field that is complete with respect to a discrete valuation. We start with some basic
facts concerning Weierstrass equations and “reduction modulo π.” This enables us
to break our problem into several pieces, and then, by examining each piece individ-
ually, to deduce a great deal about the group of rational points as a whole. Unless
explicitly stated otherwise, we use the following notation:

K a local field, complete with respect to a discrete valuation v.

R = {x ∈ K : v(x) ≥ 0}, the ring of integers of K.

R∗ = {x ∈ K : v(x) = 0}, the unit group of R.

M = {x ∈ K : v(x) > 0}, the maximal ideal of R.

π a uniformizer for R, i.e., M = πR.

k = R/M, the residue field of R.

We further assume that v is normalized so that v(π) = 1. Note that by conven-
tion, v(0) = ∞ is assigned a value larger than every real number. Finally, in keeping
with our general policy, we assume that both K and k are perfect fields.

VII.1 Minimal Weierstrass Equations
Let E/K be an elliptic curve, and let

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

be a Weierstrass equation for E/K. The substitution (x, y) �→ (u−2x, u−3y) leads
to a new equation in which ai is replaced by uiai, so if we choose u to be divisible
J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 185
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 VII,
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186 VII. Elliptic Curves over Local Fields

by a sufficiently large power of π, then we obtain a Weierstrass equation all of whose
coefficients are in R. Having done this, the discriminant Δ satisfies v(Δ) ≥ 0. Fi-
nally, since v is discrete, among all such Weierstrass equations with coefficients in R,
we can choose one that minimizes the value of v(Δ).

Definition. Let E/K be an elliptic curve. A Weierstrass equation for E is called a
minimal (Weierstrass) equation for E at v if v(Δ) is minimized subject to the con-
dition that a1, a2, a3, a4, a6 ∈ R. This minimal value of v(Δ) is called the valuation
of the minimal discriminant of E at v.

Remark 1.1. How can we tell whether a given Weierstrass equation is minimal?
First, by definition, all of the ai must be in R, so in particular, the discriminant Δ
is in R. If the equation is not minimal, then (III.1.2) says that there is a coordinate
change giving a new equation with discriminant Δ′ = u−12Δ ∈ R. Thus v(Δ) can
be changed only by multiples of 12, so we conclude that

ai ∈ R and v(Δ) < 12 =⇒ the equation is minimal.

Similarly, since c′4 = u−4c4 and c′6 = u−6c6, we have

ai ∈ R and v(c4) < 4 =⇒ the equation is minimal,
ai ∈ R and v(c6) < 6 =⇒ the equation is minimal.

If char(k) �= 2, 3, then a converse holds. More precisely, if the equation is minimal,
then v(Δ) < 12 or v(c4) < 4; see Exercise 7.1. For arbitrary K, there is an algo-
rithm of Tate that determines whether a given equation is minimal; see [266, IV §9]
or [283].

Example 1.2. Let p be a prime and consider the Weierstrass equation

E : y2 + xy + y = x3 + x2 + 22x − 9

over the field Qp. This equation has discriminant Δ = −21552 and c4 = −5 · 211.
From (VII.1.1), this is a minimal Weierstrass equation at p for every prime p ∈ Z.

Proposition 1.3. (a) Every elliptic curve E/K has a minimal Weierstrass equa-
tion.

(b) A minimal Weierstrass equation is unique up to a change of coordinates

x = u2x′ + r, y = u3y′ + u2sx′ + t,

with u ∈ R∗ and r, s, t ∈ R.
(c) The invariant differential

ω =
dx

2y + a1x + a3

associated to a minimal Weierstrass equation is unique up to multiplication by
an element of R∗.
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(d) Conversely, if one starts with any Weierstrass equation whose coefficients are
in R, then any change of coordinates

x = u2x′ + r, y = u3y′ + u2sx′ + t,

used to produce a minimal Weierstrass equation satisfies u, r, s, t ∈ R.

PROOF. (a) One can easily find some Weierstrass equation with all ai ∈ R, and
among such equations, there exists (at least) one that minimizes v(Δ), since v is
discrete.
(b) We know from (III.3.1b) that any Weierstrass equation for E/K is unique up
to the indicated change of coordinates with u ∈ K∗ and r, s, t ∈ K. Now sup-
pose that the given equation and the new equation are both minimal. From the def-
inition of minimality, we have v(Δ′) = v(Δ). We now apply the transformation
formulas described in (III §1, Table 3.1). The transformation formula for Δ says
that u12Δ′ = Δ, so we see that u ∈ R∗. Similarly, the transformation formula for b6

(respectively for b8) shows that 4r3 (respectively 3r4) is in R, hence r ∈ R. Finally,
the transformation formula for a2 gives s ∈ R, and the transformation formula for a6

gives t ∈ R.
(c) Clear from (b), since ω′ = uω.
(d) Since the new equation is to be minimal, we know that v(Δ′) ≤ v(Δ), and we
also have u12Δ′ = Δ. Hence v(u) ≥ 0, so u ∈ R. Now the proof of (b) can be
repeated to show that r, s, t ∈ R.

VII.2 Reduction Modulo π

We next look at the operation of “reduction modulo π,” which we denote by a tilde.
Thus, for example, the natural reduction map R → k = R/πR is denoted by t �→ t̃.
Having chosen a minimal Weierstrass equation for E/K, we can reduce its coeffi-
cients modulo π to obtain a (possibly singular) curve over k, namely

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x + ã6.

The curve Ẽ/k is called the reduction of E modulo π. Since we started with a min-
imal equation for E, (VII.1.3b) tells us that the equation for Ẽ is unique up to the
standard change of coordinates (III.3.1b) for Weierstrass equations over the residue
field k.

Next let P ∈ E(K). We can find homogeneous coordinates P = [x0, y0, z0]
with x0, y0, z0 ∈ R and at least one of x0, y0, z0 in R∗. Then the reduced point

P̃ = [x̃0, ỹ0, z̃0]

is in Ẽ(k). This defines a reduction map

E(K) −→ Ẽ(k), P �−→ P̃ .

More generally, in a similar fashion we can define a reduction map
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Pn(K) −→ Pn(k).

Then the reduction map for E(K) ⊂ P2(K) is just the restriction of the reduction
map on P2(K).

The curve Ẽ/k may be singular (more on this later), but in any case we re-
call (III.2.5) that the set of nonsingular points Ẽns(k) forms a group. We define two
subsets of E(K) as follows:

E0(K) =
{
P ∈ E(K) : P̃ ∈ Ẽns(k)

}
,

E1(K) =
{
P ∈ E(K) : P̃ = Õ

}
.

In words, E0(K) is the set of points with nonsingular reduction and E1(K) is the
kernel of reduction. From (VII.1.3b), these two sets do not depend on which minimal
Weierstrass equation we choose.

Proposition 2.1. There is an exact sequence of abelian groups

0 −→ E1(K) −→ E0(K) −→ Ẽns(k) −→ 0,

where the right-hand map is reduction modulo π.

PROOF. We begin by showing that the reduction map is surjective. To do this, we
use Hensel’s lemma and the completeness of K. Thus let

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6 = 0

be a minimal Weierstrass equation for E, let f̃(x, y) be the corresponding polyno-
mial with coefficients reduced modulo π, and let P̃ = (α̃, β̃) ∈ Ẽns(k) be a point.
Since P̃ is a nonsingular point of Ẽ, we know that either

∂f̃

∂x
(P̃ ) �= 0 or

∂f̃

∂y
(P̃ ) �= 0,

say the latter. (The other case is done similarly.) Choose any x0 ∈ R with x̃0 = α̃
and look at the equation

f(x0, y) = 0.

When reduced modulo π, this equation has β̃ as a simple root, since by assump-
tion (∂f̃/∂y)(x̃0, β̃) �= 0. Thus Hensel’s lemma [142, Chapter II, Proposition 2] tells
us that the mod π root β̃ can be lifted to a y0 ∈ R such that ỹ0 = β̃ and f(x0, y0) = 0.
Then the point P = (x0, y0) ∈ E0(K) reduces to P̃ , which completes the proof that
the reduction map E0(K) → Ẽns(k) is surjective.

Our next task is to prove that E0(K) is a subgroup of E(K) and that the reduction
map E0(K) → Ẽns(k) is a homomorphism. Note that once we have proven these
two facts, the exactness of

0 −→ E1(K) −→ E0(K) −→ Ẽns(k) −→ 0
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at the left and center follows directly from the definition of E1(K), so the proof
of (VII.2.1) will be complete.

The group laws on E(K) and Ens(k) are defined by taking intersections with
lines in P2. For any line L defined over K, we can find an equation for L of the form

L : Ax + By + Cz = 0

such that A,B,C ∈ R and at least one of A,B,C is in R∗. Then the reduction of L
is given by the equation

L̃ : Ãx + B̃y + C̃z = 0,

and it is clear that if P ∈ P2(K) is a point on the line L, then the reduced point P̃ is
on the reduced line L̃.

Let P1, P2 ∈ E0(K) and P3 ∈ E(K) be points satisfying P1 + P2 + P3 = O.
Thus there is a line L that intersects E at the three points P1, P2, P3, counted with
appropriate multiplicities. We are going to prove that L̃ intersects Ẽ at P̃1, P̃2, P̃3

with the correct multiplicities, from which it follows that P3 ∈ E0(K) and that
P̃1 + P̃2 + P̃3 = Õ. However, since there are many cases to consider, we will be
content to prove two cases and leave the others to the reader; see Exercise 7.15.

Suppose first that the reduced points P̃1, P̃2, P̃3 are distinct. Then

L̃ ∩ Ẽ = {P̃1, P̃2, P̃3}

consists of three distinct points, the first two of which are in Ens(k) by assump-
tion. It follows from (III.2.5) that P̃3 is also in Ens(k); see also Exercise 3.28(b).
Hence P3 ∈ E0(K) and P̃1 + P̃2 + P̃3 = Õ, which is the desired result in this case.

To handle the second case, we use the following general result.

Lemma 2.1.1. Let P,Q ∈ E0(K) be distinct points whose reductions satisfy
P̃ = Q̃, and let L be the line through P and Q. Then the line L̃ is tangent to Ẽ
at P̃ .

PROOF. We assume that P̃ �= Õ and leave the reader to handle the case P̃ = Õ. As
above, we choose a minimal Weierstrass equation

E : f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6 = 0,

and we let f̃(x, y) be the corresponding polynomial with coefficients reduced mod-
ulo π. Write

P = (α, β) ∈ E(K) and Q = (α + μ, β + λ) ∈ E(K).

The assumption that P̃ = Q̃ �= Õ implies that α, β ∈ R and μ, λ ∈ M. Further, the
assumption that P ∈ E0(K) means that P̃ is a nonsingular point of Ẽ, so either

∂f̃

∂x
(P̃ ) �= 0 or

∂f̃

∂y
(P̃ ) �= 0.

We do the case that (∂f̃/∂y)(P̃ ) �= 0 and leave the other case to the reader.
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The fact that f(P ) = f(Q) = 0 allows us to compute the first few terms of the
Taylor expansion of f(x, y) around Q. Thus

0 = f(α + μ, β + λ)

= f(α, β) +
∂f

∂x
(α, β)μ +

∂f

∂y
(α, β)λ + aμ2 + bμλ + cλ2

for some a, b, c ∈ R,

=
∂f

∂x
(α, β)μ +

∂f

∂y
(α, β)λ + aμ2 + bμλ + cλ2.

The assumption that (∂f̃/∂y)(P̃ ) �= 0 is equivalent to (∂f/∂y)(α, β) ∈ R∗, so

v(λ) = v

(
∂f

∂y
(α, β)λ

)
= v

(
∂f

∂x
(α, β)μ + aμ2 + bμλ + cλ2

)
≥ v(μ).

Thus λ/μ ∈ R, so dividing the Taylor expansion by μ and reducing modulo π gives
the congruence

∂f

∂x
(P ) +

∂f

∂y
(P ) · λ

μ
≡ 0 (mod M).

This tells us that the slope of the tangent line to Ẽ at the point P̃ is

dy

dx
(P̃ ) = − (∂f̃/∂x)(P̃ )

(∂f̃/∂y)(P̃ )
= λ̃/μ.

The line L through P and Q is given by the equation

L : y − β =
λ

μ
(x − α).

We have shown that λ/μ ∈ R, so the reduction of L is the line through P̃ having
slope λ̃/μ. This proves that L̃ is tangent to Ẽ at P̃ , which completes the proof of the
lemma when P̃ �= Õ and (∂f̃)(∂y)(P̃ ) �= 0. The other cases are proven similarly.

Returning now to the proof of (VII.2.1), let P1, P2 ∈ E0(K) and P3 ∈ E(K)
be distinct points satisfying P1 + P2 + P3 = O, and suppose that their reductions
satisfy

P̃1 = P̃2 �= P̃3.

Let L be the line through P1, P2, P3. We apply (VII.2.1.1) with P = P1 and Q = P2.
This tells us that L̃ is tangent to Ẽ at P̃1, and we also have P̃3 ∈ L̃, so we
find that 2P̃1 + P̃3 = Õ. Since we are assuming that P̃1 = P̃2, we conclude
that P3 ∈ Ens(k) and that P̃1 + P̃2 + P̃3 = Õ.

Note that if v(Δ) = 0, so Δ̃ �= 0, then Ẽ is nonsingular, so Ẽns = Ẽ
and E0(K) = E(K). In this case, (VII.2.1) says that E(K) is built from two pieces,
namely E1(K) and Ẽ(k). The group Ẽ(k) is the set of points on an elliptic curve
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defined over a field that is smaller than K, and indeed we often consider the situa-
tion in which k is a finite field, in which case we analyzed E(k) is some detail in
Chapter V.

The next proposition shows that the other part, E1(K), is also an object with
which we are already familiar.

Proposition 2.2. Let E/K be given by a minimal Weierstrass equation, let Ê/R be
the formal group associated to E as in (IV.2.2.3), and let w(z) ∈ R[[x]] be the power
series from (IV.1.1). Then the map

Ê(M) −→ E1(K), z �−→
(

z

w(z)
,− 1

w(z)

)
,

is an isomorphism of groups. (We understand that z = 0 goes to O ∈ E1(K). For
the definition of Ê(M), see (IV §3).)

PROOF. From (IV.1.1b), the point
(
z/w(z),−1/w(z)

)
, when considered as a pair

of power series, satisfies the Weierstrass equation for E. Since

w(z) = z3(1 + · · · ) ∈ R[[z]],

we see that w(z) converges for every z ∈ M. It follows that
(
z/w(z),−1/w(z)

)
is

in E(K) for z ∈ M, and since v
(
−1/w(z)

)
= −3v(z) < 0, it is even in E1(K).

Thus we have a well-defined map of sets

Ê(M) −→ E1(K), z �−→
(

z

w(z)
,− 1

w(z)

)
.

Further, in deriving the power series giving the group law on Ẽ, we simply used the
group law on E in the (z, w)-plane and replaced w with w(z). Therefore the map is
a homomorphism. Further, since w(z) = 0 only for z = 0, the map is injective, so it
remains to show that the image is all of E1(K).

Let (x, y) ∈ E1(K). Since (x, y) reduces modulo π to the point at infinity
on Ẽ(k), we see that v(x) < 0 and v(y) < 0. But then from the Weierstrass equation
y2 + · · · = x3 + · · · , we must have

3v(x) = 2v(y) = −6r

for some integer r ≥ 1. Hence x/y ∈ M, so the map

E1(K) −→ Ê(M), (x, y) �−→ −x

y
,

is well-defined. Again, since the group law on Ê(M) is defined using the group law
on E, this map is a homomorphism, and it is clearly injective. Hence we have two
injections

Ê(M) ↪−→ E1(K) ↪−→ Ê(M)

whose composition is the identity map, so they are isomorphisms.
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VII.3 Points of Finite Order
In this section we analyze the points of finite order in the group E(K). Although we
later prove a stronger result (VII.3.4), we start with an easy proposition that provides
a crucial ingredient in the proof of the weak Mordell–Weil theorem (VIII.1.1).

Proposition 3.1. Let E/K be an elliptic curve and let m ≥ 1 be an integer that is
relatively prime to char(k).
(a) The subgroup E1(K) has no nontrivial points of order m.
(b) Assume further that the reduced curve Ẽ/k is nonsingular. Then the reduction

map
E(K)[m] −→ Ẽ(k)

is injective, where E(K)[m] denotes the set of points of order m in E(K).

PROOF. From (VII.2.1) we have an exact sequence

0 −→ E1(K) −→ E0(K) −→ Ẽns(k) −→ 0.

We know from (VII.2.2) that E1(K) ∼= Ê(M), where Ê is the formal group asso-
ciated to E, and our general result on formal groups (IV.3.2b) says that Ê(M) has
no nontrivial elements of order m. This proves (a). If we further assume that Ẽ is
nonsingular, then E0(K) = E(K) and Ẽns(k) = Ẽ(k), so the m-torsion of E(K)
injects into Ẽ(k), which proves (b).

Application 3.2. Repeated use of (VII.3.1) generally provides the quickest method
for finding the torsion subgroup of an elliptic curve defined over a number field. Thus
let K be a number field and let Kv be its completion at the discrete valuation v. It is
clear that E(K) injects into E(Kv), so by applying (VII.3.1) for several different v,
we can obtain information about the torsion in E(K). We illustrate with several
examples over Q.
Example 3.3.1. Let E/Q be the elliptic curve

E : y2 + y = x3 − x + 1.

The discriminant of E is Δ = −611 = −13 · 47, so Ẽ is nonsingular modulo 2.
It is easy to check that Ẽ(F2) = {O} and E(Q)[2] = {O}; hence (VII.3.1) implies
that E(Q) has no nonzero torsion points.
Example 3.3.2. Let E/Q be the elliptic curve

E : y2 = x3 + 3.

It has discriminant Δ = −24 · 35, so Ẽ is nonsingular modulo p for every
prime p ≥ 5. One easily checks that

#Ẽ(F5) = 6 and #Ẽ(F7) = 13.

Hence E(Q) has no nontrivial torsion. In particular, the point (1, 2) ∈ E(Q) has
infinite order, so E(Q) is an infinite set, two facts that are by no means obvious.
For a complete analysis of E(Q)tors for curves of the form y2 = x3 + D, see [94] or
Exercise 10.19.
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Example 3.3.3. Let E/Q be the elliptic curve

E : y2 = x3 + x

having discriminant Δ = −64. The point (0, 0) ∈ E(Q) is a point of order 2. We
compute

#Ẽ(F3) = 4, #Ẽ(F5) = 4, #Ẽ(F7) = 8.

It is not hard to check (Exercise 5.12) that #E(Fp) is divisible by 4 for every
prime p ≥ 3. However, we gain additional information by looking at the group
structure modulo different primes. Thus

Ẽ(F3) =
{
O, (0, 0), (2, 1), (2, 2)

} ∼= Z/4Z,

Ẽ(F5) =
{
O, (0, 0), (2, 0), (2, 0)

} ∼= (Z/2Z)2.

Since E(Q)tors injects into both of these groups, we see that (0, 0) is the only nonzero
torsion point in E(Q).

The next result, which is due to Cassels, gives a precise bound on the denom-
inator of a torsion point. Following Katz–Lang [135, Theorem III.3.7], we give a
proof based on general facts concerning formal groups. For an exposition of Cassel’s
original proof, which involves a careful analysis of division polynomials, see [36,
Theorem 17.2] or [135, Theorem III.1.5].

Theorem 3.4. Assume that char(K) = 0 and that p = char(k) > 0. Let E/K be
an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with all ai ∈ R. (Note that the equation need not be minimal.) Let P ∈ E(K) be a
point of exact order m ≥ 2.
(a) If m is not a power of p, then x(P ), y(P ) ∈ R.
(b) If m = pn, then

π2rx(P ), π3ry(P ) ∈ R with r =
[

v(p)
pn − pn−1

]
,

where [t] denotes the greatest integer in t.

PROOF. If x(P ) ∈ R, there is nothing to prove, so we assume that v
(
x(P )

)
< 0.

If the equation for E is not minimal and if (x′, y′) are coordinates for a minimal
equation, then we see from (VII.1.3d) that

v
(
x(P )

)
≥ v

(
x′(P )

)
and v

(
y(P )

)
≥ v

(
y′(P )

)
.

It thus suffices to prove the theorem for a minimal Weierstrass equation.
Since v

(
x(P )

)
< 0, we see from the Weierstrass equation (and the nonarchime-

dean nature of v) that
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3v
(
x(P )

)
= 2v

(
y(P )

)
= −6s for some integer s ≥ 1.

Further, the point P is in E1(K), the kernel of the reduction map, so under the
isomorphism in (VII.2.2), the point P corresponds to the element −x(P )/y(P ) in
the formal group Ê(M). But (IV.3.2b) tells us that Ê(M) contains no torsion of
order prime to p, which proves (a).

To prove (b), we use (IV.6.1). The assumption that −x(P )/y(P ) has exact or-
der pn in Ê(M) implies that

s = v

(
−x(P )

y(P )

)
≤ v(p)

pn − pn−1
.

Since π2sx(P ) and π3sy(P ) are in R, this gives the desired result.

Application 3.5. Let E/Q be an elliptic curve given by a Weierstrass equation
having coefficients in Z, and let P ∈ E(Q) be a point of exact order m. Em-
bedding E(Q) into E(Qp) for various primes, we deduce integrality conditions
on the coordinates of P . Thus if m is not a prime power, then (VII.3.4a) implies
that x(P ), y(P ) ∈ Z. And if m = pn is a prime power, letting v be the normalized
valuation associated to p, we have

[
v(p)

pn − pn−1

]
=

[
1

pn − pn−1

]
= 0

unless p = 2 and n = 1. We conclude that x(P ), y(P ) ∈ Z for every torsion
point P ∈ E(Q) whose exact order is at least 3. This is best possible, as shown by
the example

E : y2 + xy = x3 + 4x + 1,

(
−1

4
,
1
8

)
∈ E(Q)[2].

For a further discussion of torsion points over number fields, see (VIII §7).

VII.4 The Action of Inertia
In this section we reinterpret the injectivity of torsion (VII.3.1b) in terms of the action
of the Galois group on torsion points. We set the following notation:

Knr the maximal unramified extension of K.

Iv the inertia subgroup of GK̄/K .

Unramified extensions of K correspond to extensions of the residue field k, so the
absolute Galois group of K decomposes as

1 −−−−→ GK̄/Knr −−−−→ GK̄/K −−−−→ GKnr/K −−−−→ 1.
∥
∥
∥

∥
∥
∥

Iv Gk̄/k
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In other words, the inertia group Iv is the set of elements of GK̄/K that act trivially on
the residue field k̄. (For basic properties of local fields, see [92, §7], [142, Chapters I
and II], or [233, Chapters I–IV]. Remember that both K and k are assumed to be
perfect.)

Definition. Let Σ be a set on which GK̄/K acts. We say that Σ is unramified at v if
the action of Iv on Σ is trivial.

Let E/K be an elliptic curve. We have seen (III §7) that GK̄/K acts on the torsion
subgroups E[m] and on the Tate modules T�(E) of E.

Proposition 4.1. Let E/K be an elliptic curve such that the reduced curve Ẽ/k is
nonsingular.
(a) Let m ≥ 1 be an integer that is relatively prime to char(k), i.e., satisfying

v(m) = 0. Then E[m] is unramified at v.
(b) Let � be a prime with � �= char(k). Then T�(E) is unramified at v.

PROOF. (a) Let K ′/K be a finite extension satisfying E[m] ⊂ E(K ′), and let

R′ = the ring of integers of K ′,

M′ = the maximal ideal of R′,

k′ = the residue field of R′, i.e., k′ = R′/M′,

v′ = the valuation of K ′.

Our assumption that E has nonsingular reduction means that if we take a minimal
Weierstrass equation for E at v, then its discriminant satisfies v(Δ) = 0. Since the
restriction of v′ to K is a multiple of v, we see that v′(Δ) = 0, so the Weier-
strass equation is also minimal at v′ and the reduced curve Ẽ/k′ is nonsingular.
Now (VII.3.1b) implies that the reduction map

E[m] −→ Ẽ(k′)

is injective.
Let σ ∈ Iv and P ∈ E[m]. We need to show that P σ = P . From the definition

of the inertia group, the element σ acts trivially on Ẽ(k′), so

P̃ σ − P = P̃ σ − P̃ = Õ.

But P σ − P is clearly in E[m], so the injectivity of the map E[m] ↪→ Ẽ(k′) tells us
that P σ − P = O.
(b) This follows immediately from (a) and the definition of T�(E) as the inverse
limit of E[�n].

There is a converse to (VII.4.1) that is known as the criterion of Néron–Ogg–
Shafarevich. It characterizes nonsingularity of Ẽ/k in terms of the action of the
inertia group on torsion points. We return to this topic in (VII §7), after first studying
the reduced curve Ẽ more closely.
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VII.5 Good and Bad Reduction
Let E/K be an elliptic curve. From our general knowledge of Weierstrass equa-
tions (III.1.4), the reduced curve Ẽ is of one of three types. We classify E according
to these possibilities.

Definition. Let E/K be an elliptic curve, and let Ẽ be the reduction modulo M of
a minimal Weierstrass equation for E.
(a) E has good (or stable) reduction if Ẽ is nonsingular.
(b) E has multiplicative (or semistable) reduction if Ẽ has a node.
(c) E has additive (or unstable) reduction if Ẽ has a cusp.

In cases (b) and (c) we say that E has bad reduction. If E has multiplicative reduc-
tion, then the reduction is said to be split if the slopes of the tangent lines at the node
are in k, and otherwise it is said to be nonsplit.

It is quite easy to read off the reduction type of an elliptic curve from a minimal
Weierstrass equation.

Proposition 5.1. Let E/K be an elliptic curve given by a minimal Weierstrass equa-
tion

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Let Δ be the discriminant of this equation, and let c4 be the usual expression involv-
ing a1, . . . , a6 as described in (III §1).
(a) E has good reduction if and only if v(Δ) = 0, i.e., Δ ∈ R∗. In this case Ẽ/k is

an elliptic curve.
(b) E has multiplicative reduction if and only if v(Δ) > 0 and v(c4) = 0,

i.e., Δ ∈ M and c4 ∈ R∗. In this case Ẽns is the multiplicative group,

Ẽns(k̄) ∼= k̄∗.

(c) E has additive reduction if and only if v(Δ) > 0 and v(c4) > 0,
i.e., Δ, c4 ∈ M. In this case Ẽns is the additive group,

Ẽns(k̄) ∼= k̄+.

PROOF. The reduction type of E follows from (III.1.4) applied to the reduced Weier-
strass equation over the field k. Then the group Ẽns(k̄) is given by (III.2.5).

Example 5.2. Let p ≥ 5 be a prime. Then the elliptic curve

E1 : y2 = x3 + px2 + 1

has good reduction over Qp, while

E2 : y2 = x3 + x2 + p

has (split) multiplicative reduction over Qp, and
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E3 : y2 = x3 + p

has additive reduction over Qp. If we go to the extension field Q
(

6
√

p
)
, then E3

attains good reduction, since the substitution

x �−→ 3
√

p x′, y �−→ √
p y′,

yields a minimal Weierstrass equation having good reduction. On the other hand,
the curve E3 has multiplicative reduction over every extension of Qp. This is true in
general; after extending the ground field, additive reduction turns into either multi-
plicative or good reduction, while the latter two do not change; see (VII.5.4). This
suggests the origin of the terms stable, semistable, and unstable, although they also
have quite precise definitions in terms of the stability of points in moduli space. For
a high-powered account of the general theory, see [187].

When an elliptic curve E/K has bad reduction, it is often useful to know whether
it attains good reduction over some extension of K. We give this property a name.

Definition. Let E/K be an elliptic curve. We say that E/K has potential good
reduction if there is a finite extension K ′/K such that E has good reduction over K ′.

Example 5.3. If K is a finite extension of Qp and if E/K has complex multiplica-
tion, then one can show that E has potential good reduction; see Exercise 7.10.

The next proposition explains how reduction type behaves under field exten-
sion, and the proposition immediately following provides a useful characterization
of when an elliptic curve has potential good reduction.

Proposition 5.4. (Semistable reduction theorem) Let E/K be an elliptic curve.
(a) Let K ′/K be an unramified extension. Then the reduction type of E over K

(good, multiplicative, or additive) is the same as the reduction type of E
over K ′.

(b) Let K ′/K be a finite extension. If E has either good or multiplicative reduction
over K, then it has the same reduction type over K ′.

(c) There exists a finite extension K ′/K such that E has either good or (split)
multiplicative reduction over K ′.

Proposition 5.5. Let E/K be an elliptic curve. Then E has potential good reduction
if and only if its j-invariant is integral, i.e., if and only if j(E) ∈ R.

PROOF OF (VII.5.4). (a) For arbitrary characteristic this follows from Tate’s al-
gorithm; see [266, IV §9] or [283]. We prove the result under the assumption
that char(k) ≥ 5, so E has a minimal Weierstrass equation over K of the form

E : y2 = x3 + Ax + B.

Let R′ be the ring of integers of K ′, let v′ be the valuation on K ′ extending v,
and let

x = (u′)2x′, y = (u′)3y′,
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be a change of coordinates that produces a minimal equation for E over K ′.
Since K ′/K is unramified, we can find a u ∈ K with u/u′ ∈ R′∗. Then the sub-
stitution

x = u2x′, y = u3y′,

also gives a minimal equation for E/K ′, since

v′(u−12Δ) = v′((u′)−12Δ
)
.

But this new equation has coefficients in R, so by the minimality of the original
equation over K, we have v(u) = 0. Hence the original equation is also minimal
over K ′. Further, since v(Δ) = v′(Δ) and v(c4) = v′(c4), we see from (VII.5.1)
that the reduction type of E over K is the same as its reduction type over K ′.
(b) Take a minimal Weierstrass equation for E over K with corresponding quanti-
ties Δ and c4, and let R′ and v′ be as in the proof of (a). Further, let

x = u2x′ + r, y = u3y′ + su2x′ + t,

be a change of coordinates giving a minimal Weierstrass equation for E over K. The
quantities Δ′ and c′4 associated to this new equation satisfy

0 ≤ v′(Δ′) = v′(u−12Δ) and 0 ≤ v′(c′4) = v′(u−4c4).

From (VII.1.3d) we have u ∈ R′, and hence

0 ≤ v′(u) ≤ min
{

1
12

v′(Δ),
1
4
v′(c4)

}
.

However, for good (respectively multiplicative) reduction, (VII.5.1a,b) tells us that
v(Δ) = 0 (respectively v(c4) = 0), so in both cases we have v′(u) = 0. Hence

v′(Δ′) = v′(Δ) and v′(c′4) = v′(c4),

and another application of (VII.5.1) shows that E has good (respectively multiplica-
tive) reduction over K ′.
(c) We assume that char(k) �= 2 and take a finite extension of K such that E/K

has a Weierstrass equation in Legendre normal form (III.1.7),

E : y2 = x(x − 1)(x − λ), λ �= 0, 1.

(The case char(k) = 2 is covered in (A.1.4a).) For the Legendre equation we have

c4 = 16(λ2 − λ + 1) and Δ = 16λ2(λ − 1)2.

We consider three cases.

Case 1. λ ∈ R and λ �≡ 0 or 1 (mod M). Then Δ ∈ R∗, so the given equation
has good reduction.
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Case 2. λ ∈ R and λ ≡ 0 or 1 (mod M). Then Δ ∈ M and c4 ∈ R∗, so the
given equation has multiplicative reduction.

Case 3. λ /∈ R. Let r ≥ 1 be the integer such that πrλ ∈ R∗. Then, replacing K
by K

(√
π ) if necessary, the substitutions x = π−rx′ and y = π−3r/2y′ give the

Weierstrass equation
(y′)2 = x′(x′ − πr)(x′ − πrλ).

This equation for E has integral coefficients and Δ′ ∈ M and c′4 ∈ R∗, so E has
multiplicative reduction.

Finally, we note that in Cases (2) and (3), if the multiplicative reduction is not
already split, then it becomes split over a quadratic extension.

PROOF OF (VII.5.5). As in the proof of (VII.5.4c), we make the assumption that
char(k) �= 2 and we take a finite extension of K such that E has a Weierstrass equa-
tion in Legendre form (III.1.7),

E : y2 = x(x − 1)(x − λ), λ �= 0, 1.

(For char(k) = 2, see (A.1.4b).) By assumption, we have j = j(E) ∈ R, and an
easy computation (III.1.7b) shows that j and λ are related by the equation

256
(
1 − λ(1 − λ)

)3 − jλ2(1 − λ)2 = 0.

This equation and the integrality of j imply that

λ ∈ R and λ �≡ 0 or 1 (mod M).

Thus the given Legendre equation has integral coefficients and good reduction.
Conversely, suppose that E has potential good reduction. Let K ′/K be a finite

extension such that E has good reduction over K ′, let R′ be the ring of integers of K ′,
and let Δ′ and c′4 be the quantities associated to a minimal Weierstrass equation for E
over K ′. Since E has good reduction over K ′, we have Δ′ ∈ (R′)∗, and hence

j(E) =
(c′4)

3

Δ′ ∈ R′.

But j(E) ∈ K, since E is defined over K, so j(E) ∈ R.

VII.6 The Group E/E0

Recall that the group E0(K) consists of the points of E(K) that do not reduce to
a singular point of Ẽ(k). Further, from (VII.2.1) we know that E0(K) is made
up of two pieces that we have analyzed fairly closely, namely Ẽns(k) and the for-
mal group E1(K) ∼= Ê(M). We are left to study the remaining piece, the quo-
tient E(K)/E0(K).
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The most important fact about this quotient is that it is finite. As the next the-
orem indicates, we can actually say quite a bit more. Unfortunately, a direct proof
working explicitly with Weierstrass equations is quite lengthy, and even the simpli-
fying assumption char(k) ≥ 5 leads to a long case-by-case analysis. So we do not
give the proof in this volume. If the residue field k is finite, then the mere finiteness
of E(K)/E0(K) can be proven by an easy compactness argument; see Exercise 7.6.

Theorem 6.1. (Kodaira, Néron) Let E/K be an elliptic curve. If E has split
multiplicative reduction over K, then E(K)/E0(K) is a cyclic group of order
v(Δ) = −v(j). In all other cases, the group E(K)/E0(K) is finite and has order at
most 4.

Corollary 6.2. The subgroup E0(K) has finite index in E(K).

PROOF. The finiteness of E(K)/E0(K) follows from the existence of the Néron
model, which is a group scheme over Spec(R) whose generic fiber is E/K; see [266,
IV §§5, 6]. The specific description of E(K)/E0(K) comes from the complete
classification of the possible special fibers of a Néron model; see [266, IV §8].
Alternatively, it is possible to give an elementary, but lengthy, proof via explicit
computations with Weierstrass equations. See (C §15) for further discussion.

Our most important application of (VII.6.2) is the proof of the criterion of Néron–
Ogg–Shafarevich, which we give in the next section. Another interesting application
is the following result.

Proposition 6.3. Let K be a finite extension of Qp, so in particular char(K) = 0
and k is a finite field. Then E(K) contains a subgroup of finite index that is isomor-
phic to R+, the additive group of R.

PROOF. From (VII.6.2) we know that E(K)/E0(K) is finite, and (VII.2.1) tells us
that E0(K)/E1(K) is isomorphic to the finite group Ẽns(k). (This is where we use
the fact that k is finite.) It thus suffices to prove that E1(K) has a subgroup of finite
index that is isomorphic to R+. We know from (VIII.2.2) that E1(K) is isomorphic
to the formal group Ê(M), and (IV.3.2a) tells us that Ê(M) has a filtration

Ê(M) ⊂ Ê(M2) ⊂ Ê(M2) ⊂ · · · .

Further, each quotient Ê(Mi)/Ê(Mi+1) is isomorphic to Mi/Mi+1, which is fi-
nite, since it is a one-dimensional k-vector space, so it suffices to prove that there is
some r ≥ 1 such that Ê(Mr) is isomorphic to R+. This last assertion is a conse-
quence of (IV.6.4b), which says that if r is sufficiently large, then the formal loga-
rithm map

logÊ : Ê(Mr) ∼−−−−−→ Ga(Mr) = πrR ∼= R+

is an isomorphism.
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VII.7 The Criterion of Néron–Ogg–Shafarevich
If an elliptic curve E/K has good reduction and m ≥ 1 is an integer that is prime
to char(k), then we have seen (VII.4.1) that the torsion subgroup E[m] is unramified.
Various partial converses to this statement were proven by Néron, Ogg, and Shafare-
vich, and these were vastly generalized by Serre and Tate. We follow the exposition
in [239].

Theorem 7.1. (Criterion of Néron–Ogg–Shafarevich). Let E/K be an elliptic
curve. Then the following are equivalent:
(a) E has good reduction at K.
(b) E[m] is unramified at v for all integers m ≥ 1 that are relatively prime

to char(k).
(c) The Tate module T�(E) is unramified at v for some (all) primes � satisfy-

ing � �= char(k).
(d) E[m] is unramified at v for infinitely many integers m ≥ 1 that are relatively

prime to char(k).

PROOF. The implication (a) ⇒ (b) has already been proven in (VII.4.1), and the
implications(b) ⇒ (c) ⇒ (d) are obvious. (Note that T�(E) is unramified if and only
if E[�n] is unramified for every n ≥ 1.) It remains to prove that (d) implies (a).

Assume that (d) is true. Let Knr be the maximal unramified extension of K, and
choose an integer m satisfying the following conditions:

(i) m is relatively prime to char(k).

(ii) m > #E(Knr)/E0(Knr).

(iii) E[m] is unramified at v.

It is clear that such an m exists, since we are assuming that (d) is true and the quotient
group E(Knr)/E0(Knr) is finite from (VII.6.2).

We consider the two exact sequences

0 −→ E0(Knr) −→ E(Knr) −→ E(Knr)/E0(Knr) −→ 0,

0 −→ E1(Knr) −→ E0(Knr) −→ Ẽns(k̄) −→ 0.

(Note that k̄ is the residue field of the ring of integers of Knr.) Since E[m] ⊂ E(Knr),
we see that E(Knr) has a subgroup that is isomorphic to (Z/mZ)2. But from (ii), the
group E(Knr)/E0(Knr) has order strictly less than m. It follows from the first exact
sequence that there is a prime � dividing m such that E0(Knr) contains a subgroup
isomorphic to (Z/�Z)2. Now look at the second exact sequence. From (VII.3.1a), the
group E1(Knr) contains no nontrivial �-torsion, so we conclude that Ẽns(k̄) contains
a subgroup isomorphic to (Z/�Z)2.

Suppose that E has bad reduction over Knr. If the reduction is multiplicative,
then (VII.5.1b) tells us that

Ẽns(k̄) = k̄∗,
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in which case the �-torsion μ� is isomorphic to Z/�Z. Hence E cannot have multi-
plicative reduction. Similarly, if E has additive reduction over Knr, then (VII.5.1c)
says that

Ẽns(k̄) = k̄+,

so Ẽns(k̄) has no �-torsion. Thus E also cannot have additive reduction. Having
eliminated multiplicative and additive reduction as possibilities, all that remains is
for E to have good reduction over Knr. Finally, since Knr/K is unramified, we
use (VII.5.4a) to conclude that E has good reduction over K.

Corollary 7.2. Let E1/K and E2/K be elliptic curves that are isogenous over K.
Then E1 has good reduction over K if and only if E2 has good reduction over K.

PROOF. Let φ : E1 → E2 be a nonzero isogeny defined over K, and let m ≥ 2 be
an integer that is relatively prime to both char(k) and deg φ. Then the induced map

φ : E1[m] −→ E2[m]

is an isomorphism of GK̄/K-modules, so in particular, either both E1[m] and E2[m]
are unramified at v, or both are ramified at v. Now use the (a) ⇔ (d) equivalence
in (VII.7.1).

Another immediate corollary of (VII.7.1) is a criterion, in terms of the action of
inertia, for determining whether an elliptic curve has potential good reduction.

Corollary 7.3. Let E/K be an elliptic curve. Then E has potential good reduction
if and only if the inertia group Iv acts on the Tate module T�(E) through a finite
quotient for some (all) prime(s) � �= char(k).

PROOF. Suppose that E has potential good reduction, and let K ′/K be a finite ex-
tension such that E has good reduction over K ′. Extending K ′, we may assume
that K ′/K is a Galois extension. Let v′ be the valuation on K ′ and let Iv′ be the
inertia group of GK̄′/K′ . We know from (VII.7.1) that Iv′ acts trivially on T�(E) for
any prime � �= char(k). Hence the action of Iv on T�(E) factors through the finite
quotient Iv/Iv′ . This proves one implication.

Assume now that for some prime � �= char(k), the inertia group Iv acts on T�(E)
through a finite quotient, say Iv/J . Then the fixed field of J , which we denote
by K̄J , is a finite extension of Knr = K̄Iv . Hence we can find a finite exten-
sion K ′/K such that K̄J is the compositum

K̄J = K ′Knr.

Then the inertia group of K ′ is equal to J , and by assumption J acts trivially
on T�(E). Now (VII.7.1) implies that E has good reduction over K ′.



Exercises 203

Exercises
7.1. Assume that char(k) �= 2, 3.

(a) Let E/K be an elliptic curve given by a Weierstrass equation with coefficients ai ∈ R.
Prove that the equation is minimal if and only if either v(Δ) < 12 or v(c4) < 4.

(b) Let E/K be given by a minimal Weierstrass equation of the form

E : y2 = x3 + Ax + B.

Prove that E has

(i) good reduction ⇐⇒ 4A3 + 27B2 ∈ R∗,
(ii) multiplicative reduction ⇐⇒ 4A3 + 27B2 ∈ M and AB ∈ R∗,

(iii) additive reduction ⇐⇒ A ∈ M and B ∈ M.

7.2. Let E/K be an elliptic curve with j-invariant j(E) ∈ R. Prove that the minimal dis-
criminant Δ of E satisfies

v(Δ) < 12 + 12v(2) + 6v(3).

7.3. Describe all Weierstrass equations

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with ai ∈ Z and Δ �= 0 such that E(Q) contains a torsion point P with x(P ) /∈ Z.
(Hint. See (VIII.3.5).)

7.4. Let E/K be an elliptic curve given by a minimal Weierstrass equation, and for each
n ≥ 1, define a subset of E(K) by

En(K) =
{
P ∈ E(K) : v

(
x(P )

)
≤ −2n

}
∪ {O}.

(a) Prove that En(K) is a subgroup of E(K).
(b) Prove that

En(K)/En+1(K) ∼= k+.

7.5. Show that the following elliptic curves have good reduction over a field of the indicated
form by writing down a minimal equation for E over that field.

(a) E : y2 = x3 + x, Q2(η, i), η8 = 2, i2 = −1.

(b) E : y2 + y = x3, Q3(π, η), π2 =
√
−3, η3 = 2.

(c) E : y2 = x3 + x2 − 3x − 2, Q5(π), π4 = 5.

7.6. Assume that K is locally compact for the topology induced by the discrete valuation v.
(This is equivalent to the assumption that the residue field k is finite; see [42, §7].) This exer-
cise sketches a proof of (VII.6.2) for such fields. However, we note that for applications such
as (VII.7.1) we need to know the stronger statement that E(K)/E0(K) is finite when the
residue field k is algebraically closed.

(a) Use v to define a topology on PN (K) and show that PN (K) is compact for this topology.
(b) Let E/K be an elliptic curve, let E(K) ⊂ P2(K) be the inclusion coming from

a minimal Weierstrass equation, and give E(K) the topology induced from P2(K).
Prove that E(K) is compact, and that for any P ∈ E(K), the translation-by-P
map τP : E(K) → E(K) is continuous.
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(c) Prove that E0(K) is an open subset of E(K). (It is also a closed subset!)
(d) Prove that E(K)/E0(K) is finite.

7.7. The following examples illustrate some special cases of (VII.6.1). We assume throughout
that char(k) �= 2, 3. Let E/K be an elliptic curve given by a Weierstrass equation

E : y2 = x3 + Ax + B.

(a) If v(A) ≥ 1 and v(B) = 1, prove that E(K) = E0(K).
(b) If v(A) = 1 and v(B) ≥ 2, prove that E(K)/E0(K) ∼= Z/2Z. (Hint. Suppose that

P, Q /∈ E0(K). Use the addition formula to show that P + Q ∈ E0(K).)
(c) If v(A) ≥ 2 and v(B) = 2, prove that E(K)/E0(K) is either 0 or Z/3Z.

7.8. Let E/K be an elliptic curve, and let m be an integer that is relatively prime to char(k).
Prove that

E0(K
nr)/mE0(K

nr) = 0.

7.9. Let E/K be an elliptic curve with potential good reduction, let m be an integer that is
relatively prime to char(k), and let K

(
E[m]

)
be the field obtained by adjoining to K the

coordinates of the points in E[m].
(a) Prove that the inertia group of K

(
E[m]

)
/K is independent of m. (Hint. For each prime

� �= char(k), let �′ = � if � ≥ 3 and let �′ = 4 if � = 2. Show that ρ�(Iv) has trivial
intersection with the kernel of the map

Aut
(
T�(E)

)
−→ Aut

(
T�(E)/�′T�(E)

) ∼= GL2(Z/�′Z).

Characterize the inertia group of K
(
E[m]

)
/K in terms of the kernels of the various ρ�.)

(b) Prove that K
(
E[m]

)
/K is unramified if and only if E has good reduction at v.

(c) If char(k) ≥ 5, prove that K
(
E[m]

)
/K is tamely ramified.

7.10. Let K be a finite extension of Qp, let R be the ring of integers of K, and let E/K be an
elliptic curve with complex multiplication. Prove that j(E) ∈ R. (Hint. Use the description of
the maximal abelian extension Kab of K provided by local class field theory to prove that the
action of GKab/K on T�(E) factors through a finite quotient. Then apply (VII.5.5), (VII.7.3),
and Exercise 3.24.)

7.11. Use Exercise 3.23 to prove (VII.5.4c) and (VII.5.5) in characteristic 2.

7.12. Let [K : Qp] = 2, let E/K be an elliptic curve given by a Weierstrass equation having
coefficients in R, and let P ∈ E(K) be a point of exact order m ≥ 2 such that x(P ) /∈ R,
i.e., such that v

(
x(P )

)
< 0.

(a) Prove that p = 2 or 3 and that m = 2, 3, or 4. Give examples to show that each value
of m is possible.

(b) Suppose that the reduced curve Ẽ/k is supersingular. Prove that p = m = 2.

7.13. Let E/Fp be an elliptic curve with the property that #E(Fp) = p. (Such curves are
called anomalous.) Let P, Q ∈ E(Fp) be points such that Q is in the subgroup generated
by P . This exercise describes an algorithm that solves the elliptic curve discrete logarithm
problem (ECDLP) for anomalous curves, i.e., it finds an integer m satisfying Q = [m]P .
(See (V.1.6) and Exercise 5.18.)
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(a) Let E′/Qp be an elliptic curve whose reduction modulo p is E/Fp. Prove that there are
points P ′, Q′ ∈ E′(Qp) whose reductions modulo p are, respectively, P and Q.

(b) Prove that [p]P ′ and [p]Q′ are in the formal group E′
1(Qp).

(c) Let
logE′ : E′

1(Qp) −→ Qp

be the formal logarithm map (IV.6.4a), and let

r =
logE′

(
[p]Q′)

logE′
(
[p]P ′)

.

Prove that r ∈ Zp.
(d) Let m ∈ Z be an integer satisfying m ≡ r (mod p). Prove that Q = [m]P .

7.14. Let P ∈ E0(K) and let L be the tangent line to E at P . Prove that the reduced line L̃
is the tangent line to Ẽ at P̃ ; cf. (VII.2.1.1).

7.15. Let P1, P2 ∈ E0(K) and P3 ∈ E(K) satisfy P1 + P2 + P3 = O, and let L be the
line intersecting E at P1, P2, P3, with appropriate multiplicities. For each of the following
situations, show that L̃ intersects Ẽ at P̃1, P̃2, P̃3 with appropriate multiplicities, and hence
that P̃3 ∈ Ens(k), P3 ∈ E0(K), and P̃1 + P̃2 + P̃3 = Õ. Use your results to complete the
proof of (VII.2.1).

(a) P1, P2, P3 are distinct and P̃1 = P̃2 = P̃3.
(b) P1 = P2 �= P3 and P̃1 = P̃2 �= P̃3.
(c) P1 = P2 �= P3 and P̃1 = P̃2 = P̃3.
(d) P1 = P2 = P3.



Chapter VIII

Elliptic Curves over Global
Fields

Let K be a number field and let E/K be an elliptic curve. Our primary goal in this
chapter is to prove the following result.

Mordell–Weil Theorem. The group E(K) is finitely generated.

The proof of this theorem consists of two quite distinct parts, the so-called “weak
Mordell–Weil theorem,” proven in (VIII §1), and the “infinite descent” using height
functions proven in (VIII §§3,5,6). We also give, in (VIII §4), a separate proof of the
descent step in the simplest case, where the general theory of height functions may
be replaced by explicit polynomial calculations.

The Mordell–Weil theorem tells us that the Mordell–Weil group E(K) has the
form

E(K) ∼= E(K)tors × Zr,

where the torsion subgroup E(K)tors is finite and the rank r of E(K) is a nonneg-
ative integer. For a given elliptic curve, it is relatively easy to determine the torsion
subgroup; see (VIII §7). The rank is much more difficult to compute, and in gen-
eral there is no known procedure that is guaranteed to yield an answer. We study the
question of computing the rank of E(K) in more detail in Chapter X.

The following notation will be used for the next three chapters:

K a number field.

MK a complete set of inequivalent absolute values on K.

M∞
K the archimedean absolute values in MK .

M0
K the nonarchimedean absolute values in MK .

v(x) = − log |x|v , for an absolute value v ∈ MK .

ordv normalized valuation for v ∈ M0
K , i.e., satisfying ordv(K∗) = Z.

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 207
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R the ring of integers of K, equal to {x ∈ K : v(x) ≥ 0 for all v ∈ M0
K}.

R∗ the unit group of R, equal to {x ∈ K : v(x) = 0 for all v ∈ M0
K}.

Kv the completion of K at v for v ∈ MK .

Rv the ring of integers of Kv for v ∈ M0
K .

Mv the maximal ideal of Rv for v ∈ M0
K .

kv the residue field of Rv for v ∈ M0
K .

Finally, in those situations in which it is important to have the absolute values
in MK coherently normalized, such as in the theory of height functions, we always
adopt the “standard normalization” as described in (VIII §5).

VIII.1 The Weak Mordell–Weil Theorem
Our goal in this section is to prove the following result.

Theorem 1.1. (Weak Mordell–Weil Theorem) Let K be a number field, let E/K be
an elliptic curve, and let m ≥ 2 be an integer. Then

E(K)/mE(K)

is a finite group.

For the rest of this section, E/K and m are as in the statement of (VIII.1.1). We
begin with the following reduction lemma.

Lemma 1.1.1. Let L/K be a finite Galois extension. If E(L)/mE(L) is finite,
then E(K)/mE(K) is also finite.

PROOF. The inclusion E(K) ↪→ E(L) induces a natural map

E(K)/mE(K) −→ E(L)/mE(L).

Let Φ be the kernel of this map, so

Φ =
E(K) ∩ mE(L)

mE(K)
.

Then for each P (mod mE(K)) in Φ, we can choose a point QP ∈ E(L) satisfy-
ing [m]QP = P . (The point QP need not be unique, of course.) Having done this,
we define a map of sets (which is not, in general, a group homomorphism)

λP : GL/K −→ E[m], λP (σ) = Qσ
P − QP .

Note that Qσ
P − QP is in E[m], since

[m](Qσ
P − QP ) =

(
[m]QP )σ − [m]QP = P σ − P = O.
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(The map λP is an example of a 1-cocycle; see (VIII §2).)
Suppose that P, P ′ ∈ E(K) ∩ mE[L] satisfy λP = λP ′ . Then

(QP − QP ′)σ = QP − QP ′ for all σ ∈ GL/K ,

so QP − QP ′ ∈ E(K). It follows that

P − P ′ = [m]QP − [m]QP ′ ∈ mE(K),

and hence that P ≡ P ′ (mod mE(K)). This proves that the association

Φ −→ Map
(
GL/K , E[m]

)
, P �−→ λP ,

is one-to-one. But GL/K and E[m] are finite sets, so there is only a finite number of
maps between them. Therefore the set Φ is finite.

Finally, the exact sequence

0 −→ Φ −→ E(K)/mE(K) −→ E(L)/mE(L)

nests E(K)/mE(K) between two finite groups, so it, too, is finite.

Using (VIII.1.1.1), we see that it suffices to prove the weak Mordell–Weil theo-
rem (VIII.1.1) under the additional assumption that

E[m] ⊂ E(K).

For this remainder of this section we assume, without further comment, that this
inclusion is true.

The next step is to translate the putative finiteness of E(K)/mE(K) into a state-
ment about a certain field extension of K. In order to do this, we use the following
tool.

Definition. The Kummer pairing

κ : E(K) × GK̄/K −→ E[m]

is defined as follows. Let P ∈ E(K) and choose any point Q ∈ E(K̄) satisfy-
ing [m]Q = P . Then

κ(P, σ) = Qσ − Q.

The next result describes basic properties of the Kummer pairing.

Proposition 1.2. (a) The Kummer pairing is well-defined.
(b) The Kummer pairing is bilinear.
(c) The kernel of the Kummer pairing on the left is mE(K).
(d) The kernel of the Kummer pairing on the right is GK̄/L, where

L = K
(
[m]−1E(K)

)

is the compositum of all fields K(Q) as Q ranges over the points in E(K̄)
satisfying [m]Q ∈ E(K).
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Hence the Kummer pairing induces a perfect bilinear pairing

E(K)/mE(K) × GL/K −→ E[m],

where L is the field given in (d).

Remark 1.2.1. The field L described in (VIII.1.2) is the elliptic analogue of the
classical Kummer extension K ′/K obtained by adjoining all mth roots to K. More
precisely, assuming that μm ⊂ K, there is a perfect bilinear pairing

K∗/(K∗)m × GK′/K −→ μm, (a, σ) −→ m
√

a
σ/ m

√
a,

exactly analogous to the pairing E(K)/mE(K) × GL/K → E[m] in (VIII.1.2).

PROOF OF (VIII.1.2). Most of this proposition follows immediately from basic
properties of group cohomology; see (VIII §2). For the convenience of the reader,
we give a direct proof here.
(a) We must show that κ(P, σ) is in E[m] and that its value does not depend on the
choice of Q. For the first statement, we observe that

[m]κ(P, σ) = [m]Qσ − [m]Q = P σ − P = O,

since P ∈ E(K) and σ fixes K. For the second statement, we note that any other
choice has the form Q + T for some T ∈ E[m]. Then

(Q + T )σ − (Q + T ) = Qσ + T σ − Q − T = Qσ − Q,

because we have assumed that E[m] ⊂ E(K), so σ fixes T .
(b) The linearity in P is obvious. For linearity in σ, we let σ, τ ∈ GK̄/K and
compute

κ(P, στ) = Qστ − Q = (Qσ − Q)τ − (Qτ − Q) = κ(P, σ)τ + κ(P, τ).

But κ(P, σ) ∈ E[m] ⊂ E(K), so κ(P, σ) is fixed by τ .
(c) Suppose that P ∈ mE(K), say P = [m]Q with Q ∈ E(K). Then Q is fixed

by every σ ∈ GK̄/K , so
κ(P, σ) = Qσ − Q = O.

Conversely, suppose that κ(P, σ) = 0 for all σ ∈ GK̄/K . Then choosing some
point Q ∈ E(K̄) with [m]Q = P , we have

Qσ = Q for all σ ∈ GK̄/K .

Therefore Q ∈ E(K), so P = [m]Q ∈ mE(K).
(d) If σ ∈ GK̄/L, then

κ(P, σ) = Qσ − Q = O,

since Q ∈ E(L) from the definition of L. Conversely, suppose that σ ∈ GK̄/K

satisfies κ(P, σ) = O for all P ∈ E(K). Then for every point Q ∈ E(K̄) satisfy-
ing [m]Q ∈ E(K) we have
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O = κ
(
[m]Q,σ

)
= Qσ − Q.

But L is the compositum of K(Q) over all such Q, so σ fixes L. Hence σ ∈ GK̄/L.
Finally, the last statement of (VIII.1.2) is clear from what precedes it, once we

note that L/K is Galois because elements of GK̄/K map [m]−1E(K) to itself. Al-
ternatively, it follows from (d) that GK̄/L is the kernel of the homomorphism

GK̄/K −→ Hom
(
E(K), E[m]

)
, σ �−→ κ( · , σ),

so GK̄/L is a normal subgroup of GK̄/K .

It follows from (VIII.1.2) that the finiteness of E(K)/mE(K) is equivalent to
the finiteness of the extension L/K. The next step in the proof of the weak Mordell–
Weil theorem is to analyze this extension. Our main tool will be (VII.3.1), which we
restate after making the appropriate definitions.

Definition. Let K be a number field and let E/K be an elliptic curve. Let v ∈ M0
K

be a discrete valuation. Then E is said to have good (respectively bad) reduction at v
if E has good (respectively bad) reduction when considered over the completion Kv ,
cf. (VII §5). Taking a minimal Weierstrass equation for E over Kv , we denote the
reduced curve over the residue field by Ẽv/kv . N.B. It is not always possible to
choose a single Weierstrass equation for E over K that is simultaneously minimal
for all Kv . However, this can be done if K = Q. See (VIII §8) for further details.

Remark 1.3. Take any Weierstrass equation for E/K,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

say with discriminant Δ. Then for all but finitely v ∈ M0
K we have

v(ai) ≥ 0 for i = 1, . . . , 6 and v(Δ) = 0.

For any v satisfying these conditions, the given equation is already a minimal Weier-
strass equation and the reduced curve Ẽv/kv is nonsingular. This shows that E has
good reduction at v for all but finitely many v ∈ M0

K .

Proposition 1.4. (restatement of (VII.3.1b)) Let v ∈ M0
K be a discrete valuation

such that v(m) = 0 and such that E has good reduction at v. Then the reduction
map

E(K)[m] −→ Ẽv(kv)

is injective.

We are now ready to analyze the extension L/K appearing in (VIII.1.2).

Proposition 1.5. Let
L = K

(
[m]−1E(K)

)

be the field defined in (VIII.1.2d).
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(a) The extension L/K is abelian and has exponent m, i.e., the Galois group GL/K

is abelian and every element of GL/K has order dividing m.
(b) Let

S =
{
v ∈ M0

K : E has bad reduction at v
}
∪
{
v ∈ M0

K : v(m) �= 0
}
∪ M∞

K .

The L/K is unramified outside S, i.e., if v ∈ MK and v /∈ S, then L/K is
unramified at v.

PROOF. (a) This follows immediately from (VIII.1.2), which implies that there is an
injection

GL/K −→ Hom
(
E(K), E[m]

)
, σ �−→ κ( · , σ).

(b) Let v ∈ MK with v /∈ S, let Q ∈ E(K̄) satisfy [m]Q ∈ E(K), and
let K ′ = K(Q). It suffices to show that K ′/K is unramified at v, since L is the com-
positum of all such K ′. Let v′ ∈ MK′ be a place of K ′ lying above v and let k′

v′/kv

be the corresponding extension of residue fields. The assumption that v /∈ S ensures
that E has good reduction at v, so it also has good reduction at v′, since we can take
the same Weierstrass equation. Thus we have the usual reduction map

E(K ′) −→ Ẽ(k′
v′),

which we denote as usual by a tilde.
Let Iv′/v ⊂ GK̄/K be the inertia group for v′/v, and take any element σ ∈ Iv′/v.

By definition, an element of inertia such as σ acts trivially on Ẽ(k′
v′), so

Q̃σ − Q = Q̃σ − Q̃ = Õ.

On the other hand, the fact that [m]Q ∈ E(K) tells us that

[m](Qσ − Q) =
(
[m]Q

)σ − [m]Q = O.

Thus Qσ − Q is a point of order m that is in the kernel of the reduction-modulo-v′

map. It follows from (VIII.1.4) that

Qσ − Q = O.

This proves that Q is fixed by every element of the inertia group Iv′/v , and hence
that K ′ = K(Q) is unramified over K at v′. Since this holds for every v′ lying
over v and for every v /∈ S, this completes the proof that K ′/K is unramified outside
of S.

All that remains to complete the proof of the weak Mordell–Weil theorem is to
show that any field extension L/K satisfying the conditions of (VIII.1.5) is necessar-
ily a finite extension. The proof of this fact relies on the two fundamental finiteness
theorems of algebraic number theory, namely the finiteness of the ideal class group
and the finite generation of the group of S-units.
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Proposition 1.6. Let K be a number field, let S ⊂ MK be a finite set of places
that contains M∞

K , and let m ≥ 2 be an integer. Let L/K be the maximal abelian
extension of K having exponent m that is unramified outside of S. Then L/K is a
finite extension.

PROOF. Suppose that we know that the proposition is true for some finite exten-
sion K ′ of K, where S′ is the set of places of K ′ lying over S. Then LK ′/K ′, being
abelian of exponent m unramified outside S′, would be finite, and hence L/K would
also be finite. It thus suffices to prove the proposition under the assumption that K
contains the mth roots of unity μm.

Similarly, we may increase the size of the set S, since this only has the effect of
making L larger. Using the fact that the class number of K is finite, we adjoin a finite
number of elements to S so that the ring of S-integers

RS =
{
a ∈ K : v(a) ≥ 0 for all v ∈ MK with v /∈ S

}

is a principal ideal domain. (Explicitly, choose integral ideals a1, . . . , ah representing
the ideal classes of K and adjoin to S the valuations corresponding to the primes
dividing a1 · · · ah.) We also enlarge S so as to ensure that v(m) = 0 for all v /∈ S.

We now apply the main theorem of Kummer theory, which says that if a field
of characteristic 0 contains μm, then its maximal abelian extension of exponent m
is obtained by adjoining the mth roots of all of its elements. For a proof of this
result, see any basic textbook on field theory, for example [17, §2], [68, §17.3], or [7,
Theorem 25], or do Exercise 8.4. Thus L is the largest subfield of

K
(

m
√

a : a ∈ K
)

that is unramified outside of S.
Let v ∈ MK with v /∈ S. Consider the equation

Xm − a = 0

over the local field Kv . Since v(m) = 0 and since the discriminant of the polyno-
mial Xm − a equals ±mmam−1, we see that Kv

(
m
√

a
)
/Kv is unramified if and

only if
ordv(a) ≡ 0 (mod m).

(Recall that ordv is the normalized valuation associated to v.) We note that when
we adjoin mth roots, it is necessary to take only one representative for each class
in K∗/(K∗)m, so if we let

TS =
{
a ∈ K∗/(K∗)m : ordv(a) ≡ 0 (mod m) for all v ∈ MK with v /∈ S

}
,

then
L = K

(
m
√

a : a ∈ TS

)
.

To complete the proof of (VIII.1.6), it suffices to show that the set TS is finite.
Consider the natural map
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R∗
S −→ TS .

We claim that this map is surjective. To see this, suppose that a ∈ K∗ represents
an element of TS . Then the ideal aRS is the mth power of an ideal in RS , since the
prime ideals of RS correspond to the valuations v /∈ S. Using the fact that RS is a
principal ideal domain, we can find a b ∈ K∗ such that aRS = bmRS . Hence there
is a u ∈ R∗

S satisfying
a = ubm.

Then a and u give the same element of TS , which proves that R∗
S surjects onto TS .

Further, the kernel of the map R∗
S → TS clearly contains (R∗

S)m, which proves that
there is a surjection

R∗
S/(R∗

S)m � TS .

(This map is actually an isomorphism.) Finally, we apply Dirichlet’s S-unit theo-
rem [142, V §1], which says that R∗

S is a finitely generated group. It follows that TS

is finite, which completes the proof of the proposition.

The preceding three propositions may now be combined to prove the main result
of this section.

PROOF OF THE WEAK MORDELL–WEIL THEOREM (VIII.1.1). Let

L = K
(
[m]−1E(K)

)

be the field defined in (VIII.1.2d). Since E[m] is finite, the perfect pairing given
in (VIII.2.1) shows that E(K)/mE(K) is finite if and only if GL/K is finite.
Now (VIII.1.5) says that L has certain properties, and (VIII.1.6) says that any ex-
tension of K having these properties is a finite extension. This gives the desired
result. (Note that (VIII.1.3) ensures that the set S of (VIII.1.5b) is a finite set.)

Remark 1.7. The heart of the proof of the weak Mordell–Weil theorem lies in the
assertion that the field L = K

(
[m]−1E(K)

)
is a finite extension of K. We proved

this by first showing (VIII.1.5) that it is abelian of exponent m and that it is unram-
ified outside of a certain finite set S ⊂ MK . The desired result then followed from
basic Kummer theory of fields as given in the proof of (VIII.1.6). It is worth noting
that rather than using (VIII.1.6), we could have used the more general theorem of
Minkowski that asserts that there are only finitely many extensions of K of bounded
degree that are unramified outside of S. To apply this in the present instance, note
that for any Q ∈ [m]−1E(K), the field K(Q) has degree at most m2 over K, since
the Galois conjugates of Q all have the form Q + T for some T ∈ E[m] and we are
assuming that E[m] ⊂ E(K). It follows from Minkowski’s theorem that as Q ranges
over [m]−1E(K), there are only finitely many possibilities for the fields K(Q).
Hence their compositum K

(
[m]−1E(K)

)
is a finite extension of K.

Remark on Effectivity 1.8. Let E/K be an elliptic curve with E[m] ⊂ E(K),
let S ⊂ MK be the usual set of bad places for E/K as described in (VIII.1.5b), and
let L/K be the maximal abelian extension of K having exponent m such that L/K



VIII.2. The Kummer Pairing via Cohomology 215

is unramified outside of S. Then (VIII.1.2) and (VIII.1.5) tell us that the Kummer
pairing induces an injection

E(K)/mE(K) ↪−→ Hom
(
GL/K , E[m]

)
.

It is possible to make the proof of (VIII.1.6) completely explicit, and hence to ex-
actly determine the group GL/K ; see Exercise 8.1. Thus we can describe all of the
elements of the group Hom

(
GL/K , E[m]

)
, so the crucial question is that of deter-

mining which of these elements come from points of E(K)/mE(K). It is this last
question for which there is, at present, no known effective solution. In Chapter X
we examine this problem in more detail. There we will exhibit a smaller group into
which E(K)/mE(K) injects and discuss what can be said about the cokernel. We
want to stress that this is the only stage at which the Mordell–Weil theorem is in-
effective; if we know generators for E(K)/mE(K), then we can effectively find
generators for E(K); see (VIII.3.1) and Exercise 8.18.

We also remark that there is a conditional algorithm due to Manin [156], [114,
§ F.4.1] that effectively computes generators for E(K) if one accepts the validity of a
number of standard (but very deep) conjectures, including in particular the conjecture
of Birch and Swinnerton-Dyer (C.16.5).

VIII.2 The Kummer Pairing via Cohomology
In this section we reinterpret the Kummer pairing from (VIII §1) in terms of group
cohomology. The methods used here will not be used again until Chapter X and may
be omitted by the reader wishing to proceed directly to the proof of the Mordell–Weil
theorem. For a summary of the basic facts on group cohomology that are used in this
section, see Appendix B and/or the references listed there.

We start with the short exact sequence of GK̄/K-modules

0 −→ E[m] −→ E(K̄)
[m]−−−−−−→ E(K̄) −→ 0,

where m ≥ 2 is a fixed integer. Taking GK̄/K-cohomology yields a long exact
sequence that starts

0 −−−−→ E(K)[m] −−−−→ E(K)
[m]−−−−→ E(K)

�

δ

H1
(
GK̄/K , E[m]

)
−−−−→ H1

(
GK̄/K , E(K̄)

) [m]−−−−→ H1
(
GK̄/K , E(K̄)

)
.

From the middle of this exact sequence we extract the following short exact se-
quence, which is called the Kummer sequence for E/K:

0 −→ E(K)
mE(K)

δ−−−−→ H1
(
GK̄/K , E[m]

)
−→ H1

(
GK̄/K , E(K̄)

)
[m] −→ 0.
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(As usual, for any abelian group A, we write A[m] to denote the m-torsion subgroup
of A.)

From general principles, the connecting homomorphism δ is computed as fol-
lows. Let P ∈ E(K) and choose some Q ∈ E(K̄) satisfying [m]Q = P . Then a 1-
cocycle representing δ(P ) is given by

c : GK̄/K −→ E[m], cσ = Qσ − Q.

But this is exactly the Kummer pairing defined in (VIII §1),

cσ = κ(P, σ).

(This assumes that we use the same Q on both sides, of course.)
Now suppose that E[m] is contained in E(K). Then

H1
(
GK̄/K , E[m]

)
= Hom

(
GK̄/K , E[m]

)
,

so under this assumption we obtain an injective homomorphism

E(K)/mE(K) ↪−→ Hom
(
GK̄/K , E[m]

)
, P �−→ κ(P, · ).

This provides an alternative proof of (VIII.1.2abc).
Similarly, we can use the inflation–restriction sequence (B.2.4) to give a quick

proof of the reduction lemma described in (VIII.1.1.1). Thus if L/K is a finite Galois
extension, say satisfying E[m] ⊂ E(L), then we have a commutative diagram

0 −→ Φ −→ E(K)/mE(K) −→ E(L)/mE(L)⏐
⏐
⏐
$

⏐
⏐
⏐
$

⏐
⏐
⏐
$

⏐
⏐
⏐
$

0 −→ H1
(
GL/K , E[m]

) inf−−→ H1
(
GK̄/K , E[m]

) res−−→ H1
(
GL̄/L, E[m]

)
,

where the vertical arrows are injections. Since GL/K and E[m] are finite groups, the
cohomology group H1

(
GL/K , E[m]

)
is finite, so Φ is also finite. We observe that

the map λP : GL/K → E[m] defined in the proof of (VIII.1.1.1) is a cocycle whose
cohomology class is precisely the image of P ∈ Φ in H1

(
GL/K , E[m]

)
.

Returning now to the general case, we reinterpret (VIII.1.5b) in terms of coho-
mology.

Definition. Let M be a GK̄/K-module, let v ∈ M0
K be a discrete valuation, and

let Iv ⊂ GK̄/K be an inertia group for v. A cohomology class ξ ∈ Hr(GK̄/K ,M)
is said to be unramified at v if it is trivial when restricted to Hr(Iv,M). (The inertia
group Iv depends on choosing an extension of v to K̄, but one can show that the
definition of unramified cohomology class is independent of this choice; cf. (X.4.1.1)
and Exercise B.6.)

Proposition 2.1. Let

S =
{
v ∈ M0

K : E has bad reduction at v
}
∪
{
v ∈ M0

K : v(m) �= 0
}
∪ M∞

K .
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Then the image of E(K) in H1
(
GK̄/K , E[m]

)
under the connecting homomor-

phism δ consists of cohomology classes that are unramified at every v ∈ MK

with v /∈ S.

PROOF. Let P ∈ E(K) and, as above, let

cσ = Qσ − Q

be the cocycle representing δ(P ) for some point Q satisfying [m]Q = P . Then
(VIII.1.5b) says that the field K(Q) is unramified at v. (N.B. The proof of (VIII.1.5b)
did not use the assumption that E[m] is contained in E(K).) Hence Iv acts trivially
on Q, so cσ = 0 for all σ ∈ Iv.

The Kummer Sequence for Fields

The exact sequences that we have derived for elliptic curves are analogous to the
classical exact sequences that arise in Kummer theory for fields. To make the analogy
clear, we briefly recall the relevant material. The multiplication-by-m sequence for
an elliptic curve E corresponds to the following exact sequence of GK̄/K-modules:

1 −→ μm −→ K̄∗ z→zm

−−−−−→ K̄∗ −→ 1.

Taking GK̄/K-cohomology yields a long exact sequence from which we extract the
short exact sequence

1 −→ K∗/(K∗)m δ−−→ H1(GK̄/K ,μm) −→ H1(GK̄/K , K̄∗)[m] −→ 0.

Hilbert’s famous “Theorem 90” (B.2.5) asserts that

H1(GK̄/K , K̄∗) = 0,

so the connecting homomorphism is an isomorphism. This is in marked contrast to
the situation for elliptic curves, where the nontriviality of H1

(
GK̄/K , E(K̄)

)
pro-

vides much added complication. (See Chapter X.) Collecting this material and using
an explicit computation of the connecting homomorphism gives the following result.

Proposition 2.2. There is an isomorphism

δ : K∗/(K∗)m ∼−−−−−→ H1(GK̄/K ,μm)

given by the formula

δ(a) = cohomology class of the map σ �→ ασ/α,

where α ∈ K̄∗ is any element satisfying αm = a.
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VIII.3 The Descent Procedure
Our primary goal in this chapter is to prove that E(K), the group of rational points
on an elliptic curve, is finitely generated. So far, we know from (VIII.1.1) that the
quotient group E(K)/mE(K) is finite. It is easy to see that this is not enough. For
example, R/mR = 0 for every integer m ≥ 1, yet R is certainly not a finitely gen-
erated group. Similarly, if E/Qp is an elliptic curve, then (VII.6.3) says that E(Qp)
has a subgroup of finite index that is isomorphic to Zp. Hence E(Qp)/mE(Qp) is
finite, while E(Qp) is not finitely generated.

An examination of these two examples shows that the problem occurs because of
the large number of elements in the group that are divisible by m. The idea used to
complete the proof of the Mordell–Weil theorem is to show that on an elliptic curve
over a number field, the multiplication-by-m map tends to increase the “size” of a
point, where there are only finitely many points whose “size” is bounded. This will
bound how high a power of m may divide a point, and thus eliminate problems such
as in the above examples. Of course, all of this is very vague until we explain what
is meant by the “size” of a point.

In this section we axiomatize the situation and describe the type of size (or height)
function needed to prove that an abelian group is finitely generated. Then, in the
next section, we define such a function on an elliptic curve in the simplest case and
use explicit formulas to prove that it has the desired properties. This will suffice to
prove a special case of the Mordell–Weil theorem. We then turn to the general case
and develop the theory of height functions in sufficient generality both to prove the
Mordell–Weil theorem and to be useful for later applications.

Theorem 3.1. (Descent Theorem) Let A be an abelian group. Suppose that there
exists a (height) function

h : A −→ R

with the following three properties:
(i) Let Q ∈ A. There is a constant C1, depending on A and Q, such that

h(P + Q) ≤ 2h(P ) + C1 for all P ∈ A.

(ii) There are an integer m ≥ 2 and a constant C2, depending on A, such that

h(mP ) ≥ m2h(P ) − C2 for all P ∈ A.

(iii) For every constant C3, the set
{
P ∈ A : h(P ) ≤ C3

}

is finite.
Suppose further that for the integer m in (ii), the quotient group A/mA is finite.
Then A is finitely generated.

PROOF. Choose elements Q1, . . . , Qr ∈ A to represent the finitely many cosets
in A/mA, and let P ∈ A be an arbitrary element. The idea is to show that the
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difference between P and an appropriate linear combination of Q1, . . . , Qr is a mul-
tiple of a point whose height is smaller than a constant that is independent of P .
Then Q1, . . . , Qr and the finitely many points with height less than this constant are
generators for A.

We begin by writing

P = mP1 + Qi1 for some 1 ≤ i1 ≤ r.

Next we do the same thing with P1, then with P2, etc., which gives us a list of points

P = mP1 + Qi1 ,

P1 = mP2 + Qi2 ,
...

Pn−1 = mPn + Qin
.

For any index j, we have

h(Pj) ≤ 1
m2

(
h(mPj) + C2

)
from (ii),

=
1

m2

(
h(Pj−1 − Qij

) + C2

)

≤ 1
m2

(
2h(Pj−1) + C ′

1 + C2

)
from (i),

where C ′
1 is the maximum of the constants from (i) for Q ∈ {−Q1, . . . ,−Qr}. Note

that C ′
1 and C2 do not depend on P .

We use this inequality repeatedly, starting from Pn and working back to P . This
yields

h(Pn) ≤
(

2
m2

)n

h(P ) +
(

1
m2

+
2

m2
+

4
m2

+ · · · + 2n−1

m2

)
(C ′

1 + C2)

<

(
2

m2

)n

h(P ) +
C ′

1 + C2

m2 − 2

≤ 1
2n

h(P ) +
1
2
(C ′

1 + C2) since m ≥ 2.

It follows that if n is sufficiently large, then

h(Pn) ≤ 1 +
1
2
(C ′

1 + C2).

Since P is a linear combination of Pn and Q1, . . . , Qr,

P = mnPn +
n∑

j=1

mj−1Qij
,

it follows that every P in A is a linear combination of points in the set
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{
Q1, . . . , Qr

}
∪
{

Q ∈ A : h(Q) ≤ 1 +
1
2
(C ′

1 + C2)
}

.

Property (iii) of the height function h tells us that this is a finite set, which completes
the proof that A is finitely generated.

Remark 3.2. What is needed to make the descent theorem effective, i.e., to al-
low us to find generators for the group A? First, we must be able to calculate
the constants C1 = C1(Qi) for each of the elements Q1, . . . , Qr ∈ A represent-
ing the cosets of A/mA. Second, we must be able to calculate the constant C2.
Third, for any constant C3, we must be able to determine the elements in the finite
set

{
P ∈ A : h(P ) ≤ C3

}
. The reader may check (Exercise 8.18) that for the height

functions used on elliptic curves (VIII §§4, 5, 6), all of these constants are effectively
computable, provided that we can find elements of E(K) that generate the finite
group E(K)/mE(K). Unfortunately, at present there is no known procedure that
is guaranteed to give generators for E(K)/mE(K). We return to this question in
Chapter X.

VIII.4 The Mordell–Weil Theorem over Q

In this section we prove the following special case of the Mordell–Weil theorem.

Theorem 4.1. Let E/Q be an elliptic curve. Then the group E(Q) is finitely gener-
ated.

We will, of course, soon be ready to prove the general case; see (VIII.6.7). How-
ever, it seems worthwhile to first prove (VIII.4.1), since in this case the necessary
height computations using explicit formulas are not too cumbersome.

Fix a Weierstrass equation for E/Q of the form

E : y2 = x3 + Ax + B with A,B ∈ Z.

We know from (VIII.1.1) that E(Q)/2E(Q) is finite, so in order to apply the descent
result (VIII.3.1), we need to define a height function on E(Q) and show that it has
the requisite properties.

Definition. Let t ∈ Q, and write t = p/q as a fraction in lowest terms. The height
of t, denoted by H(t), is defined by

H(t) = max
{
|p|, |q|

}
.

Definition. The (logarithmic) height on E(Q), relative to the given Weierstrass
equation, is the function

hx : E(Q) −→ R, hx(P ) =

{
log H

(
x(P )

)
if P �= O,

0 if P = O.

We note that hx(P ) is always nonnegative.
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The next lemma gives us the information that we need in order to apply (VIII.3.1)
with the height function hx.

Lemma 4.1. Let E/Q be an elliptic curve given by a Weierstrass equation

E : y2 = x3 + Ax + B with A,B ∈ Z.

(a) Let P0 ∈ E(Q). There is a constant C1 that depends on P0, A, and B such that

hx(P + P0) ≤ 2hx(P ) + C1 for all P ∈ E(Q).

(b) There is a constant C2 that depends on A and B such that

hx

(
[2]P

)
≥ 4hx(P ) − C2 for all P ∈ E(Q).

(c) For every constant C3, the set
{
P ∈ E(Q) : hx(P ) ≤ C3

}

is finite.

PROOF. We may assume that C1 > max
{
hx(P0), hx([2]P0)

}
, which ensures

that (a) is true if P0 = O or if P ∈ {O,±P0}. In all other cases we write

P = (x, y) =
(

a

d2
,

b

d3

)
and P = (x0, y0) =

(
a0

d2
0

,
b0

d3
0

)
,

where all fractions are in lowest terms. The addition formula (III.2.3d) says that

x(P + P0) =
(

y − y0

x − x0

)2

− x − x0.

Expanding this expression and using the fact that P and P0 satisfy the given Weier-
strass equation yields

x(P + P0) =
(xx0 + A)(x + x0) + 2B − 2yy0

(x − x0)2

=
(aa0 + Ad2d2

0)(ad2
0 + a0d

2) + 2Bd4d4
0 − 2bdb0d0

(ad2
0 − a0d2)2

.

In computing the height of a rational number, cancellation between numerator
and denominator can only decrease the height, so we find by an easy estimation that

H
(
x(P + P0)

)
≤ C ′

1 max
{
|a|2, |d|4, |bd|

}
,

where C ′
1 has a simple expression in terms of A,B, a0, b0, d0. Since H

(
x(P )

)
=

max
{
|a|, |d|2

}
, this is almost what we want, the only possible difficulty being the

presence of |bd| in the maximum. To deal with this problem, we use the fact that the
point P lies on the curve E, so its coordinates satisfy
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b2 = a3 + Aad4 + Bd6.

Thus
|b| ≤ C ′′

1 max
{
|a|3/2, |d|3

}
,

which combined with the above estimate for H
(
x(P + P0)

)
yields

H
(
x(P + P0)

)
≤ C1 max

{
|a|2, |d|4

}
= C1H

(
x(P )

)2
.

Taking logarithms gives the desired result.
(b) Choosing C2 to satisfy

C2 ≥ 4max
{
hx(T ) : T ∈ E(Q)[2]

}
,

we may assume that [2]P �= O. Then, writing P = (x, y), the duplication for-
mula (III.2.3d) reads

x
(
[2]P

)
=

x4 − 2Ax2 − 8Bx + A2

4x3 + 4Ax + 4B
.

It is convenient to define homogeneous polynomials

F (X,Z) = X4 − 2AX2Z2 − 8BXZ3 + A2Z4,

G(X,Z) = 4X3Z + 4AXZ3 + 4BZ4.

If we write x = x(P ) = a/b as a fraction in lowest terms, then x
(
[2]P

)
may be

written as a quotient of integers,

x
(
[2]P

)
=

F (a, b)
G(a, b)

.

However, in contrast to the proof of (a), we are now looking for a lower bound
for H

(
x([2]P )

)
, so it is necessary to bound how much cancellation may occur be-

tween numerator and denominator.
To do this, we use the fact that F (X, 1) and G(X, 1) are relatively prime poly-

nomials, so they generate the unit ideal in Q[X]. This implies that identities of the
following sort exist.

Sublemma 4.3. Let Δ = 4A3 + 27B2, and define polynomials

F (X,Z) = X4 − 2AX2Z2 − 8BXZ3 + A2Z4,

G(X,Z) = 4X3Z + 4AXZ3 + 4BZ4,

f1(X,Z) = 12X2Z + 16AZ3,

g1(X,Z) = 3X3 − 5AXZ2 − 27BZ3,

f2(X,Z) = 4(4A3 + 27B2)X3 − 4A2BX2Z

+ 4A(3A3 + 22B2)XZ2 + 12B(A3 + 8B2)Z3,

g2(X,Z) = A2bX2 + A(5A3 + 32B2)X2Z

+ 2B(13A63 + 96B2)XZ2 − 3A2(A3 + 8B2)Z3.
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Then the following identities hold in Z[A,B,X,Z]:

f1(X,Z)F (X,Z) − g1(X,Z)G(X,Z) = 4ΔZ7,

f2(X,Z)F (X,Z) − g2(X,Z)G(X,Z) = 4ΔX7.

PROOF. One can check that if Δ �= 0, then F (X,Z) and G(X,Z) are relatively
prime homogeneous polynomials, so identities of this sort must exist. Checking the
validity of the two identities is, at worst, a tedious calculation, which we leave for
the reader. To actually find the polynomials f1, g1, f2, g2, one can use the Euclidean
algorithm or the theory of resultants.

We return to the proof of (VIII.4.2b). Let

δ = gcd
(
F (a, b), G(a, b)

)

denote the cancellation in our fraction for x
(
[2]P

)
. From the equations

f1(a, b)F (a, b) − g1(a, b)G(a, b) = 4Δb7,

f2(a, b)F (a, b) − g2(a, b)G(a, b) = 4Δa7,

we see that δ divides 4Δ. This gives the bound

|δ| ≤ |4Δ|,

and hence

H
(
x([2]P )

)
≥

max
{∣∣F (a, b)

∣
∣,
∣
∣G(a, b)

∣
∣}

|4Δ| .

On the other hand, the same identities give the estimates

|4Δb7| ≤ 2max
{∣∣f1(a, b)

∣
∣,
∣
∣g1(a, b)

∣
∣}max

{∣∣F (a, b)
∣
∣,
∣
∣G(a, b)

∣
∣},

|4Δa7| ≤ 2max
{∣∣f2(a, b)

∣
∣,
∣
∣g2(a, b)

∣
∣}max

{∣∣F (a, b)
∣
∣,
∣
∣G(a, b)

∣
∣}.

Looking at the expressions for f1, f2, g1, g2 in (VIII.4.3), we have

max
{∣∣f1(a, b)

∣
∣,
∣
∣g1(a, b)

∣
∣,
∣
∣f2(a, b)

∣
∣,
∣
∣g2(a, b)

∣
∣} ≤ C max

{
|a|3, |b|3

}
,

where C is a constant depending on A and B. Combining the last three inequalities
yields

max
{
|4Δa7|, |4Δb7|

}
≤ 2C max

{
|a|3, |b|3

}
max

{∣∣F (a, b)
∣
∣,
∣
∣G(a, b)

∣
∣}.

Canceling max
{
|a|3, |b|3

}
from both sides, we obtain the estimate

max
{∣∣F (a, b)

∣
∣,
∣
∣G(a, b)

∣
∣}

|4Δ| ≥ (2C)−1 max
{
|a|4, |b|4

}
,

and then using the fact that max
{
|a|, |b|

}
= H

(
x(P )

)
gives the desired result,
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H
(
x([2]P )

)
≥ (2C)−1H

(
x(P )

)4
.

(c) For any constant C, the set
{
t ∈ Q : H(t) ≤ C

}

is clearly finite. Indeed, it has at most (2C + 1)2 elements, since the numerator and
denominator of t are integers restricted to lie between −C and C. Further, given
any value for x, there are at most two values of y for which (x, y) is a point of E.
Therefore {

P ∈ E(Q) : hx(P ) ≤ C3

}

is also a finite set.

The proof of (VIII.4.1) is now simply a matter of fitting together what we have
already done.

PROOF OF (VIII.4.1). We know from (VIII.1.1) that E(Q)/2E(Q) is finite. It fol-
lows from (VIII.4.2) that the height function

hx : E(Q) −→ R

satisfies the conditions needed to apply the descent procedure (VIII.3.1) with m = 2.
The conclusion of (VIII.3.1) is that E(Q) is finitely generated.

VIII.5 Heights on Projective Space
In order to use the descent theorem (VIII.3.1) to prove the Mordell–Weil theorem
in general, we need to define a height function on the K-rational points of an el-
liptic curve. It is possible to proceed in an ad hoc manner using explicit equations,
as was done in the last section, but we instead develop a general theory of height
functions. From this general theory will follow all of the necessary properties, plus
considerably more. Elliptic curves are given as subsets of projective space, so in this
section we study a height function defined on all of projective space, and then in
the next section we examine its properties when restricted to the points of an elliptic
curve.

Example 5.1. Let P ∈ PN (Q) be a point with rational coordinates. Since Z is a
principal ideal domain, we can find homogeneous coordinates

P = [x0, . . . , xN ]

satisfying
x0, . . . , xN ∈ Z and gcd(x0, . . . , xN ) = 1.

Then a natural measure of the height of P is

H(P ) = max
{
|x0|, . . . , |xN |

}
.
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With this definition, it is clear that for any constant C, the set
{
P ∈ PN (Q) : H(P ) ≤ C

}

is a finite set. Indeed, it has at most (2C +1)N elements. This is the sort of finiteness
property that is needed for the descent procedure described in (VIII.3.1).

If we try to generalize (VIII.5.1) to arbitrary number fields, we run into the dif-
ficulty that the ring of integers need not be a principal ideal domain. We thus take
a somewhat different approach, for which purpose we now specify more precisely
how the absolute values in MK are normalized.

