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ABSTRACT
The mam_ result (3 1) is a proof of the afﬁrmatwe ansgwer - to a quest.lon :
.raised in the early su(ties by G. Kreisel: “Is there a continuous solution to
' Hilbert’s 17h Problem?”
“More p_reci‘selyl, suppose R is a real closed_ﬁeld X = {X¢,...,X,) are
indeterminates, z = (zg,...,2,) € R*1, [ € Z[C; X] is the general form in
X of degree d with (“+d) coef’ﬁc;ents C, and

Prg={c E_R(“j,d) | f(c; X) is positive semidefinite (psd) over R in X }

Then we construct s € N and functions i5: Png — R™ which are semi-alge-
braic over Q (for short, Q-s.a, or, roughly equivalently, real algebraic over Q),
and contmuous with respect to the usual interval topology such that, for all

¢ € Png, '
Ej fl(_aij(c);X)_?

16 X)% + T fofaae); X)*

Here m; = ("+“) (where § = 1,2, e; = ds + %, and e = ds) and J; is the

f(c;Xj = (38.1.1)

gener_al form of degree e; in X; the coefficients of the polynomials giving the
Q-s.a. descripiion of the‘graphs of thg a;; are in 4 and are computable from
n and d. | |

(3.1.1) leads immediately to a representation of fle; X) as a sum of squares
(SOS) of functions which are homogenéous and rational in X, and continuous
~ simultaneously in ¢ and z, fbr' (¢,z) € Pug X B"Y, for the usual topology
on I}; this continuity automatically implies continuity for the “computational”

topology on “enrichments” of R by certain kinds of representations. (Whenever



we say thal a function, defined on a subset of a sel, is co_ntinuous,. we mean
that it can be-extended to a continuous function on the set.)"Thus we oblain,
for the ﬁrst time, a procedure to sofve Hilbert’s 17® Problem constructively
over R {or over any real closed field with a dense éomputaﬁle subfield): we can

compute the d.'_?'(c) to any accuracy by computing a;;(c'), for ¢’ € Q(nfd) close
| enough to ¢, by continuity for the usual topology.

We also construct a representation of psd quadratic formsin X = (X,...,
Xn) as sums of (sllghtly fewer than nle) posxtwely weighted squares of llnear
forms whlch are contmuous rational functions of the vanables and the data {the
usual diagonalization of symmetric matrices gives a weighted SOS-representa-
tion with only n summands, but their coeﬂicieﬁts are discontinuous and piece-
wise-rational). We also give discontinuily results for quartic forms (3.4 and
4.2). "

Also, we prove a founﬂ_atioﬁal result {2.1) in s.a. geomelry, a “Finiteness
Theorem for Open S.A. Sets,” conjectured by G. Brumfiel (“Unproved Proposi-
tion” 8.1.2 ofl[lgTQ}): An open s.a. set may be written as a finite union of finite
intersections of seté of the form f~Y(0,00)) (f € K[X], K an ordered field).
(2.1) is used in the proof of (3.1); it also can be viewed as an improvement
of the Tarski-Seidenberg algorithm for quantifier-elimination: if an open s.a.
set 17 is defined by an elementary formula, the Tarski-Seidenberg a%gonthm\
eliminates its quantifiers, showmg thal " is s.a,-but Jeaves both relations, <
- and ==, obscuring the fact thal F is open; the Finiteness [heorem eliminates

the quantifiers but leaves only the < relabion (and no negations), revealing the
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fact that F is open.

Finélly,' amongrthe other results is the- fact that the “bad set” of a psd
polynomial f (i.e. the set in R™ where, no matter how [ is written as a SOS
of rational functions, the denominators must vanish) has codimension => 3.
Another result is tﬁa.t if f is a SOS of formal power series, over any field, then

it is already a SOS of algebraic power series:
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CHAPTER E
HISTORY OF THE 17th PROBLEM, AND STATEMENT OF RESULTS

The study of .the connection between sums of squares (SOS) and positivity
goes back at least to Lagrange [1770)' who proved that every positive integer _
is a sum of 4 squares of integers (this may have been known to Diophantus).
Hilbert’s 172 Problem stems from a different investigation of this connection
which began with the theorem, for which “M. Cauchy has somewheré given a
proof,”? that a symmetric bilinear form on a finite dimensional vector space
over a field can be diagénalized, for from this it is obvious that a positive

- semidefinite (psd) quadratic form f(X) = f(X3,-..,Xn) = Y, a,-_,-X;X 5 (e =
a,-;) over an ordered field X is a SOS of linear forms:
)= Z c,(z bux,) (1.1.1)
=1 “j=1

some ¢;, by; € K, with ¢; > 0.8

1 Brackets refer to entries in $he bibliography, ¢.g. “[Landau 1903)"; if the author is clear
from the context, we bracket only the year, e.g. “|1908]." A year in brackets is the year of
publication, not the year of discovery.

2 According to Sylvester [1852].

3 A field K is called ordered once we have specified an ordering, i.e. a sel P C K (the
*positive” elements), such-that P4+-PC P,P-P C P,PU(—P)=K,and PN—P = {0}
(consequences: —1 ¢ P D {805 in K}, char X == 0, and K has a topology generated by
the open intervals (g, b); examples: C has no ordering, Q, R, and the real algebraic numbers
(herein denoted by Q) have unique ordermgs, Q_(\/— ) has 2 orderings, Q(t) bas uncountably
many orderings, one for each Dedekind cut of Q). From now on, K will denote an ordered
" fleld. f € K(X) is called psd (over K} if Vz = (21,.. .,&n)} € K™ for which f(z) is defined,
f(z) > 0. We write K+ for P. '
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Also, psd binary fofms (i.e. homogeneous po]yn.omials in two variables)
over R are SOS of (2) forms. This follows from the 2-square identity and
the factorization of binary forms over R. Although Hilbert described this as
“well-known” in [1888}, I do not know of a published proof before [L.andau
1903]. Here, R can be replaced by any real closed field R, i.e. a field which
is formally real (i.e. —1 is not a sum of squares in R; equivalently, R can be
ordered) but which has no proper a}gebféic formally real extension. In [Artin

and Schreier 1927a, 1927b] and [Artin 1927], real closed fields were introduced

and characterized amoﬁg all fields by any of the following properties:

(1) v—1 ¢ R and R{V/—1) is algebraically closed;

(2) R is formally real, |R*/R*?| = 2, and any odd
degree polynomial in B[X] has a root in R;

(3) R has finite codimension in its algebraic closure.

Examples of real closed fields include Q (the smallest example), R, the
algebraic closure, in a given real closed field, of any' subﬁeld, and any real
closure, which we shail denote by K, of any ordered field K (i.e. any real closed
algebraic extension whose (unique) ordering induces the ordering of K; real
closures always exist and are umnique up to unique isomorphism). Treatments
of the Artin-Schreier theory of real closed fields are available in Chapter 6 of
[Bourbaki 1959], [Brumfel 1979], Chapter 6 of [Jacobson 1964], Chapter 5 of
[Jacobson 1974], [Lam 1973, 1980], [Lang 1965, [Prestel 1975], and Chapter 9
of [vén der Waerden 1953].

The reason that R can be replaced in the above result by any real closed
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field is that this result, for each fixed degree, is an elementary stétement
in the first order language of ordered fields; that is, it is expressible using
the usual symbols §,1,+,-, =, <, logical connectives A,V,=, —,3,V, and
variables zi,%2,..., where quantiﬁ'ca’t}ibn is over R (as opposed to allowing
quantification, say, over the power set of R, or over certain subsets such as N).
The Theorem of Tarski [1948, 1951}* and Seidenberg [1954] (stated on p. 8) may
then be applied to an eleméntary formula to construct a logically eqﬁivalent
qua:itiﬁer-free formula, thereby showing that the choice of the real closed field
R is irrelevant to the truth or falsity of elementéry statements. This remark
applies to this entire dissertation, where almost all the results are element.ary.
For a discussion of the .distinction between “clementary” and “transcendental”
applications of the .Tarski-Seidenberg Theorem, see the Introduction and §8.1
of [Brumfiel 19'79_]..

Hilbert [1888] determined those n and d such that all real psd forms f
inn #ariébles o'f degree d are SOS (of necessarily homogeneous elemen£§) in
R[X], or equivalently, upon ﬂehomogenization, those n and d such that all
polynomials in # — 1 _ﬁariabies are SOS. His answer was {(n,2),(2,d),{3,4) |
n,d € N} (we shall never consider odd d). Improvements on his methods, but
not his results, are as follows: Choi and Lam [1977b] gave a more elementary
proof that psd ternary quartics are SOS. Ellison (1968, unpublishe.d) actually

carried out the lengthy construction indicated by Hilbert of the main coun-

4+ This Theorem was discovered independently by G&del, Herbrand, and Tarski around
1930. Godel never published if, the others mentioned it in print a year later, and the fuil

proof was not published until 1948, by Tarski.

n_;u-ﬂ pé&




4
terexamples needed for the rest of his answer, namely, psd ternary sextics
and quaternary quartics which are not SOS Motzkin ([1967], p. 21T), pursu-
ing a different investigation, published the first explicit such counterexample,
Z8 - X4Y2 4 X2y4—3X?Y%Z% In 1969, R. M. Rbbinson [1973] drastically

simplified Hilbert’s ideas.to produce independently the counterexamples
Xz(Xz _ 32)2 +YYY?— 32)2.__ (X2 "‘-32)(1’2 _ Zz)(xz 1Y2— Zz)

and
X3X — WP+ YXY — W)+ 232 —~ W)+ 2XYZ(X +Y + 27— 2m.
Choi and Lam [1977a,b] constructed the counterexamples

X4Y2 4 v42% + 2°X* —3X%r*7?
and |

Wi X2Y2 4 Y222 4 22X2 — 4XY ZW,

which have the most symmetry. Reznick [1978] showed the Motzkin and Choi-
Lam forms to be the simplest possible, and proceeded to classify similar coun-
terexamples. All of the above psd forms become strictly definite (i.e. having
no ﬁonétrivial zero) without becoming SOS as soon as we add (X 6176 Z%)
(or e(X* -+ Y_4 + Z*% 4+ w*)) for small € > 0; indeed, Hilbert [1888] showed

that (the convex cone of) SOS of n-ary forms of degree d/2 must form a closed
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set of the (" 1""‘JI) dimensional) vector space of all n-ary forms of degree d.°

After showing that a psd form need not be a sum of squares of real forms,
Hilbert [1900] raised his 17¢® Problem (cf. [1976]), ), “whether every definite form
may not be expressed as a quotient of SOS of forms. At the same time it
is desirable, for certain questions as to the posslblhty of certam geometncal
constructions, to know whether the coefficients of the forms to be used in the
expression may always be taken ffom the realm of rationality gi'ven.by the
form represented.” There is an equivalent formulation of the question in terms
of psd homogeneous rational functions, or quotients of psd forms; also, we
can convert back and forth between a quotient of SOS and a sum of squares |
of quotients. See [Prestel 1979] for a discussion of the origins of the 1Ttk
Problem in §§36-8 of Hilbert’s Grundlagen der Geometne [1899]. For ternary
forms, Hilbert [1893] had answered the question affirmatively, except for the
rationality of the coefficients. His argument was essentially constructive, but
it had the disadvéntage of being long and difficult (relying on the thebry of
Abelian functions) and of not being extendible to more variables. In a different
direction, Hilbert had also proved (Thebrem 43 of [1899)) the affirmative answer

for binary forms; here what was needed was the rationality of the coefficients

5  Tor an English version of Hilbert’s argument, see [Robinson 1973]. Here the reader will
also find a theorem which is in striking contrast to this result: If f(X7i,. .. Xn) is any real
form (not necessarily psd) of degree d, then f(X1,.. . Xn)+ b{X‘-—i— - X2) is a SOS of
forms {of degree & %) when b is sufficiently large. Furthermore, these forms of degree & 4 may
be chosed to be monomials or binomials. From this he deduces the non-trivial fact that the
cone of SO8 of forms, and even the smaller cone of SOS of binomial forms, of degree % has
interior {hence dense interior, by translation of neighborhoods); in fact, X ...+ X2 is

an inner point.
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to be used. By a subsequent algorithm of Landau [1906], the rational functions
in Hilbér_t’s result could have been transformed into polynomials (stiﬂ with
rational coefficients); however by thén, Landau had already [1903] -.obtain_ed
directly this improvement of the classical result on binary forms. In passi-ng
from R to Q, the number of requiréd squares in Landau’s fepresentation of
[1903] increased from 2 to 2d -2, where d is the degree of the form. In [1904],
he lowered this number of squares to 5 for quadratics {smallest possible) and
< 6 for quartics; Fle_ck [1908] reduced the 6 to 5. Using the 8-square iden-
~ tity, Landau [1906] finally proved that, régardless of the degree, 8 squares are
enough. Pourchet [1971] extended Landau’s result by replacing Q with any

algebraic ﬁumber field, and simultaneously reduced the number of required

squares to 5, the smallest possible.

The main step in the history of the 17¢® Problem was Artin’s {1927] non-
constrﬁctive proof of the afirmative answer, and not only for the ground fields
' Q and R, but simultaneously for any uniquely orderable subfield K of R;
dropping the unique orderability hypothesis, Artin represented psd (rational)
functions f as f(X) = Ep,r (X)?, where p; € KT and r; € K(X). Artin
proved this using his result that in any field F' of characteristic # 2, an ele-
ment is “totally positive wit-h respect to the ordered subfield k”% if and only
if f = > pir3, for some p; € kt, r; € F. Thus it remained to show that
a psd fﬁnct.io‘n f € K(X3,...,Xy) is totally positive in K(Xy,...,Xn) with

& .., nonrnegative in every ordering of F' extending k; of course, F need not have any

~ ordering.
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respect to K. For this he used a series of “specialization lemmas” using Sturm’s

Theorem.

