ABSTRACT

THE HILBERT - KUNZ FUNCTION OF A DIAGONAL HYPERSURFACE

A Dissertation Presented to the Faculty of the
Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by

Chungsim Han

The following algebraic problem arises in Iwasawa theory : let M be a finitely
generated Z/p[[z1,.- ., 2,]] - module, I, the ideal generated by z7 ,. a2l M, =
M/I,M, and e, the Z / p dimension of M,,. How does e,, grow with n" The function
n— e, W111 be called the Hilbert - Kunz function of M.

Let a be the Krull dimension of M. Monsky has shown that if a > 1, e, =
cp®™ + O(p(“'l)"), where c is a positive real constant. When ¢ = 1, he has the
more precise result that c is an integer and the error term is not merely bounded

but eventually periodic.
In this thesis, we study the case

M = Flloy, .}/ (@ +-- +ai)

where F is a field of characteristic p and d,,...,d, are positive integers. In other
words, we study how

en = dimp Fl[zq,...,z.])/(® + - +zd 2 ... 22")
varies with n for fixed p and dy,...,d,.
The first main result is that when s = 3 or when p = 2, a certain function
Drp(ky,...,ks) is “p - induced” and that in these cases c is rational and the error

term is eventually periodic.

The second is that when s > 3, under the hypothesis that Dr(ki,...,k;) is
p - induced, ¢ is again rational and the error term A, is O(ple—3)m). Furthermore
there are integers A and I# with A > 1 such that A, = I#A,, for large enough n.
(Shortly after we completed this thesis, Monsky used the result for s = 3 to show
that Dg is p - induced for all s. The proof will be an appendix to this thesis. So
our second result holds unconditionally.)
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0. Introduction

The following algebraic problem arises in Iwasawa theory : let M be a finitely
generated Z/p[[z1,. . .,zs]] - module, I, the ideal generated by w‘;’n, ez M, =
M/I,M, and e, the Z/p dimension of M,. How does e, grow with n? (Roughly
speaking, these e, occur as the ranks of the p - primary part of the ideal class group
in the levels of a multiple Z, - extension, where M is the Greenberg - Iwasawa

module of the extension [2].)

The function n — e, will be called the Hilbert - Kunz function of M ( this is a
modification of the Hilbert - Samuel function, or Hilbert characteristic polynomial
of M). _

Let a be the Krull dimension of M. If a = 0, then for large n, I, M = (0) and
the Hilbert - Kunz function is constant. In [1], Monsky has shown that if a > 1,
en = cp*™ + O(p(“_l)'"), where c is a positive real constant. When a = s, ¢ is the
Z/p[[z1, ..., %,]] - rank of M. When a = 1, he has the more precise result that c
is an integer and the error term is not merely bounded but eventually periodic (i.e.
periodic for large n). But when a > 1, it is not known whether ¢ is always rational

and the error term is a mystery.

In this thesis, we study the case
M = Fllay, -, @l/(27* + -+ +25)

where F is a field of characteristic p and dj,...,d, are positive integers. In other

words, we study how

n
9=

e, = dimp Fl[z1,.. ., 2,]]/(z% + ez gl 2l)

varies with n for fixed p and di,...,ds. (Monsky previously made an unpublished
study of the case s =3,d; =dy = ds.)

The first main result is that when s = 3 or when p = 2, a certain function
Dr(ki,-. .., ks) is “p - induced” and that in these cases c is rational and the error

term is eventually periodic.
The second is that when's > 3, under the hypothesis that Dp(k1,...,ks) is

p - induced, ¢ is again rational and the error term Ay is O(p(’—s)n). Furthermore
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there are integers A and [# with A > 1 such that Apx = I#A,, for large enough n.
(Shdrtly after we completed this thesis, Monsky used the result for s = 3 to show
that D is p - induced for all s. The proof will be an appendix to this thesis. So
our second result holds unconditionally. It follows for example that when p = 3,
s=5andeach d; =2, e, = %—39-34“ - 14—95" for all n. Explicit formulas of this kind
were completely unexpected.)

In chapter 1, we define Dr(ki,...,ks) to be the dimension of

Flzy,...,25)/(21 +---+w,,mf1,...,wf‘)

and show that e, can be written as a sum of values of Dr. We also develop some
elementary properties of Dp.

Chapter 2 is devoted to the case s = 3. We introduce for k1, k2, k3 satisfying
the triangle inequalities a non-negative half-integer, [k1, k2, k3]#, which is related
to Dp by
Ohky kg + 2k ks + 2ko ks — k3 — k2 — k3

4
We show that [k1, ko, k3] 7 = 0 if and only if k3 + k2 + k3 is even and a certain square

matrix of binomial coefficients has non-singular reduction modulo p. We write the

+ [k1, k2, ka]%-

DF(k11k27 k3) =

exponent to which p appears in the determinant of this matrix as a sum of terms.
We introduce a certain honeycomb of R? by octahedra and tetrahedra, and show
that the nt* term of the exponent is positive if (;’f—k, %?.-, f?.-) lies in an octahedral
cell of the honeycomb and is zero otherwise. As a consequence, [k1, k2, ks]p = 0 if
and only if no point (f};, f,%, f;',—) , n >0, is in an octahedral cell of the honeycomb
. this leads to a simple geometric description of [k1,k2,k3]r. At the end of the
chapter, using the properties of [ki, k2, k3]F, we calculate ¢ explicitly when s = 3
and show that it is rational.

In chapter 3, we study certain matrices of multinomial coefficients which corre-
spond to the maps on the graded pieces of F(z1,...,zs-1]/ (zF,. .. ,zf‘_‘ll) induced
by multiplication by (3 + -+ z,—1)*. By manipulating these matrices, we derive

a functional equation for Dy : for ¢ a power of p and 0 < k; < ¢,
Dr(ks,y... k) = Dp(ki,... ks—2,q — kom1,q = ks) + (ks—1 + ks — Q)b -+ - ks

In chapter 4, we define a new function [r by

(k... ka) _ (_1)s+k1+-..+k. Z (_1)61+-..+6aDF(k1 + €1y, kst 6,).
ee{0,1}*
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The functional equation for Dp then gives a simple functional equation for I : for

gapowerof pand 0 <k; <¢—1,
lF(kla"-7ka) =1F(k1,"',ks—2)q_l—ks—l:q_l_ks)'

We also use the functional equation for D to show that Dp(ky,..., ks) —Dg(k1 +
1,ky,..., ks)—Dp(k1, ka+1,ks,...,ks)+Dp(k1+1,kz2+1, ks, ..., ks) lies between
0 and k4 - - - ks, which gives a bound for Ip.

In chapter 5, we introduce the notion of p - multiplicativity, which is critical
for the calculation of e,. The remaining part of chapter 5 is devoted to showing
that [ is p - multiplicative when s = 3 or when p = 2. When s =3, the proof
is based on the geometric criterion for [k, k2, k3]F to be zero and the fact that
DF(kl, kq, ks) - DF(kl +1, ks, ks) - DF(kl, ks +1, ks) + .DF(’C1 +1,k+1, k3) can
only take the values 0 or 1. When p = 2, the functional equation for Ip immediately
gives the p - multiplicativity of Ir. In these cases, I7 is either 1 or 0.

In chapter 6, we translate the notion of p - multiplicativity of [r into a property
of D ; that of being p - induced. As the main part of this chapter, we show, using
the properties of Ip derived in chapter 4, that Dp is p - induced if and only if D
satisfies further functional equations (&@,), one for each vector r = (r1,...,r,) of
non-negative integers. We then conjecture that Dp is p - induced for any fixed p

and s, and give several cases in which this conjecture holds.

In the last chapter, we show that if Dp satisfies condition (®,) for every r,
then there is an explicit formula for e,. When s = 3 or p = 2, from the results
of chapter 5 and 6, we have that Ir is p - multiplicative, lr is either 1 or 0, and
Dy satisfies (®,) for every r. As a consequence, in these cases we find that c is
rational and e, — cp{®*~ D" is eventually periodic. When s > 3, under the condition
that Dp is p - induced, we find that c is again rational, the error term A, in the
formula for e, is O(p©®~3") and Apyx = I#A,, with fixed integers A > 1 and #,
for large enough n. (By Monsky’s appendix, DF is always p - induced, so this holds
unconditionally.) Finally we give a more explicit formula for e, in certain cases. In
particular, when s = 3, using a criterion for [r to be 1 proved in chapter 5, we get
a simple and precise result. We conclude with some examples, both for s = 3 and

for s > 3, calculating e, by the techniques we have developed.




1. Elementary Properties of D

F is a field and s is a fixed positive integer. Let ky,...,k; be non-negative
integers.

Definition 1.1. Dpg(ky,...,k,) is the dimension of the vector space
Flzy,...,zs)/(z1 4+ zay 2, ...,k

We first show that e,, can be expressed in terms of Dp.

Lemma 1.2. Let g, di,...,ds be positive integers and M the vector space
Flzy,...,z,]/(8 44zl 2l ... 29). Write ¢ = kid;+a; with0< q; < d;, 1<
t <d. Then the dimension of M over F' is given by

Z (H ai) (H(di_ai)) DF(k1+61,...,k,+ea)_

(€1,..-,€s)E{0,1}* \e&i=1 €;=0

Proof. View M as a module over F[m‘f‘,...,mg‘]. Suppose 0 < ¢; < d; and
let J € Flzf,...,2%] be the annihilator of the cyclic submodule M,,...,, of M
generated by z7' ---zS. Let ¢; = 0 or 1 according as ¢; > a; or ¢; < a;. Then we
claim that J = (2% 4 ... + zf',mfl(hﬂ‘), . mg‘(k‘”’)).

To show this, suppose that g € Flz%,...,z%] and that gz .. 2% = go(mf1 +
oot z%) 4 g1zf + - + gsz%. There is an obvious gradation on F(z,...,z,] in
which the degrees are elements of Z/d; X --- x Z/d,. Since g has degree (0,...,0),

I

we may replace the g; by appropriate homogeneous components and assume that
each g; is homogeneous in this gradation. In particular gy has degree (c,...,c;)
and thus can be written as hoz{! ---z% with ho in Flz{,...,z%]. Replacing ¢
by g — ho(z® + -+ + 2%) we find that gz ---2S is in the ideal generated by
z],...,2%. Then this is true for each monomial xflcl' e :vg'c" occuring in g, and
we calculate that one of the d;c] + ¢; must be > ¢. So one of ¢;' > k; + ilf'- : we
get J = (mill + __,+$g.,$id1(k1+e1),_ mg.(k,+e.))

This shows that the dimension of M,,...., over F is just the dimension of
Flzy,...,z5)/(z1 + - + &g, et . gketes), Since M is the direct sum of the

« vy

M,,...c,, the lemma follows. 1
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Now suppose p is a prime and F is the field Z/p. Let n be a non-negative
integer. Write p™ = k;d; + a; with0<a; <d;, 1<i<s.

Proposition 1.8. Let e, be the dimension of the vector space
F[[zl"'wza]l/(w +- +.’II3 $3"1 ). ’xla? )

Then

en = Z (H a.,-) (H(d,'—a,')) DF(k1+61,---,ka+€s)-

(€15...,65)E{0,1}2 \e;=1 €;=0

Proof. Since Fzy,...,z,)]/(z8+---+z, ;r:p yerrr2? ) and Flz,,..., ]/ (x% +
, oo gde, z’l’", ..., 28" ) have the same dimension, this follows from Lemma 1.2. |

Now we shall study some elementary properties of Dp.

: Proposition 1.4.
(i) Dg(k1,...,ks) is symmetric in the k;.
(ii) If any of the k; is 0, then Dp(ky,...,ks) = 0.
(i) Dp(1,...,1) =1.
(iV) DF(kl, ceey ka, 1) = -DF(k17 ey k,).
(v) Dr(ks,...,ks) = dimp Flz1, ..., 20-1]/(z5, ..., 2550 (@1 + - - + 24—1)*).
(vi) Ifky > 32121 (ki — 1), then Dp(ky,..., k) = ky - ko
Proof. (i) - (v) are obvious. If k, > 3i—](k; — 1), then (21 + -+ + 2,1 )% €
(zf1,.. ,a:k‘_ll), so (vi) follows from (v). i

Let J be the ideal ((mfl, &) (@ + o+ ms_l)k'). Then there is an

exact sequence

F[xl,...,:c_,_l] (@14 +zs—1)" X F[.’El,. s Lg— 1]

(%) 0 — 2
J (mfl, . a’ 11)
F[a"la xa—l]
k1 L w~ — 0.
(211 R R P | ’('771 + et 1'3_1) ")
J Proposition 1.5.
F o—
Dp(ky, -, ks) =ky---ke—y —dimp - k‘[fl;‘h X 1]
((3711, 9y Tg (331 e s o l)k )
Proof. This follows from the exact sequence (*). 1
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Now suppose F is a field of characteristic p > 0 and ¢ > 1 denotes a power of

p.
Proposition 1.6.

(i) Fky,...,ks—1 < ¢ and ks > g, then Dp(ky,...,ks) =Fky - ko-1.

(ii) Ifkl,...,k_,_z < q and ks-1,ks > ¢, then

Dp(kyy... ks) = Dp(ki,..., ke—2,ks—1 — g, ks — @) + gk -+ - ks—a.

(iii) Dr(qks,...,qks) = q¢* 1 Dp(ky,.. ., ks).
Proof. (i) Since ki,...,ks—1 < g,
(214 + Tt = (f oo 20 y) (@1 + -+ 2o-)F Vs in (2], 2,070).

(i1) Since ky,...,ks—2 < g, ((ﬂ’" - 5’ 1) (-"31 +odz,a)t) = ((‘7:

k" )2l (z e+ zem1)FTI), whmh is the same as ((.7:1 - ,x’:f_zz, .’:‘—11 q)
(:r:1 +-+++424—1)F+~9). This means, by Proposition 1.5, that ky -+ - ks—1 ~Dp(ks,...,
ky) =ky- ko—a(ks—1 — Q) — Dp(ky,... ke—z,ks—1 — gy ks —q) or Dp(ks, ..., ks) =
Dp(ky,... ks—2,ks—1 — q)+qk1 ko—2-

(iii) This follows from the fact that Fl[zq,.. - Teo1]/(2%, .., ff_ll,(:cl + - 4
z4—1)%) is isomorphic to Flz{,..., 3_1]/(.7:"’“, . 3’1’1 1,(.1:1 + o+ .7:,_1)9 +),
and Flz1,...,z.-1]/(z"™,. .., gf‘l V(€14 +Ts—1)7*) is free of dimension ¢°~*
over F[xga < a—1]/(mgk11 X) g’i‘l Lzt 2, 1)%%). |

Corollary 1.7. Let r be a positive integer. If each k; < ¢, then

(i) Dp(k1,. . ks—1,7q +ks) = k1 kg1

(ii) Dp(ky,.. k, —2,7q+ ks—1,7q + ks) = Dp(k1,...,ks) +7gk1 - ks—g
Proof. (i) is immediate from Proposition 1.6 (i).
(i) Using Proposition 1.6. (i) repeatedly, we get Dp(k1,...,ks—2,7q + ks—1,7q +
ks) = Dp(ks,... ke—z,(r — 1)g + ks—1,(r — 1)g + ks) + gk1-- ke = -0 =
Dr(kiy... ks)+rgky---ks—2. ]
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2. Matrices of binomial coefficients and the calculation of [k;, ko, k3]

We calculate Dp(ky, ks, ks) where kj, kg, k3 are non-negative integers. When
ks > ki + k2, we already know, by Proposition 1.4 (vi), that Dp(ky, ks, k3) =
k1k2. So the case of interest is when ky, ko, k3 satisfy the triangle inequalities, i.e.
k1 + ko < ks, ko + k3 < k1 and %y + k3 < k2, or equivalently that the largest k; is
< the sum of the other two.