Definition. The set of standard absolute values on Q, which we denote by MQ,
consists of the following:

(i) MQ contains one archimedean absolute value, defined by

|x|∞ = usual absolute value = max{x,−x}.

(ii) For each prime p ∈ Z, the set MQ contains one nonarchimedean (p-adic)
absolute value defined by

∣
∣
∣pn a

b

∣
∣
∣
p

= p−n for a, b ∈ Z satisfying p � ab.

The set of standard absolute values on a number field K, denoted by MK , is the
set of all absolute values on K whose restriction to Q is one of the absolute values
in MQ.

Definition. Let v ∈ MK . The local degree at v, denoted by nv , is

nv = [Kv : Qv],

where Kv and Qv denote the completions of K and Q with respect to the absolute
value v.

With the preceding definitions, we state two basic facts from algebraic number
theory that will be needed later.

Extension Formula 5.2. Let L/K/Q be a tower of number fields, and let v ∈ MK .
Then ∑

w∈ML

w|v

nw = [L : K]nv.

(Here w | v means that w restricted to K is equal to v.)

Product Formula 5.3. Let x ∈ K∗. Then
∏

v∈MK

|x|nv
v = 1.
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For proofs of (VIII.5.2) and (VIII.5.3), see any standard text on algebraic number
theory, for example [142, II §1 and V §1].

We are now ready to define the height of a point in projective space.

Definition. Let P ∈ PN (K) be a point with homogeneous coordinates

P = [x0, . . . , xN ], x0, . . . , xN ∈ K.

The height of P (relative to K) is

HK(P ) =
∏

v∈MK

max
{
|x0|v, . . . , |xN |v

}nv
.

Proposition 5.4. Let P ∈ PN (K).
(a) The height HK(P ) does not depend on the choice of homogeneous coordinates

for P .
(b) The height satisfies

HK(P ) ≥ 1.

(c) Let L/K be a finite extension. Then

HL(P ) = HK(P )1/[K:Q].

PROOF. (a) Any other choice of homogeneous coordinates for P has the form
[λx0, . . . , λxN ] for some λ ∈ K∗. Using the product formula (VIII.5.3), we have

∏

v∈MK

max
{
|λx0|v, . . . , |λxN |v

}nv =
∏

v∈MK

|λ|nv max
{
|x0|v, . . . , |xN |v

}nv

=
∏

v∈MK

max
{
|x0|v, . . . , |xN |v

}nv
.

(b) Given any point P in projective space, we can always find homogeneous coor-
dinates for P such that one of the coordinates is 1. Then every factor in the product
defining HK(P ) is at least 1.
(c) We compute

HL(P ) =
∏

w∈ML

max
{
|xi|w

}nw

=
∏

v∈MK

∏

w∈ML

w|v

max
{
|xi|v

}nw since xi ∈ K,

=
∏

v∈MK

max
{
|xi|v

}[L:K]nv from (VIII.5.2),

= HK(P )[L:K].
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Remark 5.5. If K = Q, then HQ agrees with the more intuitive height function
given in (VIII.5.1). To see this, let P ∈ PN (Q) and choose homogeneous coordi-
nates [x0, . . . , xN ] for P with xi ∈ Z and gcd(x0, . . . , xN ) = 1. Then, for any
nonarchimedean absolute value v ∈ MQ, we have |xi|v ≤ 1 for all i and |xi|v = 1
for at least one i. Hence in the product defining HQ(P ), only the factor for the archi-
medean absolute value contributes, so

HQ(P ) = max
{
|x0|∞, . . . , |xN |∞

}
.

In particular, it follows that for any constant C, the set
{
P ∈ PN (Q) : HQ(P ) ≤ C

}

is finite. One of our goals is to extend this statement to HK . We will actually prove
something stronger; see (VIII.5.11).

Sometimes it is easier to work with a height function that is not relative to a
particular number field. We use (VIII.5.4c) to create such a function.

Definition. Let P ∈ PN (Q̄). The (absolute) height of P , denoted by H(P ), is
defined as follows. Choose a number field K such that P ∈ PN (K). Then

H(P ) = HK(P )1/[K:Q],

where we take the positive root. We see from (VIII.5.4c) that H(P ) is well-defined,
independent of the choice of K, and (VIII.5.4b) implies that H(P ) ≥ 1.

We next investigate how the height changes under mappings between projective
spaces. We recall the following definition; cf. (I.3.3).

Definition. A morphism of degree d between projective spaces is a map

F : PN −→ PM , F (P ) =
[
f0(P ), . . . , fM (P )

]
,

where f0, . . . , fM ∈ Q̄[X0, . . . , XN ] are homogeneous polynomials of degree d
having no common zero in Q̄N other than X0 = · · · = XN = 0. If F can be written
using polynomials fi having coefficients in K, then F is said to be defined over K.

Theorem 5.6. Let
F : PN −→ PM

be a morphism of degree d. Then there are positive constants C1 and C2, depending
on F , such that

C1H(P )d ≤ H
(
F (P )

)
≤ C2H(P )d for all P ∈ PN (Q̄).

PROOF. Write F = [f0, . . . , fM ] using homogeneous polynomials fi having no
common zeros, and let P = [x0, . . . , xN ] ∈ PN (Q̄) be a point with algebraic coor-
dinates. Choose some number field K that contains x0, . . . , xN and also contains all
of the coefficients of all of the fi. For each absolute value v ∈ MK , we let
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|P |v = max
0≤i≤N

|xi|v and
∣
∣F (P )

∣
∣
v

= max
0≤j≤M

∣
∣fj(P )

∣
∣
v
,

and we also define

|F |v = max
{
|a|v : a is a coefficient of some fi

}
.

Then, from the definition of height, we have

HK(P ) =
∏

v∈MK

|P |nv
v and HK

(
F (P )

)
=

∏

v∈MK

∣
∣F (P )

∣
∣nv

v
,

so it makes sense to define

HK(F ) =
∏

v∈MK

|F |nv
v .

In other words, HK(F ) = H
(
[a0, a1, . . .]

)
, where the aj are the coefficients of

the fi. Finally, we let C1, C2, . . . denote constants that depend only on M , N , and d,
and we set

ε(v) =

{
1 if v ∈ M∞

K ,
0 if v ∈ M0

K .

To illustrate the utility of the function ε, we observe that the triangle inequality may
be concisely written as

|t1 + · · · + tn|v ≤ nε(v) max
{
|t1|v, . . . , |tn|v

}

for all v ∈ MK , both archimedean and nonarchimedean.
Having set notation, we turn to the proof of (VIII.5.6). The upper bound is rela-

tively easy. Let v ∈ MK . The triangle inequality yields
∣
∣fi(P )

∣
∣
v
≤ C

ε(v)
1 |F |v|P |dv,

since fi is homogeneous of degree d. Here C1 could equal the number of terms
in fi, which is at most

(
N+d

N

)
, i.e., the number of monomials of degree d in N + 1

variables. Since this estimate holds for every i, we find that
∣
∣F (P )

∣
∣
v
≤ C

ε(v)
1 |F |v|P |dv.

Now raise to the nv power, multiply over all v ∈ MK , and take the [K : Q]th root.
This yields the desired upper bound

H
(
F (P )

)
≤ C1H(F )H(P )d,

where we have used the formula (VIII.5.2),
∑

v∈MK

ε(v)nv =
∑

v∈M∞
K

nv = [K : Q].
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It is worth mentioning that in proving this upper bound, we did not use the fact
that the fi have no common nontrivial zeros. However, we will certainly need to use
this property to prove the lower bound, since without it there are easy counterexam-
ples; see Exercise 8.10.

Thus we now assume that the set
{
Q ∈ AN+1(Q̄) : f0(Q) = · · · = fM (Q) = 0

}

consists of the single point (0, . . . , 0). It follows from the Nullstellensatz
([111, I.1.3A], [73, Theorem 1.6]) that the ideal generated by f0, . . . , fM

in Q̄[X0, . . . , XN ] contains some power of each of X0, . . . , XN , since each Xi also
vanishes at the point (0, . . . , 0). Thus there are polynomials gij ∈ Q̄[X0, . . . , XN ]
and an integer e ≥ 1 such that

Xe
i =

M∑

j=0

gijfj for each 0 ≤ i ≤ N .

Replacing K by a finite extension if necessary, we may assume that each
gij ∈ K[X0, . . . , XN ], and discarding all terms on the right-hand side except those
that are homogeneous of degree e, we may assume that each gij is homogeneous of
degree e − d. We further set the following reasonable notation:

|G|v = max
{
|b|v : b is a coefficient of some gij

}
,

HK(G) =
∏

v∈MK

|G|nv
v .

We observe that e and HK(G) may be bounded in terms of M , N , d, and HK(F ),
although finding a good bound is not an easy task. See (VIII.5.7) for a discussion. For
our purposes it is enough to know that e and HK(G) do not depend on the point P .

Recalling that P = [x0, . . . , xN ], we see that the formula for Xe
i implies that

|xi|ev =

∣
∣
∣
∣
∣

M∑

j=0

gij(P )fj(P )

∣
∣
∣
∣
∣
v

≤ C
ε(v)
2 max

0≤j≤M

∣
∣gij(P )fj(P )

∣
∣
v

≤ C
ε(v)
2 max

0≤j≤M

∣
∣gij(P )

∣
∣
∣
∣F (P )

∣
∣
v
.

We now take the maximum over i to obtain

|P |ev ≤ C
ε(v)
2 max

0≤j≤M
0≤i≤N

∣
∣gij(P )

∣
∣
v

∣
∣F (P )

∣
∣
v
.

Each gij is homogeneous of degree e − d, so the usual application of the triangle
inequality yields ∣

∣gij(P )
∣
∣
v
≤ C

ε(v)
3 |G|v|P |e−d

v .

Here C3 may depend on e, but as noted earlier, we can bound e in terms of M , N ,
and d. Substituting this estimate into the earlier one and multiplying by |P |d−e gives



230 VIII. Elliptic Curves over Global Fields

|P |dv ≤ Cε(v)
v |G|v

∣
∣F (P )

∣
∣
v
,

and now the usual raising to the nv power, multiplying over v ∈ MK , and taking
the [K : Q]th root yields the desired lower bound.

Remark 5.7. As indicated during the proof of (VIII.5.6), the dependence of C1 on F
in the inequality

C1H(P )d ≤ H
(
F (P )

)

is not at all straightforward. It is possible to express C1 in terms of the coefficients
of certain polynomials whose existence is guaranteed by the Nullstellensatz, and the
Nullstellensatz can be made completely explicit by the use of elimination theory, but
this method leads to a very poor estimate. For an explicit version of the Nullstellen-
satz in which an effort has been made to give good estimates for the coefficients,
see [162].

We also record the special case of (VIII.5.6) for an automorphism of PN .

Corollary 5.8. Let A ∈ GLN+1(Q̄), so multiplication by the matrix A induces an
automorphism A : PN → PN . There are positive constants C1 and C2, depending
on the entries of the matrix A, such that

C1H(P ) ≤ H(AP ) ≤ C2H(P ) for all P ∈ PN (Q̄).

PROOF. This is (VIII.5.6) for morphisms of degree one.

We next investigate the relationship between the coefficients of a polynomial and
the height of its roots.

Notation. For x ∈ Q̄, let
H(x) = H

(
[x, 1]

)
,

and similarly for x ∈ K, let

HK(x) = HK

(
[x, 1]

)
.

Theorem 5.9. Let

f(T ) = a0T
d + a1T

d−1 + · · · + ad = a0(T − α1) · · · (T − αd) ∈ Q̄[T ]

be a polynomial of degree d. Then

2−d
d∏

j=1

H(αj) ≤ H
(
[a0, . . . , ad]

)
≤ 2d−1

d∏

j=1

H(αj).

PROOF. First note that the inequality to be proven remains unchanged if f(T ) is
multiplied by a nonzero constant. It thus suffices to prove the result for monic poly-
nomials, so we may assume that a0 = 1.

Let K = Q(α1, . . . , αd), and for v ∈ MK , set
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ε(v) =

{
2 if v ∈ M∞

K ,
1 if v ∈ M0

K .

Note that this notation differs from the notation used in the proof of (VIII.5.6).
In the present instance, the triangle inequality reads

|x + y|v ≤ ε(v)max
{
|x|v, |y|v

}
for v ∈ MK and x, y ∈ K.

Of course, if v ∈ M0
K and |x|v �= |y|v , then the triangle inequality becomes an

equality.
We are going to prove that

ε(v)−d
d∏

j=1

max
{
|αj |v, 1

}
≤ max

0≤i≤d

{
|ai|v

}
≤ ε(v)d−1

d∏

j=1

max
{
|αj |v, 1

}
.

Once we have done this, raising to the nv power, multiplying over all v ∈ MK , and
taking the [K : Q]th root gives the desired result.

The proof is by induction on d = deg(f). For d = 1 we have f(T ) = T − α1,
so the inequalities are clear. Assume now that we know the result for all polynomials
(with roots in K) of degree d − 1. Choose an index k such that

|αk|v ≥ |αj |v for all 0 ≤ j ≤ d,

and define a polynomial

g(T ) = (T − α1) · · · (T − αk−1)(T − αk+1) · · · (T − αd)

= b0T
d−1 + b1T

d−2 + · · · + bd−1.

Thus f(T ) = (T − αk)g(T ), so comparing coefficients yields

ai = bi − αkbi−1.

(This holds for all 0 ≤ i ≤ d if we set b−1 = bd = 0.)
We begin with the upper bound:

max
0≤i≤d

{
|ai|v

}
= max

0≤i≤d

{
|bi − αkbi−1|v

}

≤ ε(v) max
0≤i≤d

{
|bi|v, |αkbi−1|v

}
triangle inequality,

≤ ε(v) max
0≤i≤d

{
|bi|v

}
max

{
|αk|v, 1

}

≤ ε(v)d−1
d∏

j=1

max
{
|αj |v, 1

}
induction hypothesis
applied to g.

Next, to prove the lower bound, we consider two cases. First, if |αk|v ≤ ε(v),
then by the choice of the index k we have



232 VIII. Elliptic Curves over Global Fields

d∏

j=1

max
{
|αj |v, 1

}
≤ max

{
|αk|v, 1

}d ≤ ε(v)d,

so the result is clear. (Remember that a0 = 1.) Next, suppose that |αk|v > ε(v). Then

max
0≤i≤d

{
|ai|v

}
= max

0≤i≤d

{
|bi − αkbi−1|v

}
≥ ε(v)−1 max

0≤i≤d−1

{
|bi|v

}{
|αk|v, 1

}
.

Here the last line is an equality for v ∈ M0
K , while for v ∈ M∞

K we are using the
calculation

max
0≤i≤d

{
|bi − αkbi−1|v

}
≥

(
|αk|v − 1

)
max

0≤i≤d−1

{
|bi|v

}

> ε(v)−1|αk|v max
0≤i≤d−1

{
|bi|v

}
since |αk|v > ε(v) = 2.

Applying the induction hypothesis to g gives the desired lower bound, which com-
pletes the proof of (VIII.5.9).

Our first application of (VIII.5.9) is to show that there are only finitely many
points of bounded height in projective space. To do this, we first need to show that
the action of the Galois group does not affect the height of a point.

Theorem 5.10. Let P ∈ PN (Q̄) and let σ ∈ GQ̄/Q. Then

H(P σ) = H(P ).

PROOF. Let K/Q be a field such that P ∈ PN (K). The field K may not be Galois
over Q, but in any case σ gives an isomorphism σ : K

∼−−→ Kσ , and σ likewise
identifies the sets of absolute values of K and Kσ ,

σ : MK
∼−−−−−→ MKσ , v �−→ vσ.

Here, if x ∈ K and v ∈ MK , then the associated absolute value vσ satis-
fies |xσ|vσ = |x|v . It is clear that σ also induces an isomorphism Kv

∼−−→ Kσ
vσ , so

the local degrees satisfy nv = nvσ . We now compute

HKσ (P σ) =
∏

w∈MKσ

max
{
|xσ

i |w
}nw

=
∏

v∈MK

max
{
|xσ

i |vσ

}nvσ

=
∏

v∈MK

max
{
|xi|v

}nv

= HK(P ).

Since [K : Q] = [Kσ : Q], this is the desired result.
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Theorem 5.11. Let C and d be constants. Then the set
{
P ∈ PN (Q̄) : H(P ) ≤ C and

[
Q(P ) : Q

]
≤ d

}

is a finite set of points, where we recall from (I §2) that Q(P ) is the minimal field of
definition of P . In particular, for any number field K,

{
P ∈ PN (K) : HK(P ) ≤ C

}

is a finite set.

PROOF. Let P ∈ PN (Q̄). We choose homogeneous coordinates for P , say

P = [x0, . . . , xN ],

with some xj = 1. Then Q(P ) = Q(x0, . . . , xN ), and we have the easy estimate

HQ(P )(P ) =
∏

v∈MQ(P )

max
0≤i≤N

{
|xi|v

}nv

≥ max
0≤i≤N

(
∏

v∈MQ(P )

max
{
|xi|v, 1

}nv

)

= max
0≤i≤N

HQ(P )(xi).

Thus if H(P ) ≤ C and
[
Q(P ) : Q

]
≤ d, then

max
0≤i≤N

HQ(P )(xi) ≤ C and max
0≤i≤N

[
Q(xi) : Q

]
≤ d.

It thus suffices to prove that the set
{
x ∈ Q̄ : H(x) ≤ C and

[
Q(x) : Q

]
≤ d

}

is finite. In other words, we have reduced to the case that N = 1.
Suppose that x ∈ Q̄ is in this set, and let e =

[
Q(x) : Q

]
, so e ≤ d. Further,

let x1, . . . , xe ∈ Q̄ be the conjugates of x, where we take x1 = x. The minimal
polynomial of x over Q is

fx(T ) = (T − x1) · · · (T − xe) = T e + a1T
e−1 + · · · + ae ∈ Q[T ].

We estimate

H
(
[1, a1, . . . , ae]

)
≤ 2e−1

e∏

j=1

H(xj) from (VIII.5.9),

= 2e−1H(x)e from (VIII.5.10),

≤ (2C)d since H(x) ≤ C and e ≤ d.

Since the ai are in Q, it follows that for a given C and d, there are only finitely
many possibilities for the polynomial fx(T ). (We are using the easy-to-prove case
of (VIII.5.11) with K = Q; see (VIII.5.1) and (VIII.5.3).) Since each polyno-
mial fx(T ) has a most d roots in K, and thus contributes at most d elements to
our set, this completes the proof that the set is finite.
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Remark 5.12. Tracing through the proof of (VIII.5.11), it is easy to give an upper
bound, in terms of C and D, for the number of points in the set

{
P ∈ PN (Q̄) : H(P ) ≤ C and

[
Q(P ) : Q

]
≤ d

}
.

(See Exercise 8.7a.) A formula due to Schanuel gives a precise asymptotic formula
for

#
{
P ∈ PN (K) : HK(P ) ≤ C

}

as a function of C as C → ∞. See [139, Chapter 3, Section 5] or [220] for details.

VIII.6 Heights on Elliptic Curves
In this section we use the general theory of heights as developed in the previous
section to define height functions on elliptic curves. The main theorems that we
prove, (VIII.6.2) and (VIII.6.4), highlight the interplay between the height function
and the addition law on the elliptic curve. As an immediate corollary, we deduce the
remaining results needed to prove the Mordell–Weil theorem for arbitrary number
fields (VIII.6.7).

It is convenient to use “big-O” notation.

Notation. Let f and g be real-valued functions on a set S. We write

f = g + O(1)

if there are constants C1 and C2 such that

C1 ≤ f(P ) − g(P ) ≤ C2 for all P ∈ S.

If only the lower inequality is satisfied, then we write f ≥ g + O(1), and similarly
if only the upper inequality is true, then we write f ≤ g + O(1).

Let E/K be an elliptic curve. Recall from (II.2.2) that any nonconstant func-
tion f ∈ K̄(E) determines a surjective morphism, which we also denote by f ,

f : E −→ P1, P �−→
{

[1, 0] if P is a pole of f ,
[f(P ), 1] otherwise.

It would be reasonable to use f to define a height function on E(K̄) by set-
ting Hf (P ) = H

(
f(P )

)
. However, the height function H tends to behave multi-

plicatively, as for example in (VIII.5.6), while for our purposes it is more convenient
to have a height function that behaves additively. This prompts the following defini-
tions.

Definition. The (absolute logarithmic) height on projective space is the function

h : PN (Q̄) −→ R, h(P ) = log H(P ).

Note that (VIII.5.4b) tells us that h(P ) ≥ 0 for all P .



VIII.6. Heights on Elliptic Curves 235

Definition. Let E/K be an elliptic curve, and let f ∈ K̄(E) be a function. The
height on E (relative to f ) is the function

hf : E(K̄) −→ R, hf (P ) = h
(
f(P )

)
.

We start by transcribing the finiteness result from (VIII §5) into the current set-
ting.

Proposition 6.1. Let E/K be an elliptic curve, and let f ∈ K(E) be a nonconstant
function. Then for any constant C, the set

{
P ∈ E(K) : hf (P ) ≤ C

}

is a finite set of points.

PROOF. The function f ∈ K(E) is defined over K, so it maps points P ∈ E(K) to
points f(P ) ∈ P1(K). Hence f gives a finite-to-one map from the set in question to
the set {

Q ∈ P1(K) : H(Q) ≤ eC
}
.

Finally, we know from (VIII.5.11) that this last set is finite.

The next theorem gives a fundamental relationship between height functions and
the addition law on an elliptic curve.

Theorem 6.2. Let E/K be an elliptic curve, and let f ∈ K(E) be an even function,
i.e., a function satisfying f ◦ [−1] = f . Then for all P,Q ∈ E(K̄) we have

hf (P + Q) + hf (P − Q) = 2hf (P ) + 2hf (Q) + O(1).

The constants inherent in the O(1) depend on the elliptic curve E and the function f ,
but are independent of the points P and Q.

PROOF. Choose a Weierstrass equation for E/K of the form

E : y2 = x3 + Ax + B.

We start by proving the theorem for the particular function f = x. The general case
is then an easy corollary.

Since hx(O) = 0 and hx(−P ) = hx(P ), the desired result is clear if P = O or
if Q = O. We now assume that P �= O and Q �= O, and we write

x(P ) = [x1, 1], x(Q) = [x2, 1],
x(P + Q) = [x3, 1], x(P − Q) = [x4, 1].

Here x3 or x4 may equal ∞ if P = ±Q. The addition formula (III.2.3d) and a little
bit of algebra yield the relations
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x3 + x4 =
2(x1 + x2)(A + x1x2) + 4B

(x1 + x2)2 − 4x1x2
,

x3x4 =
(x1x2 − A)2 − 4B(x1 + x2)

(x1 + x2)2 − 4x1x2
.

Define a map g : P2 → P2 by

g
(
[t, u, v]

)
= [u2 − 4tv, 2u(At + v) + 4Bt2, (v − At)2 − 4Btu

]
.

Then the formulas for x3 and x4 show that there is a commutative diagram

E × E
G−−−−−→ E × E⏐

⏐
$

⏐
⏐
$

P1 × P1 P1 × P1
⏐
⏐
$

⏐
⏐
$

P2 g−−−−→ P2

σ σ

where
G(P,Q) = (P + Q,P − Q),

and where the vertical map σ is the composition of the two maps

E × E −→ P1 × P1, (P,Q) �−→
(
x(P ), x(Q)

)
,

and
P1 × P1 −→ P2,

(
[α1, β1], [α2, β2]

)
�−→ [β1β2, α1β2 + α2β1, α1α2].

The idea here is that we are viewing t, u, and v as representing 1, x1 + x2, and x1x2,
so g

(
[t, u, v]

)
becomes [1, x3 + x4, x3x4].

The next step is to show that g is a morphism, which will allow us to ap-
ply (VIII.5.6). By definition (cf. (I.3.3)), we must show that the three homogeneous
polynomials defining g have no common zeros other than t = u = v = 0. Suppose
that g

(
[t, u, v]

)
= 0. If t = 0, then from

u2 − 4tv = 0 and (v − At)2 − 4Btu = 0

we see that u = v = 0. Thus we may assume that t �= 0, so we may define a new
quantity x = u/2t. [Intuition: If we identify

t = 1, u = x1 + x2, v = x1x2,

then the equation u2 − 4tv = 0 becomes (x1 − x2)2 = 0, so x1 = x2 = u/2t. In
other words, we are now dealing with the case that P = ±Q.]

Using the new quantity x, the equation u2 − 4tv = 0 can be written as x2 = v/t.
Now dividing the equalities

2u(At + v) + 4Bt2 = 0 and (v − At)2 − 4Btu = 0
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by t2 and rewriting them in terms of x yields the two equations

ψ(x) = 4x(A + x2) + 4B = 4x3 + 4Ax + 4B = 0,

φ(x) = (x2 − A)2 − 8Bx = x4 − 2Ax2 − 8Bx + A2 = 0.

These polynomials should be familiar, since their ratio is the rational function that
appears in the duplication formula (III.2.3d). In order to show that ψ(X) and φ(X)
have no common root, it suffices to verify the following formal identity that we
already used in the proof of (VIII.4.3),

(12X2 + 16A)φ(X) − (3X3 − 5AX − 27B)ψ(X) = 4(4A3 + 27B2) �= 0.

Note how the nonsingularity of the Weierstrass equation plays a crucial role here.
This completes the proof that g is a morphism.

We return to our commutative diagram and compute

h
(
σ(P + Q,P − Q)

)
= h

(
σ ◦ G(P,Q)

)

= h
(
g ◦ σ(P,Q)

)

= 2h
(
σ(P,Q)

)
+ O(1) from (VIII.5.6),

since g is a morphism of degree 2. To complete the proof of (VIII.6.2) for f = x, we
will show that

h
(
σ(R1, R2)

)
= hx(R1) + hx(R2) + O(1) for all R1, R2,∈ E(K̄).

Then, applying this relation to each side of the equation

h
(
σ(P + Q,P − Q)

)
= 2h

(
σ(P,Q)

)
+ O(1)

gives the desired result.
It is clear that if either R1 = O or R2 = O, then h

(
σ(R1, R2)

)
is equal

to hx(R1) + hx(R2). Otherwise we write

x(R1) = [α1, 1] and x(R2) = [α2, 1],

and then

h
(
σ(R1, R2)

)
= h

(
[1, α1+α2, α1α2]

)
and hx(R1)+hx(R2) = h(α1)+h(α2).

We apply (VIII.5.9) to the polynomial (T+α1)(T+α2) to obtain the desired estimate

h(α1) + h(α2) − log 4 ≤ h
(
[1, α1 + α2, α1α2]

)
≤ h(α1) + h(α2) + log 2.

Finally, in order to deal with an arbitrary even function f ∈ K(E), we prove in
the next lemma (VIII.6.2) that

hf =
1
2
(deg f)hx + O(1).

Then (VIII.6.2) follows immediately on multiplying the proven relation for hx

by 1
2 deg f .
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Lemma 6.3. Let f, g ∈ K(E) be even functions. Then

(deg g)hf = (deg f)hg + O(1).

PROOF. Let x, y ∈ K(E) be Weierstrass coordinates for E/K. We know from
(III.2.3.1) that the subfield of K(E) consisting of even functions is exactly K(x),
so we can find a rational function r(X) ∈ K(X) such that there is a commutative
diagram

�P1 P1.


�
�

�
��

E

x

r

f

Hence, using (VIII.5.6) and the fact (II.2.1) that r is a morphism, we deduce that

hf = hx ◦ r = (deg r)hx + O(1).

The diagram tells us that

deg f = (deg x)(deg r) = 2 deg r,

so we find that
2hf = (deg f)hx + O(1).

The same reasoning applied to g yields

2hg = (deg g)hx + O(1),

and combining these last two equalities gives the desired result.

Corollary 6.4. Let E/K be an elliptic curve, and let f ∈ K(E) be an even func-
tion.
(a) Let Q ∈ E(K̄). Then

hf (P + Q) ≤ 2hf (P ) + O(1) for all P ∈ E(K̄),

where the O(1) depends on E, f , and Q.
(b) Let m ∈ Z. Then

hf

(
[m]P

)
= m2hf (P ) + O(1) for all P ∈ E(K̄),

where the O(1) depends on E, f , and m.

PROOF. (a) This follows immediately from (VIII.6.2), since hf (P − Q) ≥ 0.
(b) Since f is even, it suffices to consider m ≥ 0. Further, the result is trivial
for m = 0 and m = 1. We use induction to complete the proof. Suppose that the de-
sired result is known for m − 1 and for m. Replacing P and Q in (VIII.6.2) by [m]P
and P , respectively, we find that
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hf

(
[m + 1]P

)
= −hf

(
[m − 1]P

)
+ 2hf

(
[m]P

)
+ 2hf (P ) + O(1)

=
(
−(m − 1)2 + 2m2 + 2)hf (P ) + O(1) by the induction

hypothesis,
= (m + 1)2hf (P ) + O(1).

This completes the induction proof.

Remark 6.5. It is clear that (VIII.6.2), (VIII.6.3), and (VIII.6.4) are also true for odd
functions f , since then f2 is even, and it is easy to check that hf2 = 2hf . More gen-
erally, although we do not give the proof, our results are true for arbitrary f ∈ K(E)
to “within ε.” Precisely, say for (VIII.6.4b), for every ε > 0 it is true that

(1 − ε)m2hf + O(1) ≤ hf ◦ [m] ≤ (1 + ε)m2hf + O(1),

where now the O(1) depends on E, f , m, and ε. See Exercise 9.14c or, for a general
result, see [139, Chapter 4, Corollary 3.5].
Remark 6.6. We can interprest (VIII.6.2) as saying that the height function hf

is more or less a quadratic form. We will see later (VIII §9) that there is an ac-
tual quadratic form, called the canonical height, that differs from hf by a bounded
amount.

We now have all of the tools needed to complete the proof of the Mordell–Weil
theorem.

Theorem 6.7. (Mordell–Weil theorem) Let K be a number field, and let E/K be
an elliptic curve. Then the group E(K) is finitely generated.

PROOF. Choose any even nonconstant function f ∈ K(E), for example, f could
be the x-coordinate on a Weierstrass equation. The Mordell–Weil theorem follows
immediately from the weak Mordell–Weil theorem (VIII.1.1) with m = 2 and the
descent theorem (VIII.3.1) as soon as we show that the height function

hf : E(K) −→ R

has the following three properties:

(i) Let Q ∈ E(K). There is a constant C1, depending on E, f ,and Q, such that

hf (P + Q) ≤ 2hf (P ) + C1 for all P ∈ E(K).

(ii) There is a constant C2, depending on E and f , such that

hf

(
[2]P

)
≥ 4hf (P ) − C2 for all P ∈ E(K).

(iii) For every constant C3, the set
{
P ∈ E(K) : hf (P ) ≤ C3

}

is a finite set of points.

Here (i) is a restatement of (VIII.6.4a), while (ii) is immediate from the m = 2 case
of (VIII.6.4b), and (iii) is (VIII.6.1). This completes the proof of the Mordell–Weil
theorem.
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VIII.7 Torsion Points
The Mordell–Weil theorem implies that the group of rational torsion points on an
elliptic curve is finite. Of course, this also follows from the corresponding result
for local fields. Since we may view an elliptic curve defined over a number field K
as being defined over the completion Kv for each v ∈ MK , the local integrality
conditions for torsion points (VII.3.4) can be pieced together to give the following
global statement.

Theorem 7.1. Let E/K be an elliptic curve with Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

and assume that a1, . . . , a6 are all in the ring of integers R of K. Let P ∈ E(K) be
a torsion point of exact order m ≥ 2.
(a) If m is not a prime power, then

x(P ), y(P ) ∈ R.

(b) If m = pn is a prime power, then for each v ∈ M0
K we let

rv =
[

ordv(p)
pn − pn−1

]
,

where [ · ] denotes the greatest integer. Then

ordv

(
x(P )

)
≥ −2rv and ordv

(
y(P )

)
≥ −3rv.

In particular, if ordv(p) = 0, then x(P ) and y(P ) are v-integral.

The next corollary was proven independently by Lutz and Nagell, who had dis-
covered divisibility conditions somewhat weaker than those given in (VIII.7.1).

Corollary 7.2. ([152], [190]) Let E/Q be an elliptic curve with Weierstrass equa-
tion

y2 = x3 + Ax + B, A,B ∈ Z.

Suppose that P ∈ E(Q) is a nonzero torsion point.
(a) x(P ), y(P ) ∈ Z.
(b) Either [2]P = O or else y(P )2 divides 4A3 + 27B2.

PROOF. (a) Let P have exact order m. If m = 2, then y(P ) = 0, so x(P ) ∈ Z, since
it is the root of a monic polynomial with integer coefficients. If m > 2, the desired
result follows immediately from (VIII.7.1), since the quantity rv in (VIII.7.1b) is
necessarily 0.
(b) We assume that [2]P �= O, so y(P ) �= 0. Then applying (a) to both P and [2]P ,
we deduce that x(P ), y(P ), x

(
[2]P

)
∈ Z. Let

φ(X) = X4 − 2AX2 − 8BX + A2 and ψ(X) = X3 + AX + B.



VIII.7. Torsion Points 241

Then the duplication formula (III.2.3d) reads

x
(
[2]P

)
=

φ
(
x(P )

)

4ψ
(
x(P )

) .

On the other hand, we have the usual polynomial identity (VIII.4.3)

f(X)φ(X) − g(X)ψ(X) = 4A3 + 27B2,

where f(X) = 3X2 + 4A and g(X) = 3X3 − 5AX − 27B. Setting X = x(P ) and
using the duplication formula and the fact that y(P )2 = ψ

(
x(P )

)
yields

y(P )2
(
4f

(
x(P )

)
x
(
[2]P

)
− g

(
x(P )

))
= 4A3 + 27B2.

Since all of the quantities in this equation are integers, the desired result follows.

Remark 7.3.1. A glance at the proof of (VIII.7.2b) shows that we have proved that
any point P ∈ E(Q) such that x(P ) and x

(
[2]P

)
are both integers has the property

that y(P )2 divides 4A3 + 27B2. The same argument works for number fields. Fur-
ther, even if x(P ) or x

(
[2]P

)
is not integral, any bound on their denominators, for

example as in (VIII.7.1b), gives a corresponding bound for y(P ); see Exercise 8.11.

Remark 7.3.2. Recall from (VII.3.2) that in practice, one of the fastest methods to
bound the torsion in E(K) is to choose various finite places v for which E has good
reduction and use the injection (VII.3.1)

E(Kv)[m] ↪−→ Ẽ(kv),

which is valid for integers m that are prime to char(kv).

Example 7.4. The Weierstrass equation

E : y2 = x3 − 43x + 166

has
4A3 + 27B2 = 425984 = 215 · 13.

Hence any torsion point in E(Q) has its y-coordinate in the set

{0,±1,±2,±4,±8,±16,±32,±64,±128}.

A little bit of work with a calculator reveals the points
{
(3,±8), (−5,±16), (11,±32)

}
.

On the other hand, since E has good reduction modulo 3, we know that Etors(Q)
injects into Ẽ(F3) (cf. VII.3.5), and it is easy to check that #Ẽ(F3) = 7. This
still does not prove anything, since the divisibility condition in (VIII.7.2b) is only
necessary, not sufficient. However, using the doubling formula for P = (3, 8) yields
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x(P ) = 3, x
(
[2]P

)
= −5, x

(
[4]P

)
= 11, x

(
[8]P

)
= 3.

Hence [8]P = ±P , so P is a torsion point of exact order 7 or 9. (Note that it doesn’t
have order 3, since x(P ) �= x

(
[2]P

)
.) From above, the only possibility is order 7,

so we conclude that Etors(Q) is a cyclic group of order 7 consisting of the six listed
points, together with O.

Our discussion thus far has focused on characterizing the torsion subgroup of a
given elliptic curve. Another type of question that one might ask is the following:
given a prime p, does there exist an elliptic curve E/Q such that E(Q) contains a
point of order p? The answer for most primes is no. For example, E(Q) can never
contain a point of order 11, a fact that is by no means obvious. Such a statement,
which deals uniformly with the set of all elliptic curves, naturally tends to be more
difficult to prove than does a result such as (VIII.7.2) in which the bound changes
as the elliptic curve is varied. The definitive characterization of torsion subgroups
over Q is given by the following theorem due to Mazur; the proof is unfortunately
far beyond the scope of this book.

Theorem 7.5. (Mazur [165], [166]) Let E/Q be an elliptic curve. Then the torsion
subgroup Etors(Q) of E(Q) is isomorphic to one of the following fifteen groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12,

Z/2Z × Z/2NZ with 1 ≤ N ≤ 4.

Further, each of these groups occurs as Etors(Q) for some elliptic curve E/Q. (See
Exercise 8.12 for an example of each possible group.)

Mazur’s theorem was generalized to number fields of degree up to 14 by Kami-
enny and others [2, 121, 122], and then the general case was settled by Merel.

Theorem 7.5.1. (Merel [170]) For every integer d ≥ 1 there is a constant N(d)
such that for all number fields K/Q of degree at most d and all elliptic curves E/K,

∣
∣Etors(K)

∣
∣ ≤ N(d).

Remark 7.6. Prior to the proof of Merel’s theorem (VIII.7.5.1), Manin [155] used
a completely different method to show that for any fixed prime p, the p-primary
component of Etors(K) may be bounded in terms of K and p.
Remark 7.8. For those torsion subgroups that are allowed by Mazur’s theorem
(VIII.7.5), it is a classical result that the elliptic curves having the specified tor-
sion subgroup lie in a one-parameter family. For example, the curves E/K with a
point P ∈ E(K) of order 7 all have Weierstrass equations of the form

y2 + (1 + d − d2)xy + (d2 − d3)y = x3 + (d2 − d3)x2, P = (0, 0),

with
d ∈ K and Δ = d7(d − 1)7(d3 − 8d2 + 5d + 1) �= 0.

See Exercise 8.13a,b for a derivation and [132] for a complete list of such formulas.
In general, the elliptic curves E/K with a point P ∈ E(K) of order m ≥ 4 are
parametrized by the K-rational points of another curve, called a modular curve; see
Exercise 8.13c and (C §13).
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VIII.8 The Minimal Discriminant
Let E/K be an elliptic curve. For each nonarchimedean absolute value v ∈ M0

K we
choose a Weierstrass equation for E,

y2
v + a1,vxvyv + a3,vyv = x3

v + a2,vx2
v + a4,vxv + a6,v,

that is a minimal equation for E at v. In other words, all of the ai,v satisfy

ordv(ai,v) ≥ 0,

and subject to this condition, the discriminant Δv of the equation has valuation
ordv(Δv) that is as small as possible.

Definition. The minimal discriminant of E/K, denoted by DE/K , is the (integral)
ideal of K given by

DE/K =
∏

v∈M0
K

pordv(Δv)
v .

Here pv is the prime ideal of R associated to v. Thus DE/K catalogs the valuation of
the minimal discriminant of E at every place v ∈ M0

K . It measures, in some sense,
the arithmetic complexity of the elliptic curve E.

We now ask whether it is possible to find a single Weierstrass equation that is
simultaneously minimal for every v ∈ M0

K . Let

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

be any Weierstrass equation for E/K, say with discriminant Δ. For each v ∈ M0
K

we can find a change of coordinates

x = u2
vxv + rv, y = u3

vyv + svu2
vxv + tv,

that transforms the initial equation into an equation that is minimal at v. As usual,
the discriminants of the two equations are related by

Δ = u12
v Δv.

Hence if we define an ideal

aΔ =
∏

v∈M0
K

p− ordv(uv)
v ,

then the minimal discriminant is related to Δ via the formula

DE/K = (Δ)a12
Δ .

Lemma 8.1. With notation as above, the ideal class in K of the ideal aΔ is indepen-
dent of Δ.
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PROOF. Suppose that we take a different Weierstrass equation for E over K, say
with discriminant Δ′. Then Δ = u12Δ′ for some u ∈ K∗, so directly from the
definitions we see that

(Δ′)a12
Δ′ = DE/K = (Δ)a12

Δ = (Δ′)
(
(u)aΔ

)12
.

Hence aΔ′ = (u)aΔ, so aΔ′ and aΔ are in the same ideal class.

Definition. The Weierstrass class of E/K, denoted by āE/K , is the ideal class in K
corresponding to any ideal aΔ as above.

Definition. A global minimal Weierstrass equation for E/K is a Weierstrass equa-
tion

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

for E/K such that a1, a2, a3, a4, a6 ∈ R and such that the discriminant Δ of the
equation satisfies DE/K = (Δ).

Proposition 8.2. There exists a global minimal Weierstrass equation for E/K if and
only if āE/K = (1).

PROOF. Suppose that E/K has a global minimal Weierstrass equation, say with
discriminant Δ. Then DE/K = (Δ), so with notation as above, for any v ∈ M0

K we
have

12 ordv(aΔ) = ordv(DE/K) − ordv(Δ) = 0.

Hence aΔ = (1), so āE/K = (class of aΔ) = (1).
Conversely, suppose that āE/K = (1). Choose any Weierstrass equation

for E/K having a1, . . . , a6 ∈ R, and let Δ be the discriminant of this chosen
equation. For each v ∈ M0

K , let

x = u2
vxv + rv, y = u3

vyv + svu2
vxv + tv,

be a change of variables that produces a minimal equation at v, say with coeffi-
cients a1,v, . . . , a6,v and discriminant Δv . Letting

S =
{
v ∈ M0

K : ordv(Δ) �= 0
}
,

the chosen equation is already minimal for all v /∈ S, so we may take uv = 1
and rv = sv = tv = 0 for v /∈ S. Note that S is a finite set. Further, from (VII.1.3d),
we see that uv, rv, sv, tv are v-integral for all v ∈ M0

K .
The assumption that āE/K = (1) means that the ideal

∏

v∈M0
K

pordv(uv)
v

is principal, say generated by u ∈ K∗. This means that

ordv(u) = ordv(uv) for all v ∈ M0
K .
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We use the Chinese remainder theorem [142, Chapter I, Section 4] to find elements
r, s, t ∈ R such that for all v ∈ S we have

ordv(r − rv), ordv(s − sv), ordv(t − tv) > max
i=1,2,3,4,6

ordv(ui
vai,v).

Now consider the new Weierstrass equation for E/K given by the change of
coordinates

x = u2x′ + r, y = u3y′ + su2x′ + t,

having coefficients a′
1, . . . , a

′
6 and discriminant Δ′. Then Δ = u12Δ′, so

ordv(Δ′) = ordv(u−12Δ) = ordv

(
(uv/u)12Δv

)
= ordv(Δv).

Thus the discriminant of the new equation is minimal at all v ∈ M0
K , so in order

to verify that it is a global minimal equation, we must show that all of its coeffi-
cients are integral. This is easily checked using the coefficient transformation for-
mulas (III.1.2). If v /∈ S, then ordv(u) = 0, so each a′

i is v-integral since it is a
polynomial in r, s, t, a1, . . . , a6. For v ∈ S we illustrate the argument for a′

2, the
other coefficients being done similarly. Thus

ordv(u2a′
2) = ordv(a2 − sa1 + 3r − s2)

= ordv

(
u2

va2,v − (s − sv)(a1 + s + sv) + 3(r − rv)
)

= ordv(u2
va2,v),

where the last line follows from the previous one by our choice of r and s and the
nonarchimedean nature of v. Since

ordv(u) = ordv(uv) and ordv(a2,v) ≥ 0,

this gives the desired result.

Corollary 8.3. If K has class number one, then every elliptic curve E/K has a
global minimal Weierstrass equation. In particular, this is true for K = Q.

The converse to (VIII.8.3) is also true; see Exercise 8.14.

Example 8.4. The Weierstrass equation

E : y2 = x3 + 16

has discriminant Δ = −21233 and it is not minimal at 2. The substitution

x = 4x′, y = 8y′ + 4,

gives the global minimal equation

(y′)2 + y′ = (x′)3.
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Example 8.5. Let K = Q(
√
−10 ), so K has class number 2, the class group being

generated by the prime ideal p = (5,
√
−10 ). Let E/K be the elliptic curve given

by the equation
E : y2 = x3 + 125.

This equation has discriminant Δ = −243356, so (VII.1.1) tells us that it is already
minimal at every prime of K except possibly at the prime p lying over (5). For p, the
change of coordinates

x = (
√
−10 )2x′, y = (

√
−10 )3y′

gives an equation

(y′)2 = (x′)3 − 1
8

that has good reduction at p. Hence

DE/K = (2433) and āE/K = (ideal class of p).

Since āE/K is not principal, (VIII.8.2) tells us that E/K does not have a global
minimal Weierstrass equation.

Remark 8.6. If K has class number one and E/K is an elliptic curve, then we can
construct a global minimal Weierstrass equation for E/K by finding local minimal
equations, e.g., by using Tate’s algorithm [266, IV §9], [283], and then following the
proof of (VIII.8.2). There is also an algorithm, due to Laska [146], that is fast and
easy to implement on a computer.

Even if R has class number greater than one, it is often useful to know that an
elliptic curve E/K has a global Weierstrass equation that is, in some sense, “almost
minimal.” The following proposition gives one possibility; see Exercise 8.14c for
another.

Proposition 8.7. Let S ⊂ MK be a finite set of absolute values containing M∞
K and

all finite places dividing 2 and 3. Assume further that the ring of S-integers RS is a
principal ideal domain. Then every elliptic curve E/K has a Weierstrass equation
of the form

E : y2 = x3 + Ax + B

with A,B ∈ RS and discriminant Δ = −16(4A3 + 27B2) satisfying

DE/KRS = ΔRS .

(Such a Weierstrass equation might be called S-minimal.)

PROOF. Choose any Weierstrass equation for E/K of the form

E : y2 = x3 + Ax + B,

and let Δ = −16(4A3 + 27B2). For each v ∈ MK with v /∈ S, choose uv ∈ K∗

such that the substitution
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x = u2
vx

′, y = u3
vy

′,

gives a minimal equation at v. Then

v(DE/K) = v(Δ) − 12v(uv) for all v ∈ MK with v /∈ S.

Since RS is a principal ideal domain, we can find an element u ∈ K∗ satisfying

v(u) = v(uv) for all v ∈ MK with v /∈ S.

Then the equation

E : y2 = x3 + u−4Ax + u−6B

has the desired property.

VIII.9 The Canonical Height

Let E/K be an elliptic curve, and let f ∈ K(E) be an even function. We saw
in (VIII.6.1) and (VIII.6.4) that the height function hf is more or less a quadratic
form, at least “up to O(1).” André Néron asked whether one could find an actual
quadratic form that differs from hf by a bounded amount. He constructed such a
function by writing it as a sum of “quasi-quadratic” local functions [194]. At the
same time, John Tate gave a simpler global definition. In this section we describe
Tate’s construction. (For a discussion of local height functions, see (C §18) or [266,
Chapter VI].)

Proposition 9.1. (Tate) Let E/K be an elliptic curve, let f ∈ K(E) be a noncon-
stant even function, and let P ∈ E(K̄). Then the limit

1
deg(f)

lim
N→∞

4−Nhf

(
[2N ]P

)

exists and is independent of f .

PROOF. We prove that the limit exists by showing that the sequence is Cauchy. Ap-
plying (VIII.6.4b) with m = 2, there is a constant C such that for all Q ∈ E(K̄),

∣
∣hf

(
[2]Q

)
− 4hf (Q)

∣
∣ ≤ C.

For integers N ≥ M ≥ 0 we use a telescoping sum argument to estimate
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∣
∣
∣4−Nhf

(
[2N ]P

)
− 4−Mhf

(
[2M ]P

)∣∣
∣

=

∣
∣
∣
∣
∣

N−1∑

n=M

4−n−1hf

(
[2n+1]P

)
− 4−nhf

(
[2n]P

)
∣
∣
∣
∣
∣

≤
N−1∑

n=M

4−n−1
∣
∣
∣hf

(
[2n+1]P

)
− 4hf

(
[2n]P

)∣∣
∣

≤
N−1∑

n=M

4−n−1C taking Q = [2n]P above,

≤ 4−MC.

This shows that the sequence 4−Nhf

(
[2N ]P

)
is Cauchy, hence it converges.

Next let g ∈ K(E) be another nonconstant even function. Then from (VIII.6.3)
we have

(deg g)hf = (deg f)hg + O(1),

so
4−Nhf

(
[2N ]P

)

deg(f)
−

4−Nhg

(
[2N ]P

)

deg(g)
= O(4−N ) −−−−→

N→∞
0.

Hence the limit does not depend on the choice of the function f .

Definition. The canonical (or Néron–Tate) height on E/K, denoted by ĥ or ĥE , is
the function

ĥ : E(K̄) −→ R

defined by

ĥ(P ) =
1

deg(f)
lim

N→∞
4−Nhf

(
[2N ]P

)
,

where f ∈ K(E) is any nonconstant even function.

Remark 9.2. From (VIII.9.1), the canonical height is well-defined and independent
of the choice of f . We remark that some authors use a canonical height that is equal
to 2ĥ. This is more natural in some contexts, for example it eliminates a power of 2
in the statement of the conjecture of Birch and Swinnerton-Dyer (C.16.5).

Theorem 9.3. (Néron, Tate) Let E/K be an elliptic curve, and let ĥ be the canoni-
cal height on E.
(a) For all P,Q ∈ E(K̄) we have

ĥ(P + Q) + ĥ(P − Q) = 2ĥ(P ) + 2ĥ(Q) (parallelogram law).

(b) For all P ∈ E(K̄) and all m ∈ Z,

ĥ
(
[m]P

)
= m2ĥ(P ).
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(c) The canonical height ĥ is a quadratic form on E, i.e., ĥ is an even function, and
the pairing

〈 · , · 〉 : E(K̄) × E(K̄) −→ R,

〈P,Q〉 = ĥ(P + Q) − ĥ(P ) − ĥ(Q),

is bilinear.
(d) Let P ∈ E(K̄). Then ĥ(P ) ≥ 0, and

ĥ(P ) = 0 if and only if P is a torsion point.

(See also Exercise 8.6.)
(e) Let f ∈ K(E) be an even function. Then

(deg f)ĥ = hf + O(1),

where the O(1) depends on E and f .

Further, if ĥ′ : E(K̄) → R is any other function satisfying (e) for some nonconstant
even function f and satisfying (b) for some integer m ≥ 2, then ĥ′ = ĥ.

PROOF. We start with (e) and then return to (a)–(d).
(e) In the course of proving (VIII.9.1) we found a constant C, depending on f , such

that for all integers N ≥ M ≥ 0 and all points P ∈ E(K̄),
∣
∣
∣4−Nhf

(
[2N ]P

)
− 4−Mhf

(
[2M ]P

)∣∣
∣ ≤ 4−MC.

Taking M = 0 and letting N → ∞ gives the desired estimate
∣
∣(deg f)ĥ(P ) − hf (P )

∣
∣ ≤ C.

(a) From (VIII.6.2) we have

hf (P + Q) + hf (P − Q) = 2hf (P ) + 2hf (Q) + O(1).

We replace P and Q by [2N ]P and [2NQ], respectively, divide by (deg f)4N , and
let N → ∞. The O(1) term disappears and we obtain

ĥ(P + Q) + ĥ(P − Q) = 2ĥ(P ) + 2ĥ(Q).

(b) From (VIII.6.4b) we have

hf

(
[m]P

)
= m2hf (P ) + O(1).

As usual, we replace P by [2N ]P , divide by 4N , and let N → ∞. (Alternative proof:
Use (a) and induction on m.)
(c) It is a standard fact from linear algebra that a function satisfying the parallelo-

gram law is quadratic. For completeness, we include a proof.
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Putting P = O in the parallelogram law (a) shows that ĥ(−Q) = ĥ(Q), so ĥ is
even. By symmetry, it suffices to prove that

〈P + R,Q〉 = 〈P,Q〉 + 〈R,Q〉,

which in terms of ĥ is

ĥ(P + Q + R)− ĥ(P + R)− ĥ(P + Q)− ĥ(R + Q) + ĥ(P ) + ĥ(Q) + ĥ(R) = 0.

Four applications of the parallelogram law and the evenness of ĥ yield

ĥ(P + R + Q) + ĥ(P + R − Q) − 2ĥ(P + R) − 2ĥ(Q) = 0,

ĥ(P − R + Q) + ĥ(P + R − Q) − 2ĥ(P ) − 2ĥ(R − Q) = 0,

ĥ(P − R + Q) + ĥ(P + R + Q) − 2ĥ(P + Q) − 2ĥ(R) = 0,

2ĥ(R + Q) + 2ĥ(R − Q) − 4ĥ(R) − 4ĥ(Q) = 0.

The alternating sum of these four equations is the desired result.
(d) The first conclusion is clear, since hf (P ) ≥ 0 for all functions f and all
points P , so ĥ(P ) is a limit of nonnegative values. For the second, we observe that
one implication is immediate, since if P is a torsion point, then [2N ]P takes on only
finitely many values as N varies, so 4−Nhf

(
[2N ]P

)
→ 0 as N → ∞.

Conversely, let P ∈ E(K ′) for some finite extension K ′/K, and suppose
that ĥ(P ) = 0. Then

ĥ
(
[m]P

)
= m2ĥ(P ) = 0 for every integer m,

so from (e) there is a constant C such that for all m ∈ Z,

hf

(
[m]P

)
=

∣
∣
∣(deg f)ĥ

(
[m]P

)
− hf

(
[m]P

)∣∣
∣ ≤ C.

Thus the set
{
P, [2]P, [3]P, . . .

}
is contained in

{
Q ∈ E(K ′) : hf (Q) ≤ C

}
.

Now (VIII.6.1) tells us that this set of bounded height is a finite set, so P must have
finite order.

This completes the proof of (a)–(e). Finally, to prove uniqueness, suppose that
there are an integer m ≥ 2 and a nonconstant even function f such that ĥ′ satisfies

ĥ′ ◦ [m] = m2ĥ′ and (deg f)ĥ′ = hf + O(1).

Repeated application of the first equality yields

ĥ′ ◦ [mN ] = m2N ĥ′ for N = 1, 2, 3, . . . .

Further, since ĥ satisfies (e), we have
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ĥ′ − ĥ = O(1).

Hence for any point P ∈ E(K̄) we have

ĥ′(P ) = m−2N ĥ′([mN ]P
)

= m−2N
(
ĥ
(
[mN ]P

)
+ O(1)

)

= ĥ(P ) + O(m−2N ) since ĥ satisfies (b).

Letting N → ∞ yields ĥ′(P ) = ĥ(P ).

Remark 9.4. The Mordell–Weil theorem implies that E(K) ⊗ R is a finite-dimen-
sional real vector space, and (VIII.9.3cd) implies that ĥ is a positive definite quadratic
form on the quotient space E(K)/Etors(K), where Etors(K) denotes the torsion
subgroup of E(K). The quotient E(K)/Etors(K) sits as a lattice in the vector
space E(K)⊗R, so it would appear to be clear that the extension of ĥ to E(K)⊗R

is also positive definite. This is true, but as was pointed out by Cassels, one must use
more than just (VIII.9.3cd).

Lemma 9.5. Let V be a finite-dimensional real vector space and let L ⊂ V be a
lattice, i.e., L is a discrete subgroup of V containing a basis for V . Let q : V → R

be a quadratic form, and suppose that q has the following properties:
(i) For P ∈ L, we have q(P ) = 0 if and only if P = 0.

(ii) For every constant C, the set

{P ∈ L : q(P ) ≤ C}

is finite.
Then q is positive definite on V .

PROOF. Choose a basis for V such that for a vector x = (x1, . . . , xr) ∈ V , the
quadratic form q has the form

q(x) =
s∑

i=1

x2
i −

t∑

i=1

x2
s+i,

where s + t ≤ r = dim(V ). For the existence of such a basis, see for example [143,
Chapter XIV, §§3,7] or [296, §12.7]. Using this basis to identify V ∼= Rn as R-vector
spaces, we let μ be the measure on V corresponding to the usual measure on Rn. We
apply the following basic result due to Minkowski:

Let B ⊂ V be a convex set that is symmetric about the origin. If μ(B)
is sufficiently large, then B contains a nonzero lattice point.

For a proof of Minkowski’s result, see for example [108, Theorem 447] or [142,
Chapter 5, Section 3]. Now consider the set
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B(ε, δ) =

{

x = (x1, . . . , xr) ∈ V :
s∑

i=1

x2
i ≤ ε and

t∑

i=1

x2
s+i ≤ δ

}

.

The set B(ε, δ) is convex and symmetric about the origin. Further, let

λ = inf
{
q(P ) : P ∈ L, P �= 0

}
.

From (i) and (ii) we have λ > 0.
Now suppose that q is not positive definite on V , so s < r. Then Minkowski’s

theorem tells us that if δ is sufficiently large, then B
(

1
2λ, δ

)
contains a nonzero

lattice point P . (The volume of B
(

1
2λ, δ

)
is infinite if s + t < r, and it grows

like δt/2 as δ → ∞ if s + t = r.) But the point P satisfies

q(P ) =
s∑

i=1

x2
i −

t∑

i=1

x2
i+s ≤ 1

2
λ,

contradicting the definition of λ. Therefore q is positive definite on V .

Proposition 9.6. The canonical height extends to a positive definite quadratic form
on the real vector space E(K) ⊗ R.

PROOF. We consider the lattice E(K)/Etors(K) inside the vector space E(K) ⊗ R

and apply (VIII.9.5) to get the desired result. Condition (i) of (VIII.9.5) is ex-
actly (VIII.9.3cd). Condition (ii) of (VIII.9.5) follows from (VIII.9.3e), which says
that bounding ĥ is the same as bounding hf , and then applying (VIII.6.1).

We now have the following quantities associated to E/K:

E(K) ⊗ R a finite-dimensional vector space.

ĥ a positive definite quadratic form on E(K) ⊗ R.
E(K)/Etors(K) a lattice in E(K) ⊗ R.

In such a situation, an extremely important invariant is the volume of a fundamental
domain for the lattice, computed with respect to the metric induced by the quadratic
form. For example, the discriminant of a number field K is the volume of its ring
of integers with respect to the quadratic form x �→ TraceK/Q(x2). Similarly, the
regulator of K is the volume of its unit group via the logarithm mapping and the
usual metric on Euclidean space.

Definition. The canonical height (or Néron–Tate) pairing on E/K is the bilinear
form

〈 · , · 〉 : E(K̄) × E(K̄) −→ R,

defined by
〈P,Q〉 = ĥ(P + Q) − ĥ(P ) − ĥ(Q).
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Definition. The elliptic regulator of E/K, denoted by RE/K , is the volume of a
fundamental domain for E(K)/Etors(K) computed using the quadratic form ĥ. In
other words, choose points P1, . . . , Pr ∈ E(K) that generate E(K)/Etors(K), and
then

RE/K = det
(
〈Pi, Pj〉

)
1≤i≤r
1≤j≤r

.

(If r = 0, we set RE/K = 1 by convention.)

An immediate corollary of (VIII.9.6) is the following result.

Corollary 9.7. The elliptic regulator satisfies RE/K > 0.

Remark 9.8. We have defined the elliptic regulator using the absolute height, but
there are situations in which it is more convenient to define the height relative to a
given number field K. The regulator relative to K differs from RE/K by a factor
of [K : Q]r.

Since ĥ(P ) > 0 for all nontorsion points P ∈ E(K), it is natural to ask how
small ĥ(P ) can be if it is not zero. One might guess that ĥ(P ) must be large if the
elliptic curve is “complicated” in some sense. The following precise conjecture is a
strengthened version of a conjecture of Lang [135, page 92].

Conjecture 9.9. Let E/K be an elliptic curve with j-invariant jE and minimal
discriminant DE/K . There is a constant C > 0, depending only on [K : Q], such
that for all nontorsion points P ∈ E(K) we have

ĥ(P ) > C max
{
h(jE), log NK/Q DE/K , 1

}
.

Note that the strength of the conjecture lies in the fact that the constant c is inde-
pendent of both the elliptic curve E and the point P . Such estimates have applications
to counting integral points on elliptic curves; see (IX.3.6). We briefly summarize
what is currently known about (VIII.9.9).

Theorem 9.10. Let E/K, jE , and DE/K be as in (VIII.9.9). Then the height in-
equality

ĥ(P ) > C max
{
h(jE), log NK/Q DE/K , 1

}

is valid for the following choices of C:
(a) (Silverman [254], [260]) Let ν(E) be the number of places v ∈ M0

K such
that ordv(jE) < 0, i.e., the number of primes dividing the denominator of jE .
Then C > 0 may be chosen to depend only on [K : Q] and ν(E).

(b) (Hindry–Silverman [113]) Assume that the ABC conjecture1 is true for the
field K. Then C > 0 may be chosen to depend only on [K : Q] and on the
exponent and constant appearing in the ABC conjecture.

The proof of (VIII.9.10) is beyond the scope of this book, but see Exercise 8.17 for
a special case.

1The ABC conjecture is described in (VIII.11.4), (VIII.11.6). It suffices to assume that the ABC
conjecture is true for some fixed exponent, or equivalently, that Szpiro’s conjecture (VIII.11.1) is true for
some fixed exponent.
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VIII.10 The Rank of an Elliptic Curve
The Mordell–Weil theorem (VIII.6.7) says that the Mordell–Weil group E(K) of an
elliptic curve can be written in the form

E(K) ∼= Etors(K) × Zr.

As we have seen in (VIII §7), the torsion subgroup Etors(K) is relatively easy to
compute, both in theory and in practice. The rank r is much more mysterious, and an
effective procedure for determining it in all cases is still being sought. There are very
few general facts known concerning the rank of elliptic curves, but there are a large
number of fascinating conjectures. In Chapter X we describe some of the methods
that have been developed for actually computing the group E(K).

The rank of a “randomly chosen” elliptic curve over Q tends to be quite small,
and it is difficult to produce curves E/Q having even moderately high rank. Nonethe-
less, there is the following folklore conjecture:

Conjecture 10.1. There exist elliptic curves E/Q of arbitrarily large rank.

A key piece of evidence for this conjecture comes from work of Shafarevich and
Tate [244], who show that the analogous result is true for function fields, i.e., with Q

replaced by the field of rational functions Fp(T ). The Shafarevich–Tate construc-
tion leads to curves with constant j-invariant jE ∈ Fp, but subsequent constructions
by Shioda [251] for F̄p(T ) and Ulmer [295] for Fp(T ) give examples with noncon-
stant j-invariant.

Néron constructed an infinite family of elliptic curves over Q having rank at
least 10 [192], and later authors have constructed families of rank up to 19; see
for example [76, 85, 188]. Within these families, clever search techniques due to
Mestre [171] and others have yielded individual curves of higher rank. For example,
Elkies [76] has produced the elliptic curve

y2 + xy + y = x3 − x2

− 20067762415575526585033208209338542750930230312178956502x
+ 3448161179503055646703298569039072037485594435931918

0361266008296291939448732243429

with rankE(Q) ≥ 28.
Attached to an elliptic curve E/K is a certain Dirichlet series LE/K(s) called

the L-series of E/K; see Exercise 8.19. or (C §16). For the moment, it is enough to
know that the definition of LE/K(s) involves only the number of points on the reduc-
tions Ẽ(kv) for the finite places v ∈ M0

K . There is a famous conjecture of Birch and
Swinnerton-Dyer that says that the order of vanishing of LE/K(s) at s = 1 is exactly
equal to the rank of E(K). The conjecture further asserts that the leading coefficient
in the Taylor series expansion of LE/K(s) around s = 1 should be expressible in
terms of various global arithmetic quantities associated to E(K), including the el-
liptic regulator RE/K . Thus in some sense, the conjecture of Birch and Swinnerton-
Dyer is a local–global principle for elliptic curves, since it hypothetically shows how
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information about the v-adic behavior of E for all places v ∈ MK determines global
information such as the rank of E(K) and the elliptic regulator RE/K . For further
discussion of L-series and the conjecture of Birch and Swinnerton-Dyer, including
some progress toward proving it, see (C §16).

In addition to wanting an effective method for computing the rank of an elliptic
curve, it would be good to have a theoretical bound for the size of a generating
set. Based partly on an analogy with the problem of computing generators for the
unit group in a number field and partly on a number of deep conjectures in analytic
number theory, Serge Lang suggested the following estimate.

Conjecture 10.2. (Lang [138], [141, Conjecture III.6.4]) Let ε > 0 and let E/Q be
an elliptic curve of rank r. Then there is a basis P1, . . . , Pr for the free part of E(Q)
satisfying

max
1≤i≤r

ĥ(Pi) ≤ Cr2

ε |DE/Q|
1
12+ε.

Here ĥ is the canonical height on E (VIII §9), DE/Q is the minimal discriminant
of E/Q (VIII §8), and Cε is a constant depending only on ε.

Lang’s conjecture is actually more precise than (VIII.10.2); see [138] or [141, Con-
jecture III.6.4].

Since ĥ is a logarithmic height, the conjecture says that the x-coordinates of
the generators may grow exponentially with the discriminant of the curve. This is
similar to the way in which the height H(u) of a generator for the unit group in a
real quadratic field often grows exponentially with the discriminant of the field. Of
course, it is easy to chose a sequence of fields such that H(u) grows polynomially,
but on average, one expects the growth to be exponential. The following example of
Bremner and Cassels illustrates this exponential behavior. They show that the curve

y2 = x3 + 877x

has rank 1 and that the x-coordinate of the smallest generator P is

x(P ) =
(

612776083187947368101
78841535860683900210

)2

.

We compute
log ĥ(P )

log |DE/Q|
≈ 0.158,

so this example is roughly in the range suggested by Lang’s conjecture.

VIII.11 Szpiro’s Conjecture and ABC

For ease of exposition, we restrict attention in this section to elliptic curves defined
over Q. Let E/Q be such a curve, and let

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6
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be a global minimal Weierstrass equation (VIII.8.3) for E/Q. The discriminant ΔE

of this equation is then the minimal discriminant of E/Q, or, more properly, the
minimal discriminant of E/Q is the ideal generated by ΔE .

The primes dividing ΔE are the primes for which E has bad reduction. There is
another quantity associated to E that also encodes the primes of bad reduction. It is
called the conductor of E and is denoted by NE . The following definition of NE

is not quite correct, but suffices for our purposes. We write NE as a product

NE =
∏

p prime

pfp(E),

where

fp(E) =

⎧
⎪⎨

⎪⎩

0 if E has good reduction at p,
1 if E has multiplicative reduction at p,
2 if E has additive reduction at p.

(For p = 2 or 3, if E has additive reduction, then fp(E) may be greater than 2, but in
any case it always satisfies f3(E) ≤ 3 and f2(E) ≤ 5. See [266, IV §10] for further
information about the conductor of an elliptic curve.)

Roughly speaking, the conductor NE is the product of the primes at which E
has bad reduction raised to small powers, while the discriminant ΔE is a product of
the same primes, but they may sometimes appear to large powers. A deep conjecture
made by Szpiro in 1983 says that although an occasional prime may appear in ΔE

to a high power, most primes do not.

Conjecture 11.1. (Szpiro’s conjecture) For every ε > 0 there exists a κε such that
for all elliptic curves E/Q,

|ΔE | ≤ κεN
6+ε
E .

Although the statement of (VIII.11.1) seems relatively innocuous, the next result
gives some indication of its strength.

Proposition 11.2. Szpiro’s conjecture (easily) implies Fermat’s last theorem for all
sufficiently large exponents, i.e., if n is sufficiently large, then the Fermat equa-
tion an + bn = cn has no solutions with a, b, c ∈ Z and abc �= 0.

PROOF. Suppose that an + bn = cn with a, b, c ∈ Z and abc �= 0. We consider the
elliptic curve (sometimes called a Frey curve)

E : y2 = x(x + an)(x − bn).

This Weierstrass equation for E has discriminant

Δa,b,c = 16a2nb2n(an + bn)2 = 16(abc)2n.

The minimal discriminant of E/Q, which for notational clarity we denote by Δmin
E ,

may be somewhat smaller than Δa,b,c, but it cannot be too much smaller. More pre-
cisely, we prove below (VIII.11.3a) that the minimal discriminant of E/Q satisfies
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|Δmin
E | ≥ |abc|2n

28
.

Szpiro’s conjecture (VIII.11.1) relates the minimal discriminant Δmin
E to the con-

ductor NE , where we observe that the conductor has the trivial upper bound

NE =
∏

p|2abc

pfp(E) ≤
∏

p|2abc

p2 ≤ |2abc|2.

Szpiro’s conjecture with ε = 1 gives

|abc|2n

28
≤ |Δmin

E | ≤ κN7
E ≤ κ|2abc|14

for an absolute constant κ. Thus

|abc|2n−14 ≤ 222κ,

and since we certainly have |abc| ≥ 2, this inequality yields an absolute upper bound
for n. Hence if n is sufficiently large, then the equation an+bn = cn has no solutions
in nonzero integers.

Lemma 11.3. Let A,B,C ∈ Z be nonzero integers satisfying

A + B = C and gcd(A,B,C) = 1,

and let E/Q be the elliptic curve

E : y2 = x(x + A)(x − B).

(a) The minimal discriminant ΔE of E is given by either

|ΔE | = 24|ABC|2 or |ΔE | = 2−8|ABC|2.

In particular,
|ΔE | ≥ 2−8|ABC|2.

(b) The curve E has multiplicative reduction modulo p for all odd primes divid-
ing ABC.

PROOF. (a) The given Weierstrass equation for E has discriminant

Δ = 16A2B2(A + B)2 = 16A2B2C2

and associated quantities

c4 = 16(A2 + AB + B2) and c6 = −32(2A3 + 3A2B + 3AB2 + 2B3).

Let x = u2x′ + r and y = u3y′ + u2sx′ + t be a change of variables that creates
a global minimal Weierstrass equation for E; see (VIII.8.3). Applying (VII.1.3d)
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one prime at a time, we deduce that u, r, s, t ∈ Z. The change of variable formulas
in (III §1) then imply that

u4 | c4 and u6 | c6.

A simple resultant or Euclidean algorithm calculation gives the identities

(22A2 − 8AB − 8B2)c4 + (A + 2B)c6 = 288A2,

−(8A2 + 8AB − 22B2)c4 − (2A + B)c6 = 288B2.

Hence, using the assumption that gcd(A,B) = 1, we find that

u4 | gcd(288A4, 288B4) = 288 = 25 · 32,

from which it follows that u = 1 or 2. Therefore the absolute value of the minimal
discriminant ΔE of E/Q,

|ΔE | = |u−12Δ| = |u−12(4ABC)2|,

is equal to either 16|ABC|2 or 2−8|ABC|2.
(b) We recall from (a) that the c4 value and the discriminant Δ of the Weierstrass
equation y2 = x(x + A)(x − B) are

c4 = 16(A2 + AB + B2) and Δ = 16A2B2C2.

For any prime p, we have from (VII.5.1) that

E has good reduction if p � Δ,
E has multiplicative reduction if p | Δ and p � c4,
E has additive reduction if p | Δ and p | c4.

Let p be an odd prime dividing Δ. If p | A or p | B, then the assumption that
gcd(A,B) = 1 implies that p � c4, so E has multiplicative reduction at p. Similarly,
if p | C, so A + B ≡ 0 (mod p), then c4 ≡ 16A2 (mod p), and hence again p � c4

and E has multiplicative reduction at p.

Szpiro’s conjecture is closely related to the ABC conjecture that was proposed
by Masser and Oesterlé in 1985; see [196, Part I].

The ABC Conjecture 11.4. (Masser–Oesterlé) For every ε > 0 there exists a
constant κε such that for all nonzero integers A,B,C ∈ Z satisfying

A + B = C and gcd(A,B,C) = 1,

we have

max
{
|A|, |B|, |C|

}
≤ κε

(
∏

p|ABC

p

)1+ε

.

(The product is over all primes dividing ABC.)
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The intuition behind the ABC conjecture is that in any sum of three relatively
prime integers, it is not possible for all three terms to be divisible by many high prime
powers. It is not hard to show that the ABC conjecture implies Szpiro’s conjecture,
and the converse is also true if one allows a slightly larger exponent.

Proposition 11.5. (a) If Szpiro’s conjecture (VIII.11.1) is true, then the ABC con-
jecture (VIII.11.4) is true with exponent 3

2 . (See also Exercise 8.20.)
(b) The ABC conjecture implies Szpiro’s conjecture.

PROOF. (a) Let A,B,C be as in the statement of Szpiro’s conjecture. Relabeling if
necessary, we may assume that C > B > A > 0, so in particular

2B > A + B = C.

We consider the elliptic curve

E : y2 = x(x + A)(x − B).

From (VIII.11.3a) we know that the minimal discriminant of E satisfies

|ΔE | ≥ 2−8(ABC)2.

On the other hand, we know from (VIII.11.3b) that E has multiplicative reduction at
all odd primes of bad reduction, so directly from the definition of the conductor,

NE = 2e
∏

p≥3
p|ABC

p for some e ≤ 2.

Applying Szpiro’s conjecture to E, we deduce that for every ε > 0 there is
a κε > 0 such that

2−8(ABC)2 ≤ |ΔE | ≤ κεN
6+ε
E ≤ κε212+2ε

∏

p|ABC

p6+ε.

Using the fact that A ≥ 1 and B > 1
2C yields

2−10C4 ≤ κε212+2ε
∏

p|ABC

p6+ε,

and taking fourth roots gives the ABC conjecture with exponent 3
2 .

(b) Let E/Q be an elliptic curve given by a minimal Weierstrass equation. Then as
described in (III §2), the discriminant and associated quantities c4 and c6 are related
by the formula

1728Δ = c3
4 − c2

6.

We will prove (b) under the assumption that gcd(c3
4, c

2
6) = 1 and leave the general

case as an exercise for the reader; see Exercise 8.21. This assumption allows us to
apply the ABC conjecture with
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A = c3
4, B = −c2

6, and C = Δ,

which yields
max

{
|c3

4|, |c2
6|, |Δ|

}
≤ κε

∏

p|c4c6Δ

p1+ε.

The product on the right is clearly smaller than |c4c6NE |1+ε, so we obtain the fol-
lowing three inequalities:

|c4|2−ε ≤ κε|c6NE |1+ε,

|c6|1−ε ≤ κε|c4NE |1+ε,

|Δ| ≤ κε|c4c6NE |1+ε.

We are going to take an appropriate (multiplicative) linear combination of these
inequalities to eliminate c4 and c6. To do this, we raise the first inequality to
the 2 + 2ε power, raise the second inequality to the 3 + 3ε power, raise the third
inequality to the 1 − 5ε power, and multiply the resulting three inequalities. Cancel-
ing |c4|4+2ε−2ε2 |c6|3−3ε2 from both sides yields

|Δ|1−5ε ≤ κ6
εN

6+6ε
E .

This is Szpiro’s conjecture, up to adjusting the ε.

Remark 11.6. It is not difficult to formulate versions of Szpiro’s conjecture and
the ABC conjecture over a number fields. For example, if E/K is an elliptic curve
defined over a number field K, we define the (naive) conductor of E/K to be the
ideal

NE/K =
∏

p

pfp(E),

where fp(E) is 0, 1, or 2 according to whether E has good, multiplicative, or ad-
ditive reduction at p. Then Szpiro’s conjecture says that for every ε > 0 there is a
constant κ = κ(ε,K), depending only on ε and K, such that

NK/Q DE/K ≤ κ(NK/Q NE/K)6+ε.

Next suppose that A,B,C ∈ RK satisfy A+B = C. Then the ABC conjecture
says that for every ε > 0 there is a constant κ = κ(ε,K), depending only on ε and K,
such that

HK

(
[A,B,C]

)
≤ κ

∏

p|ABC

(NK/Q p)1+ε.

(There is no relative primality condition on A, B, and C, since any common “factors”
leave the left-hand side unchanged while increasing the right-hand side.)

It is very interesting to ask how the constants κ appearing in these conjectures
depend on the field K.
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Remark 11.7. Let k be a field of characteristic 0. There are analogues of Szpiro’s
conjecture and the ABC conjecture in which Q is replaced by a rational func-
tion field k(T ), or more generally, the number field K is replaced by the function
field k(C) of an algebraic curve C. Somewhat surprisingly, both conjectures are quite
easy to prove in the function field setting, and indeed considerably stronger results
are known. For example, the three-term sum in the ABC conjecture may be replaced
by a sum having more terms. See [157, 258, 278] for A + B = C and [31, 158, 300]
for A1 + · · · + An = 0.

Remark 11.8. Frey has noted that Szpiro’s conjecture (VIII.11.1) implies the uni-
form boundedness of torsion on elliptic curves (VIII.7.5), (VIII.7.5.1). The idea is as
follows. Suppose that P ∈ E(K) is a point of exact order N , and let φ : E → E′

be the isogeny whose kernel is the subgroup generated by P . Assuming that N is
sufficiently large (depending only on the field K), an elementary calculation using
Tate curves (see (C §14) or [266, Chapter V]) shows that there are ideals a and b such
that the minimal discriminants of E and E′ have the form

DE = abN and DE′ = aNb.

Since the primes of bad reduction divide the discriminant, we see that the conduc-
tors NE and NE′ divide a2b2. We apply Szpiro’s conjecture to E and E′ to obtain

NK/Q(DEDE′) ≤ κε NK/Q(NENE′)6+ε,

and then substituting the discriminants’ and conductors’ values gives

NK/Q(ab)N+1 ≤ κε NK/Q(ab)12+2ε.

Discarding the finitely many elliptic curves defined over K with everywhere good
reduction (IX.6.1), we may assume that NK/Q(ab) ≥ 2, and then the last inequality
gives a bound for N that is independent of the curve E. See [89, 90, 113] for further
details.

Exercises
8.1. Let E/K be an elliptic curve, let m ≥ 2 be an integer, let HK be the ideal class group
of K, and let

S = {v ∈ M0
K : E has bad reduction at v} ∪ {v ∈ M0

K : v(m) �= 0} ∪ M∞
K .

Assume that E[m] ⊂ E(K). Prove the following quantitative version of the weak Mordell–
Weil theorem:

rankZ/mZ E(K)/mE(K) ≤ 2#S + 2 rankZ/mZ HK [m].

8.2. For each integer d ≥ 1, let Ed be the elliptic curve

E : y2 = x3 − d2x.
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Prove that
Ed(Q) ∼= (finite group) × Z

r

for an integer r satisfying
r ≤ 2ν(2d),

where ν(N) denotes the number of distinct primes dividing N . (Hint. Use Exercise 8.1.)

8.3. Let E/K be an elliptic curve and let L/K be an (infinite) algebraic extension. Suppose
that the rank of E(M) is bounded as M ranges over all finite extensions M/K such that M
is contained in L, i.e., assume that

sup
K⊂M⊂L
[M :K] finite

rank E(M)

is finite.
(a) Prove that E(L) ⊗ Q is a finite-dimensional Q-vector space.
(b) Assume further that L/K is Galois and that Etors(L) is finite. Prove that E(L) is finitely

generated.

8.4. Assume that μm ⊂ K. Prove that the maximal abelian extension of K of exponent m is
the field

K(a1/m : a ∈ K).

(Hint. Use (VIII.2.2), which in this case says that every homomorphism χ : GK̄/K → μm

has the form χ(σ) = ασ/α for some α ∈ K̄∗ satisfying αm ∈ K.)

8.5. Let ξ ∈ H1(GK̄/K , M) be unramified at v. Prove that the cohomology class of ξ con-
tains a 1-cocycle c : GK̄/K → M satisfying cσ = 0 for all σ ∈ Iv . (Hint. Use the inflation–
restriction sequence (B.2.4) for Iv ⊂ GK̄/K .)

8.6. Prove Kronecker’s theorem: Let x ∈ Q̄∗. Then H(x) = 1 if and only if x is a root of
unity. (This is the multiplicative group version of (VIII.9.3d).)

8.7. (a) Give an explicit upper bound, in terms of N , C, and d, for the number of points in
the set {

P ∈ P
N (Q) : H(P ) ≤ C and

[
Q(P ) : Q

]
≤ d

}
.

(b) Let
νK(N, C) = #

{
P ∈ P

N (K) : HK(P ) ≤ C
}
.

Prove that

lim
C→∞

νQ(N, C)

CN+1
=

2N

ζ(N + 1)
,

where ζ(s) is the Riemann zeta function. (For further information about νK(N, C),
see (VIII.5.12).)

8.8. Prove the following basic properties of height functions.
(a) H(x1x2 · · ·xN ) ≤ H(x1)H(x1) · · ·H(xN ).
(b) H(x1 + x2 + · · · + xN ) ≤ NH(x1)H(x2) · · ·H(xN ).
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(c) For P = [x0, . . . , xN ] ∈ PN (Q̄) and Q = [y0, . . . , yM ] ∈ PM (Q̄), define

P � Q = [x0y0, x0y1, . . . , xiyj , . . . , xNyM ] ∈ P
MN+M+N (Q̄).

Prove that
H(P � Q) = H(P )H(Q).

(The map (P, Q) �→ P � Q is the Segre embedding of PN × PM into PMN+M+N .
See [111, exercise I.2.14].)

(d) Let M =
(

N+d
N

)
− 1 and let f0(X), . . . , fM (X) be the M distinct monomials of de-

gree d in the N + 1 variables X0, . . . , XN . For any point P = [x0, . . . , xN ] ∈ PN (Q̄),
let

P (d) =
[
f0(P ), . . . , fM (P )

]
∈ P

M (Q̄).

Prove that
H(P (d)) = H(P )d = H

(
[xd

0, . . . , x
d
N ]

)
.

(The map P �→ P (d) is the d-uple embedding of Pn into PM . See [111, exercise I.2.12].)

8.9. Let x0, . . . , xN ∈ K and let b be the fractional ideal of K generated by x0, . . . , xN .
Prove that

HK

(
[x0, . . . , xN ]

)
= (NK/Q b)−1

∏

v∈M∞
K

max
0≤i≤N

{
|xi|v

}nv
.

8.10. Let F be the rational map

F : P
2 −→ P

2, [x, y, z] �−→ [x2, xy, z2],

from (I.3.6). Note that F is a morphism at every point except at [0, 1, 0], where it is not defined.
Prove that there are infinitely many points P ∈ P2(Q) such that

H
(
F (P )

)
= H(P ).

In particular, (VIII.5.6) is false if the map F is merely required to be a rational map.

8.11. Prove the following generalization of (VIII.7.2) to arbitrary number fields. Let E/K be
an elliptic curve given by an equation

y2 = x3 + Ax + B

with A, B ∈ R, and let Δ = 4A3 + 27B2. Let P ∈ E(K) be a point of exact order m ≥ 3,
and let v ∈ M0

K .
(a) If m = pn is a prime power, prove that

−6rv ≤ ordv

(
y(P )2

)
≤ 6rv + ordv(Δ),

where

rv =

[
ordv(p)

pn − pn−1

]
.

(b) If m = 2pn is twice a prime power, prove that

0 ≤ ordv

(
y(P )2

)
≤ 2rv + ordv(Δ),

where rv is as in (a).
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(c) If m is not of the form pn or 2pn, prove that

0 ≤ ordv

(
y(P )2

)
≤ ordv(Δ).

8.12. Calculate E(Q)tors for each of the following elliptic curves.

(a) y2 = x3 − 2 (i) y2 + xy + y = x3 − x2 − 14x + 29

(b) y2 = x3 + 8 (j) y2 + xy = x3 − 45x + 81

(c) y2 = x3 + 4 (k) y2 + 43xy − 210y = x3 − 210x2

(d) y2 = x3 + 4x (l) y2 = x3 − 4x

(e) y2 − y = x3 − x2 (m) y2 = x3 + 2x2 − 3x

(f) y2 = x3 + 1 (n) y2 + 5xy − 6y = x3 − 3x2

(g) y2 = x3 − 43x + 166 (o) y2 + 17xy − 120y = x3 − 60x2

(h) y2 + 7xy = x3 + 16x

8.13. (a) Let E/K be an elliptic curve and let P ∈ E(K) be a point of order at least 4. Prove
that there is a change of coordinates such that E has a Weierstrass equation of the form

E : y2 + uxy + vy = x3 + vx2

with u, v ∈ K and P = (0, 0).
(b) Prove that there is a one-parameter family of elliptic curves E/K having a K-rational

point of order 6. (Hint. Set [3]P = [−3]P in (a) and find a relation between u and v.)
Same question for points of order 7, order 9, and order 12.

(c) Prove that the elliptic curves E/K having a K-rational point of order 11 are
parametrized by the K-rational points of a certain curve of genus one.

8.14. (a) Generalize (VIII.8.2) as follows. Let E/K be an elliptic curve and let a be any
integral ideal in the ideal class āE/K . Prove that there is a Weierstrass equation of E/K
having coefficients ai ∈ R and discriminant Δ satisfying

(Δ) = DE/Ka
12.

(b) Suppose that E/K has everywhere good reduction and that the class number of K is
relatively prime to 6. Prove that E/K has a global minimal Weierstrass equation.

(c) Prove that every elliptic curve E/K has a Weierstrass equation with coefficients ai ∈ R
and discriminant Δ satisfying

|NK/Q Δ| ≤ |Disc K/Q|6|NK/Q DE/K |.

Qualitatively, this says that there is a Weierstrass equation for E whose nonminimality
is bounded solely in terms of K. Such an equation might be called quasiminimal.

(d) Let b̄ be an ideal class of K. Prove that there is an elliptic curve E/K such that āE/K =
b̄. In particular, if K does not have class number one, then there exist elliptic curves
over K that do not have global minimal Weierstrass equations. This gives a converse
to (VIII.8.3). (See also [15] for an estimate of how many E/K have āE/K equal to b̄.)

8.15. Prove that there are no elliptic curves E/Q having everywhere good reduction.
(Hint. Suppose that there is a Weierstrass equation with integer coefficients and discrimi-
nant Δ = ±1. Use congruences modulo 8 to show that a1 is odd, and hence c4 ≡ 1 (mod 8).
Substitute c4 = u ± 12 into the formula c3

4 − c2
6 = ±1728. Show that u is either a square or

three times a square. Rule out both cases by reducing modulo 8.)
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8.16. Show that the conclusion of (VIII.9.5) is false if the quadratic form q is not required to
satisfy the finiteness condition (ii).

8.17. Fix nonzero integers A and B with 4A3 +27B2 �= 0. For each integer d �= 0, let Ed/Q

be the elliptic curve
Ed : y2 = x3 + d2Ax + d3B.

Assuming that d is squarefree, prove the following properties of Ed:
(a) jE is independent of d.
(b) log |DE/Q| = 6 log |d| + O(1).

(c) Every P ∈ Ed(Q) satisfies either [2]P = 0 or ĥ(P ) > 1
8

log |d| + O(1).
(d) For all but finitely many squarefree integers d, the torsion subgroup of Ed(Q) is one

of {0}, Z/2Z, and (Z/2Z)2.
Note that the O(1) bounds in (b) and (c) may depend on A and B, but they should be inde-
pendent of d. In particular, (c) provides a proof of (VIII.9.9) for the family of curves Ed.
(Hint for (c). If P = (r, s) ∈ Ed(Q), then P ′ = (r/d, s/d3/2) ∈ E1(Q̄). Prove the fol-
lowing facts: (i) ĥ(P ) = ĥ(P ′); (ii) either s = 0 or hy(P ′) is greater than 3

8
log |d|;

and (iii) |ĥ − 1
3
hy| is bounded.)

8.18. Let E/K be an elliptic curve given by a Weierstrass equation

y2 = x3 + Ax + B.

(a) Prove that there are absolute constants c1 and c2 such that for all points P ∈ E(K̄) we
have ∣

∣hx

(
[2]P

)
− 4hx(P )

∣
∣ ≤ c1h

(
[A, B, 1]

)
+ c2.

Find explicit values for c1 and c2. (Hint. Combine the proofs of (VIII.4.2) and (VIII.5.6),
keeping track of the dependence on the constants. In particular, note that the use of the
Nullstellensatz in (VIII.5.6) can be replaced by the explicit identities given in (VIII.4.3).)

(b) Find absolute constants c3 and c4 such that for all points P ∈ E(K̄) we have
∣
∣
∣
1

2
hx(P ) − ĥ(P )

∣
∣
∣ ≤ c3h

(
[A, B, 1]

)
+ c4.

