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ABSTRACT

A theorem due to Drs. Milnor and Moore states that a
primitively generated Hopf algebra is isomorphic to the universal
enveloping algebra of its restricted Lie algebra of primitive
elements. In particular, the conclusion is valid for the associated

- graded algebra of any Hopf algebra. In the first part of this
thesis, algebraic machinery is developed which takes advantage of
these results to facilifaté the calculation of the cohomology of
the Hopf algebra. In the second part, this machinery is applied to
calculate the cohomology of the Steenrod algebra, EP’t (A), in the
range t-s < 2 (p-l)(2pgfp+2)-h for odd primes p and t-s < 42 for p=2.
In both cases, partial information is obtained in higher dimensions.
Using the Adams spectral sequence, these results are used to extend
Toda's calcula£ions of the stable homotopy'groups of spheres. 1In
particular, we find that the differentialé in the Adams spectral

- sequence show at least a limited amount of periodicity. Part II
. 1s written in such a manner that the reader interested primarily in

the topological applications need refer to Part I only for proofs.
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I-0.1

I. Cohomology of restricted Lie algebras and of Hopf algebras

0. Introduction

It is well-known that the existence of the bar construction
fheoretica.]_"..:,' solves tiie problem of calculating the cohomology of
an augmented algebra.’ It is equally well-known that the bar con-
struction is too large to be of much practical value in calculating

high dimensional homology groups. The object of the first part of

this thesis is to develop an alternative, and more mansgeable,

method for calculating the cohomology of a Hopf algebra.

A theorem due to Milnor and Moore states that any primi-
tively generated Hopf algebra over & field of characteristic p
is isomorphic to the universal enveloping algebra of its restricted
Lie algebra of primitive elements. It follows that the associated
graded algebra EOA of any Hopf algebra A satisfies the con-
clusion. We will find a reasonably small complex with which to

*
calculate H (ECA) amnd will devise a spectral sequence having

¥* *
E, =H (E°A) and Ee = E°H (&) .

2
In the first two sections, the definitions and some of

the properties of graded Hopf algebras, Lie algebras, and restricted

Lie algebras are recalled. In section 3, a canonical free resolu-

tion of the ground field is obtained on the category of universal

enveloping algebras of graded restricted Lie algebras. An
incidental result is the obtaining of such & resolution for

graded Lie algebras. In section 4, we find a method for embedding
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I-0.2

certain complexes over the ground field in the bar construction and
apply this result to the resolutions of section 3. Finally, in
; section 5, we obtain a spectral sequence, defined for any (well-
i behaved) filtered algebra A, E, of vhich is H*(EOA) , and which
converges (not necessarily finitely) as an algebra to Ew = EOH*(A) .
We remark that essential use is made of the bar construction in

forming the spectral sequence.

SO e i AR R SR T

Now suppose we are given a Hopf algebra A . If we can

somehow determine explicitly the structure of ECA , we can then

use our resolution of section 3, which is a good deal smaller and
more easily studied than the bar construction, to calculate H*(EOA) .

Using section 4, we then have representative cycles for homology

1

classes in B(ECA) , the bar construction of ECA . E- of the

dual to the spectral sequence cited above is B(ECA) , and we may
either study the homology spectral sequence and then dualize to

. o ¥ . =0 . .
obtain EH (A) or dualize B(E'A) , obtain representative co-

* —_ *
cycles for H (E°A) =E. in (B(x%))” = E, , end calculate

: 2

. *

F E°H (A) using the cohomology spectral sequence.
At the conclusion of section 5, we demonstrate the appli-

cability of our procedure tc the calculation of ExtA(K,M) , where

i M is an A-module and A is a Hopf algebra over a field K .
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l. Preliminaries; Hopf algebras

Let K be a fixed commutative unitary ring. By & module
over K we will understand a graded module indexed on the non-
4 negative integers, and we denote the component of a module M con-

centrated in degree n by Mn » The dual of M, M* s is defined by

M: = Hom (Mn’K)° A K-morphism f: M —> N is a sequence of morphisms
fn: Mn — Nn . Thus all morphisms are assumed to be of degree zero,
When a second grading is imposed on a graded module s the new degree
will be called the bidegree, and morphisms of non-zero bidegree will
be allowed (in practice » Wwe will obtain complexes by this method,

the differentials having degree zero and bidegree minus one). This
c::onvention will not be in force when a module is obtained initially
as bigraded. A filtration F of a module M is a sequence of sub-
modules FiM indexed on the integers such that FiMC Fi +1M o The
associated bigraded object EOM is defined by E?.,SM = (FrM/Fr-lM)r+s
and is an example of an object given initially as bigraded. If M
and N are modules, M® N is graded by (M ® N)n = +Z_ M, ® N, .
If M and N are filtered, M® N is given a filtr:tigg by

Fn(M ®N) = & FrM ® FSN {where it is assumed the filtrations on

r+s=n
M and N are such that the sum is finite).

Definitions I,l.1: An algebra is a K-module A +together with

K-morphisms ¢: A® A—> A and 1n: K —> A such that the diagrams

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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ARA®A 282 S .02
P®1 ]
o

ARA —m—0—> 2

§WK®A—l§iéA®A

N

A —> A

are commtative.

Reversing all the arrows gives the definition of a coalgebra. Thus
all our algebras are defined to be assoclative and unitary, our co-
algebras coassociative and unitary. A morphism of algebras

€t A—>K defines A as an augmented algebra; similarly, if A
is a coalgebra, a morphism of coalgebras K —> A defines A as an

augmented coalgebra. The algebra A is commitative if the diagram

A®A—2 54
T
A ®A

is commutative, where T(x ® y) = (-l)deg x deg y y®x .,
If A is a coalgebra, reversing the arrows defines cocommutativity,

We recall that a module M is of finite type if each Mn is

finitely generated, If M is projective of finite type, then we may
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I-1.3

H¥
identify M with M and if M and N are projective of finite
* * *
type, we may identify M ® N with (M®N) . If M is projective

*
of finite type, so is M , but not necessarily conversely,

. Proposition I.1.2: Jf A is an algebra with product ¢ and the

K-module A is projective of finite type then A* is a coalgebra
with coproduct ‘I’* and A* is augmented, respectively cocommutative ’
if and only if A is augmented » respectively comnmtative, Similarly,
if A is a coalgebra with coproduct v, A* is an algebra with
product 11:* » augmented, respectively commutative s if and only if A

is augmented, respectively cocommutative.

Definitions I.1.3: If A and B are algebras with products °l and

®, , A®B is an algebra with product (¢l®¢2)(1®'.['®1) . If

A and B are coalgebras with coproducts "1 and qra y A®B is a
coalgebra with coproduct (1 ® T ® l)(a.]r:L ® \[rz) . Using this definition
we define a Hopf algebra as a K-module A which is both an algebra
and coalgebra and is such that the product is a morphism of coalgebras
(equiva.lently, the coproduct is a morphism of algebras ), the algebra

unit is a coalgebra augmentation, and the coalgebra unit is an algebra

augmentation. It follows that the product is a morphism of augmented
algebras and the coproduct a morphism of augmented coalgebras. A is
connected if the algebra unit (equiva:l.ently, the coalgebra unit) de-
fines an isomorphism between Ao and K . By the previous propbsition,
if A 1is projective of finite type as a K-module s then A 1is a Hopf

*
algebra if and only if A is.

|
]
1
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I-1.4

Definitions I.l.4k: If A is an augmented algebra I(A) = Ker € ,

€: A—>K, Q(Aa)= :c(A)/(I(A))2 » the cokernel of

9: I(A) ® I(A) —> I(A). The elerents of Q(A) are called (vy |
an abuse of language) the indecomposable elements of A . If A
is an augmented coalgebra, J(A) = cokernel ., 17: K —> A,
P(A) is the kernel of J(A) > A ® A —> J(A) ® J(A) , that
is, the elements of J(A) such that V(a) =a®1+1®a.

The eiements of P(A) are called the primitive elements of A .
If A is a Hopf algebra and P(A) contains a complete set of
coset representatives for Q(A) , then A is said to be

primitively generated.

Proposition I.1.5: If K 1is a field and A is a Hopf algebra

* *
which is a K-space of finite type, then P(A ) = Q(B) and

(") = p()* .

Proof: This follows from the fact that over a field the dual .

of an exact sequence is exact.

For expansion of these definitions and proofs, see the
paper of Milnor and Moore, "On the Structure of Hopf Algebras,"

which is also a general reference for the next section.

We complete this section by recalling the definitions of

the homology and cohomology of an algebra. Given an algebra A

*
over a field K , its cohomology H (A) is defined as ExtA(K,K)

end its homology Hy(A) as TorA(K,K) . Iet X TDe a free

1
i
¥
A
K
I,
0
I
¢
3
5
3
4
53
3
y
!
)
;
2
7
S
t
L
fi
%
5
A
Y

i
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I-1.5

* ,
A-resolution of K . Then H (A) = H(HomA\X,K)) and
Hy(A) = H(K ® X) . Since K is a field, we have the functorial

equivalences:

H(HomA(K,K)) = H(HomK(K ®, X,K) = HomK(H(K ®, X),K) = (H(K ®, x))*.

* *
Thus H (A) = (H,(A))" . If A is of finite type, then
* * ,
(H(4)) = H*(A) is also true. These results remain valid when
*
H,(A) is given its natural coalgebra structure and H (a) its

natural algebra structure.

TS S Ta i gy e

i vk A

s

3

1
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2. Lie algebras and restricted Lie algebras

Definitions I.2.1: Let K be a field of characteristic P . Alie

algebra is a vector space L together with a map L]1: LOL — 1L
of vector spaces such that for some algebra A there exists a mono=-
morphism f: L —> A of vector spaces such that for X, Y& L
£([x,y]) = £(x)f(y) - (_l)deg x deg y £(y)e(x) . LY denotes the
subset of even degree elements of L, I.” the subset of odd degree
elements, unless char K=2 ,when L' =1, L' =0 . If L isa
i.ie algebra together with a map B: L+ —_— I.+ of vector spaces such
that there exists an algebra A and a map f: L —> A with both
£(l6,y1) = £(x)2(y) - (-1)%%8 * 98 Y 2(3)r(x) and £p(z) = (2(z))P,

X, yeL, ze 1'..+ > then L is a restricted Iie algebra.
Lemme I.2.2: Let L be a vector space and [,]: LO®L —» L be
a map of vector spaces. L is a Lie algebra if and only if
1) [xy] = (-1)™ [r,x], xe Lo YeL .
1) (1% b lyzll + (0™ B, l2,x13 + ()™ [z, Iyl = 0,
xeLm, yeLn, zeLr .
iii) [x, [x,#]] =0 and
iv) [x,x] =0 if degree x =0 mod 2 or if char K =2 .

Lemma I.2.3: Let L be a Lie algebra, B: L+ ——>L+ be a map of

vector spaces. L i1s a restricted Lie algebra if and only if

;‘ . . . . .
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I-2.2

1) Blex) =1PB(x), xelt, kek.
11)  [B(x),z] = (e x)p(z), X e L+, z ¢ L, vhere ad x(z) = [x,2] .

p-l
(A1) If degx =degy, B(xty) = p(x) + B(y) + Z 83 (%,%) ,

vhere (ad(Ax+y)) (x) = isi(x,y)}\, » A an
i=1

indeterminate.

Necessity of the conditons follows from Properties of algebras, while
sufficiency is the standard DProof of existence of a universal enveloping
algebra for s ILie algebra, respectively, restricted Lie algebra. The
proofs in chapter V of Jacobson apply, with trivial modifications s to

the graded case.

Proposition I.2.4: If L is a Lie algebra, there exists an algebra

U(L) and a monomorphism i; I — U(L) of Lie algebras such that

if A is an algebra and f: I, ~—> A &g morphism of Lie algebras 9

there exists a unique morphism %: U(L) —> A pf algebras such that

fi = f; U(L) is unique up to canonical isomorphism, Similarly,

if L is a restricted Lie algebra, there exists an algebra V(L)

and a monomorphism Jj: L ~—> V(L) of restricted Lie algebras such

that if f: L — A is a morphism of restircted Lie algebras there
exists a unique morphism E: V(L) —> A  of algebras such that ;j =f;

V(L) is unique up to canonical isomorphism.

Proof: It is only necessary to brove existence., In the first case,

U(L) = 2(L)/I where T(L) is the tensor algebra and I is the ideal

S R L T

generated by {xy - (-l)deg x deg y yx - [x,y]|x,y € L} . The defi-

MRSV )

i; . . . . . .
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I-2.3

nition of Lie algebra ensures that i: I, —> U(L) is a monomoxrphism,
In the second case, V(L) = T(L)/J , where J is the ideal generated |
by the generators of I and by {x - B(x)|x ¢ L¥} . Note that
V(L) is isomorphic to U(L)/C , vhere C is the ideal generated

by {i(x)P - ip(x)|x ¢ L'} .

Proposition I.2.5: If I is a Lie algebra, resp. a restricted Lie

é.lge‘bra., then U(L), resp. V(L) , has a natural Hopf algebra structure
and 1(L) C P(U(L)) , resp. (L) C P(V(L)) 3 in particular, U(L) ,

resp. V(L) , is primitively generated.

Proof: Define ¥: L —> U(L) ® U(L) by ¥(x) =i(x)® 1 + 1 ® i(x)
and apply the universal property of U(L) to obtain ;: U(L) — u(L) ® U(L) ,
checking first that ¢ is a map of Lie algebras. The same procedure

applies to the case where L is restricted.

Proposition I.2.6: If A is a Hopf algebra, P(A) is a sub-Lie

algebra of A , a restricted sub-Lie algebra if char K> O .

Definitions I.2.7: ILet L be a Lie algebra. Define a filtration

of U(L) by F_nU(L) =0, FOU(L) = K, FlU(L) =KUL and

FU(L) = (FlU(L))n . Define the associated bigraded object E°U(L) -

0 _ o) _ o
by E. UT) = (FU(L)/F, ,U(L)), . and let EU(L) = g Er,SU(L) .

If L 1is a restricted Lie algebra, the same definitions are made with

V(L) replacing U(L) .

H
i

Il?‘eproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I-2.4

Proposition I.2.8: If L is a Lie algebra, then

i) ES’OU(L) = EZU(L) =K .

i1) =°u@) is a primitively generated commutative Hopf algebra.

< o o o R
iii) Er,s ® Er',s‘ —>E, 11, gt Under the multiplication.

iv) L —> Ezu(L) =5 Q%)) .

If L is a restricted Lie algebra, the proposition remeins true with

V(L) replacing U(L) .

Proof: Clear by inspection of the definitions.

Theorem T.2.9 (Poinceré, Birkhoff, Witt): If L is a Iie algebra

and £:ECA(L) —> E°U(L) is the natural map induced by the injection
of I, = EJO_U(L) —> E°U(L) , then £ is an isomorphism of Hopf algebras.

(A(L)=U(L#) where L# is the K-space L regarded as an Abelien Lie

‘algebra).
For the proof, see Milnor and Moore.

Corollary I.2,10: If I is a restricted Lie algebra, EOV(L) is

isomorphic to EA(L)/I where I is the idesl generated by {xF [x € .t} .

4 Proof: Since V(L) = U(L)/C as above, x* =0 in VL), xeLt.

Remarks I.2.11: If EU(L) is graded by total degree, ECU(L ), =

) E: SU(L) , then EOU(L) is isomorphic to U(L) as a vector
3 r+s=n 7

space. If char K #2, A(L) = E(L")® P(L*) while for char K = 2

A(L) = P(L) where E denotes the exterior algebra, P the polynomial

PRIV PPt Db I LAt

algebra. If a basis {xi} for L~ is indexed on a totally

iel

7 ordered set I and a basis {yj]j. e J for LT is indexed on a totally

l
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T e T

X X
1 n. - s .
ordered set J , then {Xil...ximyjl...yjnlll Seee Lnd) << T 2 0]

is a basis for U(L) . If L is restricted, a basis for U(L) is

S A s

~troo Lo

; obtained by adding the requirement Ty <p.

Theorem I.2,12 (Milnor and Moore): If A is a primitively generated

Hopf algebra over a field K , then

i i) If char K =0, A is isomorphic to U(P(A)) as a

Hopf algebra.

il) If charK=p >0, A is isomorphic to V(P(A)) as

a Hopf algebra.

In particular, the conclusion is valid for the associated graded Hopf

o
X . E- A= (FA/F _A
% algebra of any Hopf algebra A: we have 5, q ( . / -1 )

E vhere FA=A, n>0, and if ¢, =1 I(A) —> I(a) ,

p+q ’

0,: I(A) ® I(A) —> I(A) is the multiplication, and

—n factors.—,
¢ = @2(451 ® @n_l): I(A) ®...® I(A) —> I(A) , then

i FA=Ino C 1(a) . Clearly E°A is primitively generated.

QSRR PESR - | T fanc
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3. _Cohomology of graded restricted Lie algebras

Iet L bDe a graded restricted Lie algebra over a field K . -

We will obtain here a free resolution X(L) = V(L) ® X{L) of the

ground field K . Our procedure will be to first regard I merely
as a Lie algebra and to obtain a free resolution Y(IL) = U(L) ® Y(L)
of K over U(L) , and tHen to attach an extra piece to the result-

ing complex V(L) ® ¥(L) .

Thus we suppose first only that I is a Lie algebra over
a field K (of any characteristic). We could generalize the classe
ical procedure for the case of a Lie algebra concentrated in degree
zero, which is to embed U(L) ® E(sL) as a complex in the bar
construction. In fact, we will carry out such an argument in the
succeeding section. However, as will be seen there, such a
procedure would not gemeralize to give us a free resolution for
restricted Lie algebras. An alternative method in the classical
case is described in exercise 14 of Chapter XIII of Cartan and
Eilenberg. This method gives U(L) ® E(sL) & rather peculiar
K-algebra structure. Such an algebra structure will be Jjust what

is needed to effect the desired generalization.

To begin the construction, we regard 1L as bigraded with
bidegree zero, and we 1e_‘c sL denote a copy of L in which all
elements have bidegree one. We denote ;by L+ the subspa'.ce of L
consisting of the elements of even degree and by I~ the subspace

of odd degree elements. If char(K) = 2 , we adopt the convention

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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that TV

L and L~ is void. As a K-space our resolution will

be Y(L) = U(L) ® T(L), (L) = E(sT") @ I(sL™) , where E(sL’) is

an exterior algebra snd I'(sL”) a divided polynomial algebra. The
bidegree will be the homological degree. If L is Abelian,
H(U(1)) = E(SL+) ® I'(sL”) , and therefore no smaller free resolution

could be obtained as a functor of L .

Iet A denote the ring of dual numbers over K considered
as a Hopf algebra. Thus A 1is the exterior algebra on one primi-
tive generator 4 of degree zero and bidegree m:mus-one. Then the
category of bigraded K—complexes and their morphisms may be identi-

 fied with that of A-modules and their morphisms. Iet M denote
the bigraded K-module sT U( U TfiSL—) , where s” is a copy

i>o0

of sL~ with degree and bidegree miltiplied by p-, p = char(K),
and 5°sL” = sI” . Iet Z be the tensor algebra T(A ® M) , and
give Z a structure of A-module by redquiring that Z be an alge'bra.
over the Hopf algebra A , that is, by requiring d(ab) =
(da)p + (_l)deg & a(db) , where, as usual, the exponent of the sign
is the total degree. As a complex, Z has trivial homology,
He(Z) = X . We will obtain Y¥(L) as a quotient algebra of Z .
We consider M=K ®M to be contained in Z ; then if x e L™,
the element ﬁisx of Z will give rise to the piEE divided
power of sx , denoted by 7 i(E) , in Y(L) ; similarly, if
v € L', the element sy Wipél.l give rise to the element of E(sI’)
denoted by <y > . We remark that if char(X) = 0 , we must take

M= sL+ U sk~ ; hereafter will not specify the modifications of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I-3.3

arguments required for this case.

Now we seek a A-submodule I of Z which has the property
that Z/I is an algebra which is isomorphic to Y(L) as a K-space.
Iet I be the two-sided ideal with generators of the forms:

1) b - (-1)%82 8Py sey, ben

(:tisx)p, xel, i>0

(sy)(sy)y, veL
2) (asx)(dsy) - (-1)9°8 ¥ %8 Y (a5y)(dsx) - aslxyl, x € L, y e L

3) drsx - (-1)1[(dsx)(sx) - S—[E,mL]](sx)p"e(rtsx)P"'l...(:t:‘“'lsx)p"'l ,

xel, i>1

L) (:tisx)(dsy) - (dsy)(:tisx) - (-1)* s[w](sx)p'l...(fri'lsx)p'?" B

Xxel,yelL, i>1

5)  (sx)(asy) - (-1)%%8 5¥ 98 Y (35y)(sx) - slxyl, x € L, ye L

The following lemma gives the algebra and K-space structure
of Z/I . Iemma I.3.2 states that I 1s actually a A-submodule of

Z , hence that 2Z/I is a A-module.

Temma I.3.1: Give Y(L) a K-a.lge'bz"a structure by requiring the
product to agree with the natursl one on U(L) and on Y(IL) and -

to satisfy the relations
1) <FSY, =yS<¥>+<Ty.b, v, el y, el
Ive 2 I 12 ’ 1 7 V2

. - — — + -
ii) <y>x=-x<y>+7l([yx]), vyel, xel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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. =\ - —_ - - +
i1) 7,y =y (x) + (Gl (%), x el yelk

iv) 71(9&)}(2 = x27i(x1) + <[x1x2]>7i_l(x1), x, e L, x2’ €L
Then 2Z/I is isomorphic to Y(L) as a K-algebra.

Proof: Generators of I of the forms listed in 1) imply that we

can define an isomorphism of algebras f: ¥(L) — T(M)/I N T(M) by

(rdsx)L

i{ 2 xeL—)jZo}

B(<Y>) =5y, yel' , ea £y 5(2) =
1<i<p-l. Iet N= asL¥ U @sI” . Cenerators of the form 2)
imply that we can define an isomorphism of algebras

g: U(L) —> 7(W)/I N (V) by g(x) =dsx, x e L . Therefore we
have an isomorphism of K-spaces g ® £: Y(IL) —> T(N)/I N T(N) ®
@T(M)/INTM)CZ. Iet J be the subideal of I generated by
those generators of I of the forms 3), 4), and 5). Then

2/7 = (W) ® T(M) as a K-space: generators of the form 3) enable
us to express the antsx as elements of ™N) ® (M) in Z/7,
while generators of the forms 4) and 5) enable us to so express ‘
products eb, & e M, b e N. It follows that

z/1 = T(W)/I n 7(N) ® T(M)/I n T(M) = ¥(L) as a K-space. TIdenti-
fying Z/I with Y(L) , the relations i) and ii) and the relations
iii) and iv) with i =1 follow from generators of I of the

form 5). Noting that (p-1)! = -1 mod p , relations iii) and iv)
with 1= p‘j follow from the generators of I of the form L),

The relations iii) and iv) for i # p’ follow from those for

i=p'j.
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Iemma T.3.2: I is a A-submodule of Z ; that is, daIC I .
Proof: We write = for congruence mod I . We must prove da = 0,

where a is a generator of I . d eapplied to generators of the
form 2) is zero and d applied to generators of the form 5) gives
generators of the form 2). Consider generators of the forms listed

in 1). If xe L, y € L, then:

(dsx)sy + (-l)deg SX sx(asy)
= (-1)9°8 * 9°8 SV(gy(asx) - slyx]) + (-1)3°€ %

((-1)988 5% 928 ¥(gop)ox + s[xyl)

d(sxsy)

= (_1)6.eg sx deg V((asy)sx + (--l)deg S sy(dsx)

SYsx) .

d
d((_l)deg sx deg sy

The handling of the remaining commutators in 1) is equally simple.
a(sysy) = (dsy)sy - sy(dsy) =0 since [y,yl=0, y e L' . 1If

x € I , an easy induction gives

i) a(sx)? = ,j(dsx)(sx)‘j":L + Q(—g"—]-'-) 's[xx](sx)'j-z, i>2, and

1) a(clex)? = 51 ((asx)ex - 2 (P2 ex)PL. L (xh Ko ) P () 92,
i>1, §>1.

In particular, d(x sx)® = 0 , which completes consideration of generators
of the forms listed in 1). Using ii) and generators of the forms 1)

and 4), we find that if x e I~ , then
111) a((esx)P L. (esx)P) = ((asx) (sx)Pt - 2L (yP-2)

(nsx)P"g (:r2sx)p'1..‘.(:risx)p":L ,i>1.
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Therefore, to prove that d applied to generators of the form 3) is

congruent to zero, it suffices to show that

a((ase)(ex P - 2022y Lo ana ((asx) (sx)P" el (gyp-2)® _ g

The former is easily verified using i) and noting that [[xx],x] = 0 ;
the latter follows from (s[xx])2 =0 and (sx)’ =0 . It remains to

consider generators of the form 4). An inductive proof gives:
(sx)J(:tsx)P'l...(nlsx)P'l(dsy) = ((asy)sx + js[m])(sx)J"l(xsx)P'l...(:rlsx)P'l .

Using iii) we obtain . (sx)P'l d((nsx)P"l...(ﬁlsx)P'l) =0 ., These facts
imply that it suffices to prove that generators L4) with i =1 are
stable under d . Here we have:

d(rsx(dsy) - (dsy)asx + s[xy](sx)p'l)

dnsx(dsy) - (_1)deg Y (asy)axsx + (ds[;qr])(sx)p"l +
+ (_l)deg s[xy]

s[xyla(ex)P~L

~(asx)(asy) (sx)P™L + (asx)slxyl(sx)P~2 + (-1)3¢8 y(dsy)-s—éim—l(SX)P'2 +

I

# SRl 22 | olelslayd (P73 + (<1)2°8 ¥(asy)(asx) (5P -
- (-1)%°8 ¥ (asy) E[TXJ{—]-(SX)I)'2 + (aslxy]) (sx)P~ - (asx)s[ay(sx)P2 -

- (-1)%8 Y 5 Lxylxl(sx)P2 + (+1)%8 ¥ slxylslxx](sx)P™3 = 0 )

where we have used the Jacoby identity (ii) of Lemma I.2.2). This .

completes the proof.

We now identify Y(L) with 2/I as a K-algebra. Then the
lemms sbove implies that Y(L) is an algebra over the Hopf algebra A .

Using the algebra structure of Iemma I.3.1, Y(L) may be interpreted
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as a complex over U(L) . Thus if u e U(L) and a e Y(L) ,
d(u®a) = (-l)deg Yu®da, where u® da is to be written as
an element of the free U(L)-module Y(IL) by making use of
relations i) and ii) of Lemma I.3.1. For example, if x ¢ ¥ ’
¥y € 7, then we find
<X, > = (ASS)IF> - <S> = x> = <O = x> - <o = <[x,7]P .
We can now state the following theorem:
Theorem I.3.3: Iet Y(L) = U(L) ® ¥(L), T(L) = E(sT™) @ I (s1”) .
Give Y(IL) an algebra structure by requiring the product to agree
with the natural one on U(L) and on Y(L) and to satisfy the
relations:
1) <G>y, =7,.F> +<[T,P, wmel,y, el
12 2V 12 A r J2

- — + -

2) <px = x>+ 7 ([x]) , yel, xel
- S — — : - +

3) 7Ky =yr (x) + 7 (D)7, (), xel’, yel
Define a differential d on Y(L) by
a) d(ua) = (-1)%®8 " uga , u e U(L), a e T(L)

— - _ 1 - —_
b) &> =y ; ary(x) =2, (%) + 5 <bx]> 7, 5(x) (vhere 7_,(x) = 0)

¢) a(sb) = (daa)b + (-1)%8 2 a(av), a e T(L), b e T(L) .

Note that d(ab) is determined uniquely as an element of

U(L) ® Y(L) by relations 1) through L).

Then Y(I) is & free resolution over U(L) of the ground field K .
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Proof: Regarding Y(L) as Z/I, we have already proven that

Y(L) has the specified algebra structure and is a complex with the
differential defined above (the form of dyi(E) , 1# pj , is easily
proven to be as stated; for i = p‘j , there is nothing to prove). |
The exactness proof is quite analogous to that given in Cartan and
Eilenberg for the classical case and to the proof given below for
our resolutions for restricted Lie algebras, and will therefore be

omitted.