In solving the problem, Artin had recognized that it had more to do
with the algebraic than the arithmetic properties of @ and R. By introduc-
ing his axioms (for real closed fields), he not only achieved greater generality,
but he actually made the problem easier; thus, his solution was perhaps th_e
first spectacular use of the axiomatic method for mathematical as opposed to

metamathematical purposes, such as independence results.

At this point we review additional terminology which we shall need more .
and more. R will always denote (any of) the real closure(s) of the ordered field
K. Let X = (X4,...,Xn) be indeterminates, and & = (z1,...,2,) € R™ (if
n = 1 we shall say so explicitly). Throughout, all indiées range over ‘ﬁnite'
sets whose sizes are rarely s;peciﬁed, but which will be computable if K is

computable.” For {f;} C K[X] let®
U} ={zeR" | \14X) > 0},
W{s}={z€R"| /\ff(z) > 0},and
Z{fe} ={z€R"| /:\f.-(z) =0}

A set is called a basic open semialgebraic (5..) set (more precisely, a basic

open.K -5.a. set), or simply a U, if it is of the form U{/;}; and similarly with U

7 A computable field is one whose field operations are compu$able, and whose order rela-
tion is decidable. Examples of computable fields include Q, Q, but not R.

8 A: [resp. Vi] means iterated conjuntion [resp. disjunction], indexed by 1.
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and “open” replaced by W and “closed.” A set § C R™is called (K-)s.a. if it
is a finite union of finite intersectiéns of basic open and closed (K-)s.a. sets. A
function from one (K-)s.a. set to another is called (K -)s.a. if its graph is a (K-)
s.a. seﬁ (in the product space). All our sets and functions will be understood
to be s.a. and, if K is computable, defined as certain real roots of polynomials
with computable coeficients; this will always follow from (if nothing else) the
Tarski—Sleidenberg Theorem, whose most succinet formulation is now that the
projection to R*~! of a s.a. set in R™ is s.a. Thus, the Tarski-Seidenberg

Theorem consists of a procedure to eliminate one (hence any number of} exist-

ential (hence also universal) quantifiers from a first order formula.

Artin wondered if a constructive version of his solution could be given,
and he considered this q_uestion in a seminar which he led between the wars.
In particular, he wishe& to eliminate his appeal to an infinite tower of field
extensions, and he dersired a bound on the number and degree of the summands

in the representation.

Habicht [1940] gave an elementary, explicit construction of a SOS-represen-
tation of forms f strictly definite over R. In fact, the denominator be gives is
(X2 4+ .-+ X2)N, some N € N, and the numerator contains only rational
coefficients if the given form does. If we try to extend his method to psd forms |
by approximating by strictly definite forms, we find that N may grow without
bound,; this is inevitab}e if the form has any “ba.d points,” i.e. non-trivial
points in R™ where, in any SOS-representation, the common denominator must

vanish; on the other hand, since his denominator has no non-trivial zero, we
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conclude that strictly definite forms have empty bad sets (we return to ba_d sets
in Chapter V). He derived.his representation by combining the “Rabinowiﬁch
trick” (i.e. adding a new indeterminate Xy 1) with a theorem of Pélya on the
representation of forms which are positive when all X; > 0, i.e. on W{X:}
(exce_f)t the origin);9 Habicht’s algorithm is fully constructive: it can easily
be made to produce a representation correct to any desired accuracy in an

estimable amount of time.

A. Robinson used lower predicate calculus and the model completenéss of
R to prove a number of overlapping results. First, in [1955] he showed that if
K is either real closed, or Archimedean,!® then if f(z) > 0 Vz € K"NU{gs}
(where {f, 9} C K[X]), then f = S ergrr, for some 7 € K+, where the gr
are (not necessarily distinct) products of the g;, and {r;} C K(X); further, |
1f the ordering on K is unlque, then the ¢y are totally positive, hence 8OS in
K so that the ¢; may be dropped; better still, for K real closed, he proved-
the existence of a bound on the number and degrees of the summands which
depends on {g;} and deg f but not on the coefficients of f (or, of course, on
R). In [1956] Robinson extended the reai closed case as follows: if V £ ¢ is
an irreducible algebraic variety in B™ with prime ideal P, {f,¢:i} C R [X], and
flz) >0 Vz €V NU{g}, then h*f = T grh} (mod P), for some {h,hr} &

®  Sce the second edition [1852] of [Hardy, Littlewood, and Pélya 1939] for an enjoyable
English version of both resulis,

10 An ordered field K is Archimedean over the subfield k if Ve € X 3d € k such that
e < d; if k& is Q,we omit "over £." We shall have more o say on the role of the Archimedean

condition on p. 18.
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R|X], where the g7 are products of the g;; we still have a bound on the number
and degrees of the {h, h;}, which depends only on the {g;} and deg f, not on
the coefficients of / '

In October 1955 Artin asked Kreisel if explicit bounds could be found.
In Nov. 1955, somewhat before the appearance of Robinson’s result, Kreisel
succeeded in obtaining, by two proof theoretic methods, a primitive recursive
bound (Robinson’s was only general reéursive). The first method ([1957a,b};
pp. 165-6 of [1958], and [1960])' used proof theoretical results: Hilbert’s first
and second ¢-Theorems (or Herbrand’s Theorem). The second method [1960]
consisted of extractiﬁg the constructive content of Artin’s original argument,
by replacing Artin’s use :of a real closed exteﬁsion of an ordered field with |
a specific finite extension sufficient for the result; in this replacement some
.eIegance and clarity is lost, but some explicitness is gained; here the ideas but |

no theorem of prodf theory for first order logic are used. In [1957b] Kreisel

" gave a rough estimate (for n = 2) of this primitive recursive bound. A sharper

estimate is
) -ged

2%

where there are n 2’s, where d =deg [, and where ¢ is a positive constant.

‘Stimulated by these results, Henkin [1960] used model theoretic methods
similar to Robinson’s to prove what is now accepted as the most natural for-
mulation of the answer to Hilbert's question: if f € K'[X] is psd (over R) and
if deg f < d, then f = Y ¢;r?, where r; € K{X) and ¢; € K+ {(Artin had
obtained this representétion ﬁnd_er the hypotheses that X C R and that f be
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psd over K; for K C R, psd over K is equivalent to psd over R and to psd
over R, since K is then dense in R). Henkin also showed that the (bounded
number of) ¢; and the (bounded number of) coefficients of the r; can be taken
to be functions of the coefficients of f which are plecemse-ratlonal” over Z
(abbreviated “Z-p.r.,” or simply “p.r. "), where the finitely many “pieces” are
s.a. subsets of'R(m:d), the space of coefficients of f; the coefficients of these
rational functions and the polynomials defining thezé: domains are recursive

but not necessarily primitive recursive functions of n and d.

Robinson gave a correspondingly improved formulétion of his results. In
- §5 of [1957] he proved for f,g € K[X], that if f(z) > 0 Vz € Z{g}, then
K2f = ¥,k + kg for some {h, h;,k} C K[X], where ¢; € K'F; this time
the bound is on the number and degrees of &,k and thé hs, and it depends on
deg f, deg ¢, but not on K or the coefficients of f and g. In §8.5 of 11963] he
replaced Z{g} above with Z{g} N U{g;} (any {g:} C K[X]) provided that ¢
generates the ideal of Z{g} and that ¢ | Vgs; the conclusion then is

Wf =Y cghi+kg, (1.2.1)
I

where the gy 'are products of the g;. The bound no longer applies to deg k, and

now the bound depends also on the degree of the g;.

Robinson further proved [1957] that if p is totally positive in a finite, for-
mally real (order-)extension F of K, then p = 3 ¢irs, where ¢; € K +,
r; € F; what was new was that r depends only on [F:K ], not on F, K, or p.
Thus if all the positive elements of K are SO8, and if the nﬁmber of required
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squares is bounded, then we may drop the ¢; in the above representation, but
make r dependent also on this bound; this overlaps an important theorem
stated by Hilbert (first proved by Siegel [1921]) that if K = Q, then r = 4,
independent even of [F:K]. |

Daykin [1960] constfucted a primitive recursive, p.iecewise-rat.ic)nal solu-
tion which was superior to the Henkin-Robinson solutions, by working out
Kreisel’s {1960] sketch of the “constructivization” of Artin’s original proof. A
little more notation at this point will help us describe Daykin’s representation
| (and eventually many others as well). Let X = (Xo,. .- Xn) be indeterminates,
let £ = (zo, ..., zn) € R"T, let a = (ao,...,as) € N**! be a multi-index,
let ja| = Y ay, fix d € N, let C = (Co)ja|=a be (“id).indeterminates (in
some fixed ordet), let ¢ = {¢a)ja|=a De an element of R(u':d), let f € Z[C; X]
be the general form of degree d in X with coefficients C (i.e. f(C;X) =
3 jaj—a CaX®, where X @ = Xgo-+-X "), and let

Poa={c€ R(nr)‘ | f(c;‘DX) is ps'd (over R) in X }.

Daykin showed how to compute effectively, from n and d alone, p;; € Z[C]
and r;; € Q(C; X) (homogeneous in X) such that

/\ f(C:X) = Zp,_, )rif(C; X)? and

¢) 2> 0, and the denominator of (1.3.1)

Psa
2) Ve€ PR
(2) Ve€ P V A LU (¢; X) does not vanish identically in X

The superiority of this representation consists not only in the explicitness

of the bound, but also in the choice of pieces on which the rational functions
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are defined: the earlier pieces were s.a., but Daykin’s are basic closed s.a.,
namely, Wi = W{/g\’,-j}. In Chapter II we give a quick proof and refinement of

his representation, using powerful results in s.a. geometry.

The improvements found in the fifties to Artin’s solution brbught only

temporary satisfaction, and by the early sixties Kreisel wondered if one could

not do better. In particular, the piecewise character of the representations

meant that when computing a representation from given coefficients of f, one
first had to determine in which piece of the domain the coefficients lay. This
_amounts to testing various polynomlai mequahtles in the coefficients. While
this presents no difficulty in computable fields, it is precisely what we cannot
do in, say, R, an element of which must be presented as, say, a decimal, or an
oscillating decimal used in computer science, or a pair {{ryn), p) of some kind
of Cauchy séquené.e of rationals and a “modulus of convergence”' function p
satisfying Vk > 0Vn,m > p(k)[|rn — rml < +]. While this “fine point” is not
considered bj classical aigebré.ists, it is enough of a problem to leave Hilbert’s

17th Problem still pnsoli*ed from a constructivist point of view.

Thus, in the early. sixties, the question was open whether the piecewise
character could b.e dispensed with, or at least whether a topological version of
Artin’s Theorem could be given (the question appeared in print, e.g., on pp.
115-6 of [Kreisel 1977a] and in footnote 1 of [1977b]). Precisely, (1) can we
choose representing rational functions which are continuous in R"™+! (where
by a “contiﬁuous rational function” we shall always mean a continuously-

extendible rational function) (example: the representation

X
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__x T
_X2+y2 X2+y2

is discontinuous at the origin in R2), and (2) can the coefficients of the numera-

1

tors and denominators in each rational function be chosen to be continuous
functions of the given coefficients? In the case of an ordered grdilnd field, we
should allow positive constant weights.on the squares, as in Henkin’s formula-
‘tion, and arrange for their continuoué variation as well, or at least for the con-
_ tinuitj of the coefficients of the resulting product of the weight and the squared
rational fﬁﬁction. Tn the above, the ordered (and possibly real closed) ground
field has been given the usual order topologf. Kreisel also posed the question
for the finer “computational topology” on “enrichments”'of R by specific rep-
resentation-s,_' say oscillating binary expansions with the corresponding Baire
space or “weak” topoldgy on 3, or Cauchy sequences of rationals with the
topology i_nhérited-from the'produCt topology on Q‘_". While any f:R — R
continuous with respect to the usual topology is obviously comtinuous with
respect to the computational topology on Cauchy sequences, the following ex-
ample of Kreisel'! disproves the convefse: consider the construction of a zero
for a cubic equation from its coefficients, say f(c) = 2, for z3—3z =c. There

is clearly no such mapping f which is continuous for the usual topology, but

cohtinuity can be arranged for the computational topology.

The reason for considering computational topologies goes back to Brou-
wer’s intuitionism, in which he observed that every constructively defined func-

tion from R to R (whose elements he described by “free choice sequences”

11 g2 of [Kreisel 1974], footnote 10 of [1976], [1977D], and elsewkere.
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{rn) € Q“’) is continuous relative to the product topology on Q¥; for if f({rn)) =
(s,), and a value s, has been established, then f can only have used a finite
amount of information abbut {r,). Thus, if Hilbert’s 1Tt Problem cannot
be solved continuously with respect to this computationél topology, then it
cannot be solved constructively. From now on-all.topological terms such as

“continuous” refer to the usual topology.!?

In view of the geometric origin of Hilbert’s 17*® Problem, stressed in his
own presentation, it seems natural enough to impose topological conditions.
Kreisel’s interest is logical: To determine the extent to which current mathe-
matical notions express adequately or better the aims usually stated in terms

of so-called constructive, in particular, of intuitionistic foundations.