(Hint. Use (a) and the proof of (VIII.9.1).)
(c) Prove that for all integers m ≥ 1 and all points P, Q ∈ E(K̄) we have

∣
∣hx

(
[m]P

)
− m2hx(P )

∣
∣ ≤ 2(m2 + 1)

(
c3h

(
[A, B, 1]

)
+ c4

)

and

hx(P + Q) ≤ 2hx(P ) + 2hx(Q) + 5
(
c3h

(
[A, B, 1]

)
+ c4

)
.

(Hint. Use (b) and (VIII.9.3).)
(d) Let Q1, . . . , Qr ∈ E(K) be a set of generators for E(K)/2E(K). Find absolute con-

stants c5, c6, and c7 such that the set of points P ∈ E(K) satisfying

hx(P ) ≤ c5 max
1≤i≤r

hx(Qi) + c6h
(
[A, B, 1]

)
+ c7

contains a complete set of generators for E(K). (Hint. Follow the proof of (VIII.3.1),
using (c) to evaluate the constants that appear.)
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8.19. The L-Series Attached to an Elliptic Curve. Let E/Q be an elliptic curve and choose a
global minimal Weierstrass equation for E/Q,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

(See (VIII.8.3).) For each prime p, let Ẽ denote the reduction of the Weierstrass equation
modulo p, and let

tp = p + 1 − #Ẽ(Fp).

The L-series associated to E/Q is defined by the Euler product

LE(s) =
∏

p|Δ(E)

(1 − tpp−s)−1
∏

p�Δ(E)

(1 − tpp−2 + p1−2s)−1.

(a) If LE(s) is expanded as a Dirichlet series
∑

cnn−s, show that for all primes p, its pth co-
efficient satisfies cp = tp.

(b) If E has bad reduction at p, so p | Δ(E), prove that tp equals 1, −1, or 0 according
to whether the reduced curve Ẽ (mod p) has a node with tangents whose slopes are
rational over Fp (split multiplicative reduction), a node with tangents whose slopes are
quadratic over Fp (nonsplit multiplicative reduction), or a cusp (additive reduction). (Cf.
Exercise 3.5).

(c) Prove that the Euler product for LE(s) converges for all s ∈ C with Re(s) > 3
2

.
(Hint. Use (V.1.1).)

There are many important theorems and conjectures concerning the L-series of elliptic curves;
see (C §16).

8.20. We proved in (VIII.11.5a) that Szpiro’s conjecture implies a weaker form of the ABC
conjecture with exponent 3

2
. This exercise explains how to reduce the exponent to 6

5
.

Relabeling A, B, C if necessary, we may assume that C > B > A > 0. Let E be the
curve y2 = x(x + A)(x − B) used in the proof of (VIII.11.5a).

(a) Prove that there is an isogeny of degree 2 from E to the elliptic curve

E′ : y2 = x3 − 2(A − B)x2 + C2x.

Show that the discriminant of the equation for E′ is Δ′ = −28ABC4.
(b) Prove a version of (VIII.11.3) for E′. In particular, prove that E′ has multiplicative

reduction modulo p for all odd primes dividing ABC and that its minimal discriminant
satisfies

|ΔE′ | ≥ 2−28|ABC4|.
(c) Apply Szpiro’s conjecture to E′ and deduce that

C ≤ κε

∏

p|ABC

p
6
5+ε,

where the constant κε depends only on ε.

8.21. We proved (VIII.11.5b) that the ABC conjecture (VIII.11.4) implies Szpiro’s conjec-
ture (VIII.11.1) under the assumption that gcd(c4, c6) = 1. Prove that this implication is
still true when gcd(c4, c6) > 1. (Hint. Let G = gcd(c3

4, c
2
6) and apply the ABC conjecture

with A = c3
4/G, B = −c2

6/G, and C = Δ/G. Use the minimality of the equation to bound
the powers of the primes p dividing G. Also show that if p ≥ 5 divides G, then E has additive
reduction at p, so p2 | NE .)
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8.22. Let m, n, � be positive integers and consider the equation

xm + yn = z�. (∗)

Assuming the ABC conjecture (VIII.11.4), prove the following two statements (see also Ex-
ercise 9.17):

(a) If m−1 + n−1 + �−1 < 1, then (∗) has only finitely many solutions x, y, z ∈ Z

with gcd(x, y, z) = 1.
(b) There is a constant κ′, depending only on the constant appearing in the ABC conjecture,

such that if (∗) has a solution in relatively prime integers satisfying |x|, |y|, |z| ≥ 2, then

max{m, n, �} ≤ κ′.

8.23. Let A, B, C ∈ Z be as in the statement of the ABC conjecture (VIII.11.4), and let

E : y2 = x(x + A)(x − B)

be the elliptic curve used in the proof of (VIII.11.5a). Assume further that

A ≡ 0 (mod 16) and B ≡ 3 (mod 4).

(a) Prove that the substitutions x �→ 4x and y �→ 8y+4x give a global minimal Weierstrass
equation for E,

y2 + xy = x3 +
A − B − 1

4
x2 − AB

16
x.

(b) Verify that the Weierstrass equation in (a) satisfies

c4 = A2 + AB + B2, c6 =
(B − A)(A + C)(B + C)

2
, and Δ =

(
ABC

16

)2

.

(c) Prove that E has multiplicative reduction for every prime p dividing Δ.



Chapter IX

Integral Points on Elliptic
Curves

Many elliptic curves have infinitely many rational points, although the Mordell–Weil
theorem assures us that the group of rational points is finitely generated. Another
natural Diophantine question is that of determining how many of the rational points
on a given (affine) Weierstrass equation have integral coordinates. In this chapter
we prove a theorem of Siegel that says that there are only finitely many such in-
tegral points. Siegel gave two proofs of his theorem, which we present in (IX §3)
and (IX §4). Both proofs make use of techniques from the theory of Diophantine ap-
proximation, and thus do not provide an effective procedure for actually finding all
of the integral points. However, Siegel’s second proof reduces the problem to that of
solving the so-called unit equation, which in turn can be effectively resolved using
methods from transcendence theory. We discuss effective solutions, without giving
proofs, in (IX §5).

Unless otherwise specified, the notation and conventions for this chapter are the
same as those for Chapter VIII. In addition, we set the following notation:

H,HK height functions, see (VIII §5).

nv = [Kv : Qv], the local degree for v ∈ MK , see (VIII §5).

S ⊂ MK , generally a finite set of absolute values containing M∞
K .

RS the ring of S-integers of K,

RS = {x ∈ K : v(x) ≥ 0 for all v ∈ MK with v /∈ S}.

R∗
S the unit group of RS .

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 269
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 IX,
c© Springer Science+Business Media, LLC 2009
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IX.1 Diophantine Approximation
The fundamental problem in the subject of Diophantine approximation is the ques-
tion of how closely an irrational number can be approximated by a rational number.

Example 1.1. For any rational number p/q, we know that the quantity
∣
∣p/q −

√
2
∣
∣

is strictly positive, and since Q is dense in R, an appropriate choice of p/q makes it
as small as desired. The problem is to make it small without taking p and q to be too
large. The next two elementary results illustrate this idea.

Proposition 1.2. (Dirichlet) Let α ∈ R with α /∈ Q. Then there are infinitely many
rational numbers p/q ∈ Q such that

∣
∣
∣
∣
p

q
− α

∣
∣
∣
∣ ≤

1
q2

.

PROOF. Let Q be a (large) integer and look at the set of real numbers
{
qα − [qα] : q = 0, 1, . . . , Q

}
,

where [ · ] denotes greatest integer. Since α is irrational, this set contains Q + 1
distinct numbers in the interval between 0 and 1. Dividing the interval [0, 1] into Q
equal-sized pieces and applying the pigeonhole principle, we find that there are inte-
gers 0 ≤ q1 < q2 ≤ Q satisfying

∣
∣
∣
(
q1α − [q1α]

)
−

(
q2α − [q2α]

)∣∣
∣ ≤ 1

Q
.

Hence ∣
∣
∣
∣
[q2α] − [q1α]

q2 − q1
− α

∣
∣
∣
∣ ≤

1
(q2 − q1)Q

≤ 1
(q2 − q1)2

.

This provides one rational approximation to α having the desired property.
Finally, having obtained a list of such approximations, let p/q be the one for

which |p/q − α| is smallest. Then taking Q > |p/q − α|−1 ensures that we get a
new approximation that is not already in our list. Hence there exist infinitely many
rational numbers satisfying the conditions of the proposition.

Remark 1.2.1. A result of Hurwitz says that the 1/q2 on the right-hand side
of (IX.1.2) may be replaced by 1/(

√
5 q2), and that this result is best possible. See,

e.g., [108, Theorem 195].

Proposition 1.3. (Liouville [151]) Let α ∈ Q̄ have degree d ≥ 2 over Q, i.e.,[
Q(α) : Q] = d. There is a constant C > 0, depending on α, such that for all ratio-

nal numbers p/q we have ∣
∣
∣
∣
p

q
− α

∣
∣
∣
∣ ≥

C

qd
.
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PROOF. Let
f(T ) = a0T

d + a1T
d−1 + · · · + ad ∈ Z[T ]

be a minimal polynomial for α, and let

C1 = sup
{
f ′(t) : α − 1 ≤ t ≤ α + 1

}
.

Then the mean value theorem tells us that
∣
∣
∣
∣f

(
p

q

)∣
∣
∣
∣ =

∣
∣
∣
∣f

(
p

q

)
− f(α)

∣
∣
∣
∣ ≤ C1

∣
∣
∣
∣
p

q
− α

∣
∣
∣
∣ .

On the other hand, we know that qdf(p/q) ∈ Z, and further that f(p/q) �= 0, since f
has no rational roots. Hence ∣

∣
∣
∣q

df

(
p

q

)∣
∣
∣
∣ ≥ 1.

Setting C = min{C−1
1 , 1} and combining the last two inequalities yields

∣
∣
∣
∣
p

q
− α

∣
∣
∣
∣ ≥

C

qd
for all p/q ∈ Q.

Remark 1.3.1. Liouville used his theorem to prove the existence of transcendental
numbers; see Exercise 9.2. Note that in Liouville’s theorem it is quite easy to find a
value for the constant C explicitly in terms of α. This is in marked contrast to the
results that we consider in the rest of this section.

Dirichlet’s theorem (IX.1.2) says that every real number can be approximated by
rational numbers to within 1/q2, while Liouville’s result (IX.1.3) says that algebraic
numbers of degree d can be approximated no closer than C/qd. For quadratic irra-
tionalities there is little more to say, but if d ≥ 3, then it is natural to ask for the
best exponent on q. There is no particular reason to restrict the approximating values
to Q, so we allow them to vary over any fixed number field K. Finally, in measuring
the closeness of the approximation, we may use any absolute value on K.

Definition. Let τ(d) be a positive real-valued function on the natural numbers. A
number field K is said to have approximation exponent τ if it has the following
property:

Let α ∈ K̄, let d =
[
K(α) : K

]
, and let v ∈ MK be an absolute value

on K that has been extended to K(α) in some fashion. Then for any
constant C there exist only finitely many x ∈ K satisfying the inequality

|x − α|v < CHK(x)−τ(d).

Liouville’s elementary estimate (IX.1.3) says that Q has approximation expo-
nent τ(d) = d + ε for any ε > 0. This result has been successively improved by a
number of mathematicians:
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Liouville 1851 τ(d) = d + ε
Thue 1909 τ(d) = 1

2d + 1 + ε

Siegel 1921 τ(d) = 2
√

d + ε

Gelfond, Dyson 1947 τ(d) =
√

2d + ε
Roth 1955 τ(d) = 2 + ε

In view of (IX.1.2), Roth’s result is essentially best possible, although it has been
conjectured that the ε can be replaced by some function ε(d) such that ε(d) → 0
as d → ∞. We should also mention that Mahler showed how to handle several abso-
lute values at once, and W. Schmidt [221, Chapter VI] dealt with the more difficult
problem of simultaneously approximating several irrationals.

The main ideas that go into the proof of Roth’s theorem are quite beautiful, and
at least in theory, relatively elementary. Unfortunately, to develop these ideas fully
would take us rather far afield. Hence rather than including a complete proof, we are
content to state here the result that we will need. In (IX §8) we briefly sketch the
proof of Roth’s theorem without giving any of the myriad details.

Theorem 1.4. (Roth’s Theorem) For every ε > 0, every number field K of degree d
has approximation exponent

τ(d) = 2 + ε.

PROOF. See (IX §8) for a brief sketch of the proof. A nice exposition for K = Q and
the usual archimedean absolute value is given in [221, Chapter V]. For the general
case, see [114, Part D] or [139, Chapter 7].

Example 1.5. How do theorems on Diophantine approximation lead to results about
Diophantine equations? Consider the simple example of trying to solve the equation

x3 − 2y3 = a

in integers x, y ∈ Z, where a ∈ Z is fixed. Suppose that (x, y) is a solution
with y �= 0. Let ζ be a primitive cube root of unity, and factor the equation as

(
x

y
− 3

√
2
)(

x

y
− ζ

3
√

2
)(

x

y
− ζ2 3

√
2
)

=
a

y3
.

The second and third factors in the product are bounded away from 0, so we obtain
an estimate of the form ∣

∣
∣
∣
x

y
− 3

√
2
∣
∣
∣
∣ ≤

C

y3
,

where the constant C is independent of x and y. Now (XI.1.4), or even Thue’s origi-
nal theorem with τ(d) = 1

2d + 1 + ε, shows that there are only finitely many possi-
bilities for x and y. Hence the equation

x3 − 2y3 = a

has only finitely many solutions in integers. This type of argument will reappear in
the proof of (IX.4.1); see also Exercise 9.6.



IX.2. Distance Functions 273

Remark 1.6. The statement of (IX.1.4) says that there exist only finitely many ele-
ments of K having a certain property. This phrasing is felicitous because the proof
of (IX.1.4) is not effective. In other words, the proof does not give an effective pro-
cedure that is guaranteed to produce all of the elements in the finite set. (See (IX.8.1)
for a discussion of why this is so.) We note that as a consequence, all of the finite-
ness results that we prove in (IX §§2, 3) are ineffective, since they rely on (IX.1.4).
Similarly, the proof in (IX.1.5) yields no explicit bound for |x| and |y| in terms of a.
However, there are other methods, based on estimates for linear forms in logarithms,
that are effective. We discuss such methods, without proof, in (IX §5).

IX.2 Distance Functions
A Diophantine inequality such as

|x − α|v < CHK(x)−τ(d)

consists of two pieces. First, there is the height function HK(x), which measures the
arithmetic size of x. We have already studied height functions and their transforma-
tion properties in some detail (VIII, §§5, 6). Second, there is the quantity |x − α|v ,
which is a topological or metric measure of the distance from x to α, i.e., it measures
distance in the v-adic topology. In this section we define a notion of v-adic distance
on curves, deduce some of its basic properties, and reinterpret the main Diophantine
approximation result from (IX §1) in terms of this distance function.

Definition. Let C/K be a curve, let v ∈ MK , and fix a point Q ∈ C(Kv). Choose a
function tQ ∈ Kv(C) that has a zero of order e ≥ 1 at Q and no other zeros.1 Then
for P ∈ C(Kv), we define the (v-adic) distance from P to Q by

dv(P,Q) = min
{∣
∣tQ(P )

∣
∣1/e

v
, 1

}
.

(If tQ has a pole at P , we formally set
∣
∣tQ(P )

∣
∣ = ∞, so dv(P,Q) = 1.)

Remark 2.1. In practice, we fix the point Q and use the distance function dv(P,Q)
to measure the distance from P to Q as P varies. It is clear that the distance func-
tion dv has the right qualitative property, i.e., dv(P,Q) is small if P is v-adically
close to Q. On the other hand, the value of dv(P,Q) certainly depends on the choice
of the function tQ, so possibly a better notation would be dv(P, tQ). However, since
we will use dv only to measure the rate at which a varying point approaches a fixed
point, the next result shows that the choice of tQ is irrelevant for the statements of
our theorems.

Proposition 2.2. Let Q ∈ C(Kv) and let F ∈ Kv(C) be a function that vanishes
at Q. Then the limit

1To see that tQ exists, we use the the Riemann–Roch theorem. Thus (II.5.5c) tells us that if C has
genus g and if e ≥ g + 1, then �

(
e(Q)

)
≥ 2, so there is a nonconstant function f ∈ L

(
e(Q)

)
. This

function f has a pole at Q and no other poles, and we can take tQ = 1/f .
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lim
P∈C(Kv)

P→
v

Q

log
∣
∣F (P )

∣
∣
v

log dv(P,Q)
= ordQ(F )

exists and is independent of the choice of the function tQ used to define dv(P,Q).
Here ordQ(F ) is the order of vanishing of F at Q as in (II §2), while the no-

tation P→
v

Q means that P ∈ C(Kv) approaches Q in the v-adic topology, i.e.,
dv(P,Q) → 0.

PROOF. Let tQ be the function vanishing only at Q that we are using to de-
fine dv( · , Q). Let e = ordQ(tQ) and f = ordQ(F ). Then the function φ = F e/tfQ
has neither a zero nor a pole at Q, so

∣
∣φ(P )

∣
∣
v

is bounded away from 0 and ∞
as P→

v
Q. Hence

lim
P∈C(Kv)

P→
v

Q

log
∣
∣F (P )

∣
∣
v

log dv(P, tQ)
= lim

P∈C(Kv)
P→

v
Q

log
∣
∣F (P )

∣
∣
v

log
∣
∣tQ(P )

∣
∣1/e

v

= f + lim
P∈C(Kv)

P→
v

Q

1
e
·

log
∣
∣φ(P )

∣
∣
v

log
∣
∣tQ(P )

∣
∣
v

= f.

Remark 2.2.1. The use of the function tQ in the definition of distance is somewhat
artificial and does not generalize well to higher-dimensional varieties. An alternative
definition that does generalize uses a finite list of functions t1, . . . , tr ∈ K(E) with
the property that each ti vanishes at Q and such that t1, . . . , tr have no other com-
mon zeros. Then, if we let ei denote the order of vanishing of ti at Q, a distance
function dv may be defined by

dv(P,Q) = min
{

max
{
|t1(P )|1/e1

v , . . . , |tr(P )|1/er
v

}
, 1

}
.

This function is an example of a local height function; see [139, Chapter 10], [114,
§B.8], or [261] for further details.

Next we examine the effect of finite maps on the distance between points. The
crucial observation is that this effect depends on the ramification of the map, not on
its degree. To see the difference, compare (IX.2.3) with (VIII.5.6).

Proposition 2.3. Let C1/K and C2/K be curves, and let φ : C1 → C2 be a finite
map defined over K. Let Q ∈ C1(Kv), and let eφ(Q) be the ramification index of φ
at Q (II §2). Then

lim
P∈C1(Kv)

P→
v

Q

log dv

(
φ(P ), φ(Q)

)

log dv(P,Q)
= eφ(Q).
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PROOF. Let tQ ∈ Kv(C1) be a function that vanishes to order e1 ≥ 1 at Q and
has no other zeros, and similarly let tφ(Q) ∈ Kv(C2) be a function that vanishes
to order e2 ≥ 1 at φ(Q) and has no other zeros. It follows from the definition of
ramification index that

ordQ tφ(Q) ◦ φ = eφ(P ) ordφ(Q) tφ(Q) = eφ(P )e2,

so the functions (tφ(Q) ◦ φ)e1 and t
eφ(P )e2
Q vanish to the same order at Q. Hence the

function

f =
(tφ(Q) ◦ φ)e1

t
eφ(Q)e2
Q

∈ Kv(C1)

has neither a zero nor a pole at Q. It follows that
∣
∣f(P )

∣
∣
v

is bounded away from 0
and ∞ as P→

v
Q. Therefore

log dv

(
φ(P ), φ(Q)

)

log dv(P,Q)
=

log
∣
∣tφ(Q)

(
φ(P )

)∣∣1/e2

v

log
∣
∣tQ(P )

∣
∣1/e1

v

=
eφ(Q) log

∣
∣tQ(P )

∣
∣1/e1

v
+ log

∣
∣f(P )

∣
∣
v

log
∣
∣tQ(P )

∣
∣1/e1

v

−→ eφ(Q) as P→
v

Q.

Finally, we reinterpret Roth’s theorem (IX.1.4) in terms of distance functions.

Corollary 2.4. (of (IX.1.4)) Fix an absolute value v ∈ MK . Let C/K be a curve,
let f ∈ K(C) be a nonconstant function, and let Q ∈ C(K̄). Then

lim inf
P∈C(K)

P→
v

Q

log dv(P,Q)
log HK

(
f(P )

) ≥ −2.

(If Q is not a v-adic accumulation point of C(K), then we define the lim inf to be 0.)

PROOF. Replacing f by 1/f if necessary, we may assume that f(Q) �= ∞. (Note
that HK

(
(1/f)(P )

)
= HK

(
f(P )

)
.) The function f − f(Q) vanishes at Q, say to

order e, so (IX.2.2) tells us that

lim inf
P∈C(K)

P→
v

Q

log
∣
∣f(P ) − f(Q)

∣
∣
v

dv(P,Q)
= e.

Hence

lim inf
P∈C(K)

P→
v

Q

log dv(P,Q)
log HK

(
f(P )

) = lim inf
P∈C(K)

P→
v

Q

log
∣
∣f(P ) − f(Q)

∣
∣
v

e log HK

(
f(P )

)

=
1
e

lim inf
P∈C(K)

P→
v

Q

(
log

(
HK

(
f(P )

)τ ∣∣f(P ) − f(Q)
∣
∣
v

)

log HK

(
f(P )

) − τ

)

.
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We now set τ = 2 + ε. Then (IX.1.4) implies that

HK

(
f(P )

)τ ∣∣f(P ) − f(Q)
∣
∣
v
≥ 1

for all but finitely many P ∈ C(K). Therefore

lim inf
P∈C(K)

P→
v

Q

log dv(P,Q)
log HK

(
f(P )

) ≥ −τ

e
≥ −2 + ε

e
.

Since ε > 0 is arbitrary and e ≥ 1, this is the desired result.

IX.3 Siegel’s Theorem
In this section we prove a result of Siegel that represents a significant improvement
on the Diophantine approximation result (IX.2.4).

Theorem 3.1. (Siegel) Let E/K be an elliptic curve with #E(K) = ∞. Fix a
point Q ∈ E(K̄), a nonconstant even function f ∈ E(K), and an absolute value
v ∈ MK(Q). Then

lim
P∈E(K)

hf (P )→∞

log dv(P,Q)
hf (P )

= 0.

Remark 3.1.1. Although we prove (IX.3.1) only for even functions, it is in fact true
in general; see Exercise 9.14d.

Before proving (IX.3.1), we give some indication of its power.

Corollary 3.2.1. Let E/K be an elliptic curve with Weierstrass coordinate func-
tions x and y, let S ⊂ MK be a finite set of places containing M∞

K , and let RS be
the ring of S-integers of K. Then

{
P ∈ E(K) : x(P ) ∈ RS

}

is a finite set.

PROOF. We apply (IX.3.1) with the function f = x. Suppose that there is a sequence
of distinct points P1, P2, . . . ∈ E(K) with every x(Pi) ∈ RS . The definition of
height then tells us that

hx(Pi) =
1

[K : Q]

∑

v∈S

log max
{
1,

∣
∣x(Pi)

∣
∣nv

v

}
,

since the terms with v /∈ S have
∣
∣x(Pi)

∣
∣
v
≤ 1. Hence we can find a particular v ∈ S

and a subsequence of the Pi (which we relabel as P1, P2, . . .) such that

hx(Pi) ≤ #S · log
∣
∣x(Pi)

∣
∣
v

for all i = 1, 2, . . . .
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(Note that nv ≤ [K : Q].) In particular, we see that
∣
∣x(Pi)

∣
∣
v
→ ∞, and since O is

the only pole of x, it follows that dv(Pi, O) → ∞.
The function x has a pole of order 2 at O and no other poles, so we may take as

our distance function

dv(Pi, O) = min
{∣∣x(Pi)

∣
∣−1/2

v
, 1

}
.

Then, for all sufficiently large i, we have

− log dv(Pi, O)
hx(Pi)

≥ 1
2#S

.

This contradicts (IX.3.1), which says that the left-hand side approaches 0 as i → ∞.

It is clear that the proof of (IX.3.2.1) works for any even function, not just x,
since (IX.3.1) is given for all even functions. However, it is possible to reduce
the case of arbitrary (not necessarily even) functions to the special case given
in (IX.3.2.1). This reduction step, which we now give, is important in its own right,
since it is used both in Siegel’s second proof of finiteness (IX.4.3.1) and with the
effective methods provided by linear forms in logarithms (IX.5.7).

Corollary 3.2.2. Let C/K be a curve of genus one, let f ∈ K(C) be a nonconstant
function, and let S and RS be as in (IX.3.2.1). Then

{
P ∈ C(K) : f(P ) ∈ RS

}

is a finite set. Further, (IX.3.2.2) follows formally from (IX.3.2.1).

PROOF. We are clearly proving something stronger if we extend the field K and
enlarge the set S. We may thus assume that C(K) contains a pole Q of f , and
taking Q to be the identity element, we view (C,Q) as an elliptic curve defined
over K. Let x and y be coordinates on a Weierstrass equation for (C,Q), which we
may take in the form

y2 = x3 + Ax + B.

We have f ∈ K(C) = K(x, y) and
[
K(x, y) : K(x)

]
= 2, so we can write

f(x, y) =
φ(x) + ψ(x)y

η(x)

with polynomials φ(x), ψ(x), η(x) ∈ K[x]. Further, since

ordQ(x) = −2, ordQ(y) = −3, and ordQ(f) < 0,

it follows that
2 deg η < max{2 deg φ, 2 deg ψ + 3}.

(This is the condition for f to have a pole at Q.) Next we compute
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(
fη(x) − φ(x)

)2 =
(
ψ(x)y

)2 = ψ(x)2(x3 + Ax + B).

Writing this out as a polynomial in x with coefficients in K[f ], we see that the high-
est power of x comes from one of the three terms f2η(x)2, φ(x)2, ψ(x)2x3. From
above, the first of these has lower degree in x than the latter two, while the leading
terms of φ(x)2 and ψ(x)2x3 cannot cancel, since they have different degrees. (One
has even degree, the other odd degree.) It follows that x satisfies a monic polyno-
mial with coefficients in K[f ], i.e., x is integral over K[f ]. Multiplying this monic
polynomial by an appropriate element of K to “clear denominators,” we have shown
that x satisfies a relation

a0x
N + a1(f)xN−1 + · · · + aN−1(f)x + aN (f) = 0,

where a0 ∈ RS is nonzero and ai(f) ∈ RS [f ] for 1 ≤ i ≤ N . Enlarging the set S,
we may assume that a0 ∈ R∗

S , and then dividing the polynomial by a0, we may
assume that a0 = 1.

Now suppose that P ∈ C(K) satisfies f(P ) ∈ RS . Then P is not a pole of x,
and the relation

x(P )N + a1

(
f(P )

)
x(P )N−1 + · · · + aN−1

(
f(P )

)
x(P ) + aN

(
f(P )

)
= 0

shows that x(P ) is integral over RS . Since also x(P ) ∈ K and RS is integrally
closed, it follows that x(P ) ∈ RS . This proves that

{
P ∈ C(K) : f(P ) ∈ RS

}
⊂

{
P ∈ C(K) : x(P ) ∈ RS

}
,

and thus the finiteness assertion in (IX.3.2.1) implies the desired finiteness result
described in (IX.3.2.2).

Example 3.3. Consider the Diophantine equation

y2 = x3 + Ax + B,

where A,B ∈ Z and 4A3 + 27B2 �= 0. The corollary (IX.3.2.1) says that this
equation has only finitely many solutions x, y ∈ Z. What does (IX.3.1) say in this
situation, say if we take Q = O, f = x, and v the archimedean absolute value on Q?

Label the nonzero rational points P1, P2, . . . ∈ E(Q) in order of nondecreasing
height, and write

x(Pi) =
ai

bi
∈ Q

as a fraction in lowest terms. Then

log dv(Pi, O) =
1
2

log min
{∣
∣
∣
∣
bi

ai

∣
∣
∣
∣ , 1

}
,

hx(Pi) = log max
{
|ai|, |bi|

}
.

(Note that the 1
2 appears because x−1 has a zero of order 2 at O.) We see

from (IX.3.1) that
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lim
i→∞

min
{
log |bi/ai|, 0

}

max
{
log |ai|, log |bi|

} = 0.

Next let Q1 and Q2 be the zeros of the function x, where we allow Q1 = Q2.
Then it is not hard to check that

log min
{∣∣x(P )

∣
∣
v
, 1

}
= dv(P,Q1) + dv(P,Q2) + O(1) for all P ∈ E(Kv),

where the O(1) depends on the choice of the distance functions dv( · , Qi), but is
independent of P ; see Exercise 9.16. Writing v ∈ M∞

Q
for the usual archimedean

absolute value on Q, we use (IX.3.1) twice to obtain

lim
i→∞

min
{
log |ai/bi|, 0

}

max
{
log |ai|, log |bi|

} = lim
i→∞

log min
{∣∣x(Pi)|, 1

}

hx(Pi)

= lim
i→∞

dv(Pi, Q1) + dv(Pi, Q2) + O(1)
hx(Pi)

= 0.

Finally, combining the limit involving bi/ai with the limit involving ai/bi, it is
easy to deduce that

lim
i→∞

log |ai|
log |bi|

= 1.

In other words, when looking at the x-coordinates of the rational points on an ellip-
tic curve, we will see that the numerators and the denominators tend to have about
the same number of digits. This is a much stronger assertion than (IX.3.2.1), which
merely says that there are only finitely many points whose denominator is 1.
Remark 3.4. Siegel’s theorem (IX.3.2.1) is not effective, which means that the proof
does not give an explicitly computable upper bound for the height of all integral
points. However, Siegel’s proof can be made quantitative in the following sense; see
for example [81]:

Given a nonsingular Weierstrass equation with coefficients in a number field K
and given a finite set of absolute values S, there is a constant N , which can be
explicitly calculated in terms of the field K, the set S, and the coefficients of the
equation, such that the equation has no more than N integral solutions.

A subtler Diophantine problem, motivated by work of Dem’janenko and posed as
a general conjecture by Serge Lang, is to give an intrinsic relationship between the
number of integral points and the rank of the Mordell–Weil group.

Conjecture 3.5. (Lang [135, page 140]) Let E/K be an elliptic curve, and choose
a quasiminimal Weierstrass equation for E/K,

E : y2 = x3 + Ax + B.

(See Exercise 8.14c.) Let S ⊂ MK be a finite set of places containing M∞
K , and

let RS be the ring of S-integers of K. There exists a constant C, depending only
on K, such that

#
{
P ∈ E(K) : x(P ) ∈ RS

}
≤ C#S+rank E(K).
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This conjecture is known to be true if one restricts attention to elliptic curves
having integral j-invariant. More generally, the following is known.

Theorem 3.6. Let E/K, S, and RS be as in (IX.3.5).
(a) (Silverman [104, 262]) There is a constant C, depending only on [K : Q] and

on the number of places v ∈ M0
K with ordv(jE) < 0, such that

#
{
P ∈ E(K) : x(P ) ∈ RS

}
≤ C#S+rank E(K).

(b) (Hindry–Silverman [113]) Assume that the ABC conjecture (with any expo-
nent) (VIII.8.4), (VIII.8.6) is true for the field K. Then there is a constant C,
depending only on [K : Q] and on the constants appearing in the ABC conjec-
ture, such that

#
{
P ∈ E(K) : x(P ) ∈ RS

}
≤ C#S+rank E(K).

We turn now to the proof of (IX.3.1). In broad outline, the argument goes as
follows. Our theorem on Diophantine approximation (IX.2.4) gives us a bound,
in terms of the height of P , on how fast P can approach Q. Suppose now that
we write P = [m]P ′ + R and Q = [m]Q′ + R. Then (IX.2.3) tells us that the dis-
tance from P ′ to Q′ is about the same as the distance from P to Q, since the
map P �→ [m]P + R is unramified. On the other hand, the height of P ′ is much
smaller than the height of P . Now applying (IX.2.4) to P ′ and Q′ gives an improved
estimate, and taking m sufficiently large gives the desired result.

PROOF OF (IX.3.1). Choose a sequence of distinct points Pi ∈ E(K) satisfying

lim
i→∞

log d(Pi, Q)
hf (Pi)

= L = lim inf
P∈E(K)

hf (P )→∞

log dv(P,Q)
hf (P )

.

Since dv(P,Q) ≤ 1 and hf (P ) ≥ 0 for all points P ∈ E(K), we have L ≤ 0. It
thus suffices to prove that L ≥ 0.

Let m be a large integer. From the weak Mordell–Weil theorem (VIII.1.1), the
quotient group E(K)/mE(K) is finite. Hence some coset contains infinitely many
of the Pi. Replacing {Pi} by a subsequence, we may assume that

Pi = [m]P ′
i + R,

where Pi, R ∈ E(K) and where R does not depend on i. We use standard properties
of height functions to compute

m2hf (P ′
i ) = hf

(
[m]P ′

i

)
+ O(1) using (VIII.6.4b),

= hf (Pi − R) + O(1)
≤ 2hf (Pi) + O(1) using (VIII.6.4a).

Note that the O(1) is independent of i.
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We next do an analogous computation with distance functions. If Pi is bounded
away from Q in the v-adic topology, then log dv(Pi, Q) is bounded, so clearly L = 0.
Otherwise we can replace Pi with a subsequence such that Pi→v Q. It follows
that [m]P ′

i→v Q − R, so the sequence P ′
i accumulates to at least one of the m2 possi-

ble mth roots of Q−R. Again taking a subsequence, we can find a point Q ∈ E(K̄)
satisfying

P ′
i−→v Q′ and Q = [m]Q′ + R.

We next observe that the map E → E defined by P �→ [m]P + R is everywhere
unramified (III.4.10c), so (IX.2.3) tells us that

lim
i→∞

log dv(Pi, Q)
log dv(P ′

i , Q
′)

= 1.

Combining this with the height inequality yields

L = lim
i→∞

log dv(Pi, Q)
hf (Pi)

≥ lim
i→∞

log dv(P ′
i , Q

′)
1
2m2hf (P ′

i ) + O(1)
.

(Note that the log dv expressions are negative, which reverses the inequality.)
We now apply the theorem on Diophantine approximation (IX.2.4) to the se-

quence {P ′
i} ⊂ E(K) as it converges v-adically to Q′ ∈ E(K̄). This yields

lim inf
i→∞

log dv(P ′
i , Q

′)
[K : Q]hf (P ′

i )
≥ −2.

(The factor of [K : Q], which in any case is not important, arises because hf is the
absolute height, while (IX.2.4) is stated using the relative height HK .) Combining
the last two inequalities yields

L ≥ −4[K : Q]
m2

.

The field K is fixed, while the value of m is arbitrary, which completes the proof
that L ≥ 0.

IX.4 The S-Unit Equation
The finiteness of S-integral points on elliptic curves (IX.3.2.1) is a special case of
Siegel’s general result that an (affine) curve C/K of genus at least one has only
finitely many S-integral points; see [114, Theorem D.9.1] or [139, Chapter 8, The-
orem 2.4]. Of course, for curves C of genus two or greater, Siegel’s result is su-
perseded by Faltings’ theorem [82, 84], which asserts that the full set of rational
points C(K) is finite.

Siegel gave a second proof of his theorem that applies to a restricted set of curves,
but that does include all elliptic curves. This second method is important because,
when combined with results from linear forms in logarithms (XI §5), it leads to
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an effective procedure for finding all S-integral points. In this section we describe
Siegel’s alternative proof.

The idea is to reduce the problem of solving for S-integral points on a curve to
the problem of solving several equations of the form

ax + by = 1

in S-units. We start with a quick sketch of how solving this S-unit equation can be
reduced to a Diophantine approximation theorem such as (IX.1.4). This ineffective
theorem can then be replaced by an effective estimate as described in (IX §5).

Theorem 4.1. Let S ⊂ MK be a finite set of places, and let a, b ∈ K∗. Then the
equation

ax + by = 1

has only finitely many solutions in S-units x, y ∈ R∗
S .

INEFFECTIVE PROOF (SKETCH). Let m be a large integer. Dirichlet’s S-unit the-
orem [142, V §1] implies that the quotient group R∗

S/(R∗
S)m is finite, so we can

choose a finite set of coset representatives c1, . . . , cr ∈ R∗
S . Then any solution (x, y)

to the original equation can be written as

x = ciX
m, y = cjY

m,

for some X,Y ∈ R∗
S and some choice of ci and cj , and thus (X,Y ) is a solution to

the equation
aciX

m + bcjY
m = 1.

Since there are only finitely many choices for ci and cj , it suffices to prove that for
any α, β ∈ K∗, the equation

αXm + βY m = 1

has only finitely many solutions X,Y ∈ RS .
Suppose that there are infinitely many such solutions. Then, since

HK(Y ) =
∏

v∈S

max
{
1, |Y |nv

v

}
,

we can choose some v ∈ S so that there are infinitely many solutions satisfying

|Y |v ≥ HK(Y )1/([K:Q]#S).

(Note that nv ≤ [K : Q].) Let γ ∈ K̄ be a solution to

γm = −β/α.

We will specify later which mth root to take. The idea is that if m is large enough,
then X/Y provides too close an approximation to γ.
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We factor the left-hand side of the equation αXm + βY m = 1 to obtain

∏

ζ∈μm

(
X

Y
− ζγ

)
=

1
αY m

.

Since there are supposed to be infinitely many solutions, we may assume that HK(Y )
is large, so also |Y |v is large. Then from the equality

∏

ζ∈μm

∣
∣
∣
∣
X

Y
− ζγ

∣
∣
∣
∣
v

=
1

|αY m|v
,

we see that X/Y must be close to one of the ζγ values. Replacing γ by the appro-
priate ζγ, we may assume that |X/Y − γ|v is quite small. But then |X/Y − ζγ|v
cannot be too small for ζ �= 1, since

∣
∣
∣
∣
X

Y
− ζγ

∣
∣
∣
∣
v

≥
∣
∣γ(1 − ζ)

∣
∣
v
−

∣
∣
∣
∣
X

Y
− γ

∣
∣
∣
∣
v

.

Hence we can find a constant C1, independent of X/Y , such that
∣
∣
∣
∣
X

Y
− γ

∣
∣
∣
∣ ≤

C1

|Y |mv
.

(See Exercise 9.5.) Finally, from the expression

α

(
X

Y

)m

=
(

1
Y

)m

− β,

one easily deduces that

HK

(
X

Y

)
≤ C2HK(Y ),

where C2 depends on only α, β, and m. Combining all of the above estimates yields

∣
∣
∣
∣
X

Y
− γ

∣
∣
∣
∣
v

≤ CHK

(
X

Y

)−m/([K:Q]#S)

.

But if we take m > 2[K : Q]#S, then Roth’s theorem (IX.1.4) says that there are
only finitely many possibilities for X/Y . Further, since

Y m =
(

α

(
X

Y

)m

+ β

)−1

and X =
(

X

Y

)
Y,

each ratio X/Y corresponds to at most m possible pairs (X,Y ). This contradicts
our original assumption that there are infinitely many solutions, which completes the
proof of (IX.4.1).
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Remark 4.2.1. There is a great similarity in the methods of proof for Siegel’s theo-
rem (IX.3.1) and the S-unit equation (IX.4.1). In both cases, we start with a point in
a finitely generated group, namely P ∈ E(K) for the former and (x, y) ∈ R∗

S × R∗
S

for the latter. Next we pull back using the multiplication-by-m map in the group to
produce a new solution whose height is much smaller than the original solution but
that closely approximates another point defined over a finite extension of K. Finally,
we invoke a theorem on Diophantine approximation, such as (IX.1.4), to complete
the proof.

Remark 4.2.2. The proof that we have given for (IX.4.1) is ineffective because it
makes use of Roth’s theorem (IX.1.4). However, just as for Siegel’s theorem, it is
possible to make (IX.4.1) quantitative, i.e., to give an upper bound on the number of
solutions. One might expect, a priori, that such a bound would depend on the field K
and on the set of primes S, but Evertse proved the following uniform result for the
S-unit equation that is an analogue of Lang’s conjecture (IX.3.5) for elliptic curves.
The proof, which we omit, is quite intricate.

Theorem 4.2.3. (Evertse [80]) Let S ⊂ MK be a finite set of places contain-
ing M∞

K , and let a, b ∈ K∗. Then the equation

ax + by = 1

has at most 3 × 7[K:Q]+2#S solutions in S-units x, y ∈ R∗
S .

To see the analogy with (IX.3.5), note that R∗
S is a finitely generated group of

rank #S − 1. Thus the bound in (IX.3.5) has the form Crank R∗
S+rank E(K)+1, while

the bound in (IX.4.2.3) may be written as Crank R∗
S+1.

We next describe Siegel’s reduction of S-integral points on hyperelliptic curves
to solutions of the S-unit equation. Although we do not do so, the reader should note
that every step in this reduction process can be made effective.

Theorem 4.3. (Siegel) Let f(x) ∈ K[x] be a polynomial of degree d ≥ 3 with
distinct roots in K̄. Then the equation

y2 = f(x)

has only finitely many solutions in S-integers x, y ∈ RS .

PROOF. We are clearly proving something stronger if we take a finite extension of K
and enlarge the set S. Thus we may assume that f splits over K, say

f(x) = a(x − α1)(x − α2) · · · (x − αd) with α1, . . . , αd ∈ K.

Enlarging S, we may assume that the following statements are true:

(i) a ∈ R∗
S .

(ii) αi − αj ∈ R∗
S for all i �= j.

(iii) RS is a principal ideal domain.
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Now suppose that x, y ∈ RS satisfy y2 = f(x). Let p be a prime ideal of RS .
Then p divides at most one x − αi, since if it divides both x − αi and x − αj , then it
divides αi − αj , contradicting (ii). Further, we see from (i) that p does not divide a.
It follows from the equation

y2 = a(x − α1)(x − α2) · · · (x − αd)

that ordp(x−αi) is even, and since this is true for all primes, the ideal (x−αi)RS is
the square of an ideal in RS . From (iii) we know that RS is a principal ideal domain,
so there are elements zi ∈ RS and units bi ∈ R∗

S such that

x − αi = biz
2
i for i = 1, 2, . . . , d.

Now let L/K be the extension of K obtained by adjoining to K the square root
of every element of R∗

S . Note that L/K is a finite extension, since Dirichlet’s S-unit
theorem tells us that R∗

S/(R∗
S)2 is finite. Let T ⊂ ML be the set of places of L

lying over elements of S, and let RT be the ring of T -integers in L. By construction,
each bi is a square in RT , say bi = β2

i , so

x − αi = (βizi)2.

Taking the difference of any two of these equations yields

αj − αi = (βizi − βjzj)(βizi + βjzj).

Note that αj − αi ∈ R∗
T , while each of the two factors on the right is in RT . It

follows that each of these factors is a unit,

βizi ± βjzj ∈ R∗
T for i �= j.

To complete the proof we use Siegel’s identity:

β1z1 ± β2z2

β1z1 − β3z3
∓ β2z2 ± β3z3

β1z1 − β3z3
= 1.

This gives two elements of R∗
T that sum to 1, so (IX.4.1) says that there are only

finitely many choices for

β1z1 + β2z2

β1z1 − β3z3
and

β1z1 − β2z2

β1z1 − β3z3
.

Multiplying these two numbers, we find that there are only finitely many possibilities
for

α2 − α1

(β1z1 − β3z3)2
,

hence only finitely many for
β1z1 − β3z3,

and thus only finitely many for
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β1z1 =
1
2

(
(β1z1 − β3z3) +

α3 − α1

β1z1 − β3z3

)
.

Finally, since
x = α1 + (β1z1)2,

there are only finitely many possible values for x, and each x value gives at most
two y values.

Corollary 4.3.1. Let C/K be a curve of genus one and let f ∈ K(C) be a
nonconstant function. Then there are only finitely many points P ∈ C(K) such
that f(P ) ∈ RS .

PROOF. The reduction procedure described in (IX.3.2.2) says that it suffices to con-
sider the case that f is the x-coordinate of a Weierstrass equation. The case f = x is
covered by (IX.4.3).

IX.5 Effective Methods
In 1949, Gelfond and Schneider independently solved Hilbert’s problem concerning
the transcendence of 2

√
2. They actually proved the following strong transcendence

criterion.

Theorem 5.1. (Gelfond, Schneider) Let α, β ∈ Q̄ with α �= 0, 1 and β /∈ Q.
Then αβ is transcendental.

Gelfond rephrased his result in terms of logarithms: If α1, α2 ∈ Q̄∗ and if log α1

and log α2 are linearly independent over Q, then they are linearly independent
over Q̄. He further showed that it is possible to give an explicit lower bound for

|β1 log α1 + β2 log α2|

whenever this quantity is nonzero, and he noted that many Diophantine problems
could be solved effectively if one knew an analogous result for sums of arbitrarily
many logarithms. Alan Baker proved such a theorem in 1966. The proof is quite
involved, so we are content to quote the following version.

Theorem 5.2. (Baker) Let α1, . . . , αn ∈ K∗ and let β1, . . . , βn ∈ K. For any
constant κ, define

τ(κ) = τ(κ;α1, . . . , αn, β1, . . . , βn) = h
(
[1, β1, . . . , βn]

)
h
(
[1, α1, . . . , αn]

)κ
.

N.B. These are logarithmic height functions. Fix an embedding K ⊂ C and let | · |
be the corresponding absolute value. Assume that

β1 log α1 + · · · + βn log αn �= 0.

Then there are effectively computable constants C > 0 and κ > 0, depending only
on n and [K : Q], such that

|β1 log α1 + · · · + βn log αn| > C−τ(κ).
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PROOF. See [11] or [135, VIII, Theorem 1.1].

Remark 5.2.1. We have restricted ourselves in (XI.5.2) to the case of the archi-
medean absolute value. There are analogous results in the nonarchimedean case,
although minor technical difficulties arise due to the fact that the p-adic logarithm is
defined only in a neighborhood of 1. See (IX.5.6) for a further discussion.

It is not immediately clear how Baker’s theorem (IX.5.2) can be applied to give a
bound for the solutions of the S-unit equation. We start with an elementary lemma;
see also Exercise 9.8.

Lemma 5.3. Let V be a finite-dimensional vector space over R. Given any basis e =
{e1, . . . , en} for V , let ‖ · ‖e be the sup norm with respect to e, i.e.,

‖x‖e =
∥
∥
∥
∑

xiei

∥
∥
∥
e

= max
{
|xi|

}
.

Let f = {f1, . . . , fn} be another basis for V . There are positive constants c1 and c2,
depending on e and f , such that for all x ∈ V ,

c1‖x‖e ≤ ‖x‖f ≤ c2‖x‖e.

PROOF. Let A = (aij) be the change of basis matrix from e to f , so ei =
∑

j aijfj ,
and let ‖A‖ = max

{
|aij |

}
. Then for any x =

∑
i xiei ∈ V we have x =∑

i,j xiaijfj , so

‖x‖f = max
j

{∣
∣
∣
∣
∑

i

xiaij

∣
∣
∣
∣

}
≤ nmax

i,j

{
|aij |

}
max

i

{
|xi|

}
= n‖A‖ ‖x‖e.

This gives one inequality, and the other follows by symmetry.

We apply (IX.5.3) to the following situation. Let S ⊂ MK be a finite set of
places containing M∞

K , let s = #S, and choose a basis α1, . . . , αs−1 for the free
part of R∗

S . Then every α ∈ R∗
S can be written uniquely as

α = ζαm1
1 · · ·αms−1

s−1

with integers m1, . . . ,ms−1 and a root of unity ζ. Define the size of α (relative to
{α1, . . . , αs−1}) by

m(α) = max
{
|mi|

}
.

Lemma 5.4. With notation as above, there are positive constants c1 and c2, depend-
ing only on K and S, such that every α ∈ R∗

S satisfies

c1h(α) ≤ m(α) ≤ c2h(α).

PROOF. Let S = {v1, . . . , vs} and, to ease notation, let ni = nvi
be the local degree

corresponding to vi. We consider the S-regulator homomorphism

ρS : R∗
S −→ Rs, α �−→

(
n1v1(α), . . . , nsvs(α)

)
.
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Note that the image of ρS lies in the hyperplane H = {x1 + · · · + xs = 0}, and
Dirichlet’s S-unit theorem says that the image of ρS spans H . Let ‖ · ‖1 be the sup
norm on Rs relative to the standard basis, and let ‖ · ‖2 be the sup norm relative to
the basis {

ρS(α1), . . . , ρS(αs−1), (1, 1, . . . , 1)
}
.

Here ρS(α1), . . . , ρS(αs−1) span H , and we have added one extra vector in order to
span all of Rs. From (IX.5.3) we find positive constants c1 and c2 such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1 for all x ∈ Rs.

Now let α ∈ R∗
S and write ρS(α) =

∑
miρS(αi). Then directly from the defi-

nitions we have
∥
∥ρS(α)

∥
∥

2
= max

{
|mi|

}
= m(α),

∥
∥ρS(α)

∥
∥

1
= max

{
ni|vi(α)|

}
,

hK(α) =
∑

max
{
0,−nivi(α)

}
.

(Note that the sum for hK(α) needs to include only the absolute values in S, since
by assumption v(α) = 0 for all v /∈ S.) It remains to compare

∥
∥ρS(α)

∥
∥

1
and hK(α).

In general, for any x = (x1, . . . , xs) ∈ H , we can compare ‖x‖1 to the height
h(x) =

∑
max{0,−xi}. First, since max{0,−xi} ≤ |xi|, we have the obvious

estimate
h(x) ≤ s‖x‖1.

On the other hand, if we sum the identity

xi = max{0, xi} − max{0,−xi}

for 1 ≤ i ≤ s and use the fact that x ∈ H , i.e.,
∑

xi = 0, we obtain

0 = h(−x) − h(x),

and hence h(−x) = h(x). This allows us to compute

2h(x) = h(x) + h(−x)

=
∑(

max{0,−xi} + max{0, xi}
)

=
∑

|xi|
≥ max

{
|xi|

}

= ‖x‖1.

Thus 1
2‖x‖1 ≤ h(x) ≤ s‖x‖1, and combining this with the earlier estimates gives

the desired result,
(c1/s)hK(α) ≤ m(α) ≤ 2c2hK(α).
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We now have the tools needed to show how solving the S-unit equation can be
reduced to the problem of giving bounds for linear forms in logarithms.

Theorem 5.5. Fix a, b ∈ K∗. There exists an effectively computable constant
C = C(K,S, a, b) such that any solution (α, β) ∈ R∗

S × R∗
S to the S-unit equation

aα + bβ = 1

satisfies H(α) < C.

PROOF. Let (α, β) be a solution and choose the absolute value v in S for which |α|v
is largest. Then, since |α|w = 1 for all w /∈ S, we have

|α|[K:Q]s
v ≥

∏

w∈S

max
{
1, |α|nw

w

}
= HK(α),

and hence
|α|v ≥ H(α)1/s.

(Here, as usual, s = #S.)
To simplify our discussion, we will assume that v is archimedean, which is cer-

tainly true if, for example, S = M∞
K . (For arbitrary S, see the discussion in (IX.5.6).)

The mean value theorem applied to the function log(x) yields
∣
∣
∣
∣
log x − log y

x − y

∣
∣
∣
∣ ≤

1
min

{
|x|, |y|

} .

We apply this inequality with x = aα and y = −bβ, so x − y = 1, and we obtain

| log aα − log bβ| ≤ min
{
|aα|, |aα − 1|

}−1

≤ 2
(
|a|H(α)1/s

)−1
.

(For the last line, we have assumed that |α| > 2/|a|, since otherwise we have the
excellent bound H(α) ≤ |α|s ≤ (2/|a|)s.)

Let α1, . . . , αs−1 be a basis for R∗
S , and write

α = ζαm1
1 · · ·αms−1

s−1 and β = ζ ′α
m′

1
1 · · ·αm′

s−1
s−1 .

Substituting this into the previous inequality yields
∣
∣
∣
∣
∣

s−1∑

i=1

(mi − m′
i) log αi + log

(
aζ

bζ ′

)∣
∣
∣
∣
∣
≤ c1

H(α)1/s
,

where here and in what follows, the constants c1, c2, . . . are effectively computable
and depend only on K, S, a, and b.

From the equality aα + bβ = 1, it is easy to obtain an estimate
∣
∣h(α) − h(β)

∣
∣ ≤ c2,
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and applying (IX.5.4) yields

c3m(α) ≤ m(β) ≤ c4m(α).

(Clearly we may assume that m(α) ≥ 1 and m(β) ≥ 1.) In particular,

|mi − m′
i| ≤ m(α) + m(β) ≤ c5h(α).

Letting qi = mi − m′
i and γ = aζ/bζ ′ to ease notation, we have the inequality

|q1 log α1 + · · · + qs−1 log αs−1 + log γ| ≤ c1H(α)−1/s.

We now apply Baker’s theorem (IX.5.2). This gives a lower bound of the form

|q1 log α1 + · · · + qs−1 log αs−1 + log γ| ≥ c−τ
6 ,

where
τ = h

(
[1, q1, . . . , qs−1]

)
h
(
[1, α1, . . . , αs−1, γ]

)κ

and κ is a constant depending only on K and s. But from above,

h
(
[1, q1, . . . , qs−1]

)
= log max

{
1, |q1|, . . . , |qs−1|

}
≤ log

(
c5h(α)

)
.

Combining the upper and lower bounds for the linear form in logarithms and using
this estimate yields

c
log(c5h(α))
7 ≤ c1H(α)1/s.

(Note that the basis α1, . . . , αs−1 depends only on the field K and the set S, so we
have absorbed the h

(
[1, α1, . . . , αs−1, γ]

)κ
into c7.) Now a little bit of algebra gives

H(α) ≤ c8h(α)c9 ,

and since h(α) = log H(α), this implies the desired bound for H(α).

Remark 5.6. In order to apply the argument given in (IX.5.5) to a nonarchimedean
absolute value, it is necessary to make some minor technical alterations. The main
difficulty is that the logarithm function in the p-adic setting converges only in a
neighborhood of 1. What one does is to take a subgroup of finite index in R∗

S that is
generated by S-units that are p-adically close to 1, together with a uniformizer at p.
Then, assuming that |α|p is sufficiently large, one shows that aα/bβ is p-adically
close to 1. Now applying the above argument to some power of aα/bβ gives a well-
defined linear form in p-adic logarithms, and from then on the argument goes just
the same. For the final step, of course, one must use a p-adic analogue of Baker’s
theorem. For further details on the reduction step, see for example [135, VI §1].
Remark 5.7. In order to obtain an effective bound for the points on an elliptic curve
satisfying f(P ) ∈ RS , where f is an arbitrary nonconstant function, it is necessary
to make the reduction step given in (IX.3.2.2) effective. This essentially involves
giving an effective version of the Riemann–Roch theorem, which has been done by
Coates [48]. As the reader might guess from the number of reduction steps involved,
the effective bounds that come out of the proofs are quite large. To indicate the mag-
nitudes involved, we quote two results; see also (IX.7.2), and (IX.7.4).
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Theorem 5.8. (a) (Baker [11, page 45]) Let A,B,C,D ∈ Z satisfy

max
{
|A|, |B|, |C|, |D|

}
≤ H,

and assume that

E : Y 2 = AX3 + BX2 + CX + D

is an elliptic curve. Then any point P = (x, y) ∈ E(Q) with x, y ∈ Z satisfies

max
{
|x|, |y|

}
< exp

(
(106H)10

6
)

.

(b) (Baker–Coates [12]) Let F (X,Y ) ∈ Z[X,Y ] be an absolutely irreducible
polynomial such that the curve F (X,Y ) = 0 has genus one. Let n be the degree
of F , and assume that the coefficients of F all have absolute value at most H .
Then any solution to F (x, y) = 0 with x, y ∈ Z satisfies

max
{
|x|, |y|

}
< exp exp exp

(
(2H)10

n10
)

.

Remark 5.8.1. There is an extensive literature on effective bounds for S-integral
solutions to equations of the form ym = f(x); see for example [32, 96, 131, 268,
279, 301]. To quote one instance, we mention that [301] improves (IX.5.8a) to

max
{
|x|, |y|

}
≤ exp

(
cH270(log H)54

)

for an absolute constant c.

Linear Forms in Elliptic Logarithms

Rather than reducing the problem of integral points on an elliptic curve to the ques-
tion of solutions to the S-unit equation, and thence as above to bounds for linear
forms in logarithms, one can instead work directly with the analytic parametrization
of the elliptic curve. We briefly indicate how this is done in the simplest case.

Let E/Q be an elliptic curve given by a Weierstrass equation

E : y2 = 4x3 − g2x − g3 with g2, g3 ∈ Z.

We are interested in bounding the height of points P ∈ E(Q) that satisfy x(P ) ∈ Z.
Let

φ : C/Λ −→ E(C)

be the analytic parametrization of E(C) given by the Weierstrass ℘-function and its
derivative (VI.5.1.1). We fix a basis {ω1, ω2} for the lattice Λ. Let

ψ : E(C) −→ C
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be the map that is inverse to φ and takes values in the fundamental parallelo-
gram spanned by ω1 and ω2, shifted to be centered at 0. The map φ is the ellip-
tic exponential map, and choosing a fundamental domain for the elliptic logarithm
map ψ is analogous to choosing a principal value for the ordinary logarithm func-
tion log : C∗ → C. (The analogy becomes even clearer if we identify C∗ with C/Z.)

Fix a basis P1, . . . , Pr for the free part of E(Q). Given any point P ∈ E(Q), we
can write

P = q1P1 + · · · + qrPr + T

with integers q1, . . . , qr and a torsion point T ∈ Etors(Q). It follows that

ψ(P ) = q1ψ(P1) + · · · + qrψ(Pr) + ψ(T ) (mod Λ),

so there are integers m1 and m2 such that

ψ(P ) = q1ψ(P1) + · · · + qrψ(Pr) + ψ(T ) + m1ω1 + m2ω2.

Suppose now that P is a large integral point, i.e., x(P ) ∈ Z and
∣
∣x(P )

∣
∣ is large.

Then P is close to O in the complex topology on E(C), so ψ(P ) is close to 0. More
precisely, since ℘(z) = x

(
φ(z)

)
behaves like z−2 for z close to 0, we see that

∣
∣ψ(P )

∣
∣2 ≤ c1

∣
∣x(P )

∣
∣−1 = c1H

(
x(P )

)−1
.

We are using the fact that if x ∈ Z with x �= 0, then H(x) = |x|. The constant c1

depends on g2 and g3, but not on P .
On the other hand, since the canonical height is quadratic and positive definite

from (VIII.9.3) and (VIII.9.6), we can estimate

log H
(
x(P )

)
= hx(P ) = 2ĥ(P ) + O(1)

= 2ĥ
(∑

qiPi + T
)

+ O(1)

≥ c2 max
{
|qi|

}2
,

where c2 depends on E and the choice of the basis P1, . . . , Pr. (See Exercise 9.8.)
Substituting this above, we obtain an upper bound for our linear form in elliptic
logarithms,

∣
∣q1ψ(P1) + · · · + qrψ(Pr) + ψ(T ) + m1ω1 + m2ω2

∣
∣ ≤ c

−max{|qi|}2

3 .

Further, since ω1 and ω2 are R-linearly independent, it is easy to see that

max
{
|m1|, |m2|

}
≤ c4 max

{
|qi|

}
,

where c4 depends on E, {Pi}, ω1, and ω2. Thus, if we let

q = max
{
|q1|, . . . , |qr|, |m1|, |m2|

}
,

then we obtain the estimate



IX.6. Shafarevich’s Theorem 293

∣
∣q1ψ(P1) + · · · + qrψ(Pr) + ψ(T ) + m1ω1 + m2ω2

∣
∣ ≤ c−q2

5 .

Now the desired finiteness result follows if we can find a lower bound for the left-
hand side having the form C−τ(q) with τ(q)/q2 → 0 as q → ∞. The first effective
estimate of this sort was proven by Masser [159] in the case that E has complex
multiplication. The general case was proven by Wüstholz [313, 314], who had to
overcome significant technical difficulties associated with the necessary zero and
multiplicity estimates.

It remains to discuss the question of effectivity. The reduction to linear forms in
ordinary logarithms via the S-unit equation is fully effective. It is possible to give an
explicit upper bound for the height of any S-integral point of E(K) in easily com-
puted quantities associated to K, S, and E. One of these quantities, for example,
is a bound for the heights of generators of the unit group R∗

S . In the analogous re-
duction to linear forms in elliptic logarithms, we similarly use a set of generators of
the Mordell–Weil group E(K), and the bound for the integral points depends on the
heights of these generators. Unfortunately, as we have noted in (VIII.3.2) (see also
Chapter X), the proof of the Mordell–Weil theorem is not effective. Thus although
the approach to integral points on elliptic curves via elliptic logarithms is more nat-
ural than the roundabout route through the S-unit equation, it is likely to remain
ineffective until an effective proof of the Mordell–Weil theorem is found. On the
other hand, we should mention that if one is able to find a basis for the Mordell–Weil
group, for example using the techniques in Chapter X, then the method of elliptic
logarithms often provides the best known algorithm for finding the integral points on
a given elliptic curve. See for example [58, 59, 96, 268, 279, 315].

IX.6 Shafarevich’s Theorem
Recall that an elliptic curve E/K has good reduction at a finite place v ∈ MK if it
has a Weierstrass equation whose coefficients are v-integral and whose discriminant
is a v-adic unit (VII §5).

Theorem 6.1. (Shafarevich [242]) Let S ⊂ MK be a finite set of places con-
taining M∞

K . Then up to isomorphism over K, there are only finitely many elliptic
curves E/K having good reduction at all primes not in S.

PROOF. Clearly we are proving something stronger if we enlarge S, so we may
assume that S contains all primes of K lying over 2 and 3. Enlarging S further, we
may also assume that the ring of S-integers RS has class number one.

Under these assumptions, we see from (VIII.8.7) that any elliptic curve E/K has
a Weierstrass equation of the form

E : y2 = x3 + Ax + B, A,B ∈ RS ,

with discriminant Δ = −16(4A3 + 27B2) satisfying

ΔRS = DE/KRS .
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Here DE/K is the minimal discriminant of E/K; see (VIII §8). If we further assume
that E has good reduction outside S, then ordv(DE/K) = 0 for all places v /∈ S,
so Δ is in R∗

S .
Assume now that we are given a list of elliptic curves E1/K,E2/K, . . . , each of

which has good reduction outside of S. We associate to each Ei a Weierstrass equa-
tion as above, say with coefficients Ai, Bi ∈ RS and discriminant Δi ∈ R∗

S . Break-
ing the sequence of Ei into finitely many subsequences according to the residue class
of Δi in the finite group R∗

S/(R∗
S)12, we may replace the original sequence with an

infinite subsequence satisfying Δi = CD12
i for a fixed C and with Di ∈ R∗

S .
The relation Δ = −16(4A3 + 27B2) implies that for each i, the point

(
−12Ai

D4
i

,
72Bi

D6
i

)

is an S-integral point on the elliptic curve

Y 2 = x3 + 27C.

Siegel’s theorem (IX.3.2.1) says that there are only finitely many such points, and
thus only finitely many possibilities for Ai/D4

i and Bi/D6
i . However, if

Ai

D4
i

=
Aj

D4
j

and
Bi

D6
i

=
Bj

D6
j

,

then the change of variables

x = (Di/Dj)2x′, y = (Di/Dj)3y′,

gives a K-isomorphism from Ei to Ej . Hence the sequence E1, E2, . . . contains only
finitely many K-isomorphism classes of elliptic curves.

Example 6.1.1. There are no elliptic curves E/Q having everywhere good reduc-
tion; see Exercise 8.15. There are 24 curves E/Q having good reduction outside
of {2} and 784 curves E/Q having good reduction outside of {2, 3}; for the com-
plete list, see [19, Table 4]. Similar lists have been compiled for various quadratic
fields; see for example [147] or [204].

Shafarevich’s theorem (IX.6.1) has a number of important applications. We con-
tent ourselves with the following two corollaries.

Corollary 6.2. Fix an elliptic curve E/K. Then there are only finitely many elliptic
curves E′/K that are K-isogenous to E.

PROOF. If E and E′ are isogenous over K, then (VII.7.2) says that E and E′ have
the same set of primes of bad reduction. Now apply (IX.6.1).

Corollary 6.3. (Serre) Let E/K be an elliptic curve with no complex multiplication.
Then for all but finitely many primes �, the group of �-torsion points E[�] has no
nontrivial GK̄/K-invariant subgroups. (In other words, the representation of GK̄/K

on E[�] is irreducible.)
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PROOF. Suppose that Φ� ⊂ E[�] is a nontrivial GK̄/K-invariant subgroup of E[�].
We know that E[�] ∼= (Z/�Z)2, so Φ� is necessarily cyclic of order �. We ap-
ply (III.4.12) to produce an elliptic curve E�/K and an isogeny φ� : E → E�

with ker(φ�) = Φ. The Galois invariance of Φ ensures that the curve E� and the
isogeny φ� are defined over K.

Each E� is K-isogenous to E, so (IX.6.2) says that the E� fall into finitely
many K-isomorphism classes. Suppose that E�

∼= E�′ for two primes � and �′. Then
the composition

E
φ�−−−−−→ E�

∼= E�′
φ̂�′−−−−−→ E

defines an endomorphism of E of degree

(deg φ�)(deg φ̂�′) = ��′.

By assumption, End(E) = Z, so every endomorphism of E has degree n2 for
some n ∈ Z. This shows that � = �′, and thus that E� �∼= E�′ for � �= �′. Therefore
there are only finitely many primes � for which such a subgroup Φ� and curve E� can
exist.

Example 6.4. For K = Q, results of Mazur [166] and Kenku [125] give a statement
that is far more precise than (IX.6.2). They show that for a given elliptic curve E/Q,
there are at most eight Q-isomorphism classes of elliptic curves E′/Q that are Q-
isogenous to E. Further, if φ : E → E′ is a Q-isogeny whose kernel is a cyclic
group, then either

1 ≤ deg φ ≤ 19 or deg φ ∈ {21, 25, 27, 37, 43, 67, 163}.

It is no coincidence that the possibilities for deg φ are values of d for which Q(
√
−d )

has class number one. The class number one condition means that the elliptic curve
corresponding to the lattice

Z + Z

(
1
2 + 1

2

√
−d

)

via (VI.5.1.1) is isomorphic to an elliptic curve defined over Q. (See (C.11.3.1) for
details.) Now we need merely observe that multiplication by

√
−d gives an isogeny

from E to itself that is defined over Q and whose kernel Φ is invariant under the
action of GQ̄/Q. Then E → E/Φ is a cyclic isogeny of degree d between elliptic
curves defined over Q.

Remark 6.5. An examination of the proof of (IX.6.1) reveals an interesting possi-
bility. If we had some other proof of (IX.6.1) that did not use either Siegel’s theorem
or Diophantine approximation techniques, then we could deduce that the equation

Y 2 = X3 + D

has only finitely many solutions X,Y ∈ RS . For given such a solution, the equation

y2 = x3 − Xx − Y
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defines an elliptic curve with good reduction outside of the set

S ∪ {primes dividing 2 and 3}.

Hence, assuming (IX.6.1), there can be only finitely many such curves, and we could
argue back to the finiteness of the number of pairs (X,Y ). Building on this idea,
Parshin [203] showed how a generalization of (IX.6.1) to curves of higher genus
(which had already been conjectured by Shafarevich [242]) could be used to prove
Mordell’s conjecture that curves of genus at least 2 have only finitely many rational
points. The subsequent proof of Shafarevich’s conjecture by Faltings [82, 84] com-
pleted this chain of reasoning. Faltings’ proof, together with Parshin’s idea, also gives
a proof of Siegel’s theorem (IX.3.2) that does not involve the use of Diophantine ap-
proximation. Subsequent to Faltings’ proof of the Mordell conjecture, Vojta [299]
gave a somewhat more natural proof based on Diophantine approximation methods.
For an exposition of this latter proof, see for example [114, Part E].

IX.7 The Curve Y 2 = X3 + D

Many of the general results known and conjectured about the arithmetic of elliptic
curves were originally noticed and tested on various special sorts of equations, such
as the one given in the title of this section. For example, long before the work of
Mordell and Siegel led to general finiteness results such as (IX.3.2.1), many special
cases had been proven by a variety of methods. (See, e.g., [185, Chapter 26].) The
next result gives two examples in which the complete set of integral solutions can be
obtained by relatively elementary means.

Proposition 7.1. (a) (V.A. Lebesgue) The equation

y2 = x3 + 7

has no solutions in integers x, y ∈ Z.
(b) (Fermat) The only integral solutions to the equation

y2 = x3 − 2

are (x, y) = (3,±5).

PROOF. (a) Suppose that x, y ∈ Z satisfy y2 = x3 + 7. We first observe that x must
be odd, since no integer of the form 8k + 7 is a square. Next we rewrite the equation
as

y2 + 1 = x3 + 8 = (x + 2)(x2 − 2x + 4).

Since x is odd,

x2 − 2x + 4 = (x − 1)2 + 3 ≡ 3 (mod 4),

so there exists at least one prime p ≡ 3 (mod 4) that divides x2 − 2x + 4. But
then y2 + 1 ≡ 0 (mod p), which is not possible.
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(b) Suppose that we have a solution x, y ∈ Z to y2 = x3−2. We factor the equation
as

(y +
√
−2 )(y −

√
−2 ) = x3.

The ring R = Z[
√
−2 ] is a principal ideal domain, and the greatest common divisor

of y +
√
−2 and y −

√
−2 in R divides 2

√
−2, so we see that y +

√
−2 has one of

the following forms:

y +
√
−2 = ζ3 or

√
−2ζ3 or 2ζ3 for some ζ ∈ R.

Applying complex conjugation gives

y −
√
−2 = ζ̄3 or −

√
−2ζ̄3 or 2ζ̄3,

and taking the product yields

x3 = y2 + 2 = (ζζ̄)3 or 2(ζζ̄)3 or 4(ζζ̄3).

Since x ∈ Z and ζζ̄ ∈ Z, only the first case is possible, so

y +
√
−2 = ζ3 and y −

√
−2 = ζ̄3.

Subtracting these two equations gives

2
√
−2 = ζ3 − ζ̄3 = (ζ − ζ̄)(ζ2 + ζζ̄ + ζ̄2).

We write ζ = a + b
√
−2 with a, b ∈ Z and substitute to obtain

2
√
−2 = 2

√
−2 b(3a2 − 2b2).

Since a and b are in Z, we must have

b = ±1 and 3a2 − 2b2 = ±1,

where the signs are the same. It follows that (a, b) = (±1, 1), and working back
through the various substitutions yields the values (x, y) = (3,±5).

Remark 7.1.1. It is worth remarking that the result in (IX.7.1b) is far more interest-
ing than that in (IX.7.1a). The reason is that the Mordell–Weil group over Q of the
elliptic curve y2 = x3 + 7 is trivial, so (IX.7.1a) reflects the fact that the equation has
no rational solutions. On the other hand, the Mordell–Weil group of y2 = x3 − 2 is
infinite cyclic (see Exercise 10.19), so (IX.7.1b) says that among the infinitely many
rational points, only two have integer coordinates.

Baker applied his effective estimate for linear forms in logarithms to give an
explicit upper bound, in terms of D, for the integral solutions to y2 = x3 + D. This
bound was refined by Stark, who proved the following result.
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Theorem 7.2. (Stark [273]) For every ε > 0 there is an effectively computable
constant Cε, depending only on ε, such that if D ∈ Z with D �= 0 and if x, y ∈ Z are
solutions to the equation

y2 = x3 + D,

then
log max

{
|x|, |y|

}
≤ Cε|D|1+ε.

Example 7.3. Stark’s estimate (IX.7.2) gives a bound for x and y that is slightly
worse than exponential in D. It is natural to ask whether this bound is of the correct
order of magnitude. Various people have conducted computer searches for large so-
lutions, see for example [75, 106, 134]. Among the interesting examples found, we
mention:

378,6612 = 52343 + 17,

911,054,0642 = 939,7873 − 307,

149,651,610,6212 = 28,187,3513 + 1090,

447,884,928,428,402,042,307,9182 = 5,853,886,516,781,2233 − 1641843.

Although these examples show that x and y may be quite large in comparison to D,
a close examination of the data led M. Hall to make the following conjecture, which
was partly generalized by Lang.

Conjecture 7.4. (a) (Hall [106]) For every ε > 0 there is a constant Cε, depending
only on ε, such that for all D ∈ Z with D �= 0 and for all x, y ∈ Z satisfying

y2 = x3 + D,

we have
|x| ≤ CεD

2+ε.

(b) (Hall–Lang [138]) There are absolute constants C and κ such that for every
elliptic curve E/Q given by a Weierstrass equation

y2 = x3 + Ax + B with A,B ∈ Z

and for every integral point P ∈ E(Q), i.e., satisfying x(P ) ∈ Z, we have
∣
∣x(P )

∣
∣ ≤ C max

{
|A|, |B|

}κ
.

The evidence for these conjectures is fragmentary. They are true for function
fields, for which Davenport [57] proved (IX.7.4a) and Schmidt proved (IX.7.4b).
Vojta [298, 4 §4] has shown that (IX.7.4a) over number fields is a consequence of
his very general Nevanlinna-type conjectures for algebraic varieties. It is also easy
to deduce (IX.7.4a) from the ABC conjecture; see Exercise 9.17. However, both
Vojta’s conjectures and the ABC conjecture are well beyond the reach of current
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techniques. (See also Exercise 9.10 for a proof that the exponent in (IX.7.4a) cannot
be improved.) Aside from these few facts, very little is known. It is worth pointing
out that the effective techniques from (IX §5) seem intrinsically incapable of leading
to estimates as strong as those described in (IX.7.4). We briefly explain the problem
for the equation y2 = x3 + D.

When performing the reduction to the S-unit equation, we use a number field K
whose discriminant looks like a power of D. The Brauer–Siegel theorem says
that log(hKRK) ∼ 1

2 log dK as [K : Q]/ log dK → 0, where hK is the class num-
ber, RK the regulator, and dK the absolute discriminant of K. (See, e.g., [142, Chap-
ter XVI].) In general there is no reason to expect the class number of K to be large,
so the best that we can hope for is to find a bound for the regulator that is a power
of |D|. Since the regulator is the determinant of the logarithms of a basis for the unit
group R∗, the resulting bounds for the heights H(αi) of generators αi ∈ R∗ will
be exponential in |D|. This eventually leads to an exponential bound for x and y as
in (IX.7.2).

There is a similar problem if we try to prove (IX.7.4) using linear forms in elliptic
logarithms or by following Siegel’s method of proof as in (IX.3.1), even assuming
that we could prove strong effective versions of Roth’s theorem and the Mordell–
Weil theorem. The difficulty is that it is likely that the best possible upper bound for
generators of the Mordell–Weil group of y2 = x3 + D has the form ĥ(P ) ≤ C|D|κ,
cf. (VIII.10.2). Here ĥ is a logarithmic height, so this again leads to a bound for the
x-coordinate of integral points that is exponential in D.

The problem in both cases can be explained most clearly by the analogy given
in (IX.4.2.1). When solving the S-unit equation or when finding integral points on
elliptic curves, one is initially given a finitely generated group (R∗

S × R∗
S , respec-

tively E(K)) and a certain exceptional subset (solutions to ax + by = 1, respec-
tively points with x(P ) ∈ RS). The first step is to choose a basis for the finitely
generated group and express the exceptional points in terms of the basis. The diffi-
culty that arises in trying to prove (IX.7.4) or the analogous estimate for the S-unit
equation is that in general, the best (conjectural) upper bound for the heights of the
basis elements is exponentially larger than the desired upper bound for the excep-
tional points! The moral of this story, assuming the validity of various conjectures,
is that a randomly chosen elliptic curve E/Q is unlikely to have any integral points
at all.

IX.8 Roth’s Theorem—An Overview
In this section we give a brief sketch of the principal steps that go into the proof of
Roth’s theorem (IX.1.4). None of the steps are tremendously deep, but the details
required to make them rigorous are quite lengthy. For the full proof, see for exam-
ple [114, Part D], [139, Chapter 7], or [221].

We assume that we are given an α ∈ K̄, an absolute value v ∈ MK , and positive
real numbers ε and C. We then want to prove that there are only finitely many x ∈ K
satisfying
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|x − α|v ≤ CHK(x)−2−ε.

Step I: An Auxiliary Polynomial

For any given integers m, d1, . . . , dm, one uses elementary estimates and the pigeon-
hole principle to construct a polynomial

P (X1, . . . , Xm) ∈ R[X1, . . . , Xm]

of degree di in Xi such that P vanishes to fairly high order (in terms of m and the di)
at the point (α, . . . , α). Further, one shows that P may be chosen with coefficients
having fairly small heights, the bound for the heights being given explicitly in terms
of α, m, and the di.

Step II: An Upper Bound for P

Suppose now that we are given elements x1, . . . , xm ∈ K satisfying

|xi − α|v ≤ CHK(xi)−2−ε for 1 ≤ i ≤ m.

Using the Taylor series expansion for P (X1, . . . , Xm) around (α, . . . , α) and the
fact that P vanishes to high order at (α, . . . , α), one shows that

∣
∣P (x1, . . . , xm)

∣
∣
v

is
fairly small.

Step III: A Nonvanishing Result (Roth’s Lemma)

Suppose that the degrees d1, . . . , dm are fairly rapidly decreasing, where the rate
of decrease depends on m, and suppose that x1, . . . , xm ∈ K have the property
that their heights are fairly rapidly increasing, the rate of increase depending on m
and d1, . . . , dm. Suppose further that P (X1, . . . , Xm) ∈ R[X1, . . . , Xm] has de-
gree di in Xi and coefficients whose heights are bounded in terms of d1 and h(x1).
Then one shows that P does not vanish to too high an order at (x1, . . . , xm).

This is the hardest step in Roth’s theorem. In Thue’s original theorem, he used
a polynomial of the form P (X,Y ) = f(X) + g(X)Y and obtained an approxima-
tion exponent τ(d) = 1

2d + ε. The improvements of Siegel, Gelfond, and Dyson
used a general polynomial in two variables. It was clear at that time that the way
to obtain τ(d) = 2 + ε was to use polynomials in more variables; the only stum-
bling block was the lack of a nonvanishing result such at the one that we have just
described.

The proof of Roth’s lemma is by induction on m, the number of variables in the
polynomial P . If P factors as

P (X1, . . . , Xm) = F (X1)G(X2, . . . , Xm),

then the induction proceeds fairly smoothly. Of course, such a factorization is un-
likely to happen. What one does is to construct differential operators Dij such that
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the generalized Wronskian determinant det(DijP ) is a nonzero polynomial that does
factor in the above fashion. It is then a delicate matter to estimate the degrees and
heights of the coefficients of the resulting polynomial and to show that they have not
grown too large to allow the inductive hypothesis to be applied.

Step IV: The Final Estimate

Suppose that the inequality

|x − α|v ≤ CHK(x)−2−ε

has infinitely many solutions x ∈ K. We derive a contradiction as follows.
First choose a value for m, depending on ε, C, and

[
K(α) : K

]
. Second,

choose x1, . . . , xm ∈ K in succession satisfying

|xi − α|v ≤ CHK(xi)−2−ε,

such that HK(x1) is large, depending on m, and such that HK(xi+1) > HK(xi)κ

for some constant κ depending on m. Third, choose a large integer d1, depending
on m and the HK(xi), and then choose d2, . . . , dm in terms of d1 and the HK(xi).
We are now ready to apply the initial three steps.

Using Step I, choose a polynomial P (X1, . . . , Xm) of degree di in Xi such
that P vanishes to high order at (α, . . . , α). The order of vanishing depends on m
and d1, . . . , dm. From Step III, we know that P does not vanish to too high an order
at (x1, . . . , xm), so we can choose a low-order partial derivative that does not vanish,

z =
∂i1+···+im

∂Xi1
1 · · · ∂Xim

m

P (x1, . . . , xm) �= 0.

From Step II, we know that |z|v is fairly small. On the other hand, since z �= 0, we
can use the product formula to show that |z|v cannot be too small. Specifically, we
have |z|v ≥ HK(z)−1; see Exercise 9.9. Next, using elementary triangle inequality
estimates, we find a lower bound for HK(z)−1. Combining this lower bound with the
earlier upper bound, some algebra gives a contradiction. It follows that the inequality

|x − α|v ≤ CHK(x)−2−ε

has only finitely many solutions.

Remark 8.1. In examining the proof sketch of Roth’s theorem, especially the se-
quence of choices in Step IV, it is clear why we do not obtain an effective procedure
for finding all x ∈ K satisfying |x − α|v ≤ CHK(x)−2−ε. What the proof shows is
that we cannot find a long sequence of xi whose heights grow sufficiently rapidly,
where the terms “long sequence” and “sufficiently rapidly” can be made completely
explicit in terms of K, α, ε, and C. The difficulty is that the required growth of the
height of each xi is given in terms of its predecessor. What this boils down to is
that if we can find a large number of good approximations to α whose heights are
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sufficiently large, then we can obtain a bound for all other good approximations to α
in terms of the approximations that we already know. Unfortunately, the bounds that
come out of Roth’s theorem are so large that it is highly unlikely that there exists
even a single good approximation to α having the requisite height.

Using an elaboration of the above argument, one can prove quantitative versions
of Roth’s theorem such as in the following result.

Theorem 8.2. ([173, 103]) Let K/Q be a number field, let α ∈ K̄ � K, and
let S ⊂ MK be a finite set of absolute values, each of which is extended in some
way to Q(α). Let ε > 0. There are constants C1 and C2, depending only on ε
and

[
K(α) : K

]
, such that the inequality

∏

v∈S

min
{
|x − α|nv

v , 1
}
≤ CHK(x)−2−ε

has at most 4#SC1 solutions x ∈ K satisfying HK(x) >
(
2HK(α)

)C2 .

Of course, the constant C2 in (IX.8.2) turns out to be sufficiently large that it is
highly unlikely that there are any x ∈ K satisfying the two conditions of the theorem.
But the proof of Roth’s theorem does not preclude the existence of large solutions,
and it provides no tools with which to find them if they do exist!

Exercises
9.1. Let

(
φ(n)

)
n=1,2,...

be a sequence of positive numbers. We say that a number α ∈ R

is φ-approximable (over Q) if there are infinitely many p/q ∈ Q satisfying
∣
∣
∣
∣α − p

q

∣
∣
∣
∣ <

1

qφ(q)
.

For example, Roth’s theorem says that no element of Q̄ is n1+ε-approximable.
(a) Prove that for any ε > 0, the set

{α ∈ R : α is n1+ε-approximable}

is a set of measure 0.
(b) More generally, prove that if the series

∑
n≥1

1/φ(n) converges, then the set

{α ∈ R : α is φ-approximable}

is a set of measure 0.

9.2. (a) Use Liouville’s theorem (IX.1.3) to prove that the number
∑

n≥1
2−n! is transcen-

dental.
(b) More generally, let

(
e(n)

)
n=1,2,...

be a sequence of real numbers with the property that
for every d > 0 there is a constant Cd > 0 such that

e(n) ≥ Cdnd for all n = 1, 2, . . . .

(In complexity theory terminology, one says that the growth rate of the function e(n) is
faster than polynomial.) Let b ≥ 2 be an integer. Prove that the number

∑
n≥1

b−e(n) is
transcendental.
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(c) Use (b) to prove that there are uncountably many transcendental numbers.

9.3. For each integer m �= 0, let

N(m) = #
{
(x, y) ∈ Z : y2 = x3 + m

}
.

Note that (IX.3.2) tells us that N(m) is finite.
(a) Prove that N(m) can be arbitrarily large. (Hint. Choose an m0 such that y2 = x3 + m0

has infinitely many rational solutions. Then clear the denominators of a lot of them.)
(b) More precisely, prove that there is an absolute constant c > 0 such that

N(m) > c
(
log |m|

)1/3

for infinitely many m ∈ Z. (Hint. Use height functions to estimate the size of the de-
nominators cleared in (a).)

(c) ** Prove or disprove that N(m) is unbounded as m ranges over sixth-power-free inte-
gers, i.e., integers divisible by no nontrivial sixth power.

(d) Suppose that there is a value of m0 such that the Mordell–Weil group E0(Q) of the
elliptic curve E0 : y2 = x3 + m0 has rank r. Using an elaboration of the argument
in (b), prove that there is an absolute constant c > 0 such that

N(m) > c
(
log |m|

)r/(r+2)

for infinitely many m ∈ Z.
(e) ** Let ε > 0. Prove or disprove that

lim
|m|→∞

N(m)
(
log |m|

)1+ε
= 0.

9.4. Let E/Q be an elliptic curve and let P ∈ E(Q) be a point of infinite order.
(a) For each prime p ∈ Z at which E has good reduction, let np be the order of the reduced

point P̃ in the finite group Ẽ(Fp). Prove that the set

{np : p prime}

contains all but finitely many positive integers. (Hint. You will need the strong form of
Siegel’s theorem; see (IX.3.3).)

(b) An alternative formulation for (a) is to write x(nP ) = an/d2
n as a fraction in lowest

terms. The sequence (dn)n≥1 is an elliptic divisibility sequence.2 A prime p is called
a primitive divisor of dn if p | dn and p � dm for all m < n. Prove that all but finitely
many terms in the sequence dn have a primitive divisor. (This is an analogue for el-
liptic curves of a classical result for the multiplicative group that is due to Bang and
Zsigmondy [317].)

9.5. (a) Let f(T ) = a0T
n + · · ·+ an ∈ Z[T ] be a polynomial with a0an �= 0 and with dis-

tinct roots ξ1, . . . , ξn ∈ C. Let A = max
{
|a0|, . . . , |an|

}
. Prove that for every rational

number t ∈ Q,
∣
∣f(t)

∣
∣ ≥ (2n2A)−n min

{
|t − ξ1|, . . . , |t − ξn|

}
.

2This definition differs from that given in exercises 3.34–3.36. In general, it may be necessary to take a
subsequence (dnk)n≥1 in order to obtain a sequence satisfying the recurrence described in Exercise 3.34.
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(b) Let f(T ) = a0T
n + · · ·+an ∈ K[T ] be a polynomial with a0an �= 0 and with distinct

roots ξ1, . . . , ξn ∈ K̄. Let S ⊂ MK be a finite set of places of K, each extended in
some fashion to K̄. Prove that there is a constant Cf > 0, depending only on f , such
that for every t ∈ K,

∏

v∈S

min
{
1,
∣
∣f(t)

∣
∣nv

v

}
≥ Cf

∏

v∈S

min
1≤i≤n

{
1, |t − ξi|nv

v

}
.

(c) Find an explicit expression for the constant Cf appearing in (b), where your value for Cf

should depend only on n and HK

(
[a0, . . . , an]

)
.

9.6. (a) Let F (X, Y ) ∈ Z[X, Y ] be a homogeneous polynomial of degree d ≥ 3 with
nonzero discriminant. Prove that for every nonzero integer b, Thue’s equation

F (X, Y ) = b

has only finitely many solutions (x, y) ∈ Z2. (Hint. Let f(T ) = F (T, 1), and write
b = F (x, y) = ydf(x/y). Now use Exercise 9.5a and (IX.1.4).)

(b) More generally, let F (X, Y ) ∈ K[X, Y ] be a homogeneous polynomial of degree d ≥ 3
with nonzero discriminant, and let S ⊂ MK be a finite set of places containing M∞

K .
Prove that for every b ∈ K∗, the equation

F (X, Y ) = b

has only finitely many solutions (x, y) ∈ RS × RS .
(c) Let f(X) ∈ K[X] be a polynomial with at least two distinct roots in K̄, let S ⊂ MK

be as in (b), and let n ≥ 3 be an integer. Prove that the equation

Y n = f(X)

has only finitely many solutions (x, y) ∈ RS × RS . (Hint. Mimic the proof of (IX.4.3)
until you end up with a number of equations of the form aW n + bZn = c, and then
use (b).)

9.7. Let E/K be an elliptic curve without complex multiplication. Prove that for every
prime �, the representation of GK̄/K on the Q�-vector space T�(E) ⊗ Q� is irreducible.