Let F be a field and g4,...,9, homogeneous elements of Fz1,z;] generating
an (z1,z3) - primary ideal. Let N C (F[zy, z3])° be the module of relations between
the g;. Then there is an exact sequence

0 — N — (F[z1,%3))° — Flz1,22] — Flz1,22)/(91,-..,95) — 0
and the Hilbert syzygy theorem tells us that NV is free on s — 1 (homogeneous)

generators.

Suppose now that s = 3 and that (g1, g2) is (21, z2) - primary. Let k; = deg g;.
Suppose that g3 ¢ (g1,92). We shall show that ((g1,92) : g3) is generated by two
homogeneous elements whose degrees sum to k; + ko — k3.

Let (uy,uz,us3) and (vy,vs,vs3) generate N. Then us and vs evidently generate
((91,92) : g3). Since g3 ¢ (91,92), us and v generate an (z1,%2) - primary ideal.
Since u1g1 + u2g2 + usgs = vig1 + v2g2 + v3gs = 0, (u3vs — viuz)gr + (ugvz —
vausz)g2 = 0. Thus deg(ujvz — viuz) > deg gz = ko, degus + k3 — ky + degvs > ko
and degusz + degwvs > k1 + k2 — k3. On the other hand, (g2,—¢1,0) € N. So
(92, —91,0) = A(u1,u2,us) + B(v1,v2,v3) for some homogeneous A and B. Clearly
A is non-zero. Since Aug+Bvs = 0 and (u3,v3) is (21, z2) - primary, deg A > degvs.
Now Auy + Bvy = g2. So k2 = deggs = deg Auy > degvs + (degus + k3 — k1) and
degus +deguvs < k1 + k2 — k3.

Now let (kq, k2, k3) be a triple of non-negative integers. By the results above,
the ideal J = ((z*',y*?) : (z + y)*2) in F[z,y] is either (1) or is generated by two
homogeneous elements whose degrees sum to k1 + k2 — k3.

Suppose that ki1,k2 and k3 satisfy the triangle inequalities. We shall use this

result to define a non-negative element [k1, ks, k3]F (often abbreviated to [k]F) of
1

17.
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Definition 2.1. FJ = (1), [k]r = ftia=ka If J # (1), [k]F is chosen so [k]r > 0
and the generators of J have degrees L“lj'—kzz-_—'“- — [k]r and 1‘-1-'17—’“5&"“- + [k]F.

Lemma 2.2.

by + ko — k3 )?
Dgp(ky, ks, k3) = kika — (( : Z 2) —[k]%‘)
 kyky + 2kiks + 2haky — K} — K — 3

+ [k]%.

4

Proof. Dp(ky, ks, k3)=dimp Flz,y)/(z*,y*?) — dimF Flz,y]/J and J is a com-

plete intersection. [

Theorem 2.3. Seta=ky+ ks — ks and p = "‘—;—2
(i) Suppose o is even. Then [k]F = 0 if and only if (z + y)*e is not a zero-divisor
on the degree y component of F(z,y] /(z*+,y*2). If these conditions hold,

2k1ks + 2kiks + 2koks — k% - kg — kg
2 .

Dyp(ky, ke, k3) =

(i) Suppose a is odd. Then [k]r = L if and only if (z + y)*® is not a zero-divisor
on the degree yu — 3 component of Flz,y]/(z*,y**). If these conditions hold,

Okyky + 2ky ks + 2koks — kI — k3 — k3 +1
4 '

DF(k17k2ak3) =

Proof. (i) (z + y)*® is not a zero-divisor on this component if and only if
(J/(a:'“,y’“))u — 0. Since k; and ks are > p, this is the same as saying that
J, = 0, or that each generator of J has degree > pu +1 = §. This is the same as
saying that [k]p = 0. Now apply Lemma 2.2.

(ii) (z + y)*® is not a zero-divisor on this component if and only if J,_1 =0, i.e.
if and only if each generator of J has degree 2 p + % = 9‘—51 This is the same as
saying that [k]r = 1, and Lemma 2.2 gives the final claim. i

We next show how to relate [k]r to the rank of a certain matrix whose entries

are binomial coefficients, viewed as elements of F.

Lemma 2.4. Seta =k +ka—ks, p= -‘%2- and let n be an integer such that
In — p| < [k]p. Then the dimension of (Flz,yl/7), is § — (k]F.

Proof. Under our hypotheses on n, n < § + [k]F and n — £ + [k]r > —1. Now
dim (Fz, y]/J)n —n+1—dimJ,. Since n < £+ [klF, Ju consists of multiples of

8




of a single element of degree § — [k]r, and dim J, = dim Flz,y]n—g (k). Since

n — % + [k]r > —1, this last dimension is n +1 — § + [k]7, giving the lemma.

o

Proposition 2.5. Suppose that k2 < k3. Let o = k1 4+ k2 — k3 and M be the

j matrix
: k3 . 44 . o
<3< |— < 1< —|=—
E ((k3—kz+z’+j—1)) 1<i<|g], 1gisa-|3],
Ej where the binomial coefficients are viewed as elememts of F. Then [k]lr = § —
rankM.
Proof. Let R = ®$,R; be the graded ring Flz,y]/(z*,y*?)and ; : Rj — Rjii,

AT

be induced by multiplication by (z + y)*. Set u = “7'2 The triangle inequalities
show that u + -;— < both k; and ks.

Suppose « is even. Then R, has an F - basis {z#~/+1y/~1}, 1<j<pu+1.
R, 11, hasan F - basis {g#tke—ketiyka=i} 1 <4 < u41. (Note that when i = p+1,
p+ ks —ky +1i=ky —1.) Furthermore M is the matrix for ¢, with respect to the
above bases. So rankM = dim(R,/keryp,) = dim(F[z,y}/J), ; Lemma 2.4 with
n = p shows this to be § — [k]F.

e e e

If o is odd, we make a similar argument with the map ¢, 1 using the facts:
R, .y hasan F - basis {gp=it3yi-1}, 1<j<p+2 and R, y1yk, has an F -basis
{$M+%+ks—k2+5yk2—‘i}, 1<ipu+ % 1

Proposition 2.6.
(i) [k1, k2, kslF is symmetric in the k;.

(i) [k1 + 1, k2, ks]F and [k, ke, ks]p differ by 3.

(iii) If k', ko', ks' are non-negative integers satisfying the triangle inequalities, then
[ky, ks, ks]r and [k, ko'ks'|F differ by at most 1 S°2_, ki — ki'|.

Proof. (i) is immediate from Lemma 2.2. (iii) will follow from (ii).
We now prove (ii). Let M, a be associated with [ky, k2, k3]F and M’, o' with

[kl + 1,k,, k3]F.
Itk <ky<ks, thena=k +ky—ks,a =a+1,

M= ((k3—k2f3i+j—1)) lsis [g—]’ 1950‘"[%]
and

ks . a+1 : a+1
"= <:< 1< < 1-— .
M ((ks—kz+z‘+j—1)) 1sig [0 1sisas ]

A -




e = =

So M’ is obtained from M by adding a row at the bottom or a column at the right
according as « is odd or even. Therefore rankM' = rankM or rankM + 1, giving
the result.

Hky <k <ks,thena=k +k —k;,a =a+l,

Mz((ks—kl-taz'+j—l>) lsis [%] ISjS“"[%]

and

ks ' . a+1 . a+1l
" <3 <L 1< < 1—-|—-1.
M ((k3—k1—1+z'+j—1)) 1—’-[ 2 ] SISt [ 2 ]

So M' is obtained from M by adding a row at the top or a column at the left
according as « is odd or even. Thus rankM' = rankM or rankM + 1, again giving
the result.

fho<ks<ki,thena=ky+ks—Fki, o =a—1,

M=((k1—k3fz'+j—1)) 13%’5[%], 1Sj$a—[%]

and

ki +1 ) a—1 . a—1
I = <3< <3< —
M (<k3—k2+i+j—1>) 1_1,_[ 5 ], 1<3fa+1 [ 5 ]

So M is obtained from M by elementary row operations (adding the previous row

to the next) and then removing the first row, or by elementary column operations
(adding the previous column to the next) and then removing the first column ac-
cording as a even or odd. Thus rankM' = rankM or rankM — 1, completing the
proof. ]

Proposition 2.7. If F is a field of characteristic p, then [pki,pkz,pks]r =
plk1, k2, k3] F.

Proof. This follows immediately from Proposition 1.6 (iii) and Lemma 2.2. 1

When k; + ko + k3 is even, the matrix associated to [ki, k2, k3]F is square. Now

we will determine when this matrix is non-singular, which is equivalent to when

[k1, k2, k3] F is zero.

10




Definition 2.8. f; (k) is the determinant of the matrix

(( .k. )) 1<i<r, 1<3<.
s+t+75—1

fr,s is a polynomial in k with rational coeflicients.

Lemma 2.9. The only zeros of f, , are at integers in [1 —r,r + s — 1]. Moreover,

1) (k=s) \"TF (ks —i)k+i))
(r+s)(r+s—1)---r) H((r—j)(r+3+j)) :

(—11 £, (F) = (

i=1

Proof. In Q[k], frs(k) is divisible by H;_:_; (s + llc +j)' But the r x r matrix

(( k )) can be transformed by elementary column operations into the r x r

stitj—1
k+j—-1

matrix ((aitf-;—l1 ) So frs is also divisible by H;=1 ( iy

fr,s is divisible by

). It follows that

r—1

(k(k = 1)+ (k—8)" [T (6 —s =)k +4))"".

=1

Since the degree of fr, 18 < 305 _;(s+2j —1) =sr+ r2, fr,s is a constant multiple
of

((k = 1)+ (k — )" T] ((k = s = )k +5)".

i=1
The lemma follows from the fact that frs(r +s) =1if r = 0,1 (mod 4), -1 if
r=2,3 (mod4). 1

Remark. When charF = 0, Lemma 2.9 allows us to calculate [k]r and Dp(k)

explicitly - see Lemma 5.6.

Corollary 2.10. If k is an integer > r + s, then
(It ) (e o) (e ) (s )
(gt (i) (Mecte—a)
Proof. (k(k—1)---(k—)) TI5ot ((k—s—3)(k+35))" " is
(i) (T o) (i)
Moty (g (msa)

11

(~1)E fra(k) =




—

Similarly, ((r + s)(r +s—1)-+-r) [[ict (r =) +s+3)"’

(mhs) (s

(o)~ (moe)(mse)

Thus the corollary follows from Lemma 2.9. 1

Definition 2.11. Let q be a power of a prime p and k an integer > r + s. Set

k+r—1 . k—r—s—1 . r4s—1 i r—1 k-1 . k—s—1 ) 2r+s—1 g
ay(r,s, k) = Z [- ]+ Z Z [~ ]+Z[ - Z[ = Z ]— Z [ 1.

Lemma 2.12. The exponent to which the prime p appears in f.,(k) is

Z ay(r, s, k).

g=p", n>1

Proof. Since the exponent to which p appears in ¢! is Zq=p", n>1 [é] , this follows
from Corollary 2.10. 1

Let m be a positive integer and b(,,) be the remainder when m is divided by
g. Then

m—1 .

i — b(m m — b

| Z[i]=q(0+1+ + m_u_l))_kb(m)(é)
i=1 q g 1

| g (m—bum )(m—b(m)) (m—b(m))
| 2( q (m) q

% (m + b(m) — q) (m — b(m))
1
2

(m2 —gm + gb(m) — bfm)).

L~

Since (k+r)2 4+ (k—r—3s)?2+(r+s2+r? =k +(k—3)?+(2r +3)® and
(k+r)+(k—r—38)+(r+s)+r=k+(k—s5)+(2r+s), we find :

Lemma 2.13.

ay(r,s, k) = (qb(k+r) — B sr) + @O(h—r—s) = Vlkmr—s) T W(rt+s) — blrps)
+ qbry — by — ab(ky + Ylay — @(k—s) + Vlk—s) — Gb(2r+s) + b%2r+.;))-

12



'IllllllIlIIIIIIIII-IIl---------------.

Now suppose that kj, kg, k3 are non-negative integers such that k; < k2 < k3,
| ks < ki + k2 and k; + k2 + k3 is even.
Corollary 2.14. Let 2r = ky +k; — k3 and s = k3 —ky. Then f, ,(k3) is non-zero

and the exponent to which p appears in it is ) g=pn, n>1 9q where
1 - . .
O{q = aq(r, 8, k3) =§E (qb( kg :tk22+ba) - b?k] +k2=+kﬂ) + Qb( "2+"’2§"k] ) - b?kﬂ'“‘zﬂ"‘l )
2 2
+ qb(k,+k23-kz) - b( bithg=hy ) + Qb(k]+kzz—ka) - b( bithamha)

o qb(ks) + b%ks) - qb(k2) + b%kg) - qb(kl) + b%’q)) ’
Proof. Since ks —r—s= Eﬂj;’;,uh > 0, the result follows from Lemmas 2.12 and
2.13 with k& = k‘3. ]

Remark. With r and s as in Corollary 2.14, let M be the matrix

(( Fa )) 1<i<r, 1<j<r
s+i4+j5—1

where the binomial coefficients are viewed as elements of F. Then [k, k2, ks|F = 71—
rank M, and f, o(ks) is the determinant of M with the binomial coefficients viewed
as elements of Q. Thus if F' is a field of characteristic zero, then [k1, k2, k3]F = 0.
Suppose now that F has characteristic p > 0. Then [k1, k2, k3]F = 0 if and only if
fr,s(k3) is non-zero as an element of F, which is equivalent to the condition that
the exponent of p in fy,(k3) is zero, i.e. that 3° _ n ,>; @¢ =0 with the a, as in
Corollary 2.14.

From now on F is a field of characteristic p. We write [ky, k2, k3], in stead
of [ky, k2, k3)r. Now we introduce some geometry which will be used to evaluate
[k1, k2, ks]p explicitly.

Definition 2.15.

(i) F C R3 is the union of the planes E?=1 a;xz; = b, where a; = £1 and b € 2Z.
(i) A cell is a connected component of R* — F.
(iii) d* is the metric on R® defined by d*(P, Q) = S |zi(P) — 2i(Q)| for P,Q €

R3.

Lemma 2.16.
(i) The open unit ball B about (1,1,1) in the d* - metric is a cell, which is an
open octahedron.
(i) The cell containing (3}, §, 1) is an open tetrahedron T with vertices at (0,0, 0),
(1,1,0), (1,0,1) and (0,1,1).