In a paralle} development, Heilbronn [1984] gave a surprising answer to
another qﬁestion originating {rom Kxjeisel, ‘by giving an analytic version of
Lagrange’s Theorem: he cbnstructed functions f1, f2, f3, f4, which are .analytic
on the complex plane minus the negative real axis, which take rational values

for positive rational arguments, and which satisfy z = Yo fi(2)2

12 gimultaneously, Kreisel pased the same continuity question for the classical “weak” Hil- -
bert Nullstellensats. Here the answer turned out to be easy for the usual topology: if we
let X be a single indeterminate, and &, b € C, then the two polynomials f(X} — & and
g(X) = bX -+ 1 in C|X] have no common sero in C* for (¢,5) € 8 = {(a,8) EC? | a 3£
0V & ==0}. But if we write 1 = p{X)/(X) + a(X)g(X) (with p(X), q(X) € C[X]), then
the coefficients of p and g, as functions on §, must vary discontinuously neara = b = 0.
Again we could consider various enrichments of the data, in particular, enrichments of the
real and imaginary parts, say, by Cauchy sequences of rationals with moduli of convergence,
by binary or oscillating binary expansioﬁs, by Dedekind cuts, etc., and for each kind of

enrichment there is a corresponding topology.
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However, before any progress was made on Kreisel’s question, other aspects

of the problem were considered. It was well-known that the Archimedean
propérty played a réle in Artin’s original formulation of his theorem. For ex-
‘ample,?a over the non-Archimedean ordered field Q(X) (where X! > Q,
i.e. the indeterminate X is infinitesimally small compared to Q, and positive),
f)=@12—XPF—-X%€ Q(X)[Y] (Y an indeterminate) is psd over Q-(X)
but not a (positive'iy'weighted) SOS even in Q(X)(Y). Indeed, upon factoring

over Q{X), we see that f < 0 precisely on the two intervals I and —I, where

I= (\/X(l— \/)_() , \/3{(1 -+ \/}_()), which contain no point of Q(X).14

It is no accident that i&n the logical treatments of the 17*h Problem, t.h_e
Archimedean property was replaced by the condition that the given polynomial
be psd over the real closure of the ordered field of coefficients, because the
Archimedean property cannot be expressed by an elementary statement. Since
Archimedean ordered fields are isomorphic to subfields of R, and are therefore
~ dense in their real closures, “psd” over an Archimedean field already implies

“psd” over its real closure.

However, it was not known whether the Archimedean hypothesis could be
dropped from Artin’s theorem provided the unique orderability was retained.
An incorrect proof by Lang [1965] of the affirmative answer was followed by
a counterexample from Dubois [1967): Let F be the “Fuclidean closure” of

Q(t) (t an indeterminate, t—1 > Q); i.e. the smallest extension closed under

13 P, 99 of |[Artin and Schreier 1927a}.

14 Robinson [1955] gave a similar example. - ;
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extraction of square roois of positive elements. Then F', being Euclidean, has a
unique order, relative to which Dubois showed f(X) = (X 312 —t3 € F[X]
to bé’(stricﬁly) definite; on the other hand, f(1) and f (t1/3) have opposite signs,
so f cannot be a SOS in F(X).

The main result in the sixties was Pfister’s elegant “2™ bound” [1967] on
the number of square summands required to represent a psd ,f € R(Xy,...,Xn),
independent of dég f (Hilbert had proved this for n = 2 in his [1893] result).
More precisely, Pfister has shown [1974]: if

2"-M

f= >, 1
g==1

with f; € R(X1,..., X,) and deg f; < d, then there is a representation

2”
f=>.0
f=1

with g; € R(Xy,...,X,) and

ﬂiﬂ A
deg gs < C(n) n—1 d";
the constant C{n) depends only on n, and could be determined explicitly; it

probably grows quickly with n.

His proof uses (1) a special case of the Tsen-Lang Theorem: if C is an
angbraicaIly closed field and F is a field of transcendence degree n over C, then
every quadratic form with coefficients in F, of dimension > 2%, has a nom- -

trivial zero in F'; and (2) his theorem that the non-zero elements of a field F* of
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characteristic ;é 2 represented by (what is now called) a ;‘Pﬁster form,” form
a subgroup of F*. (An independent, unpublished study by Ax in 1966, showed
that 8 squares suffice when n = 3.) It is not known whether Pfister’s bound
applies in the case of ordered coefficient fields K, in particular Q; again, we
should allow positive constant weights on the squares e’s:&%:&e ordered field case,

since positive elements in X need not be sums of (even an unbounded number

of) squares.

For real closed fields it is not known whether 2" is best possible, except
for n < 2: Cassels, Ellison, and Pfister [1971] showed that the (psd) Motzkin
polynomial 1 4+ X 2y4 L X4Y? — 3X?Y? is not a sum of three Squares in
R{X,Y); but their method uses the theory of elliptic curves, and does not
extend to n > 2. Christie [1976] used this method to show that

(1 + 250X Y32+ X(X + 3)°r?

is strictly definite but not a sum of three squares in R(X,Y). The only known
lower bound is n 4 1: Cassels [1964] showed that 1 4+ X%+ --- 4+ X2 is
not a sum of n squares in R(X3,...,Xn), by sharpening a result of Landau
[1906] that a SOS of rational functions can be reduced to a SOS of rational
functions in which any one variable, say X1, does not occur in the (common)
denominator; Cassels did this without increasing the number of summands.
Hsia and Johnson [1974] have conjectured that a psd f € Q(X;,..., X,) must
be a sum of 2™ -} 3 squares in Q(Xl; .+, Xn) (this is Lagrange’s Theorem for
n==0and Pourche£’s (1971} resﬁlt fdr n = 1, but it is not known whether any
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bound, independent of degree, exists for n > 1). All these results have noth-g
ing to do with Kreisel’s question since Pfister’s techniques add to whatever

discontinuities ma.y have been present in the original representation.
cnd again wmte X={k, - /u},,
We now return to Krelsel’s question, The first part of the quest.xon con-

tinuity in the variables of the rational ;:nctions, was answered by Stengle’s

[1974] “Positivstellensatz:” for {f, g;} C K[X], if Vz € W{g,-}, f(z) 2 0, then
2

f%%gii;h%; (14D

some s € N, cjjé Kt,and hjs € K[X] (5 = 1,2), where the gr are products

of the g;. If we Wan£ to transform this into a (positively Weigﬁted) SOS of ra;

f:

tional functions, we just multiply the numerator and denominator of (1.4.1) by
tho denominator. However, the numerator and denominator of (1.4.1) are nof.
homogeneous in X if f is, nor can they instantly be made so, as in the earlier
representations. On the other hand if the representatlon were homogeneous
for homogeneous f, then we instantly get an inhomogeneous representation for
inhomogeneous f. In [1979] Stengle retraced his proof (which used, by the way,
the Rabinowitch trick again) back to his use of the real Nullstellensatz and
from there carried out the delicate homogeniiation process; however he did'
this under the assumption {g;} = {0}. Although Hilbert’s 17*» Problem does
not requii'e the extra generality of the {gis}, the proof of ‘our main Theorem

(3.1) does.

Anyway, since W{g:;} N Z{denominator} C Z{f} C R"*?, the Squeeze

theorem easily implies that the rational functions extend {namely, by 0) to
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functions of X which are continuous throughout W{g:}. It therefore remained
(for Kreisel’s question) to arrange in addition for the coefficients of each ra-

tional function to vary continuously in the coefficients of f.

Stengle’s theorem includes a number of results which have appeared in-
dependently in the more recent literature. For exampie, Prestel .[1975] used
model theory to show (Theorem 5.10) that for f st.rictljr definite,

T4

| L
{95, i} € K[X]. Also, Swan [1977] asked whether the denominator in Artin’s
representation could be chosen strictly definite (i.e. whethei' the “bad set” of
J is always empty, where the Bad set of f consists of those points in Rn+1oat
which the comrﬁcn denominator of any SOS-representation of f must vanish).
Choi and Lam [1977a] gave the answer “Yes” for binary psd polynomials but
in general “No” for psd polynomials of more variables. Then Prestel aﬁd
Knebusch improved the denominators so as to show that the bad set of any
psd polyn-omial f is contained in Z{f}. (E. G. Straus was the first to verify
the existence of bad points:'® the psd quaternary quartic form described by

Hilbert {1888] must have a non-trivial bad point.)

Another important virtue (this one for s.a. geometry) of the relation
W{g,} N Z{denominator} C Z{f} is that it guarantees the nonnegativity of
f on W{g;} (the earlier representations of Robinson (e.g. (1.2.1)), et. al,

guaranteed nonnegativity of f only on the closure of U{g;}; the rational func-

15 1In a reply to Kreisel, 1956.
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tions could degenerate to O/O over the “degenerate” (or thin) parts of W{g:})

Brumfiel suggested that I'iry to characterize the bad set in some way.
Towards this end, we give a few new examples of bad sets, énd prove our main
‘partial result in this direction: | |
Proposition 5.1: For psd f € I([X], cod (bad set of f) > 3.16

Back to Kreisel’s continuity fequirément, we now state our méin result:
Theorem 3.1: There are $ € N and continuous Q-s.a. functions a;;: Ppqg — R™

such that Ve € Pug,

Tphfostehx)®
16 X )2 + 33 faf o2;(e); X)2

fleX) = (3.1.1)

Here m; = (™) (where i = 1,2, ¢, = ds + §, and ez == ds) and f; is the
general form of degree ¢; in X; the (integra]) coefficients of the polynomials
gfvi.ng the Q-s5.a. description of the graphs of the a,; are computable from n
and d.

Tor the case of real closed fields, this answers affirmatively both parts of
Kreisel’s question, and, when & = R, for both topologies;!” hence we shall
ignore the computational ‘topoiogy in the sequel; in fact, (3.1.1) leads to a

SOS of functions lwhich are clearly continuous simuftaueoﬂsiy in ¢ and z for
(¢,2) € Png X RPHL, | |
Furthermore, viewing these functions as ralional functiolns in X, their

coeflicients are given explicitly by Q-s.a. functions, so that both (1) the

'® Cod = {n - 1)— dim, and dim == maxlmal dimenslon of a cell which can be embedded
in the set,

1T Most peoplo expected contlnuily only for the computational topology on It
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coeflicients, and (2) the values of the functions at any point in,R“"‘l., can bé
computed in a finite number of steps, if R is computable (e.g. if £ == Q).
And evén if R is not computable but at least contains a dense. computable
subfield K, so that we may approximate élements of R by elements of K,.
then we can still carry ouf the comp.utations to any desired accuracy: for .(1)_, |
simply calculate ay;{c') for ¢ € K(ntd) close enough to ¢, since the a;; are
continuous (Witl:;,‘z,fgs'pect to'the usual topology); for (2), 'compute the values of
the functions at 'a_nearby point in K™+, since the functions are continuous
simultaneously in ¢ and z. Taking R =R é.nd K = Q in the above sentence,
we therefore have, for the first time, a constructive in particular, intuitionis-
tic,'® solution to Hilbert s 17" Problem over R. Although Kreisel did not ask
.for semi- aigebralcxty of the coeflicients, this comes along naturally in the proof,
and is to be expected: s.a. functions are precisely those natural functions
which map any real closed field to itself. Unfortunately, Kreisel’s question for
ordered ﬁeids has not been answered although we suspect the answer iz “Yes:”
Con_]ccture 1.5: Tbere exist 8 € N and contmuous Q-piecewme—polynomial
functions a;j: Png — R™* and piji Ppg — R, with m; and f; as in 3.1, such

that Ve € Pog,
¥ p15(e) f1(o15e); X)2
16 X+ Typ2s(e)fa{aas(e) X)

By “Q-piecewise-polynomial” we mean that Pnq has been written as a finite

JeX)= (1.5.1)

union of Q-W's 'upon each of which a;; and pi; are described by polynomials €

Q[C]; as in (3.1), the Q-s.a. descriptions of the a;; and the p;; are computable

18 Here we mean intuitionistic in the traditional sense, viz. as described above. Our solu-

tion is probébly not intultionistic in the sense of sheal models, where the axiomms are weaker.
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from n and d.

Note: it may be necesary to replace “piecewise-polynomial” with “piece-
wise-rational” {p.r.) to get the special denominator in (l.'S..l). Also, we do not
necessarily insist on continuity of ﬂhe a;; and p;; separately; we would settle
for continuity either of the products py;fia;; z)? (as functions of (c, z)), or,
equivalently, of the X-coeflicients of the pi;fi(aij; X)? (_after expand;mg out),
though this weakening is probably not necessary. Just as semi-algebraicity was
éxpected of functions mapping any real closed field to itself, we see here that
functions mapping any ordered fleld to itsell are expected to be Q-p.r.