9.8. (a) Let ‖ · ‖ be the usual Euclidean norm on Rn, and let {v1, . . . , vn} be a basis for Rn.
Prove that there is a constant c > 0, depending only on n and {v1, . . . , vn}, such that

∥
∥
∥
∥
∥

n∑

i=1

aivi

∥
∥
∥
∥
∥
≥ c max

{
|ai|

}
for all a1, . . . , an ∈ R.

(b) Let Λ ⊂ Rn be a lattice. Prove that there exist a basis {v1, . . . , vn} for Λ and a con-
stant cn > 0 depending only on n such that

∥
∥
∥
∥
∥

n∑

i=1

aivi

∥
∥
∥
∥
∥
≥ cn

n∑

i=1

‖aivi‖ for all a1, . . . , an ∈ R.

(Hint. Ideally, one would like to choose an orthogonal basis for Λ. This is not gener-
ally possible, but mimic the Gram–Schmidt process to find a basis that is reasonably
orthogonal.)
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(c) Let ‖ · ‖1 and ‖ · ‖2 be norms on Rn, i.e., they satisfy ‖v‖ ≥ 0, ‖v‖ = 0 if and
only if v = 0, ‖av‖ ≤ |a| ‖v‖, and ‖v + w‖ ≤ ‖v‖ + ‖w‖. Prove that there are
constants c1, c2 > 0 such that

c1‖v‖1 ≤ ‖v‖2 ≤ c2‖v‖1 for all v ∈ R
n.

(d) Let Q be a positive definite quadratic form on Rn. Prove that there is a constant c > 0,
depending on n and Q, such that for any integral lattice point (a1, . . . , an) ∈ Zn ⊂ Rn,

Q(a1, . . . , an) ≥ c max
{
|a1|, . . . , |an|

}2
.

(e) Let E/K be an elliptic curve and let P1, . . . , Pr be a basis for the free part of E(K).
Prove that there is a constant c > 0, depending on E and P1, . . . , Pr , such that for all
integers m1, . . . , mr ,

ĥ(m1P1 + · · · + mrPr) ≥ c max
{
|m1|, . . . , |mr|

}2
.

9.9. Let z ∈ K with z �= 0.
(a) Prove that for any v ∈ MK ,

|z|v ≥ HK(z)−1.

(b) More generally, prove that for any (not necessarily finite) set of absolute val-
ues S ⊂ MK , ∏

v∈S

min
{
1, |z|nv

v

}
≥ HK(z)−1.

(This lemma, as trivial as it appears, lies at the heart of all known proofs in Diophantine
approximation and transcendence theory. In its simplest guise, namely for K = Q, it
asserts nothing more than the fact that there are no positive integers smaller than one!)

9.10. Prove that there is an (absolute) constant C > 0 such that the inequality

0 < |y2 − x3| < C
√

|x|

has infinitely many solutions (x, y) ∈ Z. (Hint. Verify the identity

(t2 − 5)2
(
(t + 9)2 + 4

)
− (t2 + 6t − 11)3 = −1728(t − 2).

Take solutions to y2 − 2v2 = −1 and set t = 2u − 9. Show that this leads to a value
C = 432

√
2 + ε for any ε > 0.)

9.11. (a) Let d ≡ 2 (mod 4) and let D = d3 − 1. Prove that the equation

y2 = x3 + D

has no solution in integers x, y ∈ Z.
(b) For each of the primes p in the set {11, 19, 43, 67, 163}, find all solutions x, y ∈ Z to

the equation
y2 = x3 − p.

(Hint. Work in the ring R = Z
[

1
2
(1 +

√−p )
]
. Note that R is a principal ideal domain

and that 2 does not split in R.)
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9.12. Let E/Q be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with a1, . . . , a6 ∈ Z, and let P ∈ E(Q) be a point of infinite order.
(a) Suppose that x

(
[m]P

)
∈ Z for some integer m ≥ 1. Prove that x(P ) ∈ Z. (This result

is often useful when one is searching for integral points on elliptic curves of rank 1. See
Exercise 9.13 for an example.)

(b) More generally, for any m ≥ 1, write x(mP ) = am/d2
m ∈ Q as a fraction in lowest

terms. Prove that
m | n =⇒ dm | dn.

Thus the sequence (dm)m≥1 is a divisibility sequence; see Exercise 3.36.

9.13. Let E/Q be the elliptic curve

E : y2 + y = x3 − x.

For this exercise you may assume that E(Q) has rank 1. (For a proof that rank E(Q) = 1,
see Exercise 10.9.)

(a) Prove that Etors(Q) = {O}, and hence that E(Q) ∼= Z.
(b) Prove that (0, 0) is a generator for E(Q). (Hint. Make a sketch of E(R) and show

that (0, 0) is not on the identity component. Use Exercise 9.12 to conclude that a gener-
ator for E(Q) must be a point with integer coordinates on the nonidentity component,
and find all such points.)

(c) Find all of the integer points in E(Q). (Hint. Let P = (0, 0). Suppose that [m]P is
integral. Write m = 2an with n odd and use Exercise 9.12 to show that[n]P is integral.
Use an argument as in (b) to find all possible values of n, and then do some computations
to find the possible a values.)

(d) Solve the following classical number theory problem: Find all positive integers that are
simultaneously the product of two consecutive integers and the product of three consec-
utive integers.

9.14. Let C/K be a curve and let f, g ∈ K(C) be nonconstant functions.
(a) * Prove that

lim
P∈C(K̄)

hf (P )→∞

hf (P )

hg(P )
=

deg f

deg g
.

(b) Prove that for every ε > 0 there exists a constant c = c(f, g, ε) such that
∣
∣
∣
∣

1

deg f
hf (P ) − 1

deg g
hg(P )

∣
∣
∣
∣ < εhf (P ) + c for all P ∈ C(K̄).

(c) Let C be an elliptic curve. Prove that there is a constant c = c(f, m, ε) such that
∣
∣hf

(
[m]P

)
− m2hf (P )

∣
∣ < εhf (P ) + c for all P ∈ C(K̄).

(d) Prove that (IX.3.1) is true for all nonconstant functions f ∈ K(E). Use this to prove the
finiteness result (IX.3.2.2) directly, without first reducing to (IX.3.2.1).

9.15. For a given Q ∈ C(Kv), let dv be the distance function defined in (IX §2), and let dalt
v

denote the distance function given by the alternative definition in (IX.2.2.1). Prove that the
ratio dalt

v (P, Q)/dv(P, Q) is bounded for P ∈ C(Kv).
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9.16. Let C/K be a curve, let f ∈ K(C) be a nonconstant function, and write the divisor of
zeros of f as

div0(f) =
∑

Q∈C(K̄)
ordQ(f)>0

ordQ(f)(Q) = n1(Q1) + n2(Q2) + · · · + nr(Qr).

Replacing K by an extension field, we assume that Q1, . . . , Qr ∈ C(K). Let v ∈ MK . Prove
that

log min
{∣∣f(P )

∣
∣
v
, 1
}

= n1dv(P, Q1)+ · · ·+nrdv(P, Qr)+O(1) for all P ∈ C(Kv),

where the O(1) depends on f and the choice of distance functions, but is independent of P .

9.17. Let ε > 0, and let m and n be positive integers satisfying nm > n + m. Assuming
that the ABC conjecture (VIII.11.4) is true, prove the following assertions (see also Exer-
cise 8.22):

(a) There is a constant C = C(ε, m, n) such that if

ym = xn + D with x, y, D ∈ Z and D �= 0,

then
|x|nm−n−m ≤ C|D|m+ε and |y|nm−n−m ≤ C|D|n+ε.

(This is a generalized version of Hall’s conjecture (IX.7.4).)
(b) Suppose now that D �= 0 is fixed. If max{m, n} is sufficiently large, then the equa-

tion ym = xn + D has no solutions x, y ∈ Z with x, y /∈ {0,±1}. (Hint. You’ll need
to keep track of how the constant in (a) depends on m and n.)

9.18. Let E be the elliptic curve y2 = x3 + 2089.
(a) Prove that the points

P1 = (−12, 19), P2 = (−10, 33), P3 = (−4, 45), P4 = (3, 46),

are independent points in E(Q).
(b) * Prove that E(Q) ∼= Z4 and that P1, P2, P3, P4 are a basis for E(Q).
(c) Find 10 more points (x, y) in E(Q) with x, y ∈ Z and y > 0. Express these integral

points in terms of the basis listed in (a).



Chapter X

Computing the Mordell–Weil
Group

A better title for this chapter might be “Computing the Weak Mordell–Weil Group,”
since we will be concerned solely with the problem of computing generators for
the group E(K)/mE(K). However, given generators for E(K)/mE(K), a finite
amount of computation yields generators for E(K); see (VIII.3.2) and Exercise 8.18.
Unfortunately, there is no comparable algorithm currently known that is guaranteed
to give generators for E(K)/mE(K) in a finite amount of time!

We start in (X §1) by taking the proof of the weak Mordell–Weil theorem given
in (VIII §1) and making it quite explicit. In this way the computation of the quo-
tient E(K)/mE(K) (in a special case) is reduced to the problem of determining
whether each of a certain finite set of auxiliary curves, called homogeneous spaces,
has a single rational point. The question whether a given homogeneous space has a
rational point may often be answered either affirmatively by finding a point or nega-
tively by showing that it has no points in some completion Kv of K.

The subsequent two sections develop the general theory of homogeneous spaces
(for elliptic curves). Then, in (X §4), we apply this theory to the problem of comput-
ing E(K)/mE(K) or, more generally, E′(K)/φ

(
E(K)

)
for an isogeny

φ : E → E′.

Again this computation is reduced to the problem of the existence of a single ratio-
nal point on certain homogeneous spaces. The only impediment to solving this latter
problem occurs if some homogeneous space has a Kv-rational point for every com-
pletion Kv of K, yet fails to have a K-rational point. Unfortunately, this precise situ-
ation, the failure of the so-called Hasse principle, does occur. The extent of its failure
is quantified by the elements of a certain group, called the Shafarevich–Tate group.
The question of an effective algorithm for the computation of E(K)/mE(K) is thus
finally reduced to the problem of giving a bound for divisibility in the Shafarevich–
Tate group, or, even better, proving the conjecture that the Shafarevich–Tate group is
finite.
J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 309
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 X,
c© Springer Science+Business Media, LLC 2009
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In the last section we illustrate the general theory by studying in some detail the
family of elliptic curves given by the equations

ED : Y 2 = X3 + DX, D ∈ Q.

In particular, we compute the torsion subgroups and give an upper bound for the
rank of ED(Q), we give a large class of examples for which ED(Q) has rank 0,
and we show that in certain cases ED(Q) has an associated homogeneous space that
violates the Hasse principle, i.e., the homogeneous space has points defined over R

and over Qp for every prime p, but it has no Q-rational points.
Unless explicitly stated to the contrary, the notation for this chapter is the same as

for Chapter VIII. In particular, K is a number field and MK is a complete set of in-
equivalent absolute values on K. However, as indicated in the text, this specification
is dropped in (X §§2,3,5), where K is allowed to be an arbitrary (perfect) field.

X.1 An Example
For this section we let E/K be an elliptic curve and m ≥ 2 an integer, and we
assume that

E[m] ⊂ E(K).

Recall from (VIII §1) that under this assumption there is a pairing

κ : E(K) × GK̄/K −→ E[m]

defined by
κ(P, σ) = Qσ − Q,

where Q ∈ E(K̄) is chosen to satisfy [m]Q = P . Further, (VIII.1.2) says that the
kernel on the left is mE(K), so we may view κ as a homomorphism

δE : E(K)/mE(K) −→ Hom
(
GK̄/K , E[m]

)
,

δE(P )(σ) = κ(P, σ).

(This is the connecting homomorphism for a group cohomology long exact sequence;
see (VIII §2).)

We also observe from (III.8.1.1) that our assumption E[m] ⊂ E(K) implies
that μm ⊂ K∗. This follows from basic properties of the Weil pairing (III.8.1.1),

em : E[m] × E[m] −→ μm.

The Weil pairing will play a prominent role in this section.
Finally, since μm ⊂ K∗, Hilbert’s Theorem 90 (B.2.5c) says that every homo-

morphism GK̄/K → μm has the form

σ �−→ βσ

β
for some β ∈ K̄∗ satisfying βm ∈ K∗.
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In other words, there is an isomorphism (cf. VIII §2)

δK : K∗/(K∗)m −→ Hom(GK̄/K ,μm)

defined by
δK(b)(σ) = βσ/β,

where β ∈ K̄∗ is chosen to satisfy βm = b. Note the close resemblance in the
definitions of δE and δK . This is no coincidence. The map δE is the connecting ho-
momorphism for the Kummer sequence associated to the group variety E/K, and δK

is the connecting homomorphism for the Kummer sequence associated to the group
variety Gm/K.

Using these maps, we can make the proof of the weak Mordell–Weil theorem
much more explicit, and by doing so, derive formulas that allow us to compute the
Mordell–Weil group in certain cases. We start with a theoretical description of the
method.

Theorem 1.1. (a) With notation as above, there is a bilinear pairing

b : E(K)/mE(K) × E[m] −→ K∗/(K∗)m

satisfying

em

(
δE(P ), T

)
= δK

(
b(P, T )

)
.

(b) The pairing in (a) is nondegenerate on the left.
(c) Let S ⊂ MK be the union of the set of infinite places, the set of finite primes

at which E has bad reduction, and the set of finite primes dividing m. Then the
image of the pairing in (a) lies in the following subgroup of K∗/(K∗)m:

K(S,m) =
{
b ∈ K∗/(K∗)m : ordv(b) ≡ 0 (mod m) for all v /∈ S

}
.

(d) The pairing in (a) may be computed as follows. For each T ∈ E[m], choose
functions fT , gT ∈ K(E) satisfying the conditions

div(fT ) = m(T ) − m(O) and fT ◦ [m] = gm
T

(cf. the definition of the Weil pairing (III §8)). Then for any point P �= T ,

b(P, T ) ≡ fT (P ) (mod (K∗)m).

(If P = T , we can compute b(T, T ) using linearity. For example, if [2]T �= O,
then b(T, T ) = fT (−T )−1. More generally, let Q ∈ E(K) be any point
with Q �= T ; then b(T, T ) = fT (T + Q)fT (Q)−1.)

Remark 1.2. Why do we say that (X.1.1) provides formulas that help us to com-
pute the Mordell–Weil group? First, the group K(S,m) in (c) is finite (see the proof
of (VIII.1.6)), and in fact it is reasonably easy to explicitly compute K(S,m). Sec-
ond, the functions fT in (d) are also fairly easy to compute from the equation of
the curve. (This is true even for quite large values of m; see (XI.8.1).) Then the
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fact that the pairing in (a) is nondegenerate on the left means that in order to com-
pute E(K)/mE(K), it is necessary to do “only” the following:

Fix generators T1 and T2 for E[m]. For each of the finitely many pairs

(b1, b2) ∈ K(S,m) × K(S,m),

check whether the simultaneous equations

b1z
m
1 = fT1(P ) and b2z

m
2 = fT2(P )

have a solution (P, z1, z2) ∈ E(K) × K∗ × K∗. We can be even more explicit if
we express the function fT in terms of Weierstrass coordinates x and y. Then we are
looking for a solution (x, y, z1, z2) ∈ K × K × K∗ × K∗ satisfying

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

b1z
m
1 = fT1(x, y), b2z

m
2 = fT2(x, y).

These equations define a new curve, called a homogeneous space for E/K. (We dis-
cuss homogeneous spaces in more detail in (X §3).) What we have done is reduce
the problem of calculating E(K)/mE(K) to the problem of the existence or non-
existence of a single rational point on each of an explicitly given finite set of curves.
Frequently, many of these curves can be immediately eliminated from consideration
because they have no points over some completion Kv of K, which is an easy thing
to check. On the other hand, a short search by hand or with a computer often un-
covers rational points on some of the others. If, in this way, we can deal with all of
the homogeneous spaces in question, then the determination of E(K)/mE(K) is
complete. The problem that arises is that occasionally there is a homogeneous space
having points defined over every completion Kv , yet having no K-rational points.
It is this situation, the failure of the Hasse principle, that makes the Mordell–Weil
theorem ineffective.

Remark 1.3. Notice that the condition div(fT ) = m(T ) − m(O) in (X.1.1d) is
enough to specify fT only up to multiplication by an arbitrary element of K∗. How-
ever, the equality fT ◦ [m] = gm

T with gT ∈ K(E) means that in fact fT is well-
determined up to multiplication by an element of (K∗)m. Thus the value of fT (P )
in (X.1.1d) is a well-defined element of K∗/(K∗)m.

We now give the proof of (X.1.1), after which we study the case m = 2 in more
detail and use it to compute E(K)/2E(K) for an example.

PROOF OF (X.1.1). (a) Hilbert’s Theorem 90 (B.2.5c) shows that the pairing is
well-defined. Bilinearity follows from bilinearity of the Kummer pairing (VIII.1.2b)
and bilinearity of the Weil em-pairing (III.8.1a).
(b) In order to prove nondegeneracy on the left, we suppose that b(P, T ) = 1 for
all T ∈ E[m]. This means that for all T ∈ E[m] and all σ ∈ GK̄/K ,

em

(
κ(P, σ), T

)
= 1.



X.1. An Example 313

The nondegeneracy of the Weil pairing (III.8.1c) implies that κ(P, σ) = 0 for all σ,
and then (VIII.1.2c) tells us that P ∈ mE(K).
(c) Let β = b(P, T )1/m. Tracing through the definitions, we see that the

field K(β) is contained in the field L
(
[m]−1E(K)

)
described in (VIII.1.2d). Fur-

ther, (VIII.1.5b) says that the extension L/K is unramified outside S. But it is easy
to see that if v ∈ MK is a finite place with v(m) = 0, then the extension K(β)/K
is unramified at v if and only if

ordv(βm) ≡ 0 (mod m).

(Here ordv : K∗ � Z is the normalized valuation associated to v.) This says pre-
cisely that b(P, T ) ∈ K(S,m).
(d) Choose Q ∈ E(K̄) and β ∈ K̄∗ satisfying

P = [m]Q and b(P, T ) = βm.

Then for all σ ∈ GK̄/K we have by definition

em

(
δ(P )(σ), T

)
= δK

(
b(P, T )

)
(σ),

em(Qσ − Q,T ) = βσ/β,

gT (X + Qσ − Q)/gT (X) = βσ/β,

gT (Q)σ/gT (Q) = βσ/β putting X = Q.

Since δK is an isomorphism, it follows that gT (Q)m ≡ βm (mod (K∗)m). (Note
that gT (Q)m = fT (P ) is in K∗.) Therefore

fT (P ) = fT ◦ [m](Q) = gT (Q)m ≡ βm = b(P, T ) (mod (K∗)m).

We now consider the special case m = 2, which is by far the easiest with which
to work. Under our assumption E[m] ⊂ E(K), we may take a Weierstrass equation
for E of the form

y2 = (x − e1)(x − e2)(x − e3) with e1, e2, e3 ∈ K.

The three nontrivial 2-torsion points are

T1 = (e1, 0), T2 = (e2, 0), T3 = (e3, 0).

Letting T = (e, 0) represent any one of these points, we claim that the associated
function fT specified in (X.1.1d) is fT = x − e. It is clear that this function has the
correct divisor,

div(x − e) = 2(T ) − 2(O).

It is then a calculation to check that

x ◦ [2] =
(

x2 − 2ex − 2e2 + 2(e1 + e2 + e3)e − (e1e2 + e1e3 + e2e3)
2y

)2

,
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so x − e has both of the properties needed to be fT .
Now suppose that we have chosen a pair (b1, b2) ∈ K(S,m)×K(S,m) and that

we want to determine whether there is a point P ∈ E(K)/2E(K) satisfying

b(P, T1) = b1 and b(P, T2) = b2.

Such a point exists if and only if there is a solution

(x, y, z1, z2) ∈ K × K × K∗ × K∗

to the system of equations

y2 = (x − e1)(x − e2)(x − e3), b1z
2
1 = x − e1, b2z

2
2 = x − e2.

We substitute the latter two equations into the former and define a new variable z3

by y = b1b2z1z2z3, which is permissible since b1, b2, z1, and z2 take only nonzero
values. This yields the three equations

b1b2z
2
3 = x − e3, b1z

2
1 = x − e1, b2z

2
2 = x − e2.

Finally, eliminating x gives the pair of equations

b1z
2
1 − b2z

2
2 = e2 − e1, b1z

2
1 − b1b2z

2
3 = e3 − e1.

This gives a finite collection of equations, one for each pair (b1, b2), and we may use
whatever techniques are at our disposal (e.g., v-adic, computer search) to determine
whether they have a solution. Notice that if we do find a solution (z1, z2, z3), then we
immediately recover the corresponding point in E(K)/2E(K) using the formulas

x = b1z
2
1 + e1, y = b1b2z1z2z3.

Finally we must deal with the fact that the definition b(P, T ) = fT (P ) cannot
be used if it happens that P = T . In other words, there are two pairs (b1, b2)
that do not arise from the above procedure, namely the pairs

(
b(T1, T1), b(T1, T2)

)

and
(
b(T2, T1), b(T2, T2)

)
. These values may be computed using linearity as

b(T1, T1) = b(T1, T1 + T2)b(T1, T2)−1

= b(T1, T3)b(T1, T2)−1

=
e1 − e3

e1 − e2
,

and similarly

b(T2, T2) =
e2 − e3

e2 − e1
.

We summarize this entire procedure in the following proposition.
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Proposition 1.4. (Complete 2-Descent) Let E/K be an elliptic curve given by a
Weierstrass equation

y2 = (x − e1)(x − e2)(x − e3) with e1, e2, e3 ∈ K.

Let S ⊂ MK be a finite set of places of K including all archimedean places, all
places dividing 2, and all places at which E has bad reduction. Further let

K(S, 2) =
{
b ∈ K∗/(K∗)2 : ordv(b) ≡ 0 (mod 2) for all v /∈ S

}
.

Then there is an injective homomorphism

E(K)/2E(K) −→ K(S, 2) × K(S, 2)

defined by

P = (x, y) �−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(x − e1, x − e2) if x �= e1, e2,
(

e1 − e3

e1 − e2
, e1 − e2

)
if x = e1,

(
e2 − e1,

e2 − e3

e2 − e1

)
if x = e2,

(1, 1) if x = ∞, i.e., if P = O.

Let (b1, b2) ∈ K(S, 2) × K(S, 2) be a pair that is not the image of one of the
three points O, (e1, 0), (e2, 0). Then (b1, b2) is the image of a point

P = (x, y) ∈ E(K)/2E(K)

if and only if the equations

b1z
2
1 − b2z

2
2 = e2 − e1,

b1z
2
1 − b1b2z

2
3 = e3 − e1,

have a solution (z1, z2, z3) ∈ K∗ × K∗ × K. If such a solution exists, then we can
take

P = (x, y) = (b1z
2
1 + e1, b1b2z1z2z3).

PROOF. As explained above, this is a special case of (X.1.1).

Example 1.5. We use (X.1.4) to compute E(Q)/2E(Q) for the elliptic curve

E : y2 = x3 − 12x2 + 20x = x(x − 2)(x − 10).

This equation has discriminant

Δ = 409600 = 21452,

so it has good reduction except at 2 and 5. Reducing the equation modulo 3, we eas-
ily check that #Ẽ(F3) = 4. Since E[2] ⊂ Etors(Q) and Etors(Q) injects into Ẽ(F3)
from (VII.3.5), we see that
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Etors(Q) = E[2].

Let S = {2, 5,∞} ⊂ MQ. Then a complete set of representatives for

Q(S, 2) =
{
b ∈ Q∗/(Q∗)2 : ordp(b) ≡ 0 (mod 2) for all p /∈ S

}

is given by the set
{±1,±2,±5,±10}.

We identify this set with Q(S, 2). Now consider the map given in (X.1.4),

E(Q)/2E(Q) −→ Q(S, 2) × Q(S, 2),

say with
e1 = 0, e2 = 2, and e3 = 10.

There are 64 pairs (b1, b2) ∈ Q(S, 2)×Q(S, 2), and for each pair, we must check to
see whether it comes from an element of E(Q)/2E(Q). For example, using (X.1.4),
we can compute the image of E[2] in Q(S, 2) × Q(S, 2):

O �→ (1, 1), (0, 0) �→ (5,−2), (2, 0) �→ (2,−1), (10, 0) �→ (10, 2).

It remains to determine, for every other pair (b1, b2), whether the equations

b1z
2
1 − b2z

2
2 = 2, b1z

2
1 − b1b2z

2
3 = 10, (∗)

have a solution z1, z2, z3 ∈ Q. For example, if b1 < 0 and b2 > 0, then (∗) clearly
has no rational solutions, since the first equation does not even have a solution in R.

Proceeding systematically, we list our results in Table 10.1. The entry for each
pair (b1, b2) consists of either a point of E(Q) that maps to (b1, b2), or else a (local)
field over which the equations listed in (∗) have no solution. (Note that if (z1, z2, z3)
is a solution to (∗), then the corresponding point of E(Q) is (b1z

2
1 +e1, b1b2z1z2z3).)

The circled numbers in the table refer to the notes that explain each entry. Finally, we
note that since the map E(Q)/2E(Q) → Q(S, 2) × Q(S, 2) is a homomorphism, it
is not necessary to check every pair (b1, b2). For example, if both (b1, b2) and (b′1, b

′
2)

come from E(Q), then so does (b1b
′
1, b2b

′
2). Similarly, if (b1, b2) does and (b′1, b

′
2)

does not, then (b1b
′
1, b2b

′
2) does not. This observation substantially reduces the num-

ber of cases of (∗) that must be considered.

1. If b1 < 0 and b2 > 0, then b1z
2
1 − b2z

2
2 = 2 has no solutions in R.

2. If b1 < 0 and b2 < 0, then b1z
2
1 − b1b2z

2
3 = 10 has no solutions in R.

3. The four 2-torsion points
{
O, (0, 0), (2, 0), (10, 0)

}
map respectively to the

four points (1, 1), (5,−2), (2,−1), and (10, 2).

4. (b1, b2) = (1,−1): By inspection, the equations

z2
1 + z2

2 = 2 and z2
1 + z2

3 = 10

have the solution (1, 1, 3). This gives the point (1,−3) ∈ E(Q).
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b1

b2
1 2 5 10 −1 −2 −5 −10

1 0 (18,−48) 5© Q 9©
5

2 Q 8©
5 Q 9©

5 (20, 60) 5© (10, 0) 3©

R
1©

5

10
Q5

6©
Q5

7©

−1 (1,−3) 4© (2, 0) 3© Q 9©
5

−2 Q 9©
5 (0, 0) 3©

(
10
9

,− 80
27

) 5©

R
2©

−5

−10
Q5

6©
Q5

7©

Table 10.1: Computing E(Q) for E : y2 = x3 − 12x2 + 20x.

5. Adding (1,−3) ∈ E(Q) to the nontrivial two-torsion points corresponds
to multiplying their (b1, b2) values. This gives three pairs (5, 2), (2, 1), and
(10,−2) in Q(S, 2) × Q(S, 2), which correspond to the three rational points
(20, 60), (18,−48), and (10/9,−80/27) in E(Q).

6. b1 �≡ 0 (mod 5) and b2 ≡ 0 (mod 5): The first equation in (∗) implies
that z1 and z2 must be 5-adically integral. Then the second equation shows
that z1 ≡ 0 (mod 5), and so from the first equation we obtain 0 ≡ 2 (mod 5).
Therefore (∗) has no solutions in Q5.

7. The eight pairs in (6) are Q5-nontrivial, i.e., there are no Q5 solutions to (∗).
If we multiply these eight pairs by the Q-trivial pair (5, 2), we obtain eight
more Q5-nontrivial pairs.

8. (b1, b2) = (1, 2): The two equations in (∗) are

z2
1 − 2z2

2 = 2 and z2
1 − 2z2

3 = 10.

Since 2 is a quadratic nonresidue modulo 5, the second equation implies that
z1 ≡ z3 ≡ 0 (mod 5). But then the second equation says that 0 ≡ 10 (mod 25).
Therefore there are no solutions in Q5.

9. Taking the Q5-nontrivial pair (1, 2) from (8) and multiplying it by the
seven Q-trivial pairs already in the table gives seven new Q5-nontrivial pairs
that fill the remaining entries in the table.

Conclusion. E(Q) ∼= Z × Z/2Z × Z/2Z.
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X.2 Twisting—General Theory
For this section and the next we drop the requirement that K be a number field, so K
will be an arbitrary (perfect) field. As we saw in (X §1), computation of the Mordell–
Weil group of an elliptic curve E leads naturally to the problem of the existence or
nonexistence of a single rational point on various other curves. These other curves
are certain twists of E that are called homogeneous spaces. In this section we study
the general question of twisting which, since it is no more difficult, we develop for
curves of arbitrary genus. Then, in the next section, we look at the homogeneous
spaces associated to elliptic curves.

Definition. Let C/K be a smooth projective curve. The isomorphism group of C,
denoted by Isom(C), is the group of K̄-isomorphisms from C to itself. We denote
the subgroup of Isom(C) consisting of isomorphisms defined over K by IsomK(C).
To ease notation, we write composition of maps multiplicatively, thus αβ instead
of α ◦ β.

Remark 2.1. The group that we are denoting by Isom(C) is usually called the au-
tomorphism group of C and denoted by Aut(C). However, if E is an elliptic curve,
then we have defined Aut(E) to be the group of isomorphisms from E to E that
take O to O. Thus Aut(E) �= Isom(E), since for example, the group Isom(E)
contains translation maps τP : E → E. We describe Isom(E) more fully in (X §5).

Definition. A twist of C/K is a smooth curve C ′/K that is isomorphic to C over K̄.
We treat two twists as equivalent if they are isomorphic over K. The set of twists
of C/K, modulo K-isomorphism, is denoted by Twist(C/K).

Let C ′/K be a twist of C/K. Thus there is an isomorphism φ : C ′ → C defined
over K̄. To measure the failure of φ to be defined over K, we consider the map

ξ : GK̄/K −→ Isom(C), ξσ = φσφ−1.

It turns out that ξ is a 1-cocycle and that the cohomology class of ξ is uniquely deter-
mined by the K-isomorphism class of C ′. Further, every cohomology class comes
from some twist of C/K. In this way Twist(C/K) may be identified with a certain
cohomology set. We now prove these assertions.

Theorem 2.2. Let C/K be a smooth projective curve. For each twist C ′/K of C/K,
choose a K̄-isomorphism φ : C ′ → C and define a map ξσ = φσφ−1 ∈ Isom(C) as
above.
(a) The map ξ is a 1-cocycle, i.e.,

ξστ = (ξσ)τξτ for all σ, τ ∈ GK̄/K .

The associated cohomology class in H1
(
GK̄/K , Isom(C)

)
is denoted by {ξ}.

(b) The cohomology class {ξ} is determined by the K-isomorphism class of C ′ and
is independent of the choice of φ. We thus obtain a natural map

Twist(C/K) −→ H1
(
GK̄/K , Isom(C)

)
.
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(c) The map in (b) is a bijection. In other words, the twists of C/K, up to K-
isomorphism, are in one-to-one correspondence with the elements of the coho-
mology set H1

(
GK̄/K , Isom(C)

)
.

Remark 2.3. We emphasize that the group Isom(C) is often nonabelian, and indeed,
it is always nonabelian for elliptic curves. Hence H1

(
GK̄/K , Isom(C)

)
is generally

only a pointed set, not a group. See (B §3) for details. However, if Isom(C) has
a GK̄/K-invariant abelian subgroup A, then H1(GK̄/K , A) is a group, and its image
in H1

(
GK̄/K , Isom(C)

)
gives a natural group structure to some subset of Twist(C).

We apply this observation in (X §3) when C is an elliptic curve, taking for A the
group of translations, and in (X §5) we do the same with A = Aut(E).

PROOF. (a) We compute

ξστ = φστφ−1 = (φσφ−1)τ (φτφ−1) = (ξσ)τξτ .

(b) Let C ′′/K be another twist of C/K that is K-isomorphic to C ′. Choose a K̄-
isomorphism ψ : C ′′ → C. We must show that the cocycles φσφ−1 and ψσψ−1 are
cohomologous. By assumption there is a K-isomorphism θ : C ′′ → C ′. Consider the
element α = φθψ−1 ∈ Isom(C). We compute

(ασ)(ψσψ−1) = (φθψ−1)σ(ψσψ−1) = φσθσψ−1

= φσθψ−1 = (φσφ−1)(φθψ−1) = (φσφ−1)α.

The proves that φσφ−1 and ψσψ−1 are cohomologous when viewed as elements
of H1

(
GK̄/K , Isom(C)

)
.

(c) Suppose that C ′/K and C ′′/K are twists of C/K that give the same cohomol-
ogy class in H1

(
GK̄/K , Isom(C)

)
. This means that if we choose K̄-isomorphisms

φ : C ′ → C and ψ : C ′′ → C, then there is a map α ∈ Isom(C) such that

ασ(ψσψ−1) = (φσφ−1)α for all σ ∈ GK̄/K .

In other words, the cocycles associated to φ and ψ are cohomologous. We now con-
sider the map θ : C ′′ → C ′ defined by θ = φ−1αψ. It is clearly a K̄-isomorphism,
and we claim that it is, in fact, defined over K. To prove this, for any σ ∈ GK̄/K we
compute

θσ = (φσ)−1(ασψσ) = (φσ)−1(φσφ−1αψ) = φ−1αψ = θ.

Therefore C ′′ and C ′ are K-isomorphic, and thus they give the same element
of Twist(C/K). This proves that the map

Twist(C/K) → H1
(
GK̄/K , Isom(C)

)

is injective.
To prove surjectivity, we start with a 1-cocycle

ξ : GK̄/K → Isom(C)
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and use it to construct a curve C ′/K and an isomorphism φ : C ′ → C satisfying
ξσ = φσφ−1. To do this, we consider a field, denoted by K̄(C)ξ, that is isomorphic,
as an abstract field extension of K̄, to K̄(C), say by an isomorphism that we denote
by Z : K̄(C) → K̄(C)ξ. The difference between K̄(C) and K̄(C)ξ lies in the action
of the Galois group GK̄/K ; the action on K̄(C)ξ is twisted by ξ. What this means is
that

Z(f)σ = Z(fσξσ) for all f ∈ K̄(C) and all σ ∈ GK̄/K .

In this equality we are viewing f as a map f : C → P1 as in (II.2.2), and fσξσ

is composition of maps. Equivalently, the map ξσ : C → C of curves induces a
map ξ∗σ : K̄(C) → K̄(C) of fields, and fσξσ is an alternative notation for ξ∗σ(fσ).

For this action of GK̄/K on K̄(C)ξ, we consider the subfield field F ⊂ K̄(C)ξ

consisting of the elements of K̄(C)ξ that are fixed by GK̄/K . We now show, in
several steps, that the field F is the function field of the desired twist of C.

Step (i): F ∩ K̄ = K

Suppose that Z(f) ∈ F ∩ K̄. In particular, since Z induces the identity on K̄, we
have f ∈ K̄. Now the fact that Z(f) ∈ F , combined with the fact that f is a constant
function and thus unaffected by isomorphisms of C, implies that

Z(f) = Z(f)σ = Z(fσξσ) = Z(fσ).

This holds for all σ ∈ GK̄/K , and hence f ∈ K.

Step (ii): K̄F = K̄(C)ξ

This is an immediate consequence of (II.5.8.1) applied to the K̄-vector space K̄(C)ξ .
It follows from Step (ii) that F has transcendence degree one over K, and thus

using Step (i) and (II.2.4c), we deduce that there exists a smooth curve C ′/K such
that F ∼= K(C ′). Further, Step (ii) implies that

K̄(C ′) = K̄F = K̄(C)ξ
∼= K̄(C),

so (II.2.4.1) says that C ′ and C are isomorphic over K̄. In other words, C ′ is a
twist of C, and the final step in proving surjectivity is to show that C ′ gives the
cohomology class {ξ}.

Let φ : C ′ → C be a K̄-isomorphism, as described in (II.2.4b), whose associated
map φ∗ is the isomorphism of fields

Z : K̄(C) −→ K̄(C)ξ = K̄F = K̄(C ′).

Step (iii): ξσ = φσφ−1 for all σ ∈ GK̄/K

Having identified φ∗ with Z, the relation Z(f)σ = Z(fσξσ) used to define the
map Z can be rewritten as (fφ)σ = fσξσφ. In other words,

fσφσ = (fφ)σ = fσξσφ for all f ∈ K̄(C).

This implies that φσ = ξσφ, which is exactly the desired result.
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Example 2.4. Let E/K be an elliptic curve, let K(
√

d ) be a quadratic extension
of K, and let

χ : GK̄/K → {±1}, χ(σ) =
√

d
σ/√

d,

be the quadratic character associated to K(
√

d )/K. (Note that char(K) �= 2.) We
use χ to define a 1-cocycle

ξ : GK̄/K −→ Isom(E), ξσ =
[
χ(σ)

]
.

Let C/K be the corresponding twist of E/K. We are going to derive an equation
for C/K.

We choose a Weierstrass equation for E/K of the form y2 = f(x) and we
write K̄(E) = K̄(x, y) and K̄(C) = K̄(x, y)ξ . Since [−1](x, y) = (x,−y), the ac-
tion of σ ∈ GK̄/K on K̄(x, y)ξ is determined by the formulas

√
d

σ
= χ(σ)

√
d, xσ = x, yσ = χ(σ)y.

Notice that the functions x′ = x and y′ = y/
√

d in K̄(x, y)ξ are fixed by GK̄/K ,
and they satisfy the equation

dy′2 = f(x′),

which is the equation of an elliptic curve defined over K. Further, the identifica-
tion (x′, y′) �→ (x′, y′√d ) shows that this curve is isomorphic to E over K(

√
d ).

It is now an easy matter to check that the associated cocycle is ξ, and thus to verify
that we have found an equation for C/K. The curve C is a quadratic twist of E;
more precisely, it is the twist of E by the quadratic character χ. We will return to
this example in more detail in (X §5).

X.3 Homogeneous Spaces
We recall from (VIII §2) that associated to an elliptic curve E/K is a Kummer se-
quence

0 −→ E(K)
mE(K)

−→ H1
(
GK̄/K , E[m]

)
−→ H1

(
GK̄/K , E

)
[m] −→ 0.

The proof of the weak Mordell–Weil theorem hinges on the essential fact that the
image of the first term in the second consists of elements that are unramified outside
of a certain finite set of primes. In this section we analyze the third term in the
sequence by associating to each element of H1(GK̄/K , E) a certain twist of E called
a homogeneous space. However, rather than starting with cohomology, we instead
begin by directly defining homogeneous spaces and describing their basic properties.
We follow this with the cohomological interpretation, which says that homogeneous
spaces are those twists that correspond to cocycles taking values in the group of
translations.
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Definition. Let E/K be an elliptic curve. A (principal) homogeneous space for
E/K is a smooth curve C/K together with a simply transitive algebraic group action
of E on C defined over K. In other words, a homogeneous space for E/K consists
of a pair (C, μ), where C/K is a smooth curve and

μ : C × E −→ C

is a morphism defined over K having the following three properties:

(i) μ(p,O) = p for all p ∈ C.

(ii) μ
(
μ(p, P ), Q

)
= μ(p, P + Q) for all p ∈ C and P,Q ∈ E.

(iii) For all p, q ∈ C there is a unique P ∈ E satisfying μ(p, P ) = q.

We will often replace μ(p, P ) with the more intuitive notation p+P . Then prop-
erty (ii) is just the associative law (p + P ) + Q = p + (P + Q). Of course, one must
determine from context whether + means addition on E or the action of E on C.

In view of the simple transitivity of the action, we may define a subtraction map
on C by the rule

ν : C × C −→ E,

ν(q, p) = (the unique P ∈ E satisfying μ(p, P ) = q).

It is not clear, a priori, that the map ν is even a rational map, but we will soon see
that ν is a morphism and is defined over K. (This fact also follows from elementary
intersection theory on C × C.) In conjunction with our addition notation for μ, we
often write ν(q, p) as q − p.

We now verify that addition and subtraction on a homogeneous space have the
right properties.

Lemma 3.1. Let C/K be a homogeneous space for E/K. Then for all p, q ∈ C and
all P,Q ∈ E:
(a) μ(p,O) = p and ν(p, p) = O.

(b) μ
(
p, ν(q, p)

)
= q and ν

(
μ(p, P ), p) = P .

(c) ν
(
μ(q,Q), μ(p, P )

)
= ν(q, p) + Q − P .

Equivalently, using the alternative “addition” and “subtraction” notation:
(a) p + O = p and p − p = O.

(b) p + (q − p) = q and (p + P ) − p = P .

(c) (q + Q) − (p + P ) = (q − p) + Q − P .

In other words, using + and − signs provides the right intuition.

PROOF. (a) The equality μ(p,O) = p is part of the definition of homogeneous
space. Next, the definition of ν says that ν(p, p) is the unique point P ∈ E satisfy-
ing μ(p, P ) = p. We know that this last equation is true for P = O, so ν(p, p) = O.
(b) The relation μ

(
p, ν(q, p)

)
= q is the definition of ν. Then, from
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μ
(
p, ν(μ(p, P ), p)

)
= μ(p, P ),

we conclude that ν(μ(p, P ), p) = P .
(c) We start with

q = μ
(
p, ν(q, p)

)
.

Adding Q to both sides gives

μ(q,Q) = μ
(
p, ν(q, p) + Q

)

= μ
(
p, P + ν(q, p) + Q − P

)

= μ
(
μ(p, P ), ν(q, p) + Q − P

)
.

From the definition of ν, this is equivalent to

ν
(
μ(q,Q), μ(p, P )

)
= ν(q, p) + Q − P.

Next we show that a homogeneous space C/K for E/K is a twist of of E/K
as described in (X §2). We also describe addition and subtraction on C in terms of a
given K̄-isomorphism E → C.

Proposition 3.2. Let E/K be an elliptic curve, and let C/K be a homogeneous
space for E/K. Fix a point p0 ∈ C and define a map

θ : E −→ C, θ(P ) = p0 + P.

(a) The map θ is an isomorphism defined over K(p0). In particular, the curve C/K
is a twist of E/K.

(b) For all p ∈ C and all P ∈ E,

p + P = θ
(
θ−1(p) + P

)
.

(N.B. The first + is the action of E on C, while the second + is addition on E.)
(c) For all p, q ∈ C,

q − p = θ−1(q) − θ−1(p).

(d) The subtraction map

ν : C × C −→ E, ν(q, p) = q − p,

is a morphism and is defined over K.

PROOF. (a) The action of E on C is defined over K. Hence for any σ ∈ GK̄/K

satisfying pσ
0 = p0, we have

θ(P )σ = (p0 + P )σ = pσ
0 + P σ = p0 + P σ = θ(P σ).

This shows that θ is defined over K(p0). Further, the simple transitivity of the action
tells us that θ has degree one, and then (II.2.4.1) allows us to conclude that θ is an
isomorphism.
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(b) We compute

θ
(
θ−1(p) + P

)
= p0 + θ−1(p) + P = p + P.

Note that we are using the fact that θ−1(p) is the unique point of E that gives p when
it is added to p0.
(c) We compute

θ−1(q) − θ−1(p) =
(
p0 + θ−1(q)

)
−

(
p0 + θ−1(p)

)
= q − p.

(d) The fact that ν is a morphism follows from (c), since (III.3.6) says that subtrac-
tion on E is a morphism. To check that ν is defined over K, we let σ ∈ GK̄/K and
use (c) to compute

(q − p)σ =
(
θ−1(q) − θ−1(p)

)σ

= θ−1(q)σ − θ−1(p)σ since subtraction on E is
defined over K,

=
(
p0 + θ−1(q)

)σ −
(
p0 + θ−1(p)

)σ
since the action of E on
C is defined over K,

= qσ − pσ.

This completes the proof that ν is defined over K.

Definition. Two homogeneous spaces C/K and C ′/K for E/K are equivalent if
there is an isomorphism θ : C → C ′ defined over K that is compatible with the
action of E on C and C ′. In other words,

θ(p + P ) = θ(p) + P for all p ∈ C and all P ∈ E.

The equivalence class containing E/K, acting on itself by translation, is called the
trivial class. The collection of equivalence classes of homogeneous spaces for E/K
is called the Weil–Châtelet group for E/K and is denoted by WC(E/K). (We will
see later why WC(E/K) is a group.)

The next result explains which homogeneous spaces are trivial.

Proposition 3.3. Let C/K be a homogeneous space for E/K. Then C/K is in the
trivial class if and only if C(K) is not the empty set.

PROOF. Suppose that C/K is in the trivial class. Then there is a K-isomorphism
θ : E → C, and thus θ(O) ∈ C(K).

Conversely, suppose that p0 ∈ C(K). Then from (X.3.2a), the map

θ : E −→ C, θ(P ) = p0 + P,

is an isomorphism defined over K(p0) = K. The required compatibility condition
on θ is

p0 + (P + Q) = (p0 + P ) + Q,

which is part of the definition of homogeneous space.
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Remark 3.4. Notice that (X.3.3) says that the problem of checking the triviality of a
homogeneous space is exactly equivalent to answering the fundamental Diophantine
question whether the given curve has any rational points. Thus our next step, namely
the identification of WC(E/K) with a certain cohomology group, may be regarded
as the development of a tool to help us study this difficult Diophantine problem.

Lemma 3.5. Let θ : C/K → C ′/K be an equivalence of homogeneous spaces
for E/K. Then

θ(q) − θ(p) = q − p for all p, q ∈ C.

PROOF. This is just a matter of grouping points so that the additions and subtractions
are well-defined. Thus

θ(q) − θ(p) =
((

θ(q) − (p − q)
)
− θ(p)

)
− (q − p)

=
(
θ
(
q + (p − q)

)
− θ(p)

)
+ (q − p)

= q − p.

Theorem 3.6. Let E/K be an elliptic curve. There is a natural bijection

WC(E/K) −→ H1(GK̄/K , E)

defined as follows:
Let C/K be a homogeneous space for E/K and choose any point p0 ∈ C. Then

{C/K} �−→ {σ �→ pσ
0 − p0}.

(The braces indicate that we are taking the equivalence class of C/K and the coho-
mology class of the 1-cocycle σ �→ pσ

0 − p0.)

Remark 3.6.1. Since H1(GK̄/K , E) is a group, we can use (X.3.6) to define a
group structure on the set WC(E/K). It is also possible to describe the group law
on WC(E/K) geometrically, without using cohomology, which in fact is the way
that it was originally defined. See Exercise 10.2 and [307].

PROOF. First we check that the map is well-defined. It is easy to see that the
map σ �→ pσ

0 − p0 is a cocycle:

pστ
0 − p0 = (pστ

0 − pτ
0) − (pτ

0 − p0) = (pσ
0 − p0)τ − (pτ

0 − p0).

Now suppose that C ′/K is another homogeneous space that is equivalent to C/K.
Let θ : C → C ′ be a K-isomorphism giving the equivalence, and let p′0 ∈ C ′. We
use (X.3.5) to compute

pσ
0 − p0 = θ(pσ

0 ) − θ(p0)

= (p′σ0 − p′0) +
((

θ(p0) − p′0
)σ −

(
θ(p0) − p′0

))
.
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Hence the cocycles pσ
0 − p0 and p′σ0 − p′0 differ by the coboundary generated by the

point θ(p0) − p′0 ∈ E, so they give the same cohomology class in H1(GK̄/K , E).
Next we check injectivity. Suppose that the cocycles pσ

0 − p0 and p′σ0 − p′0
corresponding to C/K and C ′/K are cohomologous. This means that there is a
point P0 ∈ E satisfying

pσ
0 − p0 = p′σ0 − p′0 + (P σ

0 − P0) for all σ ∈ GK̄/K .

Consider the map

θ : C −→ C ′, θ(p) = p′0 − (p − p0) + P0.

It is clear that θ is a K̄-isomorphism and that it is compatible with the action of E
on C and C ′. We claim that θ is defined over K. In order to prove this, we compute

θ(p)σ = p′σ0 + (pσ − pσ
0 ) + P σ

0

= p′0 + (pσ − p0) + P0 +
(
(p′σ0 − p′0) + P σ

0 − P0 − (pσ
0 − p0)

)

= θ(pσ).

This proves that C and C ′ are equivalent.
It remains to prove surjectivity. Let ξ : GK̄/K → E be a 1-cocycle represent-

ing an element in H1(GK̄/K , E). We embed E into Isom(E) by sending P ∈ E
to the translation map τP ∈ Isom(E), and then we may view ξ as living in the co-
homology group H1

(
GK̄/K , Isom(E)

)
. From (X.2.2), there are a curve C/K and

a K̄-isomorphism φ : C → E such that for all σ ∈ GK̄/K ,

φσ ◦ φ−1 = (translation by −ξσ).

(The reason for using −ξ, rather than ξ, will soon become apparent.)
Define a map

μ : C × E −→ C, μ(p, P ) = φ−1
(
φ(p) + P

)
.

We now show that μ gives C/K the structure of a homogeneous space over E/K
and that its associated cohomology class is {ξ}.

First we check that μ is simply transitive. Let p, q ∈ C. Then by definition we
have

μ(p, P ) = q if and only if φ−1
(
φ(p) + P

)
= q,

so the only choice for P is P = φ(q) − φ(p). Second we verify that μ is defined
over K. We take σ ∈ GK̄/K and compute

μ(p, P )σ = (φ−1)σ
(
φσ(pσ) + P σ

)

= φ−1
((

φ(pσ) − ξσ + P σ
)

+ ξσ

)

= μ(pσ, P σ).
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Finally, we compute the cohomology class associated to C/K. To do this, we may
choose any point p0 ∈ C and take the class of the cocycle σ �→ pσ

0 − p0. In particular,
if we take p0 = φ−1(O), then

pσ
0 − p0 = (φσ)−1(O) − φ−1(O)

= φ−1(O + ξσ) − φ−1(O)
= ξσ.

This completes the proof of (X.3.6).

Remark 3.7. Let E/K be an elliptic curve and let K(
√

d )/K be a quadratic exten-
sion, so in particular char(K) �= 2. Let T ∈ E(K) be a nontrivial point of order 2.
Then the homomorphism

ξ : GK̄/K −→ E,

σ �−→
{

O if
√

d
σ

=
√

d,
T if

√
d

σ
= −

√
d,

is a 1-cocycle. We now construct the homogeneous space corresponding to the ele-
ment {ξ} ∈ H1(GK̄/K , E).

Since T ∈ E(K), we may choose a Weierstrass equation for E/K in the form

E : y2 = x3 + ax2 + bx with T = (0, 0).

Then the translation-by-T map has the simple form

τT (P ) = (x, y) + (0, 0) =
(

b

x
,− by

x2

)
.

Thus if we let σ ∈ GK̄/K be the nontrivial automorphism of K(
√

d )/K, then the
action of σ on the twisted field K̄(E)ξ may be summarized by

√
d

σ
= −

√
d, xσ =

b

x
, yσ = − by

x2
.

We need to find the subfield of K(
√

d )(x, y)ξ that is fixed by σ.
The functions √

d x

y
and

√
d

(
x − b

x

)

are easily seen to be invariant. Anticipating the form of our final equation, we con-
sider instead the functions

z =

√
d x

y
and w =

√
d

(
x − b

x

)(
x

y

)2

.

We find a relation between z and w by computing
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d
( w

z2

)2

=
(

x − b

x

)2

=
(

x +
b

x

)2

− 4b

=
((y

x

)2

− a

)2

− 4b =
(

d

z2
− a

)2

− 4b.

Thus (z, w) are affine coordinates for the hyperelliptic curve

C : dw2 = d2 − 2adz2 + (a2 − 4b)z4.

(See (II.2.5.1) and Exercise 2.14 for general properties of hyperelliptic curves.) We
claim that C/K is the twist of E/K corresponding to the cocycle ξ.

First, we recall from (II.2.5.1) that C is a smooth affine curve provided that
the polynomial d2 − 2adz2 + (a2 − 4b)z4 has four distinct roots in K̄. Fur-
ther, (II.2.5.2) says that if the quartic polynomial has distinct roots, then there is
a smooth curve in P3 that has an affine piece isomorphic to C. This smooth curve
consists of C together with the two points

[

0, 0,±
√

a2 − 4b

d
, 1

]

at infinity. (N.B. The projective closure of C in P2 is always singular.) It is easy to
check that the quartic has distinct roots if and only if b(a2 − 4b) �= 0. On the other
hand, since E is nonsingular, we know that Δ(E) = 16b2(a2 − 4b) �= 0. There-
fore C is an affine piece of a smooth curve in P3. To ease notation, we also use C to
denote this smooth curve C ⊂ P3.

There is a natural map defined over K(
√

d ),

φ : E −→ C,

(x, y) �−→ (z, w) =

(√
d x

y
,
√

d

(
x − b

x

)(
x

y

)2
)

.

Note that since
x

y
=

xy

y2
=

y

x2 + ax + b
,

the map φ may also be written as

φ(x, y) =

( √
d y

x2 + ax + b
,

√
d (x2 − b)

x2 + ax + b

)

.

This allows us to evaluate

φ(0, 0) = (0,−
√

d ) and φ(O) = (0,
√

d ).

To show that φ is an isomorphism, we compute its inverse:
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√
dw

z2
= x − b

x
= 2x −

(
x +

b

x

)

= 2x −
((y

x

)2

− a

)
= 2x −

(
d

z2
− a

)
.

This gives x in terms of z and w, and then y =
√

d x/z. Thus

φ−1 : C −→ E,

(z, w) �−→
(√

d w − az2 + d

2z2
,
dw − a

√
d z2 + d

√
d

2z3

)

.

Since C and E are smooth, it follows from (II.2.4.1) that φ is an isomorphism.
Finally, in order to compute the element of H1(GK̄/K , E) corresponding to the

curve C/K, we may choose any point p ∈ C and compute the cocycle

σ �−→ pσ − p = φ−1(pσ) − φ−1(p).

For instance, we may take p = (0,
√

d ) ∈ C. It is clear that if σ fixes
√

d,
then pσ − p = O. On the other hand, if

√
d

σ
= −

√
d, then

pσ − p = φ−1(0,−
√

d ) − φ−1(0,
√

d ) = (0, 0).

Therefore pσ − p = ξσ for all σ ∈ GK̄/K , so {C/K} ∈ WC(E/K) maps
to {ξ} ∈ H1(GK̄/K , E). Of course, it was just “luck” that we obtained an equal-
ity pσ − p = ξσ . In general, the difference of these two cocycles would be some
coboundary.

We conclude this section by showing that if C/K is a homogeneous space
for E/K, then Pic0(C) may be canonically identified with E. This means that E
is the Jacobian variety of C/K. Since every curve C/K of genus one is a homoge-
neous space for some elliptic curve E/K (Exercise 10.3), this shows that the abstract
group Pic0(C) can always be represented as the group of points of an elliptic curve.
The analogous result for curves of higher genus, in which Pic0(C) is represented by
an abelian variety of dimension equal to the genus of C, is considerably harder to
prove.

Theorem 3.8. Let C/K be a homogeneous space for an elliptic curve E/K. Choose
a point p0 ∈ C and consider the summation map

sum : Div0(C) −→ E,
∑

ni(pi) �−→
∑

[ni](pi − p0).

(a) There is an exact sequence

1 −−−−→ K̄∗ −−−−→ K̄(C)∗ div−−−−→ Div0(C) sum−−−−→ E −−−−→ 0.
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(b) The summation map is independent of the choice of the point p0.
(c) The summation map commutes with the natural actions of the Galois group

GK̄/K on Div0(C) and on E. Hence it induces an isomorphism of GK̄/K-
modules (also denoted by sum)

sum : Pic0(C) ∼−−→ E.

In particular,
Pic0

K(C) ∼= E(K).

PROOF. (a) Using (II.3.4), we see that we must check that the summation map is a
surjective homomorphism and that its kernel is the set of principal divisors. It is clear
that it is a homomorphism. Let P ∈ E and D = (p0 + P ) − (p0) ∈ Div0(C). Then

sum(D) =
(
(p0 + P ) − p0

)
− (p0 − p0) = P,

so sum is surjective.
Next suppose that D =

∑
ni(pi) ∈ Div0(C) satisfies sum(D) = O. Then the

divisor
∑

ni(pi − p0) ∈ Div0(E) sums to O, so (III.3.5) tells us that it is principal,
say ∑

ni(pi − p0) = div(f) for some f ∈ K̄(E)∗.

We have an isomorphism

φ : C −→ E, φ(p) = p − p0,

and hence applying (II.3.6b),

div(φ∗f) = φ∗ div(f) =
∑

niφ
∗((pi − p0)

)
=

∑
ni(pi) = D.

Therefore D is principal.
Finally, if D = div(g) is principal, then

∑
ni(pi − p0) = (φ−1)∗ div(g) = div

(
(φ−1)∗g

)
,

and hence sum(D) = O. This shows that the kernel of the summation map is the set
of principal divisors.
(b) Let sum′ : Div0(C) → E be the summation map defined using the base
point p′0 ∈ C. Then

sum(D) − sum′(D) =
∑

[ni]
(
(pi − p0) − (pi − p′0)

)

=
∑

[ni](p′0 − p0)

= O,

since
∑

ni = deg(D) = 0.
(c) Let σ ∈ GK̄/K . Then
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sum(D)σ =
∑

[ni](pσ
i − pσ

0 ) = sum(Dσ),

since we know from (b) that the sum is the same if we use pσ
0 as our base point

instead of p0. Now (a) and the definition of Pic0(C) tell us that we have a group
isomorphism sum : Pic0(C) → E, and the fact that the summation map commutes
with the action of GK̄/K says precisely that it is an isomorphism of GK̄/K-modules.
Finally, the last statement in (X.3.8c) follows by taking GK̄/K-invariants.

X.4 The Selmer and Shafarevich–Tate Groups
We return now to the problem of calculating the Mordell–Weil group of an elliptic
curve E/K defined over a number field K. As we have seen in (VIII.3.2) and Exer-
cise 8.18, it is enough to find generators for the finite group E(K)/mE(K) for any
integer m ≥ 2.

Suppose that we are given another elliptic curve E′/K and a nonzero isogeny
φ : E → E′ defined over K. For example, we could take E = E′ and φ = [m].
Then there is an exact sequence of GK̄/K-modules

0 −→ E[φ] −→ E
φ−−→ E′ −→ 0,

where E[φ] denotes the kernel of φ. Taking Galois cohomology yields the long exact
sequence

0 −−−−→ E(K)[φ] −−−−→ E(K)
φ−−−−→ E′(K)

�

δ

H1
(
GK̄/K , E[φ]

)
−−−−→ H1

(
GK̄/K , E

) φ−−−−→ H1
(
GK̄/K , E′),

and from this we form the fundamental short exact sequence

0 → E′(K)/φ
(
E(K)

) δ−→ H1
(
GK̄/K , E[φ]

)
→ H1(GK̄/K , E)[φ] → 0. (∗)

Note that (X.3.6) says that the last term in (∗) may be identified with the φ-torsion in
the Weil–Châtelet group WC(E/K).

The next step is to replace the second and third terms of (∗) with certain finite
groups. This is accomplished by local considerations. For each v ∈ MK we fix an
extension of v to K̄, which serves to fix an embedding K̄ ⊂ K̄v and a decomposition
group Gv ⊂ GK̄/K . Now Gv acts on E(K̄v) and E′(K̄v), and repeating the above
argument yields exact sequences

0 → E′(Kv)/φ
(
E(Kv)

) δ−→ H1
(
Gv, E[φ]

)
→ H1(Gv, E)[φ] → 0. (∗v)

The natural inclusions Gv ⊂ GK̄/K and E(K̄) ⊂ E(K̄v) give restriction maps on
cohomology, and we thus end up with the following commutative diagram, in which
we have replaced each H1(G,E) with the corresponding Weil–Châtelet group:
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0 → E′(K)/φ
(
E(K)

) δ−→ H1
(
GK̄/K , E[φ]

)
→ WC(E/K)[φ] → 0

⏐
⏐
$

⏐
⏐
$

⏐
⏐
$

0 →
∏

v∈MK

E′(Kv)/φ
(
E(Kv)

) δ−→
∏

v∈MK

H1
(
Gv, E[φ]

)
→

∏

v∈MK

WC(E/Kv)[φ]→ 0

(∗∗)
Our ultimate goal is to compute the image of E′(K)/φ

(
E(K)

)
in the cohomol-

ogy group H1
(
GK̄/K , E[φ]

)
, or equivalently, to compute the kernel of the map

H1
(
GK̄/K , E[φ]

)
→ WC(E/K)[φ].

Using (X.3.3), we see that this last problem is the same as determining whether cer-
tain homogeneous spaces possess a K-rational point, which may be a very difficult
question to answer. On the other hand, by the same reasoning, the determination of
each local kernel

ker
(
H1

(
Gv, E[φ]

)
−→ WC(E/Kv)[φ]

)

is straightforward, since the question whether a curve has a point over a complete
local field Kv reduces, by Hensel’s lemma, to checking whether the curve has a
point in some finite ring Rv/Me

v for some easily computable integer e, which clearly
requires only a finite amount of computation. This prompts the following definitions.

Definition. Let φ : E/K → E′/K be an isogeny. The φ-Selmer group of E/K is
the subgroup of H1

(
GK̄/K , E[φ]

)
defined by

S(φ)(E/K) = ker

{

H1
(
GK̄/K , E[φ]

)
−→

∏

v∈MK

WC(E/Kv)

}

.

The Shafarevich–Tate group of E/K is the subgroup of WC(E/K) defined by

X(E/K) = ker

{

WC(E/K) −→
∏

v∈MK

WC(E/Kv)

}

.

(The Cyrillic letter X is pronounced “sha.”)

Remark 4.1.1. The exact sequences (∗v) require us to extend each v ∈ MK to K̄, so
the groups S(φ)(E/K) and X(E/K) might depend on this choice. However, in or-
der to determine whether an element of WC(E/K) becomes trivial in WC(E/Kv),
we must check whether the associated homogeneous space, which is a curve defined
over K, has any points defined over Kv . This last problem is clearly independent
of our choice of extension of v to K̄, since v itself determines the embedding of K
into Kv . Therefore S(φ)(E/K) and X(E/K) depend only on E and K.

Alternatively, one can check directly by working with cocycles that the cohomo-
logical definitions of S(φ) and X do not depend on the extension of the v ∈ MK

to K̄. We leave this verification for the reader. (See also Exercise B.6.)
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Remark 4.1.2. A good way to view X(E/K) is as the group of homogeneous
spaces for E/K that possess a Kv-rational point for every v ∈ MK . Equivalently,
the Shafarevich–Tate group X(E/K) is the group of homogeneous spaces, modulo
equivalence, that are everywhere locally trivial.

Theorem 4.2. Let φ : E/K → E′/K be an isogeny of elliptic curves defined
over K.
(a) There is an exact sequence

0 −→ E′(K)/φ
(
E(K)

)
−→ S(φ)(E/K) −→ X(E/K)[φ] −→ 0.

(b) The Selmer group S(φ)(E/K) is finite.

PROOF. (a) This is immediate from the diagram (∗∗) and the definitions of the
Selmer and Shafarevich–Tate groups.
(b) If we take E = E′ and φ = [m], then (a) and the finiteness of S(m)(E/K)
imply the weak Mordell–Weil theorem. On the other hand, in order to prove that
S(φ)(E/K) is finite for a general map φ, we must essentially re-prove the weak
Mordell–Weil theorem. The arguement goes as follows.

Let ξ ∈ S(φ)(E/K), and let v ∈ MK be a finite place of K not divid-
ing m = deg(φ) and such that E/K has good reduction at v. We claim that ξ is
unramified at v. (See (VIII §2) for the definition of an unramified cocycle.)

To check this, let Iv ∈ Gv be the inertia group for v. Since ξ ∈ S(φ)(E/K), we
know that ξ is trivial in WC(E/Kv). Hence from the sequence (∗v) given earlier,
there is a point P ∈ E(K̄v) such that

ξσ = {P σ − P} for all σ ∈ Gv .

(Note that P σ − P ∈ E[φ].) In particular, this holds for all σ in the inertia group.
But if σ ∈ Iv, then looking at the “reduction modulo v” map E → Ẽv yields

P̃ σ − P = P̃ σ − P̃ = Õ,

since by definition inertia acts trivially on Ẽv . Thus P σ − P is in the kernel of
reduction modulo v. But P σ − P is also in E[φ], which is contained in E[m]; and
from (VIII.1.4) we know that E(K)[m] injects into Ẽv . Therefore P σ = P , and
hence

ξσ = {P σ − P} = 0 for all σ ∈ Gv .

This proves that every element in S(φ)(E/K) is unramified at all but a fixed, finite
set of places v ∈ MK . The following lemma allows us to conclude that S(φ)(E/K)
is finite.

Lemma 4.3. Let M be a finite (abelian) GK̄/K-module, let S ⊂ MK be a finite set
of places, and define

H1(GK̄/K ,M ;S) =
{
ξ ∈ H1(GK̄/K ,M) : ξ is unramified outside S

}
.

Then H1(GK̄/K ,M ;S) is finite.
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PROOF. Since M is finite and GK̄/K acts continuously on M , there is a subgroup of
finite index in GK̄/K that fixes every element of M . Using the inflation–restriction
sequence (B.2.4), it suffices to prove the lemma with K replaced by a finite exten-
sion, so we may assume that the action of GK̄/K on M is trivial. Then

H1(GK̄/K ,M ;S) = Hom(GK̄/K ,M ;S).

Let m be the exponent of M , i.e., the smallest positive integer such that mx = 0
for all x ∈ M , and let L/K be the maximal abelian extension of K having expo-
nent m that is unramified outside of S. Since M has exponent m, the natural map

Hom(GL/K ,M ;S) −→ Hom(GK̄/K ,M ;S)

is an isomorphism. But we know from (VIII.1.6) that L/K is a finite extension.
Therefore Hom(GK̄/K ,M ;S) is finite.

We record as a corollary an important property of the Selmer group that was
derived during the course of proving (X.4.2), where we use the fact (VII.7.2) that
isogenous elliptic curves have the same set of primes of bad reduction.

Corollary 4.4. Let φ : E/K → E′/K be as in (X.4.2), and let S ⊂ MK be a finite
set of places containing

M∞
K ∪ {v ∈ M0

K : E has bad reduction at v} ∪ {v ∈ M0
K : v(deg φ) > 0}.

Then
S(φ)(E/K) ⊂ H1(GK̄/K , E[φ];S).

Remark 4.5. Certainly in theory, and often in practice, the Selmer group is ef-
fectively computable. This is true because the finite group H1(GK̄/K , E[φ];S)
is effectively computable. Then, in order to determine whether a given element
ξ ∈ H1(GK̄/K , E[φ];S) is in S(φ)(E/K), we take the corresponding homogeneous
spaces {C/K} ∈ WC(E/K) and check, for each of the finitely many v ∈ S,
whether C(Kv) �= ∅. This last problem may be reduced, using Hensel’s lemma, to a
finite amount of computation.

Example 4.5.1. We reformulate the example described in (X §1) in these terms,
leaving some details to the reader. Let E/K be an elliptic curve with E[m] ⊂ E(K),
let S ⊂ MK be the usual set of places (X.4.4), and let K(S,m) be as in (X.1.1c).
We choose a basis for E[m] and use it to identify E[m] with μm × μm as GK̄/K-
modules. Then

H1(GK̄/K , E[m];S) ∼= K(S,m) × K(S,m),

where this map uses the isomorphism K∗/(K∗)m ∼−→ H1(GK̄/K ,μm).
Restricting attention now to the case m = 2, the homogeneous space associated

to a pair (b1, b2) ∈ K(S,m) × K(S,m) is the curve in P3 given by the equations
(cf. (X.1.4))
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C : b1z
2
1 − b2z

2
2 = (e2 − e1)z2

0 , b1z
2
1 − b1b2z

2
3 = (e3 − e1)z2

0 .

For any given pair (b1, b2) and any absolute value v ∈ S, it is easy to check
whether C(Kv) �= ∅, and thus to calculate S(2)(E/K). For example, the conclu-
sion of (X.1.5) may be summarized by stating that the curve

E : y2 = x3 − 12x2 + 20x

satisfies
S(2)(E/Q) = (Z/2Z)2 and X(E/Q)[2] = 0.

The conclusion about X follows from the exact sequence (X.4.2a), since in (X.1.5)
we proved that every element of S(2)(E/Q) is the image of a point in E(Q).

Suppose that we have computed the Selmer group S(φ)(E/K) for an isogeny φ.
Each ξ ∈ S(φ)(E/K) corresponds to a homogeneous space Cξ/K that has a point
defined over every local field Kv . Suppose further that we are lucky and can show
that X(E/K)[φ] = 0. This means that we are able to find a K-rational point on
each Cξ. It then follows from (X.4.2a) that E′(K)/φ

(
E(K)

) ∼= S(φ)(E/K), and
all that remains is to explain how to find generators for E′(K)/φ

(
E(K)

)
in terms

of the points that we found in each Cξ(K). This is done in the next proposition.

Proposition 4.6. Let φ : E/K → E′/K be a K-isogeny, let ξ be a cocycle rep-
resenting an element of H1(GK̄/K , E[φ]), and let C/K be a homogeneous space
representing the image of ξ in WC(E/K). Choose a K̄-isomorphism θ : C → E
satisfying

θσ ◦ θ−1 = (translation by ξσ) for all σ ∈ GK̄/K .

(a) The map φ ◦ θ : C → E′ is defined over K.
(b) Suppose that there is a point P ∈ C(K), so {C/K} is trivial in WC(E/K).

Then the point φ ◦ θ(P ) ∈ E′(K) maps to ξ via the connecting homomor-
phism δ : E′(K) → H1

(
GK̄/K , E[φ]

)
.

PROOF. (a) Let σ ∈ GK̄/K and let P ∈ C. Then, since φ is defined over K
and ξσ ∈ E[φ], we have

(
φ ◦ θ(P )

)σ = (φ ◦ θσ)(P σ) = φ
(
θ(P σ) + ξσ

)
= φ ◦ θ(P σ).

Therefore φ ◦ θ is defined over K.
(b) This is just a matter of unwinding definitions. Thus

δ
(
φ ◦ θ(P )

)
σ

= θ(P )σ − θ(P ) = θ(P σ) + ξσ − θ(P ) = ξσ.

Remark 4.7. We have been working with arbitrary isogenies φ : E → E′,
but in order to compute the Mordell–Weil group of E′, we must find genera-
tors for E′(K)/mE′(K) for some integer m; simply knowing E′(K)/φ

(
E(K)

)

is not enough. The solution to this dilemma is to work with both φ and its dual
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φ̂ : E′ → E. Using the procedure described in this section, we compute both Selmer
groups S(φ)(E/K) and S(φ̂)(E′/K), and with a little bit of luck, we find generators
for the two quotient groups E′(K)/φ

(
E(K)

)
and E(K)/φ̂

(
E′(K)

)
. It is then a

simple matter to compute generators for E(K)/mE(K), where m = deg(φ), using
the elementary exact sequence (note that φ̂ ◦ φ = [m])

0 −→ E′(K)[φ̂]
φ
(
E(K)[m]

) −→ E′(K)
φ
(
E(K)

) φ̂−−→ E(K)
mE(K)

−→ E(K)

φ̂
(
E′(K)

) −→ 0.

Example 4.8. Two-isogenies. We illustrate the general theory by completely ana-
lyzing the case of isogenies of degree 2. Let φ : E → E′ be an isogeny of degree 2
defined over K. Then the kernel E[φ] = {O, T} is defined over K, so T ∈ E(K).
Moving this K-rational 2-torsion point to (0, 0), we can find a Weierstrass equation
for E/K of the form

E : y2 = x3 + ax2 + bx.

Let S ⊂ MK be the usual set of places (X.4.4). Identifying E[φ] with μ2

(as GK̄/K-modules), we see that K∗/(K∗)2 ∼= H1(GK̄/K , E[φ]). Thus, using no-
tation from (X.1.1c) and (X.4.3), we have

H1(GK̄/K , E[φ];S) ∼= K(S, 2).

More precisely, if d ∈ K(S, 2), then tracing through the above identification shows
that the corresponding cocycle is

σ �−→
{

O if
√

d
σ

=
√

d,
T if

√
d

σ
= −

√
d.

The homogeneous space Cd/K associated to this cocycle was computed in (X.3.7);
it is given by the equation

Cd : dw2 = d2 − 2adz2 + (a2 − 4b)z4.

We can now compute the Selmer group S(φ) by checking whether Cd(Kv) = ∅ for
each of the finitely many d ∈ K(S, 2) and v ∈ S.

The isogenous curve E′/K has Weierstrass equation

E′ : Y 2 = X3 − 2aX2 + (a2 − 4b)X,

and the isogeny φ : E → E′ is given by the formula (III.4.5)

φ(x, y) =
(

y2

x2
,
y(b − x2)

x2

)
.

In (X.3.7) we gave an isomorphism θ : Cd → E defined over K(
√

d ). Computing
the composition φ ◦ θ yields the map
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θ ◦ φ : Cd −→ E′, θ ◦ φ(z, w) =
(

d

z2
,−dw

z3

)
,

described in (X.4.6). Finally, just as we did in (X.1.4) (see also Exercise 10.1), we
can compute the connecting homomorphism

δ : E′(K) −→ H1(GK̄/K , E[φ]) ∼= K∗/(K∗)2.

It is given by

δ(O) = 1, δ(0, 0) = a2 − 4b, δ(X,Y ) = X if X �= 0,∞.

We summarize (X.4.8) in the next proposition.

Proposition 4.9. (Descent via Two-Isogeny) Let E/K and E′/K be elliptic curves
given by the equations

E : y2 = x3 + ax2 + bx and E′ : Y 2 = x3 − 2aX2 + (a2 − b)X,

and let

φ : E −→ E′, φ(x, y) =
(

y2

x2
,
y(b − x2)

x2

)
,

be the isogeny of degree 2 with kernel E[φ] =
{
O, (0, 0)

}
. Let

S = M∞
K ∪

{
v ∈ M0

K : v(2) �= 0 or v(b) �= 0 or v(a2 − 4b) �= 0
}
.

Further, for each d ∈ K∗, let Cd/K be the homogeneous space for E/K given by
the equation

Cd : dw2 = d2 − 2adz2 + (a2 − 4b)z4.

Then there is an exact sequence

0 −→ E′(K)/φ
(
E(K)

) δ−→ K(S, 2) −→ WC(E/K)[φ],
(X,Y ) �−→ X, d �−→ {Cd/K},

O �−→ 1,
(0, 0) �−→ a2 − 4b.

The φ-Selmer group is

S(φ)(E/K) ∼=
{
d ∈ K(S, 2) : Cd(Kv) �= ∅ for all v ∈ S

}
.

Finally, the map

ψ : Cd −→ E′, ψ(z, w) =
(

d

z2
,−dw

z3

)
,

has the property that if P ∈ Cd(K), then

δ
(
ψ(P )

)
≡ d (mod (K∗)2).
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Remark 4.9.1. Note that since the isogenous curve E′ in (X.4.9) has the same form
as E, everything in (X.4.9) applies equally well to the dual isogeny φ̂ : E′ → E.
Then, using the exact sequence (X.4.7), we can try to compute E(K)/2E(K).

Remark 4.9.2. If E/K is an elliptic curve that has a K-rational 2-torsion point,
then (III.4.5) says that E automatically has an isogeny of degree 2 defined over K.
Thus the procedure described in (X.4.8) may be applied to any elliptic curve sat-
isfying E(K)[2] �= 0. In particular, (X.4.9) in some sense subsumes (X.1.4), which
described how to try to compute E(K)/2E(K) when E[2] ⊂ E(K).

Example 4.10. We use (X.4.9) to compute E(Q)/2E(Q) for the elliptic curve

E : y2 = x3 − 6x2 + 17x.

This equation has discriminant Δ = −147968 = −29172, so our set S is {∞, 2, 17}
and we may identify Q(S, 2) with {±1,±2,±17,±34}. The curve that is 2-isoge-
nous to E has equation

E : Y 2 = X3 + 12X2 − 32X,

and for d ∈ Q(S, 2), the corresponding homogeneous space is

Cd : dw2 = d2 + 12dz2 − 32z4.

From (X.4.9) we know that the point (0, 0) ∈ E′(Q) maps to

δ(0, 0) = −32 ≡ −2 (mod (Q∗)2),

so −2 ∈ S(φ)(E/Q). It remains to check the other values of d ∈ Q(S, 2).

d = 2 C2 : 2w2 = 4 + 24z2 − 32z4.

Dividing by 2 and letting z = Z/2 gives the equation

w2 = 2 + 3Z2 − Z4,

which by inspection has the rational point (Z,w) = (1, 2). Then (X.4.9) tells us
that the point (z, w) = (1

2 , 2) ∈ C2(Q) maps to to ψ( 1
2 , 2) = (8,−32) ∈ E′(Q).

Further, as the theory predicts, we have δ(8,−32) = 8 ≡ 2 (mod (Q∗)2).

d = 17 C17 : 17w2 = 172 + 12 · 17z2 − 32z4.

Suppose that C17(Q17) �= ∅. Since ord17(17w2) is odd and ord17(32z4) is even,
we see that necessarily z, w ∈ Z17. But then the equation for C17 implies first
that z ≡ 0 (mod 17), then that w ≡ 0 (mod 17), and finally that 172 ≡ 0 (mod 173).
This contradiction shows that C17(Q17) = ∅, and hence that 17 /∈ S(φ)(E/Q).

We now know that

1,−2, 2 ∈ S(φ)(E/Q) and 17 /∈ S(φ)(E/Q).
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Since S(φ)(E/Q) is a subgroup of Q(S, 2), we have S(φ)(E/Q) = {±1,±2}. Fur-
ther, we have shown that E′(Q) surjects onto S(φ)(E/Q), and hence from (X.4.2a)
we see that X(E/Q)[φ] = 0.

We now repeat the above computation with the roles of E and E′ reversed. Thus
for d ∈ Q(S, 2) we look at the homogeneous space

C ′
d : dw2 = d2 − 24dz2 + 272z4.

As above, the point (0, 0) ∈ E(Q) maps to δ(0, 0) = 272 ≡ 17 (mod (Q∗)2). Next,
if d < 0, then clearly C ′

d(R) = ∅, so d /∈ S(φ̂)(E′/Q). Finally, for d = 2, if we
let z = Z/2, then C ′

2 has the equation

2w2 = 4 − 12Z2 + 17Z4.

If C ′
2(Q2) �= ∅, then necessarily Z,w ∈ Z2, and then the equation allows us to

deduce successively

Z ≡ 0 (mod 2), w ≡ 0 (mod 2), 4 ≡ 0 (mod 23).

Therefore C2(Q2) = ∅, and hence 2 /∈ S(φ̂)(E′/Q). Thus S(φ̂)(E′/Q) = {1, 17}
and X(E′/Q)[φ̂] = 0.

To recapitulate, we now know that

E′(Q)/φ
(
E(Q)

) ∼= (Z/2Z)2 and E(Q)/φ̂
(
E′(Q)

) ∼= Z/2Z,

the former being generated by
{
(0, 0), (8,−32)

}
and the latter by

{
(0, 0)

}
. The

exact sequence (X.4.7) then yields

E(Q)/2E(Q) ∼= (Z/2Z)2 and E′(Q)/2E′(Q) ∼= (Z/2Z)2,

and hence
E(Q) ∼= E′(Q) ∼= Z × Z/2Z.

Remark 4.11. In all of the examples up to this point, we have been lucky in the
sense that for every locally trivial homogeneous space that has appeared, we were
able to find (by inspection) a global rational point. Another way to say this is that
we have yet to see a nontrivial element of the Shafarevich–Tate group. The first
examples of such spaces are due to Lind [150] and independently, but a bit later, to
Reichardt [207]. For example, they proved that the curve

2w2 = 1 − 17z4

has no Q-rational points, while it is easy to check that it has a point defined over
every Qp. Shortly thereafter, Selmer [225, 227] made an extensive study of the
curves ax3 + by3 + cz3 = 0, which are homogeneous spaces for the elliptic curves
x3 + y3 + dz3 = 0. He gave many examples of locally trivial, globally nontrivial
homogeneous spaces, of which the simplest is
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3x3 + 4y3 + 5z3 = 0.

It is a difficult problem, in general, to divide the Selmer group into the piece
coming from rational points on the elliptic curve and the piece giving nontrivial
elements of the Shafarevich–Tate group. At present there is no algorithm known that
is guaranteed to solve this problem. The procedure that we now describe often works
in practice, although it tends to lead to fairly elaborate computations in algebraic
number fields.

Recall that for each integer m ≥ 2 there is an exact sequence (X.4.2a)

E(K) δ−→ S(m)(E/K) −→ X(E/K)[m] −→ 0,

where at least in theory, the finite group S(m)(E/K) is effectively computable;
see (X.4.5). If we knew some way of computing X(E/K)[m], then we could find
generators for E(K)/mE(K), and thence for E(K). Unfortunately, a general pro-
cedure for computing X(E/K)[m] is still being sought. However, for each inte-
ger n ≥ 1 we can combine different versions of the above exact sequence to form a
commutative diagram

E(K) −−−−→ S(mn)(E/K) −−−−→ X(E/K)[mn] −−−−→ 0
⏐
⏐
$ identity

map

⏐
⏐
$

⏐
⏐
$ multiplication

by mn−1

E(K) −−−−→ S(m)(E/K) −−−−→ X(E/K)[m] −−−−→ 0

Now at least in principle, the middle column of this diagram is effectively com-
putable. This allows us to make the following refinement to the exact sequence
in (X.4.2a).

Proposition 4.12. Let E/K be an elliptic curve. For any integers m ≥ 2 and n ≥ 1,
let S(m,n)(E/K) be the image of S(mn)(E/K) in S(m)(E/K). Then there exists
an exact sequence

0 −→ E(K)/mE(K) −→ S(m,n)(E/K) −→ mn−1X(E/K)[mn] −→ 0.

PROOF. This is immediate from the commutative diagram given above.

Now to find generators for E(K), we can try the following procedure. Compute
successively the relative Selmer groups

S(m)(E/K) = S(m,1)(E/K) ⊃ S(m,2)(E/K) ⊃ S(m,3)(E/K) ⊃ · · ·

and the rational-point groups

T(m,1)(E/K) ⊂ T(m,2)(E/K) ⊂ T(m,3)(E/K) ⊂ · · · ,

where T(m,r)(E/K) is the subgroup of S(m)(E/K) generated by all of the points
P ∈ E(K) with height hx(P ) ≤ r. Eventually, with sufficient perseverance, we
hope to arrive at an equality
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S(m,n)(E/K) = T(m,r)(E/K).

Once this happens, we know that mn−1X(E/K)[mn] = 0 and that the points with
height hx(P ) ≤ r generate E(K)/mE(K). The difficulty lies in the fact that as
far as is currently known, there is nothing to prevent X(E/K) from containing an
element that is infinitely m-divisible, i.e., a nonzero element ξ ∈ X(E/K) such that
for every n ≥ 1 there is an element ξn ∈ X(E/K) satisfying ξ = mnξn. If such
an element exists, then the above procedure never terminates. However, opposed to
such a gloomy scenario is the following optimistic conjecture.

Conjecture 4.13. Let E/K be an elliptic curve. Then X(E/K) is finite.

The finiteness of X has been proven for certain elliptic curves by Kolyva-
gin [130] and Rubin [215]. Note that the successful carrying out of the procedure
described above shows only that the m-primary component of X(E/K) is finite.
This has, of course, been done in many cases. For example, in (X.4.10) we showed
that X(E/Q)[2] = 0 for a particular elliptic curve.

We conclude this section with a beautiful result of Cassels, which says something
interesting about the order of a group that is not known in general to be finite.

Theorem 4.14. ([38], [281]) Let E/K be an elliptic curve. There exists an alter-
nating bilinear pairing

Γ : X(E/K) × X(E/K) −→ Q/Z

whose kernel on each side is exactly the subgroup of divisible elements of X(E/K).
In other words, if Γ(α, β) = 0 for all β ∈ X(E/K), then for every integer N ≥ 1
there exists an element αN ∈ X(E/K) satisfying NαN = α.

In particular, if X(E/K) is finite, then its order is a perfect square, and the
same is true of any p-primary component of X(E/K). (See Exercise 10.20.)

X.5 Twisting—Elliptic Curves
As in (X §§2,3), we let K be an arbitrary (perfect) field and we let E/K be an elliptic
curve. We saw in (X.2.2) that if we consider E merely to be a curve and ignore the
base point O, then the twists of E/K correspond to the elements of the (pointed)
cohomology set H1

(
GK̄/K , Isom(E)

)
. The group Isom(E) has two natural sub-

groups, namely Aut(E) and E, where we identify E with the set of translations {τP }
in Isom(E). We also observe that Aut(E) acts naturally on E. The next proposition
describes Isom(E).

Proposition 5.1. The map

E × Aut(E) −→ Isom(E), (P, α) �−→ τP ◦ α,

is a bijection of sets. It identifies Isom(E) with the product of E and Aut(E) twisted
by the natural action of Aut(E) on E. In other words, the group Isom(E) is the set
of ordered pairs E × Aut(E) with the group law
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(P, α) · (Q, β) = (P + αQ,α ◦ β).

PROOF. Let φ ∈ Isom(E). Then τ−φ(O) ◦ φ ∈ Aut(E), so writing

φ = τφ(O) ◦
(
τ−φ(O) ◦ φ

)

shows that the map is surjective. On the other hand, if τP ◦α = τQ◦β, then evaluating
at O gives P = Q, and then also α = β. This proves injectivity. Finally, the twisted
nature of the group law follows from the calculation

τP ◦ α ◦ τQ ◦ β = τP ◦ ταQ ◦ α ◦ β.

We have already extensively studied those twists of E/K that arise from trans-
lations; these are the twists corresponding to elements of the group

H1(GK̄/K , E) ∼= WC(E/K)

that we studied in (X §§3,4). We now look at the twists of E/K coming from
isomorphisms of E as an elliptic curve, i.e., isomorphisms of the pair (E,O). In
other words, we consider the twists of E corresponding to elements of the cohomol-
ogy group H1

(
GK̄/K ,Aut(E)

)
. We start with a general proposition and then, for

char(K) �= 2, 3, we derive explicit equations for the associated twists.

Remark 5.2. In the literature, the phrase “let C be a twist of E” generally means
that C corresponds to an element of H1

(
GK̄/K ,Aut(E)

)
. More properly, such

a C should be called a twist of the pair (E,O), since the group of isomorphisms
of (E,O) with itself is the group we denote by Aut(E). However, one can generally
resolve any ambiguity from context.

Proposition 5.3. Let E/K be an elliptic curve.
(a) The natural inclusion Aut(E) ⊂ Isom(E) induces an inclusion

H1
(
GK̄/K ,Aut(E)

)
⊂ H1

(
GK̄/K , Isom(E)

)
.

Identifying the latter set with Twist(E/K) via (X.2.2), we denote the former
by Twist

(
(E,O)/K

)
.

(b) Let C/K ∈ Twist
(
(E,O)/K

)
. Then C(K) �= ∅, so C/K can be given the

structure of an elliptic curve over K. N.B. The curve C/K is generally not
K-isomorphic to E/K; cf. (X.3.3).

(c) Conversely, if E′/K is an elliptic curve that is isomorphic to E over K̄,
then E′/K represents an element of Twist

(
(E,O)/K

)
.

PROOF. (a) Let i : Aut(E) → Isom(E) be the natural inclusion. From (X.5.1),
there is a homomorphism j : Isom(E) → Aut(E) satisfying j ◦ i = 1. It follows
that the induced map

H1
(
GK̄/K ,Aut(E)

) i−→ H1
(
GK̄/K , Isom(E)

)
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is one-to-one.
(b) Let φ : C → E be an isomorphism defined over K̄ such that the cocycle

σ �−→ φσ ◦ φ−1

represents the element of H1
(
GK̄/K ,Aut(E)

)
corresponding to C/K. Then we

have φσ ◦ φ−1(O) = O, so

φ−1(O) = φ−1(O)σ for all σ ∈ GK̄/K .