Ay
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Proof. (i) B is the open octahedron whose faces are the planes 1 + z2 +z3 =2,
T14+ 22423 =4, 21+x3—23 =0,z1+22—23 =2, 21— 22 +23 = 0, 21 — T2 +23 = 2,
—z1 + 23 + z3 = 0 and —z; + z3 + z3 = 2. Since these planes are all in F' and
d*((l,l,l),F) =1, B is a cell.

. (ii) The planes z; + z2 —23 = 0, 21 —z2+ 23 =0, —z1+ 22 +23 = 0 and
} 71 + z3 + 3 = 2 bound a closed tetrahedron with vertices at (0,0,0), (1,1,0),
? (1,0,1) and (0,1,1). Since these planes are all in F' and no point of the open

tetrahedron is in F, the open tetrahedron is a cell. 1

Lemma 2.17.

(i) F is stable under translation by Z3,.,,, where Z3,., consists of all points of Z3
with even sum.

(ii) Every cell is a translate by Z3,,, of B, T or —T. (So we have a honeycomb
of R® by octahedra and tetrahedra. This honeycomb is known as the semi -
regular honeycomb.)

(iii) If m > n, then p™F C p™F for any integers n and m.

(iv) X C is a cell, then PL,,C is contained in a cell (not necessarily of the same kind)

for any n > 0.

Proof. (i) is obvious.

(ii) By (i), it is enough to check this for cells containing an (z1,23,2z3) € R}, 0<
z; < 1, or an (£1,22,23) € R}, —1 < z; < 0. We may assume that 0 < z; < 1.
Then (z1,73,23) is either in T or in the closed d* - unit ball centered at (1,1,1),
(1,0,0), (0,1,0) or (0,0,1). Since these balls are all translates of one another under
Z3,.., the result follows.

(iii) follows from the fact that p™|p™.

(iv) If there is a point @ in both I—,I;C and F, p"Q e CNp"F C CNF =0, a
contradiction. So pl,,C does not meet F ; since it is connected, it is contained in a

cell. |

Definition 2.18. A point P € R? is tetrahedral (resp. octahedral) if it is in a
translate by Z3,., of T or —T (resp. of B).

We shall now give a simple geometric description of the a; of Corollary 2.14.

This description shows that each ey > 0, and oy > 0 precisely when the point

(ﬁql-, -'qu, Eqﬂ) is octahedral.

Definition 2.19. g¢:R — R is the function of period 1 whose restriction to [0, 1]

14




is z — z2. If (y1,y2,y3) € R3, then set

+yo+ +ys — Yy —
ﬂ(y1,y2,y3)=g(————y1 y22 y3)+g(———y2 3/23 y1)+g(————y1 :? yz)

tu—y
+g <ﬂ-——y§2——y3—) — 9(v1) — 9(v2) — 9(ys).
Theorem 2.20. If (y1,y2,ys) is octahedral, B(y1,y2,y3) is d*((y1,y2,y3), F).
Otherwise B(y1,v2,¥3) = 0.

Proof. Since g is continuous, so is . So it suffices to prove the result when
(y1,Y2,y3) is tetrahedral or octahedral and no y; € Z.

Let G be the group generated by translations by elements of Z3,,, together
with the maps (z1,z2,z3) — (€121,€222,€323), € = *1. The elements of G are
d* - isometries taking F to F. Furthermore, since g is of period 1 and even, they
also preserve B. So we are free to modify (y1,¥2,¥s) by any element of G.

Suppose first that (y1, y2,ys) is tetrahedral. We may assume that (y;,y2,y3) €
T. Then each y; is in (0, 1) and the same holds for 2tie—i it¥e—ys it¥2=4s 5
MﬂF”—*. Since

Vit+yetys  Yetys—y1  Yi+ys—Yz  Y1ty2—ys

5 + 2 + ) + 5 =t t+Yy2+ys,

and

(y1 +yzz+y3)z+(y2 +y23 —y1)2+(y1 +yz?, —y2)2+(y1 +yzz —y3)2 =yf+y§+y§,

B(y1,y2,y3) = 0.
Suppose next that (y1,y2,ys) is octahedral. Then we may assume that

(y1,Y2,¥3) is in the open d* - unit ball about (1,1,1) and that each y; < 1. Once
again each y; € (0,1), and the same holds for m;uﬂ, Myf;yl, and ﬂli%Ey-i
However s = M”;—"'Vl is now in (1,2). Thus the term s — s? that appeared in
calculating 8 when (y1,y2,y3) was in T must be replaced by (s — 1) — (s — 1),
and B(y1,v2,y5) = (s = 1) — (s = 1)?) = (5= %) =25 =2 =y, +vp +ys — 2 =
a*((y1,v2,¥3) F), giving the theorem. 1

Theorem 2.21. If (qu, %1, %‘1) is octahedral, the ay of Corollary 2.14 is
1,
-2'd ((k1, k2, k3),qF).

Otherwise, o = 0.

15
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Proof. If k is an integer, let b be the remainder when k is divided by ¢. Then

k _ b(k) _ 1 9
()= (") = (b= tt0)

Tt follows that the a, of Corollary 2.14 is just
* ﬂ (k1 k2 kz)
9 9 4
If (1‘;, %1, 5;‘) is octahedral, the preceding theorem shows this to be

g f (k1 k2 k 1.
54 ((—1,—2-,—2),1’) = 54" (k1 k2, ka), aF).

9 9 49

If (Eq’-, 131, E;-) is not octahedral, the preceding theorem shows that ay = 0. ]

Corollary 2.22. «, > 0 ; equality holds precisely when (q ,-’?,qu) is not
octahedral.

Theorem 2.23. Let ki, ko, ks be non-negative integers satisfying the triangle
inequalities. Then the following are equivalent :
(i) No point ( L, ;,%, 1%3-) , n >0, is octahedral.

(ii) [k1,k2,ks3]p = 0.

Proof. If ky + ko + ks is odd, (k1, k3, k3) is octahedral and [k1, k2, ks]p is half an
odd integer. So both (i) and (ii) are false. Suppose ki1 + ko + ks is even. Then
Corollary 2.14 shows that [k, k3, ks], = 0 if and only if 3 ,—pn, n>10q = 0. By
Corollary 2.22, this happens if and only if the (f}, f&, ;’53-) with n > 1 are all
non-octahedral. Since (k1, k2, k3) is non-octahedral, the result follows. 1

Using a little more geometry we can give an explicit description of [k], in
general.
Lemma 2.24. Let z1,z2,%3 be non-negative integers satisfying the triangle in-
equalities with 1 + z2 + 3 odd. Suppose that ( L, ;,%-, %ﬁ-) is not octahedral for
anyn 2 1.
(i) Ify1,y2,ys are non-negative integers with 3 lyi —p™zi| = p™ for some m 2> 0,
then [y1,y2,¥3lp = 0.
(i) [z1,%2,23]p = 3
Proof. It is easy to see that y;,ys2,ys also satisfy the triangle inequalities. (If
21 < o3 < 73 and T3 + T2 > 3, then y1 +y2 — ya 2 p"T1 + P22 — P23 ~p™ =

16
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p™(z1 + 2 — 23 — 1) = 0.) Let B’ be the open d* - unit ball about (1,2, 23). If
n > 1, Lemma 2.17 shows that p~ "B’ is contained in some open cell B,. Since

(ﬁ#,fﬁ,%) € p™B', B, must be tetrahedral. Since ) ei(y; —p™z;) = p™,

(v1,y2,y3) € p™F. Therefore for n < m, (y1,y2,y3) € p"F and hence (f},ﬁ-, -g?,-, ;"L?,-)
is not octahedral. Furthermore (-u Iz -y‘—’-) € B'. 1t follows that for n > 1,

(;,;V.—}m, p—,ﬂ-h, p—,;”ﬁm) € B, and is not octahedral. Theorem 2.23 gives (i). In par-
ticular [z1 + 1,22, 23], = 0 and (ii) follows. I

Theorem 2.25. Let k;, ko, ks be non-negative integers satisfying the triangle

inequalities. Suppose (pi,,L,,f},-, pﬁ,‘,’,-) is octahedral for some m > 0 ; choose m

as large as possible. (Note that if n is large, (f,&-,fﬁ-,f%) € T, and so is not
octahedral.) Then

| 1

[kr, k2, kslp = 5d* (1, k2, ks ), P F).

! Proof. Let (21,%2,73) be the center of the octahedral cell, B', containing

] (Fk,{;, -I-,’-”-,,?;, ;k,é; . Then z;,z2,z3 are non-negative integers satisfying the triangle in-

equalities with z; + 23 +z3 odd. If n > 1, p~" B’ is contained in some open cell B,;
since this cell contains (5,,%-,;, p—,fi;, p—"’fh), it is tetrahedral. So (%,1;, 1%,'1‘-, ﬂ-) is not

¢ "
octahedral and the conclusions of Lemma 2.24 hold. Set D = d* ((kl, k2, k3), me).
: Then D is the d* - distance of (ky, k3, k3) from the boundary of p™B’' ; it follows

that D = p™ — d* ((Icl, k2, k3), (p™x1,p™z2,p™z3)). By Proposition 2.6,

1 £ ] m m
[k1, k2, k3]p 2 [p" 21, p™ 22, P ®3)p — §d ((k1, k2, k), (p™ 21, p™ 22, p™ 23))
p™ p™—-D D

2 2 2°
To obtain the opposite inequality, set y1 = k1, y2 = k2 and choose y3 so that

R T IR ETY Y

3" |yi—p™zi| = p™ and that furthermore if k3 —p™z3 is positive (resp. negative), so
is y3 —p™x3. This is possible since 3 |k;—p™z;| < p™ ; note also that |y; —p™z3| >
lks — p™z3|. By Lemma 2.24, [y], = 0. By Proposition 2.6,

1 1 1 (1 .m
[Klp < 5lus — ksl = 5 (Z lvi —p™zil = ) ki —p"‘wsl) =5 (p™ = d*(k,p™x));

W G IATY AR

as we saw in the last paragraph, this is %. 1

There are a number of ways of restating Theorem 2.25 ; we shall offer one and
use it to describe a continuous extension of k — [k], satisfying the homogeneity

condition [prlp = plrlp-

17
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Definition 2.26. © is the union of all the closed tetrahedral cells in the semi -
regular honeycomb.

Theorem 2.27. Let k = (ki,ko,k3) where the ki are non-negative integers
satisfying the triangle inequalities. Then

[k]p = %ngzlafmd*(k,p 0).

Proof. If nislarge, k € p"T and d*(k,p"0) = 0 ; thus the maximum exists. Note
that d*(k,p"©) > 0 if and only if p~™k is octahedral, and in this case d*(k,p"0) =
d*(k,p"F) = 0. Suppose that d*(k,p"©) and d*(k,p™©) are both > 0. If m > n,
then p™F C p"F, so d*(k,p™F) 2 d*(k,p"F). Thus the largest value of n such
that p~"k is octahedral provides the largest value of d*(k,p"0©). If no such n exists,
Theorem 2.23 shows that [k], = 0. If such an n exists and is chosen as large as
possible, Theorem 2.25 shows that [k], = zd*(k,p"F) = 3d*(k,p"0). 1

Remark. Suppose n < 0. If 3 k; is even, then k € p™F and d*(k,p"©) = 0 ;
while if Y k; is odd, then d*(k,p"®@) < 1 = d*(k,0). So the restriction n > 0 in
the statement of Theorem 2.27 can be dropped.

Definition 2.28. Suppose r = (r1,r2,73) where the r; are non-negative real num-

bers satisfying the triangle inequalities. Let [r], be the non-negative real number

—1-ma,xd *(r,p"0).
2 ne

lam ], S 2

A Remark. For n large, d*(r,p"@) = 0. Also as n — —o0, d*(r,p"0) — 0. So the
| maximum exists.
3 Theorem 2.29.
(i) The restriction of r — [r], to the points with integer coordinates is the function
of Definition 2.1.
(ii) s [r], is continuous ; in fact |[r], — ['];| < zd*(r,r").
(iif) [Pr]p = p[rlp-

(iv) If the coordinates of r are rational, [r], is rational.

R e

Proof. (i) is immediate from the remark following Theorem 2.27. (ii) and (iv)
follow directly from the definition of [r],. Finally since d*(pr,pr') = pd*(r,r'),

d*(pr,p"0©) = pd*(r, p"~1O), giving (iii). .
j Let d;,ds,ds be positive integers and e, be the F dimension of

p k(g

F[[$1a$2,$3]]/($id1 +$3 a$1 » T3 73’13’ )

18
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We know from [1] that e, = ¢p?” + O(p™) for some positive real c. We now identify
c explicitly and show that it is rational. In chapter 7 we shall see that e, =

¢p*™ + (an eventually periodic function of n).

Theorem 2.30. Let e,, be defined as above. Then

lim p~2"e, =c¢
n—0o0
where \
— _lﬂZﬂ& dida _ dyd _2_.1 L _1_ L1 e L 1 1 .
(i) c= v Falle v rel +didads |3, 350 1 if 30 4o satisfles

P
the triangle inequalities.

(ii) ¢ = min(dy,ds,ds) otherwise.
Proof. We may assume that d; < d; < d3. Set

H(T’l,’rz,r;;) =

2
rirg+rirs +rars 13413+ r} o Ty T2 T3
- =rorg — [ ———=
2 4 2

s Sim—

Extend the function [r1,r2,7s], of Definition 2.28 to all of [0,00)? by setting

Ty —T2—7T3
[7‘1,7”2,7'3]1: = ——2—’

if ry > ry + 73, and making similar definitions if r; 2 r1 +r3 or 73 > r1 4+ r2. The
new function we get still satisfies (ii), (iii) and (iv) of Theorem 2.29. Furthermore

if k1, k2, k3 are any non-negative integers,
Dp(ky, ko, k3) = H(ky, ko, k3) + [k1, k2, ksl

By Lemma 1.2, e, is the sum of didads terms, each of the form H(ki,ka,ks) +
[kl,kg,kg]f, with |k,- - %H < 1. So p~2me, is a sum of didzds terms, each of the

form )
p(tB) ¢ [
p~’p"p p*’p™ P,
Letting n — oo we find that
1 1 1 1 1 1172
—an n H{—,—,+ 5 77 71 .
p e "dldzds( (dl’dg’d3)+[d1 A ds]p)

If d1—1 < 4+ 4, (i— -+ dl—s) satisfies the triangle inequalities and we get (i). If

n.l,_.

* dy
1 1 1 1 1 1 1 1]?
i >+ i (d— Frlrm [d_ -d—-]p is easily seen to be m, so we get (ii).




3. Matrices of multinomial coefficients and a functional equation for D

p is a prime and F is a field of characteristic p. ¢ > 1 denotes a power of

p. ki,...,ks—2 and p, are non-negative integers and « is an integer. Set r =
(k1 —1,...,ks—2 — 1).

Let pyy =a—s+1—po,
5’1={a=(a1,...,a,_2)6Z"‘2 | @20, a1+ +as—2<p1},
So={b=(b1,...,bs—2) €Z°% | b; >0, by 4o+ boma < p2}.

Definition 3.1.
(i) IfkeZ and N € Z°~2 with each N; > 0, set

(%) - i ()

()

(ii) M(k) is the matrix with rows indexed by S, and columns indexed by S;, whose

If any N; < 0, set

entry in place (a,b), a € S1, b € Sa, is

I
r—a—>b/"
Remark. If k >0, (£) is just the coefficient of ( 2 m,-N") T, ;" in

( i_l :C.;) k.

Lemma 3.2. Suppose each k; (1 < i< s—2)is £ q and that k € Z. Then the
matrices M(k) and M(q + k) are congruent mod p.

Proof. The entries of M (k) are rational polynomials in k and therefore continuous

in the p - adic topology. So we may replace k by k + p' with [ large and assume

that £ > 0.
Now a typical coefficient of M (k) is of the form (%) where each N; <r; < q.

If N; <0, (%) =0= (ﬁ]\}—’”-) Suppose each N; > 0. Then (9?\}—’“) is the coefficient

of ( i—Z :z,-N") zgff_zN‘ in(zi+--- +a:_,_1)_q+k. Now mod p, this is the coefficient

20
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of ( ‘1'_2 a:,-N") z"jZfM in(zy+--+ £4—1)9T*. Now mod p, this is the coefficient

of ( i—2 a:,-N") mgff_zN‘ in(z1+4+-+ ze—1)F(zf+---+23_,). Since each N; < g,

this is the same as the coeflicient of (H;_z x_,-N") ¥ BN in (21 4+ -+ -+ 2,-1)F and

this coefficient is precisely (-]kv) i

Lemma 3.3. Suppose that k, k' € Z with k + k' = (Ei_z k;) — a. Then the
matrices M(k) and M (k') can be transformed into one another by elementary row
and column transformations over Z.

Proof. We first illustrate the proof in the case s =4, ky = k2 =3, a = 6, 2 = 2.
Then g1 + p2 = 3. So u; = 1, Sy consists of the pairs (0,0), (0,1) and (1,0), S;
of the pairs (0,0), (0,1), (1,0), (0,2), (1,1) and (2,0), and M(k) is the following

matrix :

(0,00 (0,1) (1,00 (0,2) (L) (20

00 | e® 3®) s & 2200 6

(0,1) 3 B 2 o @ @

(1,0) 3 20 6 0 © O 0
We first replace column (0,0) by the sum of columns (0,0), (1,0) and (0,1). We
then replace each column (by, b;) with b; + b2 = 1 by the sum of columns (b;, b2),
(b; + 1,b) and (b1,bz + 1). At this point we have the matrix in which the &’s in
each column with b; + b, < 2 are replaced by k + 1’s. If we then once again replace

column (0,0) by the sum of columns (0,0), (1,0) and (0,1), we get the matrix
((ﬁ-}_—ﬁ:l_»z)) shown below :

r—a—b
(0,00 (0,1) (L0 (0,2) (LY (20

0,0 | 6t 3¢ ) G 200 @
01 | 3¢t (9 24 o B ®
Loy | 3y 24) MY O ® o

We now turn to row operations. Replacing row (0,0) by the sum of rows (0,0),
(1,0) and (0,1), we get the matrix ((HS"M'“’_"I_“)) whose entry in position

r—a—b

(a,b) is a certain multiple of (**N~!) where N = 4 —a; —as — b ~ b;. Now
(N = (=N (7F)- It follows that

(2mamion)) - (cormome( L)
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So if we multiply each row (a3,az) by (—1)*2*%2 and each column (b1,52) by
(—=1)’1%%2 we get the matrix M(—k). Now k+ &' =k + ks —a =0, so k= —k,
and M(k) and M(%') are indeed equivalent over Z.

Now consider the general case. Let e; be the vector which is 1 in the ith place
and 0 elsewhere. First make a series of elementary column operations on M as
above, replacing some column a by the sum of columns a + e; at each step. In this
way we transform M (k) into ((-’“—";—‘9—_—2,,—"—‘- ) Then performing an analogous series

of elementary row operations, we get

(remepmpein)) - (eemsfesky))

Let N =5 (ri —ai — b)) = (Ei—2 k,-) —s+2—> a;— Y b;. Then the entry in po-
t sition (a, b) of this last matrix is a certain multiple of (FrotNoBk=1) = (—1)N (% y

since k+a+N — > k; — 1 and k¥’ add up to N — 1. So up to sign our matrix is

((_1)a1+a2(_1)b1+,,, (= ))

1 Finally, multiplying various rows and columns of this matrix by —1, we get the
: matrix M(k'). 1

1 Suppose now that k,—; and k, are non-negative integers with k, — k;—1 =

(E;_z k,') - a.
Definition 3.4. R = @R, is the graded ring F[zi,... ,.7:8..1]/(:1:’1‘1,. i .,w’:’_‘l‘).
Pus : Buy = Rpyytk, 18 the map induced by multiplication by (z2 4+ 4+ Tg—1)ke.
We shall describe monomial bases for R,, and Ry,+x, and relate the matrix of
¢4, With respect to these bases to the matrix M(k,) of Definition 3.1.
Note first that a basis of R,, is given by the monomials ( 2 :c:"') gh2 =
with 0 < b; < r;and 0 < pa— Y b; < ky—1 —1. This last condition may be rewritten

as > b; Spgand D b 2> pp —ks—1 + 1. So if we let

T2={b652 | b; < i, Zbi2#2_'ks—1+1},

1 s—1
Note next that a basis of Ry,+k, is given by the monomials
(H;'Zx?“‘-‘) gtk mB(i=a) Gith 0 < a; < 7 oand 0 < pe + ks — 3(ri —ai) <

i 22
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ks—1—1. We may rewrite this last condition as > a; < (3 ri)+ke—1—ks—1—p2 and
Soai > (3 ri)— ks —p2. Now Y r; = (E;_z k,’) —s+2=ks—ksm1t+ta—s+2=
ks —kg_y + p1 + p2 + 1. So the conditions on the a; are that 0 < a; < r;, that
S a; < py and that ) a; > py —ke—1 + 1. If we let

T1={a€S1 | ai <y, Zai2#1—ks—1+1}

and observe that (u2 + k,) — Y.(ri — a;) = ks—1 — 1 — p1 + 3 a;, we conclude that

the monomials ( . :z:f""“") :cf‘_‘l‘_l_“l_"'z“", a € Ty, form a basis of Ry, 14,
The matrix of ¢,, with respect to the above monomial bases is a matrix whose

columns are indexed by the subset T; of Sz and whose rows are indexed by the

subset Ty of S;.

Lemma 3.5. Let M;(k,) be the matrix of multinomial coefficients

|
< (_’“_-) aeTi, bET,
r—a—=b

Then the matrix of ¢,, is the reduction modulo p of Mi(k,).

Proof. Ifa € T and b € T3, the entry (a, b) of the matrix of ¢, is the coefficient of
( :—2 w:‘;—ag) mfa_—l1—1—ﬂl+zai in ($1+ . '+$s—1)k‘ ( ;_2 .'Ef') w?i;zbi. This is the

same as the coefficient of ( ‘1’_2 x?‘_“‘_b‘) zf‘__ll_z(r"_a"—b") in(z1+- - +z-1)k.

By the remark after Definition 3.1 this is just (r—_’f;_—_—b-) viewed as element of F.

Since F is of characteristic p the result follows. 1

Lemma 3.6. The matrix M;(k,) is obtained from the matrix M(k,) by dropping

certain rows and columns consisting entirely of zeros.

Proof. Suppose b € S, but is not in T. Then either b; > r; for some j or
b < pz — ks—1. In the first case, rj —a; — b; < 0 for each a in ), so0
7_—'}_—,, = 0 for each a, and column b of M(k,) is all zeros. In the second
case for each a € Sy, Y(ri —ai —b;) = ks —ks—1+p1 +p2+1-2 ai—> b >
ks — ko1 +p1 +pg +1—py —(u2 —ks—1) = ks +1. So (,_—_ka’:;) = 0 for each a

and again column b of M(k,) is all zeros.
A similar argument shows that when a € S; but is not in Tj then row a of

M (k) is all zeros. i

Theorem 3.7. Let q be a power of p and ki,...,k, integers with 0 < k; < g¢.
Set k' _, = ¢— ks and k, = ¢ — k,—1 so that kj, —k,_; = ks — ks—1. Let I and

| .
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I' C Flz;,...,%s—1] be the ideals ((mf‘, o) (S w,-)"') and

koo1

((:cfl,. cohz ) (2 m,-)ki) respectively. Then the graded rings F(z1,...,xs—1]/1
and Flz1,...,2s—1]/I' have the same dimension ; in fact they have the same di-

mension in each degree.

Proof. Let ys be an iriteger > (. We shall show that our two rings have the same
dimension in degree us.

Choose o so that k; —k_ =k —kemy = (Zi—z k.') — o. Then we are
in the situation described at the beginning of this chapter. Let R and R' be the
graded rings F[wl,...,z,_l]/(a:fi,...,a:ff_'li) and F[a:l,...,:z:,.,_l]/(:l:;“,...,:1:"::'_‘1l
respectively. We have maps ¢, : Ry, — Ru,4k, and ¢}, 1 By, — R, ), induced
by multiplication by (3" z;)* and (3 z;)*. p,, induces an isomorphism between
(Flz1,... ’m-’—l]/I)M and ¢, (R,,). Thus the dimension of (F[z1,... ,:1:,,_1]/1)”2
is the rank of the matrix representing ¢,, ; by Lemmas 3.5 and 3.6 it is the rank of
the reduction modulo p of M(k,). Similarly the dimension of (F[:I:l, ceesZa—q )/ )u2
is the rank of the reduction molulo p of M(k}). Now k| = q¢ — k,—1, so in view of
Lemma 3.2 it suffices to show that the modulo p reductions of M(k,) and M(—ks—1)
have the same rank. But this follows from Lemma 3.3 with k = &, and B =—ko—1.

Theorem 3.8. Let k1,...,k, and q be as in Theorem 3.7. Then

8—2

Dr(kiy... ks) = De(k,. .., ks=2,q — kse1,a = ks) + (ko1 + ks —g) [ ] %i-
1

Proof. Combining Theorem 3.7 with Proposition 1.5 we find that kg—1 H‘i’_2 k; —
Drp(k1,...,ks) = (g — k,)Hi—2 ki — Dg(ki,...,ks—2,9 — ks—1,4 — ks), giving the
theorem. 1
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4. Definition and properties of I

Let t1,...,t, be indeterminates over Z. If € = (e1,...,€5) € {0,1}°, let t. =
He;:l ti.
Definition 4.1.
(i) M C Z[ty,...,t,] is the abelian group of rank 2° spanned by the t..
(ii) My C M is the rank 2° — 1 group spanned by the t with e # (1,...,1).
Remark 1. Each f € M gives a function {0,1}* — Z by evaluation. Note that
[Le.=1 ti [Te;=o(1 — ti) lies in M and gives a function which is 1 at a single point €
of {0,1}° and 0 elsewhere. It follows that the map from M to the additive group
of functions {0,1}° — Z is bijective.
Remark 2. Let f be afunction {0,1}* — Z. Then when f is expressed asa Z - lin-
ear combination of the t., the coefficient of [[i_; t: in fis (—1)® > (—=1)tF T f(e).

Note that it suffices to prove this when f is represented by a monomial Z..
Suppose that ¢, is not divisible by some %;, for example %;. Then f(1,e2,...,€,) =
F(0,€z,...,¢,) and 3 (1)1t +e f(e,...,e5) = 0. If on the other hand ¢, =
by - ta, then (=1)* T, (1) Hoey e = (—1)* [[imy (Zh(-1)%6:) = 1

We denote the set of non-negative integers by Ioo. An element r = (r1,...,7,)
of I2, is “even” if 3 r; is even, “odd” if 37 r; is odd. o(r) = (—1)*7. ( We diverge
from the notation of the previous chapters in which o(r) = 3 ;, but no confusion

should arise.)
We shall define an integer Ir(r) and an element ¢ g, of M.

Definition 4.2. If r is even, then Ip(r) € Z and ¢r,r € My are chosen so that
Dr(r+€) =lp(r)er - €+ @r(¢) for all e € {0,1}°.

If on the other hand r is odd, then lp(r) € Z and ¢F, € My are chosen so that
Drp(r+¢€)=Ilp(r)(1—e)ez- €+ @pr(e) foralle € {0,1}".
Remark . If r is even, ¢F, is completely determined by the values ¢p,(e) =
Dp(r +¢€)fore#(1,...,1), and Ip(r) = Dr(ra+1,..-s7s + 1) —pr.(1,...,1).

If r is odd, ¢p, is completely determined by the values ¢p ,(€) = Dp(r + €)
for e #£(0,1,...,1), and Ip(r) = Dp(ri,r2+ 1,---»7s + 1) —9r.(0,1,...,1).
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Ir(r) can be written as a linear combination of the Dp(r + ¢).
Proposition 4.3.
Ip(r) = (-1)*=% Y~ (=1)"“Dr(r +e).

e€{0,1}*

Proof. Since Ip(r) is the coefficient of ¢; ---¢, in the function f : {0,1}* — Z
defined by f(€) = (—1)*7 Dp(r + €), this follows from Remark 2. I

Proposition 4.4.
(i) 1r(r) is symmetric in the r;.
(ii) Ir(0) =1.

Proof. (i) is obvious. Since Dp(€y,...,€5) = €1+ €, we get (ii). i

Proposition 4.5.

Dp(r) = > (=1)=F (k).

OSkS(rl—l,...,r,—l)

Proof. Consider the multiple sum

DD 3 E e N

0<k<(r1—1,.yro—1) €

Suppose (1,...,1) < z = (z1,...,2s) < r. Let us calculate the coefficient of Dp(z)
in the multiple sum. k makes a contribution precisely when 0 < k£ < (r1—1,...,rs—
1) and k = z—e for some ¢ ; furthermore the contribution in this case is (= 1)€1+ " +¢,
Thus the coefficient of Dp(z) is 30, _.<(r,-1,. _1)(—1)51"'""""". Suppose ¢ # r,
for example #; < r;. Then z — (0,€,...,6,) < (r1 — 1,...,7s — 1) if and only if

vy Ts

z—(1,€2,...,65) < (r1 —1,...,rs —1). Thus the terms in the above sum cancel
in pairs and the coefficient of Dp(z) is zero. If on the other hand z = r, the only
term in the above sum is (—1)*, coming from € = (1,...,1). So the multiple sum is

(—1)*Dp(r) ; the proposition follows immediately from Proposition 4.3. 1

Fix a prime p. ¢ > 1 will always denote a power of p. We denote the set of
integers in [0,q — 1] by I,. Let F be a field of characteristic p.

Proposition 4.6.
(i) fr =(r1,...,7s) € I3, then

Ip(riy.. P2, — 1 —ro_1,g—1—15) =lp(ry,...,7s).

1
|
|
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(ii) For fixed r1,...,7s—1 € I,

Z (—1)2” lp(r1y...y7s—1,75) = 1.

0<Lr,<g—1

Proof. (i) By Theorem 3.8, Dp(k1,...,ks—2,ks—1,9 —ks) — Dp(k1,...,ks—g,q—
Fa-t,k0) = (TI72 £s) (Fam1—Fs). S0 Dp(krter, -, boma+eoms, kom1eamt, q—ks—

€s)—Dr(ki+er,....ks—ates—2,q—ks—1—€5—1,ks+€5) = ( :_2(7&':' + Ei)) (ks—1—
ks + €s—1 — €5). On the left hand side replace ¢ — ks — €, by (¢ —1 —ks) + (1 —¢,)
and replace ¢ — ks—; — €5—1 by (¢ — 1 — ks—1) + (1 — €5—1). Then multiply both
sides by (—1)¢+*%-1 and sum over €;,...,€,. The left hand side then gives
(=142 (1p(hy, .y Bymgy Bty g— 1= ko) = 1o (Rt o Bo2, =1 ke, ).
Since (Hi—z(k,- + e,-)) (ks—1 — ks + €5—1 — €,) is a linear combination of monomials
in €1,...,€, with no ¢; - - - €, term, the sum on the right hand side is zero.

(i1) When ¢ = 1, this is obvious since {r(0) = 1. Suppose ¢ > 1. It is easy to see
that o<y, <gm1(=1)Z"lp(r1,...,7s) = (=1 2, o _ie0.13(~1)7“Dr(r1 +
€1,.-+,Ts—1 + €s—1,9). Since each r; + ¢ < ¢, Dp(r1 + €1,...,75-1 + €5-1,9) =
[Li<ics—1(ri + €). So

> () =(=1T0 Y ()P [T (rite)

0<r,<g—-1 €1,...,6—1€{0,1} 1<i<s—1
=17 I (ci+0)—(ri+1)
1<i<s—1
=1.

Let e; = (0,...,0,1,0,...,0) € I°..
Definition 4.7. Let i and j be distinct elements of {1,...,s}. Then

D,',j.(k) = Dp(k) — Dr(k+ e;) — Dr(k +¢e;) + Dr(k + e; + €;).

Lemma 4.8. 0< Dy (k) <ky---ks.

Proof. Let f = 29+ ---+z,, R = F[mz,...,m,]/(a:f’,...,a:";’) and R' =
Flza,...,zs)/(ah?t 28 ... z%). Then the quotient map R’ — R induces an
onto map fMR'/fFHIR — fhR/fktIR. Therefore dimp(f* R'/fF1T1R") >
dimp(f* R/ f¥1*1 R), which gives Dp(k+e1+e2)—Dr(k+ez) > Dp(k+ey)—Dp(k),
ie. Dy2(k)=0.

27



To show the second inequality, choose g a power of p such that ky,k; < g — 1
and ks, ..., ks < ¢. Then use the functional equation Dr(k) = Dp(q — k1, ko,q —
k3, kay-.. ks) 4 (k1 + ks — q)koks - -+ ks, applied to k, k4 €1,k +e; and k + e; + €.
We get D1,2(k) + D12(q — 1 — k1, k2, g — k3, ka,...,ks) = kg --- k,. Since D 2(q —
1 ~ki, k2,9 — ks, ks,...,ks) > 0 by the first inequality, Dy (k) L kg ks. i

Proposition 4.9. Ifs>3 and k € If, then |Ip(k)| < ¢*~3.

Proof. Since Ip(k) =lp(q~1—ki,q — 1 — ko, ks,...,ks), we may assume that
0<k; < -";—1 for 2 < i < 5. It easily follows from the definition of Dy 5 that

lF(k) = (-—1)8+27‘i ( Z D1’2(k1,k2,k3+€3,...,k3+€3)

(eg,.- eg)E{0,1}6—2
eg+--+ey even

- Z D1,2(k1yk2ak3+€3,---:ka+5a)>-

(€3,-.-,es)E{0,1}2—2
€g+-+es odd

Since Dy 2(k') > 0 for all k' € I2,,

[1r(k) | Sma,x( Y. Dialki,ka ks +es,... kb, +6),

€s+-'+€, even

> Dl,Z(klyk%k.‘%+€3,~-')ka+€s))-
eg++¢, odd

Lemma 4.8 shows then each of these sums is bounded by

Z (kg +€4)--- (ks + €)= (2ky + 1)+ (2k, +1) < g° 3,
(54!---;53)6{0,1}'-8 ‘
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5. Some p - multiplicativity results

Fix an integer p > 1. In the applications p is prime but this isn’t essential to

our formalism. ¢ > 1 will always denote a power of p.

Definition 5.1. A function m : I}, — Z is “q - multiplicative” if

(i) m(0,...,0)=1.

(ii) Supposer € I3, and k € I;. Set k* = (g—1—ki, kz,...,ks). Thenm(gr+k) =

m(r)m(k) if r is even, and is m(r)m(k*) if r is odd.

Remark 1. When ¢ =1,k =k* =(0,...,0). So (ii) follows automatically from
1).
Remark 2. Let o(r) = 1 or —1 according as r is even or odd. It is easily seen
that o is ¢ - multiplicative for any q. So r — m(r) is ¢ - multiplicative if and only
if r = o(r)m(r) is ¢ - multiplicative.
Lemma 5.2. Ifm is p - multiplicative, then it is ¢ - multiplicative for any q.
Proof. We may assume that ¢ = p/ with j > 1 ; argue by induction on j.
Suppose j > 1 and u = plr + k withr € I3, and k € I;,-. Write & = p/~la + b with
a€ly, bel; .. Leta*=(p—1 —@1,82,...,84), b* = (pP71 =1 —=by,bs,...,0,).

Suppose first that r is even. By induction, m(k) = m(a)m(b) or m(a)m(b*)
according as a is even or odd. Also u = p’~Y(pr + a) + b, and pr + a has the same
parity as a. So by induction, m(u) = m(pr + a)m(b) or m(pr + a)m(b*) according
as a is even or odd. Thus m(u) = m(r)(m(a)m(b)) or m(r)(m(a)m(b*)) according
as a is even or odd, giving the result.

Suppose next that r is odd and let k* = (pf — 1 — ki, k2,...,ks). Then k* =
p’~la* + b*. So by induction, m(k*) = m(a*)m(d*) or m(a*)m(b) according as a*
is even or odd. Now a and a* have the same parity if p is odd and opposite parity
if p is even. It follows that pr + a and a* have opposite parity. So by induction,
m(u) = m(pr + a)m(b*) or m(pr + a)m(b) according as a* is even or odd. Since

m(pr + a) = m(r)m(a*), m(u) = m(r)m(k*), giving the result. 1

Corollary 5.3. Let mg be a function I} — Z with m(0,...,0) = 1. Then mg has

an extension m : I3 — Z that is q - multiplicative for every q. This extension is

unique.
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Proof. Define m inductively, using induction on Y r;. If u € I, set m(u) =
mo(u). If u ¢ I}, we can write u = pr 4+ k with k € I} ; set m(u) = m(r)m(k) or

m(r)m(k*) according as r is even or odd. Then m extends mg and is p - multiplica-

tive. Now apply Lemma 5.2. Uniqueness is clear. 1

Suppose now that s = 3. We shall show that the function If : I3, — Z of
Definition 4.2 is p - multiplicative whenever F' is a field of characteristic p > 0.

It will be convenient to extend the definition of [k]Fr to triples of non-negative
integers k = (kq, ko, k3) where the triangle inequalities fail.
Definition 5.4. Ifky > kg + ks, [k]r = 51;’“22’53- ; make similar definitions when
ky > ki + k3 or ks > k1 + ks.
Remark . Note that [k]F > 0, that changing any k; by 1 changes [k]r by %, and

that
2kykg + 2k1ks + 2koky — k2 — k2 — k2

De(k) = ; + (¥
in this case as well.
Lemma 5.5.
p(ky= > [k+ep— > [k+d%.
e€{0,1}3 e€{0,1}8
k+4€ odd k+e€ even
Proof. This follows directly from Lemma 2.2 and Proposition 4.3. 1

Lemma 5.6. Suppose charF = 0. If k = (ki, k2, k3) satisfies the triangle inequal-

ities, then [k]p = 0 or } according as k is even or odd.

Proof. We may assume k; < ks < k3. If k is odd, we may reduce to the case of
even k by replacing k3 by k3 — 1 and using Proposition 2.6.

Suppose k is even. Let R = F[z,y]/(z*,y*?), a and g be as in Theorem
2.3 and ¢, : R, — Ryutk, be induced by multiplication by (z + y)*2. In view
of Theorem 2.3, it suffices to show that ¢, is 1 — 1. But in Proposition 2.5 we
calculated a matrix for ¢, ; this is the matrix of Definition 2.8 with k = k3, r = &
and s = k3 — ka. By Lemma 2.9 the determinant of this matrix is a non-zero integer

;since Z CF, p,is1—1 and [k]r =0. 1

Theorem 5.7. Suppose charF' = 0. Then lp(k) = 1 if k satisfies the tria;ngle

inequalities and is 0 otherwise.

Proof. Suppose k satisfies the triangle inequalities. Then each k + € that is even
also satisfies these inequalities. So if k+e€is even, Lemma 5.6 shows that [k+e€]p = 0.
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Proposition 2.6 then shows that [k + |7 = § whenever & + € is odd, and we apply

Lemma 5.5.

If k does not satisfy the triangle inequalities, we may assume k; > ky+k3. Then
Dp(k + €) = (k2 + €2)(k3s + €3) ; since the coefficient of e;€ez€3 in this expression is
zero, Ip(k) = 0. 1

From now on F'is a field of characteristic p > 0.

Lemma 5.8. Let k = (ky,ko,k3) with k; < p and Y k; < 2p+ 1. If k satisfles
the triangle inequalities, then [k]r = 0 or § according as k is even or odd.

Proof. We argue precisely as in the proof of Lemma 5.6. We may assume that &
is even with k3 < ky < k3. Since k+r —1 = k3 +-’5’-ﬂ°§d"-—1 < p, Lemma 2.9
shows that the matrix representing ¢, has determinant an integer prime to p. So

¢u is 1 —1 and [k]7 = 0. (Alternatively one can use Theorem 2.23.) 1

Theorem 5.9. Let k = (ky,ks,k3) with k; < p— 1. If k satisfies the triangle
inequalities, and in addition ky + ko + ks < 2p — 2, then lp(k) = 1 ; otherwise
Ip(k)=0.

Proof. The first result is deduced from Lemma 5.8 precisely as Theorem 5.7 is

deduced from Lemma 5.6.
If & does not satisfy the triangle inequalities, the proof of Theorem 5.7 shows

that [p(k) = 0. Suppose finally that k; + k2 + k3 > 2p — 2. By Proposition 4.6,
lp(k) = lp(k1,p—1—ko,p—1—k3). Since ky > (p—1—k2)+(p—1—ks), Ir(k) =0.
]

Definition 5.10. Suppose u € Z3. T, is the open tetrahedron with vertices at
the four even points of the form u +¢, €€ {0,1}3.
Remark . T, is the tetrahedral cell containing (u1 + 3,uz + 3,us +3). Tp is
just the T of Lemma 2.16. Also T{_1—_y,,—1—us,—~1—ug) = —L(us,u2,us)-
Definition 5.11. wu is called “p - special” if for each j§ > 0, the cell containing
p~IT, is tetrahedral. (Alternatively, u is p - special if for each j > 0, the point
p~I (u1 + %,’Uq + —;—,us + -;-) is tetrahedral.)
Lemma 5.12. Suppose u € I3. Then p~'T, is contained either in Ty or in an
octahedral cell. The following are equivalent :

(i) ue(@-1T

(ii) p~'Ty C To
(iii) u is p - special.
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Proof. Let z; = p~(u; + %) If uy > ug +us+1, [21 — 1] + |2z2] + |23] =
p~'(p—wu1+uz2+us+3) <1, s0 2 is in the octahedral cell with center (1,0,0) and
p~1T, is contained in this cell. (See Lemma 2.17 (iv).) If u; + ua +u3 > 2p — 1,
|21 =1+ |2 =1+ |2s — 1 =p~ 1 (Bp —us —ug —u3 — %) <1, so z (and p~17,) are
in the octahedral cell with center (1,1,1).

Suppose u € (p — 1)Tp. Since the u; satisfy the triangle inequalities, the z;
satisfy the strict triangle inequalities. Also z; + 23 + 23 < p~! ((2p —-2)+ %) < 2.
So z (and p~!T,) are in Ty. We have established the first claim of the lemma and
shown that (i) < (ii).

Suppose p~'T, C Ty. Then p~*T, C Tp for all j > 1 and u is p - special. So
(ii) = (iii).

Finally suppose u is p - specia,l-. Then p~1T, is contained in a tetrahedral cell
which can only be T, so (iii) = (ii). B

Lemma 5.13. Suppose k € I and u € Z°. Then
(i) p~ Tput+k C Ty or an octahedral cell.
(ii) When u is even, p~1Tpyyx C T, if and only if k is p - special.
(iii) When u is odd, p™ Tpy4x C Ty, if and only if (p— 1 —k1,p— 1 —k2,p— 1 —k3)
is p - special.
Proof. Suppose first that u is even. When u = (0,0,0), (i) and (ii) follow from
Lemma 5.12 ; the general case reduces to this by a translation argument.

Suppose next that u is odd. Using a translation argument, we reduce to

the case u = (-1, —1,'—1). Then T, = ~Tp and Tputk = T(ky—p,ks—p,ks—p) =
—T(p—1—k1,p—1—ks,p—1—kg)- S0 (i) and (iii) follow from Lemma 5.12, with k replaced
by (p—1—ki,p—1—kz,p—1—ks). |

Lemma 5.14. Suppose k € I} and u € I3,.
(i) If u is even, pu + k is p - special if and only if u and k are p - special.
(ii) If u is odd, pu + k is p - special if and only if u and (p — 1 — k1, k2, k3) are

p - special.

Proof. First note that (p—1—ky,p—1~ky,p—1—k3) €(p—1)T; <
(p—1—ki, kg, ks) € (p— 1)Th.

Suppose that pu+ & is p - special. Then p~ Tpy++ is contained in a tetrahedral
cell. By Lemma 5.13, p~'Tpyu4% C Ty, and k is p - special for even u, while (p — 1 —
k1,p—1—ko,p—1—k;3) (and consequently (p — 1 — ki, k2, k3)) is p - special for odd
. Furthermore p~ 1Ty 1k C pIT,. So p~IT, and p~7~1T,, 4+ are contained in
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the same cell. We conclude that p~3T, is contained in a tetrahedral cell for all j

and that u is p - special.

The proof of the converse results is similar. i

To prove the p - multiplicativity of [z, we shall use Lemma 5.14. We shall also
need to show that [z(k) = 1 or 0 according as k is or is not p - special ; the proof
of this will be based on the criterion given in Theorem 2.23 for [k]r to be zero.

Lemma 5.15. 0< D, (k) <1.

Proof. This is immediate from Lemma 4.8. i

Lemma 5.16. D,',j(k') = % + [k]%;. + [k +e; + ej]%v — [k + .e"]%' — [k + c_,']%‘.
Proof. This follows directly from Lemma 2.2. i

Lemma 5.17. If k is p - special, lp(k) = 1.

Proof. Since p~T; C Ty for large j, the points of T}, satisfy the triangle inequal-
ities. Let z be one of the vertices of Tx. Then for each § > 0, p~ 12 is contained
in the closure of a tetrahedral cell. Theorem 2.23 then shows that [z]F = 0. So
whenever k + ¢ is even, [k + €]r = 0. Then whenever k + € is odd, [k + €]r = 1.

Lemma 5.5 now shows that [z(k) = 1. 1

Lemma 5.18. Suppose k is not p - special. Then there is a vertex z of Ty with
[2]F # 0.

Proof. Since k is not p - special, p~IT} is contained in an octahedral cell C for
some j. Let 21,29, 23, z4 be the vertices of T;. Then the p~/z; are all in the closure
of C. Easy geometry shows that they cannot all lie on the boundary of C. So we
may assume p Jz; is octahedral. Now apply Theorem 2.23. (When z; does not
satisfy the triangle inequalities, the result is trivial.) 1

Lemma 5.19. Suppose [k + e1]p = [k + e3]p. Then either D13(k) = 1 or
[k]r = [k + e1 + e2]F = 0.
Proof. By Lemma 5.15, Dy 2(k) = 0 or 1. So if it is not 1, it must be 0. Let
[k + e1]F = [k + e2]F = A. Then by Lemma 5.16 either

() Dia(k) =4+ + 1P - (A= 4 —202 =1,

(i) Dia(k) =3 +2(A+3)?2—-2)2=1+2)0r
(111) -Dl,2(k) = % -+ 2(}\ — %)2 —2X2 =1-2\.
So if D; 5(k) = 0, we must be in case (iii) with A = § and [k]r = [k+e; +e2]p = 0.
¥
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Theorem 5.20. Suppose k is not p - special. Then lp(k) = 0.

Proof. As in the proof of Proposition 4.9 we see that (—1)f1+ketksjp(g) =
Dy2(k + e3) — Dy 3(k) = Dy3(k + e2) — D13(k) = Das(k + e1) — Dy 3(k). So
if Ip(k) # 0, Lemma 5.15 shows that either Dy 5(k) = Dy 3(k) = Dy 3(k) = 0 or
Dia(k+e3)=Dyis(k+e2)=Dys3(k+er)=0.

Suppose first that D; 2(k + e3) = Dy 3(k + e2) = D2 3(k + €1) = 0. Since the
[k + ei]F all differ from [k]F by 1, we may assume that [k + e1]F = [k + ez]p. By
Lemma 5.19, [k]r = 0. Then each [k + ej]r = 1. So by Lemma 5.19 again, each
[k + e; + ej]r = 0. This contradicts Lemma 5.18.

Suppose now that Dya(k + es) = Dya(k + e2) = Daas(k +e1) = 0. The
[k + ei + ¢j]r all differ from [k + ¢; + ez + e3]F by % So we may assume that
[k +es+e)r =[k+e3+e2]r. By Lemma 5.19, [k +e; + ez + e3]r = 0. Then each
[k + ei + e;]F = 3. So by Lemma 5.19 again, each [k + ¢;]F = 0. This once again
contradicts Lemma 5.18. 1

Combining Lemma 5.14 with Theorems 5.17 and 5.20 we get :
Theorem 5.21. When s = 3, the function lr is p - multiplicative.

Now suppose that F' is a field of characteristic p = 2 and that s is arbitrary.
We will show that [F is 2 - multiplicative.
Lemma 5.22. Ifk € I] with exactly one k; > %, Ip(k) = 0.
Proof. First note that { is a power of 2. Let e € {0,1}°. For j #1, k; +¢; < £,
and therefore Dp(k + €) = [];.;(k; + ¢;). Since the coefficient of ¢; -+ - ¢, in this

expression is zero, {p(k) = 0. 1

Lemma 5.23. Ifk € {0,1}°, then lp(k) =1 or 0 according as k is even or odd.
Proof. If Y k; <1, use Lemma 5.22. If Y k; > 1, use Proposition 4.6 (i) with

¢ = 2 and induction. o1

Theorem 5.24. Let k € {0,1}° and u € I,. Then lp(2u + k) = lr(u)lp(k).

Proof. Induction on } u;. Choose ¢ = 2" as small as possible so u € I?. If
, g = 1, then u = 0 and the result is trivial. If ¢ > 1, at least one u; > i I
g exactly one u; > %, then exactly one 2u; + k; > ¢. Lemma 5.22 then shows that
| Ir(u) = lp(2u+ k) = 0. If, say, u; and up are > %, let ' = (g—1—wu;,g—1-
Uz, U3y ..., Us), k' = (1—ky,1—ko,ks,..., k). By Proposition 4.6 (i) and induction,
Ir(2u+ k) = lp(2u' + &) = Ip(u)lp(k') = Ir(u)lk). 1
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Theorem 5.25. If charF = 2, g is 2 - multiplicative for every s.

Proof. Suppose k € {0,1}*. If u is even, Theorem 5.24 shows that {p(2u + k) =
Ip(u)lp(k). Suppose u is odd. Writing u = 2a + b with b € {0,1}® and applying
Theorem 5.24 and Lemma 5.23, we find that {r(u) = Ip(a)lF(k) = 0. Furthermore
Ip(2u + k) = lp(u)lp(k) = 0. So lp(2u+k) and Ip(u)lF(1 — k1, k2,.. ., k) are both

Z€Ero. [}

i
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6. The Dy - conjecture

p is a prime and F is a field of characteristic p. ¢ 2> 1 denotes a power of p.

Definition 6.1.
(i) m: I — Z is q - regular if when any s — 1 of the variables k; are fixed, the
sum of m over the g values of the remaining variable is 1.

i) m: I®, — Z is q - regular if the restriction of m to I? is q - regular.
oo q

Lemma 6.2. Ifm is p - multiplicative and p - regular, then it is q - regular for

every q.

Proof. It suffices to prove p’ - regularity for j > 1, and we argue by induction on
7. Suppose we fix the last s — 1 variables. It suffices to show that

Z . z m(pr+k)=1

0<r1<pi=1—1 0<ki <p—1

whenever kz,...,k, are in [0,p — 1] and r2,...,r, are in [0,p/ 1 — 1].

Fix ry. If 3 r; is even, m(pr+ k) = m(r)m(k). Using p - regularity we see that
the interior sum is m(r). Using p?~? - regularity we see that the double sum is 1. If,
on the other hand, Y r; is odd, then m(pr + k) = m(r)m(p —1— k1, k2,...,ks). So
once again the interior sum is m(r) and the double sum is 1. The argument when

s — 1 variables including the first are fixed is similar. i

Corollary 6.3. If mg: Iy — Z is p - regular with mo(0,...,0) =1, then mo has
an extension m : I3, — Z that is q - multiplicative and ¢ - regular for all q. This

extension is unique.

Proof. This follows from corollary 5.3 and Lemma 6.2. 1

Example. Suppose p = 2. There is a unique 2 - regular function mg : Iy — Z with
mo(0,...,0) = 1. (This function takes each even r to 1 and each odd r to 0.) So
there is a unique extension m : I>, — Z that is 2/ - multiplicative and 27 - regular
for all j. Explicitly m(r) =1 if r is a “balanced Nim position” and is 0 otherwise.
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Definition 6.4. Let D be a function I3, — Z. D is “p - induced” if there exists
a p - multiplicative, p - regular m such that for all r,

D(r) = > m(k).

0<k<L (r1—1,...,rs—1)

We shall say that D is p - induced from m (or that D is p - induced from mq where

my is the restriction of m to I;).

Remark . It is easy to see that

m(r) = (-1)° Z o(e)D(r + €).

e€{0,1}+
Lemma 6.5. Define mp : IS, — Z by

mp(r) =(-1)° Z o(€)Dp(r + €) = o(r)lp(r).

e€{0,1}*

Then
€)
DF("') = Z mF(k)
0<k<L (r1—1,...,rs—1)
(ii) mr is q - regular for every power q of p.

Proof. This follows immediately from Propositions 4.5 and 4.6. 1

Lemma 6.6. Fix p and s. Then there is a unique p - induced function f); :
I3, — Z such that 5;(1::) = Dp(k) whenever each k; < p.

Proof. Define mp as in Lemma 6.5 and let my be the restriction of mp to I;.
Lemma 6.5 shows that mg is p - regular with my(0) = 1. Now let m be the p -
multiplicative extension of g and D the function induced from 7. (i) of Lemma,

6.5 shows that Dp agrees with Dr when each r; < p. 1

Theorem 6.7. The foﬂof-ving are equivalent :
(i) DF is p - induced.
(ii) Dp coincides with Dp.
(iii) mp is p - multiplicative.
(iv) lp is p - multiplicative.
Proof. (i) and (ii) are clearly equivalent. Since o is p - multiplicative, the same

is true of (iii) and (iv).

37



Suppose Dr is p - induced from some m. One sees easily that mp(r) = m(r)
so that mp is p - multiplicative.

Finally if mp is p - multiplicative, the fact that it is p - regular combined with
(i) of Lemma 6.5 shows that Dy is p - induced. I

Definition 6.8. Let D be a function I3, — Z and r € I;,. We say D satisfies
condition (®,) if there exists an I, € Z and a ¢, € My with the following property:
Suppose q is any power of p and k = (ky,...,ks) with 0 < k; < q. Then
(i) If r is even, D(qr + k) = I, D(k) + ¢* Lo, (¢7 k).
(ii) If r is odd, D(qr + k) = I,D(q — k1, k2,..., ks) + ¢° 2o, (¢71k).

Remark . If D satisfies (®,), then I, and ¢, are uniquely determined ; explicitly

I, =(-1)° Z a(e)D(r + ¢).

ec{0,1}*

Suppose that r € IS, and a € I; ;set a* = (g—~1—aqy,a2,...,a,). If D satisfies
(®,) and (®,), then it also satisfies ($4ryq4). Furthermore lgry, = I, if r is even
and [,l,« if r is odd.

Theorem 6.9. Suppose that D : I3, — Z is p - induced. Then D satisfies (P,.)

for every r € 13,.

Proof. Say D isinduced from m. We shall derive an explicit formula for D(gr+k)
where ¢ is a power of p and each k; is in [0, ¢]. D(gr + k) is the sum of all the terms
m(u) with 0 < u; < gri + ki. Fix a = (a1,...,a,) with 0 < a; < r; and let S(a)
consist of the sum of all the m(u) for which u; = ga; + b; with 0 < b; < ¢ (and
u; < qri + ki). Set n; = ¢ if a; < r; and n; = k; if a; = r;. For u; to be < gr; + k;,
we must have 0 < b; < n;. Thus

n)—1 ng—1

S(@)= Y- m(ga+b).

b1=0 b,=0

We claim :
Lemma 6.10.
(i) fa#r,
_ ki
S(a) = ¢ 'm(a) [] ri

(ii) If a = r and r is even, S(a) = m(r)D(k).
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(iii) Ifa = r and r is odd,

S(a) — qa—lm(rp) H% - m('r)D(q —ky,k2y..n, ks).

=2

Proof. Suppose a # r. Fix an index j with a¢j < rj. Fix b; for all ¢ # j
with 0 < b; < n; — 1. Then for each choice of b;, m(ga + b) = m(a)m(b) or
m(a)m(g — 1 — b1, b2,...,b,) according as a is even or odd ; summing over the
n; = ¢ values of b;, we find that the partial sum we get is m(a), since m is q -
regular. Thus

S(a) = m(a) [] i = m(a)g*™ H — =m(a)g" H —
i#] i= ai=rq
giving (i).
Suppose that a = r and r is even. Then

k1—1 ks—1

S@=Y -+ Y m(rym(b) = m(r)D(k).

by =0 b,=0

Suppose finally that a = r and r is odd. Then

k-1 k=1 ¢=1 k=1  k,—1

S(a) = Z Z m(r)m(qg —1—=">y,b3,..., Z E Z m(r)m(b).
b1=0 b, =0 bi=g—kq, b2=0 b,=0

Write the outer sum as Ebl—o g;ka—l. Then S(a) is represented as a difference

of two terms. Since m is ¢ - regular, the first term is
m(r) H ki = m(r)g®™? H —
=2 =2
while the second term is evidently m(r)D(g — k1, k2,..., k) 1

Since D(gr + k) = Y, S(a), (®,) follows immediately from Lemma 6.10 ; note
that I, = m(r) or —m(r) according as r is even or odd. 1

Theorem 6.11. The following conditions on DF are equivalent :
(i) Dr 18 p - induced.

(ii) Dy satisfies (®,) for every r € IZ,.

(iii) Dr satisfies (®,) for every r € I;.
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Proof. Theorem 6.9 shows that (i) = (ii). (ii) = (iii) is trivial. Suppose finally
that (iii) holds. According to the remark after Definition 6.8, Dr satisfies (®,) for

all r, the function r — I, is p - multiplicative and

I =(=1)%a(r) Y o(e)Dp(r+e€) = o(r)mp(r) = lp(r).

ec{0,1}*

So lp is p - multiplicative and we apply Theorem 6.7 to get (i). i

We can now state the “Dp - conjecture”.

Conjecture. Let F be a field of characteristic p and s an integer > 1. Then the
equivalent conditions of Theorems 6.7 and 6.11 are satisfied.

There are four cases in which the Dp - conjecture is known to hold ; the first
two are trivial, the last two are results of chapter 5 (see Theorem 5.9, Theorem
5.21, Lemma 5.23 and Theorem 5.25).

(i) f s =1, then Dp(r) = min(r,1), lp(r) = mp(r) = b0 and D is p - induced.

(ii) If s = 2, then Dp(ry,72) = min(ry,rs), lp(r1,72) = mp(ri,r2) = 6, ,,, and
Dp is p - induced.

(ii) If s = 3 and r € I}, then Ip(r) = 1 if r is in the closed tetrahedron with
vertices at (0,0,0), (p—1,p—1,0), (p —1,0,p—1) and (0,p—1,p— 1), and is
0 otherwise. Furthermore Dp is p - induced.

(iv) If p = 2 and r € I3, then Ip(r) = mp(r) = 1 or 0 according as r is even or
odd. Furthermore Dr is 2 - induced. (So Dp(r) is the number of balanced
Nim positions k with 0 < k; < r; ; see the example after Corollary 6.3.)

We conclude this chapter by developing some properties of Dy that lend plau-
sibility to the Dp - conjecture for arbitrary p and s.

Lemma 6.12. Suppose mq : I; = Z (s > 2) satisfies the following conditions :

mp(0) = 1, my is a symmetric function of the k; and my(k) = mo(p — 1 — k1,p —

1— ko ks,... ks).

Let m be the p - multiplicative extension of mg. Then m is a symmetric function
of the k;. Furthermore if k € I;, then m(k) =m(qg—1—Fk1,q—1—ka,k3,... k).
Proof. Although my is symmetric, the inductive definition of m in Corollary 5.3
singles out the first variable. But under our hypotheses mo(p —1—ky, ks,...,k,) =
mo(k1,...,p—1—ki,...,ks). Sothe dependence on the first variable is only apparent
and m like myg is symmetric.

To prove the last assertion we write ¢ = p’ and k = pa + b with a € I ;j_l and

b € I;. The argument, by induction on j, is straitforward. 1
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Theorem 6.13.

(i) Dr(ar) = ¢ Dr(r).

(ii) Dg is symmetric.
(iii) If each r; < g, E;(r) = ﬁ(q — 71, —T2,73,...,Ts) + (1 + 72— g)rs - rq.
(iv) Kky,... ks < q, then Dp(q +uy, ka, ..., ko) = kg -+ k,.

(v) Ifk3,...,ks < g, then b;(q +uy,q+ug, k3,..., k) = Eg(ul,ug,k3,...,k3)+

gks - - k,.

Remark . The above results also hold when D is replaced by Dr ; see Propo-
sitions 1.4 and 1.6 and Theorem 3.8.

Proof. Let my be the restriction of mp to I} and m the p - multiplicative exten-
sion of my.

(i) We argue as in the proof of Theorem 6.9 with each k; = 0. Then B;(qr) is a
sum of terms S(a) ; since each k; = 0, we may assume that 0 < a; < r;. By Lemma
6.10, S(a) = ¢*"m(a) ; summing over a, we get (i).

(ii) Since my is symmetric and by Proposition 4.6 mo(k) = mo(p —1—k1,p — 1 —
kg, ka,...,ks), Lemma 6.12 shows that m is also symmetric.

(iii) Lemma 6.12 also shows that if & € I}, m(k) = m(q—1—k1,q—1—k, k3,..., ks).
Using this fact and the ¢ - regularity of m, it is easy to deduce (iii).

(iv) Write ¢+uy = cg+kq with 0 < k1 < ¢—1. We use the argument of Theorem 6.9
to calculate b;(cq + ky,ka,...,k,). Since mp(a,0,...,0) = &9, m(a,0,...,0) =
6a,0- Thus the only non-vanishing S(a) is S(0) = ¢°~* ][] Eq"- = ko ks.

(v) Let us = riq + ki1, ug = roq + kg with 0 < k3,k; < ¢ — 1 and use the ar-
gument of Theorem 6.9 to calculate B;(ﬁq + k1,729 + ko, k3,...,ks). Note that
mp(a,b,0,...,0) = 8,5 and an easy induction shows that m(a,d,0,...,0) = &, .
So the only non-vanishing S(a) are those with ¢ = (2, #,0,...,0), z < min(ry,rs).
If £ < min(ry,rs), the corresponding S(a) is ¢*1I1; Eq"- = gk3- - k,. Ifz =
min(ry,r3), the corresponding S(a) is kpks -+ - ks, Dp(k1,...,ks) or k1ks---k, ac-
cording as ry > ry, 7y = ry or 1y < ry, The effect of replacing ry by r1 + 1 and ry
by 2 + 1 is thus to add one additional S(a) of the form gks oo ky, giving (v). i
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7. Applications of the Dp - conjecture to Hilbert - Kunz functions

Throughout this section p is a fixed prime ; ¢ is always apowerofp. D : IS, — Z
is a p - induced function in the sense of Definition 6.4.
Definition 7.1. Ifr € I3,

m(r)=(-1* Y o(e)D(r+e)
ec{0,1}*

and I(r) = o(r)m(r).
Remark . m and [ are p - multiplicative and D satisfies condition (®,) with
l. =I(r).
Lemma 7.2. Suppose that r € IS, k € I and 2 € [0, 1]°.

(i) If r is even,

_ k+ 2z
arti(2) = Lipa(2) + ¢ lsor( . )

(ii) Ir is odd, set k* = (g —1— k1, ka,.. .,ks). Then

- k+z
(qu'l'k(z)=lr¢k*(1—zl1z2a---1za)+qs lﬂor( q )

Proof. It suffices to prove the lemma when the z; are replaced by indeterminates,
t;.

Suppose first that gr + k is even. Adopt the language of Definition 4.1. Both
sides of the two identities to be proved are elements of Mp. Using the remark after
Definition 4.1 we see that it is enough to prove (i) and (ii) when z is an element
e of {0,1}*, and that we may even assume that e # (1,... ,1), so that D(e) = 0.
Since gr + k is even, either r and k are both even or r is odd and k* is odd. In both
cases D(qr + k + €) = @gryx(€). Furthermore D satisfies (®,). So in the first case
D(gr +(k+€) = - D(k+)+ 0 or (E£2) = Lpr(+4°or (B£e), while in the

second case it is ,D((g—1— k1) + (1 —€1), k2 + €2,.. ., ks +e)+a o (k_;i) _

l"‘Pk'(l —€1,€2,..-, 63) + qs—l‘P‘f‘ (!s%) .
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D(1 — €1,€2,...,€5) = 0. Now either r is even and ¥ odd or r is odd and k*
even. In both cases D(gr + k + €) = @qr+k(€). In the first case D(gr + (k +¢)) =

I,D(k+¢€)+ ¢ o, (E-'F) = lL.or(e) + ¢* Loy (%-‘5), while in the second case it

once again is LD((g—1—ki)+ (1 —e1), ko +e2,..n ks +6) +¢° Lo, (_k_F) _

lrtpk‘(l—61’62""’65)'*‘48_130,. (Egi) .

Definition 7.3. Ifu € I3, let G, be the unique element of M whose value at
any € € {0,1}* is D(u + €). Explicitly

Gu(z)= ). (H z,-) (H(l—zg)) D(u + ).

e€{0,1}* \¢=1 €=0

Definition 7.4. If 8 € [0,00)%, let u (or more precisely u(f)) be the element
(IB1],-..,[Bs]) of IZ, and z (or more precisely z(3)) be B — u. Set g(B) = Gu(2)
where u = u(f), z = z().

Remark 1. If g € IS, g(8) = Gp(0) = D(B). So g is an extension of D to
[0,00)*. (It is & kind of piecewise linear interpolation of D.)

Remark 2. G, is closely related to ¢,. In fact @,(z) = Gu(2) — lyz1 -2, or
Gu(2) = (1 = 21)22 - - - 2, according as u is even or odd.

Remark 3. Let dy,...,d, be positive integers and 8 = (dll,..., 7‘17) If n >0,
write p” = d;u; + a; with 0 < a; < d;.. Then u(p"fB) = (u1,...,u,) and z(p"B) =

(%i—, ceey %:-) Using the formula for G, in Definition 7.3, we find that

dy---dsg(p"p) = Z (H ai) (H(di - ai)) D(uy +e1,...,us + €s).
e€f{0,1}* \e&=1 €=0

Suppose now that F' = Z/p, that D = Dp (and that the Dp - conjecture
holds). Then by Proposition 1.3 this last sum is just e,, the F' - dimension of

T o L SR 0
e e et S 5

Fllza, ...,z )/ zf e, 22").
1

So the problem of describing e, as a function of n is just the problem of describing

g(p™B) as a function of n.

R — 3

; Motivated by the last remark, we shall consider the following problem. Let D
“ be any p - induced function and 8 € [0,00)° where each f3; is rational. How does
g(p’B) depend on 8?7 We shall prove :
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Theorem 7.5. Suppose D satisfies the following condition : if t € I then
It # ¢°'. Let B = (p1,...,Bs) where the B; are non-negative and rational. Then
there is a rational C and integers I#* and A\, X > 1, such that :
() 9(p’B) = Cp*~V7 + A; where

(ﬁ) Aj+,\ = l#AJ‘ for all Iargej.

Theorem 7.5 evidently holds for § if and only if it holds for pB. So multiplying
B by a power of p we may assume that the §; have denominators prime to p ; when
p is even we may further assume that )_ 3; has even denominator. Choose A > 1
so that (p* — 1), and consequently (p* — 1)z are in I2,. When p is odd, we may
further assume that (p* — 1)z is even (replace A by 2) if necessary). So we only
need to prove Theorem 7.5 in the situation of the following definition.
Definition 7.6. Henceforth 8 = (f1,...,B,) where the B; are non-negative ratio-
nal numbers with denominators prime to p ; when p is even, we assume that Y, 3; has
even numerator. u = u(f8), z = z(B) and X > 1 is chosen so that t = (p* —1)z € I,
; if p is odd we further choose A so that t is even.
Definition 7.7. 2* =(1—z,2s,...,2,) and t* = (p* — 1)z*.
Definition 7.8. z# = 2z or 2* according as u is even or odd, and t# = (p* —1)z#.
Remark 1. The coordinates of ¢, * and ¢t¥# are integers in [0,p* — 1]. Note that
tt =p* —1—1t;, while t# = ¢; for i > 1. So ¢ and t* have the same parity if p is
odd and opposite parity if p is even. In particular, when p is odd, ¢, t* and t# are
all even.
Remark 2. Suppose p is even. Since ¥ 8; has even numerator, (p* —1)8 is even.
Then u has the same parity as (p* — 1)u = (p* —1)8—t, and u and ¢ have the same
parity. So if u is even, t# =t and is even, while if u is odd, ¥ = * and again is
even.

We shall prove the following precise form of Theorem 7.5 :
Theorem 7.5'. Let B and A be as in Definition 7.6 and t¥ be as in Definition
7.8. Suppose lyg # p™*~1), Then there is a rational C such that :
(i) g(p?B) = CpL*~VI + A; where
(11) Aj+A = lt#Aj for aﬂ] > 0.
Definition 7.9. Write p"z = v, + 2, with z, € [0,1)° and v, € I},. Let z}
be obtained from z, in the same way z* is obtained from z, and set z# = 2, or
z¥ according as u is even or odd. Let v} is defined so that v, and v;, agree in all
coordinates but the first, and have first coordinates summing to p™ —1. Set v# = Up

or v} according as u is even or odd.
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Lemma 7.10.
(i) Zntr = Zn, Vntr =P "t + Vn
(i) p"B=p"u+vn+2n
(iii) p"t*8 = p™(P u+1t) + vn + 2n
(iv) u and p*u + t have the same parity.
Proof. p"t*z = p"(t 4 2) = p"t + vn + 2. giving (i). The fact that 8 = u + 2
then gives (ii) and (iii). The remarks after Definition 7.8 give (iv). i

Definition 7.11. Let I# = ;4 and Q@ = p*(*™1). Set A = pprute(2) — #p,(2).
Remark . Since the coordinates of z are rational, A is, rational. Also p~2(t +
z) = z. So if we apply Lemma 7.2 we get an alternative description of A ; A=
luper (%) + (@ = F)pu(2).

Theorem 7.12. g(p™+t*8) —I#g(p"B) = Ap"(*~1). (Here A is the A of Definition
7.11, which is independent of n.)

Proof. Let II be the product of the coordinates of z, or of z} according as p"u+vn
is even or odd. Then g(p"B) = @Pprutvn(2n) + lul #Il. Now (iv) of Lemma 7.10
shows that p™u + v, and p™(p*u +t) + v, have the same parity. Using (iii) of that
lemma we find that g(p™T*8) = ©@pn (> utt)4vn(2n) +lul#lv#H for the same II. Thus

g(p™tB) — Fg(p™p) = P (pr+t)4on (#n) — 1#ppnytv, (2n). Lemma 7.2 shows that
the first term is [ l#gov# (z#) +pne~ l)gop ut+1(2), since —'d,:,—"- = z. Similarly, the
second term is —I# (lucpv#(z#) +p™es—1,(z)). The theorem follows immediately.

It is now easy to prove Theorem 7.5'. Under the hypotheses of that theorem,
# £ Q. Set C = A/(Q—1#)and A, = g(p"B) - Cp™* V. Then A,qp — I#A,
Ap™e~D — Cpnle=1)(pr(s—1) — [#) = 0, the desired result. i

We next apply Theorem 7.5 to Hilbert - Kunz functions. Let p be a prime and
F =17/p. Let di,...,d, and n be integers with d; > 1, n > 0. Set

en(d1,...,ds; p) = dim Fl[zy,.. m,,]]/(Za: :1:1 veeeyzP)

By Remark 3 following Definition 7.4,

n n
en(di, ... da; p) =di1 -+~ dsg (%1-,...,%—)

with D = Dr and g as in Definition 7.4, provided that Drp is p - induced.
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Theorem 7.13. If either s = 3 or p = 2, en(dry--.,ds; D) = cpls~Dn 4
(an eventually periodic function of n), where c is a positive rational.

Proof. Let 8 = (d%’ ey f;) Then en(dy,-..,ds; p) = d1-: -dyg(p™B) with
D = Dy and g as in Definition 7.4. (Note that D is p - induced ; see the remarks
following the proof of Theorem 6.11.) Furthermore we have shown in Lemma 5.17,
Theorem 5.20 and Lemma 5.23 that if t € IS, then I, =0 or 1. Now apply Theorem
7.5, noting that the 1# of that theorem is just l;# for some t# e I2.. 1

Theorem 7.14. Suppose s >3 and D : I3, = Z is p - induced. Then
en(dl, e )da ) P) = cp(s—l)n + A‘m

where c is a positive rational and A, = O(p(*~"). Furthermore there are integers
\ and # with X\ > 1 such that Ay = I#A,, for large enough n.

Proof. Let 8 = (%i—, ey %) with i fixed and large. Then e,(di,...,ds; p) =
dy -+ deg(p™'B) with D = Dr and ¢ as in Definition 7.4. Now choose A as in
Definition 7.8. By Proposition 4.9, |l;#]| < p*#~3), So the conclusions of Theorem

7.5" hold, and the theorem follows immediately. 1

Shortly after we completed this thesis, Monsky discovered that an argument
using a representation ring enables one to deduce the p - multiplicativity of Ip for
all s from the p - multiplicativity when s = 3. He presents this argument in an
appendix attached to this thesis. It follows that D is p - induced for all s, and we
get :

Theorem 7.15. The conclusions of Theorem 7.14 hold unconditionally.

In certain cases Theorem 7.5' can be given a more explicit form.

Theorem 7.16. Suppose 8 € [0,00)° and lys = 0. Then, for all n > 0,
Lu(prng) = 0 and g(p"B) = p*"V"g(h)-

Proof. Suppose n = 1. Write # = u + z with u = u(B) and z € [0,1)°. Write
pz = v+ 2 with v € I} and 2" €[0,1)*. Then pB = (pu + )+ 2, and lypp =
lputv = 0. Thus 9(pB) = Gputo(?') = @puto(z'). By Lemma 7.2 thisis p* . (2) =
p*"1G.(z) = p*~1g(B). For arbitrary n use induction. i

Corollary 7.17. Suppose we are in the situation of Definition 7.6. If [, =0, the
A, of Theorem 7.5' is 0 for all j 2 0. If I# = 0, the A; of Theorem 7.5 is 0 for all
iz
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Proof. The first result follows from Theorem 7.16, and the second from Theorem
7.5 itself. ]

Suppose now that we are in the situation of Definition 7.6 with s = 3 and
D = Dp and seek an explicit formula for the A; of Theorem 7.5'. In view of
Corollary 7.17 we only need consider the case I# =1, = 1. Furthermore we only
need calculate Aj for 0 <j < A

Lemma 7.18. For 0 <j < X we have ly(,ig) = 1.

Proof. p*B = p*u +1t+ z. Thus the value of [ at u(p*p) is 1,I# = 1. Now the
proof of Theorem 7.16 shows that if [ = 0 at u(p"8) then I = 0 at u(p"*+'g), giving

the lemma. i

Lemma 7.19. Let H(Ty,T;,T3) = TyT; — (B¥D3T8)*. Suppose that u € I3, is
p - special and € is in {0,1}3. Then

(i) fu is even, Dp(u +€) = H(u +¢€) — H(e) + e1€2€3.

(i) Ifu is odd, Dp(u +€) = H(u +¢€) — H(1 — €1, €2, €3) + (1 — €1 )ez€3.
Proof. In the situation of (i), Dr(u+€) = Dr(u+¢€) — Dr(e) + e1eaes = (H(u+
€)+ [u+€]%) — (H(e) + [e]%) + e1€2€3. But since u is p - special and even, the proof
of Lemma 5.17 shows that [u + €]r = [€]r, giving the result. When u is odd, the

argument is similar, using the fact that [u + €]F = [1 — €1, €2, €3] 7. i

Lemma 7.20. Suppose that 8 = u + z withl, = 1 and z € [0,1)® ; write
z = (21,2 2(®), Then

(i) Ifu is even, g(8) = H(B) — H(z) + 222z,

(ii) Ifu is odd, g(8) = H(8) — H(1 — 2,23, 2®) 4 (1 — 21)@ (),

Proof. Suppose u is even. Theorem 5.20 shows that u is p - special. The poly-
nomial H(T + u) — H(T) + Ty T»T5 is easily seen to be in M. By Lemma 7.19 its
value at any € in {0,1} is Dr(u +€). So H(T +u) — H(T) + T2 T3 = Gu(T).
Evaluating at T; = 2(¥ we get (i). The proof of (ii) is similar, using the fact that
H(T+u)— HQ =Ty, Ty, Ts) + (1 — )T, Ts is in M. .

Definition 7.21. Suppose a € [0,1)%. Set H'(a) = ayaza3 — H(a) and H" (o) =
H'(1—ay,az,a3).
Theorem 7.22. Suppose that we are in the situation of Definition 7.6 with s = 3,
D = Dr and I# =1, = 1. Write p"8 = u(p"B) + zn with zn € [0,1)>. Then

(i) The constant C of Theorem 7.5' is H(f).
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Theorem 7.22. Suppose that we are in the situation of Definition 7.6 with s = 3,
D = Dp and I# =1, = 1. Write p"8 = u(p"B) + zn with 2n € [0,1)%. Then

(i) The constant C' of Theorem 7.5' is H(B).

(ii) Suppose 0 <n < A. Then the A, of Theorem 7.5 is H'(z,) or H"(z,)

according as u(p™f) is even or odd.

Proof. By Lemma 7.18, ly;png) = 1. The proof of Lemma 7.20 applied to p™f
shows that g(p"8) = H(p"B) + H'(2zn) = p*™H(B) + H'(zn) or p?"H(B) + H"(2x)
according as u(p"ﬂ) is even or odd. Taking n = 0 and ), using the fact that
Ao = A, and that u(8) and u(p*B) have the same parity we find that C = H(S).
(ii) follows immediately. 1

Example 1. We shall first calculate e, = en(5,8,8; 3).

8= (11,1),then38=(%2,2),98=(1,1L1)+(5%13) 278 =(53,3)+
(2,2,%) and 818 = (16,10,10) + 5. So we are in the situation of Definition 7.6
with A = 4, u = 0 and ## =t = (16,10,10). Since t# = 9(1,1,1) +(7,1,1),
# =l = l(1,1,1)l(8—7,1,1) = 1(21’1,1). But 1(1,1’1) = 1 by Theorem 5.9. Therefore
[# = 1. Since [, =1, we can apply Theorem 7.22 to calculate C and A,, of Theorem
7.5'. Then C is H(f) = 555, and &g = H'(B) = —d A =H'((},4,) =
~1e50» A2 = H"((§ ,m)) = H'(B) = Ao = —gitg and As = H'((3,5,%)) =

H’((s’ 838 )) A = 1600
Now e, = 320g(p™f) ; by Theorem 7. 5’ this is 24 2432n 4 320A,, with Ap4a = A,
for all n. But we have Ay = Ay = 1600 and A1 = Az = —1?5%' Thus e, =

2g2n — 12 or 2237 — 8 according as n is even or odd.
Example 2. We shall next calculate e, = en(4,4,4,4; 5).

If 8= (31,4,1), then 58 = (1,1,1,1) + 8 and we are in the situation of
Definition 7.6 with A = 1, u = 0 and t¥ = ¢t = (1,1,1,1). Since [, = 1 and
¢u = 0, the remark after Definition 7.11 shows that the C appearing there is
—5-—;; By Proposition 4.3, I# = 2eeo, 1}4( 1)%¢ Dp(t +€). Since Dp(1,1,1,1) =
Dr(2,1,1,1) = 1, DF(2211)_2 Dr(2,2,2,1) = 3 and Dp(2,2,2,2) = 6,
we get I = 3. Similarly pe(2) = X cq0,1} (Te.=1 2) (I1e,=0(1 — ) Dr(t +¢) -
321222324, which is easily seen to be 1+Et<] ZiZj— (z1 zzz3 +212224+212324+222324).
So A = ¢¢(8) = & and the C of Theorem 7.5’ is 5% Now e, = 2569(p™B) ; by
Theorem 7.5' thls is 1885%" + A, where Apt1 = 3Aq. Since eg = 1, g = -1
and A, = —1—60113” for all n.

Example 3. We now calculate e, = en(2,2,2,2,2; 8)-
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B=(31%,4,11), then38=(1,1,1,1,1)+ 8 and 98 = (4,4,4,4,4) + B. So
we are in the situation of Definition 7.6 with A =2, v = 0 and t# = ¢ = (4,4,4, 4, 4).
Since t# = 3(1,1,1,1,1)+(1,1,1,1,1), ¥ = Lis =l 111, 0k2-1,1,1,1,1) = 1%1,1,1,1,1)
and @;(2) = l1,1,1,1,1)P(1,1,1,1,1)(1 — 21, 22, 23, 24, 25) + 3*P(1,1,11,1) (%)

Therefore we need to calculate [(; 1,1,1,1) and ¢(1,1,1,1,1)- First we note that
Dr(2,1,1,1,1) = 1, Dr(2,2,1,1,1) = 2, Dr(2,2,2,1,1) = 3, Dr(2,2,2,2,1) = 6
and Dp(2,2,2,2,2) = 11 (use Theorem 3.8). So l3,1,1,1,1) =
Seeo1p (D4 Dr((1,1,1,1,1)4¢) = 1-(5) Dr(2,1,1,1, 1)+(3) Dr(2,2,1,1,1)—
() Dr(2,2,2,1,1)+(3)Dr(2,2,2,2,1)—Dr(2,2,2,2,2) = 1-5-1+10-2—10-3+5-6—
11 =35 and 90(1,1,1,1,1)(2) = Z:ee{o,l}5 (He.-=1 z,-) (He.-=0(1 - z,')) Dr ((1’ L,L,L,1)+
e) — 5(1 — 21)22232425 = 1 + S2 — S35 + 35y — 555 — 5(1 — 21)20232425 = 1 +
S2 — S3 + 35Sy — bzaz3z425 where S; is the j th symmetric function in z,..., 2.
Therefore I# = 5% and, since u = 0, A = p;(8) = 590(1,1,1,1,1)(,3)+34tp(1 1,1,1,0)(B) =
86 (1+10-(1)2 - 10 (3 )3+3 5-(3)*—5-(3)*) =862 =228  So the C of
Theorem 7.5' is —g—L; = 'G'(E

Now e, = 32¢g(p™f) ; by Theorem 7.5 thisis f3 347+ A, with Apps = 25A,, for
all n. Since eg = 1, Ag = —35. Furthermore ¢((1,1,1,1,1) + z) Y@a1,1,1,0(2) +
5(1 — z1)2z3232425. So g(3,3) g((l 1,1,1 1)+ﬂ) = 23 £ 4 352 = 32, and e; = 97. We

conclude that A; = 22 .81 — 97 = —2 and that A, = —F - 5" for all n.
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Appendix (Paul Monsky)

lp(k1,...,ks) is p -~ multiplicative

Let F be a field. By an F - object we mean a finitely generated F[T'] - module
on which T acts nilpotently. If M and N are F - objects so is M @ N. Furthermore
M ®F N can be given the structure of F - object with T(m @ n) = (T(m) ® n) +
(m ® T(n)). We will denote this F - object by M @ N.

Consider all formal differences M —M' where M and M’ are F - objects. We say
that M —M' and N — N' are equivalent if M @ N' and M'@® N are isomorphic F[T]
- modules. The theory of Jordan canonical form (or the Krull - Schmidt theorem)
shows that this is an equivalence relation. We denote the set of all equivalence
classes of formal differences M — M' by I'. The following is easily proved :

Theorem A.l1. & and ® induce binary operations, + and -, I' x ' = I'. Under

these operations I' is a commutative ring and the unity element of I is the class of
F[T]/T.

Definition A.2. If j is an integer > 0, [j] € T is the class of F[T]/T9, and
L = (-1 ([j + 1] - [5])-

Lemma A.3. T is a free abelian group with the L; forming a basis.

Proof. The theory of Jordan canonical form shows that [1],[2],[3],... form a Z -
basis of I'. Since [0] is the zero element of T, the result follows. 1

Definition A4. «:T' — Z is the Z - linear map Y, ¢;L; — cp.

Remark. « takes [n] to 1 if n > 0. Suppose that V is an F - object. Writing V
as a direct sum of copies of F[T]/T™, n; >0, we see that a(V') is the number of
summands. ‘In other words a(V) is the F' - dimension of V/TV. 0

Theorem A.5. Let ky,...,k; be non-negative integers. Then :

(1) a(II;ki]) = Dr(ks, ..., ks)

(2) a(Il; L) = lr(ke, - .- ks)

Proof. Let M; = Flz;]/z¥ with T acting by multiplication by z;. Each M; is
an F - object and M; ® - -+ ® M, identifies with F[:cl,...,:c_,]/(zfl,...,:cf-’) with
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T acting by multiplication by Y z;. (1) now follows from the definition of Dr and
the remark after Definition A.4, and (1) together with Proposition 4.3 gives (2). g

Theorem A.6.

(1) o(LiLj) = i

(2) LiLj =323 1r (4,5, k) L

Proof. Since Ir(i,j) = &i;, Theorem A.5 gives (1). We can write L;L; =
>, Ci,j,rLr with ¢; ;- € Z. Multiplying by Ly, applying @ and using (1) together
with Theorem A.5 we find that ¢; j r = Ip(i, ], k). i

Corollary A.7. Ip(ky,...,ks) 2> 0.
Proof. Theorems 5.7, 5.9 and 5.21 show that lr(¢,7,k) is either 0 or 1. In
particular L;L; is a Z - linear combination of L,, with non-negative coefficients. It

follows that []] Ly, is a Z - linear combination of L, with non-negative coefficients.
But Iz(k1,...,ks) = a([] Ls,), the coefficient of Lo in []§ L. ]

From now on we assume charF = p > 0. We shall make extensive use of

Theorem 5.21 which asserts that {r(k1, ko, k3) is p - multiplicative.

Lemma A.8. Ik <p, Lypts = Lyp - Li.

Proof. Ly Ly = 3,3 i<, lF(rp, kytp +7) - Lipyj. Now if r = ¢ (mod 2),
Ip(rp, k,tp+3) = lp(r,t) - lp(k,j) = bs¢ + Ok,j, while if r ¢  (mod 2), Ip(r,t) =0
and consequently lr(rp, k,tp+j) = 0. 1

Lemma A.9. If (ki,...,ks) € I, then []] Ly, is a Z - linear combination of
Lgy...,Lp—1.

Proof. Suppose r > p. By Proposition 1.6, Dp(k; + €1,..., ks + €5,7 + €541) =
H;(k,-—i—e,-). Since the coefficient of €; - - - €541 in this expression is zero, Ip(k1,.. ., ks,
r) = 0. So the coefficient of L, in []; Ly, is zero. (See the proof of Theorem A.6.) g

Lemma A.10. L., Lsp and Lyp - Lep—y are Z - linear combinations of Ly, and
Lpp—1 withn=r+s (mod 2).

Proof. Suppose that j < p and the coefficient of L4 in Lyp - Lgp is # 0. Then
Ip(rp, sp,tp+j) # 0. But Ir(rp, sp,tp+j) = lp(r,s,1)-1p(0,5) or Ip(r,s,t)-Ig(0,p—
1 —j) according as r + s+ is even or odd. So either t =r+s (mod 2), j =0
andtp+j=tp,ort—1=r+s (mod2),j=p—landitp+j=(t—1)p—1. The

argument for Lyp - Lsp—1 is similar. 1
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Lemma A.11. [[{L,;p is a Z - linear combination of Ln, and Lnp—1 with
n=>Y.r; (mod 2).

Proof. Lemma A.10 and induction. 1

Lemma A.12. There is an endomorphism v of I" with the following properties :
(1) ¥(Lyp) = (=1)P~VTL, for all r

(2) Fu=Y ¢;Lj, atp(u) = T (-1)¢;

Proof. Suppose M is an F - object with Th : M — M the multiplication by T
map. Let (M) be the F - object which is M as vector space over F' but with T
operating by T%,. There is an obvious Z - linear map I' — T' taking the class of M
to the class of (M) for all M ; we also denote this map by ¢. If M and NV are F' -
objects, (T ® 1) +(1®TN))" = 31, ONTH® T?~%). Since F has characteristic
p, this is (T5, ® 1) + (1 ® TX). So ¥(M ® N) identifies with Y(M) ® (V) as
F[T] - module and ¢ is a ring endomorphism of I'. If ¥ < p we see easily that
b ([rp+K]) = (p— K)lr] + klr + 1. Soif k < p, $(Lrpsr) = (—1)PH¥(=1) L, giving
(1) and (2). ]

Lemma A.13. Suppose [[; Lrp =2, ¢;jLj. Then:

(1) If S r; is even, co = lp(ry,...,ms) and ¢ =+ = cp—1 = 0.
(2) IfY r; is odd, cy—y = lp(ry,...,7s) and cg =--- =c¢p—2 = 0.
Proof. Lemma A.11showsthatc; =+ =cp—3 = 0Oincase(l)andthatcg =--- =

cp—2 = 0 in case (2). Suppose we are in case (1). Then Y(I[ Lr;p) = [1¥(Lrp) =
[T1L-;. So aty(I] Lr;p) = Ir(r1,...,7s). On the other hand a(} ¢;L;) =

Y271 (—1)i¢j = ¢o. If we are in case (2), []9¥(Ly;p) = (=1)*7 ] Ly,. So

otp(I1 Lrip) = (1) Yip(r1,...,rs) while atp(3¢;L;) = (1)1 cp—q and ¢p—1 =
IF(r1y...y7s). 1

Theorem A.14. Ip is p - multiplicative for all s.

Proof. Suppose r € IS and k € I3. Then Ip(rp + k) = a([I; Lrip+r)- By
Lemma A.8 this is a( (T[] Lwp) (I1; Lk:)). Now write [; Lr.p = 25 ¢;L;. Since
I Lk, = E?;l Ip(j,k1,...,ks)L; (see Lemma A.9), Theorem A.6 (1) tells us that
Ip(rp+k) = Zg‘l Ip(§, k1, .., ks)cj. I T is even, apply Lemma A.13 (1). Ifr is odd,
apply Lemma A.13 (2), and note that lp(p—1,k1,...,ks) = lF(p—1—k1, k2, ..., k)
by Proposition 4.6. 1
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