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Abstract

We consider the following adaptation of Hodge’s original conjecture : given a smooth,
complex, connected, projective variety X, does every cohomology class in H?*(X,Z)
| H*(X,Z)1ors of Hodge type (k, k) have an algebraic representative? We call this

adaptation the non-torsion version of the integral Hodge conjecture.

We focus on the conjecture in the case of 3-folds. The only example where this
was shown not to hold is due to Janos Kolldr, with the example being a very general
hypersurfaces in P*. Using an adaptation of Kollar’s argument, we show that very
general hypersurfaces in P? x P? fail the non-torsion version of the integral Hodge
conjecture. We also show that this condition holds for abelian 3~folds and for Fano

3-folds.

iv
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Chapter 1

Introduction

One of the most important problems in algebraic geometry is to know what subva-
rieties exist in a variety X. More generally, we want to understand the k-cycles of
X, which are integral linear combinations of subvarieties of dimension k. In general,
obtaining results for k-cycles is a difficult task. When X is a complex, projective
variety, we try to make the problem more tractable by moving from k-cycles on X
to k-cycles on X modulo homological equivalence, so that, associated to each such
cycle is a homology class in Hy(X,Z). If, in addition, X is smooth and connected,
we may associate to k-cycles a cohomology class in H?"~2*(X, Z), where n = dim X,
using Poincaré Duality.

When passing to cohomology classes for a smooth, complex, connected, projec-
tive variety X, we may tensor H?"~2%(X,Z) with the complex numbers to obtain
classes in H>»~?(X,C), thus allowing us to employ Hodge theory. Not all classes
in H?»=2(X,C) are associated to k-cycles. In fact, a necessary condition is that

every such class must have Hodge type (n — k,n — k). If k = n — 1, then this is
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also a sufficient condition by the Lefschetz-(1,1) Theorem. In [19], Hodge asked if
this was a sufficient condition for all k. In other words, Hodge made the following
conjecture : given a smooth, complex, connected, projective variety X, every class in
H?(X,Z) of Hodge type (k, k) is algebraic, or the class associated to an n — k-cycle.
This conjecture is what I will call Hodge’s original conjecture or the integral Hodge
conjecture.

Hodge’s original conjecture was shown to be false by Atiyah and Hirzebruch in
1962 in [3]. Specifically, for k£ > 2, they construct smooth, complex, connected,
projective varieties X with torsion classes v € H%*(X,Z) that are not the coho-
mology classes of codimension % cycles. The counterexample makes essential use
of torsion classes, so that the method used to construct the counterexample does
not generalize to non-torsion classes. This led to the following reformulation of the
Hodge Conjecture in terms of rational cohomology classes : given a smooth, complex,
connected, projective variety X, every class v € H*(X,Q) of Hodge type (k, k) is
algebraic. Note that torsion classes become the zero class when tensored with Q,
and thus the torsion classes constructed by Atiyah and Hirzebruch do not provide a
counterexample to this reformulation of the Hodge Conjecture.

The above reformulation of the Hodge conjecture is not the only possible reformu-
lation. A natural question to ask is if the only counterexamples to Hodge’s original
conjecture are torsion classes. This requires restating Hodge’s original conjecture in
terms of classes v € H*(X,Z)/H* (X, Z)iors. We say that a smooth, complex, con-
nected, projective variety X satisfies the non-torsion version of the integral Hodge

conjecture, or X satisfles NHC, if all classes v € H*(X,Z)/ H* (X, Z)1ors of Hodge
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type (k, k) are represented by a cycle of codimension k.

The non-torsion version of the conjecture is also false, as was shown by Kolldr in
[4]. As described in Section 2.2, Koll4r’s counterexample is a smooth hypersurface in
IP*. Since X is a hypersurface, H*(X,Z) ~ Z by the Lefschetz Hyperplane Theorem.
Hence, all classes in H*(X,Z) are non-torsion classes of Hodge type (2,2). The
counterexample in this case will be the generator of H4(X,Z). In fact, Kolldr proves
a stronger result, namely that, “very general” hypersurfaces X of degree d in P*,
with additional conditions on d, fail Hodge’s original conjecture.

Beyond the previously mentioned work of Atiyah and Hirzebruch and of Kollar,
very little ié known about when Hodge’s original conjecture or when the non-torsion
integral Hodge conjecture holds, even in the case of 3-folds. Our goal is to prove or
disprove the non-torsion version of the integral Hodge conjecture for various types
of 3-folds. To accomplish this goal, we will need background material about how the.
(non-torsion) integral Hodge conjecture behaves under surjective maps and in smooth
families of smooth, complex, connected, projective varieties. We also consider the
behavior of the (non-torsion) integral Hodge conjecture under birational equivalence,
and we show that failure of the (non-torsion) integral Hodge conjecture is a birational
invariant for smooth, complex, connected, projective varieties X of dimension n when
considering classes of Hodge type (n—1,n—1). For classes of Hodge type (n—k,n—k)
and k& > 2, thé (non-torsion) integral Hodge conjecture can fail to be a birational
invariant, though this will not be an obstacle for our purposes, since we focus on the
case of 3-folds, and failure of the (non-torsion) integral Hodge conjecture can only

occur in 3-folds for k = 1 by the Lefschetz-(1, 1) Theorem. This material, along with
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background definitions, is covered in Chapter 2.

Chapter 3 is where we prove the non-torsion version of the integral Hodge conjec-
ture for abelian 3-folds and for Fano 3-folds. In thé case of abelian 3-folds, Hodge’s
original conjecture and the non-torsion version of the conjecture are equivalent, since
the cohomology of an abelian variety has no torsion. The main tool used, Proposition
3.1.8, states that failure of the integral Hodge conjecture for abelian varieties reduces
to failure of the integral Hodge conjecture for principally polarized abelian varieties.
The proof of Proposition 3.1.8 uses the Fourier transformation on the cohomology of

an abelian variety.

We also prove the non-torsion version of the integral Hodge conjecture for Fano
3-folds. As an auxiliary step, we prove the non-torsion version of the integral Hodge
conjecture for certain types of conic bundles, a conic bundle being a surjective mor-
phiSm f X — S, where X is smooth and of dimension 3, and where the fibers
of f are isomorphic to degree 2 curves in P2, We prove the non-torsion integral
Hodge conjecture for conic bundles having singular fibers and for conic bundles with
a base B that is simply connected. We then use the work of Mori and Mukai and of
Iskovskih and Sokurov which classifies Fano 3-folds to prove the non-torsion integral

Hodge conjecture for Fano 3-folds.

In Chapter 4, we consider Hodge’s original conjecture for smooth hypersurfaces

in P? x P2, We first establish that the conjecture is true for hypersurfaces of bide-

gree (a,b) when a and b are relatively prime. Then, using a method adapted from
Kollar’s original argument, we prove that very general hypersurfaces X C P? x P? of

bidegree (da, dr), with some additional conditions on d, a, and r, fail Hodge’s original
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conjecture.
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Chapter 2

Background

2.1 Preliminary Definitions and Notation

Most of the material in this section is background material needed to state the
integral Hodge conjecture. In this, as well as in later chapters, we will use two
versions of the conjecture. The first, abbreviated by IHC}, is the version of the
conjecture as originally stated by Hodge in [19]. The second, abbreviated by N HC,
asks if all integral classes of Hodge type are algebraic modulo torsion. In practice,
we will work with the second version of the conjecture, since it is easier to develop
techniques to prove or disprove it. In fact, proving the original Hodge conjecture in
the cases that follow in later chapters will entail proving the non-torsion version, and

then showing that the two versions of the conjecture are equivalent.

Notation 2.1.1. Let X be a smooth, complex, projective variety of dimension n.
Let Z X be the group of k-cycles on X. Let [] : ZxX — H?*"%(X,7) be the map

of cycles to cycles modulo homological equivalence. Given D € Zy X, denote also by
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[D] the image of the map
ZkX — HZn—Zk (X, Z) — H2n_2k(X, Z)/H2n—2k (X, Z)tm‘s'

Definition 2.1.2. Let X be a smooth, complez, connected, projective variety of di-

mension n. There exists a map
H™%( X 7) _) H*2(X, C),
and the map descends to an injective map
H?™ (X, 7)) H (X, L)sors — H™ (X, C).

If the image of a class o € H* ?(X,7Z) has pure Hodge type (a,a), where a =

n —k, we say that o has Hodge type (a,a). Similarly, given § € H*™ (X, Z)/

H?>=2%( X T)tors, if B ingects into H* (X, C) to give a class of pure Hodge type

(a,a), we say that B has Hodge type (a,a).

Definition 2.1.3. A class o € H™ (X, 7Z) is algebraic if o = [D] for some D €
ZuX. Similarly, a class p € H* (X, 7Z)]H* *(X, Z)tors 1s algebraic if f = [D]
for some D € Z; X .

Definition 2.1.4. 4 smooth, complex, connected, projective variety X of dimension

n satisfies the non-torsion version of the integral Hodge conjecture for k-cycles, or

X satisfies NHCy, if every class f € H™ (X, Z)/H* (X, L)1ors of Hodge type

(n — k,n — k) is algebraic.

Definition 2.1.5. A smooth, complex, connected, projective variety X of dimension

n satisfies the integral Hodge conjecture for k-cycles, or X satisfies IHCy, if every

class oo € H* 2*(X,7Z) of Hodge type (n — k,n — k) is algebraic.

7
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Notation 2.1.6. Given o € H¥X,Z) and B € H'(X,Z), let a — 8 € HY(X, 7)
denote the cup product. If X is a smooth, connected, projective variety of dimension
n, then H*"(X,Z) ~ Z and is generated by [z], where x € X. In this case, if

a € H*™X,Z) and o = m - [z], we suppress the [z] and write o = m.

Remark 2.1.7. An irreducible variety over the complex numbers cannot be the union
of countably many proper subvarieties. Note that this follows from the Baire Category

Theorem (Theorem 5.6. of [28]). This fact is needed for the following definition :

Definition 2.1.8. We say a complex, projective variety X is very general if X is
a member of an irreducible family of varieties which lies in the complement of a
countable union of proper subvarieties of the family. When referring to very general

varieties, the proper subvarieties will usually not be given explicitly.

2.2 Kollar’s Example

The first example of a complex, projective 3-fold X having a non-torsion, non-
algebraic class o € H*(X,Z) of Hodge type (2,2) was given by Janos Kollér in
[4]. In this case, X C P* is a very general hypersurface of degree d. The precise

statement proved by Kollar in [4] is the following:

Proposition 2.2.1. Suppose there exists a smooth, complex, connected, projective

variety X of dimension 3 and a very ample divisor L on X such that :

1. [P =d.

2. For every curve C C X, k| [L] — [C].
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Then, very general hypersurfaces Y C P4 of degree d have the property that, for all

curves C C Y, k|6 - degC.

Remark 2.2.2. Kolldr’s original paper gives a sketch of the proof. In [30], Soulé

and Voisin present Kolldr’s proof with more of the details fleshed out.

The proof entails using the very ample divisor L to embed X in a large projective
space, and then projection from a linear subspace gives a (highly singular) hypersur-
face Z C P* of degree L3. If ¢ : X — Z is the projection, then generically ¢ will be
1:1, 2:1 on a divisor of X, 3 : 1 on a curve in X, and 4 : 1 on points of X. This follows
from Corollary 2 of [27]. Condition 2 carries over to the degree of curves on Z, up to
possibly a factor of 2 or 3 coming from ¢, which is why the 6 term appears. Finally,
this multiplicity condition then holds for very general hypersurfaces of degree L.

If a hypersurface Y satisfies the conditions of Proposition 2.2.1, then Y fails
ITHC,. This follows from the weak Lefschetz Theorem, and the argument can be
found at the end of Chapter 5 in [24]. Note that, by the Lefschetz Hyperplane

Theorem, H4(Y,Z) ~ Z, and thus IHC; and NHC} are equivalent in this case.

2.3 Integral Hodge Conjecture and Surjective Morphisms

Lemma 2.3.1. Let X be a smooth, complex, connected, projective variety with

dim X = n. Then the following are equivalent:

1. X fails NHCy.

2. There ezists a class L € H*(X,Z)/H* (X, Z)1ors, a class o € H* (X, Z)/
H? (X, Z)1ors of Hodge type (n—k,n—k), and a non-negative integer d # 1
9
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such that :
(a) L — a=1.

(b) If a € H (X, Z)/ H™ (X, Z)iors is algebraic, then d | L — a.

Proof. The case (2) = (1) is trivial, since, under the hypotheses in (2),
o € H2(X,7) ] H* (X, Z)1ors can’t be an algebraic class.

Now suppose that X fails NHCy. Then there exists a class @ € H*~%*(X,Z)/
H?* (X Z)iors of Hodge type (n — k,n — k) that is not algebraic. Without loss of
generality, we may assume that « is not a non-trivial multiple of another integral
class.

There are now two cases to consider. First, suppose that there exists a strictly
positive integer such that d - o is algebraic. Let d be the smallest strictly positive
integer such that d - o is algebraic. Let A C H* 2*(X 7))/ H* 2*(X,Z)ors be
the Z-submodule of algebraic classes. Since d - ¢ is not the non-trivial multiple
of another algebraic class, we may choose a basis of A extending from d - a given
by {d-a,a1,...,as}. Now let F € Hom(H*2(X,Z)/H" (X, Z)1ors,Z) be a

homomorphism satisfying F'(a) = 1 and F(a;) = 0 for all ¢ = 1,...,s. Then by

Prop. 3.37 of [17], there exists a class L € H*(X,Z)/H*(X,Z)iors such that the
homomorphism F is given by F'(¢) = L — c¢. In particular, L — a = 1 and
L—a;=0fori=1,...,s. Since {d-a,a1,...,as} generates A, every algebraic
class in H**~ (X, Z)/H*"?*(X, Z)tors is an integer linear combination of the classes
{d-a,ai,...,a,}. Let

S

w=w0~(d-a)+2wi.ai
i=1

10
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be an algebraic class with w; € Z for 2 =0, ...,s. Then L — w = d- wp is a multiple
of d, and since L — o = 1, both conditions of 2. are satisfied in the case that a
non-zero, integer multiple of « is algebraic.