Hence φ−1(O) ∈ C(K), so
(
C, φ−1(O)

)
is an elliptic curve defined over K.

(c) Let φ : E′ → E be a K̄-isomorphism of elliptic curves, so in particular,
φ(O′) = O, where O ∈ E(K) and O′ ∈ E′(K) are the respective zero points of E
and E′. Then for any σ ∈ GK̄/K we have

φσ ◦ φ−1(O) = φσ(O′) = φ(O′)σ = Oσ = O.

Thus φσ ◦ φ−1 ∈ Aut(E), so the cocycle corresponding to E′/K lies in the group
H1

(
GK̄/K ,Aut(E)

)
as desired.

If the characteristic of K is not equal to 2 or 3, then the elements of the
group Twist

(
(E,O)/K

)
can be described quite explicitly.

Proposition 5.4. Assume that char(K) �= 2, 3, and let

n =

⎧
⎪⎨

⎪⎩

2 if j(E) �= 0, 1728,
4 if j(E) = 1728,
6 if j(E) = 0.

Then Twist
(
(E,O)/K

)
is canonically isomorphic to K∗/(K∗)n.

More precisely, choose a Weierstrass equation

E : y2 = x3 + Ax + B

for E/K, and let D ∈ K∗. Then the elliptic curve ED ∈ Twist
(
(E,O)/K

)
corre-

sponding to D (mod (K∗)n) has Weierstrass equation
(i) ED : y2 = x3 + D2Ax + D3B if j(E) �= 0, 1728,

(ii) ED : y2 = x3 + DAx if j(E) = 1728 (so B = 0),
(iii) ED : y2 = x3 + DB if j(E) = 0 (so A = 0).

Corollary 5.4.1. Define an equivalence relation on the set K × K∗ by

(j,D) ∼ (j′,D′) if j = j′ and D/D′ ∈ (K∗)n(j),

where n(j) = 2 (respectively 4, respectively 6) if j �= 0, 1728 (respectively j =
1728, respectively j = 0). Then the K-isomorphism classes of elliptic curves E/K
are in one-to-one correspondence with the elements of the quotient

K × K∗

∼ .
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PROOF. From (III.10.2.) we have an isomorphism

Aut(E) ∼= μn

of GK̄/K-modules. It follows from (B.2.5c) that

Twist
(
(E,O)/K

)
= H1

(
GK̄/K ,Aut(E)

) ∼= H1(GK̄/K ,μn) ∼= K∗/(K∗)n.

The calculation of an equation for the twist of E is straightforward. The case
j(E) �= 0, 1728 was done in (X.2.4). We do j(E) = 1728 here and leave j(E) = 0
for the reader.

Thus let D ∈ K∗, let δ ∈ K̄ be a fourth root of D, and define a cocycle

ξ : GK̄/K −→ μ4, ξσ = δσ/δ.

We also fix an isomorphism

[ ] : μ4 −→ Aut(E), [ζ](x, y) = (ζ2x, ζy).

Then ED corresponds to the cocycle σ �→ [ξσ] in H1
(
GK̄/K ,Aut(E)

)
.

The action of GK̄/K on the twisted field K̄(E)ξ is given by

δσ = ξσδ, xσ = ξ2
σx, yσ = ξσy.

The subfield fixed by GK̄/K thus contains the functions

X = δ−2x and Y = δ−1y,

and these functions satisfy the equation

Y 2 = DX3 + AX.

This gives an equation for the twist ED/K, and the substitution

(X,Y ) = (D−1X ′,D−1Y ′)

puts it into the desired form.
The corollary follows by combining the proposition and (X.5.3c) with (III.1.4bc),

which says that up to K̄-isomorphism, the elliptic curves E/K are in one-to-one
correspondence with their j-invariants j(E) ∈ K.

X.6 The Curve Y 2 = X3 + DX

Many of the deepest theorems and conjectures in the arithmetic theory of elliptic
curves have had as their testing ground one of the families of curves given in (X.5.4).
To illustrate the theory that we have developed, let’s see what we can say about the
family of elliptic curves E/Q with j-invariant j(E) = 1728.
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One such curve is given by the equation

y2 = x3 + x,

and then (X.5.3) and (X.5.4) tell us that every such curve has an equation of the form

E : y2 = x3 + Dx,

where D ranges over representatives for the cosets in Q∗/(Q∗)4. Thus if we spec-
ify that D is a fourth-power-free integer, then D is uniquely determined by E. We
observe that the equation for E has discriminant Δ(E) = −4D3, so E has good re-
duction at all primes not dividing 2D, and the given Weierstrass equation is minimal
at all odd primes.

Let p be a prime not dividing 2D and consider the reduced curve Ẽ over the finite
field Fp. From (V.4.1) we find that Ẽ is supersingular if and only if the coefficient
of xp−1 in (x3 + Dx)(p−1)/2 is zero. In particular, if p ≡ 3 (mod 4), then Ẽ/Fp is
supersingular, and hence we conclude (see Exercise 5.10) that

#Ẽ(Fp) = p + 1 for all p ≡ 3 (mod 4).

(See Exercise 10.17 for an elementary derivation of this result.)
Next we recall from (VII.3.5) that if p �= 2 and if E has good reduction

at p, then Etors(Q) injects into the reduction Ẽ(Fp). It follows from this discussion
that #Etors(Q) divides p + 1 for all but finitely many primes p ≡ 3 (mod 4), and
hence that #Etors(Q) divides 4. Since (0, 0) ∈ E(Q)[2], the possibilities for Etors(Q)
are Z/2Z, (Z/2Z)2, and Z/4Z.

We have E[2] ⊂ E(Q) if and only if the polynomial x3 +Dx factors completely
over Q, so if and only if −D is a perfect square. Similarly, E(Q) has a point of
order 4 if and only if (0, 0) ∈ 2E(Q). The duplication formula for E reads

x(2P ) =
(x2 − D)2

4x3 + 4Dx
,

so we see that
(0, 0) = [2]

(
D1/2, (4D3)1/4

)
.

Hence assuming that D is a fourth-power-free integer, we conclude that

(0, 0) ∈ 2E(Q) if and only if D = 4,

in which case (0, 0) = [2](2,±4).
Next, since E(Q) contains a 2-torsion point, we can use (X.4.9) to try to calcu-

late E(Q)/2E(Q). The curve E is isogenous to the curve

E′ : Y 2 = X3 − 4DX

via the isogeny
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φ : E −→ E′, φ(x, y) =
(

y2

x2
,
y(D − x2)

x2

)
.

The set S ⊂ MQ consists of ∞ and the primes dividing 2D, and for each d ∈ Q(S, 2),
the corresponding homogeneous space Cd/Q ∈ WC(E/Q) is given by the equation

Cd : dw2 = d2 − 4Dz4.

Similarly, working with the dual isogeny φ̂ : E′ → E leads to the homogeneous
spaces C ′

d/Q ∈ WC(E′/Q) with equations

C ′
d : dW 2 = d2 + DZ4.

(More precisely, using (X.4.9) leads to the equation dW 2 = d2 + 16DZ4, but we
are free to replace Z with Z/2.)

Let ν(2D) denote the number of distinct primes dividing 2D. The group Q(S, 2)
is generated by −1 and the primes dividing 2D, so we have the estimate

dim2 E(Q)/2E(Q) ≤ 2 + 2ν(2D) − dim2 E′(Q)[φ̂] + dim2 φ
(
E(Q)[2]

)
.

Here dim2 denotes the dimension of an F2-vector space. We clearly have

E′(Q)[φ̂] ∼= Z/2Z.

In order to deal with the other two terms, we consider two cases.

(1) E(Q)[2] ∼= Z/2Z.
Then φ

(
E(Q)[2]

) ∼= 0 and dim2 E(Q)/2E(Q) = rankE(Q) + 1.

(2) E(Q)[2] ∼= Z/2Z × Z/2Z.
Then φ

(
E(Q)[2]

) ∼= Z/2Z and dim2 E(Q)/2E(Q) = rankE(Q) + 2.

Substituting these values into the above inequality yields in both cases the estimate

rankE(Q) ≤ 2ν(2D).

Notice that we have obtained this upper bound without having checked for local
triviality of any of the homogeneous spaces Cd and C ′

d. By inspection, if d < 0, then
either Cd(R) = ∅ or C ′

d(R) = ∅. Thus the upper bound my be decreased by 1, giving
the small improvement

rankE(Q) ≤ 2ν(2D) − 1.

The preceding discussion is summarized in the following proposition.

Proposition 6.1. Let D ∈ Z be a fourth-power-free integer, and let ED be the elliptic
curve

ED : y2 = x3 + Dx.
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(a)

ED,tors(Q) ∼=

⎧
⎪⎨

⎪⎩

Z/4Z if D = 4,
Z/2Z × Z/2Z if −D is a perfect square,
Z/2Z otherwise.

(b)
rankE(Q) ≤ 2ν(2D) − 1.

Remark 6.1.1. The estimate in (X.6.1b) cannot be improved in general. For exam-
ple, the curve E : y2 = x3 − 82x has

rankE(Q) = 3,

while ν(−164) = ν(24 · 41) = 2. See Exercise 10.18.

We now restrict attention to the special case that D = p is an odd prime. The next
proposition gives a complete description of the relevant Selmer groups and deduces
corresponding upper bounds for the rank of E(Q) and the dimension of X(E/Q)[2].

Proposition 6.2. Let p be an odd prime, let Ep be the elliptic curve

Ep : y2 = x3 + px,

and let φ : Ep → E′
p be the isogeny of degree 2 with kernel Ep[φ] =

{
O, (0, 0)

}
.

(a)
Ep,tors(Q) ∼= Z/2Z.

(b)

S(φ̂)(E′
p/Q) ∼= Z/2Z.

S(φ)(Ep/Q) ∼=

⎧
⎪⎨

⎪⎩

Z/2Z if p ≡ 7, 11 (mod 16),
(Z/2Z)2 if p ≡ 3, 5, 13, 15 (mod 16),
(Z/2Z)3 if p ≡ 1, 9 (mod 16).

(c)

rankEp(Q) + dim2 X(Ep/Q)[2] =

⎧
⎪⎨

⎪⎩

0 if p ≡ 7, 11 (mod 16),
1 if p ≡ 3, 5, 13, 15 (mod 16),
2 if p ≡ 1, 9 (mod 16).

PROOF. To ease notation, we let E = Ep and E′ = E′
p.

(a) This is a special case of (X.6.1a).
(b) As usual, we take representatives {±1,±2,±p,±2p} for the cosets in the finite
group Q(S, 2). From (X.4.9) we know that the images of the 2-torsion points in the
Selmer groups are given by

−p ∈ S(φ)(E/Q) and p ∈ S(φ̂)(E′/Q).
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Further, if d < 0, then Cd(R) = ∅, so d /∈ S(φ̂)(E′/Q).
Next we consider the homogeneous space

C ′
2 : 2W 2 = 4 + pZ4.

If (Z,W ) ∈ C ′
2(Q2), then necessarily Z,W ∈ Z2, which allows us to con-

clude that Z ≡ 0 (mod 2), so W ≡ 0 (mod 2), and thus 0 ≡ 4 (mod 8). There-
fore C ′

2(Q2) = ∅, and hence 2 /∈ S(φ̂)(E′/Q). We now know that

p ∈ S(φ̂)(E′/Q) and − 1,±2,−p,−2p /∈ S(φ̂)(E′/Q).

It follows that S(φ̂)(E′/Q) = {1, p} ≡ Z/2Z.
It remains to calculate S(φ)(E/Q), and from the form of the answer, it is clear

that there will be many cases to be considered. The best approach is to look at the
various d ∈ Q(S, 2) and check for which primes the homogeneous space is locally
trivial. Note that (X.4.9) says that

d ∈ S(φ)(E/Q) if and only if Cd(Qp) �= ∅ and Cd(Q2) �= ∅,

i.e., it suffices to check whether Cd is locally trivial at the primes p and 2. We make
frequent use of Hensel’s lemma (Exercise 10.12), which gives a criterion for when a
solution of an equation modulo qn lifts to a solution in Qq.

d = −1 C−1 : w2 + 1 = 4pz4.

(i) If (z, w) ∈ C−1(Qp), then necessarily z, w ∈ Zp, so w2 ≡ −1 (mod p).
Conversely, from Exercise 10.12 we see that any solution to the congru-
ence w2 ≡ −1 (mod p) lifts to a point in C−1(Qp). Therefore

C−1(Qp) �= ∅ ⇐⇒ p ≡ 1 (mod 4).

(ii) From (i) we may assume that p ≡ 1 (mod 4). If p ≡ 1 (mod 8), then we let

(z, w) = (Z/4,W/8).

Our equation becomes W 2 + 64 = pZ4, and the solution (1, 1) to the congru-
ence

W 2 + 64 ≡ pZ4 (mod 8)

lifts to a point in C−1(Q2). Similarly, if p ≡ 5 (mod 8), then we let

(z, w) = (Z/2,W/2)

and consider the solution (Z,W ) = (1, 1) to the congruence

W 2 + 4 = pZ4 (mod 8).

This solution lifts to a point in C−1(Q2). This shows that if p ≡ 1 (mod 4),
then C−1(Q2) �= ∅.
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Combining (i) and (ii) yields

−1 ∈ S(φ)(E/Q) ⇐⇒ p ≡ 1 (mod 4).

d = −2 C−2 : w2 + 2 = 2pz4.

(i) If (z, w) ∈ C−2(Qp), then z, w ∈ Zp and w2 ≡ −2 (mod p). Conversely, a
solution to w2 ≡ −2 (mod p) lifts to a point of C−1(Qp). Therefore

C−2(Qp) �= ∅ ⇐⇒ p ≡ 1, 3 (mod 8).

(ii) If (z, w) ∈ C−2(Q2), then z, w ∈ Z2 and w ≡ 0 (mod 2). So after setting
(z, w) = (Z, 2W ), we must check whether the equation

2W 2 + 1 = pZ4

has any solutions Z,W ∈ Z2. From (i) we see that it suffices to consider
primes p ≡ 1, 3 (mod 8). The congruence 2W 2 + 1 ≡ pZ4 (mod 16) has no
solutions if p ≡ 11 (mod 16), so

p ≡ 11 (mod 16) =⇒ C−2(Q2) = ∅.

On the other hand, if we can find solutions modulo 25 = 32, then Exer-
cise 10.12 says that they lift to points in C−2(Q2). The following table gives
solutions (Z,W ) to the congruence

2W 2 + 1 ≡ pZ4 (mod 32)

for each of the remaining values of p mod 32:

p mod 32 1 3 9 17 19 25

(Z,W ) (1, 0) (3, 11) (1, 2) (3, 0) (1, 3) (3, 2)

Combining (i) and (ii), we have proven that

−2 ∈ S(φ)(E/Q) ⇐⇒ p ≡ 1, 3, 9 (mod 16).

d = 2 C2 : w2 = 2 − 2pz4.

This case is entirely similar to the case d = −2 that we just completed. A
point (z, w) ∈ C2(Qp) has z, w ∈ Zp and w2 ≡ 2 (mod p), and any such solu-
tions lifts, so

C2(Qp) �= ∅ ⇐⇒ p ≡ 1, 7 (mod 8).

Next, if p ≡ 1 (mod 8), then from above we have −1,−2 ∈ S(φ)(E/Q), so cer-
tainly 2 ∈ S(φ)(E/Q). It remains to consider the case p ≡ 7 (mod 8).
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A point (z, w) ∈ C2(Q2) satisfies (z, w) = (Z, 2W ) with Z,W ∈ Z2 and

2W 2 = 1 − pZ4.

If p ≡ 7 (mod 16), then this equation has no solutions modulo 16. On the other hand,
if p ≡ 15 (mod 16), then we have solutions

2 · 32 ≡ 1 − p · 14 (mod 32) if p ≡ 15 (mod 32),

2 · 12 ≡ 1 − p · 14 (mod 32) if p ≡ 31 (mod 32),

and these solutions lift to points in C2(Q2). Putting all of this together, we have
shown that

2 ∈ S(φ)(E/Q) ⇐⇒ p ≡ 1, 9, 15 (mod 16).

We have now determined exactly which of the values −1, 2, and −2 are in
S(φ)(E/Q) in terms of the residue of p modulo 16. Since we also know that
−p ∈ S(φ)(E/Q), it is now a simple matter to reconstruct the table for S(φ)(E/Q)
given in (b). In fact, we obtain more information, namely a precise list of which
elements of Q(S, 2) are in S(φ)(E/Q).
(c) We use (X.4.7) and (X.4.2a) to compute

dim2 E′(Q)[φ̂]/φ
(
E(Q)[2]

)
+ dim2 E(Q)/2E(Q)

= dim2 E′(Q)/φ
(
E(Q)

)
+ dim2 E(Q)/φ̂

(
E(Q)

)

= dim2 S(φ)(E/Q) − dim2 X(E/Q)[φ]

+ dim2 S(φ̂)(E′/Q) − dim2 X(E′/Q)[φ̂].

From (a) we see that

E′(Q)/φ
(
E(Q)[2]

) ∼= Z/2Z and E(Q)/2E(Q) ∼= (Z/2Z)1+rank E(Q).

Further, since E(Q)/φ̂
(
E′(Q)) ∼= S(φ̂)(E′/Q) ∼= Z/2Z from (b), the exact se-

quence given in (X.4.2a) implies that X(E′/Q)[φ̂] = 0. Hence the exact sequence

0 −→ X(E/Q)[φ] −→ X(E/Q)[2]
φ−−→ X(E′/Q)[φ̂] = 0

gives
dimX(E/Q)[2] = dim2 X(E/Q)[φ],

and combining this with the above results yields

1+
(
1+rankE(Q)

)
= dim2 S(φ)(E/Q)+dim2 S(φ̂)(E′/Q)−dim2 X(E/Q)[2].

Now (c) is immediate from the calculation of S(φ)(E/Q) and S(φ̂)(E′/Q) given
in (b).
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Corollary 6.2.1. There are infinitely many elliptic curves E/Q satisfying

rankE(Q) = 0 and X(E/Q)[2] = 0.

PROOF. From (X.6.2), the elliptic curves y2 = x3 + px with p ≡ 7, 11 (mod 16)
have this property.

Remark 6.3. One of the consequences of (X.6.2) is that if p is a prime satisfying
p ≡ 5 (mod 8), then the elliptic curve

Ep : y2 = x3 + px

has rank at most one. Further, examining the proof of (X.6.2) shows that the
group Ep(Q) has rank 1 if and only if the homogeneous space

C−1 : w2 + 1 = 4pz4

has a Q-rational point, and if there is such a point, then we can find a point of infinite
order in E(Q) by using the map

φ̂ ◦ ψ : C1 −→ E, φ̂ ◦ ψ(z, w) =
(

w2

4z2
,
w(w2 + 2)

8z3

)
;

cf. (X.4.9). Taking the first few primes p ≡ 5 (mod 8), in each case we find points
in C−1(Q), and these give points of infinite order in Ep(Q) as listed in the following
table:

p 5 13 29 37
(x, y)

(
1
4 , 9

8

) (
9
4 , 51

8

) (
25
4 , 165

8

) (
22801
900 , 3540799

27000

)

Suppose that we knew, a priori, that the Shafarevich–Tate group X(Ep/Q)
was finite, or even that its 2-primary component was finite. Then the existence
of the Cassels pairing (X.4.14) implies that dim2 X(Ep/Q)[2] is even, and hence
that Ep(Q) has rank 1 for all primes p ≡ 5 (mod 8). This also follows from a con-
jecture of Selmer [226] concerning the difference between the number of “first
and second descents,” and it is also a consequence of the conjecture of Birch and
Swinnerton-Dyer (C.16.5). Bremner and Cassels [26, 27] have verified numerically
that rankEp(Q) = 1 for all such primes less than 20000, and Monsky [182] has
shown that rankEp(Q) = 1 for all primes p ≡ 5 (mod 16).

In order to give the reader an idea of the magnitude of the solutions that may
occur, we mention that for p = 877, the Mordell–Weil group of the elliptic curve

y2 = x3 + 877x

is generated by the 2-torsion point (0, 0) and the point
(

6127760831879473681012

788415358606839002102
, 256256267988926809388776834045513089648669153204356603464786949

788415358606839002103

)
.

Similarly, if p ≡ 3, 15 (mod 16) and if the 2-primary component of X(Ep/Q) is
finite, then (X.6.2) and (X.4.14) imply that Ep(Q) has rank exactly one. The fact that
the rank is one for any particular prime p may be verified numerically by searching
for a point in C−2(Q) and C2(Q) respectively. See, for example, the tables in [20]
and [54] and online at [53] and [274].
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Remark 6.4. If p ≡ 7, 11 (mod 16), then (X.6.2c) says that Ep(Q) consists of only
two points, while if p ≡ 3, 5, 13, 15 (mod 16), then (X.6.2c) combined with the rea-
sonable conjecture that X(Ep/Q)[2∞] is finite tells us that Ep(Q) ∼= Z/2Z × Z. In
the remaining case, namely p ≡ 1 (mod 8), there are two possibilities. First, Ep(Q)
might have rank 2. This can certainly occur. For example, the curves

y2 = x3 + 73x and y2 = x3 + 89x

both have rank 2, independent points being given by
(

9
16

,
411
64

)
, (36, 222) ∈ E73(Q) and

(
25
16

,
765
64

)
,

(
4
9
,
170
27

)
∈ E89(Q).

Second, Ep(Q) might have rank 0, in which case X(Ep/Q)[2] ∼= (Z/2Z)2. (Note
that rankEp(Q) = 1 is precluded if we assume that X(E/Q) is finite.) The next
proposition gives a fairly general condition under which the second possibility holds.
It also provides our first examples of homogeneous spaces that are everywhere lo-
cally trivial, but have no global rational points.

Proposition 6.5. Let p ≡ 1 (mod 8) be a prime for which 2 is not a quartic residue.
(a) The curves

w2 + 1 = 4pz4, w2 + 2 = 2pz4, w2 + 2pz4 = 2,

have points defined over every completion of Q, but they have no Q-rational
points.

(b) The elliptic curve
Ep : y2 = x3 + px

satisfies

rankEp(Q) = 0 and X(Ep/Q)[2] ∼= (Z/2Z)2.

Remark 6.5.1. Any prime p ≡ 1 (mod 8) can be written as p = A2 + B2

with A,B ∈ Z satisfying AB ≡ 0 (mod 4). A theorem of Gauss, which we prove
later in this section (X.6.6), says that 2 is a quartic residue modulo p if and only
if AB ≡ 0 (mod 8). Thus, for example, 2 is a quartic nonresidue for the primes

17 = 12 + 42, 41 = 52 + 42, 97 = 92 + 42, and 193 = 72 + 122,

so these primes satisfy the conclusion of (X.6.5).

PROOF OF (X.6.5). During the course of proving (X.6.2b), we showed that the
Selmer group S(p)(Ep/Q) ⊂ Q∗/(Q∗)2 is given by {±1,±2,±p,±2p}. Further,
we showed that −p is the image of the 2-torsion point (0, 0) ∈ Ep(Q). Thus in or-
der to show that X(Ep/Q)[φ] has order 4, it suffices to prove that the homogeneous
spaces C−1, C2, and C−2 have no Q-rational points. These are the three curves listed
in (a), and so, once we prove that they have no Q-rational points, all of (X.6.5) will
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follow from (X.6.2). Our proof is based on ideas of Lind and Mordell [150, 41]; see
also [207, 184, 20].

Case I. C±2 : w2 = 2 − 2pz4.

Suppose that (z, w) ∈ C±2(Q). Writing z and w in lowest terms, we see that they
necessarily have the form (z, w) = (r/t, 2s/t2), where r, s, t ∈ Z satisfy

±2s2 = t4 − pr4 and gcd(r, s, t) = 1.

We write (a|b) for the Legendre symbol. Let q be an odd prime dividing s. Then
(p|q) = 1, so (q|p) = 1 by quadratic reciprocity. Since also (2|p) = 1, we
see that (s|p) = 1, so (s2|p)4 = 1, i.e., s2 is a quartic residue modulo p. Now
the equation implies that (±2|p)4 = 1. But −1 is always a quartic residue for
primes p ≡ 1 (mod 8), while by assumption 2 is a quartic nonresidue modulo p. This
contradiction proves that C±2(Q) = ∅.

Case II. C−1 : −w2 = 1 − 4pz4.

Writing (z, w) ∈ C−1(Q) in (almost) lowest terms as (z, w) = (r/2t, s/2t2), we
have

s2 + 4t4 = pr4 with gcd(r, t) = 1.

(We do not preclude the possibility that r is even.) Since p ≡ 1 (mod 4), there are
integers A ≡ 1 (mod 2) and B ≡ 0 (mod 2) such that

p = A2 + B2.

It is a simple matter to verify the identity

(pr2 + 2Bt2)2 = p(Br2 + 2t2)2 + A2s2,

from which we obtain the factorization

(pr2 + 2Bt2 + As)(pr2 + 2Bt2 − As) = p(Br2 + 2t2)2.

It is not difficult to check that gcd(pr2 + 2Bt2 + As, pr2 + 2Bt2 − As) is ei-
ther a square or twice a square; up to multiplication by 2, it is a square divisor
of gcd(A, s)2. Hence the above factorization implies that there are integers u and v
satisfying

⎡

⎢
⎣

pr2 + 2Bt2 ± As = pu2

pr2 + 2Bt2 ∓ As = v2

Br2 + 2t2 = uv

⎤

⎥
⎦ or

⎡

⎢
⎣

pr2 + 2Bt2 ± As = 2pu2

pr2 + 2Bt2 ∓ As = 2v2

Br2 + 2t2 = 2uv

⎤

⎥
⎦ .

Eliminating s from these equations, we obtain two systems of equations:
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2pr2 + 4Bt2 = pu2 + v2

Br2 + 2t2 = uv

pr2 + 2Bt2 = pu2 + v2

Br2 + 2t2 = 2uv

We prove later (X.6.6) that the assumptions that 2 is a quartic nonresidue mod-
ulo p and that p ≡ 1 (mod 8) imply that B ≡ 4 (mod 8). Reducing each system
of equations modulo 8, it is now a simple matter to verify that in both cases, any
solution must satisfy r ≡ t ≡ 0 (mod 2). This contradicts our initial assumption
that gcd(r, t) = 1, which completes the proof that C−1(Q) = ∅.

We close this section with the theorem of Gauss describing the quartic character
of 2 that was used in the proof of (X.6.5). The proof that we give is due to Dirich-
let [66]; see also [184].

Proposition 6.6. Let p be a prime satisfying p ≡ 1 (mod 8), and write p as a sum of
two squares, p = A2 + B2. Then

(
2
p

)

4

= (−1)AB/4.

In other words, 2 is a quartic residue modulo p if and only if AB ≡ 0 (mod 8).

PROOF. Using the fact that A2 + B2 ≡ 0 (mod p), we compute

(A + B)(p−1)/2 ≡ (2AB)(p−1)/4 (mod p)

≡ 2(p−1)/4(−1)(p−1)/8A(p−1)/2 (mod p).

Switching A and B if necessary, we may assume that A is odd, and then the fact
that p ≡ 1 (mod 4) implies that

(
A

p

)
=

(
p

A

)
=

(
B2

A

)
= 1.

Hence (
A + B

p

)
= (−1)(p−1)/8

(
2
p

)

4

.

Finally, we observe that
(

A + B

p

)
=

(
p

A + B

)
=

(
2

A + B

)(
2p

A + B

)
=

(
2

A + B

)
= (−1)

(A+B)2−1
8 ,

since the identity

2p = (A + B)2 + (A − B)2 implies that
(

2p

A + B

)
= 1.

Substituting this above yields
(

2
p

)

4

= (−1)
(A+B)2−1

8 − p−1
8 = (−1)

AB
4 .
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Exercises
10.1. Let φ : E/K → E′/K be an isogeny of degree m of elliptic curves defined over an
arbitrary (perfect) field K. Assume that E[φ̂] ⊂ E(K). Generalize (X.1.1) as follows:

(a) Prove that there is a bilinear pairing

b : E′(K)/φ
(
E(K)

)
× E′[φ̂] −→ K(S, m)

defined by
eφ

(
δφ(P ), T

)
= δK

(
b(P, T )

)
.

Here eφ is the generalized Weil pairing (Exercise 3.15) and

δφ : E′(K) → H1
(
GK̄/K , E[φ]

)
and δK : K∗ → H1(GK̄/K , μm)

are the usual connecting homomorphisms.
(b) Prove that the pairing in (a) is nondegenerate on the left.
(c) For T ∈ E[φ̂], let fT ∈ K(E′) and gT ∈ K(E) be functions satisfying

div(fT ) = m(T ) − m(O) and fT ◦ φ = gm
T .

Prove that
b(P, T ) = fT (P ) mod (K∗)m for all P �= O, T .

(d) In particular, if deg(φ) = 2, so E′[φ̂] = {O, T}, then

b(P, T ) = x(P ) − x(T ) mod (K∗)2.

We thus recover part of (X.4.9).

10.2. Let K be an arbitrary (perfect) field, let E/K be an elliptic curve, and let C1/K
and C2/K be homogeneous spaces for E/K.

(a) Prove that there exist a homogeneous space C3/K for E/K and a morphism

φ : C1 × C2 → C3

defined over K such that for all p1 ∈ C1, p2 ∈ C2, and P1, P2 ∈ E,

φ(p1 + P1, p2 + P2) = φ(p1, p2) + P1 + P2.

(b) Prove that C3 is uniquely determined, up to equivalence of homogeneous spaces, by C1

and C2.
(c) Prove that

{C1} + {C2} = {C3},
the sum taking place in WC(E/K).

10.3. Let C/K be a curve of genus one defined over an arbitrary (perfect) field.
(a) Prove that there exists an elliptic curve E/K such that C/K is a homogeneous space

for E/K. (Hint. Use Exercise 3.22 to show that C/K ∈ Twist(E/K). Then find an
element {ξ} ∈ H1

(
GK̄/K , Aut(E)

)
such that C/K is the homogeneous space for the

twist of E by ξ.)
(b) Prove that E is unique up to K-isomorphism.

10.4. Let K be an arbitrary (perfect) field and let E/K be an elliptic curve.
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(a) Prove that there is a natural action of AutK(E) on WC(E/K) defined by letting an
automoprhism α ∈ AutK(E) act on {C/K, μ} ∈ WC(E/K) via

{C/K, μ}α =
{
C/K, μ ◦ (1 × α)

}
.

In other words, take the same curve, but define a new action of E on C by the rule

μα(p, P ) = μ(p, αP ).

(b) Conversely, if {C/K, μ} and {C/K, μ′} are elements of WC(E/K), prove that there
exists an α ∈ AutK(E) such that μ′ = μ ◦ (1 × α).

(c) Conclude that for a given curve C/K of genus one, there are only finitely many in-
equivalent ways to make C/K into a homogeneous space. In particular, if C satisfies
j(C) �= 0, 1728, then there are at most two. (See also Exercise B.5.)

10.5. Let φ : E/K → E′/K be a separable isogeny of elliptic curves defined over an arbi-
trary (perfect) field K, and let C/K be a homogeneous space for E/K. The finite group E[φ]
acts on C, and we let C′ = C/E[φ] be the quotient curve (cf. Exercise 3.13).

(a) Prove that C′ is a curve of genus one defined over K.
(b) Prove that C′/K is a homogeneous space for E′/K and that the natural map

φ : WC(E/K) → WC(E′/K)

sends {C/K} to {C′/K}.
(c) In particular, if {C/K} ∈ WC(E/K)[φ], then C′ is isomorphic to E′ over K. Prove

that this isomorphism can be chosen so that the natural projection C → C/E[φ] ∼= E′

is the map φ ◦ θ defined in (X.4.6a).

10.6. WC Over Finite Fields. Let Fq be a finite field with q elements, let C/Fq be a curve
of genus one, and pick any point of C(F̄q) as origin to make C into an elliptic curve.
Let φ : C → C be the qth-power Frobenius map on C.

(a) Prove that there are an endomorphism f ∈ End(C) and a point P0 ∈ C(F̄q) satisfy-
ing φ(P ) = f(P ) + P0.

(b) Prove that f is inseparable, and conclude that there exists a point P1 ∈ C(F̄q) satisfy-
ing (1 − f)(P1) = P0.

(c) Prove that φ(P1) = P1, and hence that P1 ∈ C(Fq).
(d) Let E/Fq be an elliptic curve. Prove that WC(E/Fq) = 0.

10.7. WC Over R. Let E/R be an elliptic curve.
(a) Prove that

WC(E/R) =

{
Z/2Z if Δ(E/R) > 0,
0 if Δ(E/R) < 0.

(b) Assuming that Δ(E/R) > 0, find an equation for a homogeneous space representing
the nontrivial element of WC(E/R) in terms of a given Weierstrass equation for E/R.

10.8. Let E/K be an elliptic curve, let m ≥ 2 be an integer, and assume that E[m] ⊂ E(K).
Let v ∈ M0

K be a prime not dividing m. Prove that the restriction map

WC(E/K)[m] −→ WC(E/Kv)[m]

is surjective. (Hint. Show that the map on the H1
(
· , E[m]

)
groups is surjective.)
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10.9. Let E/K be an elliptic curve, let T ∈ E[m], and suppose that the field L = K(T )
has maximal degree, namely [L : K] = m2 − 1. (Note that L/K is generally not a Galois
extension.) Let em denote the Weil pairing and consider the chain of maps

α : E(K)
δ−→H1

(
GK̄/K , E[m]

) res−−→H1
(
GK̄/L, E[m]

)
→ H1(GK̄/L, μm) ∼= L∗/(L∗)m,

ξσ �→ em(ξσ, T ).

(a) Let fT ∈ L(E) be as in (X.1.1d), i.e.,

div(fT ) = m(T ) − m(O) and fT ◦ [m] ∈
(
L(E)∗

)m
.

Prove that
α(P ) = fT (P ) mod (L∗)m.

(b) Prove that for all P ∈ E(K),

NL/K

(
α(P )

)
∈ (K∗)m.

(c) Let S ⊂ ML be the set of places of L containing all archimedean places, all places
dividing m, and all places at which E/L has bad reduction. Show that if P ∈ E(K)
and v ∈ ML with v /∈ S, then

ordv

(
α(P )

)
≡ 0 (mod m).

(d) For m = 2, prove that the kernel of α is exactly 2E(K). Hence in this case there is an
injective homomorphism from E(K)/2E(K) into the group

{
a ∈ L∗/(L∗)2 : NL/K(a) ∈ (K∗)2 and ordv(a) ≡ 0 (mod 2) for all v /∈ S

}

given by the map
P �−→ x(P ) − x(T ).

This map may often be used to compute E(K)/2E(K). (Hint. Expand the quantity
x(P ) − x(T ) = r + sx(T ) + tx(T )2 and use the resulting relations on r, s, t ∈ K to
show that P is in 2E(K).)

(e) Use (d) to compute E(Q)/2E(Q) for the curve

E : y2 + y = x3 − x.

(Hint. Let K/Q be the totally real cubic field generated by a root of the polyno-
mial 4x3 − 4x + 1. Start by showing that K has class number one and that every totally
positive unit in K is a square.)

10.10. Let C/K be a curve of genus one, and suppose that C(Kv) �= ∅ for all v ∈ MK .
Prove that the map

DivK(C) −→ PicK(C)

is surjective. (Hint. Take Galois cohomology of the exact sequence

1 −→ K̄∗ −→ K̄(C)∗ −→ Div(C) −→ Pic(C) −→ 0.

Use Noether’s generalization of Hilbert’s Theorem 90,

H1
(
GK̄/K , K̄(C)∗

)
= 0,

and the (cohomological version) of the Brauer–Hasse–Noether theorem [288, §9.6],
which says that an element of H2(GK̄/K , K̄∗) is trivial if and only if it is trivial
in H2(GK̄v/Kv

, K̄∗
v ) for every v ∈ MK .)
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10.11. Index and Period in WC. Let K be an arbitrary (perfect) field, let E/K be an elliptic
curve, and let C/K be a homogeneous space for E/K. The period of C/K is defined to be
the exact order of {C/K} in WC(E/K), and the index of C/K is the smallest degree of an
extension L/K such that C(L) �= ∅. So for example, (X.3.3) says that the period is equal to 1
if and only if the index is equal to 1.

(a) Prove that the period may also be characterized as the smallest integer m ≥ 1 such that
there exists a point p ∈ C satisfying

pσ − p ∈ E[m] for every σ ∈ GK̄/K .

(b) Prove that the index may also be characterized as the smallest degree among the positive
divisors in DivK(C).

(c) Prove that the period divides the index.
(d) Prove that the period and the index are divisible by the same set of primes.
(e) * Give an example with K = Q showing that the period may be strictly smaller than the

index.
(f) Prove that if K is a number field and if C/K represents an element of X(E/K), then

the period and the index are equal. (Hint. Use (a), (b), (c), and Exercise 10.10.)
(g) * Let K/Qp be a finite extension. Prove that the period and the index are equal.

10.12. Hensel’s Lemma. The following version of Hensel’s lemma is often useful for proving
that a homogeneous space is locally trivial. Let R be a ring that is complete with respect to a
discrete valuation v.

(a) Let f(T ) ∈ R[T ] be a polynomial and a0 ∈ R a value satisfying

v
(
f(a0)

)
> 2v

(
f ′(a0)

)
.

Define a sequence of elements an ∈ R recursively by

an+1 = an − f(an)

f ′(an)
for n = 1, 2, . . . .

Prove that an converges to an element a ∈ R satisfying

f(a) = 0 and v(a − a0) ≥ v

(
f(a0)

f ′(a0)2

)
> 0.

(b) More generally, let F (X1, . . . , XN ) ∈ R[X1, . . . , XN ], and suppose that there are an
index 1 ≤ i ≤ N and a point (a1, . . . , aN ) ∈ RN satisfying

v
(
F (a1, . . . , aN )

)
> 2v

(
∂F

∂Xi
(a1, . . . , aN )

)
.

Prove that F has a root in RN .
(c) Show that the curve

3X3 + 4Y 3 + 5Z3 = 0

in P2 has a point defined over Qp for every prime p.

10.13. Use (X.1.4) to compute E(Q)/2E(Q) for each of the following elliptic curves.
(a) E : y2 = x(x − 1)(x + 3).
(b) E : y2 = x(x − 12)(x − 36).
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10.14. Use (X.4.9) to compute E(Q)/2E(Q) for each of the following elliptic curves.
(a) E : y2 = x3 + 6x2 + x.
(b) E : y2 = x3 + 14x2 + x.
(c) E : y2 = x3 + 9x2 − x.

10.15. Let E/K be an elliptic curve, let ξ ∈ H1
(
GK̄/K , Aut(E)

)
, and let Eξ be the twist

of E corresponding to ξ. Let v ∈ MK be a finite place at which E has good reduction.
Prove that Eξ has good reduction at v if and only if ξ is unramified at v. (See (VIII §2)
for the definition of an unramified cocycle. Hint. If the residue characteristic is not 2 or 3,
you can use explicit Weierstrass equations. In general, use the criterion of Néron–Ogg–
Shafarevich (VII.7.1).)

10.16. Let E/K be an elliptic curve, let D ∈ K∗ be such that L = K(
√

D ) is a quadratic
extension, and let ED/K be the twist of E/K given by (X.5.4). Prove that

rank E(L) = rank E(K) + rank ED(K).

10.17. Let p ≡ 3 (mod 4) be a prime and let D ∈ F∗
p.

(a) Show directly that the equation

C : v2 = u4 − 4D

has p− 1 solutions (u, v) ∈ Fp × Fp. (Hint. Since p ≡ 3 (mod 4), the map u2 �→ u4 is
an automorphism of (F∗

p)2.)
(b) Let E/Fp be the elliptic curve

E : y2 = x3 + Dx.

Use the map

φ : C −→ E, φ(u, v) =

(
u2 + v

2
,
u(u2 + v)

2

)
,

to prove that
#E(Fp) = p + 1.

10.18. Let p be an odd prime. Do a computation analogous to (X.6.2) to determine the Selmer
groups and a bound for the ranks of the following families of elliptic curves E/Q.

(a) E : y2 = x3 − 2px. (The curve with p = 41 has rank 3.)
(b) E : y2 = x3 + p2x.

10.19. Let E/Q be an elliptic curve with j(E) = 0.
(a) Prove that there is a unique sixth-power-free integer D such that E is given by the Weier-

strass equation
E : y2 = x3 + D.

(b) Let p ≡ 2 (mod 3) be a prime not dividing 6D. Prove that

#E(Fp) = p + 1.

(c) Prove that #E(Q)tors divides 6.
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(d) More precisely, prove that the following list gives a complete description of Etors(Q):

Etors(Q) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Z/6Z if D = 1,
Z/3Z if D �= 1 is a cube, or if D = −432,
Z/2Z if D �= 1 is a square,
1 otherwise.

10.20. Let A be a finite abelian group, and suppose that there exists a bilinear, alternating,
nondegenerate pairing

Γ : A × A −→ Q/Z.

Prove that #A is a perfect square.

10.21. Let E/K be an elliptic curve defined over a field of characteristic not equal to 2 or 3,
fix a Weierstrass equation for E/K, and let c4 and c6 be the usual quantities (III §1) associated
to the equation. Assuming that j(E) �= 0, 1728, we define

γ(E/K) = −c4/c6 ∈ K∗/(K∗)2.

(a) Prove that γ(E/K) is well-defined as an element of K∗/(K∗)2, independent of the
choice of Weierstrass equation for E/K.

(b) Let E′/K be another elliptic curve with j(E′) �= 0, 1728. Prove that E and E′ are
isomorphic over K if and only if j(E) = j(E′) and γ(E/K) = γ(E′/K).

(c) If j(E) = j(E′) �= 0, 1728, prove that E and E′ are isomorphic over the field

K

(√
γ(E/K)

γ(E′/K)

)
.

10.22. Let E/K be an elliptic curve over an arbitrary (perfect) field, let L/K be a finite
Galois extension, and define a trace map

TL/K : E(L) −→ E(K), P �−→
∑

σ∈GL/K

P σ.

(a) Prove that TL/K is a homomorphism.
(b) If K is a finite field, prove that TL/K : E(L) → E(K) is surjective.
(c) Assume that [L : K] = 2 and that char(K) �= 2, and write L = K(

√
D ). Fix a Weier-

strass equation for E/K of the form

E : y2 = x3 + ax2 + bx + c,

and let ED be the quadratic twist of E given by the equation (cf. (X.5.4))

ED : y2 = x3 + Dax2 + D2bx + D3c.

(i) Prove that the kernel of TL/K : E(L) → E(K) is isomorphic to ED(K).
(ii) Prove that the image of TL/K : E(L) → E(K) contains 2E(K).

(iii) Deduce that there are an exact sequence

0 −−−−−→ ED(K) −−−−−→ E(L)
TL/K−−−−−→ E(K) −−−−−→ V −−−−−→ 0

and a surjective homomorphism E(K)/2E(K) � V .
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(iv) Suppose further that K is a number field. Re-prove Exercise 10.16, i.e.,

rank E(L) = rank E(K) + rank ED(K).

10.23. Let a ≡ 1 (mod 4) be an integer with the property that p = a2 + 64 is prime. (It is
conjectured, but not known, that there exist infinitely many such primes.) Let Ea/Q be the
elliptic curve

Ea : y2 = x3 + ax2 − 16x.

These are known as Neumann–Setzer curves.
(a) Prove that DEa/Q = (p). More precisely, prove that Ea has split multiplicative reduction

at p and good reduction at all other primes. (N.B. The given Weierstrass equation is not
minimal.)

(b) Perform a two-descent (X.4.9) and prove that

E(Q) ∼= Z/2Z and X(E/Q)[2] = 0.

(c) * Let E/Q be an elliptic curve with the following two properties: (i) E(Q) contains
a 2-torsion point. (ii) E has multiplicative reduction at a single prime p > 17 and good
reduction at all other primes. Prove that p has the form p = a2 + 64 and that E is either
isomorphic or 2-isogenous to the curve Ea.

10.24. Let E/K be an elliptic curve and let m ≥ 1. This exercise describes the Tate pairing

〈 · , · 〉Tate : E(K)/mE(K) × WC(E/K)[m] −→ Br(K),

where Br(K) = H2(GK̄/K , K̄∗) is the Brauer group of K. (This exercise assumes that the
reader is familiar with higher cohomology groups; see for example [9, 233].)

Let P ∈ E(K)/mE(K) and let C ∈ WC(E/K)[m]. We use the Kummer se-
quence (VIII §2)

0 −→ E(K)/mE(K)
δ−−→ H1

(
GK̄/K , E[m]

) ε−−→ WC(E/K)[m] −→ 0

to push forward the point P by δ and to pull back the homogeneous space C by ε to ob-
tain 1-cocycles

δP : GK̄/K −→ E[m] and ξC : GK̄/K −→ E[m].

We use δP and ξC to define a map

λP,C : GK̄/K × GK̄/K −→ μm, λP,C(σ, τ) = em

(
δP (σ), ξC(τ)

)
,

where em is the Weil pairing.
(a) Prove that the map λP,C is a 2-cocycle.
(b) Prove that changing either δP or ξC by a 1-coboundary has the effect of changing λP,C

by a 2-coboundary.
(c) Prove that pulling back C to some other element ξ′C changes λP,C by a 2-coboundary.
(d) Conclude that

〈P, ξ〉Tate = cohomology class of λP,C

gives a well-defined pairing

〈 · , · 〉Tate : E(K)/mE(K) × WC(E/K)[m] −→ Br(K).

(e) Prove that the pairing in (d) is bilinear.
(f) * Let K/Qp be a finite extension. A basic result in local class field theory says

that Br(K) ∼= Q/Z; see [233, XII §3, Theorem 2]. Prove in this case that the Tate pairing
is nondegenerate.



Chapter XI

Algorithmic Aspects of Elliptic
Curves

The burgeoning field of computational number theory asks for practical algorithms
to compute solutions to arithmetic problems. For example, the Mordell–Weil theo-
rem (VIII.6.7) says that the group of rational points on an elliptic curve is finitely
generated, and although we still lack an effective algorithm that is guaranteed to
find a set of generators, there are algorithms that often work well in practice.
Similarly, Siegel’s theorem (IX.3.2.1) says that an elliptic curve has only finitely
many S-integral points, but it took 50 years from Siegel’s proof of finiteness
to Baker’s theorem giving an effective bound for the height of the largest solu-
tion (IX §5). And Baker’s theorem is only the beginning of the story, since it leads
to estimates that, although effective, are not practical without the introduction of
significant additional ideas.

A full introduction to the computational theory of elliptic curves would require
(at least) a book of its own, so in this single chapter we touch on only a few of the
many algorithms in the theory. We decided to concentrate on aspects that are es-
pecially useful for applications to cryptography, not because these are intrinsically
more interesting than other computational problems, but because they form a satisfy-
ing whole and because they tie in with many of the other topics covered in this book.

The theme of this chapter is thus that of computations on elliptic curves over
(large) finite fields. We describe fast algorithms for computing multiples of points,
for determining the number of points in E(Fq), and for computing the Weil pairing.
We briefly survey some cryptographic constructions based on the difficulty of solving
the elliptic curve discrete logarithm (ECDLP), and we describe algorithms to solve
the ECDLP. We explain how elliptic curves can be used to factor large numbers.
In the final section we define and analyze the Tate–Lichtenbaum pairing, which is
frequently used in cryptography because it is easier to compute than the Weil pairing.

Lack of space precludes our covering computational problems over global
fields, although these are also extremely interesting. In particular, we do not cover
J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 363
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algorithms related to modular aspects of elliptic curves, including in particular the
computation of L-series, nor do we discuss more advanced algorithmic methods
for computing Mordell–Weil groups or for finding integer points on elliptic curves.
We do not discuss methods used to find curves of high rank over Q, nor how to
find precise estimates for |ĥ − h|. For an introduction to these and other algorithmic
topics, see for example [50, 54, 55, 58, 67, 76, 86, 171, 188, 219, 265, 315].

There are two other topics that would fit naturally into this chapter, but were
omitted due to lack of space. The first is efficient implementation of elliptic curve
addition, which includes issues of affine versus projective coordinates and the choice
of different sorts of equations to minimize the number of field additions, multipli-
cations, and inversions. See for example [16], [22, IV.1], [51, §§13.2, 13.3], or [71].
The second topic is the use of elliptic curves to prove that a number is prime; see
[10], [22, §IX.3], [50, §9.2], [51, §25.2.2], or [97].

Finally, while on the topic of elliptic curve algorithms, we mention the free com-
puter packages Pari [202] and Sage [275], both of which contain extensive libraries
of algorithms for doing computations on elliptic curves. In particular, Sage includes
Cremona’s mwrank package, which (attempts to) compute the Mordell–Weil group
of elliptic curves over Q. There are also extensive online tables of elliptic curves of
various types, e.g., of small conductor, and of modular forms associated to elliptic
curves. See for example [53] and [274].

XI.1 Double-and-Add Algorithms
Let E/K be an elliptic curve and let P ∈ E(K) be a point on E. Suppose that we
need to compute [n]P for some large value of n. An obvious way to do this is to
compute successively

P, [2]P = P + P, [3]P = [2]P + P, . . . [n]P = [n − 1]P + P.

This naive algorithm takes n− 1 steps, where a “step” consists of adding two points.
If n is large, the naive algorithm is completely useless. All practical applications

of elliptic curves over large finite fields rely on the following exponential improve-
ment.

Double-and-Add Algorithm 1.1. Let E/K be an elliptic curve, let P ∈ E(K), and
let n ≥ 2 be an integer. The algorithm described in Figure 11.1 computes [n]P using
no more than log2(n) point doublings and no more than log2(n) point additions.

PROOF. During the ith iteration of the loop, the value of Q is [2i]P . Since R is
incremented by Q if and only if εi = 1, the final value of R is

∑

i with εi = 1

[2i]P =
t∑

i=0

[εi2i]P =
[ i∑

i=0

εi2i

]
P = [n]P.

Each iteration of the loop requires one point duplication and at most one point addi-
tion, and since t ≤ log2 n, the running time of the algorithm is as stated.
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(1) Write the binary expansion of n as

n = ε0 + ε1 · 2 + ε2 · 22 + ε3 · 23 + · · · + εt · 2t

with ε0, . . . , εt ∈ {0, 1} and εt = 1.

(2) Set Q = P and R =

{
O if ε0 = 0,
P if ε0 = 1.

(3) Loop i = 1, 2, . . . , t.
(4) Set Q = [2]Q.
(5) If εi = 1, set R = R + Q.
(6) End Loop
(7) Return R, which is equal to [n]P .

Figure 11.1: The double-and-add algorithm.

Remark 1.2. The double-and-add algorithm (XI.1.1) is not unique to elliptic curves;
it is applicable to any group. Thus if G is a group and g ∈ G, we use the binary
expansion n =

∑
εi2i to compute gn as gn =

∏
(g2i

)εi . This requires at most log2 n
group squarings and at most log2 n group multiplications. When the group law in G
is written multiplicatively, for example for G = F∗

q , the double-and-add algorithm is
instead called the square-and-multiply algorithm.

Remark 1.3. The double-and-add algorithm is most often applied to a finite group
such as E(Fq) or F∗

q , rather than to an infinite group such as E(Q). To see why,
note that if P ∈ E(Q), then the theory of canonical heights (VIII §9) says that it
takes O(n2) bits to write down the coordinates of [n]P . Thus it is not feasible to
compute [n]P for, say, n > 280. On the other hand, the double-and-add algorithm
allows us to easily compute [n]P in E(Fq) when, say, q and n are as large as 21000.
Of course, when we say that the computation is easy, we mean on a computer, not
with paper and pencil!

Remark 1.4. The average running time of the double-and-add algorithm to com-
pute [n]P is log2 n doublings and 1

2 log2 n additions, since the binary expansion of
a random integer n has an equal number of 1’s and 0’s. We can reduce the average
running time by using a ternary expansion of n,

n = ε0 + ε1 · 2 + ε2 · 22 + ε3 · 23 + · · · + εt · 2t

with ε1, . . . , εt ∈ {−1, 0, 1} and εt = ±1.

The only changes in (XI.1.1) are in step (2), where we set R = −P if ε0 = −1, and
in step (5), where we set R = R ± Q if εi = ±1. It is not hard to show that every
integer has a unique ternary expansion in which no two consecutive coefficients are
nonzero; see Exercise 11.2.

There are two complementary reasons why ternary expansions are advantageous
for computing [n]P in E(Fq). First, ternary expansions tend to have significantly
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fewer nonzero εi, so the number of point additions is reduced. Second, and equally
important, the negation operation in E(Fq) is computationally trivial, so subtraction
is no more difficult than addition. This is in marked contrast to F∗

q , where group
negation (inversion) is much slower than group addition (multiplication).

Remark 1.5. Koblitz has suggested using the Frobenius map to further speed the
computation of [n]P . The idea is to use an elliptic curve E/Fp with p small and
to take a point P ∈ E(Fpr ). Then we replace the doubling map with the easier-
to-compute Frobenius map. As a practical matter, Koblitz’s idea works especially
well for p = 2, so for concreteness we illustrate using the curve E/F2 given by the
equation

E : y2 + xy = x3 + 1.

We have E(F2) = Z/4Z, so E/F2 is ordinary and

p + 1 − #E(Fp) = 2 + 1 − 4 = −1.

We use (V.2.3.1) to deduce that the Frobenius map

τ : E(F2r ) −→ E(F2r ), (x, y) �−→ (x2, y2),

satisfies
τ2 + τ + 2 = 0.

Using this relation, it is easy to write any integer n in the form

n = ε0 + ε1τ + ε2τ
2 + · · · + εtτ

t with ε0, . . . , εt ∈ {−1, 0, 1},

where t ≈ 2 log2(n) and at most one-third of the εi are nonzero. (With somewhat
more work, the length of the expansion can be reduced to t ≈ log2(n); see Exer-
cise 11.3.) Then [n]P can be computed via

[n]P = ε0P + ε1τ(P ) + ε2τ
2(P ) + · · · + εtτ

t(P ).

This is generally faster than using the binary or ternary expansion of n, because the
Frobenius map on E is far easier to compute than the duplication map.

Remark 1.6. There are many variants of the basic double-and-add method that are
used to make it more efficient in various situations. See for example [22, Chap-
ter IV], [51, §9], and Exercise 11.4.

XI.2 Lenstra’s Elliptic Curve Factorization
Algorithm

Factorization of large numbers has been studied since antiquity, but the subject ac-
quired added significance with the invention of public key cryptography, and in par-
ticular the development of the RSA cryptosystem, whose security depends on the
difficulty of the factorization problem. Public key cryptography in general, and RSA
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in particular, are described in many books; see for example [116, 169, 277]. In this
section we focus on the factorization problem itself.

The modern theory of factorization, by which we mean factorization algorithms
that take less than exponential time,1 dates back only to the 1920s. The fastest fac-
torization algorithm currently known is the number field sieve, which factors an in-
teger N in approximately

exp
(
c 3
√

(log N)(log log N)2
)

steps.

Before the invention of the number field sieve, the fastest factorization method was
the quadratic sieve, whose running time is approximately

exp
(
c
√

(log N)(log log N)
)

steps.

(Notice that the cube root has been replaced by a square root. However, due to the
different values of the constants, the quadratic sieve is actually the faster of the two
algorithms for factoring numbers up to about 10100.)

In this section we describe a factorization method due to Hendrik Lenstra that
uses elliptic curves and has a running time comparable to the quadratic sieve. How-
ever, Lenstra’s algorithm has one useful characteristic that differentiates it from sieve
methods. If p is the smallest prime factor of N , then the running time of Lenstra’s
algorithm is actually

exp
(
c
√

(log p)(log log p)
)

steps.

Thus Lenstra’s algorithm is especially good at finding prime factors of N that are
significantly smaller than

√
N . However, we note that the moduli used for RSA have

the form N = pq with primes p ≈ q, so sieve algorithms are more efficient than
Lenstra’s algorithm for factoring such numbers.

The prototype for Lenstra’s work is an earlier factorization algorithm, due to Pol-
lard, which we briefly describe. Pollard’s algorithm is good at factoring numbers N
that have a prime factor p such that p − 1 is a product of small primes. Numbers that
are a product of small primes are called smooth numbers.2

Pollard’s p − 1 Algorithm 2.1. Suppose that N is a composite number that has a
prime factor p such that p − 1 factors into primes as

p − 1 = qe1
1 qe2

2 · · · qet
t .

1The running time of an algorithm is measured as a function of the number of bits of the input and
output. Thus an algorithm that factors an integer N in time O(Nc) for some c > 0 takes exponential
time, since the number of bits of the input is log2(N). Similarly, a polynomial-time algorithm is one that
runs in time O

(
(log2 N)c

)
, and a a subexponential-time algorithm is one that runs faster than O(Nε)

for every ε > 0.
2More precisely, a number m is said to be B-smooth if every prime p dividing m satisfies p ≤ B. An

important theorem of Canfield, Erdős, and Pomerance [34] gives an estimate for the number of B-smooth
numbers less than a given bound.
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(1) Choose a base value 2 ≤ a < N and set A = a.
(2) Loop i = 1, 2, . . . , L.
(3) Replace A with Ai mod N .
(4) Compute F = gcd(A − 1, N).
(5) If 1 < F < N , then return F , which is a nontrivial factor of N .
(6) If F = N , go to step (1) and choose a new value of a.
(7) End Loop

Figure 11.2: Pollard’s p − 1 algorithm.

Let L be the quantity
L = max

1≤j≤t
ejqj .

Then for most base values, the algorithm described in Figure 11.2 finds a nontrivial
factor of N for some value of i ≤ L in the main loop (steps (2)–(7)).

PROOF. During the ith iteration of the loop, the value of A is ai! mod N . The defi-
nition of L ensures that q

ej

j divides L! for each 1 ≤ j ≤ t, so p − 1 | L!. (See also
Exercise 11.6.) It follows from Fermat’s little theorem that aL! ≡ 1 (mod p), so the
value of F in step (4) is divisible by p. Since it is unlikely that aL! ≡ 1 (mod N), we
obtain a nontrivial factor of N .

Example 2.2. We use Pollard’s algorithm to factor N = 71384665949740607. Us-
ing the base a = 2, we find on the 33rd iteration of the loop that

233! ≡ 58248995050016779 (mod 71384665949740607),
gcd(58248995050016778, 71384665949740607) = 228266501.

Thus
N = 71384665949740607 = 228266501 · 312725107,

and one can check that both factors are prime.
Pollard’s algorithm works well for this N because the prime p = 228266501

satisfies
p − 1 = 228266500 = 22 · 53 · 73 · 113,

so p − 1 divides 33!.

Pollard’s algorithm is a valuable factorization tool, but it applies only to special
sorts of numbers, namely those divisible by a prime p such that p − 1 is smooth. The
significance of p − 1 lies in the fact that the multiplicative group F∗

p has order p− 1,
so N and aL! − 1 share a common factor of p as soon as L! is divisible by p − 1.
Lenstra’s brilliant innovation was to observe that if one replaces the multiplicative
group F∗

p by the points E(Fp) of an elliptic curve, then the group order varies as E
varies. This allows the elliptic curve algorithm to factor a much larger set of numbers.

We first state the algorithm and then explain the various steps in more detail.
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(0) Choose a loop bound L.
(1) Choose an elliptic curve E mod N and a point P ∈ E(Z/NZ).
(2) Set Q = P .
(3) Loop i = 2, 3, . . . , L.
(4) Replace Q with [i]Q, working in E(Z/NZ).
(5) If, during the computation of [i](Q), you need the inverse of an

element a ∈ Z/NZ and that inverse does not exist, then
gcd(a,N) is (probably) a nontrivial factor of N .

(6) End i Loop
(7) Go to step (1) and choose a new curve and point.

Figure 11.3: Lenstra’s elliptic curve factorization algorithm.

Lenstra’s Elliptic Curve Factorization Algorithm 2.3. Let N be a positive integer
to be factored, and consider the algorithm described in Figure 11.3. Suppose that N
has a prime divisor p such that the loop bound L chosen in step (0) and the elliptic
curve E chosen in step (1) satisfy

#E(Fp) = qe1
1 qe2

2 · · · qet
t and L ≥ max{e1q1, . . . , etqt}.

(Here q1, . . . , qt are distinct primes.) Then with high probability, the algorithm de-
scribed in Figure 11.3 factors the integer N . (See (XI.2.4.5) for advice on how to
choose the loop bound L.)

We now use a series of remarks to discuss various aspects of Lenstra’s algorithm.
Remark 2.4.1. We have not heretofore worked with elliptic curves over rings such
as Z/NZ when N is composite. The fancy way to do this is via the theory of group
schemes [266, Chapter IV], but for our purposes it suffices to take A,B ∈ Z/NZ

and use a Weierstrass equation

E : y2 = x3 + Ax + B with Δ = −16(4A3 + 27B2) ∈ (Z/NZ)∗.

The choice of an elliptic curve modulo N in step (1) is thus simply a choice
of A,B ∈ Z/NZ. (If we are unlucky and Δ /∈ (Z/NZ)∗, then with high proba-
bility, gcd(Δ, N) is a nontrivial factor of N .)
Remark 2.4.2. Having chosen an elliptic curve modulo N , it is not clear how to
efficiently choose a point on that curve, since taking square roots modulo an unfac-
tored N is a hard problem. The trick is to first choose A and the point P = (x0, y0),
and then set B = y2

0 − x3
0 − Ax0.

Remark 2.4.3. Steps (4) and (5) require some explanation. The double-and-add
method (XI.1.1) for computing [i]Q involves additions R1 + R2 and duplications
[2]R. We perform these operations using the standard formulas from (III.2.3), al-
ways working modulo N . For example, to add R1 = (x1, y1) and R2 = (x2, y2), we
must compute
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x(R1 + R2) ≡
(

y2 − y1

x2 − x1

)2

+ a1

(
y2 − y1

x2 − x1

)2

− a2 − x1 − x2 (mod N).

This works fine if the quantity x2 − x1 is invertible modulo N . However, if it is not
invertible and we are unable to compute R1 + R2 mod N , then (Eureka!)

gcd(x2 − x1, N) > 1,

and there is a good chance that gcd(x2 − x1, N) is a nontrivial factor of N . Thus in
computing [i]Q modulo N in step (4), either the computation works, or else we have
(probably) factored N .

Remark 2.4.4. If we successfully complete L iterations of the i loop (steps (3)–(6)),
the final value of Q is

Q = [L!]P in E(Z/NZ).

When does this computation fail?
Let p be a prime divisor of N , and let n = np(E) = #E(Fp). We can use

the reduction modulo p map E(Z/NZ) → E(Z/pZ) to send the point P to the
group E(Fp). Then, when we use the double-and-add method to compute [n]P = O
in E(Fp), at some stage we get a “zero in the denominator.” Hence if np(E) | L!,
then step (5) is executed and we (probably) find a nontrivial factor of N .

Remark 2.4.5. Notice the analogy with Pollard’s algorithm (XI.2.1), where the rel-
evant condition for success was #F∗

p | L!. The advantage of Lenstra’s algorithm is
that

np(E) = #E(Fp) = p + 1 − ap(E)

varies as we choose different elliptic curves. (Here ap(E) is the trace of Frobe-
nius (V.2.6).) Lenstra’s algorithm succeeds if we manage to choose an elliptic
curve E such that for some prime factor p of N , the order of the group E(Fp) is
a smooth number.

In order to optimally implement Lenstra’s algorithm, we need to decide how large
to choose L, since this determines when we give up on a particular elliptic curve and
choose a new one. We know from (V.1.1) that ap(E) satisfies

∣
∣ap(E)

∣
∣ ≤ 2

√
p, and it

is not unreasonable to assume that the ap(E) values are more or less equidistributed
in this range as E varies. (See (C.21.4) for a more precise statement.) So the prob-
ability of success for a chosen E depends on the distribution of smooth numbers
in an interval around p. Using [34] as a heuristic to estimate the number of smooth
numbers in short intervals, one can show that the optimal choice for L is approx-
imately exp

(
c1

√
(log p)(log log p)

)
, and that with this choice of L, the expected

number of elliptic curves used before a factor of N is found is Lc2 . (Here c1 and c2

are small absolute constants.) Thus, as noted above, Lenstra’s algorithm has the same
qualitative running time as the quadratic sieve for numbers that are a product of two
large primes, but it is generally much faster for numbers that have a comparatively
small prime factor.

Remark 2.4.6. There are many implementation tricks that are used to make
Lenstra’s algorithm more efficient. We mention in particular the use of several elliptic
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curves in parallel to save on mod N inversions, and the use of so-called Stage 2
computations, which are also used for Pollard’s algorithm. For details see for exam-
ple [50, §8.8].

Example 2.5. We use Lenstra’s algorithm to factor N = 6887. We randomly select
P = (1512, 3166) and A = 14, and we set

B ≡ 31662 − 15123 − 14 · 1512 ≡ 19 (mod 6887),

so P is a mod N point on the elliptic curve

E : Y 2 = X3 + 14X + 19.

We compute successively (always working modulo 6887)

[2]P ≡ (3466, 2996),

[3!]P = [3]
(
[2]P

)
≡ (3067, 396) ,

[4!]P = [4]
(
[3!]P

)
≡ (6507, 2654),

[5!]P = [5]
(
[4!]P

)
≡ (2783, 6278),

[6!]P = [6]
(
[5!]P

)
≡ (6141, 5581).

These values are not, themselves, of any intrinsic interest. To ease notation, we
let Q = [6!]P = (6141, 5581). We use the double-and-add algorithm (XI.1.1) to
compute [7]Q = [7!]P . Thus

Q ≡ (6141, 5881), [2]Q ≡ (5380, 174), [4]Q ≡ [2]
(
[2]Q

)
≡ (203, 2038),

and

7Q ≡
(
Q + [2]Q

)
+ [4]Q

≡
(
(6141, 5581) + (5380, 174)

)
+ (203, 2038)

≡ (984, 589) + (203, 2038)
≡ ???

When we attempt to perform the final addition, we need the inverse of 203 − 984
modulo 6887, but

gcd(203 − 984, 6887) = gcd(−781, 6887) = 71.

Thus 71 | 6887, and we find the factorization 6887 = 71 · 97.
It turns out that in E(F71), the point P satisfies [63]P ≡ O (mod 71), while

in E(F97), the point P satisfies [107]P ≡ O (mod 97). The reason that we succeed
in factoring 6887 using [7!]P , but not with a smaller multiple of P , is due to the fact
that 7! is the smallest factorial that is divisible by 63 (and because 7! is not divisible
by 107).
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XI.3 Counting the Number of Points in E(Fq)

Let E/Fq be an elliptic curve defined over a finite field. Hasse’s theorem (V.1.1) says
that

#E(Fq) = q + 1 − aq with |aq| ≤ 2
√

q.

For many applications, especially in cryptography, it is important to have an efficient
way to compute the number of points in E(Fq). For simplicity, we assume that q is
odd and that E is given by a Weierstrass equation of the form

E : y2 = f(x) = 4x3 + b2x
2 + 2b4x + b6,

but with minor modifications, everything that we do also works in characteristic 2.
A straightforward, but not very efficient, method to find #E(Fq) is to compute

the sum (cf. (V.1.3))

aq =
∑

x∈Fq

(
f(x)

q

)
.

Each Legendre symbol
(f(x)

q

)
can be computed by quadratic reciprocity in O(log q)

steps, so this explicit formula takes O(q log q) steps, making it an exponential-
time algorithm. (See also Exercise 11.14 for an algorithm that computes #E(Fq)
in O(

√
q ) steps.)

In this section we describe Schoof’s algorithm [223], which computes #E(Fq)
in polynomial time, i.e., it computes #E(Fq) in O

(
(log q)c

)
steps, where c is fixed,

independent of q. The idea is to compute the value of aq modulo � for a lot of small
primes � and then use the Chinese remainder theorem to reconstruct aq.

Let
τ : E(F̄q) −→ E(F̄q), (x, y) �−→ (xq, yq),

be the q-power Frobenius map, so (V.2.3.1b) tells us that

τ2 − aqτ + q = 0 in End(E).

In particular, if P ∈ E(Fq)[�], then

τ2(P ) − [aq]τ(P ) + [q]P = O,

so if we write P = (x, y) (we assume that P �= O), then

(xq2
, yq2

) − [aq](xq, yq) + [q](x, y) = O.

A key observation is that since the point P = (x, y) is assumed to have order �, we
have

[aq](xq, yq) = [n�](xq, yq), where n� ≡ aq (mod �) with 0 ≤ n� < �.

Similarly, we can compute [q](x, y) by first reducing q modulo �.
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Of course, we don’t know the value of n�, so for each integer n between 0 and �
we compute [n](xq, yq) for a point (x, y) ∈ E[�] � {O} and check to see whether it
satisfies

[n](xq, yq) = (xq2
, yq2

) + [q](x, y).

However, the individual points in E[�] tend to be defined over fairly large extension
fields of Fq, so we instead work with all of the �-torsion points simultaneously. To
do this, we use the division polynomial (see Exercise 3.7)

ψ�(x) ∈ Fq[x],

whose roots are the x-coordinates of the nonzero �-torsion points of E. (For simplic-
ity, we assume that � �= 2.) This division polynomial has degree 1

2 (�2 − 1) and is
easily computed using the recurrence described in Exercise 3.7. We now perform all
computations in the quotient ring

R� =
Fq[x, y]

(
ψ�(x), y2 − f(x)

) .

Thus anytime we have a nonlinear power of y, we replace y2 with f(x), and anytime
we have a power xd with d ≥ 1

2 (�2 − 1), we divide by ψ�(x) and take the remainder.
In this way we never have to work with polynomials of degree greater than 1

2 (�2−3).
Our goal is to compute the value of aq mod � for enough primes � to deter-

mine aq. Hasse’s theorem (V.1.1) says that |aq| ≤ 2
√

q, so it suffices to use all
primes � ≤ �max such that ∏

�≤�max

� ≥ 4
√

q.

The preceding discussion shows that the following algorithm computes #E(Fq).
The subsequent proof estimates how long the computation takes.

Schoof’s Algorithm 3.1. Let E/Fq be an elliptic curve. The algorithm described in
Figure 11.4 is a polynomial-time algorithm to compute #E(Fq); more precisely, it
computes #E(Fq) in O

(
(log q)8

)
steps.

PROOF. We prove that the running time of Schoof’s algorithm is O
(
(log q)8

)
. We

begin by verifying three claims.

(a) The largest prime � used by the algorithm satisfies � ≤ O(log q).

The prime number theorem is equivalent to the statement [4, Theorem 4.4(9)]

lim
X→∞

1
X

∑

�≤X
� prime

log � = 1.

Hence
∏

�≤X � ≈ eX , so in order to make the product larger than 4
√

q, it suffices to
take X ≈ 1

2 log(16q).
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(1) Set A = 1 and � = 3.
(2) Loop while A < 4

√
q.

(3) Loop n = 0, 1, 2, . . . , � − 1.
(4) Working in the ring R�, if

(xq2
, yq2

) + [q](x, y) = [n](xq, yq),
then break out of the n loop.

(5) End n Loop
(6) Set A = � · A
(7) Set n� = n

(8) Replace � by the next largest prime.
(9) End A Loop
(10) Use the Chinese remainder theorem to find an integer a

satisfying a ≡ n� (mod �) for all of the stored values of n�.
(11) Return the value #E(Fq) = q + 1 − a.

Figure 11.4: Schoof’s algorithm.

(b) Multiplication in the ring R� can be done in O(�4(log q)2) bit operations.3

Elements of the ring R� are polynomials of degree O(�2). Multiplication of two
such polynomials and reduction modulo ψ�(x) takes O(�4) elementary operations
(additions and multiplications) in the field Fq. Similarly, multiplication in Fq takes
O
(
(log q)2

)
bit operations. So basic operations in R� take O

(
�4(log q)2

)
bit opera-

tions.

(c) It takes O(log q) ring operations in R� to reduce xq, yq, xq2
, yq2

in the ring R�.

In general, the square-and-multiply algorithm (XI.1.2) allows us to compute pow-
ers xn and yn using O(log n) multiplications in R�. We note that this computation
is done only once, and then the points

(xq2
, yq2

) + [q mod �](x, y) and (xq, yq)

are computed and stored for use in step (4) of Schoof’s algorithm.

We now use (a), (b), and (c) to estimate the running time of Schoof’s al-
gorithm. From (a), we need to use only primes � that are less than O(log q).
There are O(log q/ log log q) such primes, so that is how many times the A-loop,
steps (2)–(9), is executed. Then, each time we go through the A-loop, the n loop,
steps (3)–(5), is executed � = O(log q) times.

3A bit operation is a basic computer operation on one or two bits. Examples of bit operations in-
clude addition, multiplication, and, or, xor, and complement. Fancier multiplication methods based
on fast Fourier transforms or Karatsuba multiplication can be used to reduce multiplication in R� to
O
(
(�2 log q)1+ε

)
bit operations, at the cost of a larger big-O constant.
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Further, since � = O(log q), claim (b) says that basic operations in R� take
O
(
(log q)6

)
bit operations. The value of [n](xq, yq) in step (4) can be computed

in O(1) operations in R� from the previous value [n − 1](xq, yq), or we can be inef-
ficient and compute it in O(log n) = O(log �) = O(log log q) R�-operations using
the double-and-add algorithm (XI.1.1).

Hence the total number of bit operations required by Schoof’s algorithm is

A loop
︷ ︸︸ ︷
O(log q) ·

n loop
︷ ︸︸ ︷
O(log q) ·

bit operations per
R� operation

︷ ︸︸ ︷
O
(
(log q)6

)
= O(

(
(log q)8

)
bit operations.

This completes the proof that Schoof’s algorithm computes #E(Fq) in polynomial
time.

The most time-consuming part of Schoof’s algorithm consists of computations in
the ring R�, which is an extension of Fq of degree 2�2. So even though the bound for �
is linear in log q, if q is reasonably large, then the bound for � and the Fq-dimension
of the ring R� are large.
Example 3.2. Let q ≈ 2256, which is a typical size used in cryptographic applica-
tions. We have ∏

�≤103

� ≈ 2133.14 > 4
√

q = 2130,

so the largest prime � required by Schoof’s algorithm is � = 103. An element
of Fq[x]/(ψ�(x)) is represented by an Fq-vector of dimension 1032 ≈ 213.4, and
each element of Fq is a 256-bit number, so elements of Fq[x]/(ψ�(x)) are approx-
imately 222 bits, which is more than 16 KB. Although modern computers are quite
capable of working with rings whose elements are 16 KB, extensive calculations in
such rings take nontrival amounts of time.
The SEA Algorithm 3.3. Suppose that the �-division polynomial ψ�(x) factors
in Fq[x], say f�(x) | ψ�(x) with deg f� = �. Then we can obtain significant sav-
ings in Schoof’s algorithm by working in the smaller ring

R′
� =

Fq[x, y]
(
f�(x), y2 − f(x)

) .

Multiplication in the ring R′
� takes O(�2(log q)2) bit operations, as compared to

O(�4(log q)2) bit operations for multiplication in R�. For the example described
in (XI.3.2), this amounts to a potential speedup on the order of 104.

The division polynomial ψ�(x) has an Fq[x]-factor of degree � if and only if
the group of �-torsion points E[�] has a cyclic subgroup C ⊂ E[�] of order � that
is defined over Fq, i.e., such that C is a GF̄q/Fq

-invariant subgroup. Equivalently,
from (III.4.12), ψ�(x) factors in this way if and only if there is an isogeny E → E′

of degree � defined over Fq .
The idea of using factors of ψ�(x) was proposed and developed by Schoof,

Elkies, and Atkin and is known as the SEA algorithm. Efficient computation of a
factor f�(x) uses the modular polynomial [266, II.6.3]. For a description of the SEA
algorithm, see for example [22, Chapter 7], [79], or [224].
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XI.4 Elliptic Curve Cryptography
Public key cryptography was invented by Diffie and Hellman4 in 1976 [65], although
they were not able to find a practical method to implement their idea. The first prac-
tical public key cryptosystem was devised the following year by Rivest, Shamir, and
Adleman [209]. The famed RSA cryptosystem bases its security on the difficulty of
factoring large numbers. However, Diffie and Hellman did describe a key exchange
algorithm whose security relies on the discrete logarithm problem in F∗

q , and subse-
quently ElGamal created a public key cryptosystem based on the same underlying
problem. Koblitz [128] and Miller [176] suggested replacing the finite field Fq with
an elliptic curve E, with the hope that the discrete logarithm problem in the ellip-
tic curve group E(Fq) might be harder to solve than the discrete logarithm problem
in the multiplicative group F∗

q . Their intuition led to the creation of elliptic curve
cryptography.

The subject of cryptography is vast, and although cryptography is not the focus
of this book, we take the opportunity in this section and in (XI §7) to briefly indicate
some of the ways in which elliptic curves are applied. This material is meant merely
to whet the reader’s appetite, so be aware that we ignore many of the subtleties inher-
ent in the subject. Readers desiring more information on the mathematical aspects
of cryptography may consult any of the numerous volumes on the subject, includ-
ing for example [116], [169], or [277]. For books devoted to the use of elliptic (and
hyperelliptic) curves in cryptography, see for example [22] or [51].

Public key cryptosystems rely on what are known as one-way trapdoor functions.
These are easy-to-compute injective functions f : A → B with the property that f−1

is very hard to compute in general, but f−1 becomes quite easy to compute if some-
one possesses an extra piece of information k. Thus, if Alice5 knows the value of k,
then Bob can send her a message a ∈ A by sending her the quantity b = f(a). Alice
easily recovers a = f−1(b), since she knows k, while Eve, who does not know k, is
unable to compute f−1(b).

It is not clear that one-way trapdoor functions exist, and indeed, it is still an
open problem to prove their existence. However, a number of hard mathematical
problems have been proposed as the bases for one-way trapdoor functions, including
in particular the discrete logarithm problem.

Definition. Let G be group, and let x, y ∈ G be elements such that y is in the
subgroup generated by x. The discrete logarithm problem (DLP) is the problem of
determining an integer m ≥ 1 such that

xm = y.

4The concept of public key cryptography was actually originally described by James Ellis in 1969, but
his discovery was classified by the British government and not declassified until after his death in 1997.
Two other British government employees, Williamson and Cocks, are the original inventors of the Diffie–
Hellman key exchange algorithm and the RSA public key cryptosystem, respectively, but their discoveries
were also classified.

5In cryptography it is customary to personalize the participants. Typically, Alice and Bob want to
communicate, while Eve, the eavesdropper, intercepts and tries to read their messages.



XI.4. Elliptic Curve Cryptography 377

Example 4.1. Each group G has its own discrete logarithm problem. In the next
section we describe a collision algorithm (XI.5.2) that takes O(

√
#G ) steps to solve

the DLP in virtually any group G. However, this square root estimate is only an
upper bound for the computational complexity of the DLP. It turns out that the DLP
is significantly easier in some groups than it is in others. We mention three examples
in increasing order of difficulty.

(a) The Additive Group F+
q . The DLP for the additive group of a finite field Fq

asks for a solution m to the linear equation xm = y for given x, y ∈ Fq. To
solve this equation, we need only find the multiplicative inverse of x in Fq , which
takes O(log q) steps using the Euclidean algorithm. Thus the DLP in F+

q is a very
easy problem.

(b) The Multiplicative Group F∗
q . The DLP for the multiplicative group of a fi-

nite field Fq asks for a solution m to the exponential equation xm = y for given
x, y ∈ F∗

q . As already noted, the DLP in any group of order O(q) can be solved
in O(

√
q ) steps, but there are algorithms for the DLP in F∗

q that are much faster, tak-
ing fewer than O(qε) steps for every ε > 0. These go by the general name of index
calculus methods, and they solve the DLP in F∗

q in

exp
(
c 3
√

(log q)(log log q)2
)

steps,

where c is a small absolute constant. Thus the index calculus is a subexponential
algorithm. We note that it is not a coincidence that the running time of the number
field sieve and the index calculus have the same form, since both rely on the distri-
bution of smooth numbers. For further information about the index calculus, see for
example [116, §3.8] or [277, §6.2.4].

(c) An Elliptic Curve E(Fq). The elliptic curve discrete logarithm problem, which
is abbreviated ECDLP, asks for a solution m to the equation [m]P = Q for given
points P,Q ∈ E(Fq). Despite extensive research since the mid-1980s, the fastest
known algorithms to solve the ECDLP on general curves are collision algorithms
taking O(

√
q ) steps. Thus the best known algorithms to solve the ECDLP in E(Fq)

take exponential time, i.e., the running time is exponential in log q. This fact is the
primary attraction for using elliptic curves in cryptography.

There is a key exchange system based on the DLP that is due to Diffie and Hell-
man and a public key cryptosystem based on the DLP that is due to ElGamal. These
systems work, mutatis mutandis, for any group and are typically applied to (sub-
groups) of either F∗

q or E(Fq). In keeping with the primary subject of this book,
we describe these systems in terms of elliptic curves. As already noted, the primary
advantage of using elliptic curves is that at present, it is much harder to solve the
ECDLP in E(Fq) than it is to solve the DLP in F∗

q . This means that elliptic curve
cryptography has key and message sizes that are 5 to 10 times smaller than those for
other systems, including RSA and F∗

q-based DLP systems.
The first algorithm that we describe allows Alice and Bob to securely exchange a

piece of information whose value neither one of them knows in advance. We discuss
later (XI.4.3.3) why this might be useful.
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Diffie–Hellman Key Exchange 4.2. The following procedure allows Alice and Bob
to securely exchange the value of a point on an elliptic curve, although neither of
them initially knows the value of the point:

(1) Alice and Bob agree on a finite field Fq , an elliptic curve E/Fq , and a point
P ∈ E(Fq).

(2) Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fq).
(3) Bob selects a secret integer b and computes the point B = [b]P ∈ E(Fq).
(4) Alice and Bob exchange the values of A and B over a possibly insecure com-

munication line.
(5) Alice computes [a]B and Bob computes [b]A. They have now shared the value

of the point [ab]P .

We briefly mention a few of the many issues that must be addressed before this
rough outline of Diffie–Hellman key exchange becomes a usable system.
Remark 4.3.1. Typically, the finite field Fq, the elliptic curve E/Fq , and the
point P ∈ E(Fq) are preselected and published by a standards body. See (XI.4.7).
Remark 4.3.2. It is essential that the order of P be divisible by a large prime, be-
cause a Chinese remainder algorithm due to Pohlig and Hellman [205] shows that
the solution time of the ECDLP depends only on the largest prime dividing the order
of P . For this and other reasons, it is generally advisable to use a point P of prime
order. For details of the Pohlig–Hellman algorithm, see [116, § 2.9], [277, §5.1.1], or
Exercise 11.9.
Remark 4.3.3. Diffie–Hellman key exchange allows Alice and Bob to exchange a
piece of data that neither knows in advance. This may not seem very useful. However,
it is useful, because they can use this “random” piece of data as the secret key for a
private key cryptosystem such as the advanced encryption standard (AES).
Remark 4.3.4. Alice and Bob’s adversary Eve knows the values of P , A = [a]P ,
and B = [b]P , so if Eve can solve the ECDLP, then she can find a (or b) and recover
Alice and Bob’s secret value. However, in principle, Eve does not need to find a or b.
What Eve needs to do is to solve the following problem:

Elliptic Curve Diffie–Hellman Problem

Given three points P , [a]P , and [b]P
in E(Fq), compute the point [ab]P .

At present, the only way known to solve the elliptic curve Diffie-Hellman problem is
to solve the associated elliptic curve discrete logarithm problem, i.e., no one knows
how to compute [ab]P from P , [a]P , and [b]P without knowing one of a or b.
Remark 4.3.5. There is clearly no need for Alice and Bob to exchange both the x
and y coordinates of a point, since the x-coordinate alone determines y up to ±1.
Thus given Bob’s x value, Alice can determine ±y by computing a square root in Fq.
(See Exercise 11.8.) It thus suffices for Bob to send the value of x and one additional
bit that specifies which square root to take for y. In cryptographic circles, the idea of
sending the x-coordinate plus one extra bit is known as point compression.
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Diffie–Hellman key exchange allows Alice and Bob to exchange a random bit
string, but a true public key cryptosystem such as RSA allows Bob to send a specific
message to Alice. A public key cryptosystem based on the discrete logarithm prob-
lem in F∗

q was proposed in 1985 by ElGamal [74]. Here is an elliptic curve version.

ElGamal Public Key Cryptosystem 4.4. The following procedure allows Bob to
securely send a message to Alice without any previous communication.

(1) Alice and Bob agree on a finite field Fq , an elliptic curve E/Fq , and a point
P ∈ E(Fq).

(2) Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fq).
(3) Alice publishes the point A. This is her public key. The secret multiplier a is her

private key.
(4) Bob chooses a plaintext (i.e., a message) M ∈ E(Fq) and a random integer k.

He computes the two points

B1 = [k]P ∈ E(Fq) and B2 = M + [k]A ∈ E(Fq).

(5) Bob sends the ciphertext (B1, B2) to Alice over a potentially insecure commu-
nication line.

(6) Alice uses her secret key a to compute B2− [a]B1 ∈ E(Fq). This value is equal
to Bob’s plaintext M .

There is much to say about the ElGamal cryptosystem, but we content ourselves
with a few brief remarks.
Remark 4.5.1. It is easy to verify that Alice recovers Bob’s plaintext. Thus

B2 − [a]B1 =
(
M + [k]A

)
− [a][k]P = M + [k][a]P − [a][k]P = M.

Notice how Bob’s random integer k disappears from the calculation.
Remark 4.5.2. Just as with Diffie–Hellman key exchange, the field Fq, curve E/Fq ,
and point P ∈ E(Fq) are typically chosen from a list published by some trusted au-
thority; see (XI.4.7). We also note that Alice may choose her private key (step 2) and
publish her public key (step 3) without knowing who is planning to send messages
to her, nor when those messages will be sent.
Remark 4.5.3. An ElGamal plaintext is a point M ∈ E(Fq), while an ElGamal
ciphertext is a pair of points B1, B2 ∈ E(Fq). Thus even with point compres-
sion (XI.4.3.5), Bob has to send two bits of information to Alice for every one bit in
his message. We say that ElGamal has 2-to-1 message expansion. This is less effi-
cient than the RSA cryptosystem, whose plaintexts and ciphertexts are the same size.
Remark 4.5.4. In practice, there is no natural way to assign a message written in,
say, English, to a point M ∈ E(Fp). A variant of the ElGamal system due to Menezes
and Vanstone uses the coordinates of a point in E as a mask for the actual message;
see Exercise 11.10. We also note that if ElGamal is used in the raw state described
in (XI.4.4), then it is subject to various sorts of attacks. All practical secure imple-
mentations of modern public key cryptosystems include some sort of internal mes-
sage structure that allows Alice to verify that Bob’s message was properly encrypted.
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An example of such a method is the Integrated Encryption Scheme (IES) due to Ab-
dalla, Bellare, and Rogaway [1]. We briefly describe the elliptic curve variant of IES
in Exercise 11.11.

Remark 4.5.5. As with Diffie–Hellman key exchange, the ElGamal cryptosys-
tem can be broken by solving the Diffie–Hellman problem (XI.4.3.4). Thus Eve
knows A = [a]P and B1 = [k]P , so if she can solve the Diffie–Hellman prob-
lem, then she can compute [ak]P = [k]A. Since she also knows B2, she is then able
to compute B2 − [k]A = M .

A public key cryptosystem allows Bob and Alice to exchange information. A
digital signature scheme has a different purpose. It allows Alice to use a private
key to sign a digital document, e.g., a computer file, in such a way that Bob can
use Alice’s public key to verify the validity of the signature. There are a number of
practical digital signature algorithms; see for example [116, 169, 277]. We describe
one such algorithm that uses elliptic curves.

Elliptic Curve Digital Signature Algorithm (ECDSA) 4.6. The following proce-
dure allows Alice to sign a digital document and Bob to verify that the signature is
valid:

(1) Alice and Bob agree on a finite field Fp, an elliptic curve E/Fp, and a point
P ∈ E(Fp) of (prime) order N .