The pﬂmar.y interest of the conjecture is not as an aid to the “constructi-
vization” of A.;rtin’s theorem over various ordered fieids, partly because this
‘has alréady'been accomplished for the fields of original interest: (1) for com-
putable ordered fields (mainly, real number fields such as @), first by Robinson
and Henkin, giving general recursive bounds, and second by Kreisel, giving
primitive recursive bounds; and (2) for R, and in fact for any real closed field
containin.g a dense computable subfield, by Theorem 3.1. The only new fields -
that the‘c_onjectﬁre could add to this list are ordered fields with dense com-
putable subﬁelds,. such as R(T), where R has the usual ordering, and where
the indeterminate T defines a Dedekind cut in R with the property that Q(T)
“inherits from R(T) a decidable order relation. Rath-e'r, 1.5 is primarily of in-
dependent interest, since we interpret 3.1 as showing that constructivity is
not the right thing to be seéking anyway, and that instead continuity, and Q-

s.a.’ity or even Q-p.r.'ity, is the more natural goal.
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Tn Chapter III we give a necessary and sufficient condition (Corollary 3.4)

for the truth of the conjecture when.the word “piecewise” is deleted: namely,
d < 2 and n arbitrary. In fact, in 4.1 we prove much more than the conjecture
for d == 2: Let EC;:,-X;X ; be the general quadratic form in Xo, - - .,X,, and

write C = (C;j)ogfstn. Set
1
N(n)=(n+1)! E ) k—

Theorem 4.1: For fixed n and for 0 < 1 < n, 1 £ k < N(n), we can construct
Pk, aki € Q(C) such that :

- . N(n) _ -n 2 - B
Z!-b;jX;'Xj == z pk(@)(z ak;(@X;) andj (4.1.1) K
i.¢=1 =0

throughout P,y X R™?,

N(n)

A

==}

2
pi(c) > 0, and pk(c)(z akg(c):cg) is continuous in (¢, z)]. (4.1.2)
1 .

Note that

n
Z aie)z
=0

alone is not continuous in P.a X R, Here we must use slightly fewer than
(n -4 1)l e summands; the classical SOS-representation (1.1.1) requires on.ly N

summands, but their coeficients are discontinuous and piecewise-rational.

Theorem 4.1 suggests the problem of parametrizing the representations of

psd forms as SOS of forms in the remaining cases where this is possible (recall
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p. 3): binary forms, and ternary quartic forms. We show {(Theorem 4.2) that
ternary quartics cannot be continuously represented, even as SOS of formal
power series whose coefficients are allowed to take irratioﬁa-l values; in fact, a
low order coefficient must jump at (X2 + Y2)2. Finally, we indicate Why we
suspect that psd binary forms can be continuously represented as SOS of forms

(but with irrational coefficients).

Chapter II contains a proof of a “Finiteness Theorem for Open S.a. Sets,”
conjectured by Brumfiel (“Unproved Proposition” 8.1.2 of [1979]): An open
s.a. set F is a finite union of U’s (see p7@) In other words, we can define
F entirely by strict inequalities {using ﬁmi;e unions and intersections but no
complements). Taking Vcomplements and distributing, wé get equivaiently, that
a closed 5.a. set is a finite union of W’s. The Theorem would be trivially
true if the word “finite” were omitted; hence the name “Finiteness Theorem.”
An extensive theory of s.a. sets is developed in Chapter 8 of [Brumfiel 1979]
without this theorem. “It would be mice to have a simple proof of 8.1.2 right
at the beginning. On the other hand, all the results we will prove in order to

circumveﬁt 8.1.2 are results we would want anyway.”

The statement. of the theorem is deceptively simple for s.a. sefs in R,
and deceptively difficult for sets in R",n > 2. Our proof proceeds by (1)
giving a more delicate analysis of the case n = 1 (with param%ters), and (2)
using the “Good Direction Lemma,” for a straightfo;ward (and occasionaﬂly a

“straightbackward” {cf. proof of 2.7)) algebraic proof by induction.
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We later learned that this theorem had recently been proved in two other
papers: first, M. and M. F. Coste [1979] derived it as a consequence of Efroym-
son’s Separation Lemma {1976). Bochnak and Efroymson [to appear] adapted
to the polynomial case Lojasiewicz’s [1965]!9 proof without induction, using

the Hormander-Lojasiewicz inequality.

We apply the Finiteness Theorem to the (closed, s.a.) cone Pynq during
the proof of the continuous solution to the 17th Problem. Later (Theorem 3.3)
we make a finer analysis of Py by showing that it is a single W precisely

when d = 2; this has consequences for certain types of SOS-representations

- {Corollary 34).

The Finiteness Theorem is also an improvement of the Tarski-Seideﬁberg
Theorem: if a closed s.a. set F is defined by an elementary formula, the
Tarski-Seidenberg algorithm eliminates its quantifiers (showing that F is s.3)
but leaves a mixture of both relations, < and <, obscuring the fact that Fis
closed; the Finiteness'Thedrem eliminates the quaﬁtiﬁers but leaves only the 5
relation (and no negations), revealing the fact that F' is closed. This qualitative
improvement of the Tarski—Seidenberg' Theorem is more satisfying than the
- (basically unsubcessful atteinpts at) quantitative improvements given in recent
years (e.g. by Collins [1974] and Monk [1975]) expressed in terms of t.hé (still
large) amount of time and space needed to carry oub the elimination. Indeed,
Fischer and Rabin [1974) have shown that every decision method, determinis-

tic or non-deterministic, for the elementary theory of real closed fields has a

19 Op p. 68 of [1965]; for a translation from the French into English, see [Hironaka 1975b).
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maximum computing time which dominates 2 , where N = length of the
input formula and ¢ is some positive constant, and is therefore unfeasible given
- the current speed of _compu?;ers. On the other hand, an efficient description of

the elimination procedure is possible, and has been given by Cohen [1969] 20

Our history has focused on the bounds and constructivity resulté that have
been obtained for Hilbert’s original problem. Howe#er, a large literature on
other aspects of the problem has déveloped, and we now mention enough refer-
encés to guide the interested reader into these areas. Bochnak and E'froymson
[to appear] cover the current knowledge of SOS of C* functions, Nash func-
tions (real analytic algebraic functions), and real analytic functions. They
generalize both Stengle’s and Pfister’s Theorems to certain subrings of the ring
of Nash functions on open ‘s.a. subsets of irreducible nonsingular algebraic
sets in ,R”- They consider both global functions and germs of functions. ’I_'héy
similarly generalize Procesi’s [1978] representation of symmetric psd f-unctiqns
to Nash functions invariant under a Lie group action on R™. One of the prob--
lems they suggest (p. 23) is to find a psd C™ function of one variable which is

not a SOS in C*(R); this had been solved by P. Cohen (see p. 25 of [Brumfiel
1979)). (The study of SOS of real algebraic functions was initiated by Artin

[1927}.)

Lam [1980] gives a bibliography on the 17*» Problem, including references
to a non-commutative generalization of the problem, a p-adic analog, and a

generalization to psd symmetric matrices over polynomial rings. Pfister [1976]

20 . This has been repreduced in Efroymson [1974] and the appendix of [Brumflel 1979).
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also gives historical references. We shall not try to duplicate here these three
main bibliographies, but instead conclude with some references not included

in these bibliographies. -

Berg, Christenson, and Ressel [1976] studied positive definite functlons on
Abelian semigroups, and approxxmated deﬁmte polynomlals by SOS of poly-
nomials, of not necessarily (and usually necessanly not) bounded degrees. Bose
[1976] gave algorithms to test polynomials for p.sd-ness. ‘Ellison [1969] con-
sidered a “Waring’s problem” for forms. Gorin [1961] showed that

(XY — 124 Y2

is strictly definite on R? but has infimum = 0 on R2 (of course, it does have

a zero on the line at infinity). Dickmann {1980] characterized definite polyno-

‘mials over “real closed rings.”




CHAPTER I
A FINITENESS THEOREM FOR OPEN S.A, SETS

Throughout this chapter, X = (X,..., Xn), and z = (z;, . Zn) € R™
Theorem 2.1 (the Finiteness theorem): If § C R" is 5.a., then
(a) S is open if and only if § = U U{gi;}, some {g:;3 C K[X)]; equivalently,

| )
(8) S is closed if and only if § = U W{gi;}, some {g:;} C K[X].
i

It K is computable, the g;; are computable from the presentation of § as a s.a.

set.

There is a trade-off in complexity between polynomials and s.a. func-
tions: s.a. functions are complicated while polynomials are simple. But while
representing S as a union of U’s of polynomials as in the Theorem is com-
plicated, representing S as 2“union of U’s of s.a. functions is simple: § =

U{dist(X,R" — S)}, where U{f}, for f s.a., has the obvious definition.
Corollary 2.2: A s.a. set § is reIat:vely open in a s.a. set T C R™ if and only
if § = TnU,U{gi}, and s1m11arly with “closed” and “W” in place of “open”
‘and “U.” '

Proof of 2.2 from 2.1: § = TN U{dist(X, T — 5)}, and U{dist (X, T — S)} is

open (and s.a.; see also 8.13.12 of [Brumfiel 1979)) in R™ ! hence it is a union

1 Proof: for any non-empty set § {s.a. or not), dist(X,5) is a (uniformly) continuous
function of X, since it is the infimum of the equicontinuous family of functions { dist(X, y) |

veS}
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of Usby 2.1. Q. E. D.

The projective analogue of the Theorem may be formulated in terms of

cones, i.e. sets § in R™ such that z E S—ex€S,Ve>0.

Corollary 2.3: If the S in the Theorem is also a cone, then we may take the

{g:;} to be homogeneous.

Proof of 2.3 from 2.1: We may agsume that S does not contain the origin, for

‘otherwise by openness, § = R™ = U{1}. Thus

s=rt. |J $nz{xi—- (=Y
1<k<n
. i=0,1 _ _ |
Identifying Z{X — (—1)"} with Z{X4}, apply 2.1 to each SN Z{X}—(—1)"}
to write it as U;U{gris;}, with {gr;} € KXy o K=, Xit1s o X}
Homogenize the gxi;; by multiplying their monomial terms by suitable powers
of X;. Then R¥-[$ 1 Z{Xs — (—1)}] = U{(—1)"Xs} N U; U {giuis}, so that

S is the union over k and ! of such unions of U’s of homogeneous_polfomials.

Q. E.D.

Proof of 2.1: For R* 2 § s.a., define dim § == max{m € N | § contains a
(s.a.) ‘homeomorphic image of a non-empty open s.a. subset of R if § # 6
define dim @ = —1. (Cf. §§8.9-10 of [Brumfiel 1979] for invariant deﬁnitions.
of dimension.) Let X' = (Xj,...,Xn—1) and ' = (21,...,Zn—1) € R™ 1,
| We shall prove 2.1 with the help of a étratiﬁcation lemma {2.7) whosé proof

Tequires

Lemma 2.4 (The Good Direction Lemma): If T is s.3. and nowhere dense in
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R" (equivalently, dim T < n), then there exists v € S§*—1 (the unit sphere in
R™) such that, writing I1,:T — R™—1 for projection in the v direction into any
subspace complementary to R - v, we have V! € R*™1, II - Y(z') is a discrete

set. In fact, the other v {the “bad” v} form a set of dim < n—1 in sn—i,
Remark: It makes no difference which complementary subspace we use.
Corollary 2.5: dim II,T =dim T for good v. (Q. E.D.)

Proof of 2.4: For a “transcendental” proof, we could observe that the Lemma
is an elemehtary statement which is true for the case R = R, and thus is true

for all real closed R, by Tarski-Seidenberg.

For an elementary algebraic proof, let v, =. (,...,0,1) € §*~1, and
suppose the set of bad directions contains a non-empty (relatively) opén set
U C 81 We shall show that T must then contain a non-empty open set,
contrary to hypothesis. We may assume U N U{Xy} 7 8. If we replace U by
U N U{X,}, then (1) we may identify U with IT,, U (used at the end of the
proof), and (2) simultaneously Vv € U, set §, = {z' € R*Y | I }(z') is not
discrete }. Then the hypothesis of the following Lemma is satisfied:

Lemma 2.6 (“s.a. choice function™): Let U C R™ be s.a. and Vv € U let
§ £ 8, C R™ (some m) be s.a., described by a bounded number of polyno—_-'
‘mials of bounded degrees, in some fixed sequence. Furthermore, assume that

the coefficients (in some ordej') of these polynomials are s.a. functions of v.

2 (see, 'e.g. [Hironaka 1975a] for a proof; in fact, when R =R, the Lemma i.é true even

for T semi-analytic)
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Then we may construct a s.a. “choice function” ¢:U — R™ such that Vv € U,

c(v) € S,.

Proof of 2.6: Induction on m. For m = 1, write §, = {J;I; where {I;} =
the connected components (which depend on v) of Sy, i.e. disjoint intervals in
R}, possibly infinite, open, or closed, some just points. Let I be the left-most
interval. Then we may define ¢ by | '
0ifI=R!

¢ —1if I = (—o00,a]
| a--1if I = a, 00)
midpoint of I if I bounded or a point

e(v) =

(c is s.a. by Tarski-Seidenberg).

Form > 1,let II';: 8, — R! be projection onto the first coordinate. By
the inductive hypothé;is, we define ¢5: U — R! such that ¢;{v) € im I}, and
¢z Eua R™—1 guch that the map ¢: U — R™ given by c(g) == (c;(u), Cg(!}))
has the required propérties. This proves 2.6. Q. E. D.

Reﬁurning to the proof of 2.4, é.p‘pl'y 2.6. For all v € U write IT; Y (c(v)) =
{e(v)-ftv|tEI(v)}, therebj defining I{v) C R. Let {I{(v)} be the connecied
components of I(v), i.e. points or intervals. Let Iy(v) be the left.-mbst of those
intervals which are not points (I3(v) exists by hypothesis). Let es(v) < e2(v)
be the endpoints (possibly J-00) of I3(v).