Corollary I.3.4: Iet f = <'§l,...,3?n> 7 (3:‘1)..'.7r (';Em) e Y(L) .
1 m

Then the differential 4 is given explicitly by the formula:

n . A
&2) == (D3 Fee T e 7, (Z)eeer, ()

i=1 1 m
+ 2 () T e T e T T 7 (R )eeey (7))
i< ivJ 1 i J n rl x1 rm m
m — - _— : — _—
+ Z x.<y ,...,y> 7 ( )...7 (x.)...7 (x )
j=1 T 1 n rl xl ri-l i r, m
o4 3
Zl §<Ix X, ],yl,...,y> 7. (JL_L)...7 (x )...7r (xm)
i= m

+ = <[x X. ],yl,...,y> 7. (xl)...')' (Ei)... g _l(ij)...')'r (Sc'm)
i< i~ J m

m n
+ 5 x5 ()9

im1 =1 <y1,...,y3,--o,3f> 71([—_])7 (xl)""yr l(x )'007 (x )

Note that the first two terms are precisely those for the.classical

case of a Lie algebra concentrated in degree zero.
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Proof: The formule is easily derived by induction on m and n .

Corollary I.3.5: Iet L be a restricted Lie algebra. Then

V(L) ® Y(L) with differential K-algebra structure defined as in
the theorem (replacing U(L) by V(L) in all statements) is a
free complex over V(L) ; its differentisl is given explicitly by

Corollary I.3.k4.

Proof: Iet JC ¥Y(L) be the two-sided ideal with generators of

the forms yp - B(y) s Y € L+ s Where P denotes the pth power

¥(L)/J eas an algebra over the Hopf

e

operaticn. Then V(L) ® ¥(L)

elgebre A . The conclusions follow.

For the remainder of this section, L will denote a
'graded restricted Lie algebra over a field K of characteristic
p> 0. We have a free V(L)-complex W(L) = V(L) ® ¥(L) . This
is not & resolution, since y° -1 <> - <B(y)> is a nonbounding
cycle, Yy € L+ o« We wish to enlarge this complex to obtain a free
_ resolution over V(L) of the ground field X . Iet % and s be
as previously defined: = multiplies degree and bidegree by p and
s adds one to the bidegree. As a K-space, our resolution will be
W(L) ® I(sxL’) eand, writing 3 for sory , we will have
aly, () = PG> - <BF> . If L is Abeliem with all pth
powers zero, then H(V(I)) = ¥(L) ® P(seer+) , and therefore no

smaller free resolution could be obtained canonically.

In our construction, we will need the following concepts.
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Definitions I.3.6: Iet A be a differential K-algebra and let X

be a complex. Then X is said to be a left differential A-module
if X is a left module over the algebra A and

)deg a

d(ax) = (da)x + (-1 edx, ae€hd, xeX. X is said to be

a right differential A-module if X is & right module over the

deg x xda . For example, if A

algebra A and d(xa) = (ax)a+(-1)
is a differentis=l K-subalgebra of B , then the inclusion A C B

induces a structure of two-sided differential A-module on B .

The following elementary observation will play a crucial

role in our construction.

Iema I.3.7: If A 1is a differential K-algebra, X is a right
differential A-module, and Y is a left differential A-module,
then X ®A Y is Ia. complex. In particular, if Y =A®Z is a
free left differential A-module, the naturel isomorphism of X ®A Y

and X ® Z induces a structure of complex on X ® Z .

Proof: X®Y is a complex, being a tensor product of complexes.
X® Y= (X®Y)/M, where M is the K-submodule of X ® Y with
generators of the form xa ® y - x®ay . Since X and Y are

differential A-modules, M is stable Under 4 , and therefore

X ®A Y is a complex.

We can now obtain our free resolution of K over V(L) .
Iet {yi[i € I} %be a basis for 7 indexed on a totally ordered
set' I . Iet W(L) = V(L) ® T(L) ana W(r") = v(r") ® T(r") .

Our procedure will require two preliminery steps. First, we will

i
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define a structure of free left differential W(I')-module on each

F, = W™ ® I‘(ffi) , S;i = s2n:yi . Second, we will define a structure

of right differential W(L+)-mod1ﬂ.e on each F, . Then we will be

gble to use the lemma to induce a structure of complex on X(L) via

the K-space isomorphisms:

~

X(L) = W(L) ® I{s°xL’)

v. )OI (y. ) ®...
W(L)®I‘(y]_l) P(yle)

LA

W(L) &+ Fil B() Fi2 BRi(rr) =

§i:e_p_]_._: Construction of Fi as & free left differential W(L+)-module.
Iet y denote any element of {yi[i eI} . Iet I\Ty be the K-space
with basis {ztiff[i > 0} eand give the tensor algebra Ty- = T(A ® Ny)

a structure of A-module by requiring Ty to be an algebra over the
Hopf algebra A . Iet I’y be the restricted Lie subalgebra of L+ |
generated by ¥y , and form W(Ly) ® T, » where W(Ly) = V(Ly) ® E(sLy) .
As a tensor product of differential K-algebras, W(Ly) ® 'J.’y has a
structure of differentiel K-algebra. Iet Jy C W(Ly) ® Ty be the

two-sided ideal with generators of the forms:
1) @5 w5 - 29T

i~ i -1 = ~p=1 Lelryp-1
2)  (an'F) - (-1)" (PTG - <BE) P (1P

Noting that, by the definition of the tensor product of two algebras,
ab = (_l)deg a deg b ba, b € W(Ly), a e T.Y » and noting that Ly is

Abeliean as & ILie algebre (since [yy] = 0 = [B(y)y]), we find that
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a) nyan’y = (a9y)x'y mod Jy
-] — 2
b) (yP <Y> - <B(y)>) =0, and

il
¢)  alx') = 5(an"F) (xF)3T moa I, .
It follows that Jy is & A-submodule of W(Ly) ® Ty . Defining

i
7 j(y) —_— (’t ) , we obtain an isomorphism of K-algebras

W(Ly) ®Ir(y) — (W(Ly) ® Ty)/Jy . Tdentifying W(Ly) ® I'(y) with
(W(Ly) ® 'I'y)/Jy, I-.T(Ly) ® I'(y) Dbecomes a differential K-algebra, and
is therefore also a free left differential W(Ly)-module. Since
W(L&) C W(L+) , we may use Lemma I.3.7 to obtain a structure of

+ ~
w(z') ®W(L y W(ry) ® 1) . wz') @ r(y)

(11

complex on W(L') ® r'(¥)
then becomes & free left differential W(L )-module; in fact, the

differential on W(L+) ® I'(y) is given by the formula:
~ ~ - — ~ -+
) alwy (7)) = (a)y (F) + (1) ¥ w(z? G - FEPY,  F) 5 w e WEh) .

_S_t_ei_g: Definition of Fi as & right differential W(L+)-module.

We continue with the notation of step 1 and consider the complex

W(L¥) ® I(§) with differential given by formula a). Since W(L')

is itself a right differential W(L+)-module, to define & structure of
right differential W(L')-module on W(L') ® '(}) it suffices to define
7 (F)}<2 and 7 ()7, z €L . Ve define 7,(F}2> =<7 (F) .
This already determines 7r(§r)z: we must have

d(7r(§'r)<?.>) = (dyr(ﬁ) <z> + 7r(37)z . Using formula Q) and our

definition of 7r(5?)<E> , this implies that
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7.(F)z = 27 (§) -B PG -BTP),, (F) - PG -BE)Dr,, (F)

= 27 () - (B + PGBy ()

We must evaluate <z>y° - using the algebra structure of W(L+) . By

an easy induction using 1) of Theorem I.3.3, we find

g . sy
<Dy = B (<1)" (4,3-10"7 <(aay)™ (20>, 1<i<p-l.
1=0

i factors

Here (ady)™(z) = [ylyl..lyzl...111, (ady)°(z) =z . If § =p-l,
(-1)* (4,p-1-1) = 1 mod p, © < i< p-l, snd we find, therefore, that:

. oy PSb opelei  ToT o (n
B) 7, (P2 = w1, () - 2 ¥ <(aay) N (2), By, () -

Note that if z € L, then 7i(37)z = zyi(i;) , Wwhich is in agreement

with the algebra structure of W(Ly) ® I'(y) wubilized in Step 1.

We can now defime X(L) = W(L) ® F(s21rL+) as a complex via

the K-space isomorphism X(L) = W(L) %(L"‘) (- ® () Fi) » where
- ' iel

Fi precedes Fj if 1< j . That X(L) is thereby given a structure
of complex follows from Lemma I.3.7, since F,; = W) ® I’(yi) is &
two-sided differential W(L+)-module. We give a formal description

of the complex X(L) in the following theorem:

Theorem I.3.8. Iet X(IL) be the free V(L)-module

V(L) ® X(1), X(L) = B(sL") ® r(st”) ® r(sar®) . Iet (y,]i eI}

be a basis for L+ indexed on a totally ordered set I and let

5;1 = Bzﬁyi . Identify T(SdﬁL+) as a K-space with ® I‘(S}i) ,
ielI -

where r(&i) precedes r(§j) if i<j. Iet W) = v(&) ® ¥(L) ,
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so that X(L) = W(IL) ® r(sanL+) o Give W(L) its structure of dif=-
ferential K-algebre derived in Corollary I.3.5. Give x(L) a

structure of right W(L')-moduwle by defining
~ — — "~ +
1) 7 F)<>=<Dy (§) s zel , and

p_l ———
~ ~ o -l—k k - ~
2 7 Gy)e =2 ) - 2 i <aap)™(2)sy, >y . (F,), zmelt.

Then we can define a differential on X(L) by
- ol — -
3) @ (F) = <> - B, G)

Jewty Gy D =2 7, G Deelar, @ Newer, Gy s

4) a(y. (5
c Tt =1 F1 3 3

1
which is to be determined as an element of the V(L)-module X(I) by

means of 1) and 2), and

5)  a(we) = (aw)d + (-1)%8 ¥ wao , w e W(L), @ e I(sZr’),

-

where wa® is to be determined ss an element of the V(L)-module ,X(L)

by means of 1) and 2) and the algebra structure of W(L) .

X(L) with this differential is a free V(L)-complex.

Proof: The proof consists only in verifying thaﬁ the theorem accurately

describes the structure of complex induced on X(I) by the isomorphism
~ o4 ~

X(L). = W(L) %(Iﬁ-) (i ? . w(L*) (w(r") ® P(Yi)) » end this follows

from formula &) of Step 1 and 8) of Step 2.

We make no attempt to derive an explicit formula for the

differential on X(L) , as its form is quite complicated in the general
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case. We remark that the differential depends on the choice of the
ordering of the set I: if we interchange the order of two basis

elements, the formula for the differential is changed.

We must prove that X(L) is actually a free resolution of
K over V(L) . We will do this by first proving the result for the
case of an Abelian restricted Lie algebra with zero pth powers and
then filtering X(L) in such a memmer that E°X(L) = X(1F) , where
L# is the underlying K-space of I regarded as an Abelian restricted
Lie algebra with zero rth powers.

We let X = X(IL) and note that X, = V(L) and

X, 35 V(1) £ K —> 0 1s exact, where £ is the sugmentation.

We first prove the

Iemma I.3.9: Iet L be Abelian with zero pth powers. Then X is

& free resolution of K over V(L) .

Proof: We must prove that H,(X) =K . Let
-— — — — y~ ~ -_.. .
g8 = <zy,.. .,zn>7rl(xl)...7rm(xm)7sl\yl)...752 (yz) e X(L) « In this

case, inspection of Theorem I.3.8 shows that the differential is
independent of the order in which factors of I‘(sath+) are written,

and is in fact given by the explicit formula:

a(g) =z (-1)H

i=2

zi<zl""’zi’°"’zn>7r (x:'_)...y'r (xm)')'s (yl)...')'s (yz)
1 m 1 £

m — —— -— . — — '~ ~
I X<Zyseeern> 7, (x.l.)"'yr.-l(xi)"'?’r (xm)'ys (yl)...')'s (yz)
i=1 1 i m 1 £

2 N e T T (7)), Gy () (F.)eeer. (7,)
LN . <z ,ooo,z ,y.>7 X 0007 X )Y Y. 0007 A28 0007 y .
j=1 1 1 n’vi ry 1 T, m Sl 1 si"l ‘i Sy £

.
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We will prove the result by obtaining a contracting homotopy s ,
that is, a morphism of K-modules X —> X which satisfies
sd+ds = i-g , where I denotes the identity map. Suppose first

that I bas one generator ¥y € L+ =1L, Then:

a(1) =0 s(1) = 0

alydy, () = o s(y37, () = ¥y, (5), 1<i<pl, 021
a(yi iy, (7)) = v (H) sy () = o, 1<j<p-l, 0<1i
APy, (7)) = 0 s(PTy, (7)) = 75, (), 0<1
A7y () = PP F) s, () =0, 0<i

s 80 defined clearly satisfies sdt+ds = i-g . Next, suppose that L
has one generator x € L" =L . Thex s(1l) =0, s(xyi(i)) = 7i+l('£),
S(7i+l X)) =0, 0<4i, defines the desired contracting homotopy.
Now suppose L =M ® N , where dim M =1 . We may identify X with
X, ®X, X = X(M), X, = X(N) , and then 4 = d1'® i, + 1, ®dy .
Iet s

1
assume &s sn induction hypothesis that we have a contracting homotopy

be the contracting homotopy Jjust constructed on Xl and

s, on X2. Define s on X byvs=sl®12+al®s2. Then

we find:

ds=dlsl®i2+ds ®52'S

1€, l®d2+el®d252 and

sd

s161®12+ S.'L®d2 - 81d1®52+ 81®52d2 o
S = = i i
Since dlel F‘.].dl 0 and 81 and s, are contracting homotopies,

ds+sd = (il-el) ® ijte; ® (i2-e2) =i, ®iy-g ®¢g, = i-e .
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By finite and transfinite induction, this completes the proof.

Theorem T.3.10: X is a free resolution of X over V(L) .

Proof: We must prove that the complex

X' eeo =X —> .o —>x1—>i§ —> 0 is exact,
where io = Ker € , the augmentation ideal of V(L) .
We define a filtration on X(I) as follows:
1) V(L) is given the filtration defined in Definitions I.2.7.
2) X is filtered by FX=0 for ¢<0, FX=K, and, if 9> 0,

<zl""’zn>7rl(x1)'"7r (xm)ys (yl)...')'s (yz) € FX if and only if

) n 1 y 4
n £ _
n+ er+p>.‘.sv_<_q and ZkququX if and only if some
=1 =1

qV € FqX » Where qv is a basis element of X and kv cK.

3) FX= % FiV(L) ®FX.
i+j=q J

Then X! is filtered by qu' = qu if q # 0, FX'=0. Using

Theorem I.3.8, it is easily seen that FqX' is a subcomplex of X'~

and of F X' for t>4q . Thus E°X' is a complex.

t
O i _ ' ' . . . . .
Eq,rx = (FqX /Fq+1X ) gir ? where g+r 1is the homological dimension;
grade ECX' by total degree: ng' = o Ea X' + Then, using
2

g+r=n ,
Corollaxry I.2.10 and the definition of X' as a complex, we find that

E’X' is precisely the complex X'(L#) s where L# is the Abelian
Lie algebra with zero pth powers on the underlying space of L. There-
fore EX' = H(E°X') = 0 by the lemma. Tt follows that Hy(X') =0 ,

as was to be proven.
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We complete this section by defining a diagonal map D on
our resolution X . Iet V¥ denote the natural coproduct in v(L)
defined by fequiring that the elements of I be primitive. Define
a structure of V(L)-module on X ® X by u(a®b) = y(u)-ashb , where

the product on the right is defined by the composition
(V) @ V(1) ® (x %) TS (v(1) %) @ (V(L) ©X) —> X ® X .

If d denotes the differential aRL + 1 on X ® X , then it is
easily verified that a(¥(u)-a®b) = (-1)%8 ¥ y(u)d(a®b) , that is,
X®X is a differen‘bia.l V(L)-module. Noting that, by Theorem I.3.8,
the differential on X is defined formally as if X were & dif-
ferential K-algebra, provided that we write elements of X with
“factors" in the correct order, we may define a diagonal map D on

X as follows:
. . deg u
1) D is a morphism of V(L)-modules: D(ua) = (-1) v(u)p(a).

2) D<p=<RLl+le<p

D(7..(x)) = i+§-=r 73(x) ® 7,(%)

Dz, ()

il

- o, PoL i i-1
T or.Fer @+ = 2 ()N
jtk=s Y i=1 jHk=s-1
- ~ ~lei - ~
7,7 @y (F) .
3) D(ab) = D(a)D(b) , where &b is an element of & basis for X °
with factors written in an order comsistent with X(L) =
E(st’) @ Ir(s17) ® ( ® P(§)), (¥, icT} being a basis
iel .
for L+ indexed on & totally ordered set I ; the product on the

right is formally the same as that defined on a tensor product
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of algebras: (X®X)® x®%) T x0x) 0 x0x) B x9x.
In our case, @: X ®X —> X is to be determined by the algebra
structure on W(L) = V(L) ® T(L) and the right W(L')-module structure

on X .

Theorem I.3.11: Dd =dD, d = a®L + 1Xd .

Proof: Since Dd(ua) = ¥(u)dd(a) and T(uva) = y(u)ad(a), u e V(L) ,
& € X , it suffices to prove the result on clements of X . Since
if ab is a basis element of X

Dd(ab) = (Daa)Db + (~1)%%€ & Da(Dav) ana

)deg a

dD(ab) = (dDa)Db + (-1 Da(dDv) ,

it suffices to prove the result on elements of the forms <y>, 7r(§),

and 75(37) + Here we find:

1) Da<> = D(y) = ¥(y) = y®L + 1Q = ID<P> .

2) Dy, (%) = D(ay, (%) + KIED 7__,(X))

el +1%x) = 7.(x)® 73(52)
it+j=r-l
+Z<IED @ + IKEP) = 7. (%) ®7.(%)
: itj=r-2 * J

z dyi(i) ®y.(x) + = 7i(3c') ® dy. (%)
ity J i+j=r J

- Ty, () -

p-1 . .
3) DNoting that ¥(y*1) = = (1,p-1-1)yt ® y*"11 ang that
i=o

(i,p-1-i) = = (i#1,p-i-2) mod p, and therefore (i,p-1-i) = (-1)% mod D,

a simple but tedious calculation gives Dd?’s(ff) = -d_D7S(§) .
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Remarks I.3.12: D is cocommtative, D=TD . D is coassociative

on the subcomplex V(L) ® E(sT’) ® '(st™) . D is coassocistive

on X if and only if p =2 > since it is easily verified thaik

(P2)D(7,. (7)) = (D7 (7)) , r>2, if end only if p =2 . The

* * %

dual complex X = V(L) ® X is therefore a commrtative differential
¥

algebra, associative if and only if p =2 , and the homology of X

* *
is H (V(L)) . Note that the induced product on H (V(L)) must be

—% '
assoclative, even though the product on X  is not.

4
bl
1
H
3
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4. Embedding of resolutions in the bar construction.

Let A be an augmented graded algebra over a commutative
unitary ring K . We will find sufficient conditions for a free
complex X over K to be embeddable in B(A) . The result will
be used to embed X(L) in B(V(L)) , where X(L) is the resolution

obtained in the previous section.

We recall the definition and properties of the bar construc-
tion. Let B(A) = A® T(1(A)) and B(A) = K ® B(A) = T(z(a)) .
B(A) is bigraded, with bidegree (a ® El Q... ® En) = n,

a; = a- 8(8,1) . We will write elements of B(A) in the form
a[all...lan] and we let [ ] =1 . Define an augmentation

e: B(A) — KX vy (1) =1, a(a[all...lan]) =0 if n>o0.
Define & contracting homotopy S: B(A) — B(A) by
S(a[all...lan]) = [Elall...lan] . A boundary d may then be

defined inductively by a(1)

0, d(ala]...|a ]) = (-1)d8 &

1l ~-€ . It follows that:

ad[all...la.n] , and dS + Sd

1) d(a[a.ll... Ia.n]) = (-1)%€ & a.(al[a.2|... Ian]

AMr)
+ 1< f<n(-l) (x [a)]...]a, 8y leeea )

T I T sy e ey s PR TR X 0 o SN RAT T f 7 i R A N o e 5 e g T R e S P S A
R N o E O R R SR XM On Tt ety [y AT RIS AT L SR e Pt PR IR T 3

where A(r) = z degla,] . If 9=1® 4 on B(a),
i A
1 <1 <r

it fr A

; 2) Wlaylweled) =y F ., N P RN PRP I
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B(4A) is a free resolution of K over 4, H(B(4)) = TorA(K,K) =H,(4) .

The following property will be used:

Lemma I.4.1: If x € qu(A) N Ker € , then there exists one and only

i one y € B(A) such that da(y) = x, and y = S(x) .
H Proof: Clearly x=as(x) . If a(y') =x, a(y") =0, y" = y'=s(x) .

But y" € §q+l(A)’ 2> 0, hence S(y") =e(y") =0 . Therefore

y'=(sa+as -e)y") =0.

Proposition I.4.2: ILet X =A®X be a free complex over K such

that X =A, X —> K is the augmentation of A , and qu NX=9 for -
all g > 0 . Then there exists a unique monomorphism of complexes f: X ——> B(4)

lying over the identity map of K , and satisfying f£(X) C B(a) .

Proof: ILet £ =i: X -—> BO(A) , SO that the diagram

f
(o}
X, —— BO(A)

S

i K—m—> K

comnutes. Let & denote the differential in X . If x ¢ .il B

0 # 8(x) e 1(a), = £ 8(x) = €8(x) =0 . ILet fl(x) = Sfoa(x) ,

and extend fl to Xl by the requirement that fl

f A-modules. dfl = fOS and fl is a monomorphism. Suppose fq has

been constructed, gq>1. ILet x ¢ iq+l‘; 8(x) £ 0, hence

be a morphism of

2 . .
fqa(x) £0, and dfqa(x) = f,.10 (x) = 0. Define iq+l(x) = qua(x)
and extend to Xq+l as before. Clearly dfq+l = fq& and fq+l is
a monomorphism. The uniqueness of f follows from the lemma.
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Before applying this result to restricted Lie algebras,
we obtain some further properties of the bar construction. We
define an (m,n)-shuffle as a permutation =n of the min integers
1,2,...,mn which satisfies =n(i) < x(j) if 1 <i<j<m
and if m+l i< j<mn . Using this concept we define a

commutative multiplication in B(A) by 1%x = x and

[all”'lan]*[aml-ll'”'am+n] = f;: (_1)8(ﬁ)[an(l)l... an(m_!_n)]

where the sum is taken over all (m,n)-shuffles and g(xn) =

B
e
r
i
e
9
<
P
R
ks
[
13
tﬁ

z deg[a.i] deg[amj] summed over all pairs (i,m+j) such that
7(i) > n(m+j) , that is, such that = wmoves a; Dast g *
g If A is commtative, d(x¥y) = A(x)¥y + (-1)%8 ¥ wd(y) .
For a € I(A), deg @ =0 mod 2, define maps o(a) and 7T(a)
of B(A) to itself as follows:
. deg ao
‘ U(a)(ao{all...lan}) = (-1) ao[a}*[all.f.[an} ;
.s
£ alel..la,  |le,8)la . [...]a ),
1 1<1i <n o 1 i-1 i i+l n

an] = {al

vhere we have written [a,|... .o+l ) to avoia

confusion with the bracket product. Iet ¢(a) = do(a) + o(a)d-t(a).

Lemma I.4.3: ¢(a) =0 for all a ¢ I(A) such that deg a =0

mod 2 .
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Proof: g(a)(abx) = abC(a)(x) ; tuerefore it suffices to prove
the result on elements x = (all...]ah} €eB(A) . If n=0,
£@)({ }) =al } - al } =0 . Assume the result for n - 1,
n> 0 . Then s({all...lan}) =0,and Sd+d =1 on

C(a){all...]an] . We must prove that SC(a)({all...lan]) =0

and sag(a)({all...lan}) = 0 . Calculating mod ker S :

degla, )}
1) ao(e)(lay|onrfagd) = alay[ovefa) + (1) Lo fal¥la].enle) 5

deg al
c(a)d([alf...lan}) = (-1) alfa}*fazl...lah) H

‘k I

-T(a)([all...lan}) = -a{al[...lah] .

r Tus S¢(a)((ag]..-[2}) =0 .

2) at(a) = do(a)a - at(a) = 7(a)d - ar(a) on (al]...]an}

by application of the induction hypothesis.

dT(a)([all...lan}) = d(a{all...lan}l- z {all...l[a,ai]]...lgn})

<i<n
_ A
= oaleylele) 4 5 () SLAIEN IO PP O Py
- [a,al]{aEI...]ah} e ? <n al{agl...l[a,ai]l...]an} ;

T(a)d([ali...lan}) = T(a)(al{a2]...|ah} +

Ly n(-l)’*<r)(al|...|arar+l|... o))
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= ala[ael...lan} - i‘. al{ael...

.. [a,ai]l...lan]

2 <

AMz) |
+ z (-l) a{a l-o-,aa
1<r<n 1 Tl

...]a.n] .

Since aa, - [a,al] =aa, s(t(a)a - dT(a))([all--olan}) = 0

as desired.

Next, let (a}® = {a]...|a} k factors, for & ¢ I(A) and

deg a = 1 mod 2, (al™ = 0 . Define

a {a}k * {a
o

ck(a)(ao{al]...]an]) 1

...|an} and

deg a
(-1) ° ao(a{a

}k-l

7 (a)(a la |- 2 ]a ) #ay [ ]a ) + F(la,a])¥

(1 2%(a |, o)+ 2 (MEDigkl g

l<i§_n

fall...][a,ai]l...lan})

Iet Qk(a) = dck(a) - ck(a)d - 'rk(a.) . To simplify notation,

1
note that 5{ [a,a]) = (e} . In characteristic 2, for a e I(A)

i define ck(a), Tk(a), and Ck(a) as above but with {a2}
. 1
i replacing -é-{[a., all . Then the proof of the following lemma

gives l_’,k(a) =0 for all a .
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Iemms T.U4.b: gk(a) =0 for all a € I(A) such that dega=1

mod 2 .

Proof: ¢, (a)(ax) = (-1)%°€ % g ¢ (a)(x). ¢ (a)((}) =0, since
7 (a)(( 1) = ala)*™ + (a7} * (a) =ao(a)(()) = ala)* . Iet

X = [all... |an] and assume 'blze result for elements in Bn_l(A) .

1) SCk(a)(x) = 0: Calculating mod ker S , we have
a0, (a)la|..-la ) = ala)® * (o ]...|a )

jE-L x {a.ll...lan] + a.l{a]k * taal...lan] ’

= ala
-ok(a)d[al|...|a.n] = - al{a}k * (a2|...|an] , and

'Tk(a){all"'lan] = - ala)®! % (all...lan] .

2) sat, (a)(x) = - s(do, (a)d + a7, (a))(x) = - (7, (a)a + a7, (a))(x) = 0
Calculating mod ker S , we have

]k-l

Tk(a)d[all...lan] = (-1)deg 8 al(a[a * {a2|...|a.n}.+

2 k-2 deg a A1-2)
+ (a7) * (a}*° * (g ]...]|a }) + (-1)9°€ &1 z (-1)
a a a2l |an 8.12S i<n‘ .

k-1 (M)
(a) *[azl...l[a,ai]l...|an]+a1<i‘.<n(-l)

()1 * {a1|...|arar+l|... al ., while

e e A 2 a0 R At b & 0 WL

i
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}k-l }k-l *

d(ala 1k-2

* [81""Ian}) = - a’(a * [a.ll...lan} - aa, (a

3
Pl e, 2

()52 * (o |...|lay8_1[ee]a ) - g (-)MF) gkl &
a all Iaar| ,Ian a1<r<n a

* lag]eeeay) - ala®) * () (L yMz-1)

*(all...laraﬁll...la.n] ,
a((a%) * (a)52 » {ag]...]a ) = a2 (a)"? * {agfeeela ) + ala®) * (a)53 » .'