(2) Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fp).
(3) Alice publishes the point A. This is her public verification key. The secret mul-

tiplier a is her private signing key.
(4) Alice chooses a digital document d mod N to sign.6 She also chooses a random

integer k mod N . Alice computes [k]P and sets

s1 ≡ x
(
[k]P

)
(mod N) and s2 ≡ (d + as1)k−1 (mod N).

(Here x
(
[k]P

)
is only in Fp, but we choose an integer representative between 0

and p − 1.) Alice publishes the signature (s1, s2) for the document d.
(5) Bob computes

v1 ≡ ds−1
2 (mod N) and v2 ≡ s1s

−1
2 (mod N).

He then computes [v1]P + [v2]A ∈ E(Fp) and verifies that

x
(
[v1]P + [v2]A

)
≡ s1 (mod N).

PROOF. We need to check that if Alice follows the procedure described in step (4),
then Bob’s verification in step (5) works. The point that Bob computes in step (5) is

6In practice, Alice applies a hash function to her actual document in order to obtain an inte-
ger d mod N . This allows her to sign long documents and prevents various types of attacks. For in-
formation about hash functions and their use in cryptography, see for example [51, §§1.6.3, 24.2.5], [116,
§8.1], or [169, Chapter 9].
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[v1]P + [v2]A = [ds−1
2 ]P + [s1s

−1
2 ][a]P using the values of s1, s2, and A,

=
[
s−1
2 (d + as1)

]
P

= [k]P using the value of s2.

Hence
x
(
[v1]P + [v2]A

)
= x

(
[k]P

)
≡ s1 (mod N)

by definition of s1.

Remark 4.7. Before using elliptic curves to exchange keys or messages or to sign
documents, Alice and Bob need to choose a finite field Fq, an elliptic curve E/Fq ,
and a point P ∈ E(Fq) having large prime order. This selection process can be time
consuming, but there is no need for every Alice and every Bob to choose their own
individual fields, curves, and points. The only secret personal information utilized by
Alice and Bob consists of the multipliers they use to form multiples of P . In order
to make Alice and Bob’s life easier, the United States National Institute of Standards
and Technology (NIST) published a list [191] of fifteen fields, curves, and points
for Alice and Bob to use. For each of five different security levels, NIST gives one
curve E/Fp with p a large prime, one curve E/F2k , and one Koblitz curve E/F2 as
in (XI.1.5) with a point P ∈ E(F2k).

XI.5 Solving the Elliptic Curve Discrete Logarithm
Problem: The General Case

Recall that the discrete logarithm problem (DLP) for elements x and y in a group G
asks for an integer m such that xm = y. In this section we discuss the best known
algorithms for solving the DLP in arbitrary groups. The following rough criteria will
be used to describe the complexity of an algorithm.

Definition. We will say that a discrete logarithm algorithm takes T steps and re-
quires S storage if, on average, the algorithm needs to compute T group operations
and needs to store the values of S group elements. (We will ignore the time it takes
to sort or compare lists of elements, since the time for such operations is generally
logarithmically small compared to the number of group operations.)

Example 5.1. Let x ∈ G be an element of order n. The naive algorithm for solving
the DLP is to compute x, x2, x3, . . . until y is found. This method takes O(n) steps
and requires O(1) storage.

We now describe a general algorithm that “square-roots” the number of steps re-
quired to solve the DLP compared to the naive algorithm, albeit at the cost of using a
significant amount of storage. Algorithms of this type are called collision algorithms,
because they depend on the fact that it is easier to find collisions (elements that are
common to two subsets) than it is to find specific elements in a set. This phenomenon
is also known as the birthday paradox; see Exercise 11.5.
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Proposition 5.2. (Shanks’s Babystep–Giantstep Algorithm) Let G be a group, let
x, y ∈ G, and let n be the order of x. Then the following algorithm solves the DLP
in O(

√
n ) steps with O(

√
n ) storage:

(1) Let N =  √n ! be the “ceiling” of n, i.e., N is the smallest integer that is
greater than or equal to

√
n.

(2) Make a list of the elements (these are the babysteps)

x, x2, x3, . . . , xN .

(3) Let z = (xN )−1 and make a list of the elements (these are the giantsteps)

yz, yz2, yz3, . . . , yzN .

(4) Look for a match between the lists in steps (2) and (3). If there is a match,
say xi = yzj , then y = xi+jN ; otherwise y is not a power of x.

PROOF. Suppose that y is equal to a power of x, say y = xm with 0 ≤ m < n. We
write m = jN + i with 0 ≤ i < N , so

0 ≤ j = (m − i)/N ≤ N, since m ≤ n and N ≥
√

n.

It follows that xi is in the first list and yzj = yx−jN is in the second list, so there is
a match xi = yzj . Hence y = xiz−j = xi(x−N )−j = xi+jN .

We note that there are many ways to check for matches in step (4). For example,
we can sort the elements x, x2, . . . , xN in step (2) in O(N log N) steps, and then it
takes O(log N) steps to check whether any particular element yzi from step (3) is in
the list. So Shanks’s algorithm really takes O

(√
n(log n)2

)
steps (or a bit less, using

fancier sorting algorithms), but as noted earlier, we will ignore the log factors.

The babystep–giantstep algorithm (XI.5) requires a considerable amount of stor-
age. An alternative collision algorithm, due to Pollard, takes approximately the same
number of steps and reduces the storage to essentially nothing. Pollard’s algorithm
and its variants, which are the most practical methods currently known for solving
the ECDLP, rely on the following collision theorem that describes the likelihood of
finding terms satisfying x2i = xi in an iterative sequence x0, x1, x2, . . . .

Theorem 5.3. Let S be a finite set containing N elements, and let f : S → S
be a function. Starting with an initial value x0 ∈ S, define a sequence of points
x0, x1, x2, . . . by

xi = f(xi−1) = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

i iterations of f

(x0).

Let T be the tail length and let L be the loop length of the orbit

x0, x1, x2, x3, . . .

of x, as illustrated in Figure 11.5. Formally,

T = largest integer such that xT−1 appears only once in the sequence (xi)i≥0,

L = smallest integer such that xT+L = xT .
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Tail Length = T

Loop Length = L
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Figure 11.5: The orbit of x0 in Pollard’s ρ algorithm.

(a) There exists an index 1 ≤ i < T + L such that x2i = xi.
(b) If f : S → S and its iterates are “sufficiently random” at mixing the elements

of S, then the expected value of T + L is
√

πN/2 .

Remark 5.3.1. The shape of the path in Figure 11.5 explains why (XI.5.3) is called
the “ρ algorithm.”

PROOF. (a) It is clear from Figure 11.5 that for j > i we have

xj = xi if and only if i ≥ T and j ≡ i (mod L).

Hence x2i = xi if and only if i ≥ T and L | i. The first such i lies between T
and T + L − 1.
(b) We sketch the proof, which is an exercise in discrete probability theory, and
leave the reader to fill in error-estimate details.

If k points x0, . . . , xk−1 are chosen randomly from S, then the probability that
they are distinct is

Prob
(

x0, x1, . . . , xk−1

are distinct

)
=

k−1∏

i=1

Prob
(

xi �= xj for
all 0 ≤ j < i

∣
∣
∣
∣
x0, x1, . . . , xi−1

are distinct

)

=
k−1∏

i=1

(
N − i

N

)

=
k−1∏

i=1

(
1 − i

N

)
.

We approximate this last product using the estimate



384 XI. Algorithmic Aspects of Elliptic Curves

1 − t ≈ e−t,

which is valid for small values of t. (We will apply this estimate with k = O(
√

N ),
so if N is large, then the quantity i

N with 1 ≤ i < k is small.) This yields

Prob
(

x0, x1, . . . , xk−1

are distinct

)
≈

k−1∏

i=1

e−i/N ≈ e−k2/2N .

Suppose now that x0, . . . , xk−1 are distinct. Then the probability that xk matches
one of the earlier values is

Prob
(
xk is a match

∣
∣ x0, . . . , xk−1 are distinct

)
=

k

N
.

Combining these two probability estimates, we find that

Prob
(
xk is the first match

)

= Prob
(
xk is a match AND x0, . . . , xk−1 are distinct

)

= Prob
(
xk is a match

∣
∣ x0, . . . , xk−1 are distinct

)

·Prob
(
x0, . . . , xk−1 are distinct

)

≈ k

N
· e−k2/2N .

Hence the expected number of steps before finding the first match is
∑

k≥1

k · Prob
(
xk is the first match

)

≈
∑

k≥1

k2

N
· e−k2/2N

=
∑

k≥1

φ
(
k/

√
N

)
letting φ(t) = t2e−t2/2,

≈
√

N ·
∫ ∞

0

t2e−t2/2 dt using
∞∑

k=1

φ(k/n) ≈ n

∫ ∞

0

φ(t) dt,

=
√

πN/2.

(The square of the integral in the last step may be evaluated via the usual polar
coordinates trick.)

Pollard’s algorithm to solve the discrete logarithm problem in a group G uses a
self-map f : G → G that is easy to compute, yet whose iterates mix up the elements
of G in a random fashion.

Algorithm 5.4. (Pollard’s ρ algorithm)
Let G be a group and let x, y ∈ G. Our goal is to compute an integer m satisfy-
ing xm = y. We will use (XI.5.3) to find integers i, j, k, � such that
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xiyj = xky�.

Then xi−k = yj−�, and assuming that j − � is relatively prime to the order n of x,7

we can solve for y as a power of x.
It is not clear how to define a function f : G → G that is complicated enough

to provide good mixing, yet simple enough to keep track of its orbits. Pollard [206]
suggests splitting G into a disjoint union of three sets of approximately equal size,

G = A ∪ B ∪ C,

and using the function

f(z) =

⎧
⎪⎨

⎪⎩

xz if z ∈ A,
z2 if z ∈ B,
yz if z ∈ C.

(See Exercise 11.13 for an elliptic curve example.) Such functions work reasonably
well in practice, although more complicated functions with better mixing properties
are known [293, 294].

Consider the outcome when we repeatedly apply f to the initial point z0 = 1.
After i iterations we arrive at a point

zi = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

i iterations of f

(1) = xαiyβi

for certain integers αi and βi. It is difficult to predict, a priori, the values of αi

and βi, but we can compute them at the same time that we compute z1, z2, . . . by
starting with α0 = β0 = 0 and using the iterative formulas

αi+1 =

⎧
⎪⎨

⎪⎩

αi + 1 if zi ∈ A,
2αi if zi ∈ B,
αi if zi ∈ C,

βi+1 =

⎧
⎪⎨

⎪⎩

βi if zi ∈ A,
2βi if zi ∈ B,
βi + 1 if zi ∈ C.

Note that we need only keep track of αi and βi modulo n, since xn = 1. This keeps
the values of αi and βi at a manageable size.

In a similar fashion we compute the sequence of points

w0 = 1 and wi+1 = f
(
f(wi)

)
.

Then
wi = z2i = xγiyδi ,

where γi and δi can be computed from γi−1 and δi−1 using two repetitions of the
recurrences for αi and βi. Of course, the first time we use wi = z2i to determine
which case to apply, and the second time we use f(wi) = z2i+1 to decide. See
Exercise 11.12.

7In practical applications, the element x usually has prime order (XI.4.3.2), in which case j − � is
almost certainly prime to n. The general case is discussed later in this section.
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We now compute (z1, w1), (z2, w2), (z3, w3),. . . until we find a pair whose co-
ordinates are the same. Note that each successive (zi, wi) may be computed solely
in terms of the previous (zi−1, wi−1), so we never need to store more than a few
numbers. Assuming that A, B, and C are sufficiently good at mixing the elements
of G, our analysis in (XI.5.3) says that we will find a match

zi = wi = z2i

in O(
√

n ) steps. The equality zi = wi implies that

xαi−γi = yδi−βi .

If gcd(δi − βi, n) = 1, as is typically the case in applications where n is prime, then

m ≡ (αi − γi)(δi − βi)−1 (mod n)

solves xm = y.
In general, if d = gcd(δi − βi, n) > 1, then we can express yd as a power of x,

say yd = xe. Then y is equal to one of the elements x(e+nu)/d with 0 ≤ u < d.
So if d is not too large, this solves the DLP, and if d is large, we can rerun Pollard’s
algorithm to find another relation between x and y.

Remark 5.4.1. The proof of (XI.5.3) and its subsequent application to Pollard’s ρ al-
gorithm (XI.5.4) rely on two heuristic assumptions. First, they assume that iterations
of certain self-maps behave as if they were random mixing maps. Second, they as-
sume that the resulting collision is nondegenerate, e.g., in the notation of (XI.5.4),
if n | δi − βi, then the algorithm yields no information. For a proof that the running
time of Pollard’s algorithm is O(

√
n ), see [126, 174], and for a rigorous analysis of

the nondegeneracy assumption, see [175].

Remark 5.4.2. Shanks’s and Pollard’s algorithms (XI.5.2), (XI.5.4) apply to (vir-
tually) any group and show that the DLP in a cyclic group G of order n can be
solved in O(

√
n ) steps. Now imagine that you are given a black box that performs

the group operations in G. This means that you may feed any two group elements x1

and x2 into the box and it will compute for you the value of their product x1x2,
but you have no knowledge of how the computation is performed. In this situation
Shoup [253] has shown that any algorithm that solves the DLP in G takes on average
at least O(

√
n ) steps. Thus despite the fact that the group law on an elliptic curve

is far from being a black box, the best known algorithms to solve the ECDLP are
qualitatively no better than a black box algorithm.

XI.6 Solving the Elliptic Curve Discrete Logarithm
Problem: Special Cases

The fastest known algorithms that solve the ECDLP on all elliptic curves are collision
algorithms such as (XI.4.1) and (XI.4.2). However, not all elliptic curves are created



XI.6. Solving the ECDLP: Special Cases 387

equal. Menezes, Okamoto, and Vanstone [168] suggested using the Weil pairing to
reduce the ECDLP to an easier DLP in the multiplicative group of a finite field. (An
alternative reduction using the Tate–Lichtenbaum pairing was suggested by Frey and
Rück [91].)

Definition. Let Fq be a finite field, and let N ≥ 1 be an integer. The embedding
degree of N in Fq is the smallest integer d ≥ 1 such that

μN ⊂ F∗
qd .

Since F∗
qd is a cyclic group of order qd − 1, this is equivalent to d being the smallest

integer satisfying
qd ≡ 1 (mod N).

Proposition 6.1. (MOV Algorithm [168]) Let E/Fq be an elliptic curve, let P,Q ∈
E(Fq) be points of prime order N , and let d be the embedding degree of N in Fq.
Assume that gcd(q − 1, N) = 1. Then there is a polynomial-time algorithm that re-
duces the ECDLP for P and Q to the DLP in F∗

qd .

PROOF. We are looking for an integer m such that Q = [m]P . We choose a
point T ∈ E[N ](F̄q) such that P and T generate E[N ]. Then the value of the
Weil pairing eN (P, T ) is a primitive N th root of unity (III.8.1.1), so by definition
of embedding degree we have eN (P, T ) ∈ F∗

qd . Linearity of the Weil pairing (III.8.1)
gives

eN (Q,T ) = eN

(
[m]P, T

)
= eN (P, T )m.

We know the values of points P , Q, and T , so if we can solve the discrete logarithm
problem

eN (Q,T ) = eN (P, T )m

in F∗
qd , then we recover the value of m, which also solves the ECDLP for P and Q.
The running time of the MOV algorithm is determined by how long it takes to

find the point T and how long it takes to compute the Weil pairing values eN (Q,T )
and eN (P, T ). The Weil pairing computations are not a problem, since they may be
computed using Miller’s (linear-time) algorithm as described in (XI §8). A key fact,
which we prove below (XI.6.2), is that E[N ] ⊂ E(Fqd), where d is the embedding
degree. Thus all computations may be done in the field Fqd . To construct an appro-
priate point T ∈ E(Fqd), we randomly choose points T in E(Fqd) of order N until
we find one such that eN (P, T ) is a primitive N th root of unity.8

Lemma 6.2. Let E/Fq be an elliptic curve, let N ≥ 1 be an integer satisfying
gcd(q−1, N) = 1, let d be the embedding degree of N in Fq, and suppose that E(Fq)
contains a point of exact order N . Then E[N ] ⊂ E(Fqd).

8We first compute n = #E(Fqd), which takes polynomial time (XI.3.1). Then, since N is typically a
large prime, most points S ∈ E(Fqd) have the property that T = [n/N2]S has order N .
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PROOF. Let P ∈ E(Fq) be the given point of exact order N defined over Fq , and
choose a point T ∈ E[N ] such that {P, T} is a basis for E[N ]. Let φ ∈ GF̄q/Fq

be
the q-power Frobenius map. Since P ∈ E(Fq), we have

Pφ = P and Tφ = [a]P + [b]T for some a, b ∈ Z/NZ.

Using basic properties of the Weil pairing (III.8.1), we find that

eN (P, T )q = eN (P, T )φ = eN (Pφ, Tφ)

= eN (P, [a]P + [b]T ) = eN (P, P )aeN (P, T )b = eN (P, T )b.

Since eN (P, T ) is a primitive N th root of unity, cf. (III.8.1.1), this implies that

b = q mod N.

Thus Tφ = [a]P + [q]T . Applying φ repeatedly to T and using the fact that φ
fixes P gives

Tφd

=
[
a(1 + q + q2 + · · · + qd−1)

]
P + [qd]T.

By definition of embedding degree, we have qd ≡ 1 (mod N), so [qd]T = T . Fur-
ther, the assumption that gcd(q − 1, N) = 1 implies that

1 + q + q2 + · · · + qd−1 ≡ 0 (mod N),

so [1 + q + q2 + · · · + qd−1]P = O. Therefore Tφd

= T , which proves
that T ∈ E(Fqd).

Remark 6.3. Under plausible assumptions, Balasubramanian and Koblitz [13] show
that for most elliptic curves E/Fq, if N is a large prime divisor of #E(Fq), then
the embedding degree of N in Fq is proportional to N . Hence for a randomly cho-
sen E/Fq, the MOV algorithm reduces the ECDLP in E(Fq) to a much harder DLP
in Fqd . However, there are special cases for which the embedding degree is small, as
in the following example. (See also (XI.9.8).)

Example 6.4. Let p ≥ 5 be prime, and let E/Fp be a supersingular elliptic curve.
We can compute embedding degrees for E using Exercise 5.15, which implies that

#E(Fp) = p + 1.

Suppose that P ∈ E(Fp) is a point of exact order N . Then N divides #E(Fp),
so p ≡ −1 (mod N). Hence p2 ≡ 1 (mod N), so N has embedding degree 2
in Fp. Thus the ECDLP on a supersingular curve over Fp can be reduced to solv-
ing the DLP in F∗

p2 , for which there are subexponential algorithms. This militates
against using supersingular curves in most cryptographic settings. However, we will
see later (XI §7) that there are cryptographic applications that make use of the Weil
pairing and low embedding degrees. For these applications, supersingular curves
may be used; we simply must ensure that it is computationally infeasible to solve
the associated DLP in F∗

p2 .
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The MOV algorithm (XI.6.1) shows that the ECDLP on an elliptic curve with low
embedding degree may be reduced to a potentially easier DLP in the multiplicative
group of a finite field. We next describe a special situation in which the ECDLP is
reduced to an essentially trivial additive DLP

Proposition 6.5. (Semaev [228], Satoh–Araki [218], Smart [269]) Let p ≥ 3 and
let E/Fp be an elliptic curve satisfying

#E(Fp) = p.

(Such curves are called anomalous.) The following algorithm solves the ECDLP
in E(Fp).
(1) Let P,Q ∈ E(Fp) be nonzero points satisfying Q = [m]P , where the integer m

is not known.
(2) Choose an elliptic curve E′/Qp whose reduction modulo p is E/Fp.
(3) Use Hensel’s lemma to lift the points P,Q to points P ′, Q′ ∈ E′(Qp).
(4) The points [p]P ′ and [p]Q′ are in the formal group E′

1(Qp). Let

logE : E′
1(Qp) −→ Ĝa(pZp) ∼= pZ+

p

be the formal logarithm map (IV §5, IV.6.4), and compute

pa = logE

(
[p]P ′) ∈ pZp and pb = logE

(
[p]Q′) ∈ pZp.

(5) Then m ≡ a−1b (mod p).

PROOF. Using the fact that #E(Fp) = p, we have

[̃p]P ′ = [p]P = O and [̃p]Q′ = [p]Q = O in E(Fp),

so [p]P ′ and [p]Q′ are in the kernel of reduction modulo p. Hence they are in the
formal group E′

1(Qp). Similarly, if we let R′ = Q′− [m]P ′, then the reduction of R′

modulo p is

R̃′ = Q̃′ − [m]P̃ ′ = Q − [m]P = O in E(Fp),

so R′ ∈ E′
1(Qp). We now compute

logE

(
[p]Q′) = logE

(
[p]([m]P ′ + R′)

)
since R′ = Q′ − [m]P ′,

= m logE

(
[p]P ′) + p logE(R′) valid since [p]P ′, R′ ∈ E1(Qp),

≡ m logE

(
[p]P ′) (mod p2) since logE(R′) ∈ pZp.

Substituting logE

(
[p]P ′) = pa and logE

(
[p]Q′) = pb as in step (4) of the algorithm

gives pb ≡ mpa (mod p2), so m ≡ a−1b (mod p).

Remark 6.6. The algorithm described in (XI.6.5) may seem impractical, since it
requires lifting points in E(Fp) to points in E′(Qp). However, an examination of the
proof shows that we need only lift points modulo p2 and compute formal logarithms
in Ĝa(pZp)/Ĝa(p2Zp) ∼= pZp/p2Zp. Thus we work on an elliptic curve over the
ring Z/p2Z, or in fancier language, on an elliptic scheme; see (XI.2.4.1).
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Example 6.7. We work over the field F127 and consider the supersingular curve and
points

E : y2 = x3+19x+112, P = (106, 72) ∈ E(F127), Q = (12, 121) ∈ E(F127).

We take the same equation to be our lift of E to Z/1272Z, and we lift the points P
and Q to

P ′ = (106, 13026) ∈ E(Z/1272Z) and Q′ = (12, 5201) ∈ E(Z/1272Z).

We now want to compute multiples of P ′ and Q′ working modulo 1272. In order
to avoid noninvertible denominators, it is convenient to make the change of vari-
ables z = −x/y and w = −1/y. This has the effect of moving O to (z, w) = (0, 0);
cf. (IV §1). The equation for E now reads

E : w = z3 + 19zw2 + 112w3.

We use the double-and-add algorithm, working modulo 1272 with (z, w)-
coordinates, to compute

[127]P ′ = (12319, 0) ∈ E(Z/1272Z) and [127]Q′ = (2159, 0) ∈ E(Z/1272Z).

The elliptic logarithm for y2 = x3 + Ax + B starts logE(z) = z + 2
5Az5 + · · · , so

since we are working modulo 1272, it suffices to use logE(z) ≈ z. Thus

logE

(
[127]P ′) ≡ 12319 ≡ 97 · 127 (mod 1272),

logE

(
[127]Q′) ≡ 2159 ≡ 17 · 127 (mod 1272).

Finally, we compute m ≡ 97−1 · 17 ≡ 46 (mod 127), which is the desired discrete
logarithm. We can check our answer by verifying that [46]P = Q in E(F127).

XI.7 Pairing-Based Cryptography
The Diffie–Hellman key exchange algorithm allows two people to exchange an un-
specified piece of data. It was a long-standing problem to find a method that allows
three people to perform a similar exchange. Joux found a solution using the Weil
pairing

eN : E[N ] × E[N ] −→ μN ,

which we recall (III §8) is nondegenerate, bilinear, and alternating. For cryptographic
applications we need a pairing that is nondegenerate on a cyclic subgroup of E[N ],
but unfortunately the Weil pairing is trivial on such subgroups. One way around this
difficulty is to use a curve that admits an isogeny

φ : E −→ E

such that E[N ] has a basis of the form
{
T, φ(T )

}
. In the cryptographic literature,

the map φ is called a distortion map; see [51, §24.2.1b] or [116, §5.9.2]. Using a
distortion map, the modified Weil pairing
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〈 · , · 〉 : E[N ] × E[N ] −→ μN , 〈P,Q〉 = eN

(
P, φ(Q)

)

has the property that 〈T, T 〉 is a primitive N th root of unity.

Example 7.1. Let E be the elliptic curve y2 = x3+x having complex multiplication
by Z[i], and let φ be the isogeny

φ : E −→ E, φ(x, y) = [i](x, y) = (−x, iy).

Then φ is a distortion map on E[N ] for all integers N satisfying N ≡ 3 (mod 4).
To see this, let T ∈ E[N ] be a point of exact order N , and suppose that some linear
combination of T and φ(T ) is zero. Then

[a]T + [b]φ(T ) = O ⇐⇒ [a + bi](T ) = O

=⇒ [a2 + b2](T ) = O

=⇒ a2 + b2 ≡ 0 (mod N)
=⇒ a ≡ b ≡ 0 (mod N),

where the last line follows from the assumption that N ≡ 3 (mod 4). (See Exer-
cise 3.26 for another example of a distortion map.)

An alternative to the modified Weil pairing is the Tate–Lichtenbaum pairing

τ : E(K)/NE(K) × E(K)[N ] −→ K∗/(K∗)N ,

which we discuss in (XI §9). If K is a finite (or local) field, then under appropriate
conditions the Tate–Lichtenbaum pairing is nondegenerate, in which case we can
define a nondegenerate pairing by

〈 · , · 〉 : E(Fq)[N ] × E(Fq)[N ] −→ μN , 〈P,Q〉 = τ(P,Q)(q−1)/N .

From a practical perspective, the primary advantage of the Tate–Lichtenbaum pairing
over the Weil pairing is that the former can be computed in roughly half the time
that it takes to compute the latter (XI.9.3.2). In any case, there is a double-and-add
algorithm for both pairings, so they are both easy to compute; see (XI §8) for details.

Tripartite Diffie–Hellman Key Exchange 7.2. (Joux [120]) The following proce-
dure allows Alice, Bob, and Carl to securely exchange a a piece of information whose
value none of them knows in advance:

(1) Alice, Bob, and Carl agree on a finite field Fq, an elliptic curve E/Fq , a
prime N , and a point T ∈ E(Fq)[N ] such that there is a bilinear pairing

〈 · , · 〉 : E(Fq)[N ] × E(Fq)[N ] −→ μN

with the property that 〈T, T 〉 is a primitive N th root of unity.
(2) Alice, Bob, and Carl choose secret integers a, b, and c, respectively, and they

compute
Alice computes this
︷ ︸︸ ︷
A = [a]T,

Bob computes this
︷ ︸︸ ︷
B = [b]T,

Carl computes this
︷ ︸︸ ︷
C = [c]T.
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(3) Alice, Bob, and Carl publish the values of A, B, and C.
(4) Alice, Bob, and Carl compute, respectively,

Alice computes this
︷ ︸︸ ︷
〈B,C〉a,

Bob computes this
︷ ︸︸ ︷
〈A,C〉b,

Carl computes this
︷ ︸︸ ︷
〈A,B〉c.

(5) Alice, Bob, and Carl have now shared the value 〈T, T 〉abc.

Remark 7.3. If Eve can solve the ECDLP, then she can certainly break tripartite
Diffie–Hellman key exchange, since for example she can recover Alice’s secret mul-
tiplier a from the publicly available points T and A = [a]T . However, Eve can also
break the system if she can solve the discrete logarithm problem in the multiplicative
group F∗

q . Thus Eve knows the values of T , A, and B, so if she can solve the DLP

〈T, T 〉m = 〈A,B〉

in F∗
q , she recovers the value m = ab. From this she obtains Alice, Bob, and Carl’s

shared value by computing 〈T,C〉ab.
The DLP in F∗

q can be solved in subexponential time (XI.4.1b), so it is currently
significantly easier to solve the DLP in F∗

q than it is to solve the ECDLP in E(Fq).
Thus tripartite Diffie–Hellman key exchange and other pairing-based cryptographic
algorithms require that q be sufficiently large to preclude the solution of the DLP
in F∗

q .
Another cryptographic application of pairings on elliptic curves is a digital signa-

ture scheme that has extremely short signatures, as described in the following result
of Boneh, Lynn, and Shacham [24]; see also [51, §24.1.3].

Theorem 7.4. The following procedure allows Alice to sign a digital document and
Bob to verify that the signature is valid.

(1) Alice and Bob agree on a finite field Fq, an elliptic curve E/Fq , a prime N , and
a point T ∈ E(Fq)[N ] such that there is a bilinear pairing

〈 · , · 〉 : E(Fq)[N ] × E(Fq)[N ] −→ μN

with the property that 〈T, T 〉 is a primitive N th root of unity.
(2) Alice selects a secret integer a and computes the point A = [a]T ∈ E(Fq).
(3) Alice publishes the point A. This is her public verification key. The secret mul-

tiplier a is her private signing key.
(4) Alice chooses a digital document D ∈ E(Fq) to sign.9 She computes and pub-

lishes the signature
S = [a]D.

(5) Bob accepts the signature as valid if the two quantities

〈A,D〉 and 〈T, S〉

are equal.
9As with ECDSA (XI.4.6), the point D is really a hash of the actual document. See [51, §24.2.5].
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PROOF. Assuming that Alice has constructed A and S as in steps (2) and (4), bilin-
earity of the pairing yields

〈A,D〉 = 〈[a]T,D〉 = 〈T,D〉a and 〈T, S〉 = 〈T, [a]D〉 = 〈T,D〉a,

so Bob accepts the signature.

Remark 7.5.1. The reason that (XI.7.4) is called a short signature scheme is be-
cause the signature consists of only a single point in E(Fq), so with point compres-
sion (XI.4.3.5), a single number in Fq. Thus (XI.7.4) gives signatures that are half the
size of those produced by ECDSA (XI.4.6). (The use of hyperelliptic curves allows
the size of q to be further reduced; see [51].)
Remark 7.5.2. Recall (XI.4.3.4) that the elliptic curve Diffie–Hellman problem asks
for the value of [ab]P , given the three points P , [a]P , and [b]P . Potentially easier is
the following decision version of this problem:

Decision Diffie–Hellman Problem

Given four points P , [a]P , [b]P , and Q in E(Fq),
determine whether Q is equal to [ab]P .

The short signature scheme (XI.7.4) uses the fact that if E is an elliptic curve with a
nondegenerate bilinear pairing, then the decision Diffie–Hellman problem is easy to
solve, since Q = [ab]P if and only if 〈[a]P, [b]P 〉 = 〈Q,P 〉.
Remark 7.6. There are a number of other cryptographic constructions that use bi-
linear pairings on elliptic curves and that depend for their security on the difficulty
of solving both the ECDLP in E(Fq) and the DLP in F∗

q . We mention in particular
ID-based cryptography, in which Alice may use an arbitrary character string as her
public key. For example, her public key could be her email address. To send a mes-
sage, Bob combines Alice’s public key with a universal public key available from
some trusted authority. The trusted authority also provides Alice with a personal pri-
vate key that goes with her ID-based public key. The idea of ID-based cryptosystems
was proposed by Shamir [245] in 1985, and a practical system using elliptic curves
and pairings was devised by Boneh and Franklin [23] in 2001. For further details,
see for example [51, §24.1.2] or [116, §5.10.2].

XI.8 Computing the Weil Pairing
The abstract definition of the Weil pairing requires functions having specified divi-
sors. In this section we describe a double-and-add algorithm due to Victor Miller that
computes such functions in linear time. Miller’s algorithm makes pairings practical
for use in applications such as cryptography.

Theorem 8.1. Let E be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

and let P = (xP , yP ) and Q = (xQ, yQ) be nonzero points on E.
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(1) Set T = P and f = 1
(2) Loop i = t − 1 down to 0
(3) Set f = f2 · hT,T

(4) Set T = 2T

(5) If εi = 1
(6) Set f = f · hT,P

(7) Set T = T + P

(8) End If
(9) End i Loop
(10) Return the value f

Figure 11.6: Miller’s algorithm.

(a) Let λ be the slope of the line connecting P and Q, or the slope of the tangent line
to E at P if P = Q. (If the line is vertical, set λ = ∞.) Define a function hP,Q

on E as follows:

hP,Q =

⎧
⎨

⎩

y − yP − λ(x − xP )
x + xP + xQ − λ2 − a1λ + a2

if λ �= ∞,

x − xP if λ = ∞.

Then
div(hP,Q) = (P ) + (Q) − (P + Q) − (O).

(b) Miller’s algorithm. Let N ≥ 1 and write the binary expansion of N as

N = ε0 + ε1 · 2 + ε2 · 22 + · · · + εt · 2t with εi ∈ {0, 1} and εt �= 0.

The algorithm described in Figure 11.6 returns a function fP whose divisor
satisfies

div(fP ) = N(P ) − ([N ]P ) − (N − 1)(O),

where the functions hT,T and hT,P used by the algorithm are as defined in (a).
In particular, if P ∈ E[N ], then div(fP ) = N(P ) − N(O).

PROOF. (a) Suppose first that λ �= ∞, and let y = λx + ν be the line through P
and Q, or the tangent line at P if P = Q. This line intersects E at the three
points P , Q, and −P − Q, so

div(y − λx − ν) = (P ) + (Q) + (−P − Q) − 3(O).

Vertical lines intersect E at points and their negatives, so

div(x − xP+Q) = (P + Q) + (−P − Q) − 2(O).

It follows that
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hP,Q =
y − λx − ν

x − xP+Q

has the divisor stated in (a). Finally, the addition formula (III.2.3d) tells us that
xP+Q = λ2 + a1λ − a2 − xP − xQ, and we can eliminate ν from the numera-
tor of hP,Q using yP = λxP + ν.

If λ = ∞, then P +Q = O, so we need hP,Q to have divisor (P )+(−P )−2(O).
The function x − xP has this divisor.
(b) This is a standard double-and-add algorithm, similar to (XI.1.1). The key to ana-
lyzing the algorithm comes from (a), which tells us that the functions hT,T and hT,P

used in steps (3) and (6) have divisors

div(hT,T ) = 2(T ) − (2T ) − (O),
div(hT,P ) = (T ) + (P ) − (T + P ) − (O).

We consider the effect of executing the i loop, steps (2)–(9), for a given value
of i. At the start of the loop the variables T and f have initial values T start

i and f start
i ,

and at the end of (one execution of) the loop they have final values T end
i and f end

i . We
start with T . During the loop, the value of T is doubled and then, if εi = 1, the value
is incremented by P . This gives the relation

T end
i = 2T start

i + εiP.

Similarly, the value of f is squared, multiplied by hT,T , and then, if εi = 1, it is
multiplied by h2T,P . (Note that the value of T has been doubled in step (4) before it
is used in step (6).) This yields

f end
i = (f start

i )2 · hT start
i

,T start
i

· hεi

2T start
i

,P
.

Hence the divisors of f start
i and f end

i are related by

div(f end
i ) = 2 div(f start

i ) + div(hT start
i

,T start
i

) + εi div(h2T start
i

,P )

= 2 div(f start
i ) +

(
2(T start

i ) − (2T start
i ) − (O)

)

+ εi

(
(2T start

i ) + (P ) − (2T start
i + P ) − (O)

)

= 2div(f start
i ) + 2(T start

i ) − (2T start
i + εiP ) + εi(P ) − (1 + εi)(O)

since εi ∈ {0, 1},

= 2div(f start
i ) + 2(T start

i ) − (T end
i ) + εi(P ) − (1 + εi)(O).

Of course, the final values of T and f after a given iteration of the i loop are
the initial values for the next iteration, i.e., T end

i = T start
i−1 and f end

i = f start
i−1. (Note that

the i loop decrements from t−1 to 0.) This allows us to rewrite the recurrences for T
and f as

T start
i−1 − 2T start

i = εiP,

div(f start
i−1) − 2 div(f start

i ) = 2(T start
i ) − (T start

i−1) + εi(P ) − (1 + εi)(O).
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These formulas are designed to telescope when they are summed. For example, when
the algorithm terminates, the final value of T is

T end
0 = ε0P + 2T start

0

= ε0P +

[
t−1∑

i=1

2i(T start
i−1 − 2T start

i )

]

+ 2tT start
t−1

= ε0P +
t−1∑

i=1

2iεiP + 2tT start
t−1 using the recurrence for T start

i ,

=
t∑

i=0

2iεiP since T start
t−1 = P and εt = 1,

= NP. since N =
∑

εi2i.

Finally, we compute the divisor of the function f returned by Miller’s algorithm:

div(f end
0 )

= 2 div(f start
0 ) + 2(T start

0 ) − (T end
0 ) + ε0(P ) − (1 + ε0)(O)

=

[
t−1∑

i=1

2i
(
div(f start

i−1) − 2 div(f start
i )

)
]

+ 2(T start
0 ) − (NP ) + ε0(P ) − (1 + ε0)(O)

since f start
t−1 = 1 and T end

0 = NP,

=

[
t−1∑

i=1

2i
(
2(T start

i ) − (T start
i−1) + εi(P ) − (1 + εi)(O)

)
]

+ 2(T start
0 )

− (NP ) + ε0(P ) − (1 + ε0)(O)

= 2t(T start
t−1) +

t−1∑

i=0

2iεi(P ) −
t−1∑

i=0

2i(1 + εi)(O) − (NP )

= N(P ) − (N − 1)(O) − (NP ) since T start
t−1 = P , εt = 1, and N =

∑
εi2i.

This completes the proof that the function returned by Miller’s algorithm has the
stated divisor.

Remark 8.2. Let P ∈ E[N ](K). Miller’s algorithm (XI.8.1b) tells us how to com-
pute a function fP ∈ K(E) with divisor N(P ) − N(O). Further, if R ∈ E is any
point, we can use Miller’s algorithm to directly evaluate fP (R) by evaluating the
functions hT,T (R) and hT,P (R) in steps (3) and (6). This allows us to compute the
Weil pairing eN (P,Q) via the alternative definition of eN (P,Q) from Exercise 3.16.
We choose any point S ∈ E not in the subgroup generated by P and Q, and then

eN (P,Q) =
fP (Q + S)

fP (S)

/
fQ(P − S)
fQ(−S)

.
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The right-hand side of this formula can be computed using four applications of
Miller’s algorithm (XI.8.1b). For added efficiency, the two values fP (Q + S)
and fP (S) of fP may be computed simultaneously, and similarly for fQ(P − S)
and fQ(−S).

Example 8.3. Let E/F631 be the elliptic curve

y2 = x3 + 30x + 34.

We have E(F631) ∼= Z/5Z × Z/130Z, and it is easy to check that the points
P = (36, 60) and Q = (121, 387) generate E(F631)[5]. In order to compute the Weil
pairing with Miller’s algorithm, we use the auxiliary point S = (0, 36) ∈ E(F631).
The point S has order 10, so it is not in the subgroup spanned by P and Q. Miller’s
algorithm gives

fP (Q + S) = 103, fP (S) = 219, fQ(P − S) = 284, fQ(−S) = 204.

Hence

e5(P,Q) =
103
219

/
284
204

= 242 ∈ F631.

We check that (242)5 = 1, so e5(P,Q) is indeed a fifth root of unity in F631.

Remark 8.4. As an alternative to the Weil pairing, cryptographers often use the
Tate–Lichtenbaum pairing described in (XI §9). Miller’s algorithm (XI.8.1b) can also
be used to compute the Tate–Lichtenbaum pairing (XI.9.3.2).

Remark 8.5. Another linear-time algorithm to compute the Weil and Tate–Lichten-
baum pairings, due to Shipsey and Stange, makes use of elliptic divisibility se-
quences (Exercises 3.34–3.36) and elliptic nets. See [252, 270, 271] for details.

XI.9 The Tate–Lichtenbaum Pairing
The Weil pairing is often used to define other pairings on elliptic curves. In this
section we describe the Tate–Lichtenbaum pairing, which has both theoretical and
cryptographic applications. See (C §17) and Exercise 10.24 for other instances of
pairings on elliptic curves.

Definition. Let E/K be an elliptic curve, and let N ≥ 1 be an integer that is prime
to p = char(K) if p > 0. The Tate–Lichtenbaum pairing

τ :
E(K)

NE(K)
× E(K)[N ] −→ K∗

(K∗)N

is defined as follows. Let P ∈ E(K) and T ∈ E(K)[N ]. Choose a point Q ∈ E(K̄)
satisfying [N ]Q = P . The map

GK̄/K −→ μN , σ −→ eN (Qσ − Q,T ),
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is a 1-cocycle (see below), so it represents an element of H1(GK̄/K ,μN ). Hilbert’s
Theorem 90 (B.2.5c) says that the connecting homomorphism

K∗/(K∗)N −→ H1(GK̄/K ,μN )

is an isomorphism; hence there exists an element α ∈ K∗, unique up to N th powers,
with the property that

eN (Qσ − Q,T ) = N
√

α
σ
/ N
√

α for all σ ∈ GK̄/K .

The value of the Tate–Lichtenbaum pairing is then

τ(P, T ) = α mod (K∗)N .

Proposition 9.1. The Tate–Lichtenbaum pairing is a well-defined bilinear pairing.

PROOF. Let ξ(σ) = eN (Qσ−Q,T ) be the given map ξ : GK̄/K → μN . We use ba-
sic properties of the Weil pairing (III.8.1ad) and the assumption that T ∈ E(K)[N ]
to verify that ξ is a 1-cocycle:

ξ(στ) = eN (Qστ − Q,T )
= eN (Qστ − Qτ + Qτ − Q,T )
= eN (Qσ − Q,T )τeN (Qτ − Q,T )
= ξ(σ)τξ(τ).

Next we show that ξ(σ) depends only on P modulo NE(K). If we replace P
by P + NR for some R ∈ E(K), then Q is replaced by Q + R. Since R is defined
over K, we have

(Q + R)σ − (Q + R) = Qσ − Q for all σ ∈ GK̄/K ,

so the value ξ(σ) does not change.
Suppose that we replace Q by some other point Q′ satisfying [N ]Q′ = P . Then

the difference S = Q′ − Q is in E[N ], so

eN (Q′σ − Q′, T ) = eN

(
(Q + S)σ − (Q + S), T )

= eN (Qσ − Q,T )eN (Sσ − S, T )

= eN (Qσ − Q,T )
eN (S, T )σ

eN (S, T )
.

(Note that eN (S, T ) is well-defined, since S ∈ E[N ], while eN (Q,T ) is not defined,
since in general Q /∈ E[N ].) Thus the GK̄/K-to-μN cocycle coming from Q′ dif-
fers from the GK̄/K-to-μN cocycle coming from Q by the GK̄/K-to-μN cobound-
ary σ �→ eN (S, T )σ/eN (S, T ), so they represent the same cohomology class.

This completes the proof that the Tate–Lichtenbaum pairing is well-defined. The
bilinearity is immediate from the bilinearity of the Weil pairing.
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The Weil pairing is defined by evaluating certain functions at certain points. We
can do the same for the Tate–Lichtenbaum pairing.

Proposition 9.2. Let T ∈ E(K)[N ] and choose a function f ∈ K(E) satisfying

div(f) = N(T ) − N(O) and f ◦ [N ] ∈ (K(E)∗)N .

Then for all P ∈ E(K) � {O, T} we have

τ(P, T ) = f(P ) mod (K∗)N .

Remark 9.3.1. Although (XI.9.2) excludes the case of τ(T, T ), we can use bilinear-
ity to compute τ(T, T ) as

τ(T, T ) =
τ(T + Q,T )

τ(Q,T )
=

f(T + Q)
f(Q)

.

More generally,

τ(P, T ) =
τ(P + Q,T )

τ(Q,T )
=

f(P + Q)
f(Q)

for any Q ∈ E such that f is defined and nonzero at both P + Q and Q, i.e.,
any point Q /∈ {O, T,−P, T − P}. Notice that with this formulation, there is
no need to choose f to satisfy f ◦ [N ] ∈ (K(E)∗)N , since the divisor rela-
tion div(f) = N(T ) − N(O) determines f up to multiplication by a constant, and
taking the ratio eliminates the dependence on the constant.

Remark 9.3.2. Miller’s algorithm (XI.8.1b) can be used to efficiently compute the
Tate–Lichtenbaum pairing, since it gives a linear-time algorithm to compute the
value of f . Comparing the formula for the Tate–Lichtenbaum pairing (XI.9.3.1) to
the formula for the Weil pairing (XI.8.2), we see that τ requires two values of f ,
while eN requires four values of f . Thus the former is twice as efficient as the latter,
which is why the Tate–Lichtenbaum pairing is often preferred for real-world crypto-
graphic applications.

PROOF OF (XI.9.2). As explained in the construction of the Weil eN -pairing (III §8),
there are functions f, g ∈ K̄(E) satisfying

div(f) = N(T ) − N(O) and f ◦ [N ] = gN ,

and (II.5.8) implies that we may choose f and g in K(E), since their divisors
are GK̄/K-invariant. From the definition of eN we have

eN (Qσ − Q,T ) =
g(X + Qσ − Q)

g(X)
for X ∈ E.

In particular, setting X = Q gives

eN (Qσ − Q,T ) =
g(Qσ)
g(Q)

=
g(Q)σ

g(Q)
.
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Comparing this formula with the definition of the Tate–Lichtenbaum pairing yields

τ(P, T ) = g(Q)N = f ◦ [N ](Q) = f(P ) (mod (K∗)N ).

The Tate–Lichtenbaum pairing has many applications, both theoretical and prac-
tical. In cryptography, it is used on elliptic curves over finite fields; see (XI §7). The
following result provides an important nondegeneracy criterion in this situation. For
applications of the Tate–Lichtenbaum pairing over local and global fields, see for
example [149, 177, 281, 286].

Theorem 9.4. Let E/Fq be an elliptic curve defined over a finite field, let N ≥ 1,
let T ∈ E(Fq)[N ] be a point of exact order N , and make the following assump-
tions:

(i) μN ⊂ Fq, or equivalently, q ≡ 1 (mod N).
(ii) E(Fq)[N2] = ZT , i.e., the only rational N2-torsion points are the multiples

of T .
Then the Tate–Lichtenbaum pairing is a perfect pairing, and τ(T, T )(q−1)/N is a
primitive N th root of unity in F∗

q .

PROOF. We begin by proving that the Tate–Lichtenbaum pairing is nondegenerate
on the left. Let φ ∈ GF̄q/Fq

be the q-power Frobenius map. Choose another N -torsion
point T ′ so that T and T ′ generate E[N ]. We know that Tφ = T , since T ∈ E(Fq),
and we write

T ′φ = [a]T + [b]T ′ for some a, b ∈ Z/NZ.

We use basic properties of the Weil pairing (II.8.1) to compute

eN (T, T ′)q = eN (T, T ′)φ

= eN (Tφ, T ′φ)
= eN (T, [a]T + [b]T ′)

= eN (T, T )aeN (T, T ′)b

= eN (T, T ′)b.

Since eN (T, T ′) is a primitive N th root of unity (cf. (III.8.1.1)), this implies that

b ≡ q (mod N).

But our assumption that μN ⊂ Fq tells us that q ≡ 1 (mod N), so the action of
Frobenius on T ′ is given by

T ′φ = [a]T + T ′ for some a ∈ Z/NZ.

We claim that a ∈ (Z/NZ)∗. To see this, let d = N/ gcd(a,N). Then

([d]T ′)φ = [da]T + [d]T ′ = [d]T ′,
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so [d]T ′ ∈ E(Fq)[N ]. But by assumption, the point T generates E(Fq)[N ], while T
and T ′ generate all of E[N ]. Hence [d]T ′ = O, which implies that d = N
and gcd(a,N) = 1.

Suppose now that P ∈ E(Fq) satisfies τ(P, T ) = 1. What this really means
is that in the definition of the Tate–Lichtenbaum pairing, we have α ∈ (F∗

q)
N .

Thus N
√

α ∈ F∗
q , which implies that eN (Qφ − Q,T ) = 1. So if we write

Qφ − Q = [A]T + [B]T ′,

then again using properties of the Weil pairing we find that

1 = eN (Qφ − Q,T ) = eN ([A]T + [B]T ′, T ) = eN (T ′, T )B .

This implies that B ≡ 0 (mod N), so Qφ − Q = [A]T . Now consider the point

Q′ = Q − [a−1A]T ′,

where a−1 is the inverse of a modulo N . Then

Q′φ =
(
Q + [A]T

)
− [a−1A]

(
[a]T + T ′

)
= Q − [a−1A]T ′ = Q′.

Thus Q′ ∈ E(Fq), so

P = [N ]Q = [N ]Q′ ∈ NE(Fq).

This proves nondegeneracy of the Tate–Lichtenbaum pairing on the left.
We now consider the value of τ(T, T ). Let k denote the order of τ(T, T )

in F∗
q/(F∗

q)
N . Bilinearity of the Tate–Lichtenbaum pairing implies that

τ([k]T, T ) = τ(T, T )k = 1,

and then the nondegeneracy that we already proved implies that [k]T ∈ NE(Fq). So
we can write [k]T = [N ]S for some S ∈ E(Fq). The point T has exact order N ,
so [k]T has exact order N/k, and hence S has exact order N2/k. By assumption,
the only Fq-rational points in E[N2] are the multiples of T , all of which have order
dividing N . Therefore k = N , which proves that τ(T, T ) is an element of exact
order N in F∗

q/(F∗
q)

N . It follows immediately that τ(T, T )(q−1)/N is a primitive N th

root of unity.
It also proves nondegeneracy on the right. To see this, let Q ∈ E(Fq)[N ] sat-

isfy τ(P,Q) = 1 for all P ∈ E(Fq). Then Q = [n]T for some integer n, so tak-
ing P = T yields

1 = τ(P,Q) = τ(T, [n]T ) = τ(T, T )n.

We know that τ(T, T ) has exact order N , so N | n, which shows that Q = [n]T = O.
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Remark 9.5. In the situation of (XI.9.4), the natural map

E(Fq)[N ] → E(Fq)/NE(Fq)

is an isomorphism of cyclic groups of order N , so we can use the Tate–Lichtenbaum
pairing to define a nondegenerate symmetric bilinear pairing

E(Fq)[N ] × E(Fq)[N ] −→ μN , (P,Q) �−→ τ(P,Q)(q−1)/N .

This is the pairing that is typically used for cryptographic applications.

Remark 9.6. Suppose that we randomly choose an elliptic curve E/Fq , compute the
order of the group E(Fq) (e.g., using (XI §3)), and find that there is a large prime N
dividing #E(Fq). This almost puts us into the situation to apply (XI.9.4), but we
may need to extend the field Fq in order to ensure that it contains μN . Let d ≥ 1
be the embedding degree (XI §6) of N in Fq, i.e., d is the smallest integer such
that μN ⊂ F∗

qd , or equivalently, such that qd ≡ 1 (mod N). How large should we
expect d to be?

If we write
#E(Fq) = q + 1 − a

as usual, then the assumption that #E(Fq) is divisible by N implies that

q + 1 − a = #E(Fq) ≡ 0 (mod N).

Similarly, since we have chosen d to satisfy μN ⊂ F∗
qd , we have

qd − 1 = #F∗
qd ≡ 0 (mod N).

Hence
(a − 1)d ≡ 1 (mod N).

We know from (V.1.1) that |a| ≤ 2
√

q, but within this allowed range, the value of a is
more-or-less randomly distributed; see (C.21.4) for a precise statement. The expected
order of a randomly chosen element of a randomly chosen cyclic group is a constant
multiple of the order of the group (see Exercise 11.17), so if we choose E/Fq ran-
domly, the embedding degree d is almost certain to be too large for practical appli-
cations. (See [13] for a more detailed analysis.)

Remark 9.7. Supersingular Elliptic Curves. Let E/Fp be supersingular elliptic
curve with p ≥ 5 prime, and suppose that E(Fp) contains a point of prime order N .
We have seen (XI.6.4) that the embedding degree of N in Fp is 2, i.e., μN ⊂ Fp2 ,
but unfortunately condition (ii) of (XI.9.4) is never true in this situation; see Exer-
cise 11.18. In general, we know from (V.3.1) that every supersingular elliptic curve
is isomorphic to a curve defined over Fp2 , and supersingular curves always have
small embedding degree, so it may be possible to apply (XI.9.4) to a supersingular
curve defined over Fp2 . As an alternative, one can use a distortion map as in (XI §7);
see [51, §24.2.1b] or [116, §5.9.2].
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Remark 9.8. Pairing-Friendly Elliptic Curves. In general we would like to construct
an elliptic curve E/Fq such that E(Fq) contains a point of large prime order N
and such that the embedding degree d of N in Fq is not too large. These are called
pairing-friendly elliptic curves. The exact constraints on the parameters q, N , and d
depend on the desired security level, but in any case it is important to balance the
difficulty of solving the ECDLP in a subgroup of E(Fq) of order N against the diffi-
culty of solving the DLP in F∗

qd . For the former, only exponential-time algorithms are
known, while there are subexponential algorithms for the latter. See the discussion
in (XI.4.1). Further, for computational efficiency we should choose q to be as small
as possible.

For example, current algorithms to solve the ECDLP when N ≈ 2160 take about
the same amount of time as current algorithms to solve the DLP when qd ≈ 21024.
So for this security level, the embedding degree should be d ≈ 6.4 log q/ log N .
Typically

√
q < N < q, so d should be roughly between 6 and 12.

Atkin and Morain [10, 183] devised a method using the theory of complex mul-
tiplication to find elliptic curves with points of large order and small embedding
degree. Their idea is to fix positive integers D and d and to search for integers a, N ,
and p satisfying the following four conditions:

(1) N and p are primes.
(2) N | p + 1 − a.

(3) N | pd − 1.
(4) The equation Dy2 = 4p − a2 has a solution y ∈ Z.

If we can find values for a, N , and p satisfying (1)–(4) and if the class number
of the quadratic field Q(

√
−D ) is not too large, say less than 105, then Atkin and

Morain’s CM method yields an elliptic curve E/Fp with N | E(Fp) and μN ⊂ Fpd .
For a description of the CM method, see for example [22, Chapter VIII] or [51,
§18.1], and for various algorithms that have been devised to find (a,N, p) satisfy-
ing (1)–(4), see for example [29, 69, 87, 181].

Exercises
11.1. Use the double-and-add algorithm (XI.1.1) to compute [n]P in E(Fp) for each of the
following curves and points.

(a) E : Y 2 = X3 + 143X + 367, p = 613, P = (195, 9), n = 23.

(b) E : Y 2 = X3 + 1541X + 1335, p = 3221, P = (2898, 439), n = 3211.

11.2. Let n be a positive integer.
(a) Prove that n has a unique ternary expansion

n = ε0 + ε1 · 2 + ε2 · 22 + ε3 · 23 + · · · + εt · 2t, ε0, . . . , εt ∈ {−1, 0, 1},

with the property that no two consecutive εi are nonzero. Such an expansion is called
nonadjacent form (NAF). (Hint. For existence, start with the binary expansion of n and
replace consecutive nonzero terms 2i +2i+1 + · · ·+2i+j−1 +0 ·2i+j with −2i +2i+j .)
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(b) If we assume that the expansion in (a) has εt �= 0, prove that t ≤ log2(2n).
(c) Prove that most positive integers have a ternary expansion as in (a) with approximately

one-third of the εi being nonzero.
(d) Convert your proof in (a) into an algorithm and find a ternary expansion for each of the

following numbers. Compare the number of nonzero terms in the ternary expansion with
the number of nonzero terms in the binary expansion.
(i) 349. (ii) 9337. (iii) 38728. (iv) 8379483273489.

11.3. Let τ represent a quantity satisfying τ2 + τ + 2 = 0.
(a) Prove that every positive integer n can be written in the form

n = ε0 + ε1τ + ε2τ
2 + · · · + εtτ

t, ε0, . . . , εt ∈ {−1, 0, 1},

with t ≤ 2�log2 n�+1 and at most one-third of the εi nonzero. (Hint. Repeatedly write
integers as 2a + b and replace the 2 with −τ − τ2.)

(b) More generally, prove that (a) is true for any n ∈ Z[τ ], where the upper bound for t is
approximately log2 NZ[τ ]/Z(n).

(c) Let E/F2 be the curve in (XI.1.5), let τ(x, y) = (x2, y2) be the Frobenius map, let
P ∈ E(F2r ), and let n be a positive integer. Prove that there is an element

ν = ε0 + ε1τ + ε2τ
2 + · · · + εtτ

t, ε0, . . . , εt ∈ {−1, 0, 1},

with [ν]P = [n]P and such that t is (approximately) bounded above by log2 n.
(Hint. “Divide” n by τr − 1 in Z[τ ] to find a remainder ν whose norm is approximately
bounded by 2r . Then use (b) and the fact that τr(P ) = P .)

(d) Devise an algorithm implementing your results in this exercise, and use your algorithm
to compute a τ -adic expansion for each of the following values of n.
(i) n = 931 (ii) n = 32755 (iii) n = 82793729188

11.4. The double-and-add algorithm described in (XI.1.1) reads the bits of n from right to left,
where we view n as a binary number such as 1001101. Prove that the following left-to-right
version also computes nP .

(1) Write the binary expansion of n as
t∑

i=0

εi · 2i.
(2) Set Q = O.
(3) Loop i = t, t − 1, . . . , 2, 1, 0.
(4) Set Q = [2]Q.
(5) If εi = 1, set Q = Q + P .
(6) End Loop
(7) Return Q.

11.5. Let S be a set containing n elements.
(a) Suppose that we select an element of S at random, note its value, return the element to

the set, and repeat the process m times. Find a formula for the probability that some
element has been selected at least twice. (If this happens, we say that there has been a
collision.)

(b) If n = 365 and m = 50, what is the probability of a collision? (This is the probability
that among 50 people in a room, at least two have the same birthday. The surprising
answer is the origin of the name “birthday paradox.”) How many people are required to
have a 50% chance that two share a common birthday?
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(c) Suppose that n is large. Give a good approximation for the probability of a collision
if m = c

√
n, where c is a small constant, say 1 ≤ c ≤ 10. What value of c gives a 50%

chance of a collision? What value of c gives a 1 − 10−6 probability of a collision?

11.6. Pollard’s algorithm (XI.2.1) says that if N has a prime factor p with p − 1 =
∏

q
ej

j ,
then it suffices to take L = max ejqj in order to (probably) factor N . Show that it is enough
that L satisfy L ≥

∑
t≥1

�L/qt�. Give a similar statement for the elliptic curve factorization
algorithm (XI.2.3).

11.7. Implement Lenstra’s elliptic curve factorization algorithm (XI.2.3) and use it to factor N
using the given elliptic curve E and point P .

(a) N = 589, E : Y 2 = X3 + 4X + 9, P = (2, 5).

(b) N = 26167, E : Y 2 = X3 + 4X + 128, P = (2, 12).

(c) N = 1386493, E : Y 2 = X3 + 3X − 3, P = (1, 1).

(d) N = 28102844557, E : Y 2 = X3 + 18X − 453, P = (7, 4).

11.8. We noted (XI.4.3.5) that it suffices for Bob to send Alice the x-coordinate of his
point P ∈ E(Fq), together with one extra bit that specifies which of the two possible
y-coordinates to use. However, this means that Alice needs to compute a square root in Fq .

(a) Suppose that q ≡ 3 (mod 4), and let a ∈ Fq be an element that is a square. Prove
that b = a(q+1)/4 is a square root of a.

(b) Suppose that q is prime and satisfies q ≡ 5 (mod 8). Let a ∈ Fq be an element that is a
square, and let

b =

{
a(q+3)/8 if a(q−1)/4 = 1,
2a(4a)(q−5)/8 if a(q−1)/4 = −1.

Prove that b2 = a.

11.9. Let G be a group, and suppose that you know an algorithm that takes T (n) steps to
solve any discrete logarithm problem h = gm in G if the element g has order n.

(a) Let g ∈ G have order n and suppose that n factors as n = n1n2 · · ·nt with
gcd(ni, nj) = 1 for all i �= j. Find an algorithm that solves h = gm in (approxi-
mately)

∑
T (ni) steps. (Hint. Solve (gn/ni)m = hn/ni for each i and combine the

solutions using the Chinese remainder theorem.)
(b) Let g ∈ G have order n with n = �k a prime power. Find an algorithm that

solves h = gm in (approximately) kT (�) steps.

11.10. This exercise describes the Menezes–Vanstone variant of the ElGamal cryptosystem.
1. Alice and Bob agree on a finite field Fq , an elliptic curve E/Fq , and a point P ∈ E(Fq).
2. Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fq).
3. Alice publishes the point A. This is her public key. The secret multiplier a is her private

key.
4. Bob chooses a plaintext (m1, m2) ∈ F2

q and a random integer k. He computes the two
points B1 = [k]P and B2 = [k]A.

5. Bob writes B2 as (x, y) ∈ E(Fq), sets c1 = xm1 and c2 = ym2, and sends Alice the
ciphertext (B1, c1, c2).

(a) Explain how Alice can use the ciphertext (B1, c1, c2) and her secret multiplier a to
recover Bob’s plaintext (m1, m2).
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(b) What is the message expansion (XI.4.5.3) of MV-ElGamal?
(c) Explain how Eve can break MV-ElGamal if she can solve the Diffie–Hellman prob-

lem (XI.4.3.4).

11.11. This exercise describes the Elliptic Curve Integrated Encryption Scheme (ECIES).
It combines the discrete logarithm problem with several other cryptographic constructions,
including a hash function that we denote by H, a message authentication code that we denote
by M, and a private key cryptosystem that we denote by P .10

1. Alice and Bob agree on a finite field Fq , an elliptic curve E/Fq , and a point P ∈ E(Fq).
2. Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fq).
3. Alice publishes the point A. This is her public key. The multiplier a is her private key.
4. Bob chooses a plaintext m and a random number k.
5. Bob computes [k]A and uses the hash function to compute H

(
x
(
[k]A

))
. He breaks this

value into two pieces, say b1 and b2, which he uses as keys.
6. Bob uses the private key cryptosystem and the MAC to compute the two values

c = P(b1; m) and d = M(b2; c).

7. Bob computes B = [k]P .
8. Bob sends Alice the triple (B, c, d).

(a) Explain how Alice can recover the value of x
(
[k]A

)
that Bob used in step (5). This

allows Alice to use the hash function to compute b1 and b2.
(b) Explain how Alice can then recover the message m.
(c) Explain how Alice can check the validity of the ciphertext c by recomputing M(b2; c)

and verifying that it agrees with the value of d sent by Bob.
(d) Explain why it is difficult for Eve to find a triple (B, c, d) that Alice accepts as valid

unless she knows the plaintext m that corresponds to c via Alice’s decryption process.

11.12. In the description of Pollard’s ρ method in (XI §5), we gave an algorithm for computing
the coefficients αi and βi in the expression Ri = [αi]P + [βi]Q. Give a similar algorithm, in
the form of two tables, for the coefficients γi and δi of the point

Si = R2i = [γi]P + [δi]Q.

In other words, give the values of γi+1 and δi+1 in terms of γi and δi depending on whether
the values of xSi and xf(Si) are in A, B, or C.

11.13. Let E/Fp be an elliptic curve defined over a field of prime order. As described
in (XI.5.4), one way to define a mixing function f : E(Fp) → E(Fp) for use in Pollard’s ρ al-
gorithm (XI.5.3) is to write E(Fp) as a disjoint union of three sets A, B, C. For example, we
might take

A =
{
P ∈ E(Fp) : 0 ≤ x(P ) < 1

3
p
}
,

B =
{
P ∈ E(Fp) : 1

3
p ≤ x(P ) < 2

3
p
}
,

C =
{
P ∈ E(Fp) : 2

3
p ≤ x(P ) < p

}
.

10Informally, a hash function is an easy-to-compute, hard-to-invert function; a message authentication
code (MAC) is a hash function that requires a secret key; and a private key cryptosystem is a one-to-
one function that is easy to compute in both directions if one knows the secret key, but hard to compute
otherwise. For precise definitions and examples, see [169].



Exercises 407

Using this choice of A, B, and C, write a computer program implementing Pollard’s ρ al-
gorithm and use it to solve the following discrete logarithm problems, i.e., find a value of m
satisfying Q = [m]P .

(a) p = 541, E : y2 = x3 + 442x + 211, P = (238, 345),

Q = (180, 148).

(b) p = 7919, E : y2 = x3 + 1356x + 1654, P = (6007, 296),

Q = (2821, 6396).

(c) p = 104729, E : y2 = x3 + 25780x + 74070, P = (6588, 76182),

Q = (14624, 59879).

11.14. Let G be an abelian group whose order is bounded by a known quantity, say #G ≤ n,
and let x ∈ G.

(a) Adapt Shanks’s babystep–giantstep algorithm (XI.5.2) to find the order of x in time
O(

√
n ) and space O(

√
n ).

(b) Adapt Pollard’s ρ algorithm (XI.5.4) to find the order of x in time O(
√

n ) while using
only space O(1). (Hint. A direct adaptation of (XI.5.4) does not work, since the expo-
nents αi, . . . , δi cannot be reduced by the unknown order of the group. Instead write G
as a disjoint union G = A1 ∪ · · · ∪ At, choose several random exponents e1, . . . , et

between 2 and n, and define f : G → G by f(z) = gej z if z ∈ Aj . Show that a
match z2i = zi is likely to be found with exponents αi, · · · , δi that are O(n

√
n ).)

(c) Explain how to use an algorithm that finds the order of elements in G to determine the
order of the group G.

11.15. Working over the field F137, consider the curve and points

E : y2 = x3 + 86x + 98, P = (56, 85) ∈ E(F137), Q = (54, 86) ∈ E(F137).

(a) Verify that E is anomalous, i.e., #E(F137) = 137.
(b) Lift P and Q to points P ′ = (56, —) and Q′ = (54, —) in E(Z/1372Z).
(c) Compute the elliptic logarithms of [137]P ′ and [137]Q′ modulo 1372.
(d) As in (XI.6.5) and (XI.6.7), use the results from (c) to solve the discrete logarithm prob-

lem, i.e., find an integer m such that Q = [m]P in E(F137).

11.16. Let E/F631 be the elliptic curve y2 = x3 + 30x + 34 from (XI.8.3).
(a) The points P ′ = (617, 5) and Q′ = (121, 244) are in E(F631)[5]. Use Miller’s algo-

rithm to compute e5(P
′, Q′).

(b) Let P = (36, 60) and Q = (121, 387) be the points from (XI.8.3). Express P ′ and Q′

as linear combinations of P and Q, and use linearity of eN to express e5(P
′, Q′) as a

power of e5(P, Q).
(c) Verify that the value of e5(P

′, Q′) from (a) and the value of e5(P, Q) from (XI.8.3) are
consistent with the relation that you found in (b).

11.17. (a) Let Cm be a cyclic group of order m. Prove that the average order of an element
of Cm is

A(Cm) =
1

m

∑

d|m

dφ(d).
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(b) Prove that
1

X

∑

m≤X

A(Cm) =
ζ(3)

2ζ(2)
X + O(log X),

where ζ(s) is the Riemann zeta function.
(c) Deduce that the expected order of a randomly chosen element in a randomly chosen

cyclic group is proportional to the order of the group.

11.18. Let p ≥ 5, let E/Fp be a supersingular elliptic curve, and let N be a prime such
that E(Fp) contains a point of order N .

(a) Prove that N2 | #E(Fp2). (Hint. Use Exercise 5.15.)
(b) Deduce that one of the following statements is true:

(i) E[N ] ⊂ E(Fp2).

(ii) E(Fp2) contains a point of order N2.



Appendix A

Elliptic Curves in
Characteristics 2 and 3

In this appendix we prove some of the results for elliptic curves in characteristics 2
and 3 that were omitted in the main body of the text. To simplify the computations,
we begin by giving normal forms for the Weierstrass equations of such curves.

Proposition 1.1. Let E/K be a curve given by a Weierstrass equation. Then, under
the boxed assumptions, there is a substitution

x = u2x′ + r, y = u3y′ + u2sx′ + t, with u ∈ K∗ and r, s, t ∈ K,

that transforms the given Weierstrass equation into a Weierstrass equation of the
indicated form.
(a) char K �= 2, 3

y2 = x3 + a4x + a6, Δ = −16(4a3
4 + 27a2

6), j = 1728
4a3

4

4a3
4 + 27a2

6

.

(b) char K = 3 and j(E) �= 0

y2 = x3 + a2x
2 + a6, Δ = −a3

2a6, j = −a3
2/a6.

char K = 3 and j(E) = 0

y2 = x3 + a4x + a6, Δ = −a3
4, j = 0.

(c) char K = 2 and j(E) �= 0

y2 + xy = x3 + a2x
2 + a6, Δ = a6, j = 1/a6.

char K = 2 and j(E) = 0

y2 + a3y = x3 + a4x + a6, Δ = a3
4, j = 0.
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PROOF. (a) See (III §1).
(b) We start with a general Weierstrass equation and complete the square on the
left. This gives an equation of the form

y2 = x3 + a2x
2 + a4x + a6

with invariants
Δ = a2

2a
2
4 − a3

2a6 − a3
4, j = a2

2/Δ.

(Remember that char K = 3.) If j = 0, then a2 = 0, so the equation is already
in the right shape. On the other hand, if j �= 0, then a2 �= 0 and the substitu-
tion x = x′ + a4/a2 eliminates the linear term.
(c) Again starting with a general Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

an easy computation (in characteristic 2) yields

j = a12
1 /Δ.

If j �= 0, so a1 �= 0, then the substitution

x = a2
1x

′ + a3/a1, y = a3
1y

′ + (a2
1a4 + a2

3)/a3
1,

gives an equation of the desired form. Finally, if j = a1 = 0, then the substitution

x = x′ + a2, y = y′,

has the desired effect.
Note that there is no deep theory involved in finding these substitutions. One

merely looks at the transformation formulas given in Table 3.1 on page 45, sets vari-
ous coefficients equal to 0 or 1, and chooses appropriate values for u, r, s, and t.

It is now a simple matter to complete the proofs of (III.1.4) and (III.10.1), parts
of which we restate here.

Proposition 1.2. (a) A curve given by a Weierstrass equation is nonsingular if and
only if the discriminant of the equation is nonzero.

(b) Two elliptic curves E/K and E′/K are isomorphic over K̄ if and only if they
have the same j-invariant.

(c) Let E/K be an elliptic curve. Then Aut(E) is a finite group of order:

2 if j(E) �= 0, 1728,

4 if j(E) = 1728 and char K �= 2, 3,

6 if j(E) = 0 and char K �= 2, 3,

12 if j(E) = 0 = 1728 and char K = 3,

24 if j(E) = 0 = 1728 and char K = 2.

(See also Exercise A.1.)
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PROOF. (a) We already proved most of this result in (III.1.4a). All that remains
is to show that if char(K) = 2 and Δ = 0, then the curve is singular. But this is
immediate from the normal forms given in (A.1.1c).
(b, c) Again referring to the proofs of (III.1.4b) and (III.10.1), we need only deal
with the cases that char(K) = 2 or 3. We use the normal forms given in (A.1.1bc)
and consider four cases.

Case I. char K = 3 and j(E) �= 0. In this case E and E′ have Weierstrass equa-
tions of the form

y2 = x3 + a2x
2 + a6.

The only substitutions preserving this type of equation are

x = u2x′ and y = u3y′.

Since j(E) = j(E′), we have a3
2a

′
6 = a′

2
3
a6 �= 0, so taking u2 = a2/a′

2 gives
an isomorphism from E to E′. Further, if E = E′, then we must have u2 = 1,
so Aut(E) ∼= {±1}.

Case II. char K = 3 and j(E) = 0. In this case E and E′ have Weierstrass equa-
tions of the form

y2 = x3 + a4x + a6.

The substitutions preserving this form look like

x = u2x′ + r and y = u3y′.

Note that we have a4, a
′
4 �= 0. An isomorphism from E to E′ is obtained by choos-

ing u and r to satisfy

u4 = a′
4/a4 and r3 + a4r + a6 − u6a′

6.

Further, if E = E′, then automorphisms of E have

u4 = 1 and r3 + a4r + (1 − u2)a6 = 0.

Since a4 �= 0, there are exactly 12 such pairs (u, r) making up Aut(E).

Case III. char K = 2 and j(E) �= 0. In this case E and E′ are given by equations
of the form

y2 + xy = x3 + a2x
2 + a6.

The substitutions preserving this form look like

x = x′, y = y′ + sx′.

Since j(E) = j(E′), we have a6 = a′
6 �= 0, so isomorphisms from E to E′ come

from taking s to be a root of the equation

s2 + s + a2 + a′
2 = 0.
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Similarly, the automorphisms of E are obtained by taking s ∈ {0, 1}.

Case IV. char K = 2 and j(E) = 0. Here E and E′ have equations of the form

y2 + a3y = x3 + a4x + a6,

and allowable substitutions look like

x = u2x′ + s2, y = u3y′ + u2sx′ + t.

By assumption, a3, a
′
3 �= 0, so in order to map E to E′, we must choose u, s, and t

to satisfy the equations

u3 = a3/a′
3, s4 + a3s + a4 − u4a′

4 = 0,

t2 + a3t + s6 + a4s
2 + a6 − u6a′

6 = 0.

Finally, the automorphism group of E is given by the set of triples (u, s, t) satisfying
the equations

u3 = 1, s4 + a3s + (1 − u)a4 = 0, t2 + a3t + s6 + a4s
2 = 0.

Since a3 �= 0, we see that Aut(E) has order 24.

The next proposition gives a normal form for Weierstrass equations that is similar
to Legendre form, but valid in characteristic 2. This will allow us to easily complete
the proofs of (VII.5.4c) and (VII.5.5).

Proposition 1.3. (Deuring Normal Form) Let E/K be an elliptic curve over a field
with char K �= 3. Then E has a Weierstrass equation over K̄ of the form

Eα : y2 + αxy + y = x3, α ∈ K̄, α3 �= 27.

This Weierstrass equation has discriminant and j-invariant

Δ = α3 − 27 and j =
α3(α − 24)3

α3 − 27
.

PROOF. The computation of Δ and j for Eα is an exercise. In order to show that E
has an equation of the form Eα, we could find appropriate substitutions. However,
using (A.1.2b), a quicker route is available. Given an elliptic curve E/K, we let α ∈
K̄ be a solution to the equation

α3(α3 − 24)3 − (α3 − 27)j(E) = 0.

Since char K �= 3, we see that α3 �= 27, so Eα is an elliptic curve with the same j-
invariant as E. It follows from (A.1.2b) that E and E′ are isomorphic over K̄.

Corollary 1.4. Let E/K be an elliptic curve defined over a local field, i.e., the
field K comes equipped with a discrete valuation.
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(a) There exists a finite extension K ′/K such that E has either good or split multi-
plicative reduction over K ′.

(b) E has potential good reduction if and only if its j-invariant is integral.

PROOF. Let R be the ring of integers of K, let M be its maximal ideal, and
let k = R/M be its residue field. From the proofs of (VII.5.4c) and (VII.5.5),
we are left to deal with the case that char K = 2. In particular, we may assume
that char K �= 3. Replacing K by a finite extension, we choose an equation for E in
Deuring normal form,

Eα : y2 + αxy + y = x3, α3 �= 27.

This equation has

c4 = α(α3 − 24) and Δ = α3 − 27.

(a) We consider three cases.

Case I. α ∈ R and α3 �≡ 27 (mod M). Then Δ �≡ 0 (mod M), so the given
equation has good reduction.

Case II. α ∈ R and α3 ≡ 27 (mod M). Then

Δ ≡ 0 (mod M) and c3
4 ≡ 36 �≡ 0 (mod M),

so (VII.5.1b) tells us that the given equation for E has multiplicative reduction. To
obtain split multiplicative reduction then requires at most a quadratic extension of K.

Case III. α /∈ R. Let π be a uniformizer for R and choose an integer r ≥ 1 such
that πrα ∈ R∗. Then the substitution x = π−2rx′, y = π−3ry′, gives an equation of
the form

y′2 + βx′y′ + π3ry′ = x′3 with β = πrα ∈ R∗.

This equation has

c′4 = β(β3 − 24π3r) ≡ β4 �≡ 0 (mod M),

Δ = π9r(β3 − 27π3r) ≡ 0 (mod M),

so again from (VII.5.1b), the equation has multiplicative reduction. Further, the re-
duced curve is y(y + βx) ≡ x3 (mod M), so the reduction is split multiplicative.
(b) Suppose first that j(E) is integral. Since j(E) and α are related by

α3(α3 − 24)3 − (α3 − 27)j(E) = 0,

the integrality of j(E) implies that α is integral. Further, since the characteristic of k
is different from 3, the equation implies that α3 �≡ 27 (mod M). Thus the Deuring
normal equation has integral coefficients and good reduction.

Conversely, suppose that E has potential good reduction. Replacing K by a finite
extension, we can find a Weierstrass equation for E with integral coefficients and
discriminant Δ ∈ R∗. Then c4 ∈ R and j(E) = c3

4/Δ ∈ R.
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Exercises
A.1. Let E/K be an elliptic curve with j(E) = 0. Strengthen (A.1.2) by showing that the
automorphism group of E may be described as follows:

(a) If char(K) = 3, then Aut(E) is the twisted product of C4 and C3, where Cn denotes
a cyclic group of order n. Here C3 is a normal subgroup of Aut(E) and the twisting is
via the natural action of C4 on C3.

(b) If char(K) = 2, then Aut(E) is the twisted product of C3 and the quaternion group.
The quaternion group is a normal subgroup of Aut(E), and if we write the quaternions
as {±1,±i ± j,±k}, then a generator of C3 acts by permuting i, j, and k.

A.2. Let K be a field of characteristic 2, and let E/K be a curve with j(E) �= 0 given by a
Weierstrass equation

y2 + xy = x3 + a2x
2 + a6.

Let ξ ∈ H1
(
GK̄/K , Aut(E)

)
= Hom(GK̄/K , Z/2Z), and let L/K be the quadratic ex-

tension corresponding to the character ξ. Suppose that L/K is the Artin–Schreier extension
generated by a root of the polynomial

t2 − t − D = 0 for some D ∈K.

Prove that the twist of E by ξ as described in (X §5) is given by the equation

y2 + xy = x3 + (a2 + D)x2 + a6.

A.3. Let E/K be an elliptic curve with Weierstrass coordinate functions x and y. Show that
the differential dx is holomorphic if and only if char(K) = 2 and j(E) = 0.

A.4. Let E/K and E′/K be elliptic curves over a not necessarily perfect field K. Suppose
that j(E) = j(E′). Prove that E and E′ are isomorphic over a separable extension L of K
whose degree divides 24. If j(E) �= 0, 1728, prove that L may be chosen to have degree 2.



Appendix B

Group Cohomology
(H0 and H1)

In this appendix we discuss the basic properties of group cohomology that are used
in Chapter VIII §2 and Chapter X. Since only H0 and H1 are needed in this book,
we have restricted attention to these two groups. The reader desiring to learn more
about group cohomology might consult [9], [105], [238], or [233].

B.1 Cohomology of Finite Groups
Let G be a finite group, and let M be an abelian group on which G acts. We denote
the action of σ ∈ G on m ∈ M by m �→ mσ . Then M is a (right) G-module if the
action of G on M satisfies

m1 = m, (m + m′)σ = mσ + m′σ, (mσ)τ = mστ .

Let M and N be G-modules. A G-module homomorphism is a homomorphism

φ : M −→ N

commuting with the action of G, i.e.,

φ(mσ) = φ(m)σ for all m ∈ M and all σ ∈ G.

For a given G-module M , we are often interested in calculating the largest submod-
ule of M on which G acts trivially.

Definition. The 0th cohomology group of the G-module M , which is denoted by MG

or H0(G,M), is the set

H0(G,M) = {m ∈ M : mσ = m for all σ ∈ G}.

It is the submodule of M consisting of all G-invariant elements, i.e., elements that
are fixed by G.
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Let

0 −−−−→ P
φ−−−−→ M

ψ−−−−→ N −−−−→ 0
be an exact sequence of G-modules, i.e., the maps φ and ψ are G-module homo-
morphisms with φ injective, ψ surjective, and Image(φ) = Kernel(ψ). It is easy to
check that taking G-invariants gives an exact sequence

0 −−−−→ PG φ−−−−→ MG ψ−−−−→ NG,

but the map on the right may not be surjective. In order to measure the lack of sur-
jectivity, we make the following definitions.

Definition. Let M be a G-module. The group of 1-cochains (from G to M ) is de-
fined by

C1(G,M) = {maps ξ : G → M}.
The group of 1-cocycles (from G to M ) is given by

Z1(G,M) =
{
ξ ∈ C1(G,M) : ξστ = ξτ

σ + ξτ for all σ, τ ∈ G
}
.

The group of 1-coboundaries (from G to M ) is defined by

B1(G,M) =
{

ξ ∈ C1(G,M) :
there exists an m ∈ M such that
ξσ = mσ − m for all σ ∈ G

}
.

One easily checks that B1(G,M) ⊂ Z1(G,M). The 1st cohomology group of the
G-module M is the quotient group

H1(G,M) =
Z1(G,M)
B1(G,M)

.

In other words, H1(G,M) is the group of 1-cocycles ξ : G → M modulo the
equivalence relation that two cocycles are identified if their difference has the
form σ �→ mσ − m for some m ∈ M .

Remark 1.1. Notice that if the action of G on M is trivial, then

H0(G,M) = M and H1(G,M) = Hom(G,M).

These both follow immediately from the definitions; for the latter, the 1-cocycles are
homomorphisms and all of the 1-coboundaries are 0.

Proposition 1.2. Let

0 −−−−→ P
φ−−−−→ M

ψ−−−−→ N −−−−→ 0

be an exact sequence of G-modules. Then there is a long exact sequence

0 −−−−→ H0(G,P ) −−−−→ H0(G,M) −−−−→ H0(G,N)

�

δ

H1(G,P ) −−−−→ H1(G,M) −−−−→ H1(G,N),
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where the connecting homomorphism δ is defined as follows:
Let n ∈ H0(G,N) = NG. Choose an m ∈ M such that ψ(m) = n and define

a cochain ξ ∈ C1(G,M) by
ξσ = mσ − m.

Then the values of ξ are in P , so ξ ∈ Z1(G,P ), and we define δ(n) to be the
cohomology class in H1(G,P ) of the 1-cocycle ξ.

PROOF. Everything follows from a straightforward, but tedious, diagram chase that
we leave to the reader (Exercise B.1). Or see any of the references listed at the be-
ginning of this appendix.

Suppose now that H is a subgroup of G. Then any G-module is automatically
an H-module. Further, if ξ : G → M is a 1-cochain, then by restricting the domain
of ξ to H , we obtain an H-to-M cochain. It is clear that this process takes cocycles
to cocycles and coboundaries to coboundaries, so in this way we obtain a restriction
homomorphism

Res : H1(G,M) −→ H1(H,M).

Suppose further that H is a normal subgroup of G. Then the submodule MH

of M consisting of elements fixed by H has a natural structure as a G/H-module.
Let ξ : G/H → MH be a 1-cochain from G/H to MH . Then composing with the
projection G → G/H and with the inclusion MH ⊂ M gives a G-to-M cochain

G −→ G/H
ξ−→ MH ⊂ M.

Again it is easy to see that if ξ is a cocycle or coboundary, then the new G-to-M
cochain has the same property. This gives an inflation homomorphism

Inf : H1(G/H,MH) −→ H1(G,M).

Proposition 1.3. (Inflation–Restriction Sequence) Let M be a G-module and let H
be a normal subgroup of G. Then the following sequence is exact:

0 −−−−→ H1(G/H,MH) Inf−−−−→ H1(G,M) Res−−−−→ H1(H,M).

PROOF. From the definitions it is clear that Res ◦ Inf = 0.
Next let ξ : G/H → MH be a 1-cocycle with Inf{ξ} = 0, where we use

braces { · } to indicate the cohomology class of a cocycle. Thus there is an m ∈ M
such that ξσ = mσ − m for all σ ∈ G. But ξ depends only on σ (mod H), so

mσ − m = mτσ − m for all τ ∈ H .

Taking σ = 1, we find that mτ − m = 0 for all τ ∈ H , so m ∈ MH , and hence ξ is
a G/H-to-MH coboundary.

Finally, suppose that ξ : G → M is a 1-cocycle with Res{ξ} = 0. Thus there is
an m ∈ M such that

ξτ = mτ − m for all τ ∈ H .
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Subtracting the G-to-M coboundary σ �→ mσ − m from ξ, we may assume
that ξτ = 0 for all τ ∈ H . Then the coboundary condition applied to σ ∈ G
and τ ∈ H yields

ξτσ − ξσ
τ + ξσ = ξσ.

Thus ξσ depends only on the class of σ in G/H . Since H is a normal subgroup, there
is a τ ′ ∈ H such that στ = τ ′σ. Using the cocycle condition again, together with
the fact that ξ is a map on G/H , gives

ξσ = ξτ ′σ = ξστ = ξτ
σ + ξτ = ξτ

σ.

This proves that ξ gives a map from G/H to MH , and hence {ξ} ∈ H1(G/H,MH).

B.2 Galois Cohomology
Let K be a perfect field, let K̄ be an algebraic closure of K, and let GK̄/K be
the Galois group of K̄ over K. We recall that GK̄/K is the inverse limit of GL/K

as L varies over all finite Galois extensions of K. Thus GK̄/K is a profinite group,
i.e., an inverse limit of finite groups. As such, it comes equipped with a topology in
which a basis of open sets around the identity consists of the collection of normal
subgroups having finite index in GK̄/K . These are the subgroups that are kernels of
maps GK̄/K → GL/K for finite Galois extensions L/K.

Definition. A (discrete) GK̄/K-module is an abelian group on which GK̄/K acts
such that the action is continuous for the profinite topology on GK̄/K and the discrete
topology on M . Equivalently, the action of GK̄/K on M has the property that for
all m ∈ M , the stabilizer of m,

{σ ∈ GK̄/K : mσ = m},

is a subgroup of finite index in GK̄/K . Since all of our GK̄/K-modules will be dis-
crete, we will normally just refer to them as GK̄/K-modules.

Example 2.1.1. Both K̄+ and K̄∗ are GK̄/K-modules under the natural action
of GK̄/K . This is true, because for any x ∈ K̄, the extension K(x)/K is finite,
so the stabilizer of x has finite index in GK̄/K .

Example 2.1.2. In general, let D/K be any algebraic group. Then D = D(K̄) is
a GK̄/K-module, since again the coordinates of any point of D generate a finite
extension of K.

The 0th cohomology group of a GK̄/K-module is defined just as in the case of
finite groups.

Definition. The 0th cohomology group of the GK̄/K-module M is the group of
GK̄/K-invariant elements of M ,

MGK̄/K = H0(GK̄/K ,M) = {m ∈ M : mσ = m for all σ ∈ GK̄/K}.
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We could define H1 for GK̄/K as we did for finite groups, but instead we use
the fact that the group GK̄/K is profinite and the module is discrete to put some
restrictions on the allowable cocycles.

Definition. Let M be a GK̄/K-module. A map ξ : GK̄/K → M is continuous if it
is continuous for the profinite topology on GK̄/K and the discrete topology on M .
Equivalently, for each m ∈ M , the set ξ−1(m) is a union of cosets of subgroups
of finite index in GK̄/K . The group of continuous 1-cocycles from GK̄/K to M ,
denoted by Z1

cont(GK̄/K ,M), is the group of continuous maps ξ : GK̄/K → M
satisfying the cocycle condition

ξστ = ξτ
σ + ξτ .

We observe that Z1
cont(GK̄/K ,M) is a subgroup of the full group of 1-cocycles

Z1(GK̄/K ,M). Further, since M has the discrete topology, every coboundary

σ �→ mσ − m

is automatically continuous. The 1st cohomology group of the GK̄/K-module M is
the quotient group

H1(GK̄/K ,M) =
Z1

cont(GK̄/K ,M)
B1(GK̄/K ,M)

.

Remark 2.2. Just as in the case of finite groups, if GK̄/K acts trivially on M , we
have

H0(GK̄/K ,M) = M and H1(GK̄/K ,M) = Homcont(GK̄/K ,M),

where Homcont denotes the group of continuous homomorphisms.

The fundamental exact sequences (B.1.2) and (B.1.3) carry over word for word
from finite groups to profinite groups.