Shrinking U if necessary, we may assume, since ¢ is s.a., that ¢ isa cér_tain

real root of a fixed Y-irreducible polynomial f € K[X'][Y], i.e. f(:z:', e(z") =
0 VeleU '(identifying U with I1, U). Shrinking U again, e; and ez are either
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constantly :[:oo, or are also roots of such polynomials. By the implicit func-
tion theorem (proved algebraically in 8.7.2 of [Brumfiel 1979]), c is C 1 off the
discriminant locus I7,,Z{f,87/8Y} = Z{resultant of f,87/8Y} C R of
f. Similarly e; and ey are C? on a dense open subset. Therefore shrinking
U one more time, we construct an open interval I # 0 such that Vv € U,
I Q Ii{v). We therefore have a Clmap p: U x I — T defined by p(z',t) =
o(z') +t - (2',1) = {es(a!) + t21,. .., Cn-1(2') -+ tzn;l,t). The derivative of p

is -

ey, feq L 7
Bz +t gz '  OZp—1 Z1
e fden Gz
dzs dzg + ... dap— 2
dp =
fen—y1 OBtn—i denemi
55; RN T e AT EF
L 0. 0 0 1 4

For any fixed ¢’ € U, |dp(z, | = |dezr + tIn~1] (here Jn—y = the (n—1) X
{n—1) .identity matix), and for all but a discrete set of ¢, this determinant is
# 0. Therefore, except at those ¢, p is locally onto (i.e. im p, hence 7', contains
a non-empty open set), by the inverse function theorem (proved algebraically

in §8.13 III of [Brumfiel 1979]). This completes the algebraic proof of 2.4. Q.
E.D. |

We now continue the proof of 2.1 by introducing a “topographic stratiﬁcation”

(2 7) of s.a. sets; to state it, we need the following notatlon For 0 < m < n,
write X' = (X3, .y Xm) & = (21,..-,2m) € B™, and let [Ip: T — R™ be
~ projection onto the first m coordinates, i.e. z +~+ z!. U == Li;T; will mean tha.t

U= (J; T: and that the T; are disjoint 5.3. sets.
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Lemma 2.7 (Topographic Stratification): Let 0 < dim T' < m < n and let
Iy, T — R™ be projection onto the first m coordinates. Then we may choose '
the last n — m coordinates so that |

(@) dim I,,T=dim T,
() 1,T= LTy, some T; such that | i
A; there exists J; C N*~™ such that for j € J; and m < k < n,

(¢) | thereis a s.a. function c;j: Ty = R with, Va' = (21,...,2m) € Ty, |.
Hgl(z‘) = {(I"l ci:jrm‘{‘"l(z,)’ M c‘jn(z')) I j E J"}‘

Remark: It will be evident from the proof of 2.7 that we may further arrange -
that if 7 = (Gmt1,---0n) 304 J' = (Fmt1,.. 4 J0 Fia1r - dn) € Ji, and
Jir1 < Jiyq then throughout Ty 55,041 < €454 and for & < I, ci58 =
eijt. Thus the graphs of the s.a. functions (¢5,j,m+1,- -+ Cign)t  Ts = R ™
(for all 4, and Vj € Ji) form a partition of T. Since all s.a. functions are
piecewise real algebraic analytic, we could therefore also arrange for each -
stratum to be a real algebraic analytic manifold of some dimension < dim 7.
The term “bopographic” was proposed by Andreotti {cf. [Lojasiewicz 19'64].,
footnote 11) to describe a similar situation. Henkin [1960] stated 2 slightly
weaker form of this fesult; he g#_ve no proof, butb indicated how a model
theoretic proof could be giveﬁ. This stratification is also similar to Collin®s’

[1974] cylindrical algebraic decomposition.

Proof of 2.7: We use “reverse induction” on m. The statement is vacuous for
m = n, so assume it has been established for some m > dim T; we establish
it for m — 1. Using 2.4 with m in placé of n, pick a good direction v € R™

(with non-zero m'® coordinate) for II;,,T' (possible, since m >dim T = dim
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11,,T), and adjust the X,,-axis so as to be parallel to v. Let 7% T; » R™™}
be projection onto.'the first m — 1 coordinates (where the T are given by the
inductive hypothesis). Using Tarski-Seidenberg, write II\T; = ;T such that
there exist lpa € N and s.a. functions 'c"ﬁk: Ta— R (1 <k < Pil) such
that Ve = (z4,...,2m—1) € Ty, c"-il(:n") < e < ey (2"), and 1T} HaM =
{(z", el (=) | 1 < k < pu}. Write [T = Li,T", in such a way that
each Ty is a union of some of the T,; set I, = {(i,)) € N | T, C Tu}. By
the inductive hypothesis, ¥z € T,
o1 (2") = {(=", i), Cs',.i.m—f-l(x", c:-;k(x")), o Cign(”, ci(z")))
|G NeL1L<kLpa,jEJi}

But this is just the statement of 2.7 for m — 1, after a change of notation.
Q.E.D.

With this stratlﬁcatxon procedure we can now prove the main mductwe

() .

step (2.8) in the proof of 2.1; in fact, taking T = § in 2.8, 2.1, follows im-
mediately.
Lemma 2.8: If T C S C R™ are s.a. and § isopen, then T C J,U{9:;} C S,
for some {9:j} C K|X], computable from the presentations of T and S (if K
is computable). :
Proof of 2.8: Induction on m = dim T. For m = —1, just take {g;;} == {0}.
For m > 0, assume 2.8 has been proved for subsets of S of dim < m; we prove

it for T. Apply 2.7 to this T and m. Set 6(z) = max{6 | Al_;lys — =z <
§ — y €8} (5(z) < oo unless § = R"). We have T C U, V; C 8, where V;
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is
{z]z' €TiA V /\ |2k — ciile)] < 8(2, ¢4 5,m1{2), o csin(z') }-
Jjelim<kgn '

- (This uses the fact that § > 0 throughout 5, which is the only consequence of
the openness of § that we uge.) It would suffice to enclose each V; in a union
of U’s containéd in §. Howe#er,.we' do not quite _a.chieve this; instead, we shall
enclose in a union of U’s in S, all but a subset of dim < m of II;}(T3); by

the inductive hyp.othesis, this will prove 2.8.

We need a definition and one more lemma, in which we analyze a parame-
trized version of 2.1, for the case n = 1. The formulation is simplified if we

agree that 1-co = 00, {—1) - 00 = —00, 6 - 00 = 00, and @ — 00 = —00.

Definition: For A C R" s.a., we shall call a function ¢: A = R U {£00} s.a.
of degree < d if A = Li;A;, for some A; such that A, either

(1) Vz € Ai,c(z) = o0, or Yz € A, c(z) = —00, or
| Jk € N and 3P; € K[X,Y] of Y-degree < d, such that Vz € A;,
(2) P{z,Y) = 0 has a finite and constant number f

of real roots ¢;(z) < -+ < ¢i5(z), and ¢(z) = cix(Z).

Lemma 2.9: If ¢: A = RU {-}-00} is s.a. of degree < d, and C={{(z,y)|z€
AAy > c(z)}, then we may construct {g:zz} C K[X,Y] and A; such that
A= LIiA; and C = (4 X R)nU; U{gise}l-

Proof of 2.9: Induction-on d. For d = 0, take, fori=10,1, A;== e~ H{(—1)F-
00) and g;11(X,Y) = (—1)*+1. For d > 0, assume that 2.9 has been proved

for s.a. functions of deg < d —1, and that ¢ is s.a. of deg < d, presented as
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~ in the Definition. We shall prove it for ¢. A, for 0 <e<d andfor j=0,1,

set
( either e = 0 A ¢(z) = {—1)7 - 00, )
| L get1
Apj = lze A, |or e = smallest integer s.. Sy (z,¢(z)) #0,
) 6c+1p
—1)7. ,
\ and {—1) SV e *(z,¢(z)) > 0 ,

. Define b: A — R U {400} by cases: for i such that c(A)) = 00, let d(z) =
¢(z) Ve € Ay; for the other ¢, define b(z) throughout each A;e; to be the

~ largest root < ¢{z) of #¢T1P;/8Y Tz, Y ) if this exists, and —co otherwise.
Set

B:( U A,me)

C(fgo—-:

U C(A.L)JCR [(A,erR)nU{( 1)33}”}}0{(5 v) [zEA/\y> b(z)}|.
al]eg .;

Define a: A = R U {J-c0} by cases: for ¢ such that ¢(A;) = J-c0, let a(z) =
¢(z) Vz € Ay for the other ¢, define a(z) throughout each A;; to be the
smallest root > ¢(z) of 9¢T!P;/8Y ¢t (z,Y) if this exists, and co otherwise.
By calculus, we have C = BU{(z,y) |z € AAy > a{z)}. By the inductive
hypothesis, C can be written in the required form. This proves 2.9. Q. E. D.

Returning to the proof of 2.8, write V; as a finite union of finite intersec-

- tions of sets of the form

{z]z'eT; A (—1)'zi > (—1eijule) — 8(2', ¢t jymt1(2"), - o cinl2)) }
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| (form < k < n,j € J;and!=0,1). 2.9 applies to each of these sets
(taking A = T, etc.) to give {girus} C K[X] and Ty = U, Ty such that
1@= U,[(T.-, X RN, U{g,-,u.,.}}' (in fact, A; no more than one of the
variables Xm-t1, . . ., Xn will occur in any of the Jiruv). Each Ty, being s.a., can
' be written as UZ{firs:e} D U{f’,-,st}), some { first, fhrstt © K[X ]. Therefore
Vi = U, o Vire, whete Vire = [(Z{firet} NU{lpss}) X RPN U; U girun}.
| For those r, s such that At first = 0, Viy, is evidently a union of U’s. For the
other r,s, dim T Z{firet} N U{flyet}) = dim (B{first} N U{Flree}) < m.
This, as remarked before the Definition, completes the proof of 2.8 aﬁd hence,

as remarked before 2.8, completes the proof of 2.1. Q. E. D.

We now can give a quick proof and refinement of Daykin’s result (1.3.1),

as promised in Chapler I (we use thé notation established there, e.g. X =

(Xo, .-y Xn))-

. z '
Proposition 2.10: There exist {g;s} C Q[C], and {hsss} C Q[C; X ], and 8; €

N (k = 1,2) such that ,
| | oy 3 5 9:0(C)h1is(C; X)?
(1) /‘\ (6 X) = J(C; X)25 4 3 £ 50(Ch2ig(C; X )2

(2) Ve€Pu  \ A 20
i

and

Proof: By the Finiteness Theorem, wé can write Pyq = J;W;, where W; =
W{g:;} C R("td), for some {g;;} C %[C]. For each ¢ we apply the Positivstel-
lensatz (1.4.1) to f, which is nonnegative on W; C ("3 tnt1 (we now are
viewing {gi;} as being in the larger ring %{C;X ]). 2.10 follows immediately,
taking the g;s to be products of the gyj, as usual. Q. E.D. |
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TUE CONTINUOUS, CONSTRUCTIVE SOLUTION

In this chapler we prove our main theo.r.em (3.1). In this chapter and the
next, sz(Xo,...,Xn) and z = {zg,...,2p). o
Theorem 3.1t There are s € N and conbinuous Q-5.8. functions GijiPprg — R™
such that Ve € Ppy, | | |
| 5 h(ase x)
| f(c;X)2“+E-fz.(agj(c);X)z.
Here :ﬁ,- = ( + °‘) (where t = 1,2, gy = ds + % and £y = ds) and f; is the

He; X) =

(3.1.1)

general form of degree ¢; in X; the (mtegra) coellicients of the po]ynomials
‘giving the Q-s.a. description of the graphs of the a;; are computable from n
and d. | | | _

As explained in Chapler], (3.1.1) easlly leads to a representation of f{c; X) |
as a (SOS) of functions which are continuous simultaneously in ¢ and z, and
homogeneous and rational in X, with coeflicients which are continuous in ¢,
- Therefore this solution is constructive over It, as explained before.

B_efore provin‘g 3.1, we. must first prove the foilowing theorem, which is in-
spired by Lwo resulls of Stengle, namely, his s.a. Nullstellensatz [1974] and his
- proof of his integral homogenecous represenﬁatiou [1979). Let Y = (Yy,...,Ym)
be indelerminates, leb I be an ideal in K|X,Y), homogeneous in X,! and
call a relalion of the form f-}- ¢ -+ ¢ I, in which all summands are X-

homogencous of the same X-degree, an AX-lomogeneous inclusion.

1 Here we mean that for all J €1,all X-homogeneous components of J arein 1,

- 39
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Theorem 3.2 (A Homogeoneous S.A. Nullstellensatz): Let {g;} C K Y], and
let g; be products of the g;. For f € K[X,Y] of X-degree d, if flz,y) =
0 Y(z,y)€ Z{I} n W{g;}, then [ satisfies an X -homogeneous inclusion

XY+ Y as(X, Y PasY) €1, - (321)
J . :
for some s € N and a5 € K[X,Y].

Remark: There are surely stronger homogeneous versions of the s.a. Nullstellen-

salz.

Prbof: Let H be the set of elements f of K|X,Y) satisfying an X-homogeneous

inclusion (3.2.1). First we show

(H)If f€H, and.h € K[X,Y] is X-homogeneous, then fh € H;

(2) If f,h € H have the same X-degree, then f -+ & € H; and

(3) If A2 f .—i— Y a%gs€Tisan X-homogeneous inclusion, and if f € H,
then h € H.

To verify (1), note that its hypotheses u.nply that (fh)%* + Y (ash®)?gs €
I is a homogeneous inclusion, so that the conclusion of (1) helds. To verify
(2), write the two given X-homogeneous inclusions as 2+ a%gs €1 and

h% - 5 b2g; € I. Since for r = max(s, t),
R — WP = R = 1Y e K Y B
san-~homogeneous-inelusion; we have an X-homogeneous inclusion
[(F +m2+(f — h}2 S I I DN DI T,
= (72 4+ Y das) o ad + (w + X v30s) oAt €
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upon éxpanding out the bins;nial on the left, we see that f+ A& € H.2 To verify
(3), first observe (by. factoring) that (h25 43 a%gs)27— f29 € I. By hypothesis
we have an X-homogeneous inclusion f29 4 Y b%2g, € I, which now yields
the X-homogeneous inclusion (h2° 4+ Y @22 — f2 4 (f29 4+ 2 b390) €1,
which shows h € H..

We now assume the. hypotheses of 3.2 and use our three properties of H to
derive from the {possibly inhomogenéous) inclusion f2¢43 a%¢s € I given by
Stengle’s s.a. Nullstellensatz [1974] the existence of a similar X-homogeneous
inclusion. If thé lowest degree terms in this inclusion are of X-degree 2sd then
the necessary inclusion of all X -homogeﬁeous terms of this X-degree in the
X-homogeneous ideal I gives the desired relation (heré we use gy € K[Y]). If
lower X -degree terms are present, then the X-homogeneous part of each as of
lowest X-degree p, call it {as)p, must satisfy the inclusion Z(a;)gg; €l. By
definition of H, for each J we conclude (a5)p9s € H by multiplying this inclu-
sion by g (using (1)). Forp <k < sd supﬁose, as induction hypothesis, that
the homogeﬁeous parts (as)pds, -~ - (87)k—19s belong to H 3 Then extraction

of terms of X-degree 2k gives the X-homogeneous inclusion:

Y (@n)ies+ Z ] Z ek —1 € 1.

J >0

By the hypotheses and (1) and (2), this has the form E(a;) gs+hel (heE

2 Stengle ra.lsed this binomisa! to the power 2r -} 1.0n p. 34 of [1979], it appears that thxs
is unnecessarily hlgh and that 2r will de. : :

3 It is from this point on that our proof of 3 2, in multxplymg by g7, is a little subtier
than Btengle’s. :
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H). Hence, multiplying by gs and using (3), we see that each (as)kgs € H.
Also the same argument applied to the terms of X-degree 2sd shows that first
the (as)sqgys (all J) and then f belong to H. This is 3.2. Q. E. D.

Proof of 3.1: The proof is a kind of partition of unity argument to glue
-together (by averaging) locally smooth representations given by the Positiv-
stellensatz (1.4.1). Use Coroliéry 9.3 of the Finiteness Theorem to write Ppg=
U,-e 1 Wi, where W; == W{G,}, with each G; a set of hbmogeneous polynomials
in Z [C].* Construct s.a. retractions ry;: U; — Wi, where U; is a s.a. (regular)
felaﬁvely open neighborhood of Wy in Ppg; this is done by (1) applying to W;
Hironaka’s [1975a) Triangulation Theorem: given a bounded s.a. set S C R%, |
there exists a simplicial decoﬁlposition R"™ = |J,4, and 2 s.a. homeomor-
phism & of R™ with itself such that S is a finite union of some of the h(A,);® (2)
using the fact that any .subcomplex_ is a s.a. (in fact, piecewise-linear) neigh-
borhood retract, and (3) transporting via h this piecewise-linear retraction to
the desired retraction onto W;. These rétractidns, with the help of the follow-

ing “cut-off” functions, will help us cross smoot.hly (in the non~technicél sense)

over the junction points between different W;.

4 As noted in Chapter I, Daykln s [1960] representation (1.3.1) also leads to this w-
representation : _

#  Hironaka states his theorem for bounded S, while our W; are unbounded. There are
‘several ways to overcome this. Hironaka remarks (1.10 in [1975a]} that we have a real al-
gebraic embedding of R™ into some RV (via RPY C RV) which maps every s.a. set in R”

to a bounded s.a. set in RN, Alternatively, one could triangulate the intersection of the
n4+d
cones W, with the un_;t sphere in R\ " / and proceed in a natural way, choosmg G; to be

homogeneous as in (2.3).
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For all non-emﬁty subsets I’ of the indei set [ of 1, define a cut-off function

dri: Pag = R by dp{c) = dist(e, Pag— Vi), where Vi = (U Wi) N Niepr Us;
note that this is well-defined, i.e. we do not have dist(c, ), except in the trivial
case where [N,y Uy = Ppg.® Clearly, d7*((0, c0)) = rel int Vir. While rel int
Vi may be empty for some I', nevertheless D(¢) = Epgj—dp(ﬂ)z >0 Vee
P, since Ve 3I' such that ¢ € rel int Vpr (namely, set I' = {i€]c€ W;i}).
~As mentioned in the proof of 2.2, distance is s.a. and continuous ine. '
Assign degree % to a new indeterminate I' and regard 7?4 f(C;X) and '_

G, as being in (the graded ring) Z|C; X, T}. By the definition of W,

A 213 2 2T + g0y 0w € ROV - (3.12)

Apply the homogeneous s.a. Nullsteilensatz (3.2) to (3.1.2), with Y of 3.2 re-
placed by C of (3.1.2), with X of 3.2 replaced by (X, T) of (3.1.2), and with {g;}
of 3.2 replaced by Gy of {3.1.2). Then A, T satisfies an (X, T)-homogeneous

inciusion
T3 3 A(C X, TP (€)= BAG X, T + /(G X)), (3.13)

for some s; € N, and Aiy, B¢€ Q[C; X, T]. In other words, there are continuous
functions b; ;. Wi — R™ and byt Wy — R™3¢ such that

T YRGB X, T) = ROOX, TIT?+ £(C X)), (3.1.4)
. g

8  This pathology can easily be avelded by choosing any U; a lttle smaiier, valess nier' Wi

= FPpg, which is then the easiest possible case: then each plece Wi = P, 4, so that we shall
have, by 2.10 without the index § (i.e. with [I] = 1), a continuous, pelynomlially varying
representation. Alternativelf. we shall see In Theorem 3.3 that Pog = Wi lmpilles d < 2, in
which case we can get an even better representation (Theorem 4.1) as a continuous 808 of
linear forms. '
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here my; = (““}::"1‘“) (where I = 1,2, e5; = ds,/2, and ez; = da; — d¥), and
Fy; € B[Ci; X, T is the general form of degree ¢ in (X, T) with coefficients
Cis; ie. FilCii; X, T) = Tiasan s )lmer Cliaans )X “TmF2.

So far we have for each ¥ an identity valid only for ¢ in W;. Replacing
each occurrence of ¢ with ry(c), the identity is now defined throughout U;. For

fixed non-empty I' C T, take the product over ¢ € I' of each side:

]I T2”‘+ZF1, i(ri0); X, 1)
= [ {Fa{b{r c)) X, 1)+ £(rile) X))

i€l

This identity is valid for ¢ € [Vigp Ui it becomes valid throughout Ppg4 after
‘we multlply each side (i.e. the coeficients of each monomial in (X T) of the
expansion of each side) by dp{c)?, since dp vamshes outside (J;epr Us. We shall
make a convex combination of these identities, but for this they must all have
the same degree (in (X, T)); in fact, we can make them all homogeneous of
(X, T)-degree ds = d}:ias; by multiplying each identity by an even powe'r
of T, say T2%r, Now sum over I' and divide by D{c) > C:

YRy Z T2 c)2H.Tz“+-2Fu(bu(h{f))5XsT)2
J

D( ©) gArcr ier
S g T ) 6T X))
) g irc i€r

This simpliﬁés fo
T+ Z FL {0, (e X, T)

E dp{e)?Fl (05 X, T H(T2+ 7(rde); X)),

G;éI'CI er
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for some new continuous, s.a,-_ functions by,: Pag — R™ and by Png —
| Rm;-il'i, where m| = (“ifﬂ’!‘) and my 1 = (”+L':_°;’l“") (here e, = ds/2,
and €} |y = ds — d|I'|) and F [resp. Fy ;4] is the general form of degree el
[resp. €5 17} in (X, T).

We now carry out step by step Stengle’s proof of his Positivstellensatz.
Separate the éven from ‘the odd powers of T as follows:

T* -+ }: [FL(07aleh X,  T2) 4 TF(83,(e); X, T%))°

Zd}! [ 2,1 211( ) X T2)+TF2 11:( ;f;(C);X,Tz)}
72+ s{ride X)),
icr’ '

" some new continuous by, b, b5y, 055, Expand, extract the even part of T,

and replace T2 by a new indeterminate U (assigned degree d):

Ut [Fa(bik(c); X,U)° + UFy(b3,(c)i X, U)z}
k

S Z dr(Q)*Fh, (0520 X, U) TT [U A+ £(rifed; X))
. el .
‘We may assume s is odd, since multiplying both sides by U, if necessary, gives

us an equation of the same form. Let us accordingly replace s by 25 + 1,
Replacing U bjr —f(¢; X) causes each summand of the right hand side to
vanish identically in (¢, X, U); indeed, given ¢, for each I with dy{c) > 0, there
exists ¢ € I' with ¢ € W; (by definition of dys), so that ryc) = ¢ (since ryis a
retraction onto W;) and bence the fachor corresponding to i vanishes. So we

have

—fes X2 — chF' el X, —1(6 X))

+ZF' 5X, =16 X)) =
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which is easily converted into (3.1.1). QE.D.
| | . We now review the above proof to see how it might be strengthened to
prove Conjecture 1.?2', that the coefficients of the r'epresentafion (including the
- weights) can in addition be chosen as @-p.r. functions of the given coefficients.
First, the statement of Theorem 3:2 needs no change, and neither does
the finiteness theorem.. The first (ahd we‘ shall see, the only) problematic step
is the construction of the Q-s.a. retraction ry: U;N Q(nid) — W,-ﬂQ(ﬂt‘). Can
a Q-pr. retraction be found? Or at least can W; be covered with finitely many
| closed ﬁeighborhoods V; for which Q-p.r. retractions can be constructed? (for
- in the latter case we could average as we have already done, and still succeed.)
This question is fricky: While any closed s.a. setis a 5.a. neighborhood retract
(via the triaﬁgula’cion homeomorphism A, which surely cannot be made p.r.),
it need not be a Q-p.r. retract if it has “degenerate” or “thin” points with
ir_rationé.l coordinates. One possibility is that the set could be empty over Q;
then we do not need tq construct a retraction anyway. If the set is not empty
over Q, we shoﬁld make thé.retr-act.ion p.r., or at least be careful to make it
take rationallpoints té rational points. There is hope here in the case that the
set has dense interior: for example, for W{2—X?}NQ! = [—v2,V2]nQ' C
Q?, we have the Q-p.r. (in fact, piecewise-polynomial) retraction r: (._.\/fj —
€, V2 +€)N Q' = [—v2,v2]N Q}, some € > 0, given by

z—(2—1%) forz€(—v2—¢—v2)NQY,

r(g;) ={rz . forz € (—\/5,\/5)0(21: and
| z4(2—2%) forze(vVZ,vV2+enQl.
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{This is the first retraction we have seen which had to “push in” to the in-
terior of the retract and not sim;ﬁly stop at its boundary.) Of course, this
method easily extends to cover all closed sets in Q', but higher dimensions
seem diﬁcul_tﬁ In our case we may restrict our attention to closed s.a. sets with

dense interior, since P4 has dense interior (footnote 5 of Chapter I).

Continuing our review of the proof of 3.1, we come next to the (continuous)
cut-off functions dy: Ppq — R"‘, which had to be positive on the relative inte-
rior of Vjr and zero elsewhere. The distance function is not p.r., but there is a |
more c'omplicated way to define a suitable dy which is p.r.: first use Coroliary
2.2 to construct { fis} € Z|C] such that rel. int. Vi = Pna N, Us, where
U; = U{fi;}; then let

dp(ey= Y I #isle)s
_ e€Us J
where the summation is over those ¢ € I’ such that ¢ € U;. dp is continu.ous,
since even when ¢ passes through 0U;, the summand corresponding to ¢ is zero.
The other properties are likewise obvious. By the way, the Finiteness Theorem

plays a more or less indispensible réle here, in eontrast to its usual role.

The only remaining source of irrationality in the proof is the transition
from (3.1.3) to (3.1.4); but this was a non-essential simplification in the situa-
tion where we were allowed to take square roots of nonnegative constants. So
in the ordered field version we would keep the weights visible. The rest of the

proof is just formal algebraic manipulation, and hence no problem.

We conclude this chapter by proving (3.4) that Conjecture 1.4 becomes
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false if the word “piecewise” is dropped (except when d < 2). We do this by

first giviilg a finer analysis of P,4 than that given by the Finiteness Theorem:
Theorem 3.3: P, 4 is a single W if and only if d < 2.

Proof For the “if” direction, we assume d = 2 and use induction on n.
For n .__@ P = W{A, C, 4AC — B?} (writing f(4,B,C;X,Y) = AX®+
BXY + C’Y2) To prove Py is a smg]e W for n > ,Z We may suppose, induc-
tively, that the condition for a quadratic form in X, .. yXp—1 tobe psdisa

conjuction of non-strict inequalities in C. Write
F(Xoy -0 Xn) = falXoy . s Xn—1) + [i(Xoy - Xn—1)Xn + foX2,

where deg f; = i (i = 0,1,2). Then / is psd if and only if fz, fo, and

4fof2 — [? are all.psd'in Xo,.., Xn—y; this is just a conjunction of three |
'conju}tions, since these three forms are quadratic (excépt the constant form
fo; for which the psd property is an “improper” conjunction, namely, with_

only one cdnjunct).

For the “only if” part we use reductio ad absurdum: If Ppg = W{g:{(C)},
then ]@i = W{g{C',0)} (i.e., we set some of the C equal 0); which gives
W{g{B,C,0)} = {(B,C) € R?| X*+ BX?Y?+ CY*is psd } =

{(B,C) |V > 0,¥y > 0, 22 + Bay + Cy > 0}
— {(B,C) | B*—4C < 0v-B+VB2—4C <0}

= W{4C — B3} U W{#B, C}. But now we see that this set (striped in the

figure below) cannot be written as a single W{g;}, since one of the g; would
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“have to be divisible by (precisely) an odd power of B?—4C, which would make
it change sign across even the dotted part of the parabola. Q. E.D.

Corollary 3.4: For d < 2, Conjecture 1.4 is true even if we drop the word
“piecewise.” For d > 2, not only must we keep the word “piecewise,” but also
‘there do not exist e € N,p; € K|C], and functions (even discontinuous and

non-s.a.) Gij: . Fu4 — R™i such that V_C € R4

el
(1) f("}f) o ;pj(c)[fz(azg'(c);X)} ’
(2) ..... e /\ [pj(c) __>_ 0 and, (”, . # 0) 023‘(3) # 0¢ ng],

even if we also allow the rabional functions to be discontinuous in X. Here, .

m; = (”'f;“) (where t = 1,2 and e; = § -+ ¢5) and f; is the general form of
| degree ¢; in X, | | |

Proof: For d == 2 we just combine 3.3 and the proof of 2.10, with a single W5,

s0 that we may drop the 1.
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For d > 2, we note that if 3.4 were false, then we could conclude that

Pou = W{p;} (C by (2) and D by (1)), contradicting 3.3. Q. E. D.




CHAPTER IV:
CONTINUOUS SUMS OF SQUARES OF FORMS

Having analyzed continuity properties of SOS of rational functiomns, it is
natural to focus next on those psd forms which are even SOS of forms, namely, |
(A) the quadratic, (B) the gmaternary quartic, and (C) the bi'ﬁary psd forms
(cf. p. 3), and see whether we can arrange for the continuous variation of their
'.simplel" representatioﬁs; Before giving details, we state the answers, roughly:
(A) Yes, (B) No (even for real closed fields), and (C) Probably, at least for real
closed fields. |

A. Quadratic Forms
Let ) C;;XiX; be the general quadratic form in Xop,...,Xn and write

C = {Cij)ogigj<n. Set

N(n)=(n-+ 1)!?;0 %1_1

Theorem 4.1: For fixed n and for0 <1< n,1 < k < N(n), we can construct
px, k1 € Q(C) such that
N(n) r 2 o
SCuXX; =) pk(C)(Z aH(C)X;) and, (411)
ke=1 =0

throughout Pz X R"11,

N(n) - 2 | | |

/\ [pg(c) > 0, and pk(‘)(z: a;,z(c)a:;) is continuous in (c, z)]. (4.1.2)
i |

k=1

51




- 52

Before going throughr' the proof, it is instructive to consider the simplest

case, n == 1. The usual representation of aX2+bXY -+cY? fora > 0,¢ > 0,
‘and 4ac — b2 > 0, obtained by “completing the square,”

2 9 5 . . o

a(X + iy) + (c — b—_)}’z, or (a — f—)xz 4+ c(Y + 935)
2a 4a 4c 2c /.

is not continuous near (0,0, ¢} (¢ > 0) [resp., (3,0,0)a > 0], since the coefficient

b2/(4a) [resp b2/(4¢)] can vary between 0 and ¢ {resp., ¢]. But suitable convex

combinations (by ¢/(a+¢) and ¢/(a+c)) ensure continuity (and the argument

extends to any number of variables (see below)):

2aX +b5Y]* | 4ac _bzxz |

4
Mt o) } MR
+4ac—b

2
T e

aX?4- XY + (_:YI2 =(a+ (:)[
bX—|-2ch
2(a +¢)

For continuity (¢ > 0,¢ > 0,4ac > b%) at (0,0,0), note, for example, that
4ac — b2 < 4ac and ¢ < @+ ¢, hence @‘E——— < ¢. On the ot.her hand,

(2eX + b)/ (@ -} ¢) alone is not contlnuous there.
Proof of 4.1: Induction on n. For n = 0, take p; = Cpo and ajp = 1.

For n > 0 we make use of the representation constructed for Po_1,2 to

construct the representatlon for P,,, as follows. We have, for each ¢ € r("s " ) :

/\ 3 e XXy = euX3+2X0 Y eaX+ (X},

{=0 it

where X} = (Xo,...,XE;,...,X,,_), and where q(X?%) = Z‘#%J ¢i; XiX;. We

‘&‘;\J_
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also have (¢ij) € Paz iff, for 0 < 1 < m,

‘e > 0 and both qi(X") and di(X)) = euq(X (Z c,;X‘)z are psd in X,
. (4.1.3)

Writing tr ¢ == ) ¢4, {4.1.3) implies that if ¢ varies within Ppg, then tr ¢ — 0

forces ¢ — 0. For those ! such that ¢ 7 0, we may complete the _squafe with

respect to X

Turcae)’ | 4

Y e XX =l X1+
i ' Ci

We now form the convex combination

Y XX = L [(Zc,;X,) + diX! )]. (4.1.4)
=0

tr ¢ ¢ b

Since in Pya,

. \ ,
[¢ijCiml < S o MG g
—_— L — K — it
ire ir e Cii + €55

as trc— 0, we conclude that d;(X)/tr ¢ varies continuously within Prn—1,2

as ¢ varies in Ppp. By the construction for Pp—1,2, We have d; represented as

a continuous sum of

squares of linear forms in X‘z multipligd by positive constants. Therefore (4.1.4)

becomes (4.1.1), and N(n) = (n -+ 1){1 -+ N(n)], as required. Q. E.D.
(n-1)

1 Use (4.1.3) to see ¢7 < €isCije

lj-'
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As noted in Chapter I, the classical SOS representation {1.1.1) given by the
usual diagonalization has discontinuous and only piecewise-rational coeflicients;

however, in 4.1 we were forced to increase the number of summands from n to

slightly less than (n - 1)!e.

B. @uaternary Quartic Forms

We dehomogenize, and prove a “strongest possible” negative answer to

the continuity question for the case of gmaternary quartics.

Proposition 4.2: Let f(C;X,Y) = Li1<aCiiX'Y? € Z[C;X,Y] be the
general quartic polynomial in 2 variables, X and Y, with coeficients C; let
flChX,Y) = E‘.ljzocin‘Yj € Z[[C"; X, Y]] be the general formal power
series in X and Y, with coefficients C!. Then there do not exist functions

ai: B34 — RY such that for all ¢ € Pyy

(1) 1(X,Y) =¥, M(ax(c)X,Y)" and
(2) for each (i, J) € {{1,0),(2,0),(0, 2)},. the ¢ j-component

(ak)i;: P3s — R of ay is continuous.

Proof: We show that one of the (ax)i;’s ((¢,7) € {(1,0),(2,0),(6,2)}) must
have a jump discontinuity at f(¢;X,Y) = (X2 -+Y?)2. We shall approach ¢
along two pé.ths a and § in Byy. Define a: R — Fyq by fa); X,Y)=(X%+
Y2 - tX)? and B by f(B(1); X,Y) = X¥X + t)* + 2X?Y? 4 Y* Equating
coefficients in (1), .we_ see immediately (even without a continuity hypothesis)

that (ak)od(q(t)) =0, hence (ax)o1{7(t)) = 0 and Ek(ak)m(q(t))z — ¢ (where
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we have let 7 stand for either a or §). Therefore, first, 3=, {(ax) 1o{a(®))(ax)20{a(t})
== ¢, whence the CBS-inequality implies I\ € R st.

V& (a};)zo(a(t)) =\ (ak)1o(a(t)). | ' (4.2.1). '
Second, Zk(a;_,)lo(a(t})(ag)og(a(t)) = t, whence by the CBS-inequality again;
V() = Gou(e),  (422)

some € R (4.2.1) and (4.2.2) together say that the vector (a)zo(a(0))
is a constant multiple of (a)gg(d(O)) (hére we need continuity of the (a)i;,
since (a)io(7t) — 0); but Ek(ﬁk )10(B(8))(ax)20(B(t)) = t implies (by CBS) -
that (a)10{B8(t)) is a multiple of (a)20(8(t)), and X, (ax)10{A(2) N(ax)o2(B(2)) =
0 implies that (a)10{8(t)) is not a multiple of ( a)o2(B(t)) (t # 0), so that
(2)20(8(0)) is not a multiple of (a)o2(8(0)); thus a jump discontinuity has oc-

curred. Q. E. D.

C. Binary Forms

Conjecture 4.3: Let f(C;X,Y) = 32¢_o CiX 'Y~ be the general binary form
of degree d, and similarly let f' be the general binary form of degree ¢ = d /2.
Then there exist_ continuous Q-s.a. functions a;: Pog — Ri+d/2 fi=1, 2) such

that Ve € FPag,

flg X, Y Floa(e); X, Y + flaae); X, Y)°.

4.3 would be o'bvio.us if the d roots of f(c; X,Y) in the “complex” projec-

tive line R[i]P were not merely locally but also globally continuous functions of
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¢, for then, factorization over R would yield in the usual way a representation
of fasa prbduct of squares and sums of two squares, which can be reduced
to a single sum of 2 squa/res by the 2-square identity. HoWevér,. the roots
of the form X2 — cY?, for exainple, cannot be continuously be defined as ¢
wraps around the origin of the complex plane; moreover, it is not much har-
der to find paths of forms with real coefficients whose roots are not definable.
by globallj‘. continuous functions. We could still prove 4.3 if for every ¢ we
.éould define, in a neigh’bbrhood of ¢, d continuous functions giving the roots of
f(e;: X,Y), for then (ostensibly bj a compactness argument, but also on purely
algébraic grounds) one could sélect a finite subcover of the unit sphere in the |
coefficient-space, and then average the SOS-representations by a partition of

unity method as in 3.1.




CHAPTER V:
BAD POINTS AND OTHER RESULTS

A. Bad Sets |

1. Theory.

Let X = (Xy,...,X.), let J € K[X] (K an ordered field ), let B, =
{808 in K[X]} (= “the weak order” in [Brurﬁﬁel 1979)), and define (R,,:f) =
{R? € K|X] | k¥ € B, }_.7 The set of bad points of f is defined to be
Z(B,:f) € R" ie. the set of common zeros of all possible denominators. |
For indefinite f, (,:f) = {0}, so the bad set of f is R". For any f, there
exists k% € ($,,:f) such that Z(‘,Bw.:f) = Z{h?}, for since the ideal {(B,:/))
is generated by a ﬁnite set of elements of (B,,:f) (Hilbert Basis Theorem), we :

may take k to be their sum.

Part, of the significance of the bad seb of f is that if f = Y r? (ri €
K (X)), then all the r; fail to be regular or smooth (C*) throughout the bad
set, while r,’s can be chosen which are smooth off the bad set. This is because
if g,h € K[X] and (g,h) = 1, then g/h is smooth at the origin iff A(0) 3~ 0.
To see this, suppose A(0) = 0 and ¢/h is smooth at 0. Then over the algebraic
closure R(¢) of R, g and h have a common factor p which vanishes at 0. Since
g (and h) are real, ﬁhey also have the common factor p. But now pP is a non-

- constant common factor over R of ¢ and h, implying that ¢ and & have a non-

constant common factor over K also, contradiction. The converse is obvious,
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that is, A(0) £ 0 impl.ies g/h is smooth at 0.

As noted on p. lﬁf{ Stengle’s Theorem gives Z(B,:f) € Z{f}. The fol-

lowing Proposition gives another constraint on the size of the bad set:
Proposition 5.1: If f is psd, then cod Z(B,:f) > 3.!

Proof: We rule d_ut cod = 0 by Artin’s _Theorem. We rule out cod = 1 by
factoring out all hypersurfaces from the relation 4?7 = 3° g% (hypersurfaces
are real varieties of cod 1; they correspond to principal ideals, thereby making

the factorization possible). Finally, we shall rule out cod = 2 with the help of

the following

Lemma 5.2 [Cassels 1964]: For f € F[Y] (Y an indeterminate, and F a.nj*_
field), if f = Y i~,97 (9: € F(Y)), then there are h; € F[Y] such that f =
E?_‘u_l h? | |

The lemma has been generalized by Pfister [1965) and Gerstein [1973]. We
shall use the special case F' = K(Xj,...,Xn—1), which was proved (except for
control over the number of summands) by Artin [1927]. The main idea of the
proof (an application of the division algorithm) goes back to Landau [1906],
who proved it for the slightly more special case K = R and n = 2 (in 1906

there was little motivation to generalize it).

Now suppose cod Z($,:f) = 2. Use the Good Direction Lemma (2.4)
to adjust the Xn-axis so that dim IIx,(Z(B,:/)) = n — 2 (where IIx, is

1 Cod ==7{n <% — dim, and dim = maximal dimension of a cell which can be embedded

in the set.
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projection along the X;-axis onto a complementary subspace). Use 5.2 to con-
struct from the relation h%f == };¢% a new relation W2f = Y ¢? (with &' €
K[X;,. .'.,X,._i]), from which, we may assume, all bypersurfaces have been
factored out. Since Z{h'} D Z(,:f), since h' does not involve Xy, and since
dim x,(Z(8,:f)) = n—2, dim Z(V) = n— 1, contradiction. This rules out

cod = 2 and completes the proof of 5.1. Q. E. D.

After proving this, I learned that the special case of n» = 2 had already
‘been discovereéd by Choi and Lam [1977a]. In other words, psd polynomials

in two variables never have bad points (by convention, only the empty set has

dim = —1).
2. ‘Examples.

Example 1 (p';- 196 of [Brumfiel 1979}% ): For any n > 2, bad sets of all
codimensi_on's >3 occur.. Proof: For n ==2 there is nothing to show. For n >
3 construct a psd but.inhomogeneous_ f € B[Xy, Xo, X3} with lowest degree
homogeneous component ¢ %, (the last requirement uses n > 3). Z(B,:f) in-
cludes any zero z of f such that the homogeneous component of lowest degree
in the Taylor expansion of f about z is € B,,, since if Rf=(1+h+ -+
R)2(fas + fosgr + - + fat) = fas + ((bigher degree comp.s) = Y- g =
Sis + Giets 4 o+ is4t)% then fzo = 3 gf,. Thus 0 is a bad point

of our f. Therefo'ré, since f does not involve Xy,..., Xy, the cod 3 subspace

2 A special case of this example has also a.ppea.réd in {Choi, Lam, Reanick, and Roserberg
(to appear)] {(Proposition 3.5) and [Bochnak and Efroymson (to appear)] (Counterexample

9.1).
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spanned by the Xy, ..., Xn-axes is also included in the bad set.

Example 2 (Brumflel): Even if the lowest degree component is € B, 0
can still be bad when n > 4: construct psd forms fz; € Z[Xy, .. Xm) and
f2t € L[ X nq1, .- X,.] of degrees 2s and 2t, respect;vely 1<s <t 1<
m < n—3) with fas € B, and fa: € B, (t}:us last uses m < n—3). Then s < ¢
implies the lower order component of fos+ f2: € Z2[X1, .-, X, Xmt-1,- - Xn]
ig in %8, but the origin is still a bad point: (1 -+ A1+ (f2s + for) = 2 g2
" implies (setting Xy = -+ = X, =0 and using 8 > 1 and m 2 1) fas € By,

contradiction.

Example 2 leads to the study of how bad points behave under various |
maps from R" to R™ e.g., the above polynomial fz, 4 j2: becomes f2¢ un-
der the projection map from R"™ to R"™'™; thus here badness of the origin is
i)rese_rved. All this led to a conjecture that for n = 3, if the lowest degree

component is a SOS, then 0 is “good.” However, we discovered the following

counter-

Example 3 f(X,Y,Z) = 2%+ X2 — 3X2Y*Z2 + Y is psd by
the arithmetic-geoinetric <: the arithmetic mean of 28, X®Y?, and Y10 is
1(Z° 4 X®Y2+Y19); the geometric mean of Z“; X872, and Z10is X2Y 422
Although the lowest degree component is a SOS (it.is a perfect square), the

origin is still bad:

WS = (L by o+ - JAZ°+ XOY2 — 3KV 422+ Y10)
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= 75+ 2hy 2% 4 [(h3 + 2h2)2° + X°Y2 — 3X2%v*7?
-}-((higher degree comp.s))
= Z g; = Z [9;3 + 2gt3§’14 + (9;4 + giagis) + - ]

= Z [622° + 24 20+ (0 + 20:2%) +-]

(since g;3 must be ;7% some a; € R) implies (equatlng eighth degréee com-
ponents) | |
Zrm —XGY2 3X2Y4z2 + Z%ks(X,Y, Z)

[ks(X,Y,2) =2 3(h,2—|—2h.2) —2 Y a;gis), which unphes (eliminating terms one
by one—see the figure below) that no gis hasa ¥ 4.term, which unphes that
none has a Y3Z-term or Y°X-term, implying that none has X2Y'2, which
implies that —3 = S(ax)3,,, an impossibility. Here we wrote

o+ F+y=4%
a,f,72>0

004 013 022 [031 ][040
103 112 {121 [{130
902 211 {220
301 310
400

Figure
This kind of application of the arithmetic-geometric inequality and the
method of eliminating terms from a ternary form from the outside of its tri-

angle of coefficients, inward, is due to Choi and Lam [1977a).
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The problem of characterizing the bad set is still unsolved.

B. Formal Power Series
- We make a simple app.licat,ion of a theorem of M. Artin [1968]:
Theorem 5.3: Suppose that F(X) = (§,(X), .. LINX)) @dX) € FI[X]]) are
formal power series such that p(X,§(X)) = 0, where p = {p4,..Pm) and
p; € F|X] (F any field). Let ¢ € N. Then there exists an algebraic power series
solution y(X ) = ((y:(X), .., yn(X )) of the system p such that y(X) = y(X)
(mod m¢). |
Here m denotes the maximal ideal of the ring F[[X]].
Corollary 5.4: If f € F|X] is a SOS of formal power series in FI|X ]] (F any-
field), then it is also a SOS of algebraic power series in F[[X]).
Proof: Take the system p = (p1) in 5.3 fo be
| pl(xayI::yN):f(X)—yfm—yle
Q.E.D. |

While we are on the subject of power series, we mention a question of
Brumfel: If f € K[X] is'psd and a SOS of formal power series, is the origin a

good point of f? The converse is obvious.

This Theorem does not lead to an improvement of Heilbronn’s Theorem

(p. 15), for if we replace his four analytic power series with power series which
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are algebraic over Q, they will necessarily take irrational values at most positive

rational arguments.

C. Symmetrié Psd Polynomials

We combine the Positivstellensatz (1.4.1) with the following methods of
Procesi [1978]. Let ¢; = E?=1 X ; denote the ith Newton function and

- Yo Yi... Yn—i]
an| Bt |
L Pn—1 Pn -« Pan—2-

the (so-called) Bézoutiant matrix. Let g; be the determinant of the minor
formed by the first § rows and columns of A. Procesi revived Sylvester’s version
of Sturm’s Theorem and showed that im S, where S:R™ — R™is (1,..., Tn) M
(.al(x), . .,&n(z)) (where 04, ...,0y, are the elementary symmetric functions in
X1,..., Xy, equals W{g;}. Now if f € K[X] is symmetric, then we may con-
struct f! € K[X] such that f = f'oS. And if f is also psd, then f'is > O on
im § = W{g:;}. Then Procesi applied Robinson’s [1955] representation (1.2.1)
to f! and {g:} to obtain immediately a symmet.ric' (positively weighted) SOS-
répresentation; we only add the observation that Stengle’s Positivstellensats

(1.4.1) may be applied instead to obtain just as easily the following improve-

ment of Procesi’s representation:
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Theorem 5.5: It /, /' € K[X] with f symmetric and f = f'o S, and if f is
psd, then '

fl= 2}:"’”9“’ By (5.5.1)

43 s cargrhsy
for some ¢;y € K and his € K[X], where the g are, as usual, products of the
(abdve) g;. To get a (symmetric) representation of f, compose both sides of

(5.5.1) with 8. By construction, the g o § are psd (and symmetric), though

they are not here expressed as SOS themselves.

In the statement (but not the proof) of his Theorem, Procesi did not

mention the need to comp'o'se his representation with 8.

D. Filters and Partial Orders

In this section we use Stengle’s Positivstellensatz (one more time) to él_arify
* and generalize Brumfiel’s Proposition 8.11.1 [1979]. We first review some of
Brumfiel’s notation. By a partial or&éring (or, from now om, simply, an or-
dering) on the ring A (comiuutative, with unit), we mean a subset B C A

satisfying

(1) BN (—8) = {0},
2R+ RCPandP-PCP, and
(3) A2 C .

B, the “weak” order (introduced in 5A), is the smallest order on A4,
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namely, the set of SOS. 8, [g:] is the smallest order on A containing {g:} C A.
For an order , we write B, = {f € A| h%f € %, h not a zero divisor } and
B, — {fEA|f= g/'(fz.s + h), some g,k € ®,8 € N}. One verifies purely
formally that B, is an order; but as for B, Brumfiel stated, “It is not clear
under what conditions this set will be closed under sums.”® He did observe that
when A is a reduced R-algebra of finite type and B = B, [g:] for some finite set
{g:} C A, then Stengle’s Theorem implies $,, is closed under sums.? Actually,
for any order 8 C A = a reduced R-algebra of finite type, B, will be closed

under sums: let f; € SBP(z' == 1, 2), so that

N | S
7 f‘“-—fzs‘—l-h"’

some ¢;, h; € B, 8; € N; then f; + f2 > 0 on W{g;, h;},® so by Stengle’s

Theorem,

. g
hths= (fi+ )+ 4
some ¢, h € B, lonh] CB,sEN;ie. fi+ f2EB, e B, is an order.

From now on, A = K [X]. Define a new, larger kind of basic open s.a. set
[+] SO . :
V{gs} = W{g} (=U{g:} )
Let V (resp. W) be the collection of sets of the form V{g;} (resp. W{g:})

with non-empty interior. We shall review Brumfiel’s anélysis of V in such a

3 P. 98 of {Brumfiel 1879].

4 P.173, Ibid.

5 We have defined W{g;} and stated Stengle’s Theorem only when the ring A is K X1
however, with a little more work, Brumflel develops this theory when A is any reduced R-
algebra of finite type. To keep this section short, we shall stick to the case A == K[X]; our

statements can be readily generalized.
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way that we can replace each occurrence of V and of the subscript d with W

and the subscript p; this will clarify, as well as generalize, parts of his §8.11.

V{g} € V (ie, U{g:} # 0) if and only if B,[g] is an order on A (cf.
Corollary 8.4.6(a) of [Brumfiel]; this is essentially a result of Artin). By a
prefilter & C V (precisely, a V-prefilter) ===/ We meal a non»emptyl subsef
of V, closed under finite intersections. A (V-)prefilter is a (V-)flter if V € &,
and V C V' € Vimply V! € §. A (V-)filter is a(n) (V-}ultrafilter if it is not
properly contained fn any other (V-)flter in V. Note that V{g;} C V{h} if
and only if A(V{gs}) > 0. This is the property of the V{g,-}é which ma.ke.s

them more convenient than the U{g;} for the purposes of this section.

The set of filters in V is partially ordered by inclusion, an arbitrary inter-
section of filters is a filter {every fillter contains R™ = V{1}), and unions of -
chains of filters are filters. Thus every filter is contained in an ultrafilter. Each

prefilter § C V is contained in a smallest filter §; C V.

Let 8 C A be any partial order. Define §(B) C V by V{g:} € Sy(B)
if g; € B. F(P) is a prefilter since wa[g,-] is an order on A if and only if
V{g:} € V, which implies the desired finite intersection property for Fy(®). If

$; C B, then Fy(B,) C S9(B,).
Let § C V be an arbitrary prefilter in V. Define $(§) C A by ¢ € B(E)

if there is V € § with (V) > 0. Equivalently, this says V. C V{g}. Since
the sets V are Zariski dense, it is clear that (%) is an order on A. In fact,

6  'We do not need to read this sentence after changing the Vs to W's, elc.
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B(F) = B(F)q, since if A2f = g € B(F), h # 0, and g(V) > 0, then [ must be

nonnegative on V. [When replacing the V's by W’s and d’s by p’s, etc., this

last equation should be changed to (f2¢--h)f = g, ¢ and h nonnegative on W.

For the V but not the W reading, we need the following statement: Otherwise,

[ § would -vanisﬁ on the Zariski dense set U{g;} N U{-—g}, where V = V{g:}.]

I 3‘1. C ¥, then B(B;) C B(F2). Also B(F) = B(Fa), where ¥, is the filter
generated by ¥. ' |

We now study the compositions !B(%v(%)) and %v(‘B(&)). First, § C
B(F(R)) snd § C F1(B(Z)) are obvious from the definitions.

Proposition (8.11.1 in [Brumfiel)):

(a) I § C Vis any prefilter, then §(B(¥)) = &4 C V.
(b) If § is an ultrafilter, then.iB(ﬁ) C Ais a total order (i.e., B(F)U (—QS(G)) = |
A).

Also, if B C Aisa tot.al order, then (B) C V is an ultrafilter.

(c) If § C A is any order, then B(F (D)) = Ba.

Furthermore, this Proposition (as well as the rest of this section, except

where noted) remains true if V is replaced by W and d by p (and V' by w).

Proof: (a) Since R(§) = B(¥F;), we may as well assume § is a filler. We
know § C F(R(¥)). Conversely, if g; € B(¥), so that V{g:} € FY(BE)), let
0:(V;) > 0, V; €. Then V; C V{g:} and since & is a filter, V{g;} €¥. Thus
V{g:} € ¥ and Fy(B(¥)) C &




- 68

(b) Suppose ® = $B(¥) admits a proper refinement, B C Blg]. Then

FYB) =& C gv(g},[g})'and since § is an ultrafilter, § = %1(B[g]). But now
g € B(FB(g))) = B(¥), contradiction.

Secondly, assume P C A is a total order and suppose & = FY(B) is

~ properly contained in a filter 9. Let V = _V.{g.-} € 6—%. Since B C

B(370B) C B(9), we have = B(9). But g; € B(9), hence V{y} € By(®),

contradiction.

(c) Finally, 8 C B(31(%)) and B(B1(R)) = B(T1(P) ) ,so B, C B(EYB))-
Conversely, if f > 0 on W{g,} tg; € P}, then Robinson’s theorem gives f ==
p/q, p,q € B,lo: CB; ie, f €Py. [In the W—readlng, replace the last equa-
tion by f = p/(f** -+ q)] (Thls proof of the second inclusion in (c} is simpler

than Brumfiel’s: e.g., it does not use (b).) Q. E. D.
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