* (o leeela) + (-1)%8 1800 g (®) % (22 (a]..u]a ), ana

(1), k-1 AO
al fsn(-l)" (a1 % (|- | a,8, )] vr o) = (-DMO) [a,0 ]

()L % (o ]...[a} + g () (L)1 4
a a2| Ian a.l 25 i<n a

AMi-1), (k-2
* [azl...l[a,aill...lan] +al§_§_<_n(-l) (a)*7C *

* {all-..l[a,ai]l...!an] .

Noting that A(0) = 0 and that A(i) = A(i-1) + deg [all , adding

the last terms gives d'r(a)[all...lan] = - T(a)d{all...lan] s

mod ker S , as was to be shown.

Now define 7k(a) (a}* for a e I(A) such that deg a

;i is odd. Clearly 7, (x+y) zoy,(x) * 75(y) , end, since there

1+j=k
exist (k,h) (k,h)-shuffies, 7, (a)7, (a) =“(k,h)7k+h(a) - d(y(a))

a7k_l(a) + (5] % 7k_2(a) . Iet I'(A) be the subset of 1(A)

consisting of the elements of even degree, I (A) the subset of

j elements of odd degree. Then (ignoring the algebra structure of A)

'
1
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E(sI+(A)) ® I'(sI"(A)) is embedded as an algebra in B(A) via the

map f given by

r r
F(< FppeensT> 7rl(§1>...7rm<zm)) = (e *ly)) * () Texx ) T,

where s is the suspension as defined in the previous section, .

Yy = S(yi), X,

5 = s(xi) . Extend T to amap £ of

+ -
A®E(sI (4)) @r(s17(A)) = M(A) into B(A) by requiring £ to be
& morphism of A-modules. We identify M(A) with its image in B(A) .
et y e I+(A), x € I"(A) . We have:

1) o) <Tpseen T2 7, @)ooy, ) = (D€ 20 cF5 00,5 >
1 m

7rl(3cl) . -7rm(xm)

D) ) o < Fypee T2 7, )t (7))
m

W < Ty T 7y )t ()
m

| J+1 = 2= = =
.+ 1 S ?S n(-l) 8 <[ﬁj ])yl,o--,yjy'Ovyn> 7rl(ﬁ)"'7rm(xm)

+ 2 a<¥ ey > (¥ Dy, (X )eeer. (X D)evuy. (X))
ISiSm 1 n 1 i rlxl ri-li rmm

3) do(y) = 7(y) - o(y)a

.J )"') Gk(x)(a < yl, coo,yn> 7r1(xj_)...7rm(xm) = 8 < yl’ R .',y-n>

7k(35)7r1('i_L) .o QVrm(Em)

i
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5) TN a <Fpyeen > 7y Geeery, () = ()6 S ax < T,

- - - dega 1 =1 = - -
7k_1(X)7r1(xl) 7rm(xm) + (-1) a3 5x],¥ 500 ¥ 27y _o(%)

7o (®Z)eewr, (X)) + (-1)9%8 8 4 5 ()i
rl 1 rm m 1<j<n

<FpperosFp e T2 (T Gy, Gp)eer, ()

d _ _ —
+ (—1) eg a, a z } <|x’xi],yl, . oo,yn> yk_l(x)
1 5 i 5 m

yp @y, (G)eer, (&)

1 i m

6) dok(x) = Tk(x) + ck(x)d

These formulae prove, by induction on the bidegree, that M(4) is a
subcomplex of B(A) on which d is defined by the formula given in

Corollary I.3.4. It follows that for aeny Lie algebra

— — + -
LCa A®T(), (1) = E(sL ) ®'(sL”) , is a subcomplex of
M(a) C B(A) . Ir A=1U(L) , this gives the embedding of the free

resolution A® Y in B(A). If A= V(L) , this gives the embedding

9
i

\
o)
b

P
3
;‘

of the subcomplex A® Y of X(L) in B(A) . We remark that the
method of proof here is a generalization of that in Cartan and

Eilenberg for the case of Lie algebras concentrated in degree zero.

Define a disgonal map D on B(A) by f}'{al]... a}=

|
n
§7 ifo(—l)g{al ai}deg{ai+l]...]a } .
l
}
|

...Ia.i} ®'{ai+1[---]an}, € = deg{aj_ n

53=(G®1+108T (where (1®T)(a ®Db) = (-1)9%8 & 4 @ A(1)) .
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Giving B(A) ® B(A) its algebra structure induced by the * product
in B(A) , D is seen to be & morphism of algebras. ILet LC A

be a Lie algebra and give -f(L) a structure as a Hopf algebra by
requiring that s(x) %be primitive, x ¢ L . Then the embedding of
Y in B(A) constructed gbove is a monomorphism of Hopf algebras.

If A is itself a Hopf algebra with diagonal map V , D may be
extended to D: B(A) — B(A) by D(ax) = (-1)%°€ & y(a)D(x) ,
where the latter product is defined in the obvious way. DNow if
A=U(L) or A=7V(L), the embedding of the complex A® Y in
B(A) clearly carries the diagonal mé,p D defined in the previous

section to that just constructed on B(A): (£ ® £)D = Df ,

g f: A®F —> B(A) .

Finally, let A = V(L) for a restricted Lie algebra L .
Let X %be the free resolution of K constructed in section 3. By
Proposition I.4.2, there exists a unique embedding f of X in B(A) ,

and f|A® F has been determined. Now £d(y.(z)) = f(zp‘1<2> -

7

1
; <B(E)), aalyy(2) = 0, hence 2(7,(3)) = s2a(y () = (FH2)
: Using Theorem I.38 to determine d(<y >71(E)) , we find

: -1 . .
L sy (@) = Gl + = (P (aa2) () -

J=0

; | - (P (eaz) () |2}

In particular, f(<_z>71(2)) = (z]z 'l]z} = {z} * {zp'1|z} . Let
{zp-llz}k = [zp-l]zl...lzp'llz} » k factors {zp-l]z] . Then

f(<?>7i(§)) = {z} * {zp"l|z]i implies f(7i+l(5)) = [zp_llz}i+l s
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and  £(7,,,(2)) = (22723 implies £(<2>y,,.(2)) = (2) * (2P 3|2) Y .
Inductively, these formulae hold. We go no further in the general case,
since Theorem I.3.8 defines a method for determining the differential |
in X and, knowing the differential in X , Proposition I.k.2 tells
how to obtain the embedding of X in B(A) . The diagonal map on
X 1is carried over by the formula (f ® £)D =D'f . D' so defined
does not coincide with the diagonal D defined above on B(A) if
char K > 2 .

Suppose char K = 2 . In this case the resolution X and
its embedding in B(A) take quite simple forms. Here |
X =E(sL) ® I'(SzﬂfL) is naturally isomorphic as an algebra to I'(sL) ,

and the diagonal map D of Theorem I.3.11 clearly gives r(sL) its

natural structure as a hopf algebra. Identifying X with [I(sL) ,

% Theorem I.3.8 implies that d is given by

¥i)eeer, (¥)

g @)ooy G) = B v, @p)ee7y 06,

1 n i=1 1 n
5 (v ) (v.)
+ 2. GE N7 G)eeern SFder (¥
= 1 i rl 1 ri-2 i rn n
+ Iz Y (Fov D7, F)eeers T ey, GFeeer, (7)) -
i< 1'717Y) ry 1 ri-l i rj-l J r, n

Al

,:.)}

replaces %[[a,a]] in the definition of 7(a) . It follows easily

1
: o 2
i Now Temma I.b.4t holds for 211 =z € L , provided that (e b= {2

A

that the embedding T: X —> B(A) is given by —f'()'r Gl)"’)'r ('in)) =
1 n

{yl}rl L {yn}rn and that (f ® £)D = Df , that is, the diagonal

map of Theorem I.3.11 is taken into the diagonal map constructed

above on B(A) .

| o
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We summarize the results obtained. Let A be a Hopf
algebra over a field K . Iet LCA be a Lie algebra and define
¥(L) = E(sL+) ®I(sL”™) . Then A ® Y(L) is a complex with dif-

ferential @ determined by the formula in Corollary I.3.4 and diagonal

map D as defined above Theorem I.3.1l. Proposition I.4.2 gives an
embedding of complexes f: A ® F(L) —> B(A) . B(A) is given a
structure of commutative algebra by use of the shuffle product

defined on page I-4.3. B(A) is given the diagonal map D defined

on pages I-4.9, I-4.10. Then we have the

Theorem I.t.5: f£: A ® Y(L) —> B(A) is obtained as follows:

1) flax) = (-1)%8 & ap(x), ach, xe L) .

11) £(<7>) =1[yl, T=s(y), yei

r r factors _ . _
[x]" = [x] ... |x], X=8s%x, xeL

]

2(y_(%))

iii) flxy) = £2(x)*2(y), %,y e ¥(L)

f satisfies (£ ® f) D(x) = Df(x), x ¢ A® XL) .

If A=V(L) and X(L) is the free resolution of X

"A®Y(L) ® I‘(szsr L+), f: X(L) — B(A) is determined by

Theorenm I.k.5 on A ® ¥(L) and satisfies:

Proposition I.4.6: If z = sezr(z), z ¢ L', then

£(7 (2)) = [PHal" . 12 x e (L) @r(sSx L), £(x) = sra(x),

where d(x) is to be determined by use of Theorem I.3.8, and S
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is the contracting homotopy of B(V(L)) .

Finally, we have

Theorem I.4t.7: Iet A = V(L) , where char K =2 . Identify

X(L) with I(sL) . Then f£: X(L) — B(A) is given by
i) f(ex) = af(x), x eX(L), ach
ii) f(7r(§)) = [YJr p) S; = S(y): yel

111) £(xy) = £(x)*(y), x,y e I'(sL)

P FG e ite AL

£ satisfies (£ ® £)D(x) = Df(x), x e X(L) .
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5. A spectral sequence

Iet A be a filtered augmented graded algebra over a unitary

commutative ring K . Assume that A is projective of finite type
as a K-module and that the filtration satisfies FiA =A for 1i>0,
) F_lA I(A) , and, of course, FPA FqA C Fp +qA . Suppose also that
either (A/FPA)P 4q s flat for all p and q or that each

0 —> FPA > A —> A/FPA —> 0 is split exact. Define

o _ .

Er,.s(A) = (FrA/Fr-lA)r 4 + We will construct.a spectral sequence
’ * *

E.(A) such that E,(A) = H (2°A) and E_(a) = E°H (A) . Under

additional hypotheses, we will obtain an interpretation of each Er .

We obtain first the dual to the desired spectral sedquence.

Define a Filtration on B(A) by F T(I(A)) = b2
P 1pte o+l tnep,1,<-1

| F, I(4) ®...® F; I(A) for p< 0 and FPE(A) = B(4) for p >0 . Since
1 n
7 1(a)-F,1(a) CE . T(8), & B(4a) CF B(A) . Taus E° = EX in

q P p-1
the resulting spectral segquence E- = (F. B(A)/F. .B(A)) where
? Tr,s r r-l r+a

r+s 1s the bidegree (except in certain signs, the grading induced

by that of A will be of no further concern, all maps conserving
this degree). We consider the spectral sequence to commencs with El
and continue to let EC denote the associated graded algebra of A

with respect to the given filtration. Defining Eo = U E; g’ we bi-

P q P
grade B(E®) by B N I,(EO) = by E‘l’ ... B, .
r,n-r" il+...+ in+n=r’ij <-171 . m

Due to the assumption that A/ FPA is flat or that

0 ——> FPA_ > A —> A/FPA —> 0 is split exact, we may identify

L
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B(E°) with E- as a bigraded K-module, and then d.: E- —s EX
1l "r,s r-l1,s

agrees with the differential on B(EC) . Therefore B = H*(Eo) as

a bigraded K-module.

*
To dualize, let A Dbe the coalgebra dual to A , with

* * R * *
coproduct ¢ and augmentation € . Iet J(A ) = coker & = I(A) )

-_—, % * -, %
C(A") = (J(A")) . Write elements of C(A") in the form [ |.ee]e T

*
Then if © (ar) = T
<]

t -y =¥
- ® dr,s , the coboundary ® in C(A ) dual

to d in B(A) is given by the formula

s

1) €[al|...|an_l] = 3 (-1)>"(""’s)[ocl
r,s

coela o feeda 1,

NMr,s) = deg o' _ deglor ] + b) degla, ] .
T8 8 r1<i<n-l *

i (Here we have defined < a® B, a ® b > = (-1)3%8 P %8 8y o5 < 1>
3 * *
for the pairing of A ® A and A ® A, hence

.‘j‘a ;deg[ai] Z degla.l
<[al|...!an], [al a.n]> =(-1) * J>1

I <[04k], [a.k]>.)
k

-, ¥ -—, % *
C(A") is the cobar construction, H(C(A')) = H {(4) .

* - ¥*
Define a filtration on A Dby PA = 0O, p >0,
* . ¥* -
A" = [z(a)/F, ;3(A)]", < 0. Then define a filtration of
-, % * i, % i, *
cA") vy Frig) = P FJA)®.8F2J4),

i +eeot 1 4n=p,i, < -
: iy 1nn~p,1J_ 1

or, equivalently, FP(_)(A*) = [ﬁ(A)/FP_l-B-(A) ]* . Then E_ =

s * 1, ¥ ol ¥
B = (FFO(A)/FRR(A)) = (By )7, and B

By = S((°)")
s = B (%) . H(A)

* *
is filtered by Fu () = 2(H(FPE(A ))) where £ is induced by

L
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FE(A") CTa™) .. 22 5'(a) = (Fr(a)/P- 1 (a)) prq  0d 15

D,4q
isomorphic to Ep,q Zp,q/Bp,q , where Zp,q = Ker k ,

k: Eli’q — 5(FM5")) | » end Bz’q = j (Ker £),

p+a+

; *
J: H(FPE(A ))p+q —_— E?_’q . Clearly some condition is necessary

on our filtrations in order for the spectral sequence to determine

] H (A) . Suppose A satisfies the condition 1im A/FPA =A, or
: * *
] 1im FPA" = J(A") or (since direct limits commute with tensor products)
{ % o
: lim FC(A") = G(A") .  The last condition is the statement that the
; -, %
j;‘ filtration of C(A ) is complete, in the terminology of Eilenberg
and Moore, "Limits and Spectral Sequences," and in this case our
*

spectral sequence does in a sense determine H (4) .

* We consider now the behavior of products in our spectral
_ _ (_1)E

sequence. The product [Otl ces an][an+l|... am] = (1) [Otl "'lan+m] ,

£ = deg[a’li...]an] degler 4 ...]anm] , is dual to the diagonal map D
: of -E(A) defined in the previous section. Therefore g(xy) =
3 - -
- &(x)-y + (_l)deg x x5(y) , where deg x is the total degree

-—, ¥
i n+ I dega,, x=[a]|...]@]. Thus CT(A) is a dif-
& . i 1 n
1<i<n

ferential graded algebra, and an algebra structure is induced on

3*
H (A) . Consider the exact couple

B(G(A")) —=> H(C(A"))

N
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P

PRV KT T

i 1is easily verified to be a transduction, i(xy) = xi(y) = i(x)y.

WA SRR

If x = i(a), y = i(b), xy = i(ab) defines i(H(E(A*))) as a graded

"
algebra, and i|i(H(C(A"))) is a transduction. The process may be

- -, ¥ —
iterated to obtain the product in D = i¥ 1(H(C(A ))) . If X

- % - —
denotes the image of x € C(A') in E, , Xy=% . Suppose

k() = 1" Ha), k(F) = i*"H(b) . Then k(X7F) is the cohomology

= T S IR ST YN

class of o(x).y + (-l)deg * ¥8(y) , which is in D., say

T

A e s P

A RS eSS e 5 U IR T A T

B e TR d e

T He) =xGET) . dle) = 3aly + (-1)%°8 ¥ x3(p) , ana

OB - s 35+ ngee ® 550G Gy | meretore
each E_ 1is a differential graded algebra. It is also clear that
309 = 56037 6) ana e 107 = ()28 * (T (5)

and k(r)[ Ej(r)(y)] = k(r)(i)y . (We nave followed Massey, "Products

in Exact Couples" here.) Note that Z.,, is a subalgebra of E_

and that Br+ is an ideal in Zr+l . Thus each Er+l is the

1
quotient of a subalgebra of Er by an ideal. Under the hypothesié

l&p A/FbA = A, the spectral sequence converges (not necessarily

finitely) as an algebra to E_ .

We remark that the same product structure in the spectral
sequence could be obtained by dualization from any diagonal map
giving B(A) a structure as a differential coalgebra, and that if
A is a Hopf algebra, the products are commutative (see Cartan,

Séminaire Cartan 1958/59, Exposé 12).

Now assume A = linm A/EPA . Then N FEA =0, and if we
P
define a weight function w on A by w(a) = -p if a € FpA and

af Fb-lA , we have 0 < w(a) <o for ae I(A) . Suppose that A
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is a free K-module and that I(A) possesses a basis [ai] satis-

fying w(Z kia'i) = min w(a.i) > k; € K. Under these hypotheses we

can obtain a simple algebraic interpretation of each Er s ILet AT‘,
t > 0, be the filtered algebre which has the same underlying fil-

tered K-module as A and has product ¢, induced by that of A

t
by the formula <I’t(a.i ® aj) = a;a; mod Fp-'l:-lA if w(a.i) + w(aj) = p;
: _ t
that is, if aiaj =Z kza.g in A, then a.iaJ in A" is Z kmam

&

taken over those m such that 0 < w(am) - (w(ai) + w(aJ)) <t
We may identify E; q with the free K-module having as basis those
: 2

8y of weight -p and degree ;p+q , and if E° is graded by total
degree, Ez = @ EO » then B = A°
as a bigraded algebra for gll t . If we consider our spectral

. Further, E°(A) = E°(A%)

sequence for each At , it is easily seen that Er(At) = Er(A) ,
t+2 t+2, .t (] t o *, t
1<r<t+2 d E A) = B A") =E A")=E H (A
ST, and B oG (A).=E (A7) =B (A7) =B, HI(AT),
£>0.

We now revert to the hypotheses on A which are stated at

&
w
I
3
b
X
k
S
&
&
i
f
A
2
g
\s!
,z?_,.\
%
i
‘o
v
&
5
e
o
iZ
]
b
g
i

the beginning of the section end assume in addition that K is a
fielde Iet M be a left A-module which is of finite type. Then M*
is a right A-module, the operations of A being defined by

(fa)(m) = f(am), £ ¢ M*, aelA, and me M. Thus the A-module
structure on M* is given by a map M* ® A —> M* satisfying

M, ®A

* .
—_— Mi o Iet Y be any A-projective resolution of X

q q
- regarded as & right A-module with trivial operations. Then we have

functorial equivalences:

Tor® (x,M)" = Homy (H(Y ), ),K)

H(HomK(Y ® M,K))
H(HomA(Y,HomK(M,K))) = ExtA(K,M*) .
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. . A L A
Since K is & field, tor (K,M) = tor"(K,M) , and therefore

* ¥
Ext;A(K,M ) = torA(K,M) is also true. Note further that we have

N
&
i
F
g
b
d

3
o

*
shown that ExtA(K,M ) may be computed as H((Y ® M)*) .

We will prove that M may be filtered in such a manner that
E°M is a left ECA module and that we may define a spectral sequence
R o, \¥ . ) *
E, of which is Ext _ (X,(E'M) ) and E_ of which is E° Ext,(X,M ) .
2 EOA © A
Thus define a filtration on M by FrM = FrA-M and let
o _ o .
E. M= (FrM/Fr_lM) rtg © Thet E'M has a naturally indiced

Tys
ECA-module structure. is obvious. To define the desired spectral

e

sequence, we need a slight modification of the bar comstruction. Iet
B(A)° = B(I(A)) ® A considered as & right A-module and with the

obvious differentiel:

_ ( .\deg a
dEanl...Ial]a = (-1) ([a |.ee|ayley
| Mr) T
+ ‘z (-l) [8. LN ) a 8. lo.. ])a
l1<r<n o T+l al
where A(r) = z deg[ai]. B(A)® is a free resolution of X
1<i<r ‘

regarded as a right A-module. We filter B(A)° exactly as we filtered
B(A) . Then we give the temsor product filtration (page I-1.1) to
B(A)° ® M , which is isomérphic to B(A)° ® M as a K-space (but not
as & complex). d(Fr(ﬁ(A)o ® M) C Fr_l(ﬁ(A)o ® M) and therefore

E® = E* in the resulting spectral sequence. Clearly we may idembify

_ =210 =¢a3\0 R = o o
Ei,s = (Fr(B(A) ®M)/(Fr_lB(A) ® M)r+s with Bi,s(E A) ®EJM ,
1t+j=r
(o)

(o]
M=UE® M. Therefore E- = tor® “(K,E°M) . The dual
J X r,s -3 ‘

where E
Jrk r,
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of this spectral sequence may be obtained by filtering the complex
-, % * -
C(A")°®M aual to BA)°®M by
-, %.0 * - - *
(G )° @M ) = [B(a) ®M/Fp_l(B(A) ® M)]" . The resulting spectral

* *
sequence satisfies E, = Ext _ (X, (°M)") ana E_= E® ExtA(K,M ) .
E"A

*
Next we show that each term of the spectral sequence ErM
Just constructed may be given a structure of left differential

Er-module, where Er is a term of the spectral sequence converging

0. * . =7 %¥\0
to EH (A) « We define a left C(A ) -module structure on the complex

—, %
A @M by [,

---.Ialliﬁql---lﬁl]m* = [anl.--lsl]m* . Noting
: that if [anl...lal]m* € E(}'\*)°’® M , then

[ el = (oo D"+ 2 (Koo

* * :
where,the A -comodule structure of M dual to the A-module structure

* : *
of M is given by m _—->'z:og,0®mt

6
i : *
e(t) = deg[anl...lal] + deg[at]deg mg , it is eesily seen that

and where

S prles

SovsLlanei iaim R

: ' o - % - % *
‘ 5(fg) = (5f)g + (-1)%€ T spg , £ ¢ TA™)°, geCA )M .
(Note that no signs are to be introduced in defining the product in
=ra¥\0 s ey =2 ¥\0
¥ C(A")" ; this is to be expected, since C(A )° may be thought of as
’ . !
. —, %
the opposite differential algebra of C(A') .) Now the proof that
4 % :
each Er(M ) is a left differential E_ -module goes through just as

*
in the special case M =K. Summerizing, we have the

Theorem I.5.1l: Iet A be'a filtered algebra of finite tyvpe over a

field K , and suppose that A = lim A/FPA . Iet M be a left
A-module of finite type. Then there exists a spectral sequence

* *
{ErM } , E, of which is Ext o (K, (°M)") and which converges to
- EA
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* %* N
E_ =E° Ext,(K,M ) . Bach EM is & left differential E K module.

Dually, there exists & spectral sequence {ErM} ’ Ea of which is

o
tor® A(K,EOM) and which converges to E = E° torA(K,M) . Each

&
r
o
&
b
¥
b
bt
.1}:
4.
¢

ErM is a left differential comodule over E"‘K .

If A is a Hopf algebra with the product filtration (pege
I-2.5) s then EOA is the universal enveloping algebra of its
restricted Iie algebra of primitive elements (unrestricted if

(o]
char K=0) . If M is & left A-module, then tor® “(K,E°M) may

be computed by means of the complex °® o E°M . Here X° is the
' ’ N E°A

opposite complex to the complex obtained in section I.3, and is defined

| by simply reversing the order in which factors are written. The

[é embedding £°: X° —> B(E%A)° opposite to that obtained in sec-
tion I.4 allows explicit cclbmpuf‘a'bion of the differentials in the
homology spectral sequence. Actually we need compute dr(X) only
on those elements x € E'M 'which are so situated dimensionally that

it is possible for x +to be a summand of Sr(y ) , Where y is

an ErK-module generator of ErM . Dualizing, this gives the differ-
g entials in ErM and allows computation of E_ . We remark that our
; ' results remain true if we start with a right A-module M ; in this
*
case B(A), C(A"), and X(ECA) are to be used instead of B(A)°,
*.0 0,10 '
c(A”)”, and X(E'A) . We have stated our results for left A-modules
M , since this is the case in the main application we have in mind,
namely the case where A 1is the Steenrod algebra,

* *
‘M=H (X;ZP) for some space X , and M = H;*(X;ZP) .

i
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II. Application to the Steenrod algebra

0. Introduction

Khowledge‘of the cohomology of the Steenrod algebra is needed
for the study of nth order‘cohomology operations and of the Adams
spectral sequence. We will determine H?’t (A) in the range
t-s< 2 (p-1) (2p2+p+2) for odd primes p and t-s < U2 for p=2 by
applying the machinery developed in Part I. We restate fundamental
theorems from Part I for the specialvcase under consideration and
give specific references to auxiliary results used. Thus the reader
interested primarily in topological applications need only refer'to

Part I for proofs.

Section 1 is devoted to a review of known results on the
Steenrod algebra A. Of particular importance in the sequel will be
Milnor's elegant results on the structure of the Steenrod algebra.
Using Milnor's results, we determine the structure of the associated
graded algebra E°A in section 2. 1In section 3, we begin the study

*
of H (EOA) by describing the form of our free ECA - resolution X

of %p , obtained in section I -3, and by obtaining part of the

(non-associative) algebra structure of f*=(2b ®, X)* for the case p > 2.
In section 4 we determine H?’t(EOA) in the range t-s < 2(p-1) (2p2+p+2)-h
for the case of odd primes. In section 5 we determine H?’t(EOA) in

the. range t-s §'l6h for the case p=2. In both cases, these calculations
make use of a sequence of spectral sequences quite analogous to that
constructed by Adams to facilitate calculation of H*(A) using the

cobar construction. These sections also define various indecomposable
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elements of E#(ECA) lying outside the cited range; in the case p=2,

it is likely that these include all indecomposable elements. In
section 6 we come to the main theorems of the thesis. These completely
describe HF’#(A) in the range t-s < 2Qp-l)(2p2fp+2)—h for the case |
of odd primes and t-s < L2 for the case p=2, and are obtained by
explicit computation of the differentials in the spectral sequence
passing from H?(EOA) to H&(A). In both cases, partial information

is obtained in higher dimensions. It will be noted thaﬁ we have used
the complete rénge‘of our calculation of H#(EOA) in the case of odd
DPrimes but only part of the range in the case p=2. The reason is that
while calculation of the differentials presents no particular diffi-
culty in either case, H*(A) differs relatively little from H#(EOA)

in the case of odd primes but differs radically in the case p=2. In

‘ S
fact, for p=2, . is non-zero on every indecomposable element of H (EOA)

2
-in dimension s > 2. Extension of these calculations would be tedious,
but not prohibitively so, and the calculations are considerably

simpler than would be the case using the cobar construction.

In section 7, we garner the obvious corollaries for the stable
homotopy groups of spheres. Tiese are obtained by combining the algebraic
properties of the Adams spectral sequence with Toda's calculations of
these groups. We show that the differentials in the Adams spectral
sequence satisfy a limited amount of periodicity and obtain nearly
complete results on wi (s; %p) in the range m < 2(p-l)(p2+2p)-3 in

the case of odd primes and m < 29 in the case p=2.