Proposition 2.3. Let

0 −−−−→ P
φ−−−−→ M

ψ−−−−→ N −−−−→ 0

be an exact sequence of GK̄/K-modules. Then there is a long exact sequence

0 −−−−→ H0(GK̄/K , P ) −−−−→ H0(GK̄/K ,M) −−−−→ H0(GK̄/K , N)

�

δ

H1(GK̄/K , P ) −−−−→ H1(GK̄/K ,M) −−−−→ H1(GK̄/K , N),

where the connecting homomorphism δ is defined as in (B.1.2).
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Let M be a GK̄/K-module and let L/K be a finite Galois extension. Then GK̄/L

is a subgroup of finite index in GK̄/K , so M is naturally a GK̄/L-module. This leads
to a restriction map on cohomology,

Res : H1(GK̄/K ,M) −→ H1(GK̄/L,M).

Further, GK̄/L is a normal subgroup of GK̄/K , and the quotient GK̄/K/GK̄/L is the
finite group GL/K . The submodule of invariants MGK̄/L has a natural structure as
a GL/K-module. Then any 1-cocycle ξ : GL/K → MGK̄/L becomes a 1-cocycle
for GK̄/K via the composition

GK̄/K −→ GL/K
ξ−→ MGK̄/L ⊂ M.

This gives an inflation map

Inf : H1(GL/K ,MGK̄/L) −→ H1(GK̄/K ,M).

Proposition 2.4. (Inflation–Restriction Sequence) With notation as above, there is
an exact sequence

0 −−−−→ H1(GL/K ,MGK̄/L) Inf−−−−→ H1(GK̄/K ,M) Res−−−−→ H1(GK̄/L,M).

PROOF. Virtually identical to the proof of (B.1.3).

The next proposition describes some fundamental facts about the cohomology of
the additive and multiplicative groups of a field.

Proposition 2.5. Let K be a field.
(a) H1(GK̄/K , K̄+) = 0.
(b) H1(GK̄/K , K̄∗) = 0. This is Hilbert’s Theorem 90.
(c) Assume that either char(K) = 0 or that char(K) does not divide m. Then

H1(GK̄/K ,μm) ∼= K∗/(K∗)m.

PROOF. (a) [233, Chapter X, Proposition 1].
(b) [233, Chapter X, Proposition 2].
(c) Consider the following exact sequence of GK̄/K-modules:

1 −−−−→ μm −−−−→ K̄∗ z→zm

−−−−→ K̄∗ −−−−→ 1.

Applying (B.2.3) yields the long exact sequence

−→ K∗ z→zm

−−−−−→ K∗ δ−−→ H1(GK̄/K ,μm) −→ H1(GK̄/K , K̄∗) −→ .

From (b) we know that H1(GK̄/K , K̄∗) = 0, which gives the desired result.
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B.3 Nonabelian Cohomology
We again start with a finite group G and a group M on which G acts, but we no longer
require that M be abelian. (To emphasize the possible noncommutativity of M , we
write the group law on M multiplicatively.) As always, the 0th cohomology group
of M is the subgroup of G-invariant elements,

H0(G,M) = MG = {m ∈ M : mσ = m for all σ ∈ G}.

We further define the set of 1-cocycles of G into M to be the set of maps

ξ : G −→ M satisfying ξστ = (ξσ)τ ξτ for all σ, τ ∈ G.

We emphasize that the set of 1-cocycles does not, in general, form a group, since
the noncommutativity of M may prevent the product of two cocycles from being a
cocycle.

Two 1-cocycles ξ and ζ are said to be cohomologous if there is an m ∈ M such
that

mσξσ = ζσm for all σ ∈ G.

It is easy to check that this defines an equivalence relation on the set of 1-cocycles.
The 1st cohomology set of M , denoted by H1(G,M), is the set of 1-cocycles modulo
this relation. We observe that H1(G,M) has a distinguished element, namely the
equivalence class of the identity cocycle. Thus H1(G,M) is a pointed set, i.e., a set
with a distinguished element.

Continuing as in (B §2), we say that the Galois group GK̄/K acts discretely on a
(possibly nonabelian) group M if the stabilizer of any element of M is a subgroup
of finite index in GK̄/K . We again define a continuous 1-cocycle from GK̄/K to M
to be a map ξ : M → GK̄/K that satisfies the cocycle condition and is continuous
for the profinite topology on GK̄/K and the discrete topology on M . Two cocycles ξ

and ζ are cohomologous if mσξσ = ζσm for some m ∈ M , and the 0th cohomology
group and the 1st cohomology group of M are defined as usual by

H0(GK̄/K ,M) = MGK̄/K = {m ∈ M : mσ = m for all σ ∈ GK̄/K},

H1(GK̄/K ,M) =
set of continuous 1-cocycles from GK̄/K to M

equivalence of cohomologous 1-cocycles
.

Example 3.1. If D/K is any algebraic group, then there is a natural action of GK̄/K

on D = D(K̄), and as explained earlier (B.2.1.2), this action is discrete. It is clear
that

H0(GK̄/K ,D) = D(K)

is the subgroup of K-rational points of D. The structure of H1(GK̄/K ,D) is harder
to describe, but for the general linear group there is the following generalization of
Hilbert’s Theorem 90.
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Proposition 3.2. For all integers n ≥ 1,

H1
(
GK̄/K ,GLn(K̄)

)
= {1}.

PROOF. [233, Chapter X, Proposition 3].

Exercises
B.1. Prove that the sequence in (B.1.2) is exact.

B.2. Let G be a finite group and let M be a G-module.
(a) If G has order n, prove that every element of H1(G, M) is killed by n.
(b) If M is finitely generated as a G-module, prove that H1(G, M) is finite.

B.3. Let G be a finite group, let M be a G-module, and let H be a normal subgroup of G.
(a) Show that there is a natural action of G/H on H1(H, M).
(b) Prove that the image of the restriction map Res : H1(G, M) → H1(H, M) lies in the

subgroup of H1(H, M) fixed by G/H . This allows (B.1.3) to be refined to

0 −−−−−→ H1(G/H, MH)
Inf−−−−−→ H1(G, M)

Res−−−−−→ H1(H, M)G/H .

This exact sequence is a piece of the Serre–Hochschild spectral sequence for group co-
homology [115].

B.4. Let M be a (discrete) GK̄/K -module. For any tower of fields F/L/K, there is an infla-
tion map

H1(GL/K , MGK̄/L) −→ H1(GF/K , MGK̄/F ).

Prove that these inflation maps fit together to form a direct system and that there is an isomor-
phism

H1(GK̄/K , M) ∼= lim
→

H1(GL/K , MGK̄/L),

where the direct limit is over all finite Galois extensions L/K. This provides an alternative
definition for the cohomology of GK̄/K -modules.

B.5. Let G be a finite group, and let E and A be groups on which G acts. Assume that E is
abelian and that A acts on E in a manner compatible with the action of G. In other words,
assume that (αx)σ = ασxσ for all α ∈ A, x ∈ E, and σ ∈ G. The twisted product of E
and A, denoted by E � A, is the group whose underlying set is E × A and whose group law
is given by

(x, α) � (y, β) =
(
x(αy), αβ

)
.

Notice that G acts on E � A via (x, α)σ = (xσ, ασ).
(a) Prove that there are exact sequences

1 −→ E −→ E � A −→ A −→ 1

and

1 −→ EG −→ E � AG −→ AG −→ 1.

(b) Any α ∈ AG gives a G-isomorphism α : E → E, and so induces an automorphism
of H1(G, E). Show that two elements ξ1, ξ2 ∈ H1(G, E) have the same image under
the natural map H1(G, E) → H1(G, E � A) if and only if there is an α ∈ AG such
that αξ1 = ξ2.
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B.6. Let G be a finite group, let M be a G-module, and let H1 and H2 be subgroups of G.
Suppose further that H1 and H2 are conjugate, i.e., H1 = σH2σ

−1 for some σ ∈ G. Prove
that the restriction maps

Res : H1(G, M) −→ H1(H1, M) and Res : H1(G, M) −→ H1(H2, M)

have the same kernel.



Appendix C

Further Topics: An Overview

In this volume we have tried to give an essentially self-contained introduction to the
basic theory of the arithmetic of elliptic curves. Unfortunately, due to limitations of
time and space, many important topics have had to be omitted. This appendix con-
tains a very brief introduction to some of the material that could not be included
in the main body of the text. Further details may be found in the companion vol-
ume [266] and in the references listed at the end of each section.

The first ten topics covered in this appendix were originally supposed to form
Chapters XI through XX of this book, so they have been numbered as sections 11
through 20. An additional section has been added for the second edition. The contents
of Appendix C are as follows:

§11. Complex Multiplication 425
§12. Modular Functions 429
§13. Modular Curves 439
§14. Tate Curves 443
§15. Néron Models and Tate’s Algorithm 446
§16. L-Series 449
§17. Duality Theory 453
§18. Local Height Functions 454
§19. The Image of Galois 455
§20. Function Fields and Specialization Theorems 456
§21. Variation of ap and the Sato–Tate Conjecture 458

C.11 Complex Multiplication
The Kronecker–Weber theorem says that the maximal abelian extension Qab of Q is
generated by roots of unity, and so the class field theory of Q is given explicitly by
an isomorphism

GQab/Q
∼=

∏

p

Z∗
p.

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 425
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 C,
c© Springer Science+Business Media, LLC 2009



426 C. Further Topics: An Overview

The theory of complex multiplication provides a similar description for the abelian
extensions of imaginary quadratic fields.

Let K/Q be an imaginary quadratic field, let R ⊂ K be the ring of integers of K,
and let C�(R) be the ideal class group of R. If we fix an embedding K ⊂ C, then
each ideal Λ of R is a lattice Λ ⊂ C, so we may consider the elliptic curve C/Λ.
From (VI.4.1) we have

End(C/Λ) ∼= {α ∈ C : αΛ ⊂ Λ} = R.

Further, (VI.4.1.1) says that up to isomorphism, the elliptic curve C/Λ depends only
on the ideal class {Λ} ∈ C�(R).

Conversely, suppose that E/C satisfies End(E) ∼= R. Then (VI.5.11) implies
that E(C) ∼= C/Λ for a unique ideal class {Λ} ∈ C�(R). We have proven the follow-
ing result.

Proposition 11.1. With notation as above, there is a one-to-one correspondence
between ideal classes in C�(R) and isomorphism classes of elliptic curves E/C

with End(E) ∼= R.

Corollary 11.1.1. (a) There are only finitely many isomorphism classes of elliptic
curves E/C with End(E) ∼= R.

(b) Let E/C be an elliptic curve with End(E) ∼= R. Then j(E) is algebraic over Q.

PROOF. (a) Clear from (C.11.1), since C�(R) is finite.
(b) Let σ ∈ Aut(C/Q). Then End(Eσ) ∼= End(E) ∼= R. It follows from (a)
that

{
Eσ : σ ∈ Aut(C/Q)

}
contains only finitely many isomorphism classes of el-

liptic curves. Since j(Eσ) = j(E)σ , the set
{
j(E)σ : σ ∈ Aut(C/Q)

}
is finite. It

follows that j(E) is algebraic over Q.

Actually, we can say quite a bit more about the j-invariant of an elliptic curve
having complex multiplication. For {Λ} ∈ C�(R), we denote the j-invariant of C/Λ
by j(Λ).

Theorem 11.2. (Weber, Fueter) Let {Λ} ∈ C�(R).
(a) j(Λ) is an algebraic integer.
(b)

[
K
(
j(Λ)

)
: K

]
=

[
Q
(
j(Λ)

)
: Q

]
.

(c) The field H = K
(
j(Λ)

)
is the maximal unramified abelian extension of K,

i.e., H is the Hilbert class field of K.
(d) Let {Λ1}, . . . , {Λh} be a complete set of representatives for C�(R). Then

j(Λ1), . . . , j(Λh) is a complete set of GK̄/K conjugates for j(Λ).

PROOF. (a) The original proof of the integrality of j(Λ) uses the theory of modu-
lar functions; see, for example, [140, Chapter 5, Theorem 4], [249, §4.6], or [266,
II §6]. An algebraic proof that generalizes to higher dimensions can be based on the
criterion of Néron–Ogg–Shafarevich; see [239, Theorem 6], [266, II §6], and Exer-
cise 7.10. There is also a proof that uses Tate curves (C §14); see [266, V.6.3].
(b), (c), (d) See [140, Chapter 10, Theorem 1], [230], [249, Theorem 5.7], or [266,
II.4.3].
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Example 11.3.1. Suppose that E/Q is an elliptic curve with complex multiplication,
and suppose that End(E) is the full ring of integers R in the field K = End(E) ⊗ Q.
(Note that (VI.5.5) tells us that K is imaginary quadratic.) Since j(E) ∈ Q, it follows
from (C.11.2c) that

H = K
(
j(E)

)
= K,

and thus that K has class number one.
Conversely, if K/Q is an imaginary quadratic field with class number one, then

(C.11.2bc) implies that

j(Λ) ∈ Q for all {Λ} ∈ C�(R).

For example, this is true for Λ = R. Hence C/Λ is (analytically) isomorphic to an
elliptic curve E/Q satisfying j(E) = j(Λ) and End(E) ∼= R.

Baker, Heegner, and Stark have shown that there are exactly nine imaginary
quadratic fields whose ring of integers has class number one, namely the fields
Q(

√
−d ) with d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}. Hence there are only 9 possible j-

invariants for elliptic curves E defined over Q for which End(E) is the full ring of
integers in End(E) ⊗ Q.

Example 11.3.2. If we relax the requirement that End(E) be the full ring of inte-
gers of K and allow End(E) to be an arbitrary order in K, then End(E) has the
form Z + fR for some integer f ∈ Z; see Exercise 3.20. One can show in this case
that [

K
(
j(E)

)
: K

]
= # C�(Z + fR),

where C�(Z+fR) is the group of rank-1 projective (Z+fR)-modules. In particular,
if j(E) ∈ Q, then C�(Z+fR) = {1}. It turns out that there are only four such orders
having f ≥ 2, namely

Q(
√
−1 ), Q(

√
−3 ), Q(

√
−7 ) with f = 2 and Q(

√
−3 ) with f = 3.

Combining this with (C.11.3.1), we see that up to isomorphism over Q̄, there are
exactly 13 elliptic curves E/Q having complex multiplication. Of course, each Q̄-
isomorphism class contains infinitely many Q-isomorphism classes (X.5.4). For ex-
ample, we studied the family of elliptic curves E/Q having End(E) ∼= Z[

√
−1 ]

in (X §6).

Returning now to the situation in (C.11.2), let {Λ} ∈ C�(R). Then (C.11.2) tells
us that the Galois group GH/K acts on K

(
j(Λ)

)
. This action can be described quite

precisely in terms of the Artin map.

Theorem 11.4. (Hasse) Let {Λ} ∈ C�(R), and let H = K
(
j(Λ)

)
be as in (C.11.2).

For each prime ideal p of R, let Frob(p) ∈ GH/K be the Frobenius element corre-
sponding to p. Suppose that there is an elliptic curve with j-invariant j(Λ) defined
over H that has good reduction at all primes of H lying over p. Then

j(Λ)Frob(p) = j(Λ · p−1),

where Λ · p−1 is the usual product of fractional ideals in K.
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PROOF. See [140, Chapter 10, Theorem 1], [230], [249, Theorem 5.7], or [266,
II.4.3].

Suppose now that E/K is an elliptic curve with complex multiplication over K,
i.e., EndK(E) �= Z. Then the fact that GK̄/K and EndK(E) commute with
one another in their action on the Tate module T�(E) implies that the action
of GK̄/K is abelian. (This is essentially Schur’s lemma; see Exercise 3.24.) Thus
the field K(Etors) obtained by adjoining to K the coordinates of all of the torsion
points of E is an abelian extension of K.

We return now to the situation that {Λ} ∈ C�(R) and H = K
(
j(Λ)

)
, and we

let E/H be an elliptic curve with j-invariant j(Λ). Then H(Etors) is an abelian ex-
tension of H, but it is not generally an abelian extension of K. However, it turns out
that H(Etors) contains Kab and that H(Etors)/Kab is an abelian extension whose Ga-
lois group is (usually) a product of groups of order 2. To create Kab itself, we instead
adjoin (essentially) the x-coordinates of the torsion points.

More precisely, for any elliptic curve E/K, we define a Weber function on E/K
to be a morphism defined over K of the form

φE : E −→ E/Aut(E) ∼= P1.

(See Exercise 3.13 for the definition of the quotient curve E/Aut(E).) Classically,
if E is given by a Weierstrass equation

E : y2 = 4x3 − g2x − g3, g2, g3 ∈ C,

with discriminant Δ = g3
2−27g2

3 , then one defines the Weber function quite explicitly
by the formula

φE(P ) =

⎧
⎪⎨

⎪⎩

(g2g3/Δ)x(P ) if j(E) �= 0, 1728,
(g2

2/Δ)x(P )2 if j(E) = 1728,
(g3/Δ)x(P )3 if j(E) = 0.

Note that although g2 and g3 are in C, the map φE : E → P1 is independent of
the choice of Weierstrass equation for E, and thus φE is defined over any field of
definition for E.

Theorem 11.5. Let K be an imaginary quadratic field, let R ⊂ K be its ring of
integers, and let E/C be an elliptic curve with End(E) ∼= R.
(a) The maximal unramified abelian extension of K is K

(
j(E)

)
.

(b) The maximal abelian extension Kab of K is given by

Kab = K
(
j(E);φE(T ), T ∈ Etors

)
,

i.e., Kab is the field obtained by adjoining to K the j-invariant of E and the
value of a Weber function at all of the torsion points of E.
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PROOF. (a) This is a restatement of (C.11.2c).
(b) See [140, Chapter 10, Theorem 2], [230], [249, Corollary 5.6], or [266, II.5.7].

Remark 11.6. Let {Λ} be an ideal class of R, for example Λ = R. Then,
in (C.11.5), we may take E to be the elliptic curve E(C) ∼= C/Λ given by the
Weierstrass equation

E : y2 = 4x3 − g2(Λ)x − g3(Λ).

(See (VI §3) for infinite series expansions of g2(Λ) and g3(Λ).) Then the Weber
function

φΛ : C/Λ −→ C

is given analytically by

φΛ(z) =

⎧
⎪⎨

⎪⎩

(g2(Λ)g3(Λ)/Δ)℘(z,Λ) if j(Λ) �= 0, 1728,
(g2(Λ)2/Δ)℘(z,Λ)2 if j(Λ) = 1728,
(g3(Λ)/Δ)℘(z,Λ)3 if j(Λ) = 0.

Since (C.11.5) says that Kab is generated by j(Λ) and φΛ(t) for t ∈ QΛ ⊂ C,
we see that Kab is given explicitly by the values of an analytic function evaluated
at the points of finite order on the complex torus C/Λ. Notice the similarity with
the situation over Q, where Qab is generated by the values of the analytic func-
tion φ(z) = e2πiz at the points of finite order on the cylinder C/Z.

Remark 11.7. Just as in (C.11.4), one can use the Artin map to describe the action
of GKab/K on the elements φE(T ) that generate Kab/K. See, for example, [140,
Chapter 10, Lemma 1 and Theorem 3], [249, Theorem 5.4], or [266, II.8.2].

References. [140], [230], [249], [266]. For generalizations to abelian varieties, see
[137], [239], [250].

C.12 Modular Functions
We have seen (VI.5.1.1) that every elliptic curve E/C is analytically isomorphic
to a complex torus C/Λ, where E uniquely determines the lattice Λ ⊂ C up to
homothety. Associated to the lattice Λ are the Eisenstein series G2k(Λ), the discrim-
inant Δ(Λ), and the j-invariant j(Λ). One easily verifies the homogeneity proper-
ties (Exercise 6.6)

G2k(αΛ) = α−2kG2k(Λ), Δ(αΛ) = α−12Δ(Λ), j(αΛ) = j(Λ).

These functions have as their domain the space of lattices. Using homogeneity, it is
enough to study them on the space of lattices modulo homothety. In order to do this,
we set the following notation:
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H =
{
τ ∈ C : Im(τ) > 0

}
,

Λτ = Z + Zτ for τ ∈ H,

G2k(τ) = G2k(Λτ ), Δ(τ) = Δ(Λτ ), j(τ) = j(Λτ ).

It is clear that every lattice Λ is homothetic to Λτ for some τ ∈ H. To describe
when two values of τ give the same lattice, we observe that the group

SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z and ad − bc = 1

}

acts on H by linear fractional transformations,

γ =
(

a b
c d

)
: H −→ H, γ(τ) =

aτ + b

cτ + d
.

The next proposition describes some properties of this action.

Proposition 12.1. (a) The group SL2(Z) acts properly discontinuously on H.
(b) The region

F =
{

τ ∈ H :
∣
∣Re(τ)

∣
∣ ≤ 1

2
and |τ | ≥ 1

}

is a fundamental domain for H/SL2(Z). More precisely, the natural map
F → H/SL2(Z) is surjective and its restriction to the interior of F is injec-
tive.

(c) Let

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
.

They satisfy S2 = −1 and (ST )3 = −1. The modular group

PSL2(Z) = SL2(Z)/ ± 1

is the free product of the cyclic groups of orders 2 and 3 generated by S and ST .
In particular, S and T generate PSL2(Z).

PROOF. See [5, Theorems 2.1 and 2.3], [232, VII §1], or [266, I.1.5, I.1.6].

Corollary 12.1.1. Every lattice Λ ⊂ C is homothetic to a lattice Λτ for some τ ∈ F .

Figure 3.1 illustrates the fundamental domain F and its translates under various
elements of SL2(Z).
Remark 12.2. Any two bases {ω1, ω2} and {ω′

1, ω
′
2} for a lattice Λ are related by a

change-of-basis formula

ω′
1 = aω1 + bω2, ω′

2 = cω1 + dω2,

with a, b, c, d ∈ Z and ad − bc = ±1. If we use homotheties to replace these bases
by bases of the form {1, τ} and {1, τ ′} with τ, τ ′ ∈ H, then the above change-of-
basis action on the ω values becomes exactly the linear fractional action of SL2(Z)
on the τ values described earlier.
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−1 0 1

T−1F F TF

T−1SF SF TSF

STSF STF ST−1F ST−1SF

Figure 3.1: The fundamental domain F and some of its PSL2(Z)-translates.

The function G2k(Λ) depends only on the lattice Λτ and not on any particular
choice of basis. However, if Λτ = Λτ ′ for some τ, τ ′ ∈ H, then G2k(τ) and G2k(τ ′)
may not be equal. Tracing through the definitions, we find that

G2k(γτ) = (cτ + d)2kG2k(τ) for
(

a b
c d

)
∈ SL2(Z).

Notice that if c = 0, then a = d = ±1, so G2k(γτ) = G2k(τ). In other words

G2k(Tnτ) = G2k(τ + n) = G2k(τ) for all n ∈ Z.

This means that G2k has a Fourier expansion

G2k(τ) =
∞∑

n=−∞
c(n)qn,

where we write q = e2πiτ .

Definition. A meromorphic function f on H is called a modular function of weight k
(for SL2(Z)) if it satisfies:

(i) f(τ) = (cτ + d)−kf(γτ) for all
(

a b
c d

)
∈ SL2(Z).

(ii) There is an integer n0 = n0(f) such that the Fourier expansion of f in the
variable q = e2πiτ has the form
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f(τ) =
∞∑

n=n0

c(n)qn.

We say that f is a modular form of weight k if f is holomorphic on H and n0(f) = 0,
in which case we also say that f is holomorphic at ∞ and define f(∞) = c0. This is
a reasonable definition, since q → 0 as τ → i∞. If f(∞) = 0, then we call f a cusp
form.

Remark 12.3. If we let α =
(−1 0

0 −1

)
, then ατ = τ for every τ ∈ H. Hence if f is

a modular function of weight k and k is an odd integer, then

f(τ) = (−1)−kf(ατ) = −f(τ),

so f is identically zero. Thus a nontrivial modular function for SL2(Z) is necessarily
of even weight. The next proposition gives some examples of modular functions.

Proposition 12.4. (a) The j-function j(τ) is a modular function of weight 0 that is
holomorphic on H. Its Fourier series has the form

j(τ) =
1
q

+ 744 +
∞∑

n=1

c(n)qn with c(n) ∈ Z.

(b) The Eisenstein series G2k(τ) is a modular form of weight 2k. Its Fourier series
is

G2k(τ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑

n=1

σ2k−1(n)qn.

Here ζ(s) =
∑

n−s is the Riemann zeta function and σα(n) is the sum of
divisors function σα(n) =

∑
d|n dα.

(c) The discriminant function Δ(τ) is a cusp form of weight 12. Its Fourier series
has the form

Δ(τ) = (2π)12
∞∑

n=1

τ(n)qn with τ(1) = 1 and τ(n) ∈ Z.

The integer-valued function n �→ τ(n) is called the Ramanujan τ -function.

PROOF. See [5, Theorems 1.18, 1.19, 1.20], [232, VII Propositions 4, 5, 8], or [266,
I.7.1, I.7.4].

Remark 12.4.1. The Fourier coefficients of j(τ) and Δ(τ) have many interesting
congruence properties. For example,

τ(n) ≡ σ11(n) (mod 691) for all n ≥ 1,

a result due to Ramanujan. We do not pursue this topic, but see, for example, [5,
Chapter 4] or [232, VII §§3.3, 4.5].
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Remark 12.4.2. The Fourier series for the Eisenstein series G2k(τ) is often rewritten
using the identity

∞∑

n=1

σα(n)qn =
∞∑

n=1

nαqn

1 − qn
.

It commonly appears in the literature in both forms.

The discriminant function Δ(τ) also has a beautiful product expansion.

Theorem 12.5. (a) (Jacobi)

Δ(τ) = (2π)12q
∞∏

n=1

(1 − qn)24.

(b) The Dedekind η-function is defined by the product

η(τ) = q1/24
∞∏

n=1

(1 − qn),

where we set q1/24 = eπiτ/12. Then Δ(τ) = (2π)12η(τ)24, and the η-function
satisfies the transformation formulas

η(τ + 1) = eπi/12η(τ) and η(−1/τ) = (−iτ)1/2η(τ),

where we take the branch of the square root that is real and positive on the
positive real axis.

PROOF. See [5, Theorems 3.1, 3.3] or [232, VII Theorem 6].

Remark 12.5.1. Since the maps τ �→ τ + 1 and τ �→ −1/τ generate the action
of SL2(Z) on H (C.12.1c), it is not hard to check that

η(γτ) = ε
{
−i(cτ + d)

}1/2
η(τ) for all

(
a b
c d

)
∈ SL2(Z),

where ε = ε(a, b, c, d) satisfies ε24 = 1. The exact value of ε(a, b, c, d) is compli-
cated, but it can be expressed in terms of Dedekind sums and satisfies a beautiful
reciprocity law. See [5, Chapter 3, especially Theorem 3.4] for details.

Elliptic functions such as the Weierstrass ℘-function may be treated as functions
of two variables, the second variable being the lattice. We define

℘(z; τ) = ℘(z; Λτ ), ℘′(z; τ) = ℘′(z; Λτ ), σ(z; τ) = σ(z; Λτ ).

The q-expansions of these functions are given in the next proposition.

Proposition 12.6. Let q = e2πiτ and u = e2πiz . Then
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(2πi)−2℘(z; τ) =
∞∑

n=−∞

qnu

(1 − qnu)2
+

1
12

− 2
∞∑

n=1

qn

(1 − qn)2
,

(2πi)−3℘′(z; τ) =
∞∑

n=−∞

qn(1 + qnu2)
(1 − qnu)3

,

2πiσ(z; τ) = eηz2/2(u1/2 − u−1/2)
∞∏

n=1

(1 − qnu)(1 − qnu−1)
(1 − qn)2

.

In this last formula, η = η(1) is one of the quasiperiods associated to the lat-
tice Z + Zτ ; see Exercise 6.6b.

PROOF. See [140, Chapter 18, §2], [210, II §5], or [266, I.6.2, I.6.4].

Remark 12.7. An elliptic curve E/C is analytically isomorphic to a torus C/Λ,
and we can choose the lattice to be of the form Λ = Λτ = Z + Zτ . Consider
the exponential map exp(2πi · ) : C → C∗. The image of Λτ under this map is the
cyclic group qZ = {qn : n ∈ Z} in C∗. Thus composing with the exponential map,
we obtain an analytic isomorphism

C∗/qZ ∼−−−−−→ E(C).

If we let u be the parameter on C∗, i.e., u = e2πiz , then this map is [℘, ℘′, 1], where ℘
and ℘′ are given in terms of u by (C.12.6).

We now describe the field of modular functions and the algebra of modular forms.

Definition. Let

Mk = {modular forms of weight 2k},
Mk,0 = {cusp forms of weight 2k}.

We observe that Mk and Mk,0 are C-vector spaces. Further, if f ∈ Mk and g ∈ Mk′ ,
then fg ∈ Mk+k′ . Thus the ring

M =
∞∑

k=0

Mk

has a natural structure as a graded C-algebra.

Theorem 12.8. (a) j(τ) is a modular function of weight 0. Every modular function
of weight 0 is a rational function of j(τ).

(b) The map
C[X,Y ] −→ M, P (X,Y ) �−→ P (G4, G6),

is an isomorphism of graded C-algebras, where we assign weights wt(X) = 4
and wt(Y ) = 6. In particular, every modular form is a polynomial in G4

and G6.
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(c) The dimension of the weight-2k part of M is

dimC Mk =

⎧
⎪⎨

⎪⎩

0 if k < 0,
[k/6] if k ≡ 1 (mod 6) and k ≥ 0,
[k/6] + 1 if k �≡ 1 (mod 6) and k ≥ 0.

(d) Multiplication by Δ(τ) defines an isomorphism from Mk−6 to Mk,0.

PROOF. See [5, Theorem 2.8, §§6.4, 6.5], [232, VII, §§3.2, 3.3], or [266, I.3.10, I.4.2,
and exercise 1.10].

The study of the spaces Mk and Mk,0 is facilitated by the existence of certain
linear operators. For each integer n ≥ 1, we define the Hecke operator T (n) on the
space Mk of modular forms of weight 2k by the formula

(
T (n)f

)
(τ) = n2k−1

∑

d|n
d−2k

d−1∑

b=0

f

(
nτ + bd

d2

)
.

(For a more intrinsic definition that explains the origin of this formula, see [5, §6.8],
[232, VII §5.1], [249, Chapter 3], or [266, I §9].)

Proposition 12.9. (a) If f is a modular form (respectively a cusp form) of weight 2k,
then T (n)f is also a modular form (respectively a cusp form) of weight 2k. In
other words, T (n) induces linear maps

T (n) : Mk −→ Mk and T (n) : Mk,0 −→ Mk,0.

(b) For all integers m and n,

T (m)T (n) = T (n)T (m).

(c) If m and n are relatively prime, then

T (mn) = T (m)T (n).

(d) For all primes p and all integers r ≥ 1,

T (pr+1) = T (pr)T (p) − p2k−1T (pr−1).

PROOF. See [5, Theorems 6.11, 6.13], [232, VII §§5.1, 5.3], or [266, I.10.2, I.10.6].

Application 12.10. Of particular interest are those modular forms that are simulta-
neous eigenfunctions for every Hecke operator T (n). In other words,

T (n)f = λ(n)f for all n = 1, 2, . . . ,

where λ(1), λ(2), . . . are constants. If this occurs, then it is not hard to show that the
Fourier expansion f =

∑
c(n)qn of f satisfies
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c(n) = c(1)λ(n) for all n = 1, 2, . . . .

See [5, Theorems 6.14, 6.15], [232, VII §5.4], or [266, I.10.5]. In particular, if f is
not constant, then c(1) �= 0 and f is uniquely determined by c(1) and the sequence
of eigenvalues

(
λ(n)

)
n≥1

.

Example 12.10.1. Consider the vector space M6,0 of cusp forms of weight 12. We
see from (C.12.8c) and (C.12.4c) that M6,0 has dimension one and is generated by
the discriminant function

Δ = (2π)12
∞∏

n=1

(1 − qn)24 = (2π)12
∞∑

n=1

τ(n)qn.

Since T (n)Δ is also in M6,0, it follows that T (n)Δ is a multiple of Δ. Us-
ing (C.12.10), we conclude that

T (n)Δ = τ(n)Δ for all n = 1, 2, . . . .

(Note that τ(1) = 1.) Now the identities (C.12.9cd) satisfied by the Hecke opera-
tors T (n) lead to analogous formulas for the Ramanujan function:

τ(mn) = τ(m)τ(n) if gcd(m,n) = 1,

τ(pr+1) = τ(pr)τ(p) − p12τ(pr−1) for p prime and r ≥ 1.

These beautiful identities were conjectured by Ramanujan and proved by Mordell,
who invented what are now known as Hecke operators for his proof. There is also
a deep estimate for the size of the Ramanujan function that was demonstrated by
Deligne as a (highly nontrivial) consequence of his proof of the Weil conjectures:

∣
∣τ(p)

∣
∣ ≤ 2p11/2 for p prime.

Since j(τ) is a modular function of weight 0 (C.12.4a), it defines a func-
tion on the quotient space H/SL2(Z). This quotient has a natural structure as
a Riemann surface, and one can show that j(τ) defines a holomorphic function;
see [249, §§1.3, 1.4, 1.5] or [266, I.4.1].

Proposition 12.11. The map

j : H/SL2(Z) −→ C

is a complex analytic isomorphism of (open) Riemann surfaces.

PROOF. See [232, VII Proposition 5] or [266, I.4.1].

Corollary 12.11.1. (Uniformization Theorem) Let E/C be an elliptic curve. Then
there exist a lattice Λ ⊂ C and a complex analytic isomorphism C/Λ → E(C).
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PROOF. Let J be the j-invariant of E. From (C.12.11), there is a τ ∈ H such
that j(τ) = J . Then the elliptic curve

Eτ : y2 = 4x3 − g2(τ)x − g3(τ)

has j-invariant J , so Eτ
∼= E from (III.1.4b). On the other hand, (VI.3.6b) says that

there is a complex analytic isomorphism C/(Z + Zτ) → Eτ (C), which gives the
desired result.

From (C.12.11) we see that the Riemann surface H/SL2(Z) is not compact.
Its natural compactification is P1(C), obtained by adjoining a single extra point at
infinity. However, with a view toward eventual generalizations, we take a different
approach. We start by defining the extended upper half-plane to be the set

H∗ = H ∪ P1(Q).

Here one should think of the points [x, 1] ∈ P1(Q) as the usual copy of Q in C,
together with the point [1, 0] ∈ P1(Q) at infinity. We note that SL2(Z) acts on P1(Q)
in the standard manner,

γ : [x, y] �−→ [ax + by, cx + dy].

The quotient space H∗/SL2(Z) can be given the structure of a Riemann surface, and
one can show that the j-function defines a complex analytic isomorphism

j : H∗/SL2(C) ∼−−−−−→ P1(C).

See [249, §§1.3, 1.4, 1.5] or [266, §§I.2, I.3, I.4] for details. Since SL2(Z) acts
transitively on P1(Q), the net effect has been to add a single point, called a cusp,
to H/SL2(Z).

Congruence Subgroups
In studying modular functions for SL2(Z), one soon discovers the need to deal with
functions that are modular only for certain subgroups of SL2(Z).

Definition. For each integer N ≥ 1, we define subgroups of SL2(Z) as follows:

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N) and a ≡ d ≡ 1 (mod N)

}
,

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) : b ≡ c ≡ 0 (mod N) and a ≡ d ≡ 1 (mod N)

}
.

More generally, a congruence subgroup of SL2(Z) is a subgroup Γ ⊂ SL2(Z) such
that Γ contains Γ(N) for some N ≥ 1.



438 C. Further Topics: An Overview

If Γ is a congruence subgroup of SL2(Z), then Γ acts on H∗ and we can form
the quotient space H∗/Γ. This space has a natural structure as a Riemann sur-
face [249, §§1.3, 1.5]. The action of Γ on P1(Q) ⊂ H∗ has finitely many orbits;
the images of these orbits in H∗/Γ are called the cusps of Γ.

Example 12.12. If p is prime, then H∗/Γ0(p) has two cusps, represented by the
points [1, 0] and [0, 1] in P1(Q).

Definition. Let Γ be a congruence subgroup of SL2(Z). A meromorphic function f
on H is called a modular function of weight k for Γ if it satisfies the following two
conditions:

(i) f(τ) = (cτ + d)−kf(γτ) for all γ ∈
(

a b
c d

)
∈ Γ.

(ii) f is meromorphic at each of the cusps of H∗/Γ. (See [249, §2.1] for the precise
definition.)

A modular function is called a modular form if it is holomorphic on H and at each of
the cusps of H∗/Γ, and it is a cusp form if it is a modular form that vanishes at every
cusp.

Example 12.13. Let η(τ) be the Dedekind η-function (C.12.5b). Then the function

f(τ) = η(τ)2η(11τ)2

is a cusp form of weight 2 for the group Γ0(11).

If f(τ) is a modular form of weight 2 for Γ, then the differential form f(τ) dτ
on H is invariant under the action of Γ. This follows easily from the identity

d

(
aτ + b

cτ + d

)
=

dτ

(cτ + d)2
.

(We follow standard practice of using the letter d as both a variable and to indicate
differentiation.) If, further, f is a cusp form, then one can check that f(τ) dτ is holo-
morphic at each of the cusps of Γ, and hence f(τ) dτ defines a holomorphic 1-form
on the quotient space H∗/Γ.

Proposition 12.14. Let Γ be a congruence subgroup of SL2(Z). There is a natu-
ral isomorphism between the space of weight-2 cusp forms for Γ and the space of
holomorphic 1-forms on the Riemann surface H∗/Γ.

PROOF. See [249, §2.4].

Remark 12.15. It is not difficult to calculate the genus of H∗/Γ and thereby, us-
ing (C.12.14), find the dimension of the space of weight-2 cusp forms for Γ. For ex-
ample, if p is prime with p ≡ 11 (mod 12), then the genus of H∗/Γ0(p) is 1

12 (p+1).
For a general formula, see [249, Propositions 1.40, 1.43].

The Hecke operators defined above also act on the space of modular forms for
congruence subgroups.
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Proposition 12.16. Let Γ be a congruence subgroup of SL2(Z), say Γ ⊃ Γ(N),
and let f(τ) be a modular form of weight 2k for Γ. Then for each integer n ≥ 1
satisfying gcd(n,N) = 1, the function T (n)f is again a modular form of weight 2k
for Γ. Further, if f is a cusp form, then so is T (n)f .

PROOF. See [249, Proposition 3.37].

Remark 12.17. Just as in the case of the full modular group SL2(Z), it is worth
studying modular forms for Γ that are simultaneous eigenfunctions for all of the
Hecke operators. For example, the Riemann surface H∗/Γ0(11) has genus one
(C.12.15), so it follows from (C.12.14) that the space of cusp forms of weight 2
for Γ0(11) has dimension one. Therefore the function

f(τ) = η(τ)2η(11τ)2

from (C.12.13) is an eigenfunction of T (n) for every n satisfying gcd(n, 11) = 1.

References. [3, Chapter 7], [5, Chapters 2, 3, 6], [21], [129], [140], [197], [210,
I §§3,4], [232, Chapter VII], [249, Chapters 1, 2, 3], [266, Chapter I].

C.13 Modular Curves
Let Γ be a subgroup of SL2(Z). If Γ = SL2(Z), then we have seen in (C §12) that the
points of the Riemann surface H/Γ are in one-to-one correspondence with the iso-
morphism classes of elliptic curves defined over C. This correspondence associates
to the point τ (mod Γ) of H/Γ the elliptic curve Eτ

∼= C/(Z + Zτ). In this section
we describe a similar interpretation for the points of H/Γ when Γ is a more general
congruence subgroup of SL2(Z).

For example, consider the subgroup Γ1(N), which we recall consists of all ma-
trices (

a b
c d

)
satisfying c ≡ 0 (mod N) and a ≡ d ≡ 1 (mod N).

Since Γ1(N) ⊂ SL2(Z), we can associate an elliptic curve Eτ to each τ ∈ H/Γ1(N).
This is nothing more than the natural map H/Γ1(N) → H/SL2(Z). But a point
of H/Γ1(N) contains additional information. Consider the point Tτ ∈ Eτ cor-
responding to 1/N ∈ C/(Z + Zτ), so in particular Tτ ∈ Eτ [N ]. Then, for any
γ ∈ SL2(Z), the isomorphism

f :
C

Z + Zτ
−→ C

Z + Zγ(τ)
, z �−→ z

cτ + d
,

maps 1/N to 1/(N(cτ + d)), where γ =
(

a b
c d

)
. If we further assume that γ is

in Γ1(N), then

1
N

− 1
N(cτ + d)

=

c

N
τ +

d − 1
N

cτ + d
∈ f(Z + Zτ) = Z + Zγ(τ).
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Thus the point 1/N ∈ C/(Z + Zτ) remains fixed when the basis for the lattice
is changed by an element of Γ1(N). Hence a point in H/Γ1(N) gives an elliptic
curve Eτ/C together with a specified point Tτ ∈ Eτ of exact order N . Further,
given any elliptic curve E/C and any point T ∈ E of exact order N , there are a
point τ ∈ H/Γ1(N) and an isomorphism Eτ → E such that Tτ → T . Using fancier
terminology, we say that the Riemann surface H/Γ1(N) is a moduli space for the
moduli problem of determining equivalence classes of pairs (E, T ), where E is an
elliptic curve defined over C and T ∈ E is a point of exact order N . Two pairs (E, T )
and (E′, T ′) are deemed to be equivalent if there is an isomorphism E ∼= E′ that
takes T to T ′.

Similarly, if γ ∈ Γ0(N) and τ ∈ H/Γ0(N), then one easily checks that the
subgroup {

1
N

,
2
N

, . . . ,
N − 1

N

}
⊂ C

Z + Zτ

remains invariant under the action of γ. Thus H/Γ0(N) is a moduli space for the
problem of determining (equivalence classes of) pairs (E,C), where E is an elliptic
curve and C ⊂ E is a cyclic subgroup of exact order N . Note that from (III.4.12),
there is a one-to-one correspondence between finite subgroups Φ ⊂ E and isoge-
nies φ : E → E1 given by the association Φ ↔ ker φ. Thus the points of H/Γ0(N)
may also be viewed as classifying triples (E,E′, φ), where φ : E → E′ is an isogeny
whose kernel is cyclic of order N .

Finally, we consider the moduli problem associated to the congruence sub-
group Γ(N). If γ ∈ Γ(n) and τ ∈ H/Γ(N), then as above one checks that the
points 1/N and τ/N in C/(Z + Zτ) remain invariant under the action of γ. Thus
associated to a point of H/Γ(N) is an elliptic curve C/(Z + Zτ), together with a
basis {1/N, τ/N} for the group of N -torsion points. However, a point of H/Γ(N)
contains one further piece of information. Recall (III §8) that there is a pairing eN

on the group of N -torsion points of an elliptic curve. Then one can check that

eN

(
1
N

,
τ

N

)
= e2πi/N .

Thus not only do we get a basis for the N -torsion, but the two points forming that
basis are mapped by the Weil pairing to a specific primitive N th root of unity.

For arithmetic applications, it is important to understand when an elliptic curve
E/C or a point T ∈ E(C) is defined over a subfield of C, for example, over a number
field. To illustrate, we note that although the Riemann surface H/SL2(C) classifies
elliptic curves only over C, we have a complex analytic isomorphism (C.12.11)

j : H/SL2(Z) −→ A1(C),

where A1 is a variety defined over Q. Further, the elliptic curve Eτ corresponding
to τ ∈ H/SL2(Z) is isomorphic, over C, to an elliptic curve defined over Q

(
j(τ)

)
.

There is a general theory that deals with fields of definition for the spaces H/Γ
and their associated moduli problems, but we content ourselves with the following
description for the quotient spaces associated to the three families of congruence
subgroups Γ0(N), Γ1(N), and Γ(N).
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Theorem 13.1. Let N ≥ 1 be an integer.
(a) There exist a smooth projective curve X0(N)/Q and a complex analytic iso-

morphism
jN,0 : H∗/Γ0(N) −→ X0(N)(C)

such that the following holds:
Let τ ∈ H/Γ0(N) and let K = Q

(
jN,0(τ)

)
. We have seen that τ corre-

sponds to an equivalence class of pairs (E,C), where E is an elliptic curve
and C ⊂ E is a cyclic subgroup of order N . Then this equivalence class con-
tains a pair such that both E and C are defined over K, i.e., E is an elliptic
curve defined over K and C ⊂ E(K̄) is GK̄/K-invariant.

(b) There exists a smooth projective curve X1(N)/Q and a complex analytic iso-
morphism

jN,1 : H∗/Γ1(N) −→ X1(N)(C)

such that the following holds:
Let τ ∈ H/Γ1(N) and let K = Q

(
jN,1(τ)

)
. We have seen that τ corre-

sponds to an equivalence class of pairs (E, T ), where E is an elliptic curve
and T ∈ E is a point of exact order N . Then this equivalence class contains a
pair such that E is defined over K and T ∈ E(K).

(c) Fix a primitive N th root of unity ζ ∈ C. There exist a smooth projective
curve X(N)/Q and a complex analytic isomorphism

jN : H∗/Γ(N) −→ X(N)(C)

such that the following holds:
Let τ ∈ H/Γ(N) and let K = Q

(
ζ, jN (τ)

)
. We have seen that τ cor-

responds to an equivalence class of triples (E, T1, T2), where E is an ellip-
tic curve and (T1, T2) are generators for E[N ] satisfying eN (T1, T2) = ζ,
where eN is the Weil pairing (III §8). Then this equivalence class contains a
triple such that E is defined over K and T1, T2 ∈ E(K).

PROOF. See [249, §6.7].

Remark 13.2. If Γ is any congruence subgroup of SL2(Z), then there are a smooth
projective curve X(Γ) defined over some number field K(Γ) and a complex analytic
isomorphism jΓ : H∗/Γ → X(Γ)(C). See [249, §6.7] for details.

Definition. With notation as in (C.13.2), the curve X(Γ) is called a modular curve.
The set of cusps of X(Γ) consists of the finite set of points jΓ

(
P1(Q)/Γ

)
, i.e., the

cusps of X(Γ) are images under jΓ of the cusps of Γ. We denote the complement of
the set of cusps of X(Γ) by Y (Γ), so Y (Γ) is a smooth affine curve.

Notation. For the congruence subgroups Γ0(N), Γ1(N), and Γ(N) considered
in (C.13.1), the curve Y (Γ) is denoted, respectively, by Y0(N), Y1(N), and Y (N).

Example 13.3. Let N be an odd prime. Then X0(N) has two cusps, both of which
are rational over Q, i.e., they are in X0(N)(Q). Similarly, the curve X1(N) has N−1
cusps, but now only half of the cusps are in X1(N)(Q). The other 1

2 (N − 1) cusps
of X1(N) are defined over the maximal real subfield of Q(ζN ).
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Example 13.4. The curve X1(7) is isomorphic to P1. To make this precise, we
associate to each point [t, 1] ∈ P1 the pair (Et, Pt), where Et is the curve (defined
over Q(t)) given by the equation

Et : y2 + (1 + t − t2)xy + (t2 − t3)y = x3 + (t2 − t3)x2,

and Pt is the point Pt = (0, 0). We observe that Et is an elliptic curve if and only if
its discriminant

Δ(t) = t7(t − 1)7(t3 − 8t2 + 5t + 1)

does not vanish. If Δ(t) �= 0, then one easily checks using the addition law
that [7]Pt = O. The curve X1(7) has six cusps, corresponding to the values

t = 0, t = 1, t = ∞, and the roots of t3 − 8t2 + 5t + 1.

The reader may verify that the latter three cusps generate the maximal real subfield
of Q(ζ7), thereby verifying (C.13.3) for N = 7.
Remark 13.5. To illustrate one application of modular curves, we use them to
rephrase the uniform boundedness theorem (VIII.7.5.1) for the torsion on elliptic
curves. That theorem says that for any integer d, there is a bound N(d) such that
if K/Q is a number field of degree d and E/K is an elliptic curve, then E(K)
contains no torsion points of order N(d) or greater. We observe that if E(K) con-
tains a point P of order N , then the pair (E,P ) corresponds to a noncuspidal point
in X1(N)(K), i.e., it corresponds to a K-rational point on the modular curve X1(N).
Thus (VIII.7.5.1) is equivalent to the statement that if N ≥ N(d), then the set of ra-
tional points X1(N)(K) consists entirely of cusps for all number fields K/Q of
degree d. The question of K-rational torsion points on elliptic curves is thus trans-
formed into the question of K-rational points on modular curves. This idea pro-
vides the starting point for the results of Mazur (VIII.7.5), Merel (VIII.7.5.1), and
Manin (VIII.7.6).

Some modular curves are themselves elliptic curves. For example, the curve
X0(11) has genus one, and since it has two cusps defined over Q (C.13.3), we can
use one of the cusps to make X0(11) into an elliptic curve. An elliptic curve such
as X0(11) that is also a modular curve has a lot of additional structure, and one
can use that extra information to study the arithmetic of X0(11). Unfortunately, the
genus of X0(N) grows (somewhat irregularly) with N , so there are only finitely
many curves X0(N) of any given genus. However, for a given elliptic curve E/Q,
one might ask whether there exists a finite map φ : X0(N) → E defined over Q for
some modular curve X0(N). If this happens, then we say that the elliptic curve is
modular and we call φ a modular parametrization. Such elliptic curves have a very
rich structure that can be used to study their arithmetic properties, so the following
theorem provides an extremely powerful tool for studying the arithmetic of elliptic
curves defined over Q.

Theorem 13.6. (Modularity Theorem, Wiles et. al. [28, 291, 311]) Every elliptic
curve defined over Q is modular, i.e., if E/Q is an elliptic curve, then there exist
an integer N and a surjective morphism φ : X0(N) → E defined over Q. More
precisely, the integer N may be taken to be the conductor of E/Q; see (C §16).
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We have credited the modularity theorem to Wiles et. al., since the history of the
proof is somewhat complicated and involves a number of people, although certainly
the most important new ideas were due to Wiles. The original announcement of a
proof of (C.13.6) was made by Wiles in 1993, but a detailed examination of the
proof revealed a serious gap in one part of the argument. Wiles then worked with
Richard Taylor to devise an alternative approach that filled the gap and completed
the proof. Wiles’ main argument [311] and the additional Taylor–Wiles step [291]
appeared in 1995.

However, these articles did not prove the full modularity conjecture. Instead,
they proved modularity for all semistable curves over Q, i.e., for elliptic curves E/Q

having no additive reduction. (The semistable case sufficed to prove Fermat’s last
theorem.) A number of mathematicians then worked to extend and generalize Wiles’
groundbreaking ideas, culminating in a proof of the full modularity conjecture by
Breuil, Conrad, Harris, and Taylor [28] in 2001.

Remark 13.6.1. The history of the formulation of the modularity conjecture is also
interesting, and not without controversy. A qualitative version was originally sug-
gested by Taniyama and a more precise version formulated by Shimura. Weil’s con-
verse theorem [308] provided significant evidence for the validity of the conjecture.
So at various times and in various publications, the conjecture had varying combina-
tions of the names Shimura, Taniyama, and Weil attached to it.

Remark 3.6.2. An important motivation for Wiles’ pursuit of the modularity conjec-
ture was earlier work of Frey, Serre, and Ribet showing that the modularity conjec-
ture implies Fermat’s last theorem. Frey [88] noted that if ap + bp = cp with abc �= 0
and p ≥ 3 prime, then the minimal discriminant of the elliptic curve

E : y2 = x(x + ap)(x − bp)

is essentially a (2p)th power, cf. (VIII.11.2) and (VIII.11.3), and he suggested that
such a curve could not be modular. Serre [235] refined Frey’s observation and showed
that the nonmodularity of E follows from a precise level-lowering statement for
modular forms, a statement that was subsequently proven by Ribet [208]. Thus Ribet
proved that the Frey curve, built from a putative solution to the Fermat equation, is
not modular, so Fermat’s last theorem follows from Wiles’ proof of the modularity
conjecture for semistable elliptic curves. (The Frey curve is semistable.)

References. [21], [28], [124], [165], [166], [249], [291], [308], [311].

C.14 Tate Curves
For this section and the next, we let K be a local field that is complete with re-
spect to a discrete valuation v. Recall that for elliptic curves over C, the existence
of a lattice Λ ⊂ C and a uniformization E(C) ∼= C/Λ provides a powerful tool for
the study of E(C). If we attempt to mimic this construction for K, we are imme-
diately stymied, since the additive group of a local field has no nontrivial discrete
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subgroups. However, if Λ is normalized as Z + Zτ , then applying the exponential
map e2πi· to C/Λ gives a new isomorphism E(C) ∼= C∗/qZ. Here q = e2πiτ , and qZ

is the subgroup of C∗ generated by q, cf. (C.12.7). The analogous situation for K
now looks more promising, since the multiplicative group K∗ has lots of discrete
subgroups, namely those of the form qZ with |q|v �= 1. Further, all of the classical
q-expansions for the various elliptic and modular functions as described in (C §12)
converge in the v-adic setting provided that q is chosen to satisfy |q|v < 1.

For example, consider the elliptic curve

Eq : y2 + xy = x3 + a4x + a6,

whose coefficients are given by the following power series, considered for the mo-
ment to be formal power series in the ring Z[[q]]:

a4 = −5
∑

n≥1

n3qn

1 − qn
, a6 = − 1

12

∑

n≥1

(7n5 + 5n3)qn

1 − qn
.

The curve Eq is called the Tate curve. Its discriminant and j-invariant are given by
the familiar formulas from the complex case (C §12),

Δ = q
∏

n≥1

(1 − qn)24, j =
1
q

+ 744 + 196884q + · · · .

Note that except for its leading term, j is in Z[[q]]. Further, there is a point on the
elliptic curve Eq with coordinates in the power series ring Z[[q, u]] defined by

x = x(u, q) =
∑

n∈Z

qnu

(1 − qnu)2
− 2

∑

n≥1

qn

(1 − qn)2
,

y = y(u, q) =
∑

n∈Z

qnu2

(1 − qnu)3
+

∑

n≥1

qn

(1 − qn)2
.

We now need merely observe that all of these formulas make sense if q and u are
taken to be elements of K∗ with |q|v < 1 and u /∈ qZ. Then all of the power series
converge in K, since K is complete with respect to the absolute value v. We thus
obtain a v-adic analytic uniformization

φ : K∗/qZ −→ Eq(K), u �−→
(
x(u, q), y(u, q)

)
.

(Of course, we also set φ(1) = O.) More generally, the power series x(u, q)
and y(u, q) converge for any u ∈ K̄ and thus induce a map

φ : K̄/qZ −→ Eq(K̄).

(Note that although K̄ is not v-adically complete, the convergence of the power
series φ(u) is taking place in the finite extension K(u). Alternatively, we could work
in the v-adic completion of K̄, which turns out to be algebraically closed.)
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The Tate parametrization is arithmetically useful because the action of GK̄/K

on K̄ is v-adically continuous, so this action commutes with the convergence of
power series. Hence φ is an isomorphism of GK̄/K-modules, which allows us to
use φ to make arithmetic deductions. In this respect the nonarchimedean uniformiza-
tion is more useful than the corresponding uniformization over C.

The uniformization theorem (VI.5.1.1) combined with the exponential map says
that every elliptic curve over C is analytically isomorphic to C∗/qZ for some q ∈ C∗

with |q| < 1. It is clear that this cannot be true over K, since examining the power
series for j = j(q), we see that if |q|v < 1, then |j(q)|v > 1. Thus every curve Eq

has nonintegral j-invariant. More precisely, the reduction Ẽq of Eq modulo v is given
by the Weierstrass equation

Ẽq : y2 + xy = x3,

so Eq has split multiplicative reduction at v.

Theorem 14.1. (Tate) Let K be a field that is complete with respect to a discrete
valuation v.
(a) For every q ∈ K∗ with |q|v < 1, the map

φ : K̄∗/qZ −→ Eq(K̄)

as described above is an isomorphism of GK̄/K-modules.
(b) For every j0 ∈ K∗ with |j0| > 1 there is a q ∈ K∗ with |q|v < 1 such that

the elliptic curve Eq/K has j-invariant j0. The curve Eq is characterized up to
isomorphism over K by j(Eq) = j and the fact that it has split multiplicative
reduction at v.

(c) Let R be the ring of integers of K. Then the isomorphism Eq(K) ∼= K∗/qZ

induces identifications

(Eq)0(K) ∼= R∗ and (Eq)1(K) ∼= {u ∈ R∗ : u ≡ 1 (mod v)}.

(d) Let E/K be an elliptic curve with nonintegral j-invariant that does not have
split multiplicative reduction. From (b) there is a value of q ∈ K∗ satisfy-
ing j(E) = j(Eq). Then there is a unique quadratic extension L/K such that E
is isomorphic to Eq over L. Further,

E(K) ∼=
{
u ∈ L∗ : NormL/K(u) ∈ qZ

}

qZ
.

The extension L/K is unramified if and only if E has (nonsplit) multiplicative
reduction, in which case the residue field extension of L/K is generated by the
slopes of the tangent lines to the node of the reduced curve Ẽ of E modulo v.

PROOF. This result was originally proven by Tate in 1959, although not published
until many years later [285]. Other accounts may be found in [210, II §5], [212],
and [266, V.5.3, V.5.4].

References. [140, Chapter 15], [210], [212], [266, Chapter V], [285].
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C.15 Néron Models and Tate’s Algorithm
As in the last section, we let K be a field that is complete with respect to a discrete
valuation v, and we let R be the ring of integers of K and k the residue field of K.
Let E/K be an elliptic curve and choose a minimal Weierstrass equation for E at v.
Suppose that we now consider this equation as defining a scheme E of Spec(R). The
resulting scheme may not be regular (i.e., nonsingular), since if E has bad reduction
at v, then the singular point on the special fiber Ẽ of E may be a singular point of the
scheme. By resolving the singularity, we obtain a scheme C/Spec(R) whose generic
fiber is E/K and whose special fiber is a union of curves (with multiplicities) over k.

Theorem 15.1. (Kodaira, Néron) Let E/K be as above.
(a) There is a regular projective two-dimensional scheme C/Spec(R) whose ge-

neric fiber C ×Spec(R) Spec(K) is isomorphic over K to E/K. Suppose further
that C is minimal, i.e., the map C → Spec(R) cannot be factored as

C → C′ → Spec(R)

in such a way that

C ×Spec(R) Spec(K) → C′ ×Spec(R) Spec(K)

is an isomorphism. Then C is unique.
(b) Let E ⊂ C be the subscheme of C obtained by discarding all of the singular

points of the special fiber C̃ = C ×Spec(R) Spec(k). In other words, we discard
all multiple fibral components, all intersections of fibral components, and all
singular points of fibral components. (Note that these are not singular points
of C itself, since C is regular.) Then E is a group scheme over Spec(R) whose
generic fiber E ×Spec(R) Spec(K) is isomorphic, as a group variety, to E/K.
The scheme E is called the Néron minimal model of E/K.

(c) The natural map E(R) → E(K) is an isomorphism, i.e., every section on the
generic fiber Spec(K) → E extends to a section Spec(R) → E .

(d) Let Ẽ = E ×Spec(R) Spec(k) be the special fiber of E . Then Ẽ is an algebraic
group over k. Let Ẽ0/k be its identity component, so Ẽ is an extension of Ẽ0 by
a finite group. Note that there is a reduction map E(R) → Ẽ(k). Then, with the
identification E(R) ∼= E(K) from (c), we have

(i) Ẽ0(k) ∼= Ẽns(k) ∼= E0(K)/E1(K).

(ii) Ẽ(k)/Ẽ0(k) ∼= E(K)/E0(K).

PROOF. See [193] or [266, §§IV.5, IV.6].

Remark 15.1.1. In some sources, the scheme C is called the Néron minimal model
of E/K. However, for abelian varieties of higher dimension, the Néron minimal
model always refers to a group scheme analogous to our E , and there is no natural
analogue of C. The ambiguity for elliptic curves results because the minimal model
of E, considered as a curve, is C, while the minimal model of E, considered as a
group variety, is E .
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Notice that (C.15.1d(ii)) gives a description of E(K)/E0(K) in terms of the
group of components of a certain algebraic group Ẽ/k. It turns out that there are
only a handful of possibilities for Ẽ . More precisely, we can write down all of the
possibilities for the special fiber C̃ = C ×Spec(R) Spec(k), and then we obtain Ẽ by
discarding all components of multiplicity greater than one, all points where compo-
nents intersect, and all singular points of components. The results are described in
the following theorem.

Theorem 15.2. (Kodaira, Néron) With notation as in (C.15.1), all of the possibil-
ities for the special fiber C̃ and the group of components Ẽ(k)/Ẽ0(k) are given in
Table 15.1. (Some of the components of the special fiber may only be defined over a
finite extension of k.)

Other than the case I0, each of the pictured components is a rational curve, i.e.,
a copy of P1. Further, the minimal discriminant Δv of E at v and the exponent of
the conductor fv (VIII §11, C §16) are as listed in the table.

PROOF. See [193] or [266, §§IV.8, IV.9].

Corollary 15.2.1. The group E(K)/E0(K) is finite. If E has split multiplicative
reduction, then it is cyclic of order − ordv

(
j(E)

)
. In all other cases it has order at

most 4.

PROOF. The first statement follows from (C.15.1d). For the second, if E has split
multiplicative reduction, then (C.14.1ac) implies that

E(K) = K∗/qZ and E(K)/E0(K) ∼= Z/ ordv(q)Z.

Further, the series for j(E) shows that ordv(q) = − ordv

(
j(E)

)
. Next, if E has

nonsplit multiplicative reduction, then it is easy to check using (C.14.1d) that the
quotient E(K)/E0(K) has order 1 or 2. Finally, if E has additive reduction, then
the result follows by inspection of Table 15.1.

Remark 15.3. If k does not have characteristic 2 or 3, then everything about E, i.e.,
reduction type, exponent of conductor, and the group E(K)/E0(K), may be read
off from Table 15.1 once we have a minimal Weierstrass equation for E. (It may
also be necessary to take a finite unramified extension of K to get the full group
of components.) Further, a given Weierstrass equation is minimal if and only if ei-
ther ordv(Δ) < 12 or ordv(c4) < 4; see Exercise 7.1a. So in this case it is easy to
check for minimality. In general, for k of arbitrary characteristic, there is a straight-
forward (but somewhat lengthy) algorithm due to Tate [283] that computes the spe-
cial fiber C̃, after which one can read off the other information from the correspond-
ing column in Table 15.1.

References. [193], [283], [266, Chapter IV].
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C.16 L-Series
The L-series of an elliptic curve is a generating function that records information
about the reduction of the curve modulo every prime. Known results are fragmentary,
but conjecturally such L-series contain a large amount of information concerning the
set of global points on the curve, which is somewhat surprising in view of the failure
of the Hasse principle for curves of genus one. Further, there are intimate relations
connecting L-series on elliptic curves defined over Q and the theory of modular
forms. In this section we describe these connections and state some fundamental
conjectures.

Let E/K be an elliptic curve and let v ∈ MK be a finite place at which E has
good reduction. We denote the residue field of K at v by kv , the reduction of E at v
by Ẽv , and we let qv = #kv be the norm of the prime ideal corresponding to v. We
recall from (V §2) that the zeta function of Ẽv/kv is the power series

Z(Ẽv/kv;T ) = exp

( ∞∑

n=1

#Ẽv(kv,n)
Tn

n

)

,

where kv,n is the unique extension of kv of degree n. We proved (V.2.4) that
Z(Ẽv/kv;T ) is a rational function,

Z(Ẽv/kv;T ) =
Lv(T )

(1 − T )(1 − qvT )
,

where

Lv(T ) = 1 − avT + qvT 2 ∈ Z[T ] and av = qv + 1 − #Ẽv(kv).

We extend the definition of Lv(T ) to the case that E has bad reduction by setting

Lv(T ) =

⎧
⎪⎨

⎪⎩

1 − T if E has split multiplicative reduction at v,
1 + T if E has nonsplit multiplicative reduction at v,
1 if E has additive reduction at v.

Then in all cases we have the relation

Lv(1/qv) = #Ẽns(kv)/qv.

Definition. The L-series of E/K is defined by the Euler product

LE/K(s) =
∏

v∈M0
K

Lv(q−s
v )−1.

The product defining LE/K(s) converges and gives an analytic function for
all Re(s) > 3

2 . This is easy to prove using the fact (V.2.4) that |av| ≤ 2
√

qv . It
is conjectured that far more is true.
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Conjecture 16.1. The L-series LE/K(s) has an analytic continuation to the entire
complex plane and satisfies a functional equation relating its values at s and 2 − s.

Work of Deuring [61, 62, 63, 64] and Weil [306] showed that (C.16.1) is
true for elliptic curves having complex multiplication, in which case LE/K is
equal to a (product of) Hecke L-series with Grössencharacter. Eichler [72] and
Shimura [246, 249] proved that (C.16.1) is true for elliptic curves E/Q that have
a modular parametrization (C §13), so Wiles’ theorem (C.13.6) implies that (C.16.1)
is true for all elliptic curves over Q.

The conductor of E/K is an integral ideal of K that encodes the primes of bad
reduction and is the same for isogenous elliptic curves. For any finite place v ∈ MK ,
we define the exponent of the conductor of E at v by

fv =

⎧
⎪⎨

⎪⎩

0 if E has good reduction at v,
1 if E has multiplicative reduction at v,
2 + δv if E has additive reduction at v,

where δv is a measure of the “wild ramification” in the action of the inertia group
on T�(E); see [200], [239], or [266, IV §10]. In particular, if char(kv) �= 2, 3,
then δv = 0. In all cases the exponent fv my be computed using the following
resul:

Proposition 16.2. (Ogg–Saito formula) Let mv be the number of irreducible com-
ponents (ignoring multiplicities) on the special fiber of the minimal (complete) Néron
model of E at v (C §15), and let DE/K be the minimal discriminant of E/K. Then

fv = ordv(DE/K) + 1 − mv.

PROOF. This was proven by Ogg [200] except in the case that char(Kv) = 0
and char(kv) = 2. A proof in all characteristics for curves of arbitrary genus was
given by Saito [217].

Definition. The conductor of E/K is the integral ideal of K defined by

NE/K =
∏

v∈M0
K

pfv
v .

In order to simplify the exposition in the rest of this section, we henceforth re-
strict attention to the case K = Q. In this case we may take NE = NE/Q to be a
positive integer. We define a new function

ξE(s) = N
s/2
E (2π)−sΓ(s)LE(s),

where Γ(s) =
∫∞
0

ts−1e−t dt is the gamma function. Then (C.16.1) has the fol-
lowing more precise formulation, but since we have assumed that K = Q, it is a
theorem, rather than a conjecture.
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Theorem 16.3. Let E/Q be an elliptic curve. Then the function ξE(s) has an ana-
lytic continuation to the entire complex plane and satisfies the functional equation

ξE(s) = wξE(2 − s) for some w = ±1.

The quantity w is called the sign of the functional equation. Its parity determines
whether the order of vanishing of LE/Q(s) at s = 1 is odd or even.

The modularity of elliptic curves over Q and its implication for L-series are
described in the next result, which combines Wiles’ modularity theorem (C.13.6)
with earlier work of Carayol [35], Eichler [72], Shimura [246, 249], and others, who
showed that modular elliptic curves have the indicated properties.

Theorem 16.4. Let E/Q be an elliptic curve of conductor N , let LE(s) =
∑

cnn−s

be its L-series, and let fE(τ) =
∑

cne2πinτ be the inverse Mellin transform
of LE .
(a) fE(τ) is a weight-2 cusp form for the congruence subgroup Γ0(N) of SL2(Z).
(b) For each prime p � N , let T (p) be the associated Hecke operator, and define an

operator W by (Wf)(τ) = f(−1/Nτ). Then

T (p)fE = cpfE and WfE = wfE ,

where w = ±1 is the sign of the functional equation (C.16.3).
(c) Let ω be an invariant differential on E/Q. There exists a finite morphism

φ : X0(N) → E defined over Q such that φ∗(ω) is a multiple of the differential
form on X0(N) represented by f(τ) dτ .

Another important conjecture concerning the L-series of elliptic curves involves
their behavior around s = 1. Before stating the conjecture, we set the following
notation:

E/Q an elliptic curve.

ω the invariant differential dx/(2y + a1x + a3) on a global minimal
Weierstrass equation for E/Q; see (VIII §8).

Ω =
∫

E(R)
|ω|, which equals either the real period or twice the real

period, depending on whether E(R) is connected.

X(E/Q) the Shafarevich–Tate group of E/Q; see (X §4).

R(E/Q) the elliptic regulator of E(Q)/Etors(Q), computed using the canonical
height pairing; see (VIII §9).1

cp = #E(Qp)/E0(Qp). In particular, cp = 1 if E has good reduc-
tion at p. See (C §15) and (VII §6) for a geometric description of cp.
(Birch and Swinnerton-Dyer originally called these “fudge factors.”
Their presence was explained by Tate [283].)

1Many sources use an alternative definition of the height pairing that is twice our value, which has the
effect of eliminating the factor of 2r in (C.16.5b).
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Conjecture 16.5. (Birch and Swinnerton-Dyer) Let E/Q be an elliptic curve.
(a) LE(s) has a zero at s = 1 of order equal to the rank of E(Q).2

(b) Let r = rankE(Q). Then with notation as above,

lim
s→1

LE(s)
(s − 1)r

=
2rΩ#X(E/Q)R(E/Q)

∏
p cp

#Etors(Q)2
.

As described by Tate in 1974, “this remarkable conjecture relates the behavior
of a function L at a point where it is not at present known to be defined to the order
of a group X which is not known to be finite!” Progress since that time (C.16.1)
has shown that LE(s) is defined at s = 1, but there is still no general proof that X
is always finite. However, there is a great deal of evidence supporting (C.16.5), of
which we mention the following.

Evidence 16.5.1. Conjecture C.16.5 has been checked numerically in a large num-
ber of cases. Since in general X is not known to be finite, what this means is
that (C.16.5b) is used to compute a hypothetical value for X. In all cases this has
turned out to be the square of an integer, as it should because of Cassels’ pair-
ing (X.4.14), and the value agrees with the calculated value of the 2 and/or 3 pri-
mary component of X. The original numerical evidence is given in [20]; see [33]
and [276] for additional computations.

Evidence 16.5.2. Exercise 5.4 says that isogenous elliptic curves have the same
number of points modulo p for all primes p, and thus they have the same L-series.
(One must also check that the factors for primes of bad reduction agree.) Conse-
quently, if (C.16.5b) is true, then the quantity

Ω#X(E/Q)R(E/Q)
∏

p cp

#Etors(Q)2

must be an isogeny invariant. This was proved by Cassels [40] and extended to
abelian varieties by Tate, in both cases under the assumption that X is finite. It
is worth noting that none of the individual terms in the product need be the same for
isogenous curves.

Evidence 16.5.3. Coates and Wiles [49] showed that if E/Q has complex multipli-
cation and E(Q) is infinite, then LE(1) = 0. See also [6] and [214].

Evidence 16.5.4. Greenberg [98] showed that if E/Q has complex multiplication
and ords=1 LE(s) is odd, then either rankE(Q) ≥ 1, or else X(E/Q)[p∞] is in-
finite for a set of primes p of density 1

2 . This last possibility is unlikely, to say the
least. See also [211].

Evidence 16.5.5. In the case that LE(1) = 0, Gross and Zagier [101] proved a limit
formula relating L′

E(1) to the canonical height of a point in E(Q) called a Heeg-
ner point. Rubin [215] for elliptic curves with complex multiplication and Kolyva-
gin [130] for elliptic curves over Q developed the theory of Euler systems and used

2This conjecture on the order of vanishing of LE(s) is one of the $1,000,000 Millennium Prize prob-
lems; see www.claymath.org/millennium/.
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it to prove that X is finite and that (C.16.5a) is true in many cases where LE(s)
vanishes to order at most 1. In particular, the results of Kolyvagin and Gross–Zagier
imply the following cases of (C.16.5a) for elliptic curves defined over Q:

LE(1) �= 0 =⇒ rankE(Q) = 0.
LE(1) = 0 and L′

E(1) �= 0 =⇒ rankE(Q) = 1.

In many cases (C.16.5b) is also known, at least up to a (square) rational factor. We
remark that Gross and Zagier originally proved their theorems under the assumption
that E/Q is modular, but their results are now unconditional because (C.16.4) tells
us that all elliptic curves over Q are modular.

References. [6], [20], [21], [40], [49], [61], [62], [63], [64], [98], [100], [101], [102],
[130], [197], [198], [199], [200], [211], [214], [215], [216], [239], [247], [248],
[249], [276], [306], [309], [312].

C.17 Duality Theory
In (X §4) we discussed the bilinear pairing on the Shafarevich–Tate group. There is
a complementary duality theorem in the local case.

Theorem 17.1. (Tate [281], [286]) Let v ∈ MK be a nonarchimedean absolute
value, and let E/Kv be an elliptic curve. There exists a nondegenerate bilinear pair-
ing

〈 · , · 〉 : E(Kv) × WC(E/Kv) −→ Q/Z.

More precisely, if we give E(Kv) the v-adic topology and WC(E/Kv) the discrete
topology, then 〈 · , · 〉 induces a duality of locally compact groups, i.e., the pair-
ing 〈 · , · 〉 is continuous, every continuous homomorphism E(Kv) → Q/Z has the
form 〈 · , ξ〉 for some ξ ∈ WC(E/Kv), and similarly every continuous homomor-
phism WC(E/Kv) → Q/Z has the form 〈P, · 〉 for some P ∈ E(Kv).

See Exercise 10.24 for a construction of the Tate pairing.
The global duality theory is not quite as satisfactory because it is not known in

general whether the Shafarevich–Tate group can have divisible elements.

Theorem 17.2. (Cassels [38], Tate [281]) Let E/K be an elliptic curve. There exists
an alternating bilinear pairing

X(E/K) × X(E/K) −→ Q/Z

whose kernel on either side is precisely the group of divisible elements of X.

Corollary 17.2.1. If X(E/K) is finite, then its order is a perfect square. More
generally, the same is true for any p-primary component X(E/K)[p∞].

References. [38], [177], [238], [286], [281].
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C.18 Local Height Functions
Néron, in his original construction of canonical height functions [194], first con-
structed a local height pairing at each absolute value v ∈ MK . He then formed the
(global) canonical height by taking the sum of the local heights. A nice exposition of
this local theory for elliptic curves was given by Tate [280] and published in [135].
The theory of local height functions is important in the study of the more delicate
properties of the canonical height; see for example [101], [113], or [254]. It is also
useful for numerical computation of the canonical height of points on elliptic curves.

Proposition 18.1. Let v ∈ MK , and let E/Kv be an elliptic curve given by a Weier-
strass equation

E : y2 + a1xy + a3y = x63 + a2x
2 + a4x + a6.

There is a unique function

λv : E(Kv) � {O} −→ R,

called the local height function for E at v, with the following properties:
(i) λv is continuous for the v-adic topology on E(Kv) and the usual topology on R.

(ii) The limit

lim
P→O

λv(P ) +
1
2
v
(
x(P )

)

exists, where P ∈ E(Kv) and P → O in the v-adic topology.
(iii) Let Δ be the discriminant of the Weierstrass equation. Then for all P ∈ E(Kv)

with [2]P �= O we have

λv

(
[2]P

)
= 4λv(P ) + v

(
2y(P ) + a1x(P ) + a3

)
− 1

4
v(Δ).

Further, property (iii) may be replaced by the “quasi-parallelogram law”
(iii′) For all P,Q ∈ E(Kv) with P,Q, P ± Q �= O,

λv(P + Q) + λv(P − Q) = 2λv(P ) + 2λv(Q) + v
(
x(P ) − x(Q)

)
− 1

6
v(Δ).

Remark 18.1.1. The function λv in (C.18.1) does not depend on the choice of Weier-
strass equation for E because conditions (i)–(iii) are invariant under change of coor-
dinates.

Theorem 18.2. Let E/K be an elliptic curve. Then for all points P ∈ E(K)�{O},
the canonical height ĥ(P ) is given by

ĥ(P ) =
1

[K : Q]

∑

v∈MK

nvλv(P ).

There are explicit formulas for the local height in all cases, but we are content to
give the following statement.
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Theorem 18.3. Let E/K be an elliptic curve and let v ∈ MK .
(a) Case I. v archimedean.

Choose a lattice Λ ⊂ C and an isomorphism E(K̄v) ∼= C/Λ. Let σ(z,Λ) be
the Weierstrass σ-function and let Δ(Λ) and η : C → R be as in Exercises 6.6
and 6.4, respectively. If P ∈ E(Kv) corresponds to z ∈ C/Λ, then

λv(P ) = − log
∣
∣Δ(Λ)1/12e−zη(z)/2σ(z,Λ)

∣
∣
v
.

(b) Case II. v nonarchimedean and P ∈ E0(K).
Let x and y be coordinate functions on a minimal Weierstrass equation for E
at v. Then

λv(P ) = max
{
−1

2
v
(
x(P )

)
, 0

}
+

1
12

v(Δ).

(c) Case III. v nonarchimedean, E has split multiplicative reduction at v, and
P /∈ E0(K).
Fix an isomorphism E(Kv)/E0(Kv) ∼= Z/NZ, where N = − ordv

(
j(E)

)
.

(See (VII.6.1).) Suppose that with this identification, the point P ∈ E(Kv) maps
to n ∈ Z/NZ with 1 ≤ n ≤ N − 1. Then

λv(P ) = −1
2
B2

( n

N

)
v
(
j(E)

)
,

where B2(T ) = T 2 − T + 1
6 is the second Bernoulli polynomial.

Remark 18.3.1. There are also formulas for λv(P ) in the nonsplit multiplicative
and additive reduction cases. See [263] or [266, exercises 6.7, 6.8] for details, but
note that in any case we can always apply (C.18.3) after replacing K by a finite
extension (VII.5.4c).

References. [135], [194], [263], [266]. For a reformulation and generalization in
terms of arithmetic intersection theory, see for example [44] or [83].

C.19 The Image of Galois
Let E/K be an elliptic curve defined over a number field, and let � be a prime. Many
of the arithmetic properties of E are determined by the �-adic representation

ρ� : GK̄/K −→ Aut
(
T�(E)

)
.

We state two fundamental results about ρ�.

Theorem 19.1. (Serre [237], [231]) Assume that E does not have complex multipli-
cation.
(a) For all primes �, the image of ρ� is of finite index in Aut

(
T�(E)

)
.

(b) For all but finitely many primes �, the image of ρ� is equal to Aut
(
T�(E)

)
.
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Theorem 19.2. (Faltings [82], [84]) Let E/K and E′/K be elliptic curves. Then
the natural map

HomK(E,E′) ⊗ Z� −→ HomK

(
T�(E), T ′

�(E)
)

is an isomorphism. (Here the right-hand side is the group of Z�-linear homomor-
phisms from T�(E) to T�(E′) that commute with the action of GK̄/K . We proved
injectivity in (III.7.4); the real difficulty lies in showing that the map is surjective.)

References. [82], [84], [231], [237].

C.20 Function Fields and Specialization Theorems
Let V/K be a variety defined over a number field. We consider elliptic curves defined
over the function field K(V ). These are curves given by Weierstrass equations

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 with a1, . . . , a6 ∈ K(V ).

For almost all points t ∈ V , i.e., points outside of some proper subvariety of V , all of
the functions a1, . . . , a6 are defined at t. This allows us to define the specialization
of E at t to be the elliptic curve

E : y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x + a6(t).

Similarly, if P = (x, y) ∈ E
(
K(V )

)
, then the functions x, y ∈ K(V ) are defined

for almost all t ∈ V , which allows us to specialize P to a point

Pt =
(
x(t), y(t)

)
∈ Et.

It turns out to be true, although we do not prove it, that the group E
(
K(V )

)
is

finitely generated, i.e., the Mordell–Weil theorem holds in this function field setting.
Thus by choosing a finite set of generators for E

(
K(V )

)
, for almost all t ∈ V we

can define a specialization homomorphism

σt : E
(
K(V )

)
−→ Et.

We observe that if t ∈ V (K), then Et is defined over K and the image of σt lies
in Et(K). Néron used a generalization of Hilbert’s irreducibility theorem to prove
that the specialization homomorphism is frequently injective.

Theorem 20.1. (Néron [192]) Let K be a number field, and let E be an ellip-
tic curve defined over the function field K(Pn). Then there are infinitely many
points t ∈ Pn(K) such that the specialization homomorphism

σt : E
(
K(Pn)

)
−→ Et(K)

is injective.
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PROOF. More precisely, Néron proves that the set of t for which σt is noninjec-
tive forms a “thin” set. See Néron’s original paper [192], or the exposition in [139,
Chapter 9] or [236, §11.1].

Corollary 20.1.1. There exist infinitely many elliptic curves E/Q such that E(Q)
has rank at least 10.

PROOF. Néron [192] originally used (C.20.1) to find families of curves E/Q of
rank 9 and 10. Subsequently, others have constructed families of rank up to 19; see
for example [76, 85, 188].

Remark 20.2. The way that Néron uses (C.20.1) to produce curves E/Q of mod-
erately large rank is to find an elliptic curve over Q(T1, . . . , Tn) having large rank
and then specialize. For example, taking n = 18, let C/Q(T1, . . . , T18) be the cubic
curve passing through the nine points (T1, T2), . . . , (T17, T18). It is not hard to show
that the Jacobian of C has rank (at least) 9 over Q(T1, . . . , T18). With some addi-
tional work, Néron found infinitely many curves over Q of rank 10. Working within
these families, an ingenious search method due to Mestre [171, 172] often enables
one to find specific curves E/Q of even higher rank; see (VIII §10).

Remark 20.2.1. Masser [161] applied ideas from transcendence theory to extend
and strengthen Néron’s result.

In the case that the variety V is a curve, Néron’s theorem (C.20.1) may be sig-
nificantly improved.

Theorem 20.3. (Silverman [255]) Let K be a number field, let C/K be a curve,
and let E be an elliptic curve defined over the function field K(C). Assume that E
is nonconstant, i.e., j(E) /∈ K. Then the specialization map

σt : E
(
K(C)

)
−→ Et

is well-defined and injective for all but finitely many points t ∈ C(K). More gen-
erally, the set of points t ∈ C(K̄) for which σt is not injective is a set of bounded
height.

PROOF. See [139, Chapter 12], [256], or [266, III.11.4].

The Birch–Swinnerton-Dyer conjecture (C.16.5) says that rank of the Mordell–
Weil group E(K) is determined by the reductions Ẽ(Fp) of E modulo the various
primes of K. A conjecture of Nagao gives a similar statement for the Mordell–Weil
group of elliptic curves over function fields. For simplicity, we state the conjecture
over K(P1); see [213] for the general formulation.

Conjecture 20.4. (Nagao [189]) Let K be a number field and let E be an ellip-
tic curve defined over the function field K(P1). Assume that j(E) /∈ K. For each
prime p of K, let

Ap(E) =
1

NK/Q p

∑

t∈P1(Fp)

ap(Ẽt/Fp).
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In other words, Ap is the average value of

ap(Ẽt/Fp) = NK/Q p + 1 − #Ẽt(Fp)

as we reduce modulo p and specialize E at all of the points t ∈ P1(Fp). Then

lim
X→∞

1
X

∑

NK/Q p≤X

−Ap(E) log NK/Q p = rankE
(
K(P1)

)
.

Remark 20.4.1. If A(T ), B(T ) ∈ K[T ] are polynomials satisfying

deg A(T ) ≤ 3 and deg B(T ) ≤ 5,

then Rosen and Silverman [213] prove that (C.20.4) is true for the family of elliptic
curves

y2 = x3 + A(T )x + B(T ).

(The constraints on A and B imply that E is a rational elliptic surface.) More gen-
erally, they show that (C.20.4) is a consequence of a deep conjecture of Tate that
relates the L-series of a variety to its geometry.

References. [76], [85], [139], [161], [188], [189], [192], [213], [256], [260], [284].

C.21 Variation of ap and the Sato–Tate Conjecture
Let E/K be an elliptic curve defined over a number field. As in (C §16), we reduce E
modulo finite places v and set

av = qv + 1 − #Ẽv(kv),

where kv is the residue field and qv = #kv is the norm of v. We know from (V.1.1)
that |av| ≤ 2

√
qv , and we ask how the av values vary as we vary v. In order to

normalize matters, it is natural to look at the ratios av/2
√

qv . Since these ratios are
between −1 and 1, we write them as

av

2
√

qv
= cos θv with 0 ≤ θv ≤ π,

and we study the distribution of the angles θv.
If E has complex multiplication, then it is not hard to prove that the θv values are

uniformly distributed in the interval [0, π]. The non-CM case is covered by a deep
conjecture of Sato and Tate

Conjecture 21.1. (Sato–Tate [287]) With notation as above, assume that E does
not have complex multiplication. Then the set of angles {θv} is equidistributed with
respect to the measure 2

π sin2 θ dθ. In other words, for any 0 ≤ α ≤ β ≤ π,

lim
X→∞

#{v : qv ≤ X and α ≤ θv ≤ β}
#{v : qv ≤ X} =

2
π

∫ β

α

sin2 θ dθ.
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Building on the groundbreaking methods devised by Wiles to prove the modular-
ity conjecture (C.13.6), Clozel, Harris, Shepherd-Barron, and Taylor have mounted
attacks on the Sato–Tate conjecture, leading to Taylor’s proof of the conjecture for
elliptic curves with nonintegral j-invariant

Theorem 21.2. Let E/Q be an elliptic curve with nonintegral j-invariant. Then the
Sato–Tate conjecture (C.21.1) is true for E.

PROOF. [290]; see also [47] and [110].

Remark 21.3. The sin2 θ distribution appearing in (C.21.1) may seem somewhat
mysterious. It comes from Haar measure on the unitary group SU2(C). To see how,
we fix a prime � and let

ρ : GK̄/K −→ Aut
(
T�(E)

)
⊗Z�

Q�
∼= GL2(Q�)

be the �-adic representation attached to E. For each finite place v ∈ MK of good
reduction for E, we choose a Frobenius element φv ∈ GK̄/K . The matrix ρ(φv) is
determined up to conjugation, so in particular its trace and norm are well-defined.
Indeed, the trace and norm are integers,

Trace ρ(φv) = av and Norm ρ(φv) = qv.

Thus ρ(φv) is conjugate to a matrix in GL2(Q̄). Further, Hasse’s theorem (V.1.1)
tells us that the characteristic polynomial of the matrix ρ(φv)/

√
qv ,

det
(

X − ρ(φv)
√

qv

)
= X2 − av√

qv
X + 1,

has complex roots of norm 1, so ρ(φv)/
√

qv is actually conjugate to a matrix
in SU2(C). We thus get a well-defined map

M0
K −→ SU2(C)/(conjugacy), v �−→ conjugacy class of ρ(φv)/

√
qv .

(We may need to exclude finitely many elements of M0
K .) It is an exercise to check

that the trace map defines an isomorphism

Trace : SU2(C)/(conjugacy) ∼−−−−−→ [−2, 2], A �−→ Trace(A).

The compact group SU2(C) has an invariant (Haar) measure μ that is unique if we
normalize it to satisfy μ

(
SU2(C)

)
= 1. One can check that the pushforward of μ

to [−2, 2] is given by 1
2π

√
4 − x2 dx, i.e., for any continuous function on [−2, 2] we

have ∫

SU2(C)

f ◦ Trace dμ =
∫ 2

−2

f(x) · 1
2π

√
4 − x2 dx.

The Sato–Tate conjecture asserts that the matrices ρ(φv)/
√

qv are equidistributed
in the quotient group SU2(C)/(conjugacy) relative to the measure induced from nor-
malized Haar measure on SU2(C). Moving everything to the interval [−2, 2], this
means that the trace values Trace

(
ρ(φv)/

√
qv

)
are equidistributed with respect to

the measure 1
2π

√
4 − x2. Now the substitution x = 2 cos θ transforms the SU2(C)-

equidistribution assertion into the formula given in (C.21.1).
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The Sato–Tate conjecture deals with a fixed elliptic curve over a number field
and counts the number of points modulo v for varying primes v. It is also natural
to fix a finite field k and study the number of points in E(k) as E varies over all
isomorphism classes of elliptic curves, as in the following result.

Theorem 21.4. (Birch [18]) Fix a prime p, and let Ep denote the set of Fp-isomor-
phism classes of elliptic curves defined over Fp. For each E ∈ Ep, let

ap(E) = p + 1 − #E(Fp) and cos θp(E) = ap(E)/2
√

p.

Then for all 0 ≤ α ≤ β ≤ π,

lim
p→∞

#{E ∈ Ep : α ≤ θp(E) ≤ β}
#Ep

=
2
π

∫ β

α

sin2 θ dθ.

References. [18], [47], [110], [287], [290].



Notes on Exercises

Many of the exercises in this book are standard results that were not included in the
text due to lack of space, while others are special cases of results that appear in the
literature. The following notes thus serve two purposes. They are an attempt by the
author to give credit for theorems that appear in the exercises, and they provide an aid
for the reader who wishes to delve more deeply into some aspect of the theory. How-
ever, since any attempt to assign credit is bound to be incomplete in some respects,
the author herewith tenders his apologies to all who feel that they have been slighted.

Except for an occasional computational problem (and for Exercise 3.16), we have
not included solutions, or even hints. Indeed, since it is hoped that this book will lead
the student on into the realm of active mathematics, the benefits of working without
aid clearly outweigh any advantage that might be gained by having solutions readily
available.

CHAPTER I

(1.1) (a) B(A3 − 27B) = 0. (b) 4A3 + 27B2 = 0.
(1.2) (a) (0, 0). (b) (0, 0). (c) (0, 0). (d) (0, 0, 1).
(1.3) [111, I.5.1]
(1.5) (b) P3 = (−8/9, 109/27)
(1.7) (b) ψ = [Y,X]. (c) No.

CHAPTER II

(2.1) [8, Proposition 9.2]
(2.4) (b) [136, Lemma, Page 7]
(2.5) [111, II.6.10.1] and [111, IV.1.3.5]
(2.6) This volume (III §3).
(2.9) This example is due to Hurwitz [117]. See also [41, §22].
(2.11) This proof of Weil reciprocity is due to E. Kani.

CHAPTER III

(3.4) P2 = −[2]P1 +P3, P4 = P1 −P3, P5 = −[2]P1, P6 = −P1 +[2]P3,
P7 = [3]P1 − P3, P8 = −[4]P1 + [3]P3

(3.6) [111, IV.3.2b]
(3.7) [36], [41, Lemma 7.2], [135, II Theorem 2.1]

461
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(3.8) (b) This volume (VI §6).
(3.9) [210, II.1.24], [210, II.2.9]
(3.13) [186, II §7 page 66]
(3.16) (c) Since the publication of the first edition, this question has generated
more inquiries to the author than any other question in the book, so we break our
stated policy and provide a proof sketch. Choose points P ′, Q′, R ∈ E satisfying

[m]P ′ = P, [m]Q′ = Q, P ′ �= ±Q′, [2]R = P ′ − Q′.

Define divisors DP and DQ and choose functions fP , fQ, gP , gQ ∈ K̄(E) satsifying

DP = (P ) − (O), DQ =
(
Q + [m]R

)
−

(
[m]R

)
,

div(fP ) = mDP , div(fQ) = mDQ,

fP ◦ [m] = gm
P , fQ ◦ [m] = gm

Q .

We claim that the following two functions in K̄(E) are constant when viewed as
functions of X:

(i)
gP (X + Q′ + R)gQ(X)
gP (X + R)gQ(X + P ′)

. (ii)
m−1∏

i=0

gQ

(
X + [i]Q′).

It suffices to show that the divisors of (i) and (ii) are 0, which is easily verified using

div(gP ) =
∑

T∈E[m]

(T +P ′)− (T ), div(gQ) =
∑

T∈E[m]

(T +Q′ +R)− (T +R).

We now compute

ẽm(P,Q) =
fP (DQ)
fQ(DP )

definition of ẽm,

=
fP (Q + [m]R)fQ(O)

fP ([m]R)fQ(P )
definition of DP and DQ,

=
fP ([m]Q′ + [m]R)fQ([m]O)

fP ([m]R)fQ([m]P ′)
definition of P ′ and Q′,

=
(

gP (Q′ + R)gQ(O)
gP (R)gQ(P ′)

)m

since fP ◦ [m] = gm
P and fQ ◦ [m] = gm

Q ,

=
m−1∏

i=0

gP (R + [i + 1]Q′)gQ([i]Q′)
gP (R + [i]Q′)gQ(P ′ + [i]Q′)

since (i) is constant,

=
gP (R + [m]Q′)

gP (R)

m−1∏

i=0

gQ([i]Q′)
gQ(P ′ + [i]Q′)

since the product telescopes,

=
gP (R + Q)

gP (R)
since (ii) is constant,

= em(P,Q) definition of em.



Notes on Exercises 463

(3.18) (d) [60]
(3.20) [249, Proposition 4.11]
(3.21) [111, IV §4]
(3.23) This volume (A.1.3). Poonen remarks that one can do (c) and (d) first, then

prove (a) by finding an α such that the Deuring equation is nonsingular and
has the same j-invariant as the given E.

(3.26) (a) This volume (XI.7.1).
(3.27) (e), (f) [267, 6.52]
(3.29) This problem was suggested by David Masser.
(3.31) This exercise was devised by Michael Rosen, René Schoof, and the author.
(3.32) This volume (V.2.3.1).
(3.33) This exercise was devised by Michael Rosen and the author.
(3.34)–(3.36) Elliptic divisibility sequences were first investigated by Ward [303];

see also [252, 271, 272].

CHAPTER IV

(4.1) (a) [93, I §3 Proposition 1]
(4.2) (b) [112, Theorem I.6.1]
(4.4) [93, IV §2 Theorem 2]

CHAPTER V

(5.3) [111, C.4.1]
(5.4) (a) Due to F.K. Schmidt. See [41, Lemma 15.1]. (b) [282]
(5.8) Due to Deuring. See [186, Section 22, Theorem on page 217].
(5.10) (c), (d) solutions provided by Jaap Top.

(c) y2 = x3 − x y2 = x3 − x + 1 y2 = x3 − x − 1 y2 = x3 + x
#E(F3) 4 7 1 4

(d) y2 + y = x3 y2 + y = x3 + x y2 + y = x3 + x + 1
#E(F2) 3 5 1

(e), (f) suggested by René Schoof.
(5.11) This proof of a weak version of [234, §4.3] was suggested by Serre.
(5.14) This volume (XI.6.2).
(5.16) This problem was suggested by Jonathan Lubin.
(5.18) This babystep–giantstep algorithm is due to Shanks; see (XI.5.2).

CHAPTER VI

(6.3) (d) [310, Chapter XX, Misc. Exercise 33]
(6.4) (a)–(e) [3, Chapter 7, §3.2], [310, Chapter XX], [135, Chapter I,§6]
(6.8) For more information about complex multiplication and class field theory,

see (C §11) and the references listed there.
(6.11)–(6.13) The literature on elliptic integrals is vast. A nice summary may be

found in [310, Chapter XXII].
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(6.14) [52]
(6.16) This is due to Ward [303].

CHAPTER VII

(7.2) [283, §3]
(7.4) [283, §4]
(7.9) [239, Theorem 2 and Corollaries]
(7.10) For three proofs of this fact, see [266, II §6 and V.6.3]. For more on complex

multiplication, see (C §11) and the references listed there.
(7.11) This volume (A.1.4).
(7.13) The observation that the ECDLP is trivial for anomalous curves is due to Se-

maev [228], Satoh–Araki [218], and Smart [269]. See this volume (XI.6.5).

CHAPTER VIII

(8.2) This volume (X.6.1b).
(8.3) This problem was suggested by D. Rohrlich.
(8.6) [139, Chapter 3, Proposition 1.1]
(8.7) [220]
(8.9) [139, page 54]
(8.11) [41, Theorem 17.2]
(8.12) One example of each group allowed by (VIII.7.5).
(8.14) (a,b) [241] (d) [259]
(8.15) Due to Tate. See [198].
(8.17) (c) [254] (d) [201]
(8.18) Due to Dem’janenko and Zimmer. See [138] and [316]. For sharper bounds,

see [55] and [265].
(8.21) [196]
(8.23) [196]

CHAPTER IX

(9.3) (b) [153] (d) [257]
(9.4) [264]
(9.5) [148]
(9.6) Due to A. Thue.
(9.7) [237, IV §2]
(9.8) [139, Chapter 5, §7]
(9.10) [56]
(9.11) [185, Chapter 26]
(9.13) This argument appears in an unpublished letter from Tate to Serre. One can

also do (c) and (d) directly; see [185, Chapter 27, Theorem 2].
(d) 2 · 3 = 1 · 2 · 3 and 14 · 15 = 5 · 6 · 7

(9.18) The 14 integral points on E with y > 0 are P1 = (−12, 19), P2 =
(−10, 33), P3 = (−4, 45), P4 = (3, 46), P5 = (8, 51), P6 = (18, 89),
P7 = (60, 467), P8 = (71, 600), P9 = (80, 717), P10 = (170, 2217),
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P11 = (183, 2476), P12 = (698, 18441), P13 = (9278, 893679), and
P14 = (129968, 46854861). The latter 10 of these are given by the linear
combinations P5 = −P2−P4, P6 = −P2−P3, P7 = P2+P3+P4, P8 =
−P1 − P2, P9 = P1 − P3, P10 = P3 − P4, P11 = P2 − P3, P12 =
P1 − P2, P13 = P1 + [2]P2 + P3 + P4, P14 = −P2 + [2]P3 − P4.

CHAPTER X

(10.2) [307]
(10.3) This is due to Châtelet. See [41, Theorem 11.1]
(10.4) (c) [41, Corollary to Lemma 10.3]
(10.6) This is due to Lang; see [144].
(10.8) [144]
(10.9) (a) [185, Chapter 16, Theorem 6]
(10.10) [37]
(10.11) (c,d) Due to Lang–Tate and Shafarevich. See [41, Lemma 12.2].

(e) [39]
(f) [37]
(g) [149]

(10.19) (d) Due to Fueter [94].
(10.21) [266, V.5.2]
(10.24) [177], [286], [281].
(10.23) Due to Neumann [195] and Setzer [240]. A minimal Weierstrass equation

for Ea is y2 + xy = x3 + 1
4 (a − 1)x2 − x.

CHAPTER XI

(11.1) (a) [23](195, 9) = (485, 573). (b) [3211](2898, 439) = (243, 1875).
(11.2) See [22, §IV.3], [51, §15.1], or [116, Exercise 5.23]. The trick in (c) is due

to Solinas.
(d-i) 349 = 21 − 23 − 26 − 28 + 210

(d-ii) 9337 = 21 − 24 + 28 + 211 + 214

(d-iii) 38728 = 24 + 27 − 29 − 212 + 214 + 216

(d-iv) 8379483273489 = 21+25+29−212−215+222−233+238−240+244

(11.3) (d-i) 931 = −1 + τ2 + τ10 + τ14 − τ17 − τ19 − τ21

(d-ii) 32755 = −1+τ2 +τ4 +τ6 +τ8 +τ15−τ17 +τ19−τ22 +τ28−τ31

(d-iii) 82793729188 = τ2 + τ8 − τ10 − τ12 + τ15 + τ18 + τ20 − τ24 −
τ27 + τ30 − τ34 + τ36 − τ40 + τ44 + τ46 − τ48 + τ50 − τ52 + τ55 + τ58 +
τ61 + τ68 − τ71 − τ73

(11.7) (a) [5!]P gives 589 = 19 · 31.
(b) [7!]P gives 26167 = 191 · 137.
(c) [11!]P gives 1386493 = 1069 · 1297.
(d) [29!]P gives 28102844557 = 117763 · 238639.

(11.9) This algorithm is due to Pohlig and Hellman [205].
(a) See [116, Theorem 2.32].
(b) See [116, Proposition 2.34].
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(11.11) This encryption scheme is due to Abdalla, Bellare, and Rogaway [1].
(11.5) (b) For 50 people, the probability is 97%.

For 23 people, the probability is 50.7%.
(c) c = 1.177 gives probability 50%.

c = 5.256 gives probability 1 − 10−6.
(11.12) xSi

∈ A xSi
∈ B xSi

∈ C

xf(Si) ∈ A γi + 2 2γi + 1 γi + 1
xf(Si) ∈ B 2γi + 2 4γi 2γi

xf(Si) ∈ C γi + 1 2γi γi + 1

Value of γi+1

xSi
∈ A xSi

∈ B xSi
∈ C

xf(Si) ∈ A δi 2δi δi + 1
xf(Si) ∈ B 2δi 4δi 2δi + 2
xf(Si) ∈ C δi + 1 2δi + 1 δi + 2

Value of δi+1

(11.13) (a) Q = [198]P (b) Q = [6062]P (c) Q = [62354]P
(11.14) (b,c) Due to Teske [292]; see also [293].
(11.15) (b) P ′ = (56, 11593), Q′ = (54, 12553).

(c) logE

(
[137]P ′) ≡ z

(
[137]P ′) ≡ 111 · 137 (mod 1372),

logE

(
[137]Q′) ≡ z

(
[137]Q′) ≡ 65 · 137 (mod 1372).

(d) m ≡ 111−1 · 65 ≡ 66 (mod 137).
(11.16) (a) Take S = (0, 36). Then

fP ′(Q′+S) = 326, fP ′(S) = 523, fQ′(P ′−S) = 483, fQ′(−S) = 576,

so e5(P ′, Q′) = (326/523)/(483/576) = 512.
(b) P ′ = 3P and Q′ = 4Q.



List of Notation

K̄ an algebraic closure of K, 1
GK̄/K the Galois group of K̄/K, 1
An affine n space, 1
An(K) the set of K rational points of An, 1
P σ the action of σ ∈ GK̄/K on the point P , 2
K̄[X] the polynomial ring K̄[X1, . . . , Xn], 2
VI subset of An associated to the ideal I , 2
I(V ) ideal associated to the algebraic set V , 2
V (K) the set of K rational points of V , 2
K[V ] affine coordinate ring of V/K, 3
K(V ) function field of V/K, 3
dim(V ) the dimension of V , 4
MP ideal associated to the point P , 5
K̄[V ]P local ring of V at P , 6
Pn projective n space, 6
Pn(K) set of K rational points of Pn, 6
K(P ) minimal field of definition of the point P , 6
VI subset of Pn associated to the homogeneous ideal I , 7
I(V ) ideal associated to the projective algebraic set V , 7
V (K) set of K-rational points of the projective variety V , 7
V̄ projective closure of the algebraic set V , 9
dim(V ) the dimension of the projective variety V , 10
K(V ) function field of the projective variety V/K, 10
K̄[V ]P local ring of the projective variety V at P , 11
ordP normalized valuation on K̄[C]P and on K̄(C), 17
φ∗ map of function fields induced by rational map of curves, 20
deg φ degree of the map φ, 21
degs φ separable degree of the map φ, 21
degi φ inseparable degree of the map φ, 21
φ∗ map of function fields induced by rational map of curves, 21
eφ(P ) ramification index of the map φ, 23
f (q) polynomial with coefficients raised to the qth power, 25
C(q) curve obtained by raising coefficients to the qth power, 25
Div(C) divisor group of a curve, 27
deg D degree of a divisor, 27
Div0(C) group of divisors of degree 0 on a curve, 27
DivK(C) group of divisors defined over K, 27
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Div0
K(C) group of divisors of degree 0 defined over K, 27

div(f) divisor of the function f , 27
∼ linear equivalence of divisors, 28
Pic(C) the Picard group of C, 28
PicK(C) the subgroup of Pic(C) fixed by GK̄/K , 28
Pic0(C) Picard group of degree-zero divisor classes, 28
Pic0

K(C) Picard group of degree-zero divisor classes fixed by GK̄/K , 28
φ∗ map induced on divisors by the rational map φ, 29
φ∗ map induced on the Picard group by the rational map φ, 30
φ∗ map induced on the Picard group by the rational map φ, 30
ΩC the space of meromorphic differential forms on the curve C, 30
φ∗ map induced on differential forms by the rational map φ, 30
ordP (ω) order of the differential form ω at the point P , 31
div(ω) divisor of the differential form ω, 32
D1 ≥ D2 indication that D1 − D2 is a positive divisor, 33
L(D) space of functions satisfying div(f) ≥ −D, 34
�(D) dimension of the space of functions L(D), 34
a1, . . . , a6 coefficients of a general Weierstrass equation, 42
b2, . . . , b8 quantities associated to a Weierstrass equation, 42
c4, c6 quantities associated to a Weierstrass equation, 42
Δ the discriminant of a Weierstrass equation, 42
j the j-invariant of an elliptic curve, 42
ω invariant differential on an elliptic curve, 42
⊕ group law on an elliptic curve, 51
� negation on an elliptic curve, 51
E(K) group of K-rational points on the elliptic curve E/K, 52
+,− addition and negation on an elliptic curve, 52
[m] multiplication-by-m map on an elliptic curve, 52
Ens nonsingular part of a Weierstrass equation, 56
O the identity element on an elliptic curve, 59
σ map Div0(E) → E and Pic0(E) → E, 61
κ map E → Pic0(E), 62
Hom(E1, E2) group of isogenies from E1 to E2, 67
End(E) endomorphism ring of the elliptic curve E, 67
Aut(E) the automorphism group of the elliptic curve E, 67
E[m] m-torsion subgroup of the elliptic curve E, 69
Etors torsion subgroup of the elliptic curve E, 69
τQ translation-by-Q map on an elliptic curve, 71
E/Φ the quotient of the elliptic curve E by the finite subgroup Φ, 74
φ̂ the dual isogeny to φ, 82
T�(E) the �-adic Tate module of the elliptic curve E, 87
ρ� the �-adic representation of GK̄/K on T�(E), 88
μm the group of mth roots of unity, 88
T�(μ) the Tate module of the multiplicative group, 88
φ� map on �-adic Tate modules induced by the isogeny φ, 89
em the Weil pairing em : E[m] × E[m] → μm, 93
invp the invariant at p of a quaternion algebra, 102
ψm mth division polynomial, 105
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Ĝa formal additive group, 121
Ĝm formal multiplicative group, 121
Ê the formal group associated to the elliptic curve E, 121
[m] multiplication-by-m map on a formal group, 121
M maximal ideal of the (local) ring R, 123
k residue field of the (local) ring R, 123
F a formal group with formal group law F (X, Y ), 123
F(M) the group associated to F/R, 123
ω(T ) invariant differential on a formal group, 125
logF formal logarithm of the formal group F , 127
expF formal exponential of the formal group F , 127
Z(V/Fq; T ) the zeta function of the variety V over the finite field Fq , 140
C(Λ) the field of elliptic functions for the lattice Λ, 161∑

w∈C/Λ
sum over a fundamental parallelogram for Λ, 162

Div(C/Λ) the divisor group of C/Λ, 164
Div0(C/Λ) group of divisors of degree 0 on C/Λ, 164
div(f) divisor of the elliptic function f , 164
sum summation mapDiv0(C/Λ) → C/Λ, 164
℘ Weierstrass ℘-function, 165
G2k Eisenstein series of weight 2k, 165
σ Weierstrass σ-function, 167
g2, g3 Eisenstein series 60G4 and 140G6, 169
ζ(z) Weierstrass ζ-function, 178
η(ω) quasiperiod associated to the period ω, 179
K(k), T (k) complete elliptic integrals, 181
K a complete local field (Ch. VII), 185
v discrete valuation on the field K (Ch. VII), 185
R ring of integers of K (Ch. VII), 185
R∗ unit group of R (Ch. VII), 185
M maximal ideal of R (Ch. VII), 185
π a uniformizer for R (Ch. VII), 185
k residue field of R (Ch. VII), 185
˜ reduction modulo π, 187
Ẽ reduction of the elliptic curve E modulo π, 187
P̃ reduction of the point P modulo π, 187
E0(K) set of points of E(K) with nonsingular reduction, 188
E1(K) kernel of reduction modulo π, 188
Knr maximal unramified extension of K, 194
Iv inertia subgroup of GK̄/K for the valuation v, 194
K a number field (Ch. VIII–X), 207
MK a complete set of inequivalent absolute values on K (Ch. VIII–X), 207
M∞

K the archimedean absolute values in K (Ch. VIII–X), 207
M0

K the nonarchimedean absolute values in K (Ch. VIII–X), 207
v(x) = − log |x|v , for an absolute value v ∈ MK (Ch. VIII–X), 207
ordv normalized valuation for v ∈ M0

K (Ch. VIII–X), 207
R the ring of integers of K (Ch. VIII–X), 208
R∗ the unit group of R (Ch. VIII–X), 208
Kv the completion of K at v (Ch. VIII–X), 208
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Rv the ring of integers of Kv (Ch. VIII–X), 208
Mv the maximal ideal of Rv (Ch. VIII–X), 208
kv the residue field of Rv (Ch. VIII–X), 208
κ the Kummer pairing E(K) × GK̄/K → E[m], 209
Ẽv/kv the reduction of E modulo Mv , 211
RS ring of S-integers, 213
A[m] the m-torsion subgroup of the abelian group A, 216
H height of a rational number, 220
hx height function on an elliptic curve over Q, 220
MQ the set of standard absolute values on Q, 225
MK the set of standard absolute values on the number field K, 225
nv the local degree of the absolute value v, 225
HK(P ) multiplicative height of P relative to K, 226
H absolute multiplicative height, 227
H(x) abbreviation for H

(
[x, 1]

)
, 230

HK(x) abbreviation for HK

(
[x, 1]

)
, 230

O(1) a bounded function, 234
h absolute logarithmic height on projective space, 234
hf height function on an elliptic curve relative to f , 235
DE/K minimal discriminant ideal of E/K, 243
pv prime ideal of R associated to v, 243
āE/K Weierstrass class of E/K, 244
ĥ canonical height function E(K̄) → R, 248
〈 · , · 〉 the canonical height pairing E(K̄) × E(K̄) → R, 252
RE/K elliptic regulator of E/K, 253
NE the conductor of the elliptic curve E, 256
RS the ring of S-integers of K, 269
R∗

S the unit group of RS , 269
dv a v-adic distance function, 273
m(α) size of the unit α relative to a given basis for R∗

S , 287
K(S, m) subgroup of K∗/(K∗)m with ordv(b) ≡ 0 (mod m) for all v /∈ S, 311
Isom(C) the group of isomorphisms from a curve C to itself, 318
IsomK(C) the subgroup of Isom(C) of isomorphisms defined over K, 318
Twist(C/K) the set of twists of the curve C, 318
μ, ν “addition” and “subtraction” maps on a homogeneous space, 322
WC(E/K) the Weil–Châtelet group of E/K, 324
sum the summation map on the Picard group of a homogeneous space, 329
S(φ)(E/K) the Selmer group of E/K for the isogeny φ, 332
X(E/K) the Shafarevich–Tate group of E/K, 332
S(m,n)(E/K) the image of S(mn)(E/K) in S(m)(E/K), 340
Twist

(
(E, O)/K

)
twists of E, isomorphic to H1

(
GK̄/K , Aut(E)

)
, 342

ν(n) the number of distinct prime divisors of n, 346
(a|b) Legendre symbol, 353
〈P, Q〉 modified Weil pairing on E[N ], 390
τ the Tate–Lichtenbaum pairing, 397
MG the submodule of M fixed by G, 415
H0(G, M) the 0th cohomology of the G-module M , 415
C1(G, M) group of 1-cochains from G to M , 416



List of Notation 471

Z1(G, M) group of 1-cocycles from G to M , 416
B1(G, M) group of 1-coboundaries from G to M , 416
H1(G, M) 1st cohomology group of the G-module M , 416
Res restriction homomorphism in group cohomology, 417
Inf inflation homomorphism in group cohomology, 417
Z1

cont(G, M) group of continuous 1-cocycles from G to M , 419
E � A twisted product of E and A, 422
H complex upper half-plane, 429
SL2(Z) special linear group, 430
PSL2(Z) projective special linear group, 430
q abbreviation for e2πiτ , 431
η(τ) Dedekind η-function, 433
Mk space of modular forms of weight 2k, 434
Mk,0 space of cusp forms of weight 2k, 434
T (n) Hecke operator, 435
Γ0(N) congruence subgroup, 437
Γ1(N) congruence subgroup, 437
Γ(N) congruence subgroup, 437
X0(N) modular curve for the congruence subgroup Γ0(N), 441
X1(N) modular curve for the congruence subgroup Γ1(N), 441
X(N) modular curve for the congruence subgroup Γ(N), 441
Eq Tate curve, 444
NE/K the conductor of E/K, 450
λv local height function for E at v, 454
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[255] J. H. Silverman. The Néron–Tate height on elliptic curves. PhD thesis, Harvard Uni-
versity, 1981.

[256] J. H. Silverman. Heights and the specialization map for families of abelian varieties.
J. Reine Angew. Math., 342:197–211, 1983.

[257] J. H. Silverman. Integer points on curves of genus 1. J. London Math. Soc. (2),
28(1):1–7, 1983.

[258] J. H. Silverman. The S-unit equation over function fields. Math. Proc. Cambridge
Philos. Soc., 95(1):3–4, 1984.

[259] J. H. Silverman. Weierstrass equations and the minimal discriminant of an elliptic
curve. Mathematika, 31(2):245–251 (1985), 1984.

[260] J. H. Silverman. Divisibility of the specialization map for families of elliptic curves.
Amer. J. Math., 107(3):555–565, 1985.

[261] J. H. Silverman. Arithmetic distance functions and height functions in Diophantine
geometry. Math. Ann., 279(2):193–216, 1987.

[262] J. H. Silverman. A quantitative version of Siegel’s theorem: integral points on elliptic
curves and Catalan curves. J. Reine Angew. Math., 378:60–100, 1987.

[263] J. H. Silverman. Computing heights on elliptic curves. Math. Comp., 51(183):339–
358, 1988.

[264] J. H. Silverman. Wieferich’s criterion and the abc-conjecture. J. Number Theory,
30(2):226–237, 1988.

[265] J. H. Silverman. The difference between the Weil height and the canonical height on
elliptic curves. Math. Comp., 55(192):723–743, 1990.

[266] J. H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.

[267] J. H. Silverman. The arithmetic of dynamical systems, volume 241 of Graduate Texts
in Mathematics. Springer, New York, 2007.

[268] N. P. Smart. S-integral points on elliptic curves. Math. Proc. Cambridge Philos. Soc.,
116(3):391–399, 1994.

[269] N. P. Smart. The discrete logarithm problem on elliptic curves of trace one. J. Cryp-
tology, 12(3):193–196, 1999.

[270] K. Stange. The Tate pairing via elliptic nets. In Pairing Based Cryptography, Lecture
Notes in Comput. Sci. Springer, 2007.

[271] K. Stange. Elliptic Nets and Elliptic Curves. PhD thesis, Brown University, 2008.
[272] K. Stange. Elliptic nets and elliptic curves, 2008. arXiv:0710.1316v2.
[273] H. M. Stark. Effective estimates of solutions of some Diophantine equations. Acta

Arith., 24:251–259, 1973.
[274] W. Stein. The Modular Forms Database. http://modular.fas.harvard.

edu/Tables.
[275] W. Stein. Sage Mathematics Software, 2007. http://www.sagemath.org.
[276] N. M. Stephens. The Diophantine equation X3 + Y 3 = DZ3 and the conjectures of

Birch and Swinnerton-Dyer. J. Reine Angew. Math., 231:121–162, 1968.
[277] D. R. Stinson. Cryptography: Theory and Practice. CRC Press Series on Discrete

Mathematics and Its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.
[278] W. W. Stothers. Polynomial identities and Hauptmoduln. Quart. J. Math. Oxford Ser.

(2), 32(127):349–370, 1981.
[279] R. J. Stroeker and N. Tzanakis. Solving elliptic Diophantine equations by estimating

linear forms in elliptic logarithms. Acta Arith., 67(2):177–196, 1994.
[280] J. Tate. Letter to J.-P. Serre, 1968.



486 References

[281] J. Tate. Duality theorems in Galois cohomology over number fields. In Proc. Inter-
nat. Congr. Mathematicians (Stockholm, 1962), pages 288–295. Inst. Mittag-Leffler,
Djursholm, 1963.

[282] J. Tate. Endomorphisms of abelian varieties over finite fields. Invent. Math., 2:134–
144, 1966.

[283] J. Tate. Algorithm for determining the type of a singular fiber in an elliptic pencil. In
Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp,
Antwerp, 1972), pages 33–52. Lecture Notes in Math., Vol. 476. Springer, Berlin, 1975.

[284] J. Tate. Variation of the canonical height of a point depending on a parameter. Amer.
J. Math., 105(1):287–294, 1983.

[285] J. Tate. A review of non-Archimedean elliptic functions. In Elliptic curves, modular
forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, pages
162–184. Int. Press, Cambridge, MA, 1995.

[286] J. Tate. WC-groups over p-adic fields. In Séminaire Bourbaki, Vol. 4 (1957/58), pages
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analytic continuation, 450, 451
anomalous elliptic curve, 204, 389, 407
anti-involution, 100
approximable number, 302
approximation exponent, 271

489



490 Araki −→ Coates Index

Araki, K., 389, 464
arc length of ellipse, 157, 182
arc length of lemniscate, 182
archimedean absolute value, 207
arithmetic intersection theory, 455
arithmetic–geometric mean, 182

converges doubly exponentially, 183
Artin map, 427, 429
Artin, E., 138
Artin, M., 141
Artin–Schreier extension, 414
Atkin, A.O.L., 375, 403
automorphism group, 67, 103–104, 108, 318,

410
acts on H1, 423
acts on WC, 356
Galois structure, 104
quaternion, 414
twisted product, 414

automorphism of projective space, 230
auxiliary polynomial, 300

babystep–giantstep algorithm, 382, 407
bad reduction, 196, 211, 293
Baker, A., 286, 291, 297, 427
Baker’s theorem, 286, 290
Balasubramanian, R., 388
Bang, A., 303
Bellare, M., 380, 466
Bernoulli polynomial, 455
Betti number, 141
Bézout’s theorem, 51, 56, 111
big-O notation, 234
bilinear pairing, 85, 94, 311, 341, 355, 360,

362, 390, 398, 402, 453
binary expansion, 365, 404
Birch, B., 460
Birch–Swinnerton-Dyer conjecture, 215,

248, 254, 351, 452
fudge factor, 451

birthday paradox, 381, 404
bit operation, 374
black box, 386
Bob, 376
Boneh, D., 392, 393
branch cut, 158
Brauer group, 103, 109, 361
Brauer–Hasse–Noether theorem, 357

Brauer–Siegel theorem, 299
Bremner, A., 351
Breuil, C., 443
B-smooth number, 367

Canfield, E., 367
canonical divisor, 32, 35

degree of, 35
dimension of L(KC), 34, 35
trivial, 35

canonical height, 247–253, 365
alternative normalization, 248, 451
extends to E(K) ⊗ R, 252
is positive definite quadratic form, 252
is quadratic form, 249
lower bound, 253, 265
of a sum, 292, 305
of multiple of a point, 248, 265
parallelogram law, 248
sum of local heights, 454
upper bound for, 255, 299
vanishes iff torsion, 249

canonical height pairing, 252
Carayol, H., 451
Cassels’ pairing, 341, 351, 452, 453
Cassels, J.W.S., 193, 251, 341, 351, 452, 453
category of curves, 22
Cauchy sequence, 247
Cauchy–Schwarz inequality, 138
Cayley–Hamilton theorem, 143
central simple algebra, 103
chaos, 111
character

quadratic, 139, 149, 372
character sum, 139, 149, 372
Châtelet, F., 465
Chinese remainder theorem, 245, 372, 378,

405
ciphertext, 379
class field theory, 103, 204, 362, 425
class number, 180, 299
class number one, 245, 293, 295, 297, 305,

427
Clozel, L., 459
CM, see complex multiplication
CM method, 403
Coates, J., 290, 291, 452



Index coboundary −→ curve 491

coboundary, 416
cochain, 416

continuous, 419
Cocks, C., 376
cocycle, 209, 216, 217, 262, 318, 398, 416,

421
associated to character, 321
cohomologous, 421
continuous, 419

cohomologous cocycle, 421
cohomology

Galois, 418–420
group, 415–423
Kummer pairing, 215
�-adic, 141
nonabelian, 421–422
of additive group, 420
of multiplicative group, 420
of roots of unity, 420
sheaf, 145

cohomology class, 318
cohomology group

action of automorphism group, 423
H0, 415, 418, 421
H1, 416, 421
unramified class, 216, 262, 333, 359

cohomology set, 421
twists classified by, 319

collision
algorithm, 381, 382, 404, 405
nondegenerate, 386

complete elliptic integral, 181
complete local ring, 123
complete ring, 117
completion, 208
complex multiplication, 69, 92, 110, 152,

176, 180, 293, 403, 425–429,
450, 452

by Z[i], 69, 110, 391
has potential good reduction, 197, 204
j is algebraic integer, 426
trace of Frobenius, 458
Weber function, 428

complex upper half-plane, 429
complexity theory, 302
composition law, 51

is group law, 51

on elliptic curve is morphism, 64, 324
on Ens, 56, 188, 196
power series for, 120

computer packages, vi, 364
conductor, 256, 442, 447, 450

of imaginary quadratic field, 109
congruence subgroup, 437, 441, 451

cusp, 438
conic section, xv
connected components of elliptic curve, 180
connecting homomorphism, 216, 310, 355,

417, 419
Conrad, B., 443
converse theorem, 443
convex set contains lattice point, 251
coordinates

homogeneous, 6
cryptography, 376
cryptosystem

ElGamal, 379
RSA, 366, 376

curve, 17
algebraic, 17
automorphism group, 318
canonical divisor, 32
category of, 22
degree of map, 21
differential form, 30
distance function, 273, 306
divisor group, 27
divisor map, 28
effective divisor, 33
elliptic, see elliptic curve
finitely many integral points, 281
finitely many rational points, 296
Frobenius map, 25, 70, 138, 144, 366
function field, 17
function field equals maps to P1, 20
genus, 35
genus formula, 37, 40, 60, 75
height function, 306
hyperelliptic, 22, 40, 328, 393
ideal associated to a point, 17
isomorphism group, 318
L(D), 34
L(C) has basis in K(C), 36



492 curve −→ Deuring Index

curve (continued)
local ring, 17
local ring is DVR, 17
map between either constant or

surjective, 20
map between factors through

Frobenius, 26, 81, 134
map of degree one is isomorphism, 21
map of function fields corresponds to

map of, 20, 320
map on differential forms induced by

rational map, 30
Mordell’s conjecture, 296
normalized valuation at point, 17, 274
of genus one

Picard group, 329
of genus one is homogeneous space,

355
order of function at point, 18
Picard group is Jacobian, 329
positive divisor, 33
quotient by finite group of

automorphisms, 108, 356, 428
ramification index

equals separable degree, 24
of composition, 24
sum, 23

ramification index of map, 23, 274
rational function defines map to P1, 20,

234, 320
rational function has finitely many

zeros and poles, 18
rational map induces map of function

fields, 20, 21
rational map induces map on divisors,

29
rational map is regular at smooth point,

19
regular minimal model, 446
Riemann–Roch theorem, 33, 35, 273
Roth’s theorem on, 275, 281
separability criterion for rational map,

30
subfield of function field corresponds

to, 21, 320
twist, 318

uniformizer at point, 18
unramified map, 23

criterion for, 24
value of function at divisor, 39
Weil reciprocity, 39

cusp, 44, 45, 56, 196, 437, 438, 441
cusp form, 432, 438

defines holomorphic differential form,
438

Hecke operator, 435, 439, 451
Mellin transform, 451
space of, 434

cyclic group
average order of element, 407

cyclotomic polynomial, 89

Davenport, H., 298
decision Diffie–Hellman problem, 393
Dedekind η-function, 433, 438
Dedekind sum, 433
defined at P , 18
defined over K, 2, 7, 17, 27, 42, 59, 67, 318
defined over R, 121
defined over K, 227, 323
definite quaternion algebra, 100
degree

inseparable, 21, 66, 72
of a divisor, 27, 164
of Frobenius map, 25
of map, 21, 66
of morphism, 227
separable, 21, 66, 72
zero, 21

degree map
is positive definite quadratic form, 85,

138
dehomogenization, 9
Deligne, P., 141, 436
Dem’janenko, V., 279, 464
descent, 315
descent theorem, 218
descent via two isogeny, 337
determinant, 93

of endomorphism, 99, 141
Wronskian, 300

Deuring, M., 102, 152, 154, 450, 463
normal form, 110, 412



Index differential form −→ divisor 493

differential form, 30, 438
dimension of space of, 30
divisor of, 32
elliptic curve

holomorphic, 48
invariant, 43, 48, 75, 160
nonvanishing, 48

holomorphic, 32
invariant on elliptic curve, 42, 414, 451
map induced by rational map, 30
nonvanishing, 32
order of, 31
regular, 32
residue, 145

differential operator, 150, 151, 300
Diffie, W., 376
Diffie–Hellman key exchange, 378

tripartite, 391
Diffie–Hellman problem, 378, 380, 406

decision, 393
digital signature scheme, 380, 392
dimension, 4, 10

of affine space, 4
of hypersurface, 4

dimension theorem, 16
Diophantine approximation, 270–273, 296

approximable number, 302
Dirichlet’s theorem, 270
Liouville’s theorem, 270, 302
on curves, 275, 281
on elliptic curves, 276
Roth’s theorem, 272, 275, 281, 283,

299–302
Siegel’s theorem, 276

Diophantine equation, xv, 272
reduction modulo p, 8

Diophantine geometry, xv, 2
Dirichlet, L., 214, 270, 354

series, 254
theorem on Diophantine

approximation, 270
unit theorem, 214, 282, 285, 288, 294

discrete Galois module, 418, 421
discrete logarithm problem, 376

additive group, 377
amount of storage, 381
babystep–giantstep algorithm, 382, 407
black box group, 386
elliptic curve, see ECDLP

multiplicative group, 377
naive algorithm, 381
number of steps, 381
Pollard, J.

Pollard’s ρ algorithm, 384
discrete subgroup, 161
discrete valuation ring, 17, 37, 129

convergence of power series, 131
uniformizer, 18

discriminant, 42, 43, 299
Fourier series, 432
homogeneity of, 179
integral j-invariant, 203
is cusp form, 432
minimal, 186, 243, 255–257, 447, 450
of a number field, 252
prime, 361
product expansion, 433, 444
Tate curve, 444

distance function, 273, 306
effect of finite map, 274

distortion map, 110, 390, 402
divisibility sequence, 114

elliptic, 113, 183, 303, 306, 397
primitive divisor, 303

division algebra, 113
division polynomial, 105, 114, 183, 193, 373

divisor of, 106
factorization, 375

divisor, 27
canonical, 32
criterion for principal, 63, 162, 168,

330
defined over K, 27
degree of, 27, 164
effective, 33
linear equivalence, 28
map is a homomorphism, 28
of a differential form, 32
of a function, 27, 164
of degree zero, 27, 164
on projective space is principal, 28
positive, 33



494 divisor −→ elliptic curve (complex multiplication) Index

divisor (continued)
principal, 28
support of, 39
value of function at, 39

divisor class group, 28
map induced by rational map, 30
of degree-zero divisors, 28

divisor group, 27
action of Galois, 27
defined over K, 27
map induced by rational map, 29
map to E, 61
of C/Λ, 164

DLP, see discrete logarithm problem
double-and-add algorithm, 364, 369

left-to-right, 404
Weil pairing, 396, 407

dual isogeny, 70, 80–82, 180
adjoint for Weil pairing, 97
degree of, 83
dual of, 83
of composition, 83
of multiplication by m, 83
of sum, 83, 112
Selmer group, 336

duality theory, 453
d-uple embedding, 263
duplication formula, 54, 104, 110, 222, 237,

241, 345
Dwork, B., 141
dynamical system, 111
Dyson, F., 272

ECC, see elliptic curve cryptography
ECDLP, 139, 155, 377

amount of storage, 381
anomalous curve, 204, 389, 407
babystep–giantstep algorithm, 382, 407
embedding degree, 387
MOV algorithm, 387
naive algorithm, 381
number of steps, 381
Pollard, J.

Pollard’s ρ algorithm, 384
Pollard’s ρ algorithm, 405, 406
supersingular elliptic curve, 388
takes exponential time, 377

ECDSA, 380, 392

ECIES, 380, 406
EDS, see elliptic divisibility sequence
effectivity, 286

computation of Selmer group, 334
linear forms in elliptic logs, 293
linear forms in logarithms, 286
Mordell–Weil theorem, 214, 293, 312
of descent theorem, 220, 309
Riemann–Roch theorem, 290
Roth’s theorem, 273
Siegel’s theorem, 279
solution of unit equation, 289

Eichler, M., 154, 450, 451
eigenfunction, 435
Eisenstein series, 165, 429

Fourier expansion, 431
Fourier series, 432, 444
g2 and g3, 169, 429
homogeneity of, 179, 429
is modular form, 432

ElGamal public key cryptosystem, 379
IES variant, 380, 406
message expansion, 379, 406
MV variant, 379, 405

ElGamal, T., 379
elimination theory, 230
Elkies, N., 254, 375
ellipse, arc length of, 157, 182
elliptic curve, 10, 42, 59

additive reduction, 196, 266, 447
anomalous, 204, 389, 407
arbitrarily many integer points, 303
Aut(E) acts on WC(E), 356
automorphism group, 67, 103–104,

108, 318, 410
bad reduction, 196, 211
Birch–Swinnerton-Dyer conjecture,

452
canonical height, 365

lower bound, 253, 265
pairing, 252

category of, 175
characteristic two and three, 409–414
complex multiplication, 69, 92, 110,

152, 176, 180, 197, 204, 293,
391, 403, 425–429, 450, 452,
458



Index elliptic curve (complex torus) −→ elliptic curve (homogeneous space) 495

elliptic curve (continued)
complex torus, 173, 429
computer packages, vi, 364
conductor, 256, 442, 447, 450
connected components, 180
covered by modular curve, 451
cusp form, 432, 438
defined over K, 42, 59
degree map is positive definite

quadratic form, 85, 138
degree of isogeny, 66
descent via two isogeny, 337
Deuring normal form, 110, 412
Diffie–Hellman problem, 378, 380,

393, 406
digital signature algorithm, 380, 392
Diophantine approximation, 276
discrete logarithm problem, see

ECDLP
discriminant, 42, 43
distance function, 273, 306
distortion map, 390, 402
division polynomial, 105, 114, 183,

193, 373
double-and-add algorithm, 364, 369,

404
dual isogeny, 70, 80–82, 97, 180, 336
duality theory, 453
duplication formula, 54, 104, 110, 222,

237, 241, 345
E(K)/E0(K), 199, 204, 447
E[m] ⊂ E(K) ⇒ μm ⊂ K∗, 96, 310
endomorphism ring, 67, 68, 80,

99–103, 113
in characteristic p, 144

endomorphism ring is commutative,
80, 177

even function, 54, 235, 238
everywhere good reduction, 261, 264,

293
none over Q, 264, 294

expansion around O, 115
extension of base field, 197, 413
factorization algorithm, 369, 405
family of, 456
family with high rank, 254, 457

family with point of order m, 242, 264
filtration of formal group, 203
finitely many integral points, 276, 277,

286, 294
finitely many isogenous to, 294
finitely many points with bounded

height, 235, 239, 250
formal addition law, 120
formal group, 121, 123, 389

is kernel of reduction, 191
Frey curve, 256, 443
Frobenius endomorphism, 70, 79
Frobenius map, 70, 81, 134, 138, 144,

366, 388, 404
satisfies quadratic equation, 142, 372

Galois cohomology of, 325
Galois theory of function fields, 72
geometric group law equals algebraic

group law, 62
global minimal Weierstrass equation,

244, 256, 264, 267, 293
good reduction, 196, 202, 204, 211,

294, 334
of twist, 359

good reduction outside S, 293
group law, 51
group law algorithm, 53, 221
group law is morphism, 64, 324
group of isogenies, 67

has rank at most four, 91
growth of numerator and denominator

of rational point, 279
Hall’s conjecture, 298, 307
Hasse invariant, 148
Hasse’s theorem, 138, 372, 373, 459
height and addition law, 235
height function, 220, 235, 306
height of, 134, 145
height of formal isogeny equals

inseparable degree, 134
holomorphic map induces isogeny, 172
homogeneous space, 312, 322

of period two, 327, 336



496 elliptic curve (homogeneous space) −→ elliptic curve (quotient) Index

elliptic curve (continued)
homogeneous space trivial iff has

rational point, 324
image of Galois, 455–456
implementation of group law, 364
infinitely many rank-zero, 351
integral j-invariant, 197, 203, 204, 413
integrality of torsion, 193, 240, 263
invariant differential, 43, 75, 118, 160,

451
invariant differential is holomorphic

and nonvanishing, 48
is a pair (E, O), 59
is complex Lie group, 169, 173
isogenous, 66
isogenous have good reduction, 202,

294, 334
isogeny, 66
isogeny is a homomorphism, 71, 173
isogeny of degree two, 70, 266, 336,

337, 355
isogeny theorem, 91
isomorphic over K, 360
isomorphism group, 341
j-invariant, 42, 43, 110, 459
kernel of reduction, 188
K-rational points form subgroup, 52
Kummer pairing, 209, 310
Kummer sequence, 215, 311, 321, 340,

361
Kummer sequence for isogeny, 331
Lang–Trotter conjecture, 153
Lattès map, 111
Legendre form, 49, 158, 180, 198, 199
local height, 454–455
local–global principle, 254
L-series, 254, 266, 449–453
map from Picard group, 62
Miller’s algorithm, 387, 394, 399
minimal discriminant, 186, 203, 243,

255–257, 447, 450
minimal Weierstrass equation, 186,

243, 455
modular form, 432, 438
modular function, 429–439

modular parametrization, 442, 450
modularity theorem, 442, 450, 451, 453
morphism is composition of isogeny

and translation, 71
m-torsion subgroup, 69, 87, 92, 175,

177, 195
field generated by, 204
unramified, 201

multiplication map, 52, 67, 79
multiplicative reduction, 196, 257, 266,

361, 443, 447
negation map, 51, 64, 77, 324
Néron model, 200, 446–447
Néron–Ogg–Shafarevich criterion, 201,

359, 426
Néron–Tate pairing, 252
Neumann–Setzer, 361
nonarchimedean uniformization, 444
normal form, 409
number of integral points, 279
number of points over finite field, 138,

142, 372, 373, 459
order of point modulo p, 303
ordinary, 145, 366

for infinitely many primes, 154
over finite field, 137–153
over function field, 254
over nonperfect field, 414
over R, 180
over Z/NZ, 369, 389
pairing-friendly, 403
period, 159
point at infinity, 42
point of order four, 107
point of order three, 107
potential good reduction, 197, 204
(P ) ∼ (Q) ⇔ P = Q, 96
(P ) ∼ (Q) ↔ P = Q, 61, 62
primality test, 364
prime discriminant, 361
principal divisor criterion, 63, 162,

168, 330
quadratic twist, 321, 343, 359, 360, 414
quartic twist, 343
quotient by finite subgroup, 74, 146,

295



Index elliptic curve (rank) −→ elliptic function 497

elliptic curve (continued)
rank, 207, 346, 452

large over Q, 254, 457
rank of quadratic twist, 359, 361
reduction, 187, 370
reduction map, 187
reduction modulo p, 55
regular minimal model, 446
regulator, 253, 451
representation on Tate module, 88, 304,

455, 459
representation on torsion, 87, 195, 294,

455
R-linear independence of periods, 174
Selmer group, 332, 333
semistable reduction theorem, 197, 413
sextic twist, 343
Shafarevich–Tate group, 332, 341
Siegel’s theorem, 276, 279, 294, 296
specialization, 456–458
structure of E[m], 86, 105, 112, 175,

177
subgroup isomorphic to additive group,

200
supersingular, 145, 148, 204, 402, 408

ECDLP, 388
iff trace of Frobenius is zero, 154
multiplication-by-p map, 155
number of points, 155

supersingular primes have density zero,
153

Tate curve, 261, 426, 443–445
Tate module, 87

image of Galois, 92
Tate’s algorithm, 446–447
torsion contained in E(Fqd), 387
torsion in kernel of reduction, 192, 211,

333
torsion subgroup, 69, 207, 240, 346

of twist, 265
torsion subgroups over Q, 264
trace, 360
trace of Frobenius, 458–460
translation map, 64, 71, 72, 76, 95, 111,

203, 318, 327

triplication formula, 104
twist, 265, 342
two descent, 315
uniform bound for torsion, 242, 261,

442
uniformization, 170, 173, 429, 436
weak Mordell–Weil theorem, 208, 280
Weber function, 428
Weierstrass class, 244

all ideal classes occur, 264
Weierstrass coordinates, 59, 118
Weierstrass equation, 42

S-minimal, 246
Weierstrass equation of, 59
Weil conjectures, 143
Weil pairing, 92–99, 310, 357, 361,

387, 388, 390, 396, 407, 440, 441
Weil–Châtelet group, 324, 325, 331,

355, 453
over finite field, 356
over R, 356

Y 2 = X3 + D, 296, 303, 305, 359
Y 2 = X3 + DX , 344
ζ-function, 143, 449

of isogenous curves, 153
elliptic curve cryptography, 376–381

choice of field, curve, and point, 381
Diffie–Hellman key exchange, 378, 391
ID based cryptography, 393
key and message size, 377
pairing-based, 390

elliptic curve discrete logarithm problem, see
ECDLP

elliptic divisibility sequence, 113, 183, 303,
306, 397

examples, 113
primitive divisor, 303
rank of apparition, 114

elliptic exponential, 292
elliptic function, 157, 161

divisor of, 164
equals product of σ functions, 168
holomorphic, 161
is rational function of ℘ and ℘′, 166
nonvanishing, 161



498 elliptic function −→ finitely generated group Index

elliptic function (continued)
order of, 164
order of vanishing, 161
residue, 161
Weierstrass ℘-function, 165, 169, 291,

433, 444
Weierstrass σ-function, 167
Weierstrass ζ-function, 178

elliptic integral, 158–161, 180
arithmetic–geometric mean equals, 183
complementary modulus, 181
complete, 181
modulus, 181

elliptic integrals, 157
elliptic logarithm, 291, 292
elliptic modular curve, 242, 439–443
elliptic net, 397
elliptic regulator, 253, 451
elliptic scheme, 369, 389
elliptic surface, 151
Ellis, J., 376
em pairing, see Weil pairing
embedding degree, 387

is generally large, 402
supersingular curve, 388, 402

endomorphism
determinant of, 99, 141
Frobenius, 70, 79
induces map on Tate module, 89, 98,

141, 147
inseparable, 80
trace of, 99, 141

endomorphism ring, 67, 99–103, 113
has characteristic 0, 68
has no zero divisors, 68
in characteristic p, 144–148
is commutative, 80, 177
map induced by action on differential,

80
quaternion algebra, 102, 145

Ens, 56, 188, 196
Erdős, P., 367
étale cohomology, 89
Euclidean algorithm, xv, 223, 258, 377
Euler characteristic, 141, 153
Euler product, 266, 449
Euler system, 452
Eve, 376

even function, 54, 235, 238
Evertse, J.-H., 284
everywhere good reduction, 261, 264, 293

none over Q, 264, 294
outside {2, 3}, 294

exact sequence
of G-modules, 416

exponent
of abelian extension, 334

exponent of abelian extension, 212
exponential

elliptic, 292
formal, 127, 129
-time, 367, 372, 377, 403

extended upper half-plane, 437
extension formula, 225, 228

factorial, valuation of, 131
factorization, 366

Lenstra’s algorithm, 367, 369, 405
Pollard, J.

Pollard’s p − 1 algorithm, 367, 370
sieve methods, 367
smooth number, 367

Faltings, G., 92, 281, 296, 456
family of elliptic curves, 456
fast Fourier transform, 374
Fermat, P., 296

last theorem, 3, 256, 443
little theorem, 368

Fibonacci sequence, 113
field

completion, 208
Kummer sequence, 217, 311, 420
nonperfect, 414
of definition, 6, 233, 440
perfect, 1
tamely ramified extension, 204
Tate module, 88
unramified extension, 197

finite field
character sum, 139, 149, 372
embedding degree, 387, 402
square root, 378, 405

finite map, 21
effect on distance function, 274

finitely generated group, 218, 284



Index fixed point −→ Galois group 499

fixed point, multiplier of, 111
formal addition law, 120
formal derivative, 126
formal exponential, 127, 129
formal group, 115, 120

additive, 121, 123, 125
associated group in local ring, 123
commutative, 128
elliptic curve, 121, 123, 191, 389
exponential, 127, 129
filtration, 123, 203
has subgroup isomorphic to additive

group, 132, 200
height equals inseparable degree, 134
height of, 132, 135, 145
homomorphism, 121
in characteristic p, 132
invariant differential, 125, 133
logarithm, 127, 129, 132, 200, 389
multiplication is isomorphism, 122
multiplication map, 121
multiplication by p, 126
multiplicative, 121, 123, 125, 127
noncommutative, 135
over discrete valuation ring, 129, 135,

194
over Zp, 130
Tate curve, 445
torsion subgroup, 124, 129, 130, 132,

135, 192, 194
formal logarithm, 127, 129, 132, 200, 389
Fourier expansion, 431
Fourier series

coefficient congruences, 432
discriminant, 432
of Eisenstein series, 432, 444
of j-invariant, 432

Franklin, M., 393
free product, 430
Frey, G., 256, 261, 387, 443

elliptic curve, 256, 443
Frobenius map, 15, 25, 70, 134, 138, 144,

366, 388, 404
degree of, 25
endomorphism, 70, 79
factors map between curves, 26, 81,

134
is purely inseparable, 25, 145

properties of, 25
satisfies quadratic equation, 142, 372
trace of, 144, 370, 458
trace zero iff supersingular, 154

fudge factor, 451
Fueter, R., 426, 465
function

defined at P , 6, 11, 18
divisor of, 27, 164
regular, 6, 11, 18

function field, 3, 10, 17
category of, 22
divisor map, 28
elliptic curve defined over, 456
Galois theory of elliptic, 72
injection corresponds to map between

curves, 20, 320
map induced by rational map, 20, 21
Mordell–Weil theorem, 456
normalized valuation, 17, 274
of curve is maps to P1, 20
of Pn, 11
separable extension, 30
specialization, 456–458
subfield corresponds to curve, 21, 320

functional equation, 141, 153, 450, 451
sign of, 451

fundamental domain, 430
volume, 252

fundamental parallelogram, 161
area of, 178

GAGA, 175
Galois cohomology, 215, 398, 418–420

Brauer–Hasse–Noether theorem, 357
nonabelian, 421–422
of additive group, 420
of multiplicative group, 420
of roots of unity, 420
unramified class, 216, 262, 333, 359

Galois group
action on rational function, 11
acts on divisor group, 27
height invariant for, 232
image of, 455–456



500 Galois group −→ Hecke L-series Index

Galois group (continued)
image of on torsion, 92
inertia subgroup, 194, 212
of infinite extension, 418
twisted action, 320
unramified action, 195

Galois invariant pairing, 94
Galois module, 418, 421

algebraic group, 418, 421
Galois representation, 87, 455

irreducible, 294, 304
gamma function, 450
Γ0(N), Γ1(N), Γ(N), 437
Gauss, C., 183, 354
Gelfond, A.O., 272, 286
Gelfond–Schneider theorem, 286
generic point, 77
genus, 35

formula for P1, 38
Hurwitz formula, 37, 40, 60, 75
of projective space, 35, 38
of quotient curve, 108
of smooth curve in P2, 39
one, 35, 42, 59, 61, 110, 277, 286, 329,

355–357
G-invariant submodule, 415, 418, 421
global minimal Weierstrass equation, 244,

256, 264, 267, 293
exists iff Weierstrass class trivial, 244
exists over Q, 245, 256, 266

G-module, 415
discrete, 418, 421

good reduction, 196, 203, 204, 211
everywhere, 261, 264, 294
for almost all primes, 211
isogenous curves have, 202, 294, 334
Néron–Ogg–Shafarevich criterion, 201,

359, 426
of twist, 359
outside S, 293
potential, 197, 204

graded ring, 116
Gram–Schmidt orthogonalization, 304
Greenberg, R., 452
Gross, B., 452
Grössencharacter, 450
Grothendieck, A., 89, 141

group
average order of element, 407
black box, 386
discrete logarithm problem, 376
finitely generated, 284
formal, 120
free product, 430
G-module, 415
profinite, 418
twisted product, 341, 422

group cohomology, 415–423
connecting homomorphism, 216, 310,

355, 417, 419
inflation homomorphism, 417, 420, 422
inflation–restriction sequence, 216,

262, 334, 417, 420
Kummer pairing, 215
long exact sequence, 416, 419
nonabelian, 421–422
of additive group, 420
of multiplicative group, 420
of roots of unity, 420
restriction homomorphism, 417, 420,

423
trivial action, 416, 419
unramified class, 216, 262, 333, 359

group law, 51
double-and-add algorithm, 364, 369,

404
explicit formulas, 53, 221
on elliptic curve is morphism, 64, 324
on Ens, 55, 56, 105, 188, 196
power series for, 120

group scheme, 200, 369, 389, 446

Haar measure, 459
Hall’s conjecture, 298, 307
Harris, M., 443, 459
hash function, 380, 392, 406
Hasse, H., 138, 427
Hasse invariant, 145, 148
Hasse–Minkowski theorem, xv
Hasse principle, xvi, 8, 309, 312, 449
Hasse’s theorem, 138, 372, 373, 459
Hauptidealsatz, 16
Hecke L-series, 450
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Hecke operator, 435, 439, 451
eigenfunction, 435

Heegner point, 452
Heegner, K., 427
height

absolute, 227
abstract, 218
automorphism transforms, 230
canonical, 247–253, 292, 454
counting function, 234, 262
d-uple embedding, 263
finitely many points with bounded,

218, 227, 233, 235, 239, 250
in terms of ideal generated by

coordinates, 263
local, 247, 274, 454–455
lower bound, 253, 265
morphism transforms, 227
of a formal group, 132, 135, 145
of a product, 262
of a rational number, 220
of a rational point, 224
of a sum, 262
of multiple of a point, 218, 221, 238,

239, 248, 265, 280, 306
on elliptic curve, 220, 235
on projective space, 224, 226
one iff root of unity, 262
parallelogram formula, 235
rational map transforms badly, 263
relation between roots and coefficients

of polynomial, 230, 237
Segre embedding, 263
set of bounded, 457
unaffected by Galois, 232

Hellman, M., 376, 378, 465
Hensel’s lemma, xvi, 116, 117, 188, 332,

334, 348, 358, 389
Hessian matrix, 107
Hilbert basis theorem, 2, 177
Hilbert class field, 180, 426
Hilbert irreducibility theorem, 456
Hilbert “Theorem 90”, 16, 40, 217, 310, 312,

344, 357, 398, 420
Hilbert “theorem 90”

for GLn, 422
Hindry, M., 253, 280
Hochschild, G., 422

holomorphic at infinity, 432
holomorphic differential form, 32, 438
holomorphic map induces isogeny , 172
Hom group, 67

has rank at most four, 91
homogeneous coordinates, 6
homogeneous ideal, 7

of an algebraic set, 7
homogeneous polynomial, 7, 11, 227
homogeneous space, 309, 312, 322

addition, 322
curve of genus one is, 355
equivalent, 324
index, 358
is twist, 323
locally trivial, 333, 352
of period two, 327, 336
period, 358
quotient by finite group, 356
subtraction, 322
sum of two, 355
summation map, 329
trivial, 324

iff has rational point, 324
homogenization, 9
homothetic lattices, 173, 179
Hurwitz, A., 270, 461

genus formula, 37, 40, 60, 75
for P1, 38

hyperelliptic curve, 22, 40, 393
finitely many integral points, 284
of degree four, 23, 328

hypersurface, 4

ID based cryptography, 393
ideal class as Weierstrass class, 264
ideal class group, 213, 261, 426
IES, 380, 406
image of Galois, 455–456
imaginary quadratic field, 426

abelian extension, 428
class number, 180
class number one, 295, 297, 305, 427
Hilbert class field, 426
maximal abelian extension, 428
order, 100, 109, 176, 427

index, 358
index calculus, 377
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inertia subgroup, 194, 212
acts through finite quotient, 202

inflation homomorphism, 417, 420, 422
inflation–restriction, 216, 262, 334, 417, 420
inseparable degree, 21

equals height of formal isogeny, 134
inseparable endomorphism, 80
integer point

effective bound, 291, 298
elliptic curve may have many, 303
Hall’s conjecture, 298, 307
number of, 279
on elliptic curve, 276, 277, 286, 294
on hyperelliptic curve, 284
torsion, 193, 240, 263

integral j-invariant, 197, 203, 413
if CM, 204

intersection theory, 322
invariant differential, 42, 43, 48, 75, 160, 451

characteristic two, 414
formal, 125, 133
induces map on endomorphism ring, 80
Laurent series, 118
multiplication-by-m, 79
on minimal Weierstrass equation, 186
sum of isogenies acts on, 77

invariant submodule, 415, 418, 421
inversion of power series, 122, 128
irreducible representation, 294, 304
isogenous, 66
isogeny, 66

degree, 66
of dual, 83

dual, 70, 80–82, 180, 336
of composition, 83
of dual, 83
of sum, 83, 112

factorization of, 73, 81, 90
finitely many, 294
good reduction preserved by, 202, 294,

334
induces holomorphic map, 172
induces map on Tate module, 89, 98,

141, 147

induces map on Weil–Châtelet group,
356

is a homomorphism, 71, 173
kernel is finite group, 72
multiplication-by-m, 67, 79
of degree two, 70, 266, 336, 337, 355
Selmer group, 332, 333
sum of acts on differential, 77
ζ-function is invariant, 153

isogeny theorem, 91
isomorphism

map of degree one is, 21
of varieties, 13

isomorphism group, 318
elliptic curve, 341

Jacobi, C.G.J., 433
Jacobian variety, 329
j-invariant, 42, 43, 179, 429

algebraic integer for CM, 426
classifies curve up to isomorphism, 45,

410
Fourier series, 432
holomorphic on H/ SL2(Z), 436, 440
integral, 197, 203, 413

if CM, 204
invariant under change of equation, 44
is modular function, 432
nonintegral, 459
number of primes dividing

denominator of, 280
of curve of genus one, 110
of Legendre from, 49
Tate curve, 444
transcendental, 145, 154
zero, 359

Joux, A., 390

Kamienny, S., 242
Kani, E., 461
Karatsuba multiplication, 374
Katz, N., 193
Kenku, M., 295
kernel of reduction, 188

torsion in, 192, 211, 333
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key exchange algorithm, 378
tripartite, 391

key, public and private, 379, 380
Koblitz, N., 366, 388
Kodaira, K., 200, 446
Kolyvagin, V.A., 452
Kronecker’s theorem, 262
Kronecker–Weber theorem, 425
Krull’s Hauptidealsatz, 16
Krull’s intersection theorem, 124
Kummer extension, 210
Kummer pairing, 209, 310

via cohomology, 215
Kummer sequence, 215, 217, 311, 321, 361,

420
for isogeny, 331
local, 331
refined, 340

Kummer theory, 213, 262

�-adic cohomology, 141
�-adic representation, 88, 195, 455, 459
Lang, S., 153, 193, 253, 255, 279, 465
Lang–Hall integer point conjecture, 298
Lang’s height lower bound conjecture, 253
Lang’s integer point conjecture, 279
Lang–Trotter conjecture, 153
Laska, M., 246
Lattès map, 111
lattice, 161, 251, 426

area of fundamental parallelogram, 178
category of, 175
convex set contains point of, 251
Eisenstein series, 165, 429
fundamental parallelogram, 161
homothetic, 173, 179
maps between tori, 171
number of points in annulus, 165, 178
number of points in disk, 178
quasi-orthogonal basis, 304
quasiperiod, 179, 434
rectangular, 180
value of fundamental domain, 252

Laurent series, 118
L(D), 34

is finite dimensional, 34, 38

zero if deg D < 0, 34
Lebesgue, V., 296
Lefschetz principle, 177
Legendre form, 49, 158, 180, 198, 199

j-invariant, 49
Legendre relation, 179
Legendre symbol, 372
Lehmer, D.H., 152
lemniscate, 182
Lenstra, H., 367, 369
factorization algorithm, 367, 369, 405
Lie group, 169, 173
Lind, C.-E., 339, 353
line, 7
linear equivalence, 28
linear forms in elliptic logarithms, 291, 297,

299
effectivity, 293

linear forms in logarithms, 273, 286, 290
p-adic, 287, 290
used to solve unit equation, 289

linear fractional transformation, 111, 430
Liouville, J., 270, 272

Liouville’s theorem, 161, 270, 302
local degree, 225
local field, 185–205

maximal unramified extension, 194
unramified action of Galois, 195

local height, 247, 274, 454–455
local ring, 6, 11, 17

complete, 123
valuation on, 17, 274

local–global principle, 254
locally compact group, 453
logarithm

elliptic, 292
formal, see formal logarithm
p-adic, 287, 290

logarithmic height, 234
loop length, 382
L-series, 254, 266, 449–453

analytic continuation, 450, 451
Euler factors at bad primes, 449
Euler product, 449
functional equation, 450, 451
leading coefficient, 452
Mellin transform, 451
order of vanishing, 452
Tate conjecture, 458
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Lubin, J., 463
Lutz, E., 240
Lynn, B., 392

MAC, 406
Mahler, K., 272
Manin, Ju., 215, 242, 442
map

degree of, 21
finite, 21, 274
Frobenius, 25, 70, 134, 138, 142, 144,

366, 388, 404
inseparable, 21
of degree one is isomorphism, 21
pullback, 20
pushforward, 21
ramification index, 23, 274
separable, 21
unramified, 23

mass formula, 154
Masser, D., 258, 293, 457, 463
maximal abelian extension, 213, 262, 334,

425, 428
maximal ideal of a point, 5, 17
maximal order, 109
maximal unramified extension, 194
Mazur, B., 242, 295, 442
mean value theorem, 289
measure zero, 302
Mellin transform, 451
Menezes, A., 387, 405
Merel, L., 242, 442
meromorphic differential form, 30
message authentication code, 406
message expansion, 379, 406
Mestre, J.-F., 254, 457
Millennium Prizes, 452
Miller, V., 394

Miller’s algorithm, 387, 394, 399
minimal discriminant, 186, 243, 255–257,

447, 450
integral j-invariant, 203

minimal field of definition, 6, 233
minimal Weierstrass equation, 186, 243, 455

change of coordinates, 186, 244
criterion for, 186, 203, 447
global, 244, 256, 264, 267, 293
invariant differential, 186

quasi-, 264, 279
S-minimal, 246
Tate’s algorithm, 186, 197, 246, 447

Minkowski, H., 214, 251
modular curve, 242, 439–443

covers elliptic curve, 451
cusp, 441
X0(N), X1(N), X(N), 441
Y0(N), Y1(N), Y (N), 441

modular elliptic curve, 442, 450
modular form, 432, 438

defines differential form, 438
eigenfunction for Hecke operator, 435
Hecke operator, 435, 439, 451
is polynomial in G4 and G6, 434
space of, 434

modular function, 157, 429–439
is rational function of j, 434

modular group, 430
congruence subgroup, 437, 441

modular parametrization, 442, 450
modular polynomial, 375
modularity theorem, 442, 450, 451, 453
moduli problem, 440
moduli space, 197, 440
modulus, 181

complementary, 181
Monsky, P., 351
Morain, F., 403
Mordell, L.J., 207, 208, 239, 353, 436

Mordell’s conjecture, 92, 296
Mordell–Weil group, 207

bound for generators, 255, 299
height pairing on, 252
mwrank computer package, 364
rank, 207, 452

large over Q, 254, 457
two descent, 315

Mordell–Weil theorem, 55, 121, 207, 239,
309

effectivity, 214, 312
over function fields, 456
over Q, 220
quantitative, 261
weak, 208

morphism, 12, 13
between curves is either constant or

surjective, 20
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morphism (continued)
between projective spaces, 13, 227
defined over K, 227
degree of, 21
finite, 21, 274
Frobenius, 25, 70, 134, 138, 142, 144,

366, 388, 404
inseparable, 21
pullback, 20
pushforward, 21
rational map is on smooth curve, 19
separable, 21

MOV algorithm, 387
multiplication-by-m map, 52, 67

action on invariant differential, 79
degree of, 83, 86, 105, 112, 175
dual of, 83
is nonconstant, 68, 79
is separable, 79
Lattès map, 111
on formal group, 121
structure of kernel, 86

multiplicative group, 88
cohomology, 420
discrete logarithm problem, 377
formal, 121
Tate module, 88

multiplicative reduction, 196, 203, 257, 361,
443, 447

split and nonsplit, 196, 266, 445
multiplier, 111
mwrank computer package, 364

NAF, 403
Nagao, K., 457
Nagell, T., 240
National Institute of Standards and

Technology, 381
negation map, 51, 64, 77, 324
Néron, A., 200, 247, 248, 254, 446, 454, 456
Néron model, 200, 446–447

special fiber, 446, 447, 450
Néron–Ogg–Shafarevich criterion, 201, 359,

426
Néron–Tate height, see canonical height
Néron–Tate pairing, see canonical height

pairing
Neumann, O., 361, 465

Neumann–Setzer curve, 361
NIST, 381
node, 44, 45, 56, 196

tangent lines, 44, 56, 196, 266
Noether, E., 357
Noetherian local domain, 37
Noetherian ring, 124
nonabelian cohomology, 421–422
nonadjacent form, 403
nonarchimedean absolute value, 207
nonarchimedean uniformization, 444
noncommutative formal group, 135
nondegenerate pairing, 94, 360, 390, 402,

453
nonperfect field, 414
nonsingular, 4, 5, 11

hypersurface, 4
Jacobian criterion, 4
local ring is DVR, 17
point, 4
rational map is morphism on curve, 19
rational map is regular at point, 19
tangent space criterion, 5, 14

nonsplit multiplicative reduction, 196, 266,
445

nonvanishing differential form, 32
norm, 21

equivalent on Rn, 305
reduced, 100

normalized invariant differential, 125
normalized valuation, 17, 185, 207, 274
Nullstellensatz, 229, 230
number field

abelian extension, 212
absolute value, 207
approximation exponent, 271
completion, 208
discriminant, 252, 299
ideal class group, 213, 261
Kummer sequence, 217, 311, 420
maximal abelian extension, 213, 262,

334
product formula, 225, 226, 301
regulator, 252
ring of integers, 208
ring of S-integers, 213, 269
S-regulator homomorphism, 287
standard absolute values on, 225
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number field (continued)
unramified extension, 212, 313

number field sieve, 367

Oesterlé, J., 258
Ogg’s formula, 450
Okamoto, T., 387
1-coboundary, 416
1-cochain, 416
1-cocycle, 16, 416, 421
one-way trapdoor function, 376
orbit, 382
order

in a number field, 176
in an algebra, 100
in imaginary quadratic field, 100, 109,

176, 427
of differential form at point, 31
of elliptic function, 164
of function at point, 18

ordinary, 145, 366
for infinitely many primes, 154

pairing
Tate, 361, 453
Weil, 92–99

pairing-based cryptography, 390
digital signature scheme, 392

pairing-friendly elliptic curve, 403
CM method, 403

parallelogram law, 235, 248
quasi, 454

Pari computer package, vi, 364
Parshin, A., 296
path-dependent integral, 158
perfect field, 1
perfect pairing, 400
period, 159, 358

R-linear independence, 174
periodic point, 111
℘-function

Laurent expansion, 169
℘-function, 165, 291

q-expansion, 433, 444
Picard group, 28

map induced by rational map, 30
map to E, 62
of degree-zero divisors, 28
of genus one curve, 329

Picard–Fuchs operator, 151
pigeonhole principle, 270, 300
plaintext, 379
Pohlig, S., 378, 465
Pohlig–Hellman algorithm, 378, 405
point

at infinity, 6, 10, 42
is nonsingular, 46

field of definition, 6, 233
reduction, 187

point compression, 378, 393, 405
pointed set, 319, 421
pole of rational function, 18
Pollard, J., 367

p − 1 algorithm, 367, 370
ρ algorithm, 384, 405, 406

nondegenerate collision, 386
polynomial

auxiliary, 300
dehomogenization, 9
growth, 302
height relation between roots and

coefficients, 230, 237
homogeneous, 7, 227
homogenization, 9
ring, 2

UFD, 13
-time, 367, 372, 373

Pomerance, C., 367
Poonen, B., 463
positive definite, 85, 138
potential good reduction, 197, 204

curve with CM has, 197, 204
iff integral j-invariant, 197, 413
Néron–Ogg–Shafarevich criterion, 202

power series
convergence in discrete valuation ring,

131
formal derivative, 126
inversion, 122, 128

preperiodic point, 111
primality test, 364
prime number theorem, 373
primitive divisor, 303
principal divisor, 28

criterion for, 63, 162, 168, 330
on projective space, 28
zero if and only if constant, 28, 162
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principal homogeneous space, 322
principal ideal domain, 114, 213, 297, 305
private key, 379, 380, 392
private key cryptosystem, 378, 406
product formula, 30, 225, 226, 301
profinite group, 418
projective algebraic set, 7

homogeneous ideal, 7
projective closure, 9

points at infinity, 10
projective space, 6

automorphism, 230
degree of morphism, 227
d-uple embedding, 263
every divisor is principal, 28
finitely many points with bounded

height, 233
function field, 11
has genus zero, 35, 38
height counting function, 234, 262
height function, 224, 226
line, 7
logarithmic height, 234
morphism, 227
morphism between, 13
number of points over finite field, 140
Q-rational points, 8
reduction map, 187
Segre embedding, 263
union of affine spaces, 9
ζ-function, 140

projective special linear group, 430
projective variety, 9

curve, 17
Frobenius morphism, 15
function field, 10, 11
rational map, 11, 12
union of affine subvarieties, 9

public key, 379, 380, 392
public key cryptography, 376

ElGamal, 379
message expansion, 379, 406
RSA, 366, 376

purely inseparable, 25

q-expansion, 431, 433
discriminant, 432

Eisenstein series, 432
nonarchimedean, 444

quadratic character, 321
associated cocycle, 321

quadratic field, 321
quadratic form, 85, 251, 265, 305

canonical height is, 249
degree map is, 85, 138
positive definite, 85, 138

quadratic imaginary field, see imaginary
quadratic field

quadratic reciprocity, xvi, 353, 372
quadratic sieve, 367
quadratic twist, 321, 343, 360

characteristic two, 414
rank of, 359, 361

quadric surface, 107
quartic residue, 352
quartic twist, 343
quasiminimal Weierstrass equation, 264, 279
quasi-orthogonal basis, 304
quasiperiod, 179, 434
quaternion algebra, 100, 145

invariant of, 102
maximal order, 109
ramified, 102
ramified at infinity, 109
split, 102
split at p, 109

quaternion group, 414
quotient curve, 74, 108, 146, 295, 356, 428

Ramanujan, S., 432, 436
τ -function, 432, 436

ramification index, 23, 274
equals separable degree, 24
of composition, 24
sum of, 23

ramified quaternion algebra, 102
random walk, 139
rank, 207, 254, 346, 452

elliptic curve with zero, 297, 351
explicit bound for, 261
large over Q, 254, 457
of apparition, 114

rational function
defined over K, 11
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rational function (continued)
defines map to P1, 20, 234, 320
derivative, 31
divisor has degree zero, 28, 162
divisor of, 27
divisor zero if and only if constant, 28,

162
even, 54, 235, 238
finitely many zeros and poles, 18
L(D), 34
order at point, 18
pole, 18
value at divisor, 39
zero, 18

rational map, 11, 12
defined at P , 12
defined over K, 16
degree of, 21
finite, 21, 274
genus formula, 37, 40, 60, 75
induces map of function fields, 20, 21
induces map on divisor classes, 30
induces map on divisors, 29
inseparable, 21
is regular at smooth point, 19
pullback, 20
pushforward, 21
ramification index, 23, 274
regular, 12
separability criterion, 30
separable, 21
transforms height badly, 263
unramified, 23

rational point, 7
growth of numerator and denominator,

279
rational surface, 458
real elliptic curve, 180
real period, 451
reciprocity law, 39
reduction modulo π, 187, 370

kernel of, 188
of a line, 189, 205
of an elliptic curve, 55
order of point, 303
points with nonsingular, 188, 199

reduction type, 196

change after field extension, 197, 413
regular differential form, 32
regular function, 6, 11, 18
regular map, 12
regulator, 252, 299

elliptic, 253, 451
homomorphism, 287

Reichardt, H., 339
representation, 87, 455

irreducible, 294, 304
on roots of unity, 88
on Tate module, 88, 195, 455, 459

residue, 145, 161
residue theorem, 163
restriction homomorphism, 417, 420

kernel of, 423
resultant, 223, 258
ρ algorithm, 384, 405, 406

nondegenerate collision, 386
Ribet, K., 443
Riemann hypothesis, 141, 144
Riemann surface, 157, 436
Riemann ζ-function, 262, 408, 432
Riemann–Roch theorem, 33, 35, 52, 59–62,

273
effective, 290
for P1, 38

ring
complete local, 123
discrete valuation, 129
Noetherian, 124
of integers, 208
of S-integers, 213, 269
torsion-free, 127

Rivest, R., 376
Rogaway, P., 380, 466
Rohrlich, D., 464
root of unity, 88

cohomology of μn, 420
iff height one, 262

Rosen, M., 458, 463
Roth, K., 272
Roth’s lemma, 300
Roth’s theorem, 272, 283, 299–302

is ineffective, 273, 301
on curves, 275, 281
quantitative version, 302

RSA, 366, 376
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Rubin, K., 452
Rück, H.-G., 387

Sage computer package, vi, 364
Saito, T., 450
Sato, M., 458
Satoh, T., 389, 464
Sato–Tate conjecture, 458
Schanuel, S., 234
scheme, 369, 389

regular, 446
special fiber, 446

Schmidt, F.K., 463
Schmidt, W., 272, 298
Schneider, T., 286
Schoof, R., 373, 375, 463

Schoof’s algorithm, 373
Schur’s lemma, 428
SEA algorithm, 375
Segre embedding, 263
Selmer, E., 8, 339, 351
Selmer group, 332

dual isogeny, 336
effectively computable, 334
exact sequence, 333
is finite, 333
relative, 340

Semaev, I.A., 389, 464
semistable reduction, 196, 443
semistable reduction theorem, 197, 413
separable degree, 21
separable extension, 30, 414
separable map, 26, 81, 134
separable rational map, 30
Serre, J.-P., 92, 153, 294, 422, 443, 455, 463,

464
Serre duality, 35

Serre–Hochschild spectral sequence, 422
Setzer, B., 361, 465
sextic twist, 343
σ-function, 167

σ(nz)/σ(z)n2
, 178, 183

Shacham, H., 392
Shafarevich, I., 254, 293, 465

conjecture, 296
theorem, 293

Shafarevich–Tate group, 309, 332, 451
bilinear pairing on, 341, 452, 453

equals locally trivial homogeneous
spaces, 333

exact sequence, 333
is finite(?), 341
is finite(?),, 453
nontrivial element, 339, 352
order is square, 341, 453
period equals index, 358

Shamir, A., 376, 393
Shanks, D., 382, 463

algorithm, 382, 407
sheaf cohomology, 145
Shepherd-Barron, N., 459
Shimura, G., 443, 450, 451
Shioda, T., 254
Shipsey, R., 397
Shipsey–Stange algorithm, 397
Shoup, V., 386
Siegel, C., 272, 276, 284

identity, 285
theorem on integral points, 55, 276,

281, 284, 294, 296
is ineffective, 279

sieve, 367
sign of functional equation, 451
Silverman, J., 253, 280, 457, 458
singular point, 44, 56, 111, 196
singular Weierstrass equation, 44, 111

group law, 55, 56, 105, 188, 196
size of unit, 287
Smart, N., 389, 464
smooth, 4, 5, 11

hypersurface, 4
Jacobian criterion, 4
local ring is DVR at point, 17
number, 367, 377
rational map is morphism on curve, 19
rational map is regular at point, 19
tangent space criterion, 5, 14

Solinas, J., 465
special fiber, 446, 450
special linear group, 430

congruence subgroup, 437, 441
specialization homomorphism, 456
spectral sequence, 422
split multiplicative reduction, 196, 266, 445
split quaternion algebra, 102
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square root in finite field, 378, 405
square-and-multiply algorithm, 365, 374
S-regulator homomorphism, 287
stable reduction, 196
Stange, K., 397
Stark, H., 298, 427
Stokes’s theorem, 161
subexponential-time, 367, 370, 377, 392, 403
summation map, 164, 329
S-unit equation, 281, 282

number of solutions, 284
S-unit group, 208, 269, 287
sup norm, 287
supersingular, 145, 148, 204, 408

embedding degree, 388, 402
iff trace of Frobenius is zero, 154
j-invariant 1728, 152
j-invariant zero, 152
mass formula, 154
multiplication-by-p map, 155
not same as singular, 145
number of points, 155
primes, 152

have density zero, 153
infinitely many, 153

support of a divisor, 39
symmetric pairing, 402
Szpiro, L., 256
Szpiro’s conjecture, 253, 256

implies ABC, 259, 266
implies uniform boundedness of

torsion, 261
over function fields, 261
over number fields, 260

τ -adic expansion, 366, 404
tail length, 382
tamely ramified, 204
tangent line, 39, 44, 51, 54

at cusp, 44, 56
at node, 44, 56, 196, 266
reduction modulo π, 189, 205

tangent plane, 14
Taniyama, Y., 443
Tate, J., 92, 247, 248, 254, 445, 451–453,

458, 464, 465
Tate algorithm, 186, 197, 246, 447
Tate curve, 261, 426, 443–445

discriminant, 444
formal group, 445
has split multiplicative reduction, 445
j-invariant, 444

Tate module, 87
abelian action of Galois, 110
image of Galois, 92
map induced by isogeny, 89, 98, 141,

147
representation, 88, 455, 459
representation is irreducible, 304
unramified, 201
unramified at v, 195
Weil pairing, 97, 99

Tate pairing, 361, 453
Tate–Lichtenbaum pairing, 387, 391,

397–403
computation of, 397, 399
perfect pairing, 400

Tate’s algorithm, 446–447
Taylor series, 44
Taylor, R., 443, 459
telescoping sum, 247, 396
ternary expansion, 365, 403
Teske, E., 466
theta function, 167
Thue, A., 272, 464

equation, 304
Top, J., 463
torsion-free ring, 127
torsion subgroup, 69, 87, 175, 177, 207, 240,

265, 346
canonical height vanishes on, 249
contained in E(Fqd), 387
determinant, 92
E[m] ⊂ E(K) ⇒ μm ⊂ K∗, 96, 310
examples over Q, 264
field generated by, 204
generates abelian extensions, 428
integrality of points in, 193, 240, 263
kernel of reduction, 192, 211, 333
Y 2 = X3 + D, 360
one-parameter family, 242, 264
symmetric pairing, 402
uniform bound, 242, 261, 442
unramified at v, 195, 201
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torus, 159, 173
maps between, 171

trace, 360
of endomorphism, 99, 141
of Frobenius, 144, 370

average, 458
variation of, 458–460
zero iff supersingular, 154

reduced, 100
transcendental number, 271, 286, 302
translation map, 64, 71, 72, 76, 95, 111, 203,

318, 327
trapdoor function, 376
triangle inequality, 228, 229, 231, 301
tripartite Diffie–Hellman, 391
triplication formula, 104
trivial homogeneous space, 324
Trotter, H., 153
twist, 318

cohomology class of, 318
elliptic curve, 342
Galois action, 320
good reduction, 359
height lower bound, 265
homogeneous space is, 323
of order two, 327, 336
quadratic, 321, 343, 359, 360, 414
quartic, 343
sextic, 343
splits over unramified extension, 445
torsion subgroup, 265

twisted product, 341, 414, 422
two descent, 315

Ulmer, D., 254
uniform boundedness of integral points, 279
uniform boundedness of torsion, 242, 442
uniformization, 170, 436

nonarchimedean, 444
theorem over C, 173

uniformizer, 18
defined over K, 18, 40

unique factorization domain, 13
unit equation, 281, 282

number of solutions, 284
reduction to linear forms in logarithms,

289

unit group, 208, 269, 287
size of element, 287

unit theorem, 214, 282, 285, 288, 294
unitary group, 459
unramified action, 195
unramified cohomology class, 216, 262, 333,

359
unramified extension, 194, 212, 313, 334
unramified map, 23

criterion for, 24
unstable reduction, 196
upper half-plane, 429

extended, 437
quotient by congruence subgroup, 438

v-adic distance function, 273, 306
valuation, 185

local degree, 225
normalized, 17, 185, 207, 274
of minimal discriminant, 186, 243
of n!, 131
on local ring at point, 17, 274

Vanstone, S., 387, 405
variety, 1–16

affine, 3
Betti number, 141
coordinate ring, 3
dimension, 4, 10
Euler characteristic, 141, 153
Frobenius morphism, 15
function field, 3, 10, 11
ideal associated to a point, 5
isomorphism, 13
local ring, 6, 11
morphism, 12, 13
nonsingular, 4, 5, 11, 14
number of points over finite field, 140
projective, 9
projective closure, 9
rational map, 11, 12
rational points, 7
regular function, 6, 11
regular map, 12
smooth, 4, 5, 11, 14
tangent plane, 14
ζ-function, 140
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vector space
lattice, 251
quadratic form, 251, 265, 305
sup norm, 287
with GK̄/K action, 36, 320

Velu, J., 74
Vojta, P., 296, 298

conjecture, 298

Ward, M., 463, 464
weak Mordell–Weil theorem, 208, 280, 309
Weber, H., 426
Weber function, 428
Weierstrass class, 244

all ideal classes occur, 264
trivial iff global minimal Weierstrass

equation exists, 244
Weierstrass coefficients a1, . . . , a6, 42

weights of, 116
Weierstrass coordinates, 59

Laurent series, 118
Weierstrass equation, 42

change of variables formulas, 44, 187,
410

composition law, 51
criterion for minimality, 186, 203, 447
cusp, 45
Deuring form, 412
expansion around O, 115
global minimal, 244, 256, 264, 267,

293
intersection with line, 51
Legendre form, 49, 158, 180, 198, 199
minimal, 186, 243, 455
node, 45
nonsingular, 45, 410
nonsingular part, 56, 188, 196
quasiminimal, 264, 279
reduction, 187, 370
short form, 45
singular, 44, 48, 55, 105, 111
S-minimal, 246
smooth is elliptic curve, 59

Weierstrass ℘-function, 165, 169, 291
Laurent expansion, 169

q-expansion, 433
Weierstrass preparation theorem, 135
Weierstrass σ-function, 167
Weierstrass ζ-function, 178
weight of modular form, 431
Weil, A., 35, 39, 77, 140, 207, 208, 239, 443,

450
Weil conjectures, 140, 141, 436

for elliptic curves, 143
Weil pairing, 92–99, 112, 310, 357, 361,

387, 388, 390, 440, 441
alternative definition, 98, 109, 396, 462
computation of, 396, 407
distortion map, 390, 402
dual isogeny is adjoint, 97
generalized, 98, 108, 355
modified, 390
on Tate module, 97, 99

Weil reciprocity, 39, 109
Weil–Châtelet group, 324, 331

action of Aut on, 356
equals cohomology group, 325
geometric group law, 355
group law on, 325
index, 358
map induced by isogeny, 356
over finite field, 356
over R, 356
pairing, 453
period, 358

Weil’s converse theorem, 443
wild ramification, 450
Wiles, A., 3, 442
Williamson, M., 376
Wronskian determinant, 300
Wüstholz, G., 293

X0(N), X1(N), X(N), 441

Y0(N), Y1(N), Y (N), 441

Zagier, D., 452
zero map, 52

degree of, 66
zero of rational function, 18
ζ-function, 178, 262, 408, 432

functional equation, 141, 153
of elliptic curve, 143, 449
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ζ-function (continued)
of isogenous curves, 153
of projective space, 140
of variety, 140
rationality, 141

Riemann hypothesis, 141, 144
Zimmer, H., 464
Zorn’s lemma, 177
Zsigmondy, K., 303
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