Now suppose that the only integer multiple of o that is not algebraic is 0 - a.
Then let d = 0. As in the previous case, let {ai,...,as} be a basis for the Z-
submodule of algebraic classes in H*~%(X,7Z)/ H* %(X,Z)1ors- Now let F' €
Hom(H* 2%(X,Z)/H* (X, Z)t0rs, Z) be a homomorphism satisfying F(a) = 1
and F(a;) = 0 for alli=1,...,s. Then by Prop. 3.37 of [17], there exists a class
L € H*(X,Z)/H%*(X,Z)irs such that the homomorphism F is given by F(c) =
L—c. Inthiscase, L — o =1and, since L —q; =0foralli=1,...,8,L~w=0
for all algebraic classes w € H* 2%(X,Z)/ H*"?(X, Z);ors- Hence, L satisfies both
conditions of 2., with d being equal to zero in this case. Thus the lemma is proved

in all cases. . O

Lemma 2.3.2. Let f : X — Y be a finite, surjective map of degree r between smooth,
complez, connected, projective varieties of dimension n. Suppose there exists a class
o € H=2(X, 7)) H* % (X, Z)iors which is a non-algebraic class of Hodge type (n—
k,n—k). If a non-zero integer multiple of o is algebraic, let d be the smallest strictly
positive integer such that d - a is algebraic. If no non-zero multiple of a. is algebraic,
let d = 0. Then, if v is not a multiple of d, f*a € H** (X, Z)/H*™ (X, Z)tors 1s

not algebraic, and X fails NHC},.

Proof. Let f, r, d, and o be as above. By Lemma 2.3.1, there exists a class L €
H*(Y,7)] H*(Y,Z)tors such that L ~— o = 1 and d | L ~ a for all algebraic
classes a € H™ (Y, Z)/H* (Y, Z)iors. Let L' := f*L, and let ¢/ := f*a. Then

11
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L' — o =r. Also, if a € H" (X, 7)) H™ (X, L)ors is algebraic, then, by the
projection formula, L' — a = f,(L' — a) = L — f,a is a multiple of d. Since r
is not a multiple of d, the class o’ is not algebraic. The class « is of Hodge type
(n—k,n—k), and hence f*a is also of Hodge type (n —k,n — k). Therefore, X fails

NHC. a

Example 2.3.3. In Lemma 2.3.2, we made the assumption that the degree of f
is not a multiple of d. This assumption is necessary, since, without it, it is pos-
sible to have a finite surjective map f : X — Y and a non-algebraic class o €
H*=26(Y, Z) | H* (Y, Z)1ors of Hodge type (n — k,n — k) such that f*o is alge-
braic.

As an exzample, let Y C P* be a very general hypersurface of degree d failing the
wntegral Hodge conjecture, obtained through Kolldr’s construction in Section 2.2. Let

p:Y =Y be a blowup of Y along D, the transverse intersection of two hyperplane

sections, so that we obtain a Lefschetz pencil m : ¥ — PL. Now let C be a smooth,
connected curve with a surjective, degree d morphism h : C — P! that is totally
ramified at d distinct points. In this case, we may take C C P? to be the zero locus

of the degree d homogeneous form

:vg - f1($0,931) oo fa(wo, 931)»

where the f;(zo,x1) are linear forms vanishing for distinct values of [zo : z1]. The

morphism h is then the restriction to C of projection from the point [L : 0 : 0] € P2,

12
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Let X =Cxm Y :

X ‘v 2,y
q
c L, p

Let f:=pog:X — Y. Note that f is a finite, surjective morphism of degree d.
Also, ifby,. .., bg € P! are the branch points of the map h: C' — P!, then f is totally
ramified at the hyperplane sections FIj = 1(b;) for j = 1,...,d. We choose the
map h and the points by,...,by so that each ﬁj is smooth. Let H; := p(Hj;). Note
that H ; is then the strict transform of H;, which is smooth. Moreover, D is then the
transverse intersection of H; with another hyperplane section. Let R; := (o )7 (bs),
and let E be the exceptional locus of p: Y — Y. Finally, let H C'Y be a general
hyperplane section.

Since D C Hj is a tranverse intersection, and since each Rj; is totally ramified
over f;fj, we have the following relations on the level of cohomology :

()] = p*[H] - [E] € H¥Y, )/ H*Y , Z)tors

g*[ﬁj] =d- [RJ] S H2(X7 Z)/Hz(X) Z)tors

Since Y was chosen to fail the integral Hodge conjecture, and since Y is a hy-
persurface in P*, H(Y, Z) is generated by the non-algebraic class o == S[H]>. We
claim that f*a is an algebraic class. Indeed, note that

f[H] ~ d-[Ri] = [*[H] — ¢*[H)]
d- (f*[H] — [Ri]) = f*[H] — g"(p"[H] - [E])
= f*[H] — (f*[H] - ¢"[E))
= f*[H - f*[H] - g"[E]

13
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— FHP - g H] — [B)
= fHP - g F)

—d- ffa—d-g*F,

where F' is the class associated to a fiber in the bundle E — D. Taking the above
equality and dividing by d, we obtain f*a = g*F + f*[H]| — [R)]. The cup product
of algebraic classes is algebraic, and thus f*a € HY(X,Z)/H4(X, Z)iwrs is algebraic,

even though o € HY Y, Z)/ H (Y, Z)sors is not algebraic.

2.4 Birational Equivalence

In this section, we will let X be a smooth, complex, connected, projective variety,
let D C X be a smooth subvariety of codimension r > 2, and let X be the blowup
of X along D with associated blowdown map f: X — X. Let E be the exceptional
locus of the blowup, let g : E — D be the restriction of f to E, and let j : F < X
and ¢: D < X be inclusion maps. Finally, let u € H?(E,Z) be the first Chern class
of the tautological line bundle associated to the projective bundle g : £ — D. The

blowups and maps are given in the following diagram:

Ll

D, X

'The main results of this section are Corollaries 2.4.3 and 2.4.4, which state that
ITHCy and NHC are birational invariants, respectively. The main tool in the proof
is computing the integral cohomology of X in terms of the integral cohomologies of

14
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X and D. This is the content of Proposition 2.4.1. Its proof is taken from Chapter

4, Section 6 of [13], with some of the details of their proof filled in.

At the end of the section, we present a counterexample, due to [30], that neither

NHC}, nor IHC}, is a birational invariant for k£ > 2.

Proposition 2.4.1. Let X, D,X’ be as above. Then
H/(X,Z) ~ f*H'(X,2) & j.(g"H (D, 2) ® --- ® g H***(D, Z) — 1 ~?).

Proof. Let a: X — R be a rug function for D (see Appendix A for the definition of
rug functions and algebraic neighborhoods). Then ao f : X — R is a rug function
for E. There exists a § € Ry such that neither a nor oo f have a critical value
in [0,6]. Then U := o7'([0,4]) and U’ := f({U) = (a0 f)7'([0,]) are algebraic
neighborhoods of D and FE, respectively.

Let V := X\ D and V' := X\ E, and consider the Mayer-Vietoris sequences

associated to X = U UV and X = U’ UV (all cohomology is in Z coefficients) :
S HEX) - B emy) % Huav) -
T 14 Tse (2.1)
- H(X) » H@)eH{V) % HUNV) —
By Proposition A.0.7, D — U and E < U’ are homotopy equivalences, and hence
H*(U) ~ H*(D) and H*(U') ~ H*(E). Note also that f : V' — V is an isomor-
phism, so f* induces an isomorphism H*(V,Z) — H*(V',Z). Similarly, f* induces
an isomorphism H*(U NV, Z) — H*(U' NV',Z). We may then rewrite (2.1) as :
LX) - H(B) e HV) % HEunv) % BHE) -

Tf:k Tf* Tf* Tft (2.2)
S H(X) - HO)eHV) % HUNV) % BHYX) -

15
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We now want to show that there is a short exact sequence :

0— Hi(X) L5 B(X) L H(E)/f*HI(D) -0 (2.3)

Note first that f* : H'(X,Z) — HX,Z) is injective, since f. o f* is the identity
on HY(X,Z). In addition, the composition j* o f* in (2.3) is the zero map, since we
obtain j* from the map HY(X) — HY(E) @ Hi(V) in the Mayer-Vietoris sequence
comprising the top row of (2.2).

It remains to show that the map j* in (2.3) is surjective. Suppose that b = ¢/(a)
for some a € H'(E) ® HY(V). Let ¢ € H(U NV) be given by f*(c) = b. Then

0;(b) = 0 by the exactness of the top row of (2.2). The map f* : H*+!(X) — H*(X)

is injective, and thus 0;(c) = 0 as-well. Since the bottom row of (2.2) is exact, there

exists an element d € H*(D) @ H'(V) such that ¢;(d) = c. The diagram (2.2) is
commutative, and hence ¢;(f*d) = b. The element b was arbitrary, and thus the

map
(H(B) @ H(V))/f*(H(D) ® H(V)) & H(U V)

is the zero map. Therefore, we have the following short exact sequence :
0— 7 (X) & H(X) L BH(E)/f*HI(D) - 0

"To complete the proof, it suffices to find a left inverse to 5*. Note that every class
in H'(F,7Z) is given uniquely as a linear combination of {1, 1,...,u"} with coeffi-
cients in f*H*(D). Classes in H'(E)/f*H!(D) are then given by a linear combination

of {§,...,u""1}. Hence there is an isomorphism

S g*Hi_Q(D,Z) @ @Q*Hi_2T+2(D,Z) - “r—2 = Hl(E)/f*Hz(D)
16
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given by taking the cup product with —u. This gives the short exact sequence
0— Hi(X) L B(X) 25 ¢ H (D, Z) ® - ® g"H" "+ (D, Z) — ' > — 0

Since the composition j*j, is equivalent to taking the cup product with —u, j. is a

left inverse to s o j*. Hence,
HZ(X, Z) ~ f*Hz(X, Z) D j*(g*Hi_Q(D,Z) D g*Hi_2T+2(D, Z) — ,UT—Q)'
O

The most interesting case, at least for our purposes, is when ¢ = 2 - dim X — 2,
in which case Proposition 2.4.1 reduces to the statement comprising Corollary 2.4.2.
The birational invariance of I HC, proved in Corollary 2.4.3, follows from Corollary

2.4.2.

Corollary 2.4.2. Suppose dim X = n, and let X be a blowup of X over a smooth

center D of codimension v > 2. Then
H2n—2(X, Z) ~ f*H2”_2(X, Z) D7 - j*(g*H2n—2r(D, Z) _ 'UIT'—-Q).

Corollary 2.4.3. If X and Y are smooth, complex, connected, projective varieties

that are birationally equivalent, then X satisfies IHC, iff Y satisfies IHC.

Proof. Using the theorem on elimination of indeterminacies twice (see Question £ in
[18] and the proof of Lemma 1.3.1. in [1]), there exist smooth, complex, connected,
projective varieties X; and Y; such that X; and Y; are obtained from X,Y via
blowups with smooth centers, respectively, and such that there exists an isomorphism

X =5 Y. Hence, in order to show that failure I HC) is a birational invariant, we only

17
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need to show X fails JHC, iff X fails TH C4, where X is a blowup of X with smooth
center D of codimension r > 2.

Suppose that X fails THCy, and let o € H*%(X,Z) be a class of Hodge type
(n—1,n—1) that is not algebraic. Then f,f*a = c. Since f, maps algebraic classes
to algebraic classes, f*o cannot be algebraic. Hence X fails JHC).

Now suppose X fails JHC). By Corollary 2.4.2, there exists a non-algebraic
class @ € H**2(X,Z) of the form f*B+c- J«(g*[z] — p"~?) that has Hodge type
(n—1,n—1). Since j,(g*[z] — u"~?) is algebraic, it has Hodge type (n—1,n— 1), and
hence f*3 is a non-algebraic class of Hodge type (n—1,n —1). Since f* is injective,
B € H*"2(X,Z) has Hodge type (n — 1,n — 1), and since f*@ is not algebraic, 3 is

not algebraic. Hence X fails THC,. O

Corollaries 2.4.2 and 2.4.3 carry over to the case of cohomology modulo torsion.

In particular, NHC is a birational invariant.

Corollary 2.4.4. Let dim X =n, and let X be the blowup of X with smooth center

D of codimensionr > 2.. Then

1. H2n—2(X, Z)/HQn—Q(X, Z)tors ~ f*(HQn—Z(X’ Z)/H2n—2(X, Z)tors)

WA j*(g*H2n—~2r»(D, Z) — ur~2)

2. If X and Y are smooth, complex, connected, projective varieties that are bira-

tionally equivalent, then X satisfies NHC, iff Y satisfies NHC,.

Remark 2.4.5. The first part of Corollary 2.4.4, stated in terms of rational coho-

mology, can be found in Proposition 18.1. of [24].

18
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Example 2.4.6. (/80], End of Section 2) Let X C P* be a very general hypersurface
failing IHC, obtained through Kolldr’s construction in Section 2.2. By choosing an
embedding P4 — P5, we also obtain an embedding X < P°. Let P® be the blowup of
P5 with center X. Using the notation from Section 2.4, let E C 5 be the exceptional
locus of P, and let j : E — X and g : X — 5 be the projection map and the
embedding of X in P°, respectively.

If a € HYX,Z) is a nmon-algebraic class of Hodge type (2,2), then consider
#(g*a) € H S(P%, 7). This class has Hodge type (3,3), since an integral multiple of

j.(g*a) is the class associated to a 2-cycle. Now apply g.5* to j.(g"a) to obtain :
9:3"(Ju(g ) = gu(—g" o~ p) = —c.

The class —a is not algebraic, and g, and j* map algebraic classes to algebraic classes.

Therefore, the class j.(g*@) cannot be algebraic.

Remark 2.4.7. This ezample works for dimensions beyond 5; in fact, the original
ezample by Soulé and Voisin does not restrict the dimension. Note that this argument
does not apply to varieties of dimension 4, since a blowup of such a variety will have
a center of dimension less than or equal to 2, and the integral Hodge conjecture is

true for such a center by the Lefschetz-(1,1) Theorem.

2.5 Specialization

In this section, we consider families of smooth varieties and how the integral Hodge
conjecture behaves in these families. The main result of this section is Corollary

2.5.7, which states that, assuming some additional conditions on the degrees, very
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general hypersurfaces in smooth, complex, connected, projective varieties will fail
NHC,. This follows from Corollary 2.5.6, which gives conditions under which failure
of I HC, for a member of a family of smooth, complex, connected, projective varieties
of dimension n implies failure for very general members of the family, namely that
the non-algebraic, integral class o of Hodge type (n—k,n — k) specializes to integral
classes of Hodge type (n — k,n — k) in other varieties in the family.

In this section, let £~ and B be smooth, complex, connected, varieties, and let
7. & — B be a surjective, projective morphism, with the fibers of 7 being smooth

varieties of dimension n. We let X; := 7~1(¢).

Definition 2.5.1. Let s,t € B, and lety C B be a path from s to t. Then there ezists

a well-defined homeomorphism o, ., called the specialization map along v, which is

defined as follows : By Lemina A.0.11, there exists a local specialization map Ost
Jor all points s,t lying in a sufficiently small neighborhood of a point y € B. Given
y € v(I), let Uy be such a trivializing neighborhood of y. The set {Uy}yeyry is an open
cover of ¥(I), and since y(I) is compact, there exists a finite subcover {Uy,, ..., U, }.
Without loss of generality, assume that the y; are in ascending order, in the sense
that if v(p) = v and ¥(q) = Yiy1, then p < q. Now choose a collection of points
Jo = 8, Jom =t Jar1 = Yp for L <k <m—1, jop € Uy, Ny, for L <k <m-—1.

Again, by Lemma A.0.11, the specialization map Tjidert * Xji — Xy, is defined.

i+1
Define 051, : X = X to be the following composition :

Tjam—1,d2m © =+ + © Tj1,52 © Tjo,ja +
Remark 2.5.2. The above map 05, does not depend on the choice of the Uy com-

prising the subcover of v(I), but it does depend on the choice of path.
20
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Proposition 2.5.3. There ezists a countable union of proper subvarieties W C B
so that, if s € B\ W and t € B, then, for allk=0,...,d, of 1 : H*®(X,,Z) —
H?(X,,7) maps classes associated to effective algebraic cycles to classes associated

to effective algebraic cycles.

Proof. By Appendix B, there exists €% 5, the relative Hilbert scheme associated
tow: Z — B. Given an irreducible component ¥ C % /g, let pw : € — B be as

in Appendix B. Set

W= (U ,M(cg)) :

ves
where .# is the set of all irreducible components & of 5%, p such that ps(€) # B.
Note that, since £y p contains countably many irreducible components, .Z is a
countable set.
' Suppose s € B\ W. If A C X, is a subvariety of dimension k, then there exists
an irreducible component & C %y such that A is a fiber of 7 and p (&) = B,
where 7 is defined in Appendix B. Let ¢ : &’ — & be a desingularization of &

Define x/, := &' X X, Where X is defined in Appendix B.

X.I;z{ — X«

| [

o s o

Define 2" := &' xg &, and let 7’ be the induced map Z' — &'

X — X

ﬂ'l lﬂ

o L% B
21
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Then x.» — Z'. Furthermore, associated to x.» is an element
[xe] € HY(, RQ"‘%WLZ).

To finish the proof, it remains to relate specialization over 7 with specialization over

7', Let t € B, and let v C B be a path from s to t.

Lemma 2.5.4. There exists a path v C &' so that Osty = Ogpr,y for some s',t' €

A" such that py o ¢(s') = s and poy o ¢(t') = t.

Proof. As in Definition 2.5.1, let jo, ..., jom € ¥(I) be points determining subpaths

of 7y such that each subpath lies in an open set in B given by Lemma A.0.11. Let

Y15+, Y2m be the subpaths determined by 7g,...,Jom. Fori = 1,...,2m, we will
construct ' by joining subpaths ~/ that satisfy Tsitiyy = Os) iy, When pgy o ¢(s)) = s;
and px o ¢(t)) = ;.

Each ~; lies in an open neighborhood U; C B so that 7~ HU;) is diffeomorphic
to the product of U; and a fiber. Set V; := (pu o ¢)~*(U;). Since ' is obtained
through a fiber product, 7’ has a local product structure over V;. Now choose a
point 8; € (o © ¢) ™ (fi—1). Since (pr © ¢) 7 (ji1) = (per © $)"Y(U;) is a homotopy
equivalence, there exists a path v; from s} to a point sj,; € (pw 0 ¢)"1(j;). The
image (o © $)(v;) lies in U; and has the same endpoints as ;. Since 7’ is locally a
product, this implies the specialization map Os),sl,10v, 18 identical to oy, jro..

By the above, define subpaths ~;, .. .,7, that patch together to form a path +'.

Since specialization agrees on subpaths, the lemma follows. O

The class [A] € H* %(X,,Z) is also the image of [x] by the restriction map

to the stalk at s'. Hence, there is no monodromy, and o} ,_,; maps [A4] to the

8!y

22
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restriction of [X.] to ¢’. The restriction X N7’ ~(¢') is effective, and thus Lemma
2.5.4 implies that o} . maps [A] to an effective class. The subvariety A was

arbitrary, and so the proposition follows. O
Remark 2.5.5. Note that the set difference B\ W is not empty by Remark 2.1.7.

Corollary 2.5.6. Let 7 : X — B be as in Proposition 2.5.3. Suppose in addition
that there ezists a smooth fiber X, with a class @ € H***(X,,7) of Hodge type

(n — k,n — k) such that:
1. « is not algebraic, and

2. for every t € B and dll paths ¥ C B from t to s, ¥, (a) € H* *(X,,7Z) has

Hodge type (n — k,n — k).
Then very general fibers of w fail IHCy,.

Proof. 1f [oy) € H* ?*(X,,Z) is a class of Hodge type (n — k,n — k) that is not

algebraic, and if o, ([c:]) has Hodge type (n — k,n — k), then

0311005 ([u])) = [o]-

If s € B\ W, then, by Proposition 2.5.3, of, , maps an algebraic class to an algebraic
class, and thus o}, ([ox]) can’t be algebraic. Since o7, ([o]) has Hodge type (n—

k,n— k), X, fails THCY. O

Corollary 2.5.7. Let (X, L) be a smooth, complex, connected, projective variety X
of dimension 4 with a very ample divisor L. If very general hypersurfaces Y C P4 of
degree v fail NHC, and if L* is not a multiple of v, then very general hypersurfaces
Y’ C X in the family PHY(X, Ox(r - L)) fail NHC;.
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Proof. Let i : X — PY be an embedding induced by global sections of L. Now
choose a linear subspace @ C PV of codimension 5 that is disjoint from #(X). Define
j + X — P* to be the map given by projection from @). Now consider the linear
system 0 C HY(X, Ox(r - L)) of hypersurfaces in X obtained as inverse images of
hypersurfaces in P* under j. The system 0 is comprised of hyperplane sections
obtained via hyperplanes containing ). Hence; the base points of ¥ lie in @, but
since i(X)NQ = 0, © has no base points. By the generalization of Bertini’s Theorem
given in Chapter 3, Corollary 10.9. of [16], the general member of  is non-singular.

As a consequence, there exists a hypersurface Y C P* of degree r failing NHC; and

such that Y” := j~1(Y) is smooth. The restriction of j gives a finite, surjective map
between smooth 3-folds Y’ — Y, and the degree of this restriction is equal to L.
By Lemma 2.3.2, Y” fails NHC;. In particular, note that j*(%H %) is not algebraic,
where H € H*(Y,Z) is the class associated to a hyperplane section. Note also that
Y’ is hypersurface in X corresponding to the divisor 7+ L, and that the class j *(%H %)
remains of Hodge type (2,2) under specialization in the family PH(X, O (r - L)).
Hence, Corollary 2.5.6 implies that very general members of PHO(X, &x(r - L)) fail

NHC,. ' O

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Chapter 3

Some 3-Folds Not Of General Type

In this chapter, we prove the integral Hodge conjecture for various types of 3-folds
not of general type. We prove THC; and NHC} for abelian 3-folds and for Fano
3-folds. In addition, we prove NHC; for conic bundles satisfying certain additional

conditions.

3.1 Abelian 3-Folds

The goal of this section is to prove that all abelian 3-folds satisfy the integral Hodge
conjecture, and this is proved in Corollary 3.1.9. We actually prove a more general
result in Proposition 3.1.8, namely that we know IHC) is true for abelian varieties
of dimension g if we know IHC; is true for abelian varieties of dimension g that are
principally polarized. Principally polarized abelian varieties are defined in Definition
3.1.1. Note that the cohomology of abelian varieties is torsion-free, and hence N HC4

and T HC, are equivalent.

Background material pertaining to abelian varieties can be found in Appendix C.
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Definition 3.1.1. Let A be an abelian variety equipped with an ample line bundle
L. We say that L is a polarization of A. If in addition, dim A = g and LI =

g!, we say that L is a principal polarization. Equivalently, a principal polarization

is a polarization with type (1,1,...,1) (see Appendiz C for the definition of the
type of a polarization). If A has a principal polarization 0, we say that (A, f) is a

principally polarized abelian variety, and we will use the abbreviation ppav.

Notation 3.1.2. Denote by CH(A) the Chow ring of an abelian variety A, the ring
of eycles on A modulo rational equivalence. For a definition, see Section 8.8. of [11].

Let CHy(A) := CH(A) ® Q.

Definition 3.1.3. 1. Let A be an abelian variety of dimension g, and let D
Ax A A and g: Ax A — A be projection maps . Then the Fourier

transformation F4 : CHg(A) — CHg(A) is the map

Zaly) = a.(p*y.e),

where £ is the Poincare bundle on A x A and where e¥] = -0 L‘%,]—k

2. There is also a Fourier transformation Zp 4 : H*(A,Q) — H*(A,Q) defined

as the map Fp, 4(2) = qu(p*z — el¥1),

Remark 3.1.4. Given an isogeny f : A — B, there is a dual isogeny f : B — A.
Since A ~ Pic®(A), the map f*: Pic®(B) — Pic®(A) induces an isogeny f:B—A
by I1.4.3 of [23].

The main tool used in this section is the next statement, Proposition 3.1.5, which

describes the behavior of the Fourier transformation on integral cohomology and on

Hodge classes.
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Proposition 3.1.5. (/5], Section 1, Prop. 1) Let A be an abelian variety of di-
mension g. If [c] € HP(A,Z), then Fya([c]) € H2%7(A,7), and the map Fp s
HP(A,Z) - H 29“1’(121, Z) is surjective. In addition, the Fourier transformation ex-

tends to complex cohomology classes, so that F, a(H™(A,C)) = H9=59-"(A, C).

Remark 3.1.6. Ifcl : CHg(A) — H*(A,Q) is the map taking cycles modulo rational
equivalence to cycles modulo homological equivalence, then the following diagram s

commutative:
CHo(A) —— H*(4,Q)

fAl lfh,A

CHo(d) —— H'(4,Q)
Consequently, results for the Fourier transformation on Chow groups carry over to
results for the Fourier transformation on algebraic cohomology classes. Specifically,

we have the following :

Lemma 3.1.7. 1. If[0] € H*(A,Z) is the first Chern class of a principal polar-

#ua([a]) - [o=

2. Let f + A — B be an isogeny of abelian varieties. If [c] and ZFy p([c]) are

ization, then

algebraic classes, then

Fna(f() = Fu(Zn ().

Proof. Both statements follow from similar results in [5] applied to the Fourier trans-
formation on Chow groups. The first statement follows from Lemma 1 of Section 3

in [5], and the second follows from Proposition 3iii. in Section 2 of [5]. 0O

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proposition 3.1.8. Let (A, L) be a polarized abelian variety of dimension g. Suppose

that, for all ppav (S, 0) of dimension g, the minimal class

{(geg—_;)!J € HY™(5,2) (3.1)

15 algebraic. Then A satisfies IHC,.

Proof. Let (A, L) be a polarized abelian variety of dimension g, and let [o] €

H?(A,Z) be a class of Hodge type (1,1). We claim that [o] is equal to a sum

o] = Z ai[ L),

where each [L;] is the first Chern class associated to a polarization L; on A and where

c1, ..., € Z. Indeed, note that m[L] + [o] has Hodge type (1,1) for all m € Z,
and hence is the Chern class of a line bundle. By Chap. 4, Cor. 3.3 in [23], a line
bundle Ly is a polarization iff L. L™ > 0 for all v = 0,...,g. If Ly is a line bundle
with first Chern class given by m[L] + [a], then for each v the intersection L”.L§™”
is a polynomial in Z[m] with leading coefficient L9 > 0. Hence, we can choose
m sufficiently large so that the intersection L”.L™" is positive for all v, so that
m[L] + [a] is the first Chern class of a polarization. Since [o] = (m[L] + [a]) — m[L],
the claim follows.

According to IV.1.2. of [23], for every polarized abelian variety (A, L), there
exists a ppav (.5,6) and an isogeny f : A — S with L = f*6. For each polarization

L; in (3.1), let f;: (A, L;) — (S;,6;) be an isogeny to a ppav S;. Then we have :

FIna(le]) = Fna (Z Ci[Li])
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M
= Z ¢i - Fna([Li])
= Z C;* gz’h,A([ffai])

= ZC" . fi*(eg.h1si(0i)), by Lemma 3.1.7.1.

M ) 99_1
= P Sx S R— ,b 5 R BN
Zc fi ([(g-l)!]) y Lemma 3.1.7.2

Since fz maps algebraic classes to algebraic classes, the above sum is an integral
linear combination of algebraic classes, and hence it is algebraic. By Proposition
3.1.5, %, 4 maps classes in H2(4,Z) of Hodge type (1, 1) surjectively onto classes in
H?%92 (A, Z) of Hodge type (g — 1,9 — 1), and since [o] was arbitrary, it follows that
A satisfies THC,. Every abelian variety A is the dual to its dual A, and hence the

proposition follows. 0

Corollary 3.1.9. Abelian 3-folds satisfy ITHC;.

Proof. (See also proof of X1.8.2a. in [23].) The corollary follows from the fact that
the minimal class associated to a ppav of dimension 3 is algebraic. Indeed, the
moduli space of genus three curves has dimension 3 -3 — 3 = 6, and the moduli
space of ppav of dimension 3 has dimension 6. There exists a well-defined map from
the moduli space of curves to the moduli space of ppav given by mapping a curve
C to its Jacobian (J(C),6). By Torelli’s Theorem, if (J(C),0) =~ (J(C'),¢'), then
C ~ C'. Consequently, the moduli space of genus three curves maps injectively

into the moduli space of ppav of dimension 3. Both moduli spaces are irreducible,
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and hence the general ppav of dimension 3 is a Jacobian. As a corollary to the
Criterion of Matsusaka-Ran ([23], X1.8.3.), it follows that every ppav of dimension 3

is isomorphic to a product of Jacobian varieties :
(A,L) ~ (J(C1),6) x ... (J(Cy),8y),

where the product on the right has principal polarization L ~ pf; ® - -- ® p%0n,
with the p; : J(C1) x - -+ x J(Cn) — J(C;) being projection maps.

IN =1, (A L)~ (J,0) is a principally polarized Jacobian, and the minimal
class 367 is algebraic by Poincaré’s Formula (X1.2.1. in [23]). If N = 2, then (A, L)~

(J(Ch),61) x (J(Ch),62), and without loss of generality assume that g(Cy) = 1 and

g(C2) = 2. We then obtain an equality of cohomology classes :

[212 ~ GBS _ i) gt + 93 ({%‘D |

Since (J(C2),0s) is a Jacobian of dimension 2, the class 1 [62] is Poincaré dual to a
point, and hence its pullback via p} is algebraic. The cup product pi[f1] — p3[6a] of
algebraic classes is algebraic, and thus the class %[L]2 is algebraic.

If N =3, then (A4, L) ~ (J(C}), 01) x (J(Cs),62) x (J(C3),8s), in which case the

minimal class associated to the principal polarization is given by

p1[01] ~— p3[02] + pi[6:1] — p5[0s] + P5[62) — p3[6a],

and this class is algebraic. Since 1 < N < 3, it follows that, for every ppav (4, L) of

dimension 3, the class #[L]? is algebraic. O
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3.2 Conic Bundles

Definition 3.2.1. (/26], Definition 6.1.) A morphism f : X — S from a smooth
variety X onto a smooth surface S is a conic bundle if every fiber is isomorphic to a
conic, i.e., a scheme of zeros of a nonzero homogeneous form of degree 2 on P?. The

set {s € S| f~1(s) is not smooth} is called the discriminant locus of f and denoted

by Af.
Proposition 3.2.2. (/26], Proposition 6.2.) Let f : X — S be a conic bundle. Then

1. fis flat, fuwy' is a vector bundle of rank 3, and the natural map X — P( fewyh)
is an embedding. In particular, X is projective if S is projective.
2. If As is non-empty, then it is a curve with only ordinary double points, and

Sing Ay = {s € S| f71(s) is non-reduced}.

Notation 3.2.3. Given a smooth, complex, connected, projective variety X, let p(X)

denote the Picard number of X, that is the rank of the Picard group Pic X.

Proposition 3.2.4. ([26], Proposition 6.3.) Let f : X — S be a conic bundle over
a projective surface S. Then
1. p(X) —p(S) = 1 iff F7Y(C) is irreducible for every irreducible curve C on S.
2. Assume that f~1(C) is reducible for an irreducible curve C on S. Then
(a) C is smooth.

(b) F~YC) is a union of Ey and E, such that f

g, 1 B — C is a P'-bundle
fori=1,2.
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(¢) There are conic bundles g; : V; — S and morphisms o; : X — Y, so that
@; 18 a contraction of all fibers of f|g, and gioa; = f for bothi=1,2. In
addition, Ag, = Ay, p(Y1) = p(Ya), Ay = A, UC, and p(X) = p(Y;) + 1

fori=1,2.

Proposition 3.2.5. Let f : X — S be a conic bundle with S and X projective, and

suppose Ag % 0. Then X satisfies NHC,.

Proof. First, we may assume that p(X) — p(S) = 1. Indeed, if this is not the case,
then 1. of Prop. 3.2.4 implies that there exists a curve C' C S so that FHC) is
reducible. By 2c. of Proposition 3.2.4, X is birationally equivalent to a variety Y
with a conic bundle g : Y — S such that p(X) — p(Y) = 1. By 1. of Proposition
3.2.2, Y is a smooth, complex projective variety. Since NHC; for X is equivalent
to NHC, for Y by Corollary 2.4.4, we may replace X with Y, and by induction on
p(X) ~ p(S), we may assume p(X) — p(S) = 1 without loss of generality.

Suppose that Ay # (. By 2. of Proposition 3.2.2, Ay is a curve. Let C' C Ay
be an irreducible curve. For a general point s € C, f!(so) is the union of two
distinct rational curves C; and Cy such that each C; corresponds to an irreducible
component %; of the relative Hilbert scheme Hilbg-1cyjc. If 61 # 6, then this
would imply f~!(C) is reducible. However, since p(X) — p(S) = 1, 1. of Proposition
3.2.4 implies that f~(C) is irreducible. Hence, C) and Cj are parametrized by the
same component of the relative Hilbert scheme, and thus C and C, are algebraically
equivalent. It follows that Cy and C are homologically equivalent, and since [C] +
[C2] is algebraically equivalent to f*[z] for a point z € S, [C1), [Cy], and 1 f*[z] are

all homologically equivalent.
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By the proof of Proposition 6.2. of [26], Pic S is generated by smooth curves B

such that f~(B) is also smooth and such that B intersects Ay transversally. Let

{Bu,- -5 Bys) }

be a set of such curves generating Pic S. Since f|p-1(p,) : f~'(B:) — B; is a map
between smooth varieties with the general fiber a smooth rational curve, there exists
a section S; by Tsen’s Theorem (see also Theorem 1.1. of [12]).

Since p(X) = p(S) +1, {3 f*[z],S1,- - -, Sps)} generate those classes in H*(X, Q)
of Hodge type (2, 2). Indeed, if a linear combination of {é— f*[z], S1, - - -5 So(s) } is equal

to zero, then apply f,:

1 p(S)
ao-if{m]+;a,,-5’,,= 0

1 p(S)
f* a’O'ﬁf*[m]-’_ZaV’Su = 0
v=1

p(S)

Za,, .B, = 0
v=1

Since {Bl,...,Bp(S)} are linearly independent, it follows that a, = 0 for v =
1,...,p(8). In addition, ap must also equal zero.

Suppose W = cg - 3 f*[a] + c1 -S4+ + cpis) - Spis) € HY(X,Z)/H X, Z)tors-
We claim that, for ¢ = 0,..., p(S), ¢ € Z. Note that, by Proposition 3.27. of [17],
for j =1,...,p(S), there exists D; € H*(S,Z)/H?(S, Z)tors so that D; — B; = b;;.

Then
1
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by the projection formula. Also, by the projection formula,
1
W —Kx=cogf'fa] ~ —Kx+(c1 S+ +cus) Sps)) — —Kx
1
= co - §M = 2[8]+ (e S+ Fepsy - Spis)) ~ —Kx
= co+ (c1- S+ +cys) - Sas)) — —Kx

The above quantity is an integer, since it is obtained via intersection of integral

classes. Similarly, (c1+S1 + -+ + cp(s) - Sprs)) — —Kx € Z. Hence, ¢y € Z as well.
It follows that every class in H4(X,Z)/H*(X,Z)0rs is an integral linear combi-

nation of algebraic classes, and hence X satisfies NHC}. O

Proposition 3.2.6. Let f : X — S be a conic bundle with X and S being projective.

Suppose that S is simply connected. Then X satisfies NHC,.

Proof. Let f : X — S be as above. By Proposition 3.2.5, we may assume that
Ay = 0. Let EY? := H?(S, R1f.Z) be the E, terms of the Leray spectral sequence
associated to f : X — S. Since every fiber is isomorphic to P!, there exists a tubular
neighborhood about each fiber of S. If U C S is a sufficiently small neighborhood of
a point in S, f~'(U) is homeomorphic to U x f~(s), and thus the stalks of R* f,Z
are isomorphic to H*(f~1(s), Z). Since H'(P!,Z) and H*(P!,Z) are trivial for k > 3,
RFf,7 is trivial for k = 1 and for k£ > 3. Hence, EP? is trivial for ¢ > 3 and for
q = 1. In particular, E%?, B3, and E%? are trivial, and thus we obtain the following
short exact sequence :

0— EX — HYX,Z) — E*? -0 (3.2)
Since E5? is trivial for ¢ > 3, no element of E§’2 will be the image of a differential.

Consequently, the elements E2? will be the subgroup of E>? for which di = 0 for
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k > 2. Hence, there exists an inclusion E22 «— E2?  and since the differentials dj
applied to Ez’2 give the zero map for k > 2, E%? ~ E§’2. By assumption, S is
simply connected, and thus there is no monodromy. Hence R?f,Z is isomorphic to

the constant sheaf Z, and E>* ~ H?(S, 7). The sequence (3.2) becomes :

0— E* - HYX,Z) — H*(S,Z) — 0 (3.3)

Since the differentials d; gives the zero map on E;ci’o for k£ > 2, we obtain surjective
edge homomorphisms ey, : Eﬁ’g — E%0. Moreover, the maps ej, vanish for elements
in E,%’O lying in the image of a differential map dy, and in this case non-zero elements

can only come from the d3 map. This gives us the following short exact sequence :

0— EM? % g0 B, g0 L0 (3.4)

Note that the differential d, applied to E%’z and E;"" are the zero map, and no
elements lie in the image of another differential map. Hence, Ey? o~ Ey? and Ey° ~
E;f’o. Applying these isomorphisms to (3.4) gives :

0— EP? 2, B30 %2, g0 0 (3.5)

Again, since R2f.Z ~ 7, Ey* ~ H'(S,Z). Since S is simply connected, H'(S,Z)
is trivial. Hence, Eo® ~ E%0. Note also that Ey° ~ H*(S,Z). Combining these
isomorphisms with (3.3) gives the following :

0 — HY(S,z) L5 HYX,Z) — HX(S,Z) — 0 (3.6)

We now claim that the class f*[z] € H*(X,Z) of a fiber is not divisible. Indeed,
the class f*[z] is the image of the generator of H*(S, Z) under the left map in (3.6).
If f*[z] were divisible, then the exactness of (3.6) implies H?(S,Z) has a torsion

component. Note that, since S being simply connected, H1(S, Z) is trivial, and hence
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H?(S, Z) is torsion-free by the Universal Coefficients Theorem for Cohomology. This
is a contradiction. Hence, the class of a fiber cannot be divisible.

To finish the proof, we now apply the argument in the proof of Proposition
3.2.5. The difference between the Picard numbers of X and S is 1. It follows from
Proposition 3.2.4 that we can choose generators {Bj, ..., Bys)} of Pic S such that
B; and f~!(B;) are smooth for i = 1,...,p(S). Associated to each B; is a section
S; C X, and the set {f*[z], [S1], ..., [Sys)]} is a basis for H*(X, Q).

Now suppose W := co- f*[z]+c1 - [Si]+ - +cps) - [Sos)] € HHX, Z) ) HY (X, Z)1ors
is a class of Hodge type (2,2). As in Proposition 3.2.5, the goal is to show that ¢; € Z

for all i = 0,...,p(S). For j =1,...p(5), let D; € H%(S,Z)/H?(S,Z) be classes

such that D; — [B;] = &;. Then W — f*D; = ¢; € Z. Since Cly .-+, Cps) are
integers, and since W' is an integral class, ¢ - f*[z] € H*(X,Z)/H* (X, Z)0rs. We
know that f*[z] is non-divisible, and thus ¢y must be an integer. In particular, W,
being an integral linear combination of algebraic classes, is algebraic. Since W was

an arbitrary class of Hodge type (2,2), X satisfies NHC. (N

3.3 Fano 3-Folds

In [30], Soulé and Voisin ask if Fano varieties, or more generally, rationally connected
varieties, of dimension n satisfy the integral Hodge conjecture for 1-cycles. In this
section, we show that Fano 3-folds do satisfy the non-torsion version of the integral
Hodge conjecture. The proof itself uses the results from the previous section on conic
bundles, along with the work of Mori and Mukai classifying Fano 3-folds with second

Betti number greater than or equal to 2 and the work of Iskovskih and Sokurov
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classifying Fano 3-folds with second Betti number equal to 1.

Definition 3.3.1. A smooth, comples, connected, projective variety X 1is Fano if its

anticanonical sheaf —Kx 1is ample.
Lemma 3.3.2. Every class in H*(X,Z) and H*(X,Z) is of Hodge type.

Proof. The first claim is Proposition 1.15i. of [20]. The proof uses the long exact
sequence of cohomology associated to the exponential sequence and the fact that
R(Ox) = 0 for 4 > 0, which follows from the Kodaira Vanishing Theorem. The

second claim of the lemma then follows from the Hard Lefschetz Theorem. |

Remark 3.3.3. By Lemma 3.3.2, the rank of the Picard group of X is equal to the

2nd Betti number By := h*(X,Z).

Lemma 3.3.4. ([22], Ezercise 4.10.3.) Let Vg, 4, C P" be a smooth, connected,

complete intersection of hypersurfaces of degrees dy,...,dk. V.4, contains a line
if
k
Z(di +1)<2n—2.
i=1

In particular, V. q, Satisfies NHCy and ITHC, if dim Vg, 4, > 3.

Definition 3.3.5. Let X be a Fano variety. The indez of X is the largest positive

integer r such that there exists an H € Pic X with rH ~ —Kx.

Definition 3.3.6. ([25], Definition 8) A Fano 3-fold X is said to be imprimaitive if
X is isomorphic to the blowup of a Fano 3-Fold along a smooth, irreducible curve.
X is said to be primitive if it is not imprimitive.
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Theorem 3.3.7. (Theorem 5 of [25]) Let X be a primitive Fano 9-fold. Then

1. By < 3.
2. If By = 2, then X is a conic bundle over P2,

3. If By = 3, then X is a conic bundle over P! x P!,

Proposition 3.3.8. (/26/, Proposition 5.12.) An imprimitive Fano 3-fold X with

By = 2 satisfies one of the following conditions :

1. X 1is isomorphic to the blowup of P? along a smooth irreducible curve which is

a scheme-theoretic intersection of cubics.

2. X is isomorphic to the blowup of a smooth quadric Q C P* along a smooth ir-

reducible curve which is a scheme-theoretic intersection of members of |0o(2)].

3. X is isomorphic to the blowup of a Fano 8-fold Y with index 2 and 1 <

(-%Ky)?’ < 5 along an elliptic or rational curve.

Lemma 3.3.9. Let X be a Fano 3-fold with index r > 2. Then X satisfies NHC).

Proof. Let r be the index of X, and let H € Pic X satisfy 7 - H ~ —Kjx. By
Theorem 6 of [21],2<r<4and 1< H3< 7. In addition, there are only two cases
ifr > 3. If r = 4, then X ~ P® and hence THC; and NHC, hold. If r = 3, then X
is isomorphic to a smooth quadric V3 C P*. By Lemma 3.3.4, V; satisfies IHC; and
NHC,.

Now suppose that r = 2. There are 7 possible cases :
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Suppose that H® = 7. By the proof of Theorem 4.2iii. in [20], X is then obtained
from P? by blowing up a point. Hence X is birational to P?, and since P? satisfies
NHC, and NHC, is a birational invariant, X satisfies NHC;.

Suppose that H® = 6. Then, by Theorem 6iv. of [21], X is isomorphic to
P! x P! x P!, X then satisfies NHC; and I HC; by the Kiinneth formula.

Suppose H3 = 5. Then, by Theorem 6iv. of [21], X is birational to a quadric
in P*. By Lemma 3.3.4, a quadric in P* satisfies THC; and NHC}, and any 3-fold
birational to a quadric satisfies THCy and NHCj.

Suppose H? = 4. Then, by Theorem 6iv. of [21], X is isomorphic to the complete
intersection of two quadrics in P°. By Lemma 3.3.4, NHC} holds in this case.

Suppose H® = 3. Then, by Theorem 6iv. of [21], X is isomorphic to a cubic in
P4, and thus NHC; and THC} are true by Lemma 3.3.4.

Suppose H® = 2. Then X is isomorphic to a double cover of P3 with branch
locus B C P3 being a smooth hypersurface of degree 4. Let f : X — P? be the
double cover. X may also be represented as a degree 4 hypersurface in weighted
projective space P(1,1,1,1,2). By [7], Pic X ~ Z, and hence Pic X is generated
by a rational multiple of f*H, where H € H?(P3,Z) is the class associated to a
hyperplane. In addition, the Hard Lefschetz Theorem implies that the submodule of
classes in H4(X,Z)/H*(X, Z)tors of Hodge type (2, 2) has rank 1. By V.4.11.2. of [4],
through every point of X, there exists a rational curve C such that &x(1)-C < 1.
This implies that [C] generates classes in H*(X, Z)/H*(X, Z)ors of Hodge type (2, 2).
Therefore, X satisfies NHC}.

Finally, suppose 7 = 2 and H3 = 1. Theorem 6vi. of [21] implies that Pic X ~ Z.
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Since H generates those classes in H*(X,Z)/H*(X,Z)ors of Hodge type (1,1) and
H?® = 1, H? generates those classes in H*(X,Z)/H*(X, Z)iors of Hodge type (2,2).
Therefore, NHC; holds for X.

In all cases, X satisfies NHC}, and hence the lemma follows.

Proposition 3.3.10. Let X be a Fano 3-fold. Then X satisfies NHC};.

Proof. Let X be a Fano 3-fold, and suppose By > 2. We will distinguish between the
cases when X is primitive and when X is imprimitive. Suppose that X is primitive.

By Theorem 3.3.7, X is then isomorphic to a conic bundle over P2 or to a conic

bundle over P! x P. NHC} is true in both cases by Proposition 3.2.5, and thus X
satisfies NHC].

Now suppose that X is imprimitive. By Proposition 3.3.8, there are three cases
to consider. Both IHC; and NHC; hold in the first two cases, since X is either
birational to P? or birational to a quadric in P*. In the third case, X is birational
to a Fano 3-fold Y with index 2 and By = 1. By Lemma 3.3.9, X satisfies NHC}.
Hence X satisfies NHC if By > 2.

Now suppose that By = 1. By Lemfna 3.3.9, we may assume that the index of
‘X is 1. We now say a Fano 3-fold X with index r = 1 is hyperelliptic if the map

X — PHO(X,~Kx) is a morphism of degree 2.

Lemma 3.3.11. Let X be a hyperelliptic Fano 8-fold with By = 1. Then X satisfies

NHC,.

Proof. By Theorem 9 of [21], there are two cases to cousider :
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1. X is isomorphic to a double cover of P3 with the branch locus being a smooth

hypersurface of degree 6.

2. X is isomorphic to a double cover of a smooth quadric W C P* with the branch
locus D being a smooth complete intersection of W with a smooth quartic in

P4,

Suppose that X satisfies the first case, and there exists a double cover f : X — P3
with branch locus D a smooth hypersurface of degree 6. X may also be represented as
a degree 6 hypersurface in weighted projective space P(1,1,1,1,3). By [7], Pic X ~
Z, and hence Pic X is generated by a rational multiple of f*H, where H € H*(P3, Z)
is the class associated to a hyperplane.

We may assume without loss of generality that D does not contain a line. Indeed,
if there exists a line [ C D, then there exists a line I’ C X mapping 1:1 onto [ via
f, in which case, by the projection formula, f*H — [I'| = H — [l[] = 1. Since
HY(X,Z) ~Z, [l] is a generator, and thus X satisfles NHC}.

Let Gr(P!,P?) be the Grassmanian of lines in P?. The goal is to show that there
exists a line I € Gr(P*,P?) so that, when D restricts to [, the local equations of the
intersection are given by a square.

Choose coordinates o, . . ., z3 for IP?, so that D is the zero locus of a homogeneous
form Fp € Clzy, ..., xs] of degree 6. Let L' C IP? be the line for which zo = z; = 0,

and choose local coordinates yo and y; on L'. Let
gr : PHO(P®, Gps (6)) --» PHO(L, &1,(6))

be the rational map given by g/ (V(F(zo,...,z3)) = V(¥(0,0,y0,91)). Let By C
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PHO(P?, fpa(6)) be the locus of hypersurfaces for which g;/ is not defined. Hypersur-
faces in By are those hypersurfaces that are the zero locus of & homogeneous degree
6 form F' whose monomials all contain an z term or an z; term. These include
all monomials except those 7 monomials having only z, and z5 terms, and hence
codimPHO(Psﬁpa @nBr = 7.

Let

PHO(L', 61,(3)) — PHY(L, 01,(6))

be the squaring map, and let S C PHO(L, &1,(6)) be its image. Note that
COd’l'mpHO(lL’ﬁL,(G))S = 3.

Since codimppoms,6,4(65)) = 7, the subvariety Sp := Bp, U g—z—,l—(gj has codimension 3
in PHO(P?, 6ps(6)). Note that Sz, consists of those hypersurfaces in PHO(P?, Gps(6))
that either contain L' or restrict to L’ to give the square of a cubic form in C[zs, z3).

Given L € Gr(P',P?), define S, C PH(P?, &ps(6)) to be the locus of hyper-
surfaces that either contain L or restrict to L to give a square of a cubic form in
Clzy, z3]. By applying a projective linear tranformations on P? taking L to L/, we
have COd'I;mpHO(PS’{ypa(G))SL = 3.

Consider the union

S= J s

LEGr (P!, P3)

‘The above union S is closed, since it is equal to the projection to PH(P?, Ops(6))

of the incidence variety

{(Z2,1) e PH(P®, Ops(6)) x Gr(P!,P%) | ZN1 is the zero locus of a square}.
42
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In fact, S is equal to PHO(P3, Ops(6)). Indeed, let PSL(4) be the group of
automorphisms on P?. The claim then follows if the orbit of PSL(4)- Sr: is equal to
PHO(IP3, Gps(6)). The morphism ¢ : PSL(4) x Sy, — PH°(P?, Ops(6)) is surjective
if the induced map on tangent spaces is surjective. Indeed, by the Implicit Function
Theorem, there exists an open neighborhood of a point in (Id, V(G)) mapping to an
open neighborhood of ¢(Id, V(G)) of maximal dimension. Since the image of ¢ is
closed, the image of ¢ must contain the open neighborhood of p(Id, V(G)), and thus
the image must have the same dimension as PH°(IP?, &3 (6)), since PHO(IP?, &p3(6))
is irreducible.

Consider the restriction of ¢ : PSL(4) x By — PH°(P?, 0ps(6)). Note that
v : {Id} x By, — By, and, since By is a linear subspace, By is isomorphic to its
tangent space. Therefore, on vectors in the tangent space to S corresponding to

B/ C Si, the map on tangent spaces induced by ¢ has maximal rank.

Let V(G) € Sy be general. G(zo, ..., zs) may be written in the form

To - go(T2, T3) + 1 - g1(T2, z3) + go3(@2, T3) + n(zo, T1, T2, T3),

where n(zo, Z1, T2, Z3) is the sum of all monomials with zo and z; terms whose total
degree is greater than or equal to 2. Note that, for G general, the polynomial gq3 is

a square in C[zy, z3]. If 72 = gog, then a deformation
(r +eh)® ~r* +¢-2rh

allows us to describe elements of Ty Sy is terms of cubics h € C[zy,z3]. Let

hi,...,hs be linearly indepedent cubics so that elements of Ty()Sr are given by
orhi, ..., 2rhs. These four vectors, plus the subspace of vectors coming from By,
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generate Ty(c)S1s, and, as above, by the restriction of ¢ to {Id} x S, — Sy, ¢ has
maximal rank on these vectors.

It remains to show that, via a defommation of the identity mapping on PSL(4),
¢ induces a surjective map on tangent spaces. We now apply the automorphism
oe € PSL(4) given by g > g — €179 — €923, T1 — T1 — €39 — €473, Where €1, ..., €4
are sufficiently small.

We apply oc to G and mod out by the ¢; - ¢; terms to get :
G+ e T golz, T3) + €2 - 3 + go(T2, T3) + €3 - Ty *91(T2, 23) + €4 - 3+ 91(z2, T3)-

Now let G be chosen so that it satisfies the following : the polynomials {gas, Ty -
90, T3+ go, T2+ 91, T3 - g1} are linearly independent as elements of the C-vector space of
homogeneous degree 6 forms in x5 and z3, and the intersection of Span{z, - go, x3 -
9o, 2 - g1, %3 - g1} with Span{2rhy,...,2rhs} is 1-dimensional. It follows that, via
o xSy — PHO(IP?, Ops(6)), we obtain a 3 dimensional subspace of vectors not coming
from Ty(e)Sr/, and thus the map on tangent spaces induced by ¢ is surjective.

In particular, the sextic D either contains a line or there exists a line [ &
Gr(P',P?) such that D N is finite and the zero locus of the square of a cubic
form. D does not contain a line by assumption, and therefore there exists a line
I € Gr(P*,IP?) such that DN is finite and the zero locus of a square of a cubic form.

f~1(1) is isomorphic to a degree 6 hypersurface in weighted projective space
IP(1,1,3), given by the zero locus of y? — f(zo, ), where degy = 3,degz; = 1,
and f is a homogeneous polynomial of degree 6. Since [ is tangent to D at three

points, f~(!) is isomorphic to a curve in P(1,1, 3) that is the zero locus of a poly-
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nomial of the form

y* — fi(wo, 1) - f3 (w0, 1) - f3 (@0, 1),

where the f;’s have degree 2. The above polynomial is a difference of squares, and
hence it factors, implying that f~!(I) is reducible. This implies that there exists a
curve I’ C X such that f.[I'] = [I]. By the projection formula, f*L — [I'] = L —
[1] = 1, and hence [I'] generates H*(X,Z). In particular, X satisfies NHC’.

Now consider the second case, for which there exists a surjective map f: X — W
of degree two, with W  P* a quadric and branch locus D C W a smooth, complete
intersection of W with a smooth quartic @ C P*. The goal now is to find a line
| ¢ W bitangent to Q. By Example 15.21. of [15], the locus B C Gr(P!, P*) of lines
bitangent to D has dimension 4. The locus Ly, C Gr (P, P*) of lines in P* contained
in W has dimension 3 (in fact, Ly ~ P® by Exercise 22.6. of [15]). We need to show
that Ly N B # 0.

By a Proposition in Chapter 1, Section 5 of [13], H*(Gr(P',P*),Z) ~ Z* and
is generated by the Schubert classes A; and Ay, where A; is the locus of lines
contained in a P® and where A, is the locus of lines meeting a P*. Additionally,
HB8(Gr(P',P4),Z) is generated by the Schubert classes ; and a, where oy is the
locus of lines in a IP? and where ay is the locus of lines containing a point and meeting
a P2, By Example 14.7.4. of [11], 4; — a; = 0y;.

We now claim that the cohomology class [B] € H4(Gr (P!, P*), Z) may be written
in the form ¢; - Ay + ¢o - Ay, where ¢; and ¢, are positive integers. Since Gr(]P’l,]P’“)
is a homogeneous space, Theorem 10.8 in Chapter 3 of [16] implies that, for any two

effective cycles C; and Cy in Gr(PPY,P*), we may apply a projective linear transfor-
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mation on Gr(P!,P*) to C; to have the support of the cycles either be disjoint or
intersecting in the expected dimension. Consequently, if C; and C; are effective cy-
cles of complimentary dimension, then C;.Cy > 0. If we now set [B] = c¢1- Ay +cg- Ay,
then, since oy and oy are classes associated to effective cycles, |

0<[B] v a=c,

0<[B] -~ as=cs.

Hence, the class [B] € H*(Gr(P',P*),Z) may be written in the form ¢;A; + cp A,
where ¢1, ¢y > 0 are integers.
Now consider [Lw] -« A; and [Lw] -« As. The intersection [Ly] — A; will

be the class associated to the locus of lines contained in the intersection of W with

a general hyperplane. A quadric in P? contains a 1-parameter family of lines by
Chapter 1, Section 6.4. of [29], and hence this class is associated to an effective
l-cycle. Also, [Ly] — Aj is the class associated to the locus of lines in W meeting
a line. W intersects a line in two points, and thus this is the locus of lines in W
contained in one of two vpoints. By Lemma 3.3.4, there exists a line through every
point of W, and thus the class [Ly] «— A is effective.

In fact, the locus of lines through a point of W is 1-dimensional. Indeed, a line
contained in w € W also lies in T,,W, and hence in W N T, W, which is isomorphic
to a singular quadric in P® with a singularity at w. A singular quadric in P3 is
isomorphic to a cone over a quadric curve in P2, and thus the intersection W NT,, W
is a 1-parameter family of lines.

It follows that [Ly] - A, is an effective class associated to a l-cycle. Hence,

[Lw] ~ [Bl =¢1 + [Lw] ~ A1 + co - [Lw] ~ Aj is the class associated to an effective
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1-cycle. In particular Ly N B # 0.

Let [ then be a bitangent to @ contained in W. As in the previous case, we
consider the inverse image of [ in W via f. Since the ramification locus of f is the
intersection of W with a quartic, f~1(1) is isomorphic to a hypersurface in P(1,1,2)
given by the zero locus of y? — g(wg, 1), where degy = 2, degz; = 1, and degg = 4.
Since [ is a bitangent, the polynomial g(zo, ;) is a square, and thus f~'(1) in X is

reducible. As in the first case, it follows that X satisfies NHC). O

By Lemma 3.3.11, we may now assume that X is not hyperelliptic. The following

lemma will allow us to assume in addition that | — Kx| has no base points.

Lemma 3.3.12. Let X be a Fano 3-fold with the property that |—Kx| has a basepoint.

Then X satisfies THC.

Proof. By Prop. 5 of [21], if |- Kx| has a basepoint, then X is birationally equivalent

to a Fano 3-fold with index r = 2. Therefore, X satisfies NHC; by Lemma 3.3.9. [

By Lemmas 3.3.11 and 3.3.12, we may now assume the following about X : it
has Picard number 1, it has index 1, it is not hyperelliptic, and | — Kx| has no base
points. By Proposition 11i. of [21], —Kx is very ample, in which case X is a Fano

3-fold of the principal series ([21], Def. 10.). Theorem 16 of [21] implies that X

contains a line under the embedding induced by —Kx. Since Pic X =~ Z, X must

satisfy NHC,. This exhausts all cases, and hence the proposition follows.
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Chapter 4

Hypersurfaces in P? x P2

This chapter is devoted to determining whether or not smooth hypersurfaces in

P2 x P? satisfy the integral Hodge conjecture. In this context, the integral Hodge
conjecture and the non-torsion integral Hodge conjecture are equivalent by the Lef-
schetz Hyperplane Theorem (Lemma 4.1.3). If W C P? x P? is a hypersurface of
bidegree (a; b) (see Notation 4.1.1 for an explanation of bidegree), then there are sev-
eral cases in which we are able to determine if the integral Hodge conjecture holds.
It a and b are relatively prime, then the integral Hodge conjecture holds for W by
1. of Corollary 4.1.5. Additionally, if one of a or b is equal to 0,1 or 2, then the
integral conjecture holds for W (Lemma 4.1.2, Corollary 4.1.5, and Remark 4.1.6,
respectively).

Using an adaptation of the method used by Kollar in [4] for hypersurfaces in P4,
we show that, for strictly positive integers a,d,and r satisfying suitable conditions,
very general hypersurfaces of bidegree (da, dr) fail the integral Hodge conjecture (see

Proposition 4.2.1 for a precise formulation).
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The most interesting case not resolved is when W has a bidegree of the form
(3,3r), where 7 > 1. In this case, W is a smooth, complex, connected, projective
variety of dimension three that is not of general type, and it would be interesting to
see if such a 3-fold could fail the integral Hodge conjecture. The only subcase that
is resolved is when 7 = 1, in which case W satisfies the integral Hodge conjecture by

Lemma 4.3.1.

4.1 Preliminary Results

Notation 4.1.1. Let D, denote the divisor of a non-zero section of the sheaf
P 0p2(a) ® p;Op2(b)

on P2 x P2, where py : P? x P2 — P? is projection onto the first factor and ps :
P2 x P2 — P? is projection onto the second factor. We say that such a divisor has

bidegree (a,b).

Lemma 4.1.2. Let W C P? x P? be a smooth hypersurface of bidegree (a,b) such

that one of a or b is equal to 0. Then W satisfies IHCy and NHC}.

Proof. If one of a or b equals 0, then W ~ X x P2, where X C IP? is a smooth curve.
Since X is a curve, H®(X,Z) is trivial for k > 3. Hence, by the Kiinneth formula,

we have
HYW,Z) ~ H(X,Z) ® H* (P, Z) ® H*(X,Z) ® H*(P*, Z).

Since X is a Riemann surface, all classes in H°(X,Z) and H?*(X,Z) are algebraic.

Moreover, all classes in H4(IP%, Z) are algebraic, since H*(P? Z) is generated by a
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class associated to a point. Hence, the first component in the above sum must consist
of algebraic classes. Finally, H?(P?, Z) is generated by the class of a line, and hence

every class in H*(P?,Z) is algebraic. Thus, every class in H4(W, Z) is algebraic. 0[]

Lemma 4.1.3. Let W C P? x P? be a hypersurface of bidegree (a, b) with a,b > 0.

Then

1. Z* ~ H¥(W,Z). In particular, H*(W,Z) is torsion-free, and hence IHC, and
NHC, are equivalent.
2. Q* ~ H(W,Q) = H"\(W,Q) n HX(W).
3. Q% = HYW, Q) = HYW, Q) n B**(W).
Proof. Let j : W < P? x P2, To prove 1., note that H?(P? x P2, Z) ~ Z2 by the

Kiinneth Formula. By the Lefschetz Hyperplane Theorem, j* : H2(P? x P2, Z) —

H*(W,Z) is an isomorphism, and so part 1. follows.

To prove 2., note that H*(P? x P?, Q) ~ Q? by the Kiinneth Formula. Note also
that H*(P* x P2, Q) = H*(P? x P2, Q) N H“'(P? x P?), By the Lefschetz Hyperplane
Theorem, j* : H*(P? x P?,Q) — H*(W, Q) is an isomorphism. Since j* preserves
Hodge type, it follows that H*(W, Q) = H (W, Q).

" To prove 3., note that the Hard Lefschetz Theorem gives an isomorphism
HAW,Q) = HYW,Q)

given by the cup product with a cohomology class associated to an ample divisor. It

follows that every element of H*(W, Q) has Hodge type (2, 2). O
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Proposition 4.1.4. Let W C P? x P? be a smooth hypersurface of bidegree (a,b)
with a,b > 0. Suppose there ezists a non-algebraic class a € H*(W,Z) of Hodge type

(2,2) such that p - « is algebraic for some prime p. Thenp|a andp | b.

Proof. Let o be as above. By Proposition 2.3.1, there exists L € H %(W,Z) such
that L — a = 1 and p | (L — A) for all algebraic classes A € HY(W,Z). Let
i : W < P? x P? be the inclusion map. By Lemma 4.1.3, H2(W, Z) =~ Z? is generated
by By = *[Do.] and By :=*[Dy ], where Dy is a divisor as described in Notation

4.1.1. Hence, L may be written in the form
[L} =1z, - B+ By,

where z,,29 € Z .

It cannot be the case that both z; and z, are multiples of p. Indeed, since

ptlL] o], or

p{(z1+ By — [o] + 22+ By~ [0]),
and since By - [a], By — [o] € Z, at least one of z; and z must not be a multiple
of p.

Since p does not divide both z; and zo, assume that p { z;. The class B? is
algebraic, implying p | (L — B2). Since L vag =x-a, p| (z1-a) Since p{z1
by assumption and sincé p is prime, p | a. By a similar argument, p { z, implies that
p| b If p|aand p|b, the proposition holds. We therefore assume that p divides

one of 21 and z,.

Now suppose p | 2 and p { z;. Consider

[L]\/Bl\—/BQZ.Tl-b—I—Z'Q'&.
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This expression is a multiple of p, and since p | 25, p | (2 - a). It follows that
p | (z1-b). Since p{ z1, it must be the case that p | b. Also, we already saw that
p{x; implies p | a. Thus p | @ and p | b. Using a similar argument, we also see that

p{ g and p | 2 implies that p | a and p | b. Hence, p | a and p | bin all cases. O

From Proposition 4.1.4, we are able to show I HC, holds in a number of cases, as

given in the following Corollary :

Corollary 4.1.5. Let W C P? X P? be a smooth hypersurface of bidegree (a, b), where

a,b>0.

1. Ifa and b are relatively prime, then W satisfies IHC, and NHC).

2. If one of a or b is equal to 1, then W satisfies IHC, and NHC);.

Remark 4.1.6. Let W be as in Proposition 4.1.4. If a or b is equal to 2, then
W — P? is a conic bundle, and hence W satisfies I[HC; and NHC, by Proposition

8.2.5.

4.2 Hypersurfaces Failing THC,

The following proposition is used to show that there exist very general hypersurfaces
of P? x P? failing THC). These hypersurfaces W have bidegree (da,dr), where d > 4,
r>3,r<d and (“}?) < ("%).

The proof is an adaptation of the argument Kolldr in 2.2. In this case, we choose
a very general hypersurface X C P3 of degree d > 4. By the Noether-Lefschetz

Theorem, we may assume that every curve C C X has degree divisible by d. We

then choose a family ¥ C P? x X of intersections of X with hypersurfaces in P? of

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




degree r. Given Y, there exists a projection map q : Y — X, and if H is a hyperplane

section of X, then, for all curves C' C Y, d | [C'] — ¢*[H] by the projection formula.

Given a suitable Y, we then choose a point p € P? and project from this point to
obtain a map ¢, : ¥ — P? x P2. As in Kollar’s example, the image Y” will be highly
singular, but ¢, is generically 1:1, 2:1 on a divisor, 3:1 on a curve, and 4:1 or higher

on points. Proving this fact about the map ¢, is the most difficult part of the proof.

Proposition 4.2.1. Let a,7,d be strictly positive integers satisfying the following

conditions :
1.d>4 andd+#6
2.r>3
3 r<d

Then very general hypersurfaces in P? x P? of bidegree (da, dr) fail IHC.

Proof. To prove the proposition, we will prove the following statement :

(¥) Let r,d, and a be strictly positive integers satisfying the following conditions
. r>3,d> 4,7 <d. There exists a hypersurface Y C P2 x P? of bidegree (da, dr)

so that, for all curves C' C Y, d|6 - ([Do,1] ~ [C)).

Lemma 4.2.2. Statement (%) implies the proposition.

Proof. Hypersurfaces in IP? x P? of bidegree (da, dr) are zero loci of bihomogeneous

polynomials of bidegree (da, dr) in

(C[.’ZI(), Z1, %2, Yo, Y1, y2]
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Hence, hypersurfaces of bidegree (da, dr) in P? x P? are parametrized by P, where

_ (da+2 ‘ dr +2 B
o= (") ("))

Associated to IP? is a universal hypersurface 2 C P9 x P? x P2 and a projection
map 7 : & — P%. By statement (x), there exists a fiber 771(py) such that for all
curves C' C 7 (pqo), d|6 - ([Do,1)] ~ [C]). Let 5 be the relative Hilbert scheme of
curves supported on fibers of 7 : £ — P?. Using the notation from Appendix B,
define W C P9 to be

( U pA(A)) U{t € P? | 7~1(¢) is not smooth},

Acs

where . is the set of all irreducible components A of 5# such that ps(A) # P9. Let

s € P9\ W. If C C n7!(s) is a curve, then there exists an irreducible component

% C I such that pe(%) = PY and, for some point c € ¥, 7' (c) ~ C. Also, there
exists a point ¢y € ¥ such that p(co) = po. Thus, Cp := 7’5 (co) is a curve lying on
Y' .

There exists a class Hy € H*(% x P? x P?, Z) obtained by pulling back the class
[Do,1] via the projection map € x P? x P? — P2 x P2, and let & € H%(% x P? x P2, Z)
be the class associated to x. By the Leray spectral sequence, there are the following

maps :

H%(% x P? x P2, Z) — H(¥, R*prg.Z)
H(% x P* x P*,Z) — HY(%, Ropre.7Z)
We now have the cup product map :

H(¥, R’pre.Z) ® H(€, Ropry.Z) — HY(€, R®pry.7Z).
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Since R8pre.7Z is isomorphic to the constant sheaf Z on €, the cup product will
be constant on fibers, which implies that, in P? x P?, the products [Dg,] x C and
[Do,1] % Co are equal. Since d | 6 - [Do1] x Co, d | 6-[Dos] x C. The curve C' and
the point s was arbitrary, and thus, for very general hypersurfaces W C P? x P? of
bidegree (da, dr), curves C C W satisfy

d|6-[Do1] xC. (4.1)
Finally, W is an ample subvariety of P> x P?, and hence every class in H*(W,Z)
has Hodge type (1,1) by the Lefschetz Hyperplane Theorem. By the Hard Lefschetz
Theorem, every class in H*(W,Z) has Hodge type (2,2). There exists a class a €
H4(W,Z) such that & — [Do1] = 1 by Proposition 3.37 of [17], and a has Hodge

type (2,2). Tt can’t be algebraic, however, by (4.1). Therefore, W fails IH c,. O

Let a,r,and d be integers satisfying the conditions : r > 3, d > 4, r < d. Let
X C P be a smooth hypersurface of degree d that is not contained in the Noether-
Lefschetz locus. Then Pic X =~ 7 and is generated by a hyperplane section. Let
Y’ ¢ P2 x X be a general member of
|prae Opz(a) X priyOps(r)],

where prp: and pry are the projection maps P2 x X — P? and P? x X — X,
respectively. Note that Y’ is smooth by Bertini’s Theorem. Also, curves on Y'

satisfy a property given by the following lemma :

Lemma 4.2.3. For every curve C CY', d | deg(pry Ox(1)|a).

Proof. Let C' C Y’ be a curve. Then, by the projection formula,

prie(0x (1)) — [0 = prau(prie(0x(1) — [O]) = ei(@x(1)) = prx.[C]
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Since Pic X is generated by complete intersections with hypersurfaces in P3, the

above cup product ¢;(Ox (1)) — prx. [é] is a multiple of the degree of X, and hence

price(Ox(1)) — [Cl e d - 7.
O

Now fix a point p € P?\ X, and define (P?)V to be the space of lines in P3
containing p. We then obtain a map ¢, : P> x X — P? x (P?)Y given by the identity

map on the first factor and projection from p on the second factor.

Y — P?2x X

gl o |

Y —— P2 x (P2)V

We define ¥ to be the image of Y’ under ¢,. We claim the (highly singular) variety

Y will satisfy condition (x), and this follows if we prove the following :

(#%) The map ¢, : Y/ — Y is generically 1:1, 2:1 on a divisor of Y”, 3:1 on a

curve of Y, and 4 : 1 or higher on points of Y”.

Lemma 4.2.4. Condition () implies that Y satisfies condition (x).

Proof. Let C'C'Y be a curve, and consider [p,*(C)] € Ho(Y",Z). Since ¢, is 1:1, 2:1,
or 3:1 on ¢, (C) by condition (++), ¢, ([ 1(C)]) is an element of {[C], 2[C], 3[C]} C
H,(Y,Z). By the projection formula,

@p[Doa] ~ [0, ()] = @p, (5[ Don] ~ [12,(C)])

= [Do1] ~ @10, (C)]
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= [DO,I] ~M - [C])

where M = 1,2,3. Since prc(Ox(1) - @i[Doal, dl(deg@pDo1] —~ [, (O))).
Since M might be 2 or 3, d|6 - deg[Dg1] —~ [C].

It remains to show that Y is a hypersurface of bidegree (da, dr). Note first that
dimY = 3, since ¢, is generically 1:1 by condition (sx). The components of the
bidegree of ¥ are given by the intersection numbers [Y] « [Do1]* — [Dio] and
[Y] ~ [D10)? — [Do1] on P2 x P2, Since ¢, is generically 1:1, it suffices to compute
the intersection numbers X[D10]* — @3[Do,1] and @5[Di,0]* — @j[Doa] on Y.

Since Y is a family of curves of degree rd in X, @}[D;]® is the class associated
to a degree rd curve lying in {pt} x P2. Hence, ©}[D10]> — @5[Doa] = rd.

The class ¢5[Do,1]* is represented by the inverse image of P? x {pt} under ¢, :
Y’ — Y. A point in the second component of P? x IP? is associated via ¢, to a line
I € (P?)Y, and hence a point (s1,82) € Y’ will lie in the inverse image if 5o € X N 1.
Since deg X = d, X N1 consists of d distinct points for general /. For each of these d
pointé, s; must lie on a degree a curve in P?, and when we intersect these d curves
of degree a with @}[D1], we get da points. Hence, Y is a hypersurface of bidegree
(da,dr) in P? x P2

d

Tt remains to prove condition (x*), and to do so, we will work with the universal
family of degree r curves in X lying in PH?(X, &x(r)) x X. Since 7 < d, there exists

an isomorphism

¢ : PHO(P®, Ops (1)) — PHO(X, Ox (1)),
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and hence we may replace PH(X, Ox(r)) with PHO(P3, Ops(r)).

Let 4! C PHO(IP?, Ops(r)) X P? be the universal family of hypersurfaces of degree 7
inIP?, and let 25 C PHO(IP3, Ops(r)) x X be & xps X, which is the universal family of
intersections of X with degree r hypersurfaces in P3. Let I1 : % — PHO(P?, Ops(r))

and ¢ : %, — X be the projection maps.

PHO(P3, Ops(r))

Lemma 4.2.5. Y’ C P? x X is isomorphic to P? x; % for a general choice of

morphism i : P2 — PHO(P3, Ops(r)) such that i* OpHop3,6,5(r)) (1) = Op2(a).

Proof. Let P? x P? have coordinates {yo, ..., ¥y, Zo,.--,23}. An element

Z € |pri Op(a) ® pri Ops (1))

will be the zero locus of a bihomogeneous polynomial of bidegree (a,r) of the form

> bi(yo, .y 92) - .

[Il=r

Now let PHO(IP3, Ops(r)) x IP* have coordinates {{as}zj=r, o, - - ., z3}. The universal

family %/ is then the zero locus of the polynomial

E a;-a:f.

|I|=r

We then have a natural map 4 : P2 — PHO(P?, ps(r)) given by

[vo:vr:ya) = [ .. br(voy.--y%2): ...
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The inverse image via i of a hyperplane in PH®(P3, Ops(r)) will be the zero locus of
a degree o curve in P2. Therefore i*Oppo(s o,4(r)) (1) = Op2(a). Also, note that 7 is
isomorphic to P? x; #’. A general Y’ C P? x X is isomorphic to Z NP? x X, and

hence Y/ ~ P? x; %,. O
We will now prove (%) by considering a general choice of
i: P2 — PHOP3, Ops(r)).

Define &, C PHO(P?, Ops(r)) x (P?)Y to be the image of % C PH(P?, Ops(r)) x X
under the map that is the identity on the first factor and projection from p on the

second factor :

%, —— PHO(P?, Opa(r)) x X

| |

@ —L s PHO(PS, Ops(r)) x (P2)Y

Let
Zrs = {(2,1) € PHO(P?, Ops(r)) x (P*)" | length((§ 0 5)7 (2,1)) = s},
and let 7y : Zy. s — PHO(P3, Ops(r)) and my : £ 6 — (P?)¥ be projection maps.

gfr,s e (PZ)V

-

PHC (IP’3, Op3 (1))
Define Z, s := m1(%r,s), and define

Ors = {y € PHO(P®, Ops(r)) : dim(m 0 77 ' (y) > 1)}
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Zr,s 18 the locus of degree r hypersurfaces Z C IP? so that there exists an [ € (P2
satistying length(IN (XN Z)) > s. O, is the locus of degree 7 hypersurfaces Z ¢ P3
with a 1-dimensional subvariety of lines I € (IP?)V satisfying length(IN (X N Z)) > s.
If z € i(P?) also lies in Z,,, then ¢, will be s : 1 on TI"1(z), and if z € i(IP?) also lies

in O, then ¢, will be s : 1 for a 1-dimensional subvariety of TI~1(2).
Lemma 4.2.6. If, for 2 < s < 4,

1. COdiWLpHO(PB,gps(T))OT,S >s—1, and

2. codimpHo(PaﬁPs ) Zrs = 85— 2,

then condition (xx) holds.

Proof. Suppose COdimpHO(]pI‘},ﬁps ()Or,s 2 s — 1 and codimpgops 4 oo (r)) Zrys 2 8 — 2 for
2 < s < 4. By Lemma 4.2.5, we may represent a general Y’ C P? x X by choosing
a morphism ¢ : P? — PHO(P3, Ops(r)) with Y’ o~ II~1(i(P?)). We choose i so that
II71(i(P?)) is smooth and so that i(P?) intersects Z,, and O, , with the expected
dimension for 2 < 5 < 4.

Note that, given 2z € i(P?), ¢, is s : 1 for at most a 1-dimensional subvariety
of II"*(2), since dimII7!(z) = 1. The locuus of points on Y” for which ppiss:1
is determined by (P?) N Z,, and (P?) N O,,. dim(P?)NO,, < 3 — s, and over
each point of (P?) N O, is a 1-dimensional family for which @p is s : 1. Therefore,
there exists a subvariety O, C II"*((P?) N O,,,) of points for which ¢, is s : 1, and

dimO; <3—s+1=4—3

Similarly, dim(P?) N Z,; < 4 — s, and over a genral point of (P2) N Z,, is a

O-dimensional family for which ¢, is s : 1. Therefore, there exists a subvariety
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Z, c IT"Y{(P*)N Z,,) of points for which ¢, iss:1,and dimZ, <4-s+0=4—s.
The s : 1 locus is contained in Z,U O,, which has dimension 4 — s. Hence, on Y”,
p is generically 1:1, 2:1 on a divisor, 3:1 on a curve, and 4:1 or higher on points.

O

Let [ € (P?)Y, and let P C P3? be a plane containing p. If #(X NI) > s,
let z1,...,Z4xm be the points of X NI, and let s; be the set of subsets of

{z1,...,Tgxn} With cardinality s, and define
Zyspy=1{Z € PH*(P, Op(r)) : AT € Qs such that T' C Z}.

Define

Zr,s,P = U Zr,s,P,l-
{le(P2)V:ICP and #(XNI)>s}

The proof of the proposition is complete if we can establish hypotheses 1. and 2.

of Lemma, 4.2.6, which we do in the following lemma, :

Lemma 4.2.7. Let 2 < s < 4, let 1 € (P?)V satisfy #(X N1) > s, and let P C P* be

a plane containing p. Then,
1. codimppo(p,op(r)) Lrs, Pl = S-
2. codimppo(p,op(r)) Lrsp = 8 — 1.
8. codimpo(ps o, (r))Or,s = 8 — 1.
4. codimpro®s o5 (r)) Lrs = S — 2.

Proof. Let us prove the first assertion. There are two cases to consider, namely

when s < r and when 7 < s. Suppose s < r. Then, for [ € (P?)V such that [ C P,
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X N1 consists of d points up to multiplicity. Zrspy 18 a finite union of at most
(¢) subvarieties of PH(P, &p(r)), and each subvariety is the collection of curves of
degree r in P containing s points. To compute the dimension of Zrs.pl, 1t suffices
to compute the dimension of the collection of curves of degree r in P containing s

points.

Suppose s < r. To prove the first part of the lemma, it suffices to show that the
linear system of degree r curves in a plane containing 7 points has no unassigned
base points. If » = 1, then the linear system of lines in a plane through a point
has no unassigned base points. Now suppose that a linear system of degree k curves
containing & points has no unassigned base points. Let qy,...,qz41 be k + 1 points
in the plane, and let & be another point distinct from the ¢;. Then there is a degree

k curve Cy containing g1, ..., g but not z, and there is a line Cy containing g, but

not z. C1UC, is a degree k+1 curve containing g1, .. ., gy41 but not . The point z
was arbitrary, and hence the linear system of k+1 curves in the plane containing k+1

points has no unassigned base points. It follows that codimpgo(p,gp(r)) Zr,s,p1 > S-

Now suppose that s > 7. This occurs only if s = 4,7 = 3. Note that a cubic in P
containing 4 collinear points on a line { must contain /. If V(f) is a cubic containing

I, then F' = F; - G, where Fj is the degree 1 form such that [ = V(F;) and G is a

homogeneous polynomial of degree 2. Now
dim PHO(P™, Ops(T)) = (n ;}- T) -1,

and hence the collection of all cubics in P containing [ is a subvariety of the space
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PH(P, 6/»(3)) whose codimension is equal to

342 242 _4
2 2 )7
In this case, codimpgo( Pop(r) rspl = 4= 5. This proves the first claim.

To prove the second claim, note that Z,.  p is a 1-parameter family of varieties of

codimension at least s. Therefore, Z, ; p must have codimension at least s — 1.

To prove the remaining two claims, consider the rational map
gp : PHO(P®, Ops (1)) —» PHO(P, Op(r))

given by restriction of a hypersurface to the plane P. Let Bp C PH O(IP3, Opa(r)) be
the subvariety for which gp is not defined. First we note that the subvariety Bp has

large codimension :

Lemma 4.2.8. codimPHO(Pa,gFB(r))Bp >6 forr>2.

Proof. Bp is comprised of hypersurfaces of degree r in IP? containing P. If P = V(fp),
then z € Bp if z = V(h - fp), where h is a homogeneous polynomial of degree r — 1.

Since

T

dim PHO(P", Gps (1)) = (" + T) ~1,
this implies that

. r+3 T+ 2 1
COdlm]pHO(lpa’ﬁpa(r))Bp = ( 3 ) — ( 3 ) = -2*(7“{‘2)(7"'!" 1)

If 7 = 2, then codimpgoes g,5(r)) Bp = 6. Since

% (%(r + 2)(r + 1)) = %(2r+3) >0,
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COdimpHO(Ps’ﬁw(r))Bp Z 6 for r > 2. O

Now suppose y € O, ;. Then dim 7, 0 77Y(y) = 1. Given a plane P C P? contain-
ing p, let Lp C (P?)Y be the locus of lines contained in P, and note that dim Lp = 1.
Then (mpon~Y(y))NLp '7é B, and hence there exists a line I C P through p such that
#(INII"'(y)) > s up to multiplicity. It follows that y € MU Bp. By Lemma
4.2.8, COdimPHO(H»B,g’PS ) Bp > 6, and we already proved that codimpgo(p,¢p(r)) Lr,s, P =
s — 1. Hence, m U Bp is a subvariety of PH%(IP3, £ps(r)) of codimension
> s~—1, and since O, ; C m U Bp, COdimpHO(Pliyﬁpg(r))Orls > s — 1. This
proves the third part of the lemma.

It remains to show that codimpgops 4 s (1) Zrs = 8 — 2. Let y € Z,,. Choose a

pencil W of hyperplanes in P? such that every hyperplane in the family contains p.

Then every line through p is contained in a hyperplane in the pencil. Therefore, a
line [ C P through p with #(I{NII"*(y)) > s must lie in one of the hyperplanes in

the pencil. Hence,

Zr,s - U g;l(ZT,s,P) U Bp.
PCW
We proved that codimpgo(p,g,(r))Zrs,p = 8 — 1, and by Lemma 4.2.8,
COdimI[DHD(PS’ﬁps o) Bp = 6.

Thus codim;pHO([psﬁPa(r))ggl(Zr,s,p) UBp > s— 1. Since Z,, is contained in a 1-
dimensional family of subvarieties of PH®(P3, &ps(r)) of codimension s — 1,

CodimPHO(Pa,ﬁps(,))Zm Z s— 2.
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O

Remark 4.2.9. Using Corollary 2.5.7, we can get a result analogous to Proposition
4.2.1 by noting that a divisor of bidegree (a,r) is very ample when both a and r are
strictly positive. If X := P2 x P? and L is a very ample divisor of bidegree (a,7),
then, by Corollary 2.5.7, very general hypersurfaces Y C P? x P? of bidegree (da, dr)
fail ITHC, when I HC} fails for very general hypersurfaces of degree d in P* and when

d does not divide L* = 6a%r2.
4.3 TUnresolved Cases

One case left unresolved is the case where a = 1 and d = 3, or hypersurfaces in.
P? x P? of bidegree (3,3r), where r > 1. Such hypersurfaces are not of general type,
and it would be interesting to find a smooth, complex, connected, projective variety
of dimension 3 not of general type that fails IHC,. In the case where r = 1, we can

show that the integral Hodge conjecture holds:

Lemma 4.3.1. Let X C P2 x P? be a smooth hypersurface of bidegree (3,3). Then

X satisfies THC).

Proof. By 2.5.6, it suffices to show that X satisfies I HC) when X is very general. A
hypersurface X C P2 x P2 of bidegree (3,3) has two elliptic fibrations m; : X — P?
and 7y : X — P? given by projection onto the components of P? x P?. The fibers of
7, and e are degree 3 curves in P?. Let N := (342'2) — 1, let PY parametrize cubic
curves in P2, and let 2 C PN x P? be the universal hypersurface of cubics in IP?. If
p: Z — PN is the projection map, then X is isomorphic to p~H(9), where S C PV

is isomorphic to P? and the fibers of p are the fibers of ;.
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Let . C PN parametrize the family of cubics in P? containing a line. Such cubics
are isomorphic to V(F' - G), where F' is a homogeneous linear form in 3 variables and

G is a degree 2 form in 3 variables. The dimension of .% is then equal to

(C5)-)+(E3)-)

since ( 5 ) — 1 is the dimension of the space of ¢ forms in 3 variables modulo scalars.
In particular, .Z is codimension 2 subvariety on PV, and hence .% intersects S. This
implies that there exists a fiber of m; containing a line. By symmetry, there also
exists a fiber of 7y containing a line.

Now let H be a line in P2, By above, there exists a curve C; such that 1 [C1] ~
[H] = [C1] ~ 7}[H] = 1, and there exists a curve Cy such that 7,[Cy] — [H] =

[Cy] ~ m3[H] = 1. Proposition 4.1.4 implies then that X must satisfy JHC}. O
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Appendix A

Algebraic Neighborhoods

Remark A.0.2. All of this material is found in [8].

Definition A.0.3. An algebraic set in P™ is the zero locus of a finite set of homo-

geneous polynomials in n + 1 variables.

Definition A.0.4. ([8], Definition 2.1) Let M be an algebraic set in P™, and let X be
an algebraic subset of M so that M \ X is nonsingular. An (algebraic) rug function
for X in M is a rational function o : M — R U {oo} such that a(z) > 0 for all

z €M and o 1(0) = X.
Remark A.0.5. Two notable facts about rug functions are :

1. Any set X as above has a rug function.

2. A rug function has only finitely many critical values. This is used in the next

definition.

Definition A.0.6. Let M and X be as above. A subset T with X C T C M 1is an
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algebraic neighborhood of X in M if T = o~1([0,4]) for some rug function o and

some positive real number § that is less than all critical values of §.

Proposition A.0.7. Let T be an algebraic neighborhood of X in M. Then the

inclusion i : X — T 1is a homotopy equivalence.

Remark A.0.8. If X and M are smooth, then every algebraic neighborhood of X in

M is a smooth tubular neighborhood of X in M (cf. [8], Corollary 1.9).

Proposition A.0.9. Let T\ and Ty be algebraic neighborhoods of X in M. Then

there is a continuous family of homeomorphisms h: I x M — M such that

1. h() = 'id]y[
2. hi|x =1idx forallt €I

8. hi(Th) = Ty, and hy is a smooth diffeomorphism of Ty \ X onto Ty \ X.

Remark A.0.10. For the following lemma, let m : X — B be a morphism between
smooth, complex, connected varieties whose fibers are smooth, complez, connected,

projective varieties of dimension d. We let X; := w~1(t).

Lemma A.0.11. Let X, be smooth. Then there exists an open neighborhood U C B

of s so that, for allt € U, there is a homeomorphism 0510 Xs — X,

Proof. Since B is smooth, there exists a rug function « for s in B by Remark A.0.5.
Hence there is an algebraic neighborhood V' of s. Moreover, a o 7 is also a rug

tunction, and, after possibly shrinking V, #=*(V) is an algebraic neighborhood of
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X,. By Remark A.0.8, 771(V) is a tubular neighborhood of X,. Taking an open

UcCV, we obtain an open tubular neighborhood n=*(U) of Xj.
Since 7~ 1(U) is a tubular neighborhood, there is a homeomorphism ¢ : 7=1(U) —

X, xU preser{fing fibers. Hence there is an induced homeomorphism o ;. O
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Appendix B

Relative Hilbert Scheme

Remark B.0.12. Two references for the relative Hilbert scheme are VI.2. of [9] and

Chapter I of [22].

Let X and B be smooth, complex, connected, varieties with a surjective, projec-
tive morphism 7 : X — B. Associated to eaéh polynomial P € Z[z] is a scheme 5%
parametrizing all subvarieties of X that are supported on a fiber and have P as its
Hilbert polynomial. There exists a natural map pp : 5 — B mapping a subvariety

Z C Xy toy € B. By Theorem 1.4. of [22], pp is projective. Define 5%, p to be

the disjoint union of all #% for all P € Z[z]. Since Z[z] is countable, S5 is a

countable union of complex varieties.

Notation B.0.13. (9], VI.2.) Let 5xp be the relative Hilbert scheme of subvari-

eties of X supported on fibers of m: X — B. Let X; = n~1(t).

Definition B.0.14. Let ¥ C % be an irreducible component. There exists a
flat, universal family x¢ == {(Z,z) € € x X : z € Z} with a commutative diagram

of maps
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Xe — X

“ | |

where pg(Z) =y if Z is supported on X,.

Definition B.0.15. Let Z C X, be an effective I-cycle Z. The support of Z, denoted

Sy C B, 1is given by :

U ps (%)

{ir‘reclucible %C(ﬁ’x/y:ze(g}
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Appendix C

Abelian Varieties

Definition C.0.16. A complez torus of dimension g is the quotient V/A of a com-

plex vector space V' of dimension g with a lattice A = Span{)i,..., Aog}

Definition C.0.17. An isogeny between two complex tori X and X' is a surjective

homomorphism with a finite kernel.

Remark C.0.18. Let X = V/A be a complex torus.

1. Since the quotient map w: V — X is also a covering map, we obtain :

Wl(X,O):Hl(X,Z)ZA (Cl)

2. The Universal Coefficients Theorem then implies that :

HY(X,Z) ~ Hom(A, Z). (C.2)

3. Finally, note that X is homeomorphic to the product of 2g S*’s, in which case

the Kunneth formula implies :
H™(X,Z) ~ \ H'(X,Z) ~ Alt"Hom(A, Z). (C.3)
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For (C.3), an important case to consider is n = 2, in which case elements of
H2(X,7) are given by wedges of integral forms on A. Note that, by tensoring with
R, elements of Hom(A,Z) extend naturally to give elements of Hom(V,R). Using
this fact and the following proposition, we can describe those elements of H?*(X,Z)

that are the first Chern class of a line bundle.
Proposition C.0.19. Let X = V/A be a complex torus.
1. ([23], Chap. 8, Prop. 1.6.) For an alternating form E : V. xV — R the
following are equivalent :

(a) There ezists a holomorphic line bundle L on X such that E represents the

first Chern class ¢1(L).
(b) E(A,A) CZ and E(iv,iw) = E(v,w) for allv,w € V.

2. (23], Chap. 8, Lemma 1.7.) There is a 1-1 correspondence between the set of
Hermitian forms H on V and the set of real-valued alternating forms E on V

satisfying E(iv,iw) = E(v,w), given by
E(v,w) = Im H(v,w) and H(v,w) = E(iv,w) +iE(v, w)
for allv,w €V.

Let E:V xV — R be an alternating form associated to a line bundle L. By
Chapter 3, Section 1 of [23], there exists a basis Ai,..., Ag, fb1,- -+, My of A so that E

is given by a matrix of the form
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where D = diag(dy, . ..,d,) and d; | d;y; fori=1,...,g—1. Moreover, the numbers
di,...,dg > 0 are uniquely determined by E and A. The basis ALy ooy Agy 1y ooy g

is called a symplectic basis of A for L, and the ordered tuple (di,...,dg) is called the

type of L.

Given a complex torus X = V/A, let  := Homg(V,C) be the C-vector space of
C-antilinear forms on V. § is canonically isomorphic to H omgr(V,R). The isomor-
phism is [ — k = Im [, and its inverse is k > I(v) = —k(iv) + i - k(v). The R-linear
pairing (-,-) : 2 X V — R given by (,v) = Im l(v) is non-degenerate, and thus the
set A= {1eQ](LA)C Z} is a lattice. Consequently, we define X := (/A to be

the dual torus of X. The following proposition makes explicit the correspondence

between the dual torus of X and line bundles on X.

Proposition C.0.20. (/23], Chap. 2, Section 4, Prop. 4.1.) There exists an iso-

morphism X — Pic® X.

Definition C.0.21. (28], Chapter 2, Section §) Let X be a complex torus. The

Poincaré bundle for X, denoted by &, is a holomorphic line bundle on X x X sat-

isfying :
1. P\ X x{L} ~ L for every L € X.
2. 21{0} x X is trivial.

Remark C.0.22. By Theorem 5.1 in Chapter 2 of [23], Poincaré bundles exist and

are unique up to isomorphism.

Definition C.0.23. An abelian variety (A, L) is a complez torus V/A with a line
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bundle L such that the Hermitian form H associated to L by Proposition C.0.19 s

positive definite.
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Appendix D

Hodge Conjecture

Definition D.0.24. Let X be a smooth, complex, connected, projective variety. The

coniveau filtration, denoted NPHY(X,Q), is defined as

NPHY(X,Q) = Y ker(H'(X,Q) — H'(X \Y,Q)).

codim Y >p

Remark D.0.25. N?H'(X,Q) is a sub-Hodge structure of H'(X,Q), and
NPHYX,Q) C FPHY(X,C)n H(X, Q).

It may be the case, though, that FPHY(X,C) N H'(X,Q) is not a Hodge structure.

For an example, see [14].
Definition D.0.26. Let Fj, H'(X,Q) be the mazimal sub-Hodge structure of
FPHY(X,C)n H'(X,Q).

Conjecture D.0.27. (General Hodge Congjecture) The General Hodge Conjecture,

abbreviated by GHC(p, 1, X), says that

NPHYX,Q) = FPHY(X,Q)
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Remark D.0.28. Note that GHC(k, 2k, X) is equivalent to the original Hodge con-

jecture.

Lemma D.0.29. Let X be a smooth, complez, projective variety with dim X = n.
GHC(p,1,X) is false iff there exists a class [o] € FYH(X,Q) and a class [L] €

H>=2%(X, Q) such that

1. [L}~ [o] #0.
2. [L] — NPH{(X,Q) =0.

Proposition D.0.30. Let f : X — Y be a surjective morphism between smooth,
complez, projective varieties X,Y of dimension m,n, respectively. If

GHC(p,1,Y) is false, then GHC(p+ k, 1+ 2k, X) s false for k=0,1,...,m —n.

Proof. By Lemma D.0.29, there exists [a] € FYH(Y,Q) and [L] € H**(Y,Q) so
that [L] « [a] # 0 and [L] — NPH'(Y,Q) = 0. Without loss of generality, we may
assume [L] — [a] = 1.

By Proposition 1.1. of [2], N and F} are preserved under f*. Hence f*la] €
FPHY(X,Q). Let [H] € H*(X,Q) be a class associated to a very ample divisor.
Then, since f*[L] — f*[o] is the class corresponding to the fiber of a point, L) —
f*la] — [H])¥ #0for k= 0,1,...,m—n. In particular, f*[a] — [H]* # 0. Let [ox] :=
F*[a] ~ [H], and let [Ly] := f*[L] ~— [H]™ "*. Note that [a] € FEP 2 (X, Q),
since [H] corresponds to a hyperplane section. Then [ax] — [Lg] # 0. Also, if

[A] € N+ H2+ (X, Q), then

[Li) ~ [A] = fullLa] ~ [A]) = [L] — £((H]™ — [A)).
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by the projection formula, and since f.([H]™ "% — [A]) € NPH'(Y,Q) by Proposi-
tion 1.1. of [2], [L] — fu([H]™ ™% — [4]) = 0. It follows that the classes [a;] are

counterexamples to GHC(p+ k, 1 + 2k, X). O

Corollary D.0.31. Let f : X — Y be a surjective morphism between smooth,
complez, connected, projective varieties. If X satisfies the Hodge conjecture, then Y

satisfies the Hodge conjecture.
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