In appendices, we depict our results graphically for the

cases p=2 and p=3.'

|
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l. The Steenrod algebra

3 Henititag

We recall first the axiomatic definition of the Steenrod
powers. Let p be an odd prime. Then P : Hg(x;;p) —_— HQ+21(p'x%X5§p)
is a gp-morphism defined for all i >0, q_zro and spaces X satisfying:
i) P* is a natural transformation of functors
i) P° =1

i11) If deg x = 2i, P'x = i&

iv) If 2i>degx, Px=0

v) Pxy)= = PxU Pky
k=1

These characterize the P- uniquely. Existence is proven in
Steenrod, chapter 7. Let © denote the Bockstein coboundary operator
associated with the exact coefficient sequence

0 > Z > 7 > 7 >0 .
D _p2 P

For p =2, Sq™: Hq(X;Zg) N HQ+1(X;ZE) is the Z,-morphism

satisfying

i)? Sq* is a natural transformation of functors

11)1 8¢® =1

iii)t If degx =1, Satx = x°
iv)t If i > deg x, sa¥x = 0
v)t sal(y) = = sq¥x U s

k=t

The axioms imply that Sql = ® , the Bockstein coboundery operator associated

with O >=Z2 >:2L >Z2 > 0 . To simplify statements we write

Pi = qu for p=2.
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Recall that for all p :

vi) 8% = 0

¢
3

vii)  8(xy) = (ex)y + (-1)7%8 * xoy

viii) & is a natural transformation of functors

Axioms 1) through viii) and i)' through v)' imply
ix)  If 1<pj, PP = ii;/;p] (-1)*¥(1-pt,pg - (1+3) + £-1)pHFI-Tpt
=0
x) If 1 <pj, Popd = [i-lé/p](-1)1‘1+t(1-1-pt,p,j- (i+3) + £)PEHI-bopt
=0
ix)* If 1< 2j, Sgisqd = :‘1}42] (1-2t, j-i+t-1)Sqi b5, "
=0

The Steenrod algebra A(p) is defined as follows: the free
assoclative algebra F(p) 4Jenerated by the Pi and © acts on the
cohomology of any space. ILet I(p) denote the ideal of all f ¢ F
such that f£(x) = 0 for all cohomology classes x of any space.
Ten A(p) = F(p)/I(p) . A(p) is connected and associative, but
not commutative. It is known that vi), ix) and x) give all rela-

tions, i.e., all generators of I(p) (proofs are in Adem's paper).

A monomial of A(p), p > 2, has the form

E 8 58, £
5°P1681...Pk8K, g, =0 or 1, s

monomial is called admissible if s i > ps

i = 1’2’3,.00 . SuC.h a

:L+l+ei for 1 >1 . For

s
k and is called admissible

5, 8
P = 2 , a monomial has the form PJ'PE...P

if s i > Esi 12 i>1 . The admissible monomials form a vector space
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basis for A(p) , all p . The elements Pi, i fpk ,‘ are decomposable

and therefore the Ppi (and & if p > 2) generate A(p) .

For 6 € A(p) , there is a unique element ¥(8) ¢ A(p) ® A(p)

"
such that 1f ¥(6) = Z 6! ® 6} , 0(xy) = 5(-1)1%8 &L de€ * olx U ol .

The map ¥ is given on generators by W(Pi) =z Per aa
Jrk=1i

Y(©) =5®1 +1®5 and is a morphism of algebras. It follows that

A(p) 1is a (coassociative) cocommutative Hopf algebra.

Since A(p) is of finite type, A(p )y 1s a commutative
(associative and coassociative) Hopf algebra. Let

k-1 k-2

M =P P PP, M =F-1 adfor pF2, M -MuS

end let &, e A(p), be the dual of Moy T € A(p), Ve the dual

k
' = ook = opk -
of M} . Note that deg & = 2(@ -1), p # 2, deg T =2 -1, £ =1,
and deg gk = Ek-l, P = 2. Then A(P)* = E(To,fl,ooo) ® P(gl,ga,ouo) -
€ T T .
This is proven by writing monomials as 'roo gll 'r:l coe gkk Tzk ’

g = O or 1, Ty > 0 and finding a one-to-one correspondence
between the sequences (eo, T1s Eqyeee ;ak) and the sequences corre-

sponding to admissible monomials in A(p) after first proving that

the natural morphism of algebras E('ro,'rl,...__) ® P(gl, ga,...) —> A(p),

is an epimorphism.
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If ¢: A(p) ® A(p) —> A(p) is the multiplication,
0yt Alp), —> A(p)y ® A(p), is given on generators by
k i

k i
o (k)= 2 2 . ®¢. and 0(5)=101l+ 2 & .®1, .
i L S ¥\ T Ty C o ki T TR

@ let R = (rl,... »T,) be a finite sequence of non-negative
| Ty [To Ty

: integers andA ER) = &7 &7 «eo § . Let E= (eo,...,ek)_,

b

: g, =0 or 1 and <(E) = ro° oo T« Ten {1(E)E(R)} is a

4 Zp-basis for A(p), . Denote the dual basis by

{p(E,R)} < o(E,R), ©(E*)E(R!)> =6 ;0o ng « p(0,(i)) =P, and
) E,E'°R,R

we therefore define p(O,R) = PR . To avoid lengthy superscripts

later, we write P = P(R) . Let Q_ denote the dual of <

& &

€
and note that Qo=6. {Q,OOQ,l ...QK P_Rlz-:i=0 or 1, k<w}

k’

is a ZP-basis for A(p) which is, up to sign, the same as the basis

{p(E,R)} dual to {T(E)t(R)} .

To describe the multiplication in terms of this basis, we

define R-S=(rl-sl, rg-sz,...) or (0,0y.e.) if r; -5; <0

for any 1 . We also consider infinite matrices of non-negative

integers, almost all of which are zero, and with leading term omitted.

'.
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*
xol x02 eee
For such a matrix X = o 1 .
xzo . oco: see

define R(X) = (rl,rz,...) s 8(X) = (sl,sz,...) and T(X) = (tl,ta,...)

by ri=Zp‘jx t. = I x

3 B8, =L X,. , Define also

ij ° .

B(X) =1 (x ,x ,--o,x ) =1t 3/ I x !.‘ :
n  Bs° n-1,1 o,n n B 1,3 i3

"

e .
Theorem II.l.l: In terms of the basis {Qoo cee @ P(R)} of A(p) ,

the product is given by
i) [qq,] =0
11) [P(R)Q, ] = QPR - (2%,0,0,...)) + Q,, P(R- (0yDT50500e) + oa

iii) P(R)P(S) = % B(X)P(T(X))
R(X)=R, sS(X)=s

It follows that

i
W) Gy = L)

win(Jj, (1/p])
plpd = /e (i-px,J-x) P(1+j - (p+Ll)x,x)
X =0

vi) If 7, <Py Ty <Py... ‘then P(R)P(S) = (rl,sl)(rz,se)...P(R+S) :

i-1

vii) P(0yeeep0,r, = 1) = [F° P(o,...,o‘,riﬂl =1)]

i

i
{QO ,Pp } forms a basis for the indecomposable elements. The coproduct
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is given by
viii) \lf(Qk) = Qk®l+l®Qk

=) ¥ER) = = B(R)) @ R(R,)
R1+R2=R
{QO,Ql,...,P(o,...,o,rk = 1)} forms a basis for the Primitive elements.

(P(o,...,o,rk = 1) denotes P(R) where r; =0, i #k, and Iy = 1.)

The above theorem will be used repeatedly in what follows.
Note that {P(R)} forms a basis for a subalgebra A*(p) of A(p)

end AY(2) = A(2) .

Theorem TT.1.2: ILet A = A(p) . Let A(n) C A ve the subalgebra

ne-l n-1
generated by {QO,P‘]‘,...,PP } (by {Pl,o..,Pe } if p=2).

Then A(n) has the finite dimension 2n+lpn(n+l)/ 2 (2n<n+l)/ 2 i p=2).

€ € s
[e) n -
Q7 <0 Q  Blry,eeeyr)le, =0 or 1, 0 < r, < pitH

({P(rl,...,rn)lo <z < 2n-1+l} if p =2) forms a basis for A(n) .

A 1is the union of the A(n) and therefore every element of A of

deg > 0 is nilpotent. Further, each A(n) is a sub-Hopf algebra of A.

Expansion of definitions and- broofs for this section are to be
found in Adem's paper s> "The relations on Steenrod bowers of cohomology
classes,” in Milnor's paper, "The Sieenrod algebra and its dual,"

and in Steenrod®s book, Cohomology Operations.
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2. 'The assoclated graded algebra of the Steenrod algebra

In this section we determine explicitly the structure of the
associated graded algebra E° of the Steenrod algebra A for any

prime p .

Iet I(C A be the augmentation ideal.

Let <I>l: I —> I be the identity,

@2: I®I —> I the multiplication, and

re factors =

¢n=°n-l(l® e ®l®¢2) I®ooo ®IQI¢ Define

FA=A, i>0; F A=In® , i>0.

We also use the notation Eo = X Eo

o
Then E; .
i,d i+j=q L,

/ili+J

In the latter notation, B is isomorphic to A as a Zp-spa.ce , and is

a primitively generated connected Hopf algebra under the induced product

IR

and coproduct. It follows from theorem I.2.12 that E° 2 V(P(E")) .
We will find P(Eo) as a restricted Lie algebra. For x € A, ve
define thé weight of x, w(x) , as that integer n such that

-n-lA . 'The crucial point is the determination of
w(P(R)) . The following lemma will be needed.

xeF_ A, xgF

Iemma II.Z.1l: Let Dyl 5ee eyl be non-negative integers such that

k L . o
z m =1 and let n =X ajp‘], m; = b bi'jp'j be their p-adic
i=1 J=o0 j=0

expansions. Then the multinomial coefficient (ml,... ,mk) is zero

mod p if and only if Ebijfa for some J§ . If Zbi.j a, for

all j , then (ml,...,mk) 531 (blj,...,bkd) mod D .
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Proof: Consider the Polynomial algebra Zp [xl, ---,Jﬁ{] .o

(x1+...+ xk)n.= . pX (i 500e,1) il... g .  Thus
1l+. . .fji{=n 1 k xl xk
™

(e 5ee. ) is the coeffici x | n
Moo,y icient of x 7...x in (xl+...+ xk) .

J
Clearly (xl+...+ xk)P = +.. .+ )qz mod p , hence (xl+...+ xk)p =

1

J J
x§ Feeot :qi mod p . It follows that (xl+...+ xk)n =

P, D, a, PR R
I(x,%%...+ x9) 9 =1 z 15° kg
. l L I ﬁ <Zl....,z C)x LN
3 . . _ J ki1 *x °

J zlj.,' +zkj aJ.
dJ dJ
"Since al ml mk § le-P ? bkjp
,so>xl oo X = Xy e Xy » we obtain (ml""’mk)E

g(blj,...,bkj) mod p if the latter product occurs in {g (zlj,{..,zkj)l

z .+... = i i = i i
4. . aJ.} , that is, if = bij =a, forall j, and is zero

13 kj
otherwise.
[+ [o+) «© .
Theorem II.2.2: ILet v(R) = = Z ia.. where r =32 g, p’ is
i=l j=o 9 togmo M

the p-adic expansion. Then v(R) = w(P(R)) .

Proof: We will prove (Lemma II.2.k) that if kP(R) is a summand

of P(8)-P(T), kx #0, then v(R) > v(s) + V(T) . Tt follows

inductively that if kP(R) is a summand of P(Sl)...P(S ) , ‘then
q

q J
v(R) > iEIV(Si) . If each PF(s,) = P’ for some J , then

v(S].;) = W(P(Si)) =1, and therefore v(R) > w(P(R)) . To prove
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the opposite inequality, we will show (Lemma II.2.8) that there exists
an element a(R) of I(A) ®...® I(A), v(R) copies, such that

QV(R)(Q(R)) = P(R) + € , vhere € 1is a sum of terms kP(S) , each S

| satisfying v(S) > v(R) . Then, letting A(n) %be the nth subalgebra
i :

; of A as defined in Theorem II.1l.2; and noting that it suffices to
prove the result for P(R) € A(n) for arbitrary fixed n , we

define m = max v(S) , and proceed by induction on m - v(R) .
P(s) e A(n)

If m- v(R) =0, Lemma II.2.8 gives w (P(R)) > v(R) , while if
m - v(R) > 0 , we may apply the induction hypothesis to each summand
kP(S) of CDV(R)(&(R)) » Obtaining W(S) > v(R) » hence W(P(R)) Z v(R) .

Corollary II.2.3: w(Z kiP(Ri)) = min W(P(Ri)) .
i i

Proof: By Lemma II.2.4, no P(Ri) is a summand of a product of

v(Ri)-i-l elements of I(A) . Since w(P(Ri))'e v(Ri) , this implies the result.

Lemma II.2.4: . If kP(T), k # 0, is a summand of P(R)-P(S), then

V(T) _>_ v(R) + v(S) .

Proof: P(R)-P(S) = z B(X)T(X) as stated in Theorem II.l.l.
- R(X)=R,S(X)=s

We must show that B(X) £ 0 mod p, R(X) =R, and S(X) =S imply

v(T) > v(R) + v(s), T =T(X) . We denote entries of X by x., .

i3
Iet r,. =2Z £ =XZb £ t,. =X ¢ £ d x..=2¢e £
7 28pP 5 85 =& DR, T T &C,D , aNd X = 2 eg4D
£ 2 £ £
be the p-adic expansions of these integers. tk = I Xij , and

i+3=k

B(X) =11'£ (xo,n’ xl,n-l""’xn,o) « Lemma II.2.1 gives immedisately
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that B(X) #0mod p if and only if £ e.. =c for all k
y s ije ke :
i+j=k

and £ . Now r, =2X x..pJ and s, =X x.. , hence

i 3 1j J ; id

' m m Y £
(= e..ﬂ)p = ilaimp and f(? eijz)P = i bng , where, of

course, the left-hend sides of the last two equations need not be
p-adic expansions. By the properties of the p-adic expansion of

an integer, I( I e, ) >Za, and (I e,.jz) > £ by, , with

n j+=m 9 T p £i 2
equality holdihg'if and only if Z e,., =a, for each’ m ,
. ije im
Jtl=m
respectively, ? eijﬂ = bjz for ‘each £ . Therefore
v(R) + v(8) =22i(aim+bim)52>3 L de;, +IZIZje .,
: im im je=m =9 J£ i J
=Z E Zke,,=2ZZkc, =v(T),
K 143k 4 ¢ g W

as was to be shown. Note that we have also proven that

v(T) = v(R) + v(S) 4if. and only if R 15 = 8jy Tor all i
J+He=m

and m and Z eijﬁ = bjz for all j and £ . This last criterion
i

will be applied repeatedly in the proofs of the next three lemmas.

i i

Notations II.2.5: PJ. will denote P(R) , where rs =P end
. i
Ty = 0, k# J . Thus Pi = pP , and P? is primitive. Given

any two sequences R and S, T(P(R),P(S)) or T(R,S) will

denote T(X), X being the matrix with entries ri o = Tys
2

X =8, and x., . =0 ifboth i>0 and j>O0.
0,d J iJ
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, 1k, X .
Lenma II.2.6: [PJPZ{] = 6i,k+ﬂ Pz+j + €, 1>k, where € denotes

a sum of terms XP(S) , each satisfying v(S)> j+ 4 . In particular,

i s L .
[Pi J l[Pi"'J 2[-...[Pi+2[Pi+lP]l_]]...]]] =P3.‘+ € for all i and j .

Proof: Theorem I.l.1l and the criterion developed in the proof

L R B bk L at a8

of Lemma II.2.4 show that if 1>k eand P; # P}; » then

ik ik, K . 1 ik
BBy = BITP5,P)) + 8, L) Pr + €, wnile P}Z“Pj = B(2(PB))) + & .

Lemma II.2.T: (P;)a = a.’.P(Ta) +€, 1<a<p, where T, is the

sequence ;= ap’, t, =0 if k #£ > and € is a sum of terms

= k
kP(S) , each satisfying v(S) > aj . In particular, (P;)p =€ .

Proof: T_ = T(P(Ta-l)’P§) . By Theorem I.l.1 and the criterion
of Iemma IT.2.L, P(Ta_l)-P§ = ((a—l)pi,pi)‘l‘a + €& and by Lemma II.2.1,

((a-1)p*,p™) = a mod p . The result follows by induction on a .

Lemma II1.2.8: Iet R be any sequence and let r; = z aiij be

the p-adic expansions.of the ri . Then
a a a a . a . 8
2 1 1,1\ 2 j 2,
(%) l’O(PZ) (o) B (7) ’l...(Pi) bI(pd)y B3 - xp@R) + e, k0,

where € 1s a sum of terms k'P(S) , each satisfying v(5) > v(R) .
Together with Lemma II.2.6, this implies that there exists

a(R) e I(4) ®...® I(4), v(R) copies, such that @v(R)(a(R)) = P(R) + € .

Proof: Iet Rj be the sequence ri = ai .pJ , and let Sj be the

J

sequence s, = X atikpk . By Theorem I.l.l and the criterion
k>
= R =
of Lemma II.2.k, P(RO)P(SO) P(R) and P(Ri)P(Si) P(Si_l) t e,

where V(Ri) + v(Si) < v(T) if xP(T) 1is a term of e, . For
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some n , § =0, and therefore P(RO)...P(Rn) =P(R) +€& . Now

Plin = T(Pli,Pj) + €, where if kP(T) is a term of €, v(T) > k+f .

. a . . 8, .
Applying lemma II.2.7, we find (P_I]]_) l’J(P‘%) 23, < kJ.P(RJ.) +e,
kJ. # 0, where v(T)> z iaij if kP(T) is a term of € . This

i
completes the proof of ILemma II.2.8 and of Theorem II.2.2.

Theorem II.2.9: A basis for the primitive elements of E° is

(@1 >0} U(P/]3>0, k>1) . The bracket product and Pth powers

|
' are given by:

i) [Ql’Qj] =0

g i B
ii) [Pk’Q‘i] =3, . Q

J,1i Tit+k
i _ K .
iii) [Pj,’PfJ = 6i,k+1& Pj+£’ i>k.

iv) B(PI‘J;) =0 .

Proof: The Q, are primitive in A . Since Y(P(R)) = = P(Rl) ®P(R2)

R1+R2=R

in A, Theorem II.2.2 gives immediately that each P;.' is primitive
in E° and that no other P(R) is . Relations i) hold in A .
P(c'>,...,rk =pdp?) in A » and relations ii) follow.

iii) and iv) are consequences of Lemmas IT.2.6 and II.2.7.

J =

Corollary I1.2.10: (A4 P))" =0 in E® if 1>2 .,

O

Corollary II.2.11: E° 2 v(P(e°)) =V .

Proof: As remarked above, this is true a priori. A simple direct

proof is possible, however. Since E° is primitively generated,
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the inclusion P(E°) C E° induces an epimorphism of Hopf algebras
f: V—>E° . Defining P;<P§ if i<k orif i=%k and j<4,
Remarks I.2.11 state that

€ € .. a s 8o o . 8. .
2 2
(007 (2) 12(2) 0, . (2) ()00 e 0 r 3,

is a basis for V . Lemma II.2.8 implies that the same set is s

basis for E° » and therefore that f is an isomorphism.
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3. The cohomology of the associated greded algebra of the Steenrod

algebra; introduction.

In section I.3, we obtained a canonical free resolution of
the ground field on the category of restricted Lie algebras (over
some field). In this section we describe this complex and its
dual -for the case of the restricted Lie algebra L of primitive
elements of the associated graded algebra EC of the Steenrod
algebra A . Recall that by corollary II.2.11, E° = V(L) . The

structure of L is given in theorem II.2.9.

The complex X = X(L) is defined as the free V(L)-module
X=v(L)®X, X = E(sL+) ®@r(sL”) ® F(s2:rL+) . Here we are

regarding E° as graded by total degree, Ez = e? Eg,j
L+ denotes the sub-Lie algebra of L generateé?u?rn [PSL} , L the
sub-Lie algebra generated by {Qi} . Elements of L are given
bidegree o, s 1is the map which raises the bidegree of elements
by one and = is the map which multiplies the degree of elements
by p: s(Pg') = ifg has bigrading (1, 2pi(pj—l)) or (1, 21(25-1))

if p =2, where 1 is the bidegree (or homological dimension) ,

Q, has bigrading (3, 2p*-1) , end szzt(P;) = 5; has bi-

n
Py
O
-
Il

grading (2, 2pi+l(pj-l)) or (2, 21+1(2‘j-1)) if p=2.

I' denotes a divided polynomial algebra, E an extericor siz:ira.
V(L) ® E(sL+) ® I'(sL”) is given a Zp-a.lgebra. structure by giving
V(L) and E(sT7) ® I'(sL”) their natural structures and by rela-

tions 1) through %) below. Then X is given a structure of
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2)

3)

Ly

6)

a)

b)

II-B . 2

right V(L") ® E(sLF)-module by 5) and 6):

=i J _ od J
<P >F = P£<Pk>+<[PP]>

=i _ = T
<P, >q = ~Q; <Py > 4 71([1’ij])

= \pl _ ol . (= 1 -
12(Q))F = B 7,.(Q)) - 7 ([BQ; 1)y, @,)
7:(Q08; = 7. (Q,)

— . - - S \De? i T T ")
7. (BIE) = By 7, (B) + (B )P <L 22> 7 (B)

Sy B s - < B 51
7r(Pk) <P, >=<F> 7r(1~>k)

Then, writing r(s < I7) = I‘(P ) ®I‘(P ) ®..® I’(P ) ®P(P ) ® vee ,

X 1is given a differential d by defining:

aux) = (-1)%°8 “ wa(x), we V(L), xeX
a(< 'P'g >) = P?j'

aly, @) =9 7, (&)

Ay, (B)) = (B FF> 7 (5

a(xy) = alx)-y + (-1)9e8 X xG(y), where xy is a basis
element of X with factors written in the prescribed order.
d(xy) is determined as an element of V(L) ® ¥ by making use
of relatiomns l) through 6). Theorem I.3.8 states that X is
a complex, d2 = 0 , while theorem I.310 states that X 1is a

resolution of ZP over V(L) .
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We consider d =1 on X = Zp ®V(L) X . Here we must
treat the cases p>2 and p =2 separately. Suppose first that
P>2. Using 1), 3), and 5), we find that if l<s<p-l:

=1 Jyvs _ rpdys _ =i Jys=1 i.J
7 < B> (2))° = (2))° < P > + s(P)) <[P1];P£]>

2 () oy (@) (Bl d) 7 ,(3), r3s

. -i)i
i=0 s=1)%

8) 7, )()°

9) 7 (BL)(B))°

X . -1 . ) )
(Pj )% 7r(1"513{') +::o (Pg ) (pli)P-2 (Pg ys-1-t
T [RF} > 71 (B

If fe P(SEﬂL+) » then, using 9), we find d(f) = 0 , and therefore

1 1
r(s%r’) CHU(m) « Ir g =Bl e, B y_ (, )ever, (@, ), then’
n 1 -1 J

m m
T i i i
- o+t — 2 2 -—
Q) dg) = = (-1)° <[Pkstt],P 1,...,Pks,...,P t,...,Pkn>
s<t st kl s -t n
y. (Q. Jeesr_ (Q. )
1 Jl rm Jm
n m( o i A _in> I ")
+ X Z(-1)° <P, ";eee,P " 0e.,B > v ([P Q. ]
s=1 t=1 Ky ke ky Lk
Y. (Q. Jeeey (Q, Jeeer. (Q. )
1 91 Tgmlt g m Yn

by Corollary I.3.4. d(gf) = d(g)ef + (_l)deg € qa(f) , £ end g

as above, where the image of gd(f) in X may be non-zero and is

to be determined by use of 1) through 9). For example:

- = ~1 =i
a0 (@7 (B)) = - <F; > (@,

We make no attempt to give an explicit formula for da(gf) .

- ~i
i1 (®1)7, 1B 5 x>0
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Next, consider d in the case P =2 . As remarked at the
end of section I.k, X is naturally isomorphic as an algebra (but

not as a coalgebra) to I'(sL) wunder < Pj' > —> 71(P1) ,

(Pl) -—-> 72(]?1) If we identify X with TI(sL) , then 1) and
i
5) give that if g = 7. (P ) e 7., (F.2) , then
l n Jn
- Iy I =15 It
B) dlg)= = 71([P B, Dy, (7 ... e 2F5) .. e, 1(B5)
s<t dg 9y Ty Jp Ig Jg

i
s 1
oo 7rn(P'jn) .

L e Re VM 0 e a M et o Sl e o s A DR o2 A P DA ST

Now we describe the diagoral map D for our complexes and

obtain the structure of the dual of X . D is defined by

1) D(ux) = ¥(u)D(x), w e V(L), x € ¥, where ¥ is the co-

product in V(L) .
i1) D(<'13§>)=<I5§> ®1+1®<§§>

(7..(&,))

]

z 7.(Q Q,
S 75(Q;) ® 7 (&)

~i p-1
D(r.(P)) = = (P ) ®73(P )+ = I
ktl=r k=1 Z4m=r-1

D T <F s, (3 e ol e B (51)

J 37T TN SR Tl
iii) D(xy) = D(x)D(y), where xy is a basis element of X with
factors written in the prescribed order amd the latter product is to

be determined as an element of X ® X by meking use of relations 1)

through 9) above.
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By Theorem I.3.11, Dd = (dRL + I®i)D . By Remarks I.3.12,
D is cocommutative end is coassociative if and only if p=2,
but is always coassociative on the subcomplex V(L) ® T,
Y = 8(s1™) @ r(sz”) .

Before proceeding, we recall the method 'by.which the algebra
structure is obtained on the dual of a coalgebre. C with coproduct V.

Iet {a.} be a basis for C and suppose ¥(a.) = = b9°¥a @ CN
i S

the bg’ k being elements of the ground ring. Iet {a;._e} denote
* * % . i *

the dual basis of C . Then aa = = (-1)3¢€ 8; deg 8 L Jok *
J i i i

=% —
Now let X  denote the complex dual to X and denote its

differential by o . Consider first the case p =2 . Here

Dy, (E) = = y(E)ey,Eh+ 1 F>q @) edh, @l .
S A I A Kbfop] 9 KT AT

Tdentifying X with I(sL”) in the mamner described above,

D(y () = = Yy (Pl) ® 7E(Pl) that is, D gives the natursal
k+l=r

—* *
coalgebra structure on I (sL) . Thus X = P((sL)’) as an algebra.

%
X  Is determined as a differential algebra by noting that

1+11§ Rk s where R§ (P) .

=%
Now consider the case p>2 . As a K-space X 1is isomorphic
to B((sL")™) ® P((s17)") ® P((%r")%) . et B =F5°, s =y (@)
J J 7k ‘1 Q’k ’

~ ~ —*
and RJ. = 71(1355) . Elements of the dual basis of X will be written
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. n ,m . *
s e . i ~f s - ~
by Jjuxteposition of these symbols; e.g., R.(S ) (Rh) ~(<Pg> ')'n(Q.k) 'X.m(Pﬁ)) .

itk

3 k,1>‘>) = - <P’> end

Clearly S(ﬁ;) =0 . dal<p

_ he J=-1 .
d(<Pl.{ > 7 (Qk)) = -y ('Q-.) . Therefore we may take S(R )= % gtk R;
ik 71 1 N
i=
and S(S )= & Rk xSy (where, for convenience, we have replaced

k=0
the differentisl obtained by dualization by its negative). Of course,

to calculate H*(V(L)) using X we must know the algebra structure
of ¥ . Using9), it is easily verified that P{ﬁg’} has its
natural algebra structure and therefore P{ﬁ?} C H*(V(L)) as an
algebra. "'f*' with its natural algebra structure is a quotient dif-
ferential algebra of i* - The coproduct on X differs from the
natural coalgebra structure only in that some extra summsnds of

D(gf), ge X, T e F(seer+) , derived from the summands

p-1 . . i S oeTole i 3
p) 5 (<1)¥EhEt 7,(B3) ® (P1)P -k 55 o #1) or
k=1 f+m=r-1 J J J J 4 md

D(')’ (P )) , may be non-zero in X . If f = 7r(f’3') , this occurs
only if g has at least p-2 factors each having non-zero bracket

product with PZ.' , that is, if g has as a factor

S1

k
y ,'._’§£n> 7,(Q.) , where either k. ¢ =i or k =i+j,1<t<n,
1 n -

t b t
and n+m > p-2 . Then the precise form of D(gf) is to be determined

by use of relations T) and 8). Dualizing, we note first that if p

=% —%

and V are basis elements of Y and pv =0 £ 0 in Y with its
—%

natural algebra structure, then uv =% in X . Therefore , writing

—%
basis elements of X Dy juxtaposi'tign is, up to sign, consistent
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with the algebra structure on X . We will consider the dusl basis
to consist of the appropriate iterated productse The signs then
become consistent if, in obtaining the vroduct by dualizaetion, we
take the sign to be plus on those swmeands of products which would
occur had Y* its natural algebra structure, but take the sign to

be minus on the other sumends. The algebra structure on X aiffers
from the natural one only in that if Rg' is a factor of each of two

basis elements © and v , then it is possible that (18 7-4 0. This

i1=b
can occur only if u has n factors of the form R'J +1° RJ Wy 2 OF
si+j and v has m such factors, where .min > p-2 . If
il i Z ,Z i
@ = R oooR 1(1...S and Ilf € P{RJ.} ) then 'the differen“bial
n

5(®¥) is given by the formula:

i .3
7 s(ey) = % (1) o(, *ty, (R o, t...nl L...s, ")
t=1 'b l n k:l.

z 2.1 4
+ z zs(s )(R ...R ...s .eeSy V),
m

=1 ky nlL_L

i
where S(Rjt) and 6(Sk ) are as given above and where we must
t v :

watch out for products which differ from the natural ones. We catalog

in the next proposition such of these products as we shall need later.

—%
Proposition II.3.1: The following relations hold in X

i _ 1 . p-2 =i _
1) ( j 1+J)(R ) = - m S Rj » 2 = P-2
2y gl _ _
= S;?_ 1+J J > £=p-1, m=0

0, 4m>p-2, £ <p-2, m< p-2
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_ 1+k p- i
2) J+k JS:eL-!-J)(RJ 1+.j) B .8+2 J 3R 44m = p-3

" p-2 , it+j p-3 ~i
= = 7a (RJ+kSi +RUS)T, AL, bmep2, m> 0
- (pl &P-2 i+j . p=3 ~i
(Rj+kSi + R si’ Si+J)Rj , 4 =p=2, m =0
= - (RT . sP-3 1+ip-3.2 yai
(RJ+k i Sl+j+Rk sj_ Si.;.j)Rj >y £=p-1, m=0

o, Lim > p=2, £ <p-3, m<p-2.

3) (R]T‘jlisfﬂ) (Rj i+ ) = /z+2 Ri:-k -331 - #m = p-3
STl R ), s, m o
= - (Rj;llzsli'e 23}1:"1“31'33:L+J )Rj b=p-2, m=0
= B Sy RS, sl meo
=0, 4+m > p-2, £ < p-3, m< p=2 .

4) (Rj—x-k Jsf.+,]) (8] K 3S?+J = U_-E%IIE)' R;+JRJ+}:SE 3Rl £4me=p~3

]

0, Z4m>p-3, £ <p-3, m<p-3

i i-k i-k g _ -1 i~k i~k p=3xi
5) (R.JjRj+kSi+j)(R,J]_RJ+k 1+J) “(Z+1)(Z+2) Rj+1]:Rk S 3Rj ’ £4m=p-3

0, 4im> p-3, £ < p-3, m < p-3
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6) If p=3: (JaJ+k J)Rj‘ = - B “;
(s = - BOR
(B3R ) ERS) = - RS + ) RIFORS
Coe ;) Cre i’ T Rli:jRj:-Pkﬁ;
B - - s

Proof: Consider the relations in 1). Suppose first that £+m > p-2,

£ <p-2, and m<p-2. Then

£
=

t=p=-2-m

(-l)t+l

76 @aag 7, @R F> 0y, (@

i+

)7p ot (Q3)

(Pl)P'e' <P’>

m-p++t 1+J

is & sumend of D7y, @ 1) 7 @) 71(131)) , and, using 8)

i+
and ti(p-2-t) = ( l)t T mod p , this sum is :f‘ou.nd to Dbe

;
(t=p>_:2-m 7 (4-t,t) (m-p+2+t,p-2-t)) <PJ> 72(Q ) ® <P]> 7m(Q1+J) .

L. _
m if £ = p-2-m and
zero if £ > p~2-m . Similarly we Tind that <?;> ¥ ( l+J) ® <P’>

The coefficient is easily verified to be

. - = ~ .
is a summand of D()'.p_e(Qi) 71(Q‘i+j) 71(Pj)) . These facts give the

relations in 1). The proofs of the remaining relations are similer

and will be omittede.
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4. The cohomology of EPA, p > 2

*
In this section we define certain generators of H (EA) ,
and, using a sequence of spectral sequences, compute H-’ t(EoA)

completely for small s and + .

E°A = v(L) , where I is the restricted Iie algebra of
primitive elements of E°A . H*(EOA) is the homology of the complex
il » the form of which was studied in the previous section: as a
Zp-space ) X = E{R;'} ® P[ﬁi] ; the differential is given by

J-1 1-1
i f+k 1 k ]
a(nd) z: RJ v a(s ) = kfo Ry 152 B(RJ) =0, and by

formila 7) of the preceding section. For convenience, we define

=8(R)), 120, 322, and 7, =5(5,) , 122,

€1,3 i
We denote by 'b; the cohomology class of ﬁj » by & the

class of So s &nd by ay the class of SI;_ » 1> 0. Clearly there

are no relations among the =a y Or among the b:‘;' and therefore /

P(a, ) CH(A) eana P{b:ji} CH(EA) . T2 1> 1,

8(£,80™%) = - £,(£,52%) , and, using relations 1) of Proposition IT.3.1,

i=-1 i-1
Dk P ko _
the latter product is kfo SkR ik ° Therefore b 1 + Z: akb 1ok = 0.

Similarly, we find B(Rg‘si'l) = - (R_iso)(Rgsi'e) = S:g 'lR"g , and there-~

fore é:l'; ']'b; =0 ., These relations generate all others between

elements of {a.i} and of {bj] .

.
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Next we consider certain cohomology clesses defined by co-

chains in E[Rj} e Write basis elements of E{Rg'} in the form

n
kI=133.-R.jk,whe:r:e ik>"'z or ik=i£ and Jk>'j£ if k<2 . Iet

h be such a basis element and suppose h satisfies the following

conditions:

" 1 it %

R R t <t < j
1) 1If 36{31:}’ hen R or Ryy © {RJk},l_t_Jl

Y e

2) If R e (R,5}, then (R,%) conmtains less than p-l elements

J "k Jk
- it i
of the form RJ-H; or Rj-l-t’ t>0.
3) Fornmo k and £ is Lo=1,+3,.

4) h cannot be factored as + h'h" , where both h' and "

satisfy 1), 2), snd 3).

Conditions 1) and 2) imply e ” Jk(R;i."ﬁJ]kk".R::) = 0, and there-
fore h is a cocycle. Condition 3) states that h is not a co-{
boundary and is not even a summand of a coboundary. Condition 4)
states that h is not decomposable as a product of other such
cocycies. We will let h denote both the cocycle and ité cohomology
classs I conjecture that each such h is in fact indecomposable,

and that no other indecomposable cohomology classes are represented
by cocycles lying in E[R;] o An inductive proof of these conjectures
using the spectral sequences ce'!: up below should be possible. The

first conjecture could perhaps be proven by dualizing: the dual basis
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element h, of E(sL+) is & cycle which is not a summand cf &

boundary by 1), 2), and 3); by 4), if +hl ® b is & summand of D(hy)»
then either h' or h" does not satify 1) and therefore h} or hy |
is at least a summand of a boundary; to prove that hy, is primitive

it would suffice to prove that h} or hy . is & boundary.

Next we consider products of certain of the elements above

with the S y

and that h satisfies

o« Suppose that h 1is a cocycle of the type found a.'bove

£-1 }

a) I RE 4 1s & factor of h
t=0 -
b) (Rjk} contains less than p-l-m elements of the form
k
t=u t
Ry tau O Byt ? 0<t< 41

a) and b) imply that (fZS?'l)h = 0 and that hS? is & cocycle
which is not & summand of & coboundary. Note that &) and b) also
imply that £ < p-m: by b), {R;k} contains less than p=-l-m
k
Ll et t
elements Ru+1 and each Rz-t »y 0<t< £-2, 1is of this form.

I conje’g:‘bure that all such cocycles represent indecomposable classes.

~ The methods cited above could be used to attempt & proof of this.

*
We summarize the information obtained so far on H (V(L))
in the

Proposition IT.4t.1l: The following cocycles define distinct none

zero cohomology classes of H*(V(L)):
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1) 1'2‘;, 120, §21; 5 end s if 1> 0

n
i11) h= I Rik » where h satisfies 1) through 4) above

=1 Yk

iii) n S;l » wvhere h 1s a cocycle of ii) which also satisfies

a) and b) above

None of the classes defined by these cocycles is decomposable in

terms of the others. If bj, a. end &a, denote the classes of ﬁj‘,

i
So s and S? » then the relations emong them are generated by:
i-1
. P, 0 k p=L 0 _
iv) &by + kfl ab; , =0 and & lbl =0

The classes in ii) and iii) satisfy at least those relations implied by

=%
the algebra structure of X .

Conjecture IT.k.2: The cohomology classes listed in Proposition IT.k.l

are all i.ndecompoéa’ble.

%
There are genmerators of H (V(L)) mnot listed in the propo-
*
sition. To further study H (V(L)) we introduce a sequence of
spectral sequences. These are essentially of the same type as those

. introduced by Adams in order to facilitate calculation of the coho-

mology of the Steenrod algebra using the cobar constrtiction. The
setting up of our spectral sequences is quite simple. Iet '}f: be
the subcomplex and subalgebra‘. of i* generated by

(Ryr 5 £]j<n, k<nl, h<n}. Itis essily verified that

—% i ~f
X = E(RJIJ < n} ®P{Sk|k < n-1} ® P[Rhlh <n} asa Zp-space.
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et Z = E[Ri} ® P(S ) ® P{R } and identify x with x 192,

%
85 & Z -space. Then filter xxl by x®z ¢ Fs}_(n if and only if x

=%

has homological degree greater than or equal to s , where X € xn_l

*
z—mdzez sand T x, ®z er}_(n if and only if some

i
®z er—* xex a1’ zieZn. Itiseasﬂyseentha‘tr‘sf:
is a subcomplex and subalgebra of Fs']i[-* ,' and therefore that oo
is & complex and an algebra, where = (F°X /Fs"'lx* s 2 S
being the total homological degree. Examination of the algebra
structure of 5(': shows that if B is graded by totel degree,

Er i 42- B, s then E SX . ®Z eas en algebre, vhere X .

-
has its algebra structure as & subalgebra of X and Z:n has its

natural algebra structure. Consider the resulting spectral seqQuence.

_ s, 0 _ _8,t iy _
8, = 0 , hence L1 =B - 8 1is givenby Sl(Rj) =53 if
— i —— —
J<n, al(s ) = f, if k<n-l, end by Sl(Rn) = al(sn_l) =0 .

Therefore E s,t HS(X ) ® Zz » and E, is an associative dif-

ferential algebra. 5, is given by 82(Ri) = e

i,n end 82(sn_1) =fp1 e
A | ' .
The original non-associative algebra structure on X can give rise to
non-zero higher differentisls. For example s E SP 1 €41 2’ 1 e
l
D=1y _ h,p2 p=-1 D gk 2,0
8, (£,50™") = 0 e 0 BVP™S, ut 5 (£,50) = 5 sP RS n+1Ep+

k=0
As in this example, we will use the same notation for elements of nEr

=%
as for the corresponding cochains of Xn when this is convenient.

-5 TR <1

All Sr =0, r>p, 88 is easily verified by considering the dif=-
=% S’t‘ = S,'ﬁ — (o] * =%
ferentisl and slgebra structure of X . Therefore E oL Ea = Es, ] (Xn) '
* * -
Since Hs’t(— ) = Hs’t(_ ) for t< 2p® o1 » in order to compute

H (x )=H (V(L)) it suffices to calculste the H (‘ ) successively.
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Before proceeding with the calculations, we give n inter=
pretation of these spectral sequences. Iet A: be the Hopf sub-
algebra of the dual of the Steenrod algebra generated by
(158q500esb 5T semerTy 4] (see page IT-1.3 for the notation), let
o, = (A", end let B = (A/A n)°Co, . et B =E] e
note that E° B, =B, (with grading by totel degree). EOCn = v(y) ,
EOB = V(L') » where I! is, of course, Abelian. Then we have

E2Y = B(v(ry 1)) @ HU(V(L)) , ena EZP =0 L H(V(Z)) .

We now begin the calculation of fhe spectral sequences.
=% *,%
X =H (xl) = Z, as an algebra, hence E, =Z ®Z, as an algebra.
. i i+l
The differentiel on E, 1s given by 62(R2) Ry Rl and

%‘SJ.) = Rgso o The notation x:y will mean the cohomology class x

with representative cocycle y . Then we find:

Proposition II.h.;: A bagis for the indecomposable elements of

2E3 consists of
1) £t R3S, + Rlsl, e, Rf"zre;' * R;'*'lﬁi , 1>0

11) bl: K j J=1lor2 1i>0

J
111) & S, &: s{
itlyJ=1 i+l k-1l . '
) by, (k) Ry RT R, j=ler2, k=lor2 130

O)J-l

v) h(J,l) 65 Rgs:i, j=lor2 0<#4<p-l

The ebbreviated notations h; =h (1,1), gﬁ_ = hﬁ(l,l) , end

2
& =1 (2,1) will also be used, as will be hi+l(J,k) = hi+l(,j,k) .
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Commutativity, associativity, and the following relations determine

2E3 as an algebra (unless explicitly restricted, 1,J,k,£, etc.
take all values consistent with the list of generators):
1. a) fg =0
'b) h2f2 = eo, 39.0
c) ey 38y = Biyg ey 3
2, a) e h{'(z,k) =0
. i,371
b) ei’3hi+l(2,2) = 0

E a) f5h,(J,2) =0

-2
b) z, =0
| 4
b . (3,605, (3%,K') = 0
5 a) hy oh, =0 |
. oAb _ : )

e) By, (31H(2,K) = by, (3,208 (1,%)

d) n,.,.h (1,2)=hi+1(2,1)hi-

1427 4],
6. a) €;,30441 = “hyyohsiq(1,2) - hi+1(2’l)hi
D) ei’3hi+1(2,l) = hi+2(l,2)hi+l(1,2)

c) ei’3hi+1(l,2) = hi+l(2,l)hi(2,l)
y3 2

d) ei’3hi(l,k) = hi+2hi(2,k)
e) ey Jhyp(3,1) = 1,,5(J,2)ny
£) ey 8540 3 = "Pyup(21)by,,(1,2) ,

g) (ey 5)° = -2ny,(1,2)n,(2,1)

h) e°,3f2 = -2h1(2,l)gi
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£
Te ‘&) ga =0, 0<£<p-2
£ . 44l
b) (z+1)g2ao_h1g1 » 0<4<p-2

£ )/ £
8. a) f2g1=g2ao+hlgl+l, 0< 4 <p=-3

-1 -1
b) f2g§. = -gg %
o) 8 =hg, 024 <pe2

a) fagg-l = h11‘0(2’1)‘51
e) b (3,1)%, = h,(3,2)8

._lf_r_@_g: The proof of the proposition consists only of routine
inspection. That the cocycles of i) through v) give indecomposable
clesses is clear from the definition of gy 85 & complex. That no
other indecomposable classes occur is easily seen by considering &ll
possible cochainse. Ma.ny of the relations listed ére implied by the
algebra structure of 2,F..2 . The others are easy to derive. For
example, 82(R;+2R;) = hi+3 e5,3 - ei+1,3hi and 82(1';81) = h T, = €,3% 7
which proves 1b) and 1lc). That the relations listed generate all others

is seen by examining all possible products.

To determine the differentials in 2Er , r>2, we need
consider only those genmerators of 2E3 represented by cocycles of 2E2
which are mot cocycles in X, . We easily find that & =0, 2<r <D .
The next proposition gives the form of Sp and describes the structure

of ZEQ = 2E o+l by stating how it differs from that of 2}33 .
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Proposition IT.l4.k4: Sp is zero on all generators of 2Ep = 2]‘.:3

except for the following:
-ly _ _p-lo0
1) & (&™) = ol b3
-2y _ p=2, 0
11) & (g™) = myef %02
-l - P=c, O
111) & (g8™) = ~£,0f %p?
i+l

iv) If p=3, 8p(hi+l(2,2))= by, ohob]

A besis for the indecomposable elements of 2E o+l = 2Ew is obtained

by deleting &, &%, &1, and, 1f p=3, b, (2,2) fron the
basis for the indecomposable elements of 2E3 o The algebra structure
on 2,Em differs from that of 2E3 only in that all relations involving
the deleted basis elements must be omitted from those listed in

Proposition II.ll-,3 and the following relations must be added to the

list:
p-1 .0 _
90 a.). ao bl =0
p-2 .0 _
b) & b =0
p=2 .0 _
c) f,a by =0

3 i+l .
d) If p =3, hy by BT =0 |

¥ '
Proof: The cochains of X2 which represent indecomposable elements

*
of are all cocycles in ’22 except for those representing

o3

5:7_'1, 2, gg"’e , end, if p =3, b, (2,2) . Using Proposition IT.3.1,

we find that in X :
1) (R0E™) = «(x5 )(rOE2) = P71 £
11) B(RIROE"2) = (RRON(ESEE2) - 2(r08 ) (ROROSE™3) = rbsP-2R0
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132) S(RSCED) = (RIRO)(ROSE) - (805, )(ROROSP2) m _(ns, 105 )sP~2RC
iV) TP D= 3, 8(Ri+ i‘i’lRi (R::Il.-'l'zai'l'l)( 'l'lRi) + (Riﬂﬁi)(Rg" i'l'l) -

R

This proves the statements as to the form of 8, (checking that the
chenge in filtration degree is p in each of i) through iv)). The
statements about indecomposeble elements and relations :E'o]_'l.o_w from the
easily verified facts that if Sp(a) = b # 0, then the amnihilator of
é. is included in the amnihilator of b , and that precisely those
elements of the idesal generated by gg'l, gg'z, gg'l , and, if p = 3,
h1+1(2,2) which are also in the ideal gemerated by all other indecome

posable elements of 2E3 are nonbounding cocyclese.

We heve now determined ,E, = E°K (%)) « In order to proceed
to the next spectral sequence { } - we must first determine the
algebra structure of H (Xa) o In general, one must first find repre=
sentative cocycles in H*(i:) and then study the algebra structure,
since the "elements of i:'f representing non-zero elements of B
need not be cocycles in f: (see Remarks IT.l4.7 below for exsmples of
such behavior)e In the case n = 2 s &all indecomposable classes of

2E°° are represented by cocycles of )_('Z and we need study only such
relations as resulted in 2E3 from the algebra structure of 2E2 .

4 * % :
We use the same notation for generators of H (Xz) as for generators

*
of _E_ . We state how the algebra structure of H (X2) differs from

that of eEw in the following proposition, the proof of which depends
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only on the definitions of the generating cohomology classes and on

the products in Proposition IT.3.l.

* %
Proposition IT.lt.5: The algebra structure of H (xe) differs from

that of ,E_ only in that relations 2), 3), and 4) (listed in

2 oo
Proposition IT.4.3) are replaced by:

', a) e, 3hf1(2,k)=o if p>3 and £ < p-3
b
-3 _ p=3.0
eo’3gg = - h1(2,l)ao 3bl
_ i, o
ei,3hi(2,l) = - hi+1(2,l)bl if p=3

b) ey gby.q(2,2) =0 (p>3)

c) ei’3hi+2(,j,2) =0 if p> 3

_ i+2 _
ei,3hi+2(1-,2) = - hi+l(1,2)bl if p=3

3'. a) f£1(J,2) =0 if p>3
f,h (1,2) = = gb] if D=3

b) fzgll"'z =0

L, a) If p>3, hy,(5kh . (5k) =0
if p =3 hihi =0
b, (3,1)0,(2,1) = = by, (1,306
b (1,%)n,(1,2) = - hi_l(k,l)bi .

_ i
hi(2,l)hi(l,2) = - ei_l’3b1

b) giéf:O 1f f+m # pe=2
£ pe2-f 1 _p=2.0
315?[ == % 21"l
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c) gég;l= 0 if f+m < p=3 or f4m> pe2
e g e
5235-2-2 == z+1 T8 o-3b°

a) gﬁ,g‘; =0 if f4m £ p-3
£l W)%Tm by (1,2)el" 32

* %
To recapitulate, H (x2) is generated by all cohomology
classes listed in i) - iv) of Proposition IT.k4.3 except those deleted
_ * %
due to Proposition IT.4.4t. The algebra structure of H (i2) is deter=-
mined by relations 1 and 5-8 of Proposition II.lk.3 (with relations
involving deleted gemerators omitted), by relations 9 of Proposition IT.4.k,

and by relations 2'-4' of Proposition II.k.5.

We can now begin the calculetion of the spectral sequence { 3Er} .
* %
3E2 is the differential algebra H (X ) ® Z3 with differential deter-
mined by 82(Ri) =e; 3 8,(8,) =1, and © (Rl) =0 . The image

of H (X ) in _E_ is therefore H (X )/I , where I is 'bhe ideal

373
in H (Xe) ‘genersted by (e, 3} end f, . The following proposition
2
lists the indecomposable elements of 3E3 e Its proof consists of a
* ¥ :
rather tedious inspection of the structure of H (X2) » in particulaer,

of the é.nn:‘.hila‘bors of generstors of the ideal I .

Proposition IT.4.6: A basis for the indecomposable elements of 3E3

* %
which are not in H (3('2) consists of:

.Rl+lh +h, RE

. 0
1) 93 R + B8, 5 g ) 14373
. . i, gml
1)  ay 3127 N
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. -1
ii1) 7: fasg

p.'z: g.E"a s 1< 4 <p-l
vz,m: 23'5_82, 0<4<p-3;, 2<m<p-l

:Rggé, 0<£<p-k, p>3

e on

1' h(1,2)s) , 1<% <1, p>3
1:.1(1,2)11o gs » 1<2<p-1, p>3

N hzag'%gsgﬂ + (z+1)a§'abings‘é , 1< <p-2

o £ :
iv) 113112%_521 , 0<£<p-3, 0<m<p-l
Ky s 130

v) If p> 3:
Ri+]'hi+l(2,l)
R;‘hi_‘_e(l,Z)

Ry IR by,
m=0 if 1>0, 0<m<p-l if 1= 0, end J+c+f > O,
(R?'a)zlR%(Ré'a)zzhi_l_z(,j_,l)hi(l,k)sg 1200, 4 <3 4, <k,

JHk>2, m=0 if i>k, 0<m<p-l if i<k. °

(2,2)5’3, i>4 end J,k,6 =0 or 1,

Remarks IT.kt.7: In i) and iii) above, we have used Greek letters

=%
to name certain cocycles of 3E2 whose corresponding cochains in X3

are not cocycles. Thus the cochains corresponding to <P3 and €.
>
%
in ¥ are R3S +Rls and R3 R *331 , end these must be

extended to £, and e 1.k to obtain the representative cocycles in
>

3

= * %
x3 for the elements of H (X3) corresponding to the elements 03
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and € ) of _E . We note further that the relations ¢I>2 =0,

» 3 3
h3Q3 = 80,)48.0 ’ a.nd. 8i+l,)+hi = hi‘*‘l'l'ei,l" hold in 3E3 and 3EQ ?
and the corresponding relations with f3 replacing <I>3 ) €4 Te=

s

lecing e hold in H (X.) . Therefore @ : h.S, +R’a_  and
placing &; ) s 3/ * 4° 833 T %

i+ . i
81’5. Rh lhi + ni+J+Rl+ are cocycles of lLEE o The analogous phenomens

occur in each higher spectral sequence.

Conventions II.4.8: The letter t will alwsys denote the grading
derived from that of the Steenrod algebra and the letter s will |
alweys denote the homological degree. The notation x e (s,t) will

mean that x is an element (of any group under consideration) ﬁth |
homological degree & end grading t . For example, h, € (1,"41(11-1)) .
Since " t-s is the total degree in the Adams spectral sequence, this

dimension will be of particular interest to us.

Since Bohoh e (3,2(p-1)(2p>p+2)) , the smellest value of
t=s +taken by the indecomposable elements of iv) and v) is
2(2p2+p+2)(p-1)-3 '. A1l indecomposable elements listed in iii)-
except k123-2’ kg-l, jp-2 and jp-l_ have lower values of t-s . In
the next proposition, we shall determine all non-zero higher differ-

entials in the range t-s < 2(2p24p+2)(p-1)-3 .

. Proposition ITe4.9: The following list gives all non-zero higher

differentials on those indecomposable elements of 3E3 satisfying
2
t=s < 2(2p%4p+2)(p-1)-3.
o . .0 o
(In 1) = iv) below, k; = hi(1,2), = h1g3):
£ 22
i) 83(1.1. ) = - z(z-l)k_L &, £2>2

11) 53(‘/:1“) = - m(m~1)(£+3) gi'*%&m"a, 0<# < p-h

£+ 1
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111) & (x”) = (L+L)0 (Z-l);]z'eal , £>2
) 8, (V") = - n(m-3,2)K] P&, m>3
v) 6;3.2(1‘3-3) = - 2h25§-3bi
o050 - 2%
5p-1(1§- ) = ulb
vii) JP"3) ljfhe P'3b°

_ DO
viii) sp(7) = aob2 + a.l'bl

Proof: 1) - iv) are proven by meking explicit use of the definition
of the differentia.f].s in a spectral sequence. We give the proof of i),
the proofs of ii) - iv) being similar. p.z is represented by the
- ’ - -1—% -] ¥
image in _E*"% of the cochain R‘l’spzsz e T, m Pk,
3o 1 "2 3
O.p=-2 _ OaP=2 4 =1 £y _
6(R181 sé) = J£,R 5 s’é , which, since 62(u ) =0, mst be
1% % ]
congruent in FX lx3 to en element of FoT %(3 Cr lx3 .
D=l fely _ . 0 p=2.l-1 0Dl =2 |
s(zR 57 sﬁ ) = LER.S7 78, + z(z-l)RiﬁzsIl’sé . Therefore
p-2 _ OnPt =2 -1=%
8(RSSP sé) = - 2(2-1)RRES) " i PP lx3 . By definition, the
jmege of -B(E-l)Ri‘Rospsé‘2 in 3E£+2”z"2 represents 83(u£) in
£ L2 .
3 37 and therefore 53(p. ) = - ﬁ(z-l)hl (1,2)31 as claimed. The
proofs of v) - viii) are similar to the proof of Proposition IT.k.k,

—*
and depend only on the product structure of X3 .

Remarks II.4.10: We may easily calculate that 8 kp'2 gg)_
and 8p_2(k12"l) = 2vp"3’2b31_ . It is also true that 5 JP"E) £0

and Bp_l(.jp'l) # 0 , but the precise calculation is somewhat more
difficult, requiring use of formula 9) on page II-3.3, and I have

not carried out these computations.
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A long inspection shows that, abt least in the range
tes < 2(1)--1)(21)2 + p+2)=3 , no new indecomposable elements arise in
the calculation of the spectral sequence. In the same range, the
only generators of the amnihilator of ¢3 are 38'3 and h§'3(1,2) .
The relations g2'3¢3 =0 and h§'3(1,2)03 = O pass to the relations
gg'3f3 =0 and h§'3(1,2)f3 =0 in H*(f;) , end therefore W: %‘383
end X: 1:3"3(1,2)s3 ere indecomposeble in \E, . Clearly both survive
to l'_Em « At this point, we know all possible indecompossble elements
in the cited range. We will find all relations (in this range)
among these elements. We first discuss the form of the image of
H*(XZ) in E, . Note that, by the definition of the filtration
on }-('; , the image of H*(f;) in - 3E°° passes wnchanged to H*(f;) .
The letter q will denote the mumber 2(p-1) for the

remainder of this section.

¥* % ¥, 0
Theorem IT.4.11: The image of H (X2) in H (E'A) is generated

by the following elements:

1) ey 8, e (L,1); a: s) e (p,potp)

o
R
ii) by

o]

.

141 i 2 4l
e (2,077q); b, e (2,(p77C + 277 )q)

e

.o i i
iii) h,: R:L:L e (1,p™q)

iv)  hy(2,1): R;'R:iL e (2,0 (p+2)q)

1

v)  hy,.(3,2): BUR € (2,0%(2pt1)a)
vi) h,.(2,2): BEPRIRL ¢ (3,0M(p%+3p41)a)

. £ o0
vii) g RjS] € (£+41,(241)a+2), 0< 4 <p-2
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2 0,08
: RyR,8) € (2+2, (p+e+2)g+L), O < 4 < p=3

O o .
(g) =1, g =1 (2,1); h, may be written h,(1,1) to

viii)

simplify the statements of relations.)
These elements satisfy at least the relations:

1) g gJ O except for the cases

gﬁ%-e-ﬁ B z+1 o-zbo

2 -3-;@ - =5 0
gzgri - .'@'-i-_l' hlao 3b

e 2+l h1(1,2)a. 3bo O unless p = 3

2) hi(.j,k)hi(j’,k') = 0 except for the cases

i

(1,3)0; if p =3

hi(e,l)hi(j,l) ==h

i

hi_l(k,l)bl if p=3

hi(l,E)hi(l,k) =

3) hl(i,j)gi = 0, hl(i,j)gé =0, £>0

s 31 3 — o+
hi+l('3’k)hi(‘] Sk ) = 0 except for the cases

h;42(3,2)0,(1,3) = n, . (5,1)n,(2,5)

2
L) hg, = 0
hyyohy(2X) = 0, hyo(3,2)h; =0, hy,,(1,2)n,(2,1) = 0
2 ) _ ) _
5) g:8, = 0, n(J,2)a =0, n(j,2)a =0
p-1. 0 _ p=2. 0 _ -2 1 g o) 1 _
6) & lbl‘o’ h&; 2'“1“0’ giabl‘o’ 8oPp * 8y by =0

(e85 <0, nhd -
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If p=3: by, (2,105 =0, b, (1,206 =0, B wbiT=0. o

i+l i+27171
other relations hold in the range s < 3 or in the range

t=s < (2% + pH2)a-3 .

: . * ok
Proof: The listed relations follow from the structure of H (}_{2)
and from Proposition II.4.9, except for h1(2,l)gz = 0 , which holds

gince f g2 (£+3)ggao, (E-l-l)g'ghla h1(2 1) zﬂ' and

-(-’5'-"%-(‘12 2g z =1 (2,1)¢™ in E (23), 0<% <p-h. The last
statement follows from the facts that no other elements belong both

to the image of H*(T(:) and to the ideal genersted by f3 in H*(f;) ’
and that any further relations must result either from higher differ-
entials being none-zero due to the non-associative algebra structbure

of X' » which cen occur only for s>p and p> 3, or from inter-
sections of the image of H (X5) with the idesl generated by (e £
in H*(f;) .

Remarks IT.t.12: We note that ei,ll_h 20 1+1(2 1) =0 in 3E3 .and

that the corresponding relation in H (x3; is ei,hhl+2 l+1(2,1) =

=h _,1)h (2,2) « Therefore hi+l(2,l)hi(2,2) =0 in H (V(L)) .

et
Other relations can arise in a like manner,

* %
For s <2, the only indecomposable elements in H (X3)
* % i
which are not in the image of H (X2) are b, e. > end fo .
3 % 1;(‘ 3
Clearly the anelogous statements are true for H @n) , n>3,
and we therefore have determined H°? t(EoA) for s <2 . The next
theorem will completely describe Hs’t(V(L)) for te=s < q(2p2+p+ o)k .
. . o o
For notational simplicity, we let k = h1(1,2), k, = h1(2,2), and

c = h1(2,l) .
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Theorem IT.4.13: In dimensions te=s < (2p2 + pt2)g=k, q = 2(p-1),

a basis for those indecomposable elements of indd t(EoA) not in the

* ¥
image of H (X2) is given by:

1) =, 85 e (p,(p%)a + D)

ii) g3 R3°R Rls € (£+3, (p+epte+3)g + £), 0< 4 <p-h
iii) kl Rg_‘Ro st e (4+2,(2+2)p+L+1)q + £), 1< 4 < p=3
iv) ké Ry lROSz e (£+3, (_‘p2 + (£+3)pHe+l)a + £), 1< 4 < p=b
v) s R]]_RO °Rls € (8+h,(p° + (843)p+a43)a + £), 1< 4 < pab
vi)  w s{"esz - Rgsi "L ¢ (p,2pq + pel)
< . Op0~D=3 O D=2 0,0.P=3 2
vii)  w: R,R,S7 85 + R3Rgsl - R3R)57 5, € (p, (p“+3p)gip=2)
vii1)  x RRGSE S, - 3RRGSE™ - RROSE ¢ (p,(2p° 4p-l)a + p-2)

In the cited range, a minimal set of relations is given by those relations

* %
holding in the image of H (X2) and by the following relations (where

k; = hl(l)a), kg = 1]1(2,2), and ¢ = h1(2’l)):

£
1. a) ngI{ =0, 4+4m # p-k
hef 1 pebo
g3 = e m cao bl
£ m
b) g8, =
£.m _
2. a) g3k1 =0, m< p-3
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2, " b) gélLT=O
c) gf_klf=0, £>0
a) ggkg-_-.o

e) gf_k‘; =0

3e a) kik.l.m = 0, £4m # p-3

i e Y

b) kikg =0, f4m< p-b

k. a) &3’ =0
b) &’ =0
c) ki‘j£=o
5. 8) h1g§=0,£>0
v) ns =0 :

c) h1k~i=0, 4 < p-3
g e )

a) nky =0, £<p-h

b) of =0, £<ph
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2
To a) &8, = 0
D) kpﬁa =0
L O
2
c) K8 =0
a) jzao =0
Y
e) J 61 = 0
p=-3. 01 _
£) hya 3blb1 0

) wt™? = ad (u#0)
a) ugé:O
e) ug'g=0
f) uka=o
) uw’ =0, £<pk
) h}uh1=0
i) th, = 0
j) ue=0

@)

3 . s e _ o
k) ww=0 if p> 3; if p =3, uw = 2(81‘02-&2‘01

9. a) wai = ca;

b) hw=0 if p>3; if p=3, hlw=hox-h2aob§

c) vgP =ag, £20 (w0, gv o)
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9. d) wgé=0

10. a) xa =0

b) xgi:-o, £>0

Proof: We first comment on the ldentification of the indecompos&ble

elements. u corresponds to ul € w and x correspond to

3w °®
* N

© and X found in B . The elements in H (X") corresponding

to Xl and vp -352 of Em are not indecomposable: upon choosing

_ 3
% -
representative cocycles £ and n in X3 for }\.1 and W 3,2 3

=%
we find that gg_*w =£ and av =n in Xh_ . There are no
other possible indecomposable elements in the range of t-s under

consideration. The listed relations are found by studying the products

=%
of the representative cocycles in X . For example, géa.o = 2;%_-3 f3gé ’

41 _ 441, A4 _ p-2 £ pe=3=l _ L =k o
hoky "= iy Ty U & £y, and gsgi ‘z_+2'f3hlalc: by

%
in X3 e Relations in 3E3

- )
the relations in H (X)) .

and leS are used as guldes in seeking
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5« The cohomology of E°A, P = 2

- *
In this section, we define certain generators of H (ECA) ,
and, using a sequence of spectral sequences, compute Hs’t(EOA)
completely for small 8 at + .

E°A = V(L) , where L is the restricted ILie algebra of

*
primitive elements of E°A . H (ECA) is the homology of the complex

—% ' %
X the form of which was studied in section II.3: X 1is the

differential algebre P{R } with differential determined by
31 1k 1

i
S(RJ) =ey 37 ©43° kzl RJ R .
We denote by b;' the cohomology cless of (R;')z .
5(e RY) = e2 = JZ (R:H'k)2 ( )2 and therefore ng bt Lo,
°L,9%’ "%, % 5 R o -k K

No other relations hold emong the elements b;'_;' . Iet h, denote

the cohomology class of Ri s B0 that (hi)a = bi . S(R;) = Ri.blai

and therefore h :I.+lhi = 0, No other relations hold among the -

élements h 7 °
*

To £ind obher generators of H (V(I)) , it will be convenient

to work in the dual complex [I'(sL) with differentiel d given by

formila B) of page II-3.4. We write 1>:;L for 71(Pi) , a.nd note
= I
‘that 1> 7. (P ) = (r+1)7H1(P Iet 0=y, ( Jl)s..y n(P‘jn)

Since d(xy) = d(yx) , we may write factors in any convenient order.

We assume s < % .:melies that :I.‘s + Js < i‘b + Jt or is-l-,js = it +'1b

andi>:l.

£ 7 and then @ 1s saild to be written with factors in
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lexicographic order. We will consider d as beifig the sum of
elementary operations, one for each relation o: [P;P2+b] = P§'+c .
Thus d(a) = CZ’: o(a) , wvhere o(@) = 0 unless the corresponding
relation gives rise to the non-zero summand o(a) of d(a) .

r(P;') will denote the divided power %o which ?} ocours in Q o
When defining chains in the proofs below, we write explicitly only
those factors which di;f'fer from the corresponding factors of o and

let ‘=& represent the remaining factors. We prove first the

Iemma IT.5.1l: Suppose @ 1s a cycle and there exists a triple

| i 1
(ay,b,¢) such that [P "‘P;b ¢ and both »(P,*)> 0 and
J b Jc Ja

)>0. Then @ is a boundary.

Proof: Iet c¢ be the smallest integer such that (a,b,c) is

i
such a triple. Since o is a cycle, r(P “Y=1md 2. Iet

c
S S
B =7 -l-l(-.j )7 +:l.(P )71' 1(P )59 Ty = (P x) s X =28b, or e .
i i+e " i

a(B) =a + Zo’e(B) s O [Pec ch-e] = ch , e# J, » sumed over e
e c Cc

i | i +e
such thet r_ = r(Pec) >0 and s = r(PJc_e) > 0. That no other
Cc

terms occur follows from the choice of ¢

dpe(B) =0 ; for each e , let
g

S s
Be = 7’ra.+:2(P.j a)yr +2(P

i, _1 e i
. 3 Lt )7s 1(Pb )7 v l(P e .

a(e,) = o (B) + o (B)+ = 0,(B). o,(8)=0,(8,), ed

e! 2 ¢
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therefore d(B + Z‘. Be ) = 2 ﬁe(se) o We repeat the argument on each
ue(Be) , noting that ae(ae) differs from @ only in thet x_, T,
Te and 5, are replaced by ra+2, rb+2, re-2, and se-2, .
Iterating, we find that « is congruemt to a sum of terms satisfying
the same hypotheses as @ but which are such that r, = 0 or B, ™ 0
for all e . It follows that @ is a boundary.

A i
Now we suppose @ =7 (le)...'y (P 1) satisfies the con-
Tn 9n

dition r(PJ) <1 1f J>1. We shall find necessary and sufficient
conditions for such an & +to0 be a nonbounding cycle. If O 1is a
nonbounding cycle, then by the previous lemms, no 1 e is equal to

sy 1 +J, e+ Define s(a) = (1500051 } and

™a) = {ig5000sd )y 1gtdpseeerd +3,} o Iet y(x) be the number of
distinct integers in T(¢) and let z(x) = 2n(a) - y(a) , where n(@)
is the number of Pi

J
the number of duplications i =1, or i +J =41, +J in T(a? .

such that r(P;‘) >0, Thus z(a) measures

The next two lemmas give necessary conditions for a to be a non-

bounding cyc_leo

Iema IT.5.2: Iet @ bDe a nonbounding cycle as sbove. Suppose
z(a) > 0 snd let & be minimal such that ig=4, or i +J,

= :Lb + Jb for some b o Then Ja. = 1 , there exists one and only
one b suck that 1 a + 'ja. = ib + 'jb s there exists one and only one

¢ such that ia=i s and

"i‘b"c :Lb

) a=7, +1(P 9‘) J‘b J ‘jb"' ja1E° It follows that every non-zero
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homology class containing a cycle of the form @ contains such a

cycle with z=0.
Proof: Iet b be minimal such that ia = ib or ia-l-ja = Lb"""b .

loela a“ib
If =1 , then d('r +1(PJa)PJb -3, 'jb

is ic+'jc=ia+‘18." Therefore ia~+,ja=:l_b+jb. Here we

g) = a , since for mo ¢

conglider first the case 8= 1l and proceed by induction on n(a) .

—:Lb | ( Pia) ib

Iet B=P o d(iB) =a + X ¢
J'b-l 7ra+1 b ( ) c C(B) 2
f i 4
0.’ [PJb aF 3 ]l= J 317 swmed over c¢ such thet 1 =41 .

n(oc(B)) = n()=-1 , and no o, can occur if n(e) = 2 « The result
holds for each ac(ot) by the induction hypothesis on n(a) , hence
if there exist three or more such c , each cc(B) is a boumdary.
If there exists only one such ¢ ;, then there can exist no £> D

such that L, +J, =1 +1 ’ since otherwise a(Bc) = oc(a) ,

L g oty ap oty

a.
¢ ,j -1 7 +2(P )Jb 'jf .j Jb+‘jc-1e . Therefore « satisfigs

the conclusion of the lemma in this case. Suppose there exist ¢

and e such that ic = ie = ia o Then, by the induction hypothesis

on oc(ﬁ) and ae(B) , ‘there exists exactly ome £ > b such that

if+,jf=:la+l and there exists no g> b such that ig=:Lbo

Iet Bc ~be as above, form Be similarly, snd let

L 1, ah aleal, 1 Aieib
QPJf"be +2(—1)PJ.DP.11,PJ PJ +3 L J ‘1‘>"1 18
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i i i i i i

. £ c £ £ Pl =P hig
T ons [Py g By 1 =By w0 Tt (B g By 1= Ey g o then

a(,) = o (B) + 7 (B,), a(B)) =0, (B) + 7 (B,) end
a(e) = T, (B ) + 'rc(ﬁe) o Therefore cc(B) + oe(B) and @ ' are
boundaries. It remains to consider the cese ia. + Ja = ib + Jb’ Ja. >1l.

i i+J -1l Al

Iet ¥ = PJa-l 1 Pja' €. d(¥) = unless there exists c¢ such
a .

that '_l.c = ia. + J a"l T or ic + ;)c = ia. + J a."l o Suppose the first case

i i i
. a cC1 _p &
obtains, d(¥) = a + ‘Z‘ ac(v), 0, [Pja_l ch] = PJ&+JC-1 « By the

case Ja, = 1 , the result holds for each O‘c(\lf) o Therefore there

are exactly two such c , say ¢ and e , there is Just one D> a

such that ib-!-j.b: :t.a+ Ja. and there is no g > & with ig= ia‘

Form Bc, Be , and @ as sbove, with ia. replaced by ia. + 'ja."l

(ra by zero) and with 15 3 ip, and J, replaced by 1, J» 4

end J, oOf our present notation. Then d(B + B+ ) =a¢ (\{r) + 0 (\y)

snd & is a boundary. Thus there exists c¢ such that :I.c+.jc =, iafJ a."l N
There cen be only one such c¢ by the choice of & , and there is no

e>c with -1 =1 . Now a(y)=a+p(¥),

c ia.""js.;."':!‘ ic .‘
p.[PJcPl ]=ch+1. If‘.jc=landrc>l,the

result holds for p(¥) by the case J g = 1, end therefore there

exists no e > & such that 1i_ = ia o If Ty = 1l , there exists

1, since otherwise o(¥) would be a

no e > a such that ie

boundary by the case ia = :Lb o Therefore

d(?ib 7 (P a)'Fib g€) = a if there exists c such that
Jy=dg 2 3%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



II-5.6

ic + Jc = :’La + Ja ~» 1l « This completes the proof. Note that the
conclusion implies that if for eny e and f 1 . = i g OF '
ie+je=1f+,jf and both je>l and Jf>l,'bhena is a

boundary. We have used this fact at several points in the proofe.

Iemsa JI.5.3: Iet @ be a nonbounding cycle of the form described
gbove Iemma IL.5.2. Then either T{(a) is a sequence of integers

or a=1I o where each T(ap) is a sequence and T(ap)n T(aq) =
b

Proof: By the previous lemma, we may assume z(@) =0 . Iet
i=min {:!.a} end suppose there exists t such thet 1<t < :Ln +- Jn
but t £ T(@) o« Iet u be the largest integer, i< u<+t, such
that ue () « If u=1i for some &, then i +J >t,

i Ai
=g =t a
Jg>t-u, and d(Pt_iaPi_l_J -+ 3 g)=a, Thus us=1 +J,

for some a . Suppose there exists b > a such that :Lb + Jb >%

but ib<'bq Then d(ib Aibs)—a. Therefore a=a12

Foet ib+'jb't "3
11)

i i
(§Ja+l)0007r (?'jn) ) where
at+l n Yn

Ct =7 (P voe?.. (Pja) y O =7,

Ta 9 atl
ke T(o;) implies 1<k<u and ke B(a,) imlies i'<k<d +J,
i' = min {i 1,.-,.,:!. } » Since the argument is valid for every such + ,

this completes the proofs

i 1
Theorem IT.5.4: Iet @ =7 (B, eeer. (B.2) vwhere r =1 if
TS R &

3g>1. Iet s(a) = (11500051} and o) = (Lseeesipdtipsenesl i} o
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Then a 1s a nonbounding cycle if and only if:
i) Fornmo a and b is =1+ 3,

i1) If a<b, 1, +J,=1 +J ifandonlyif J =1 eand
there exists exactly one ¢ such that ic = i a3 if a<e,
ia=ic 1f and only if Ja=l and there exists exactly

one b such that :Lb+3b=ia+3a

iii) Either T(x) is & sequence or o =1I o where each T(ap)

is a sequence and T(ap) n T(aq) =0,

If o satisfies 1) = iii), the homology class @ of Qa is deter=-
i
mined by S(a), T™(a), end R(a) = 7 (Pil)... r —t (Pdn) » vhere
n
t = 1 unless .j = 1 and there exists b suchthat :Lb+3b=i +1,

when ta=00

- Proof: The previous three lemmas imply the necessity ¢f conditions
1) - 111). Conversely, suppose these conditions are satisfied. If

no J a > 1 , there is nothing to prove. Choose any & such that

, i&§1a+h21a

Ja>1 and let w = Ph ,j hj g€ for amy h such that 15h5,ja-l
3 i +h

(If h=1 end r(P;L]')>O or if J -h=1 and r(Pla y>o0,

thea w is to be interpreted as the chain with the corresponding r
raised by one.) Then d(w) = o+ + B, where of satisfies the
bypotheses on @ and B (if present) is & boundary: by iii),

1.+h € T() and by 1ii) there exists one and only ome b such thet

i +J, or i equals i +h and t =1; let a' = o(w) ,
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i +h i i .
' o: [p.°p.2 = Pib ‘or [P aP:Lb] =P % , If there exists

Jy dgh” Ity h g, by
¢ such that i +J, or i, equals i +h and t, =0 (hence

Iemms II.5.2. That R(c*) = R(@), sS(or) = s(®) , and T(o*) = ()
is easily checked. Clearly this implies that @ is not a bowmdarye.
It remains to prove that every nonbounding cycle @' such that
R(a*) = R(a), s(a') =s(a) , and T(0') = T(a) is congruent to @ .
By Lemma IT.t.2, we may assume 2z(Q) =0 and z(a') = O .  Then

we have T(a') = T(a), n(a') = n(@) and we may write

u
art =y (Ful)...7 (F2) . 1Iet a be the smallest integer such
By Vy n+v,

i u .
that 7, (f‘aa‘) # 7, (?va') end proceed by induction on n-a . Clearly
a Ya a 'a

i, +J, =u,+v, o Since R(a') = R(a) and z(af) = z(a) =0, we

may assume ia>ua, ra=l,and Sa.=l' Consider

i i u i u u
=7, (B wey, @FNES, By EFNea, BD .
R S § a=1 Ya-l 'a “a Ya “atl ‘atl n ‘n )
aw) = arse @ = o), o [2°, 7] = 2O
d\w) = a’+@" , vhere @ = o(w), o: [P P = P ’

.‘ vhich occurs since for some b>a, w =1 (because 1, € s(ar)) . -
The first a factors of 7" agree with those of 7 end, by

induction, the result is proven.

. i |
Corollary IT.5.5: Iet Q=7 (_'15":;1)...71' (3.%), r,=1 if j >1,
- 1l “1 n Jn

. do = 1) , then the resulting term B of d(w) is a boundary by
be a nonbounding cycle, Then the homology class & of «Q is
primitive if snd only if R(@) =1, T(®) 4is a sequence, and «.
cannot be expressed‘as' 0, where both T(Oll) and 'l‘(az) are

segquencese
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Broof: Itm 3 >1, G is primitive if end omly if u =P .

it |
Iet o = ( ) eee (B2) 2, where +. is &s defined in the theorem.
3y a |

Then &' and R(Q) are nombounding cycles such that o' ® R(c) is
a sumeand of D(7) o If QO is primitive, & = Q' . The necessity

of the conditions is now clear, and sufficiency is obvious.

Remarks IT.5.6: We obtain here a cenonicel representative cycle

for each of the primitive homology classes given by the corollary.

i i
Iet @ = P, ...P,® represent such a classe If n=1, Q= B .
3,779, 1

Suppose we have determined a canonical representative cycle for each
class of homological dimension less than n, n > 1 . We will prove
that B +.j o ? is= min[ia} e Then £ is a nonbounding cycle
‘and B=1I Bp , where each BP is the canonical representative of

- P
a primitive ciass. (I B Y8t is ‘the desired cycle. Thus

p P in+Jn-i

suppose 1 = ia. e If a=n, we are finisheds Proceed by induction

on n-2 . There exists b >a such that 1 < j +1i (since

i
otherwise T(P :L'I' vee P.%) would be & sequence) . Then

l Ja. ‘
.'l. :Lb i
- t ' ;
d(P Pib“i 3 +:L-ib.j P ) a+q', o' resulting from
[p* Pib] = Pt o Since n~b < n~a , this proves the result.

;Lb..i j.b :Lb+,jb-i
Iet & denote the mumber of primitive homology classes C satis-
fying T(a) = {1,i+l,ees,1+2n=1} for fixed i o Using the result

just obtained, each such class hes & canonica.l representative cycle
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n

of the form II B 2n 1° 8 is the nmumber of possible choices
p=1 z
for II B If p=1, B, is primitive and there are w8 such
p=l p° 1 n-l
cholces. If Bl has homological degree J , there are a..j choices
m
for Bl s 8nd, since II BP has homological degree n-l=j , there
p—2
are & choices for ]I B Thug if n> 2,
n-J -
p=2
n-2
& =8a +Z‘.a.a. =Z‘.aa 9 Where & =0 and. =
n n-1 3=1 J D= 4=0 J D=J (o) &

Tt follows that & %’(n—l,n-l) for n>2 (as is seen by forming

(-]
& power series y = X a.ixi 3 Y satisfies &, = 0, & = l, and

i=o0
+ i;ix =%‘-i~)%‘;-x; expanding J,‘}-x-

O |

ya-yi-x =0, hence y =
in a binomial series, the result is obtained).

i .
Now if o = '13;1...?;1 represents a primitive class « ,

1 n

O is determined by i = min{ia} and by S' = {sy~iyees,8 -1} 5,
wvhere S = [1,82,... ,sn} with elements of S written in increasing |
order, 8y < 8y if a<b . We denote the cohomology class dual to |
@ vy hi(S') if n>2 endby h; if n=1. There is just ome
representative cocycle for h i(S') s namely the sum of the cochains
dual to the chains representing @ . If n =2 , the cohomology
classes of this form are just hi(l) represented by R1+1Rl + RiR ‘
If n = 3, the cohomology classes of this form are just hi(l’ 3)
represented by Rl i+3}?;' i+lRiRi+3 + i+3Ri'+l + Ré'.R§+]'R;+3

and hi(1,2) represented by
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142 1411 . 441 1421 . _i42 i 34l $42 141 | i+l 1 i+2 1+ 1+2
RS | L | L | il MR | plplilglie
Extensive calculations in homology have led me to the

Conjecture IT.5.7: The elements b;‘ (3>1), b, and h(S') defined

%*
gbove form & basis for the indecomposable elements of H (V(L)) .

*
To further study H (V(L)) , we introduce a sequence of spectral
sequences. These are, as in the case p > 2 , essentially of the same
type as those introduced by Adams to facilitate the calculation of the
cohomology of the Steenrod algebra using the cobar construction. The
e
- getting up of these spectral sequences is a triviality. Let xn be
I
the differential sub-algebra of X generated by {R;'Lj <n} . As
I — i =%
an algebra, we may teke Xn = Xn-l ® Zn ’ Zn = P{Rn} . Filter xn
%
by x®z € Fs'}'('n if and only if x has homological degree greater
th ual to X Z i Zx ® X if
an or eq 5, xeX .,,2€2 ,ean x; ®z, € n
and if ® il X VA Th
only some X, ®z; € n? X3 €%, 4 Zg € 2y o en
* : : -]=¥
Fsi'n is a differential sub-algebra of F° lxn » end therefore I:!.E o
is a differential slgebra, _Eo’ = (F°X /F X )4y » BH6 Being
+the total homological degree. Consider the resulting spectral
_ : s,t = @5 b
sequence. 80 = 0 , hence nEo nEl o 81 is given by

i i :
Bl(RJ) = e, if j<n and Sl(Rn) =0 ., Therefore

i,J
B,t — =% t j- -
B = ind (Xn_l) ®Z . B, is given by 82(Rn) © n and
. 8yt _ o . Xz¥
convergence is immediate, nE3 ‘= B, = Es, o (Xn) « Since

- - ¥* Wy
B X)) = g5 8T*) for t < 251, iu order to compute H (X ) ,

¥ e
1t suffices to calculate the H (X ) succzssively.
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As in the case p > 2 , tLe spectral sequences [nEr) have
en obvious interpretation: Iet A: be the Hopf subalgebra of the
dual of the Steenrod algebra generated by {1, Eireeesty } (see
. page II-l.3 for the notation), let c, = (A:)* end let B = (A // a¥ l) C c,
Iet E°C, = E_ end note thst E'B =B (with grading by totel degree).
Then E° = (L), E‘?B = V(1)) where I! is Abelian, and we have

EY - HS(V(Ih ) ®E(V(1y)) ama ES® = E:,tH*(V(Ln)) .

We now proceed with the calculation of the spectral sequencese.

Recall that b, is the cohomology class of (Rg)a, h, of Ri s &and

J
-— —%
hy(S') of the dual of that primitive class & of Hy(X') found in

Corollary II.5.5 which satisfies S(a) = {i,8] + i,...,s' + i} , where

14k
? -  § ce 4 . 1
S {sl,. ,sn} Recall also that €, denotes Z Rk ok ®
The notation €, , = h,R '+ + R+ _h will be needed for J > 3 »
1,3 = Pafyar t RyaaPasga

The symbol ® i(S') will denote the cochain defined as follows:

by Remsrks IT.5.6, the class O dual to h.(S' ), s''= (81,0058l 5
has & canonical representative cycle I[ B 2n+l 3 <Di(S') will <1/éno1;e
the product of the unique cocycle repre-senting the class dual to

- i
g BP and of R2n+l o

We will celeulate K (X,) and H*(}_f;) completely end will
partially calculste H (X,) and H*(')T;) . Proofs will be brief, but
we will discuss certain phenomena é.risi:ag in the computation of the
epectral sequences in Remerks IT.5.10 and IL.5.1%. We will conclude

by stating the structure of Hs?t(EoA) for smell s and t .
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* )
Lemms II.5.8: H (X,) is generated by ({h,,bhre, g} + AL relations
J

among these elements are generated by the following:

1o Bieyia,3 = Bis3®s,3

2 141 2
2e €y 3= hi. + b;hi+2

i+
3 oy u,3 7 B Puig

., hi+lei’3 = 0

Do hyyqby =0

. . =% i+2

Proof: Calculating in X, , a(R;'R ) =Biesy o ¥ Bygsey o
141 i+1 i+ i+

S(R;R ) =hyqey 55 and B(R;R lR ) = ey s€441, 3+ Bybp lhi +3

(where we have used the same notation for a cohomology class and its

representative cocycle).

Iema II.5.9: A basis for those indecomposable elements of

* % i
E3 = oE, not in H (22) is given by gb3, & 12 ¢i(1)} («»1(1) =h 3)
The algebra structure of 3Ew is determined by the relations:

i+l 2 i+l
1o hy.ab; = zb * bih1+2 0, h,b, 1h1+3

20 hyEiiq) = B8y

2 _.2i4 2
3. 81,)4- = h 3 + bihi+3

i+
he ey i = BBy By * 05 (1)8,5(1)

oe  Biy18,4 = by,5®;(1)

hy,08s,) = h,®, ., (1)
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6. °1(1)81,h = h:1+1b§h1+3

1+
?y42(1)eg ) = Byb3 M40

Te hi<bi(1) = 0
by 0%5(1) =0

2 .2 .1
8. °1(1) =hi+1'b3

Qi(l)Q (1) =0

i+l

Proof: That no other indecomposable elements occur is clear. The
relations follow easily from 82(R§) =e 5 and the algebra structure
)

L
of H (x2) .

Remaxrks II.5.10: We are using Greek letters to denote elements of

=%
nEm 5 the corresponding cochains of which are not cocycles in Xn .
i

Thus 0,(1) corresponds to Rl+lR§ which must be 1lifted to

2 3

4
Eo involving &t least one element € ni1 OF ) i(s ) must be

—
| §
studied in X with e 1,mH and hi(S ) replacing €1, mi1 and

.
Rliﬂ'R;' + BR* 4o obtain & cocycle in X. . Those relations in

) i(s') (and similarly with any other such elements which may arise).
Relations in nEw not involving such elements pass unchanged to
H*('i:) . Note that, for simplicity, we are using the same nobation
for elements represented by a given cochain of f* no matter in which
épectra.l sequence or H*(}_C:) they are considered. Relations of the
occur in each nEw s &lve rise to

form hi€in nt1 = Pramiafi,ne1

¥ ¥
the relations hge, +1,mH = LT 1,m in H (Xn) , and therefore

si,n+2 is a cocycle of n+1E2 °
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*® ¥
Temma IT.5.11: ‘The algebra structure of H (13) is given by
relations 1, 2 , 4 , and 5 of Lemma IL.5.9 with € 1 replaced
by e, ) end ‘Di(l) replaced by hi(l) and by the following

b4

relations:

2 i+l 2
3. ei,h = §b3 + b + bihi+3

6.  hy(l)e, ) = h1+1 Piez F b;hi-l-l
i+ 1+
hy,q(ley ) = hyb3 lh1+2 + by 2“1(1)
7. nn(1)= 1:»2,111_F2

e
Byyphy (1) =

8. h (1)° = §+lb3 + bi'bi+l

i+l
hy(1)hy, (1) = By ey ),
¥ i i
Proof: In X, 8(RZR:) = by, (1) + bih,,, oad
i+l _ i+1 '
S(R;R:_3 ) = LW i(l) +hby which prove T* « The proofs of
the remaining relations are equally simple.
We furnish no proofs for the remeinder of this section,
since the methods are obvious. We shall not list the relations in
* %
nE3 and in H (x ) holding among those elements in the imege of
* o
H (X ) , as these are given by the statement that the image in
B, &nd in H (xn) of H (x ) is H (‘ )/I , where I is the

*
ideal in H (i':_l) generated by {ei,n} .
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Iemma IT.5.12: A basis for those indecomposeble elements of u_E3

' * ke i

not in H (x3) is given by (b, € 59 llli()-l), Xi(h)} where ﬂfi(h)
i+3 i

158y -t hy,.h, ) (L)R) end X, (k) is

represented by hi-i-l 1 +1+hi+ f;Rfs « Those relations in hE3 not

is represented by hi(l)h

-
holding in the image of H (x3) and not involving xi(h) are

generated by:

1o Bi€in,5 = BiisBy s

2e h =0

141814384,5

hi+l(l)ei,5 =

3¢ Byygbys(ley 5= by ch (e, s

i+
= h;h bh lhi+‘5

be  Byp€5 5E543,5 = By 142

h 1+
1#3€4,58142,5 = BiPia3® Buas

2 11 ,
o E.5°% hibh + blj;hi-i-h

i i+2 i+h
6o &y ¥i(h) +boE . 5€4p 5 = By i+6(bLb + bib )

145 i+l 143 1+5
¥y (8) + (30,3 + vy, 05*)

i+, > "85 58i41,5 = BiByss

i+3
To Epy3,5¥;(4) = by (L)hy gy by

141
&y 5V (H) = hihi+2hi+5(l)b

1+ i(h) =0
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ol
9. - by¥;(4) = by boes o 5

By, o¥y (1) = hi(l)hi+5€i+2,5

By ¥y (%) = by o (L)e 5
1+5
byyg¥s(l) = by 0578 5
10. hi_'_l(l)\lri(h) = 0
hy (L), (k) =0

by, a(1)v(4) =

'~ 142, iy ik
1. vy (k) = Bby J‘hi+5si+2,5

143 1+
by ¥y(k) = by b 3h1+651,5

Iemma II.5.13: With €41 and wi(h) replaced by es ) and fi(h) ,

*,_%
relations 1 - 3 and 8 - 11 of the previous lemma hold in H (Xh) .

: *
Relations U4 - 7 correspond to the following relations in H (i.l&)

(£,(k) 1s represented, by hi(l)(Rl i+3 + Ri'"5Ri+3) +h

(R;Rg"'l + Ri-r 1) ):

i+k(l)

B B8y 54495 = By, b 145 * bi+2h 1 (b5
b343%1,5%041,5 = BiPisaP i 15 T B bl+lhi-x-3

51, ei 5 = h?bf:"l + b;'b;'."e + b;'b:21+3 + bf;h?

6. ey ST, (4) ¥ bge 141,5%1+2,5 = BiaqP 1+6(q'“’ibl+2 + blbl+3 + bljfth

£.(h) + 9% o = hh (.bi+lbi+3 + .bi+lbi+h + D lbé+5)

i+2 2D i 2 1,5 i+1,5 i i+5
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i >+ 1y (1650 (1)

fi(h) = (1) by 58Py

T 43,5

i+l it
ey 514 (%) = Byby ohy (1)) ™ + By (1)bg ah1-1-5(1)

Remarks IT.5.14: We comment first on the significance of the

* e
elements \lri(h) € )E, end fi(h) € H (ih) and of the relations
2
) § * =
involving these elements. Relations 6' imply that hy, b e 1,6 0]
2
end hih, o€,
i_
because in 6E2 we have hi+1hi+6ei,6R6 = hi+1ei,6€i,7 and

- *
=0 in H (x5) . But these relations must hold

i+l .
hihi+5ei+1, 6R6 = hi+5ei+1, 685.,7 s both of which must be cocycles

in 6E2 « Relations 7' of course give relations in the imsge of
¥ K -
H (xh) in B, . Celculeting in X, , we find that the relation

573
=0 in (B, passes to the relation hi+1hi+5ei,7 = i’i(h) .

By BBy 7
Then the interpretation of relations 8 = 11 becomes obvious:
8 implies that <Di(l,3,5) is indecomposable in .E ; G - 11 are

) * %
necessary in order that the products of certain cocycles in H (X3)
with the cocycles <I>i(l,2,5) and ¢1(1,3,h) of 7E2 be cocycles.

. ’ =
Next, we note that because the relation hi+lhi+5\l)ei’5 = hi+6hi(l)si+3’5
occurs in ll-E3 and passes to the corresponding relation with e 1,5
)
* %

and ©143,5 irepl,a.c:i.ng €5 and £143,5 in H <Xh) , the element

i+3 .
hi+1hi+5(l)R5 + hi+6hi(l)R5 of 5E2 is a cocycle which represents
an indecomposeble element Wi(S) of 5Em o Ilri(5) gives rise to

* %
an element fi(5) of H (x5). . Then the relation hi+lhi+681,8 =0
. _ * %

in ,TE3 yields the relation hi+1hi+6ei,8 = fi(5) in -H (x.?) .
Finally, we note the significance of the elements Xi(h) € hEm and

*,_%
of the elements g,(%) ¢ H (X)) to which they give rise. In _E
1 b 537
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we have the relations hi+lhi+6(l)ei,6 =0 and hi(l)hi+7ei+3’6 =0,
These give rise to hi+1hi+6(1)ei,6 = gi(h) = hi(l)hi+7ei+3,6 in

* o
H (25) « TFurther, the resulting indecompossble elements

_ i \ i+3 :
wi(6) = hi+1hi+6(l)R6 + hi(l’hi+7R6 of 6E3 give rise to elements

)
wi(6) e H (x6) o Then the relations hi+lhi+7 & 9= 0 in 8E3
[ -
= wi(6) in H (X8) . I conjecture

pase to the relations hi+1hi+7e 1,9

that this behavior generalizes as follows: In n-lEB’ n>k, we ,

have hi +lhi +nhi+2n-lei,ne i+n+1,n = 0 « There result indecomposable

i di-dntl
elements X (n) = by, h, h. +2n_lR;'Rn of E, end these give

* %
-rise to elements gi(n) of H (Xn) . The relations

h,,.h =0 in

141 P14ms0(1)Es pyp = 0 =md hy(1)n

14n+354+3, 042 n+1%3

give rise to hi+1hi+n+2(l)ei’n+2 = g;(n) = hi(l)hi+n+3ei+3:n+2 o

* %
H (xn'-i-l) o The resulting indecomposeble elements

i i+3
(l)Rn+2 + hi(l)h R

wy(n+2) = n 1+n+3 o2

of E pass to : i

14104 4n42 n+25

* %
vy(mi2) € B (X ,5) « Then the relations h; by . o€ ;.5 =0 in
¥

*
nil B DasSs to the relations hi+1hi+n+3ei,n+5 = wi(n+2) in H (fn_’_u) .

Conventions II.5.15: The lette;' t+ will denote the grading derived

from that of the Steenrod slgebra and the letter s will denote the
 homological degree. The notation x € (s,t) will mean that x is

an element (of any group under consideration) with homological degree s

end grading t . For example, h, ¢ (1,2) . Since t-& is the

total degree in the Adams spectral sequence, this dimension will be

of particular interest to us.
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Iemme IT.5.16: A basis for those indecompossble elements of 5E3

* i
uot in H @Z) is given by {b5,si,6,°i(1,3),°1(1,2),\lfi(5),xi(5)} .
* ot .
Agide from those relations holding in the image of H (Xh) , all
elements of a defining set of relations for 5E3 in the range

t =8 < 165 are included among the following:

1. hi€:41,6 = Bi+6%1,6

2 By aPin8s,6 = ©
3. e§,6 = b ;"’1 + hil_,jb;
boo byo()e o= By,,4(1,2)

By (1) g = 24(1,2)by 5

ByyoBi 05 6 = Bi049(1s3)

ByygBie3€s,6 = 01(1s3)0y,s

5. hi¢1(1,2) =0 ‘ )
By 04(1,2) = 0

6. h,0,(1,3) =0
byoy(1,3) = 0

b,;,,0;(1,3) = 0

2 142 ‘
By s04(1,2) = By 0,(1,3)

-
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9.

10.

13.

1k,

0,(1,2)0,(1,3) = b3 85, b

i+2
3

.bi+3

> ¢i(1,2) =D

‘I’i(l:3)

i
bp049(1,3) = hi(l)hi+hei,6

1+l+

2,(1,3) =n (L)e; 6

1418443
h,(1)e,(1,2) = 0
h0(1)e,(1,2) = 0

b, (1)e,(1,3) = 0
hyo(1)9,(1,3) =0
h,(1)0;,,(1,2) = b?lhﬁhei, 6

142,
(1)@ (1,2) = hi+lb3 €1,6

B3
By (1), (1,3) = bg+lhi+hsi,6

= 1+3
hi+3(l)¢i(l,3) - h.t+1b2 8,, 6

hi(l)d)i(l,2) =0

|
(o]

h, (19, (1,2) =

(@

h,(1)9,(1,3) =

hi+2(1)¢i(1,3) =0

2 .1
03(1,3) = h1+1h1+3b5

i+3 5

. II=5.21
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15. <_1>i(1,2)<1>i+1(1,,2) =0

Iemma II.5.17: Relations 1, %, 7, and 12. of the previous lemms hold in

* oK :
H (Xs) (with' €,6 <Di(1,2), and <Di(1,3) replaced by 'ei,6’hi(l’2)’ and

*, %
hi(l’3))' The relations in H (X5) corresponding to 2,3, and 10 are:

ar. by aBie1®1,6 = By (1)h1+3( 1)
L
2 .24l 14 2
3. e g=hps 322 'bibs_d +bihi+5

10* - bih1+1(l’3) =, (1hy e, g+ hi'l'lbihi-i-3

| i+h 1(1,3) = by ih i+3(l)ei,6 + h1+hbi+3h (1)

The products on the left in relations 15 are elements of
* % * %
I{e; g} CH (X5) . The relations in H (X5) corresponding to 5, 6,
)

8 - 11, 13, and 14 are given in the following theorem.

We have verified the truth of Conjecture II.5.7 in at least
the renge t-8 < 165 . The smellest value of t-s ‘taken by an
indecomposable element in 7E3 which is not in the image of H*('f;)
is 165 , since ¢ _(1,3,5) € (4,169) . Thus H (E°A) is completely
determined in the range t=s < 165 o The following theorem sum~-

marizes our resultse.
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Theorem IT.5.18: At least in the range t-s < 165 , the only

*, o *
indecomposable elements of H (E'A) which are in the image of H (26)
are the following:
1) ’bj e (2,2M(201)), 2<3<6, o<1
11) b e (1,20, o<1
i11) B,(1) e (2,9-2), o<1
v) h(1,3) € (3,41.2Y) , o<

v) 1y(1,2) e (3,492") , o<1

3’ end h, are represented by (R

cyclas for hi(l), hi(1,3) , and hi(l,a) are named on page II-5.11.

142
b J)

and Ri ; representative co=

* .
The only other indecomposable elements of H (ECA) satisfying s <3

are 'bg' s J> 6. There are no other indecomposable elements of
H*(EOA)‘ which satisfy t-s8 < 165 . The listed elements satisfy
at least the following relations, and all other relations in the ’
range s < 4 and in the range t-s < 165 are implied by these

(we let bt = (n )2 to simplify the statements of certain relations):
1 i

k-1
. =% bi’blj{'tg =0
=1

2. h.h 0

10441 T
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3. h,h, . .(1)=0

1Bi41
(1) = ny, b,

hyohy (1) = by

1+3 i(l) =0

| 2 i+l i 141
be  B,(1)° = ] ]'93 + 'b;'ba

hi(l)hi+l(1) =0
By (1B, (1) = Bo3"m,
h (1)hl+3(1) =0

5. by, (1) = hi+1b§hi+3
v;*%n, (1) = hib;'+1hi+2
6. hh,..(1,3) =0
B (1,3) = By, (1)
Byyohy(1,3) = hib?lhﬁh
Byt (1,3) = b;+3h1(1).

hy,s0(1,3) =0

Te hihi_l_l(l,a) =0
hb,(1,2) = bihi+2(1) + by b l]f“ el
hy b, (1,2) = bi+2h (1) +n bh

Biss By(1,2) = 0
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9.

10.

11.

13.

II-5.25

By a8 (1,2) = b, . (1)0,(1,3)
b;+3'hi(l,2) = b';‘“hi(l,3) + hi_l_hbi"'lh (1)

1
b1+3hi(l,2) = bé*ani(l, 3) +h bi+]'hi+2

| 'b;'hi(l,2) = ‘bih 1(1,3) + b, bin, (1)

vy 2, (1,2) = b3, (1,3) + nyoy (1)

b’i'hi+1(l’3) = hi+1b;hi+3
v5"h,(1,3) = by, 6830 (1)

b, (1)n,,.(1,3) =0
} 11 114
by (1)h;(1,3) = by, (63 0y + bb3*)
i+3 i+l i+l i+
hy,p(1)hy(1,3) = 1, (6730, + 3" 03*3)

By43(1)n,(1,3) = 0

hi(l)h 2) =0

142(%
h,(1)n,(1,2) =h h(bi'*lbi + b1b1+1)
(1)h,(1,2) = n (bi+2bi+1 . -bi+lbi+2

(l)h (3,2) =0

Biso

Birs

2 1+l i+3 1 i+3 i, 143 i+l i+l i+3

n,(1,3)° = (b3 3b + 'blb ) + bi(b: 3bh + by lb2 )

b, (1,3)h,,(1,3) = 0

hi(1)2)2 i+2(.bi+lbi + .bibl+l) + .bi'l'l(.b.l.'l'abi + .b)i.bi'f'a

10, 442 i+1 | . i+1 142

+ b3(v; 2*’1; + b J‘b3 )

hi(1,2)h 2) =0

i-l-l(l’
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W 1,(1,2)h,,(1,3) = 0

h,(1,3)n,,,(1,2) = 0

We remark that none of the relations 3 through 14 were
* %

derived in H (ih) ; that is, the relations holding in the image of

* ¥ *

H (ih) in 5E3 and not in the image of H ('}T3) were 81l implied
* e

by certain relations found in H (Xn) , o>k . I conjecture that
* %

such behavior occurs in each H (X2n) , n>2. This is in line

with Conjecture II.5.7T, which, if true, would imply that, aside from

the 'b1 , no indecomposable elements arising in 2nEco could survive

on
¥, 0
0 non-zero elements of H (E'A) .
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6. The cohomology of the Steenrod algebra

In the previous sections, we have obtained a good deal of
*
information about the structure of H (E°A) . In this section, we

* *
study the spectral sequence passing from H (ECA) to H (A) .

We note first that ECA is actually bigraded,

E A=(F A/F (the filtration of A is defined on page II-2.1).

b,q P+q
Defining & weight function w on A by w(x) =n if x ¢ F_A,

XEF _n1? » We have w(:gr) > w(x) + w(y) , and, by Corollery II.2.3,

w(= kX ) = min w(x ), ky € zp, X, € A . Using Lemma II.2.8, ve
i

may consider E °a end A +to have essentially the same bases, namely

. &8 b
the set of elements I (Pl) 15 II (Qk) K ritten with P;' preceding.
i,J
) if i<k orif i=%k and j<£ and satisfying 0<a’i,j

and 0 < bk <1l . If such an element is considered in A , then by

Theorem II.2.2 it has weight = Jay P = (k~x-1)bk . An element of
1,5 k

weight w and degree +t belongs to EQW " WA wen considered as an
=W

element of EOA .

Now we recall the definition of the spectral sequence. The
bar construction of A, B(A) , is the tensor algebra T(I(A)) as a
Zp-space and may be given a weight function by w[xll... lxn] =2 w(xi) ,
i
w(z k) = min w(a,), k, € Zs @ €B(A) . B(A) is then filtered
i

by [JL_LI...Ixn] € FuB(A) if w[xl xn] > -wtn , Zko, e FuB(A)

if a e Fui(A) for some 1 . By definition of the boundary in B(A)

(see page I-k.1), d(FuA) C F,_1A » and therefore EC = E* in the

resulting spectral sequence. We consider the spectral sequence to
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stert with E, E; = (EF(A)/F, B(A)), . Give B(A) the basis

derived from that of A described above. Then Eil'l v DAY be con-
J

sidered to have as a basis those basis elements « of B(A) which

satisfy o e T '(I(A)) eand w(a) = v . Then it is easily seen

that E' may be identified with B(E’A) as & complex, E° = H,(E%) .
' The dusal {E.} of the spectral sequence (E°} Just defined is a
, = 1 (E°A) |
and E‘,° = EOH*(A) e Further details of the construction of the spec-

spectral sequence of differential algebras satisfying E

tral sequence are given in section I-5. Note that dr in the homology
spectral sequence lowers the filtration degree by r and therefore |
raises the weight by r-1 . If we define & weight function in

E(A')S = §(A)* by w(a*) =w(®) if o is a basis element of B(A)

and w(‘E oz:) = m.;.-_n w(a:) » then since 8  in the cohomology spectral
sequence raises the filtration degree by r , it lowers weights by
r-1. We remark that E  and Er are trigraded objects, having

a filtration degree wu , a complementary degree v and a grading ©
derived from that of the Steenrod algebra. The letbter & will denote

the homological degree u+v .

The definition of the spectral sequence relies heavily on
the bar construction, but we have calculated H*(EOA) in the complex
i* .« To compute the differentials Sr ‘of the cohomology spectral
sequence directly, we would need & canonicel embedding of 3(-* in
T(ECA)"). I have not been sble to obtain such an embedding, so we
will follow the alternative procedure of calculating the differentials

dr in the homology spectral sequence and duslizing to obtain the
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differentials 81_ e In low dimensions, the calculations are not
difficult; sample calculations are given in the following lemmas.

Lemme II.6.1: 1y = o vl
11.6.1: For all primes p, Sp(bj) By 41P3-1 = BypgPyapr I 22

(here if p = 2, bi = (hi)a).

Proof: We note first that the stated differentisls are consistent,

that 1is, Bp(b;) is & cocycle of E_ . b;' e B¥V'5(5%) , where

wv =2, v= w('b;') =pj and t = 2pi+l(p‘j-l) or 2i+l(2'j-l) if

P =2 . Ignoring the grading t , we have 'b; e o PP gpg

iy* 2 i+l

b . h
(0y) € Bppg,py * Pana®y
141 _2-pJ+p,pj-p+l LEHLy¥
by+1Py1 € Bp and by, b ) e g -pJ+p,pd-pL 7 4

similarly for h We easily see that there are no other

elements of En PIPRIPHL | ong tnerefore to determine 6,(b3) it

1+l)
i+l J=-1

has weight pj - p+l , hence

1
1+3%5-1 °

and d(h bt )*.

suffices to determine ¢ (h i4505-1

(n 141 l+l) is represented by the cycle < Pl+l > (P1+1) e X and
J 1 1 1
i \% =i+] ~i —

(hi +jb j-l) is represented by <P, * > 71(Pj_l) € X . To compute

dp » We need representative cycles in B(ECA) . These are obtained
by meking use of the canonical embedding f: X —> B(A) described
in Theorems I.4t.5 and I.4.7 and Proposition I.4.6 on pages I-lL.12

end I-4.13. TIn fact, £ < P- > 71(?‘) (P;'}*{(Pl;)p'lIPE} , where
we are writing (x|...|x} = [xll...lxn] to avoid confusion with
the bracket product and where * denotes the shuffle product defined
on page I-4.3. Using our identification of the bases of B(A) and
§(E°A) , we consider the representative cycles of (h 141 3‘+i')

(n in B(E®A) as chains in ¥ PI'PA . Then our claim is

)*
i+,j J -1
that the boundaries of these chains in this complex are congruent to
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plus or minue the chain {(Pi)p 1pt £5} modulo FPIA . Using Lemma T.b.3,
which holde in the bar construction of any supplemented algebra, we
= (e pe(p) 0P
- (LRTP(ey PR )
- (7 P e Py 11 m (A)

Using Theorem II.l.l, which describes the product in A , end Theorem II.2,2,

i

find that  a(ey Ip(e; ;)P et )

which gives tlz.e weight function in A , we find that

[Pf"j(P}_l)P -l.] = E;L- (k-l)l(P;'_l)P ':""k(Pé)k(.'Pi-"'j':I')P'k plus sumands
of weight greater than 1 + (p-1)j , thab [Pi+JPi == 1>i(1>§L_+-"'1)P‘l
plus sumands of weight greater them Jj+p-1 , and that (P J_l)I’ has

nc sumend of weight less than pj unless J = 2 when ‘the only such

sumand is 1>i 1(1>1’1)P':L '

ate, "y {Pl‘ll(P P = NP plus sumends tn

Fl 2PA » and therefore we have in 8ll cases

-1

P veroi  \p-1-k
- kfl (k-l).{(Pj_l)

(Pz;. )k(Pl+J -l)P-k

atey (e P ) =

+ (7] PP moa #PIA

All' summands on the right have weight pj , hence are in PPy

‘The homology class of EP represented by the chain on the right

-pj pJ

is by definition d_ (h. Calculating in B(E°A) , it is

)-X-
14+2° 3 1 °
easily found that the sum of the boundsries of the chains
i i \p-2y i/gi+d-1yp-1
ol oamesnl  YP-2(pitd-1yp-1)i
{P' l} {\r"-l) (Pl ) IP,j} 2
p- 1

p-1l-k  iyk-l, i+j-1yD=J
- kfg (k'l) [(P ) (PJ) (Pl ) IP le 1] )
p-1 1 1 . .
RRYYe: sp-1-k, iyk~l, i+j-lyp~k; i i
(I, G L) Cry ) e P B 1)
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is the negetive of the chain above minus [(P;)P 'lIPj} « Therefore

dp(hi+2 ;- D= - (bi) Similerly we find, for J >3,

i'l'l}*{ (Pi'i'l)p-l IPi'l'l i“l‘l}*{ (Pi'!'l)p}

i'l'l( 1+l)p-1] lP.L'i'l

( i+l)p-ll [Pi'l"lPi‘l'l
( (Pl)p-l i(Pi+l)p-2 IPi‘l‘l
((3TDP1 ] (P1)P7PL) moa 7 2Pa

E{(Pg‘)P'llpj} in B(ECA)

If J=2,
i-i-l i+l\p~ +
agy (P

(P i+l]*{(Pl+l)p}
= (PP el (e1)P 1) moa F-2Pa
= (22?1 [pl} 1 B(zA) .

1+l )

L (bj) and the conclusion follows.

Thus in all cases dp(h

Iemma IT.6.2: If p> 2, Sp(ai) =-a, .h, if i>1 and

i-174
Sp(a.l) = - aghl .

*
. T+ - (
Proof: It suffices to prove dp(ai 7 l) = (a.i) , since a, .h,

=2 *
is the only element of Eg 21,21+l o (ai-lhi) is represented by
=1 - =%
<P > 7P(Qi_l) in X , and

£<F > 758 ;) = (® i CTD LA T L CH P

I

a[Q, P*(P]} = - (q; ;1P M¥([pla, 1}

- (9, P, B((p-1)p™™))
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by Lemms I.4.4 and Theorem II.l.l.

a{Q, P ™HQ [p((p-1p™™)) = (o, 1P %, P((p-2)p "))

- (Q;_,1P72%(q, |o,P(p-2)21))
p-k factors 1 ‘
Proceeding inductively, using (Q, ;) *{Q l...lQ |P(kp7)} ,
aQ, ,1P*(p)) = - (9,° = - 2(7,(9,)) = - (8,)" . e proot that
Gp(e.l) = - ta.gh1 is identical.
)2

2

Iemms IT.6.3: If p=2, § (h (1) = hi(hi+2
2
85(1;(1,3)) = b, (1) (k)" + nyhy b, (1) , and

55(8,(1,2)) = b, 0 (1,3) .

Proof: In each case, there are no other possible non-zero summands

of 8, . We prove only 62(hi(l)) = hj_(hj_+2)2 , ‘the proofs of the. |
|

. remaining statements being similar.
* !
(h, (hi+2)2) is represented by 71(P1)72(P1+2) , and ':
i
i+2 +2 2 - :
27, (B))7,(B)*%) = (el 1#(e] %) m 3B(a) , }

a(PyI*(e %)% = {P;}*{(Pi”a)"’} + (BL" Py [p7Pl*2)

= rEy ey + (2 Byeelei™) moa 7R |

Computing in TB(ECA) ,
1 {P:L+1| 1+l} - {P ]*{P1+J‘Pl+l} + (P |P1+1} + {P1+1|Pi} and

af ::li-+2} {P1|P1+l} = (P i+2} {P:LP1+1} + P l :|.+1} + [P I 1+1

i+l

1+2 2

{ }*{P } mod 3 , and therefore

= hi(l) as was to be proven.

Adding, d[P PPy

dpln (y,5))"
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The differentials computed so far include all that are non-
zero on elements sabtisfying s < 2 and completely determine ap in
the range in which H*(EOA) hes been computed. The following results, -
Gue initially to Adams [1] in the case p = 2 and to Liulevicius [13]

in the case p > 2, are now clear.

Theorem II.6.4: If p = 2 , then the elements h, generate Hs’t(A)

in the range 8 <2 . These elements satisfy only the relations

)3, end nh°,_ =0 in

hh, =0, b .h =0, Hh o= Bop

i1+l b A © N
the range s < 3 .

i+l

Theorem IT.6.5: If p > 3 , then the elements & o2 Bys hi(2,1) ,

by, (1,2), bl , and g generate 5% ¥(A) in the renge 5<2 ..

In the range s <3, all relations among these elements are

generated by the following:

! 1 _ _ _ 1 _ .
ah, =0, 8.8 =0, aoho(2,l) = 0, abh1(1,2) =0, hg =0;
hhy =0, hh,, = 0, l l+l(2 1) = 0, hihi+1(l’2) =0 ;
B 1(2 1) = i+1(l’2)hi’ h1+1(1’2)h1+2 =0, hi(l’a)hi+2 =03
. 1
if p> 3, hihi(2,l) =0, h,-h i+1(1,2) =0, hg =0;
if p=3, hh(2,1) = -b,,bY, b .h . (1,2) = -bo2"Y, el =-abd;
) B e A 1+1°17  PigPiaa’ i%1 2 & o-1 ?
h biﬂ' h. b Note that only the last of these relations was

i+171 i+2°1 °
derived by use of the spectral sequence.

Remerks II.6.6: To avoid proliferation of notation, we are denoting

*
elements of H (A) by the same symbols as the corresponding surviving

*
elements of H (ECA) . Our notation in Theorem II.6.4 agrees with
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that of Adams. 'a —> &y by —> by, u —>,(2,1), v, —> 2hi+1(l,2),

i
Ay —> 'bi P 3 231 gives the correspondence of our notation with \
that of Liulevicius, in the sense that, identifying B(ECA) with ﬁ(A)
, ‘ | as vector: spa.ces, the epimorphism £ A, Aﬁ — % dual to ‘the
| embeq.ding £: X —» B(E A) sends representative cocycles to repre-

-sentative cocycles.

h s

% Next we describe a method by which many differentials in our

+
L

spectral .8equences can be computed up to non-zero comstant without
recourse to explicit calculation. There are many 2lements x in

*,.0 i/ , i

H (E"A) satisfying 8 X #0 forall 1 if p>2 _or h x £ 0 for
'ell 1 if 'p =2 . Results due to Adams [4] and Liulevicius [14]

state that Hs’ t(A) =0 if s 1is sufficiently large relative to '

t - 8 . It follows that for all such elements x , either & r(x) £ 0
- for some r or a.ix = Sr(y) for some r,i, and y . Explicitly, the.

cited results are

'Theorem IT.6.7: If p=2, H?'(A) =0 if 0<t -s< £(s)-s ,

where f£(s) is defined by f(in) = 12n-1, £(kn+l) = 12n + 2,
£(4n+2) =12n + by and f£(kn+3) =120 + 6 .

s < 2(p-1)s-2.

Theorem IT.6.8: If p>3, E’°(A) =0 if 0<%

A Either by use of tl;ese results or by explicit computation,
" we may extend Lemmas IT.6.1 and II.6.2 to obtain the following results

in the case p> 2:

Lot
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Theorem II.6.9: Suppose p > 2 . Then we have:

1\p i+1yp2 i \p>
Lo 8 nua (O =y (03707 - Brgan(59) s 820,322,120
n+l
P o_ 13
2. ® n+l(&.|.) -7 (a'o) Brygpo 220
pn \pn
3¢ 8 a8y =-(a;, YB ., n>0 1>2

All other non-zero differentials in the range +-s < 2(p-1)(2p2+p+2)-1+
are determined by the statement that E, 1is a differential algebra
and by:

= aP =
L, 82p-l(h182) =8c, ©= h1(2,1)

= aP -
5. Sep_l(hzaz) =ad, d= h,(1,2)

y _ .ptl 2 . .

6. Sadhfw)-% %w,05z5p4 and £ =p-2 if p>3;

i

85(&_La2u) =em, m=aw+asab if p=3

>
. 8, (a§'3w) = o '2p'2h2b1

p -3p+3 ,

8. & (e2"%u) = &P -p-L1
- 1 o 1

9. s 5 (a 3ubg) = 592‘2p l(b:lL)2
p -2pt2 °

At this point we can state the main theorem of this thesis
for the case p > 2 . The proof consists only of a tedious comparison

of Theorems II.4.11 and II.4.13 with Theorem II.6.9. The notation

ye(s,t) willmean y e U E:’v’t

utv=s

= Es,t .
[
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Theorem IT.6.10: Suppose P > 2 . Then the following elements of

*
H (E°A) survive to E_ . These elements are linearly independent

over Zp and include all elements of a basis for E:’ v in the range

0<t-5<(2° +p2)e-h, q=2(p-1), (3>0 eand k>0 unless

otherwise specified).

l.

2.

3.

a)

b)

a)

e)

£)

g)

a)

b)

a)

b)

ai e (4,1), 0<1

a{ho(b.j)k e (dp+2letl, (JpHip+l)a+ip)

a{gﬁ(bi’)k e (Jp+ektf+1, (JpHp+L+1)atipte), 1 < 4 < p-2
agai(bg)k e (Jp+ek+i, (JoHip)aripH), 0<1i<p-2, 1<k
ai'hl € (i+l,pg+i), ¢<i<p-l

ai'hl(bg)k e (2+i+l, (pHhp)ati), 0<i<p-3, k>1

3 k
oley(v)" € (ap+aicrss2, (Jpripiptt+2)aiph), O < £ < p-3

aladu € (jppti, (Jp+2p)ariptpHi-1), 0< 1 <D, § £ p-2 mod p

. - k )
asedu(v]) € (Jptekrpri, (JpHeptop)atiptpti-1), O< 1<p-2; 1<k
k' |
afn u(v)) e (ip+aiciph, (Jptptoptl)qiptp-1)

k ,
K (60) e (2k+042, (kpHp+2p)att), 0 < £ < p-3

k
hokf_('bi) € (2k+£+3, (kp+ep+2p+l)gHL), O <% <p-3

a;'bi e (142,p°g+1), 0 < 1 < pP-p-2

a.g‘he e {1+1,p%+1), 0< i <p°-1
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5. a) ai'bg'_(bg)k ¢ (2wHi+2, (pPHp)ett), 0<1<p-3, 1<k
b) B (b)) € (243, (PPrpri)a), k=0 if p=3
©) &M € (aeras3, (Priptiai)a), 1< 2 < pe3
a) ggbi(b;)k € (2k+o+k, (p2+kp+p+z+2)q+z), 0< 4 <p-k
e) a.g’hz'b;_ e (143, (p%p)arl), 0< i< p-2
ai'ha(bg)k e (2Hi+l, (p°+iplatt), 0<i<p-b, 2<k
f)‘ hh, ¢ (2, (2%+1)q)

P
g) &h, e (£42,(p%+0+1)qH), 1< 2L < p-2

‘ k :
6 (19)°(69) e (2wrpha, (PPrprop-1)atp-3), £ =23, k=0 if p=3

IA

| 4.1 (o] k I 2 A
T. a) klbl(bl) € (2k+e+h, (p +kp+ep+2pHe+l)atL), © < £ <p-3, p>3

2.1 k ' :
b) B K b(b) e (2t (pPHipHiptapHe+2)att), 0 < £ < p-3, p> 3

8. a) a:)'hlbg e (i+3,(p™+2p)g+i), © <i<p-l

ah b3(b7) € (2k+it3, (P°Hp#2p)ati), 0<i<p-3, 1<k

k
1
b). & ayh (b)) e (2kipri+l, (p Hprap)gipi), 0<1<p-3, 1<k
c) a;c e (i+e, (p2+2p)q+i), 0<i<p-l, c= h1(2,l)
i .0\ 2 .
a.oc('bl) € (2k+i+2, (p™+kp+2p)a+i), 0< i< p-b, 1 <k
3oy . 2 '
9. a) aje,(b)) e (jp+2kipte+2, (p +jpHp+2p+s JariprpHi-1) , |
_ -1
where e, = ho(albz-a?b) end e, = g (alba-azb), 2<% <p-l

i k
®) a;a‘:{f(b:ci) e (Jp+2kipth, (p%+ipHip+3p)atiptp), 0< 1< p-2,

where f = b(albz-aeb)
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2 k
0. &) adgno(b]) e (Jprakaeh, (p24ipHiptopHise)anipH),
0<£<p-3, J>1if4 =0
N LS8 k :
b) aya,g (b)) € (Jp+lliphese, (pPripHptapte+2)aripti+p), O < 4 < p-3

i 2 ,
c) a Jubg € (Jptp+i+2, (p%+jp+3p)atiptori-1), 0< 1 <p, j # p-3 md p

id_.os,o0 k
s equby(b]) " € (Jp+2letpise, (p +ipHp+3p)ahiptp+i-1),0 < 1 < p-2, 1 < k

- k
4) agh ub3(b])" € (jprekipt3, (p +ipHp+3pHl ) ariptp-1)

e) e n u(bo)k ( a
ajash u(by) e (Jp+2kt2p+l, (p™+ip+p+3p+l)at+jp+2p-1)

k
1. a) aigg(bg) e (Jp2icts+3, (o +ipHpapHi+3)atipH), 0 < £ < p-b
k
b) hgX(v]) € (2eih, (p%Hpr3pt3)a), p> 3 -

; 2,0 k L I
e) J (bl) € (2k+o+h, (P +kp+ep+3p+b+3)ats), 1 <4 < p-h

i3 2. o .
12. &) aav e (Jpip+i, (D +ip+3p)ariptp+i-2), 0<i<p, J £p-3mod p if p > 3

i . . . .
a8 m € (6+i,21+6+i-2), 0<i<3, m= a we &b, if p =3

- k L
i o . 2, . : .
acayw(p]) € (Jptaiipti, (p +iptip+3p)ariptp+i-2), 0< 1< p-2, 1<k .
| |
. k
p) athw(b3). € (dp+llerpl, (p5+ipHpt3pHl)gtjptp-2)

Jl ,.0 k . : 2
c) aygw(b;) e (jp+ektp+2, (p™+ip+kp+3pte) atip+p-1)

13. a) kibg(bz)k e (2xtb+h, (p°HkpHop+3ap)at), O < £ < p-3
b) aakg_(bjo_)k e (2kipHi+2, (P +ipHptap)atpHe ), 0 < £ < p-3 |
¢) hokibg(bg)k e (2k+e+5, (poHp+op+3p+l)a+e), O <2 < p-3
d) aeho}Lf_(bg)k € (2kip+L+3, (p2+kp+,8p+3p+l)q*P+2), 0<% <p-3

N A 0\E 2
e) kg(bl) € (2k+£+3, (p“+kp+op+3pHi+l)qte), O < £ < p-k
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. P :
. a) a;(bi') e (i+4,2p°q+1), 0 < 1 < p°-2p-2

2 ok
a(b7) (69) e (s, (2p° +ip)ari), 0<i<p-3, 1<k

b) b (61) (W) e (awrs, (22 + pida)

2 k
e) & (67) () e (Zchaes, (2pPripHo+l)are)

15. a) ai‘hebi' € (i+3,2p2q+i), 0<1i< p2-2p-3

1, 0%
a.é‘hebl(bz) e (Zw+i+3,(2p"Hm)ari), 0<1<p-h, 1<k

k
b) nhpby(e0) e (2wth, (2pPip41)a), >3

k - :
c) Sihgbi(bi) € (2k+z+l;,(2p2+kp+£+l)q+z), 1< 4 <p-b

6. 8) &t e (P-priv2, 2 a’pH), 0<i<p’2,
where .8 = 85-2(81b2"8'2b)

i p- 2 . .2. 2 . . :
b) aoag 3a2u ¢ (p"-p+i,2p gip -p+i-1), 0< i< p24p

S k
I7. 8) x(69) e (2kp, (2pPHiprp-1)atp-2)

k I
b) Bx(b3) e (2kiprl, (2 +pip)atp-2)

18. &) almybd e (1+3,(2p%p)art), 0<i<p-l

o

b) hh,bd € (4,(20%p)a)

o

c) gih2b2 e (e+4, (20%4p)ate)
a) ald e (2+i,(pp)att), 0<i<p-l, d= h,(1,2)

19. a) agh by € (p+3,(2p%pH1)a)

‘ ©) aegibi e (p+e+3, (2P2+p+z+l)q), 1< £ <p-3

L
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20. a) agh h, € (p+2, (2p2+p+l)q)

b) 5 € (pre+2, (2p 2ipti+1)q), 1 < 4 < p-2

g1

Remarks II.6.12: The relations in Em among the listed elements

are those implied by Theorems II.4.11, IL.%.13, and IT.6.10.

E_ = EOH*(A) and the relations in H*(A) among corresponding elements
(corresponding in the sense of being represented in C(A) by a lifting
of a representative cocyle of E, = T(E°A)) may differ. However,

this can occur only if the product of two elements X and y lands

in a group EZ’t which contains an element of lower weight than w(x)+w(y),

that is, of higher filtration degree. As this occurs quite rarely,
*
the products in H (A) can at most differ but slightly from those
in E .
[+

We now proceed to the case p =2 . Here we may prove:

Theorem II.6.13: Suppose p =2 « Then we have:

yel

12" HiFl ot i 2 ) _

o n+:l.(b ) = hi+n+l( 1) Bitsm bj-l) » 120,23 120
iy _ 3 .
2' 82(b2) - (hl+l) + (hi)ahi‘i'g ’ 1 Z O
n n+l

0\ _ 2
> 21“'1(b )’ = (ho) hpor 220
b 8,(h,(1)) = n,(h, )°

: 2\i V2

5. 8,(n;(1,3))

h, (l)(h +1L) + h1h1+2h1+2(1)

6. 8,(n;(1,2)) = By h,(1,3)

T ah(h+23 = (n,)%(n,, )

1
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4

1

(n )2, n>0

oo o+
8. 82n+2(hn+2(b3) ) = (ho) n+3 s

9. 8,(h byh) = (8 ) (1) + b b3(n,,, )

There are no other non-zero differentisls in the range t-s < L3 .

~

Before stating the main theorem, we discuss certain general

*
Phenomensa which occur in the calculation of H (4) .

~

Remarks II.6.14%: In [3], Adems has proven that in a neighborhood N,

of the line t = 3s, Hs’t(A) = HS+h’t+la(A) and in successively
~ . . ° K
larger neighborhoods N, Hs’t(A) = HS'H+ 2%, t+12.2 (A) . These

periodicity isomorphisms, where defined, are given by
k+2
2

X —3 < x‘,ho ’hk-i-3 > « The operation on the right is the Massey

triple product defined as follows (see Massey, [17]): Iet x,¥y,z
be classes such that xy = yz =0 ; let x',y',2' be representative
cocycles (in E(A*)) and suppose o(u) = x'y', &(v) = y'z' .

Then < X,¥y,z > is the class of uz! - (—l)deg * xtv » Which is

* * *
well defined as an element of H (A)/[xH (A) + H (A)z] . Now in
k+2
our procedure, for x near the line t = 3s , we have xho =0

in E 1 ? and fherefore, constructi.ng‘Massey products using the
2 A 2k+2 o 2k+1
complex E ., , We have < x,h_ shyys > = (b2) x , since

St 2
xh is zero in E 2

° 2
of the algebra structure. Explicit study of the region of perio-

not by being a cocycle but by virtue of

dicity is carried out by use of 3 and 8 of the previous theorem.

We have:

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I II-6.16

n n+l n+1l
022, 0428 ol 0,22 0,2 0 2“ 1,22
(b)° (b3) 27, (by)"  Byp(0)™ + (03)° b+ (03)° n o (b5)
52n+2 l laen+2 lsen+2
+ 2
2 2
(b)) {n _},3) )
)
3 +1 n+1 n+l n n+2
0242 0y2® 2 e - 042
59 (03)% —=—— ()" 0, (63)°  (6)° + (v]) hoys
N n, .o+l n
o\ +2 7o 102
+ (b2) hn+l ) F)
and in this case all three summands on the right are cocycles in E o °

2

©)2% ; these diagrams have the interpretation

Let g—(b) and Pi=(b2

n
that P2 h nt3 is a summand of a cocycle of E —_ which is congruent
2
n-1 n-1 n+1 . n-1 n n-1
2 2 2 oo 2
to P n+1(g) , but that P hn+3 end P +l(g)

represent distinct non-zero elements of E o
2

&s a periodicity map, may be considered as the first such which acts

2n+1 2n-i-l 2n-l ol

. _ _ 2t
on h ... Further, if xh’ =0, then P X3 = P n+J(g) .

Finally we note that pt is a transduction on elements of positive total

+
Thus P2n » regarded

degree t - s , in the sense that if P'x #0 and Py # 0 , then
Plx;y = xl’ly = yPlx « This fact can be of service in the study of the

differentials in the Adams spectral sequence.

As a co rollary of the above diséussion, we note the following

consequence for H°’ t(!\) 5y t-s=Tmod8:

RS o % R
Corollary IT.6.15: The elememts P9 2 Bhhgs B20, J20,
1+l n+2
and 0<1i< ™2 gurvive to E_, where P2 = (bg)2 and is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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is to be interpreted as a periodicity map. thlh ne3 k ,-é 0 mod 2R >

does not survive and PJahJ'h +3 7 J=1mod 2 , may be taken to be

N l n-1 1)2

n
=1)27+2 2
.) b 0(g) , where g = (b2

equal to I-’(j s and is

therefore zero if 1> 3.

N

We now state our main theorem for the case p=2. The proof is

~ by a comparison of Theorems II.5.18 and II.6.13.

*
Theorem II.6.16: Suppose p=2. Then the following elements of H '(EOA)

survive to E_ . These elements are linearly independent over Z2 and

include all elements of a basis for Ei’t in the range 0 < t-s < Lo,

( The notation P x méans (bg)Elx; i >0 and n > 0 in the expressions

below. )
1. hg,3>0
2. a.)Phl,Plh:eL
b)Pth2,0<J<2 hg,h3
c) PEthh3,O<j<3;h§,hAh9,hg
d)PLl'lh h,0<J<T; BB, 0<j<3 ; hi,hchi
e) 81th5,_o§_J§15;hoh§,o<3<7,h§hg,o<g<3
3.a)hlh)+,h§hu,hh2hh,05j<2,hlh§
b)hlh];,0<k<3
c)thh5,thh5,O<J<2 hzhs,h3h5

J
d)hh3h5, 0< <3, hhhy

4. a) P* s C = hlho(l)

i
b) P hlco

i3 _ _ 2
5. a)Phgdo, 0<j<2,da=h(1)

b) P'h.d_ , P'h

184 d

2
1l 0
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10. a)

12. a)
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II-6.18
Pihghzdo ,0<j<e2
P, Pihos ) Pihig ; g=(bé)2 ; Pls=d§
bg, g, bhe, hg 3 byeshot,
Pieog , eo=bého(l) ; boe =hd
fo ybf ,fg,hfg,f —hgbg 5 Bf he_
P ae.& &, P ho 8 7 Plhzdo e; hde= Plheg
Plegg ’ Plh eo ) Plh2 e o I e2=d g 3 h 2e2=Plh2
P'ig” , Ph o9 :Plhea , P'n 5J85 Plhaas, j=h b (l)b3 H hoj=Plfo

i n i i = N o _
P'ke”, Pk , P hik, k=hght (1)65 5 bok=hyd hgkéPlhlg

Plag” , P s, P'nCs £=ho(b]2')2b§ ;b g =
1

2

:’" \’ ' - o < . '
f, (_l Fl'\,,!_) L=Az£3<b3)1}'lﬂz¢:;—\°d

9. a)c s cl=h2hl(l)
b) h.c

2%1

c.8

h)-l-co ) hlh)-l'co
h5co ) h1h5co
2 h] 1- 2
) , 4= nl(l)
: ) 1 )
P, hop s p-—hoh3b3 ;3 b oF hldl

By

e el=bghl(l) 5 Byej=hid)

hgfl ,0<ji<2, fl=h§b1 3 BT =hop
heel ; hee_.L = hlfl

n,n-= hehl(l) b3

h-n

k=t d_, Plz=jdo
1
P'mg®, P'hm, Phom, m=h2(bé)2b§ ; hm=h,f=e £, Fukd_,

h2m=fog

Fansa E.

TR

EREESEL RS



II"6 019

13. &) g, ahyhg (o)
b) Pr, reb? (103)2

) Bg; hg=hyr _

a) P, Pnu ; u=hlh§(l)(b§)2 ; hju=F'q
i . 1,02 '

e) Pv, v—hlho(l)bg(b3)

N

J . o
1L, he,,023<52, 02—h3h2(l)

Remarks II.6.17 : The calculation of Hs’t(A) in the range t-s < 17

is due initially to Adams [4]. The algebra structure of E_ is
easily determined by means of Theorems II.5.18 and II.6.13 and

from those relations explicitly stated ; this structure can differ

*
but little from that of H (A). The dimensions of the listed elements
may be read off the chart in Appendix A , t-s < k2 ; +the dimensions

of the remaining elements are determined by P '=(bg)2 € 34,8(E0A)

2k

and g=(bé)2 € (2°4).

!
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T. Stable homotopy groups of spheres

Due to the existence of the Adams spectral sequence, the

results of the previous section are applicable to the computation of

" stable homotopy groups of spheres. We will combine Toda's results
*
on these groups with the information obtained on H (A) to compute
e part of the Adams spectral sequence. This will determine completely

some of the stable groups beyond the range of Toda's calculations.

We recall Adams'! results. Iet X be a space and s™X  its
iterated suspension. The stable homotopy groups v;(x) are defined
as 13n WMn(SnX) . We let ni(x;zp) denote 'nx"?l(s)/l{ll:1 , where Ki
is the subgroup consisting of elements whose order is finite and
prime to P . TI‘S(X;ZP) denotes the graded group with components
w;(x;zp) . By mesns of the!join product (Adams [1] or Douady in [9]),
we may give T (X;Zp) a structure of left (S;Zp)-module structure,
- wheré the join product gives T (S;Zp) a ring structure which differs
only in sign from that given by composition. Suppose Hy(X) is of

finite type. icn we have:,

Theorem II.T.l: There exists a spectral sequence {ErX} with

+ -
aifferentials B_: E__‘:’t}{ —> Ty TAr-ly

satisfying the following

properties:
1. EJX is cenonically isomorphic to ExtA(Zp,H*(X;ZP)) as & left
|

% 1 *
H (A)-module, H (a) = ESS .

2. ErX is a differential ‘1ef‘t ErS-module in the sense that

_ tes 8yt
Br(uv) = Sr(u)v + (-1) u§r(v), ueE’’S, ve EX .
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3. (EX} converges to EX = E°1rs(x;zp) , where EOWB(S;ZP) is
the associated graded ring of WS(S;ZP) with respect to a suitable

filtration and E°n5(x;zp) is a left E°1r"(s;zp)-modu1e.

Remarks II.7.2: Our statement of the theorem differs from that of

Adams in that EbctA(Zp,H*(X;ZP)) replaces EbctA(H*(X;ZP),ZP) « The
details of this modification are given by Douady in [9]. It is easily
seen that the H*(A)-module structure defined by Douady agrees with
that given at the end of section I-5. The procedure to be followed
in calculating EX starting from EOH*(X;ZP) is described in that
s:ecticém. |

Now we restrict ourselves to the case of spheres and let

: y s . . ' Ste. ~
E.=ES . Then each E, is a differential ring. TrO(S,Zp) =2,

snd w;(s;zp) is of finite order, m> O . Multiplication in E_
by the element a, € Ei-’l corresponds to multiplication by p in
ms(s;z.p) » D>2, and mltiplication by h  in E_ corresponds to

miltiplication by 2 in T°(8;2,) -

- : Consider first the case p>2 . Iet q = 2(p-1) and write

m(m) for W;(S;ZP)‘ . In [24], Toda proves:

Theorem II.7.3: Suppose p > 2 . Then the indecomposable elements

of 'n‘S(S;Zp) in the range 0 < m < p2q -3 are:

i), @ e m(re-1), Do = 0, 1<r<p’, T#0mdp

‘l 2
11) o' e -1 o' =0, 1<r<p-l
i) o m(rpg-1), p =0 1<r<p

"

+i11). B, e m((rpir-1)g-2), 9B, =0, 1<r<p.
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In the cited range, these elements satisfy the relations aras =0,
t = = 1 ==
arozs O, and, if s > 1, arBs 0 and arBs 0 « Further, the

group 1r(p2q-3) is Zp or 2zero depending on whether or not Ollﬁi =0,

and the group 'n(pzq-2) is Zp or zero.

Remarks II.T.4: The statement about 'n'(pzq-2) was proven modulo &

Wconjectu:re, the truth of which is implied by results of Liulevicius [1]
and Shimada and Yamsnoshita [20].

s,t 2

2
is given by the elements listed in 2, 3, and 4 of Theorem IT.6.10.
. i |

A basis for E = 152%(a) in the range 0< t - s < p“q

There is only one pattern of differentials in the Adams spectral

sequence which is consistent with Toda's results. This is given by

Theorem II.7.5: Up to non-zero constant (the same constent in each

of &) - ¢) below) we have:

a.) 82(h1) = 8'o"“).'(lj.

b) sy(addl) = - adTY, 0<s<p-3, 0%

¢) 8 (adu) =ad™® , 0<y, J£p-2medp
\ 1
a) 82(h2) = & by

2 :
e) 8y(sf P =la__{ b2

1y | 0P :
) l) = ho(bl or zero

szp_l(b

Proofi: That the constants are the same in a) ~ ¢) follows from

. o _ o L .o _ £-1 o]
the relations a ub, = hl(a‘.Lbl) and gub; = g, (a.lbl) . In the

range 0<m< peq-l » these differentials are implied by Theorem IT.T.k4e

i
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Our claim is that b) and e¢) hold without restriction on J o This

. J.y _ J _ J*lL o
fol.jLoyrs easily since ‘52(hoa.lu) = - hoa.lae(u) = - hay""b; implies
82(aﬁj_u) = a.i"’lbg , end a.igé = a.i‘lgi"'lu then implies
J Ly _ J A+l o
B(eg) = - ayg by -
Remarks II.7.6: The result 5,(h,) = aobi-l for a1l i> 0 has

been proven by Liulevicius; a proof is given in Gershenson [11].

A problem equivalent to determining 529_1(b§:) is stated in Tode [24].

Corollary II.7.7: Referring to Theorem II.6.10, the elements of 2) - T)

which can survive to Em are as follows (elements in parentheses mey
' . |

survive, elements not in parentheses must survive):
' i
k

2'. a) ho(bg (mst survive, 0 <k <p)
'aiho (must survive, 0< j < 2p#2, 0< j < 2p if p = 3)
b) a{gﬁ (must survive, 0 < j < 2p+l, 0 < j < 2p-1 if p =3)
. % .
c) (bi) (must survive, 0 <k < 2p)
(aadPP~n , §>1, 0<i<p-2)
o { i v
p-2 p-
, da) a, By 8 l'hl
‘ f) a.g'laiu, ag J (n@st-survive, 0<3j<2p), J£p-2mod p
? ‘ £, 0\F . . .
3t. a) }L_L(bl (must survive, 0 <k <p)
£, 0k
b) hohl(bl (must survive, 0 <k < p)
' 1
1
hr, a) (bl)
2 2 2
p- - p -
v) o 3, & hy, &b ny

|
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X
' 1l.,.0
X
b) hobjl'(b‘{) (mst survive, 0 < k< p)-

£
c) glbi

p-3, .0 .p-2 .0
e) & 3h2b1, & 2h2‘b1

£) h h,

)
g) gh,

k -
6'. (kf_)e('bg) , £ = % (must survive, 0 <k <p), k=0 if p=3
7. 8) (Eu()), p>3
L.1, 0.k .
b) hoklbl(bl) (must survive, 0<k<p), p>3

This describes m(m) up to determination of Szp_l(bi) ,

0<m< (po+2)g-3 .

Remarks II.7.8: A correspondence between surviving elements of Em

and the elements of Theorem II.T7.3 is given bty a_'?ho <> O(1+p I

e

J L o] 2

88 <> Y nipy? P> PF s K <8, , end

P'2 j B —

ag hy <= o (5+1)p (where we have used the relation B,u = 81111).

The only other gemerators of 7 (8 5Zp) in the range
2 J J 2 L - -
0< m< (p+2)q-3 are ajh 42-> al+Pj, ajg, < a2+l+p,j , =D
1 - .
and § = pHl; (by <> 7); &) h, <>0", , hh,<>e
gﬁhe <> g, 5 ag'3h2bi <> ¢ . The relations in E°1rs(s;zp)
involviug the elements of WS(S;ZP) thus defined, are easily deter-

i : = 1 = ' = .
mined; for example, g0 =0, €. 0, and era’e 0 Further,
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oy #0, 1<r<p-2, even if bi does not actually survive,

but Y = 0, r> p-2 « We note that the elements 0.' were defined
by Toda as elements of the toric construction {a l,p,O&l} The
corresponding algebraic operation is the Massey triple product
defined in Remarks IT.6.1%. In E(E°A)*} a(sl) Rls , a(sr) rRl“r ~1g
and therefore < a.igg_'l,ao,ho > = (Z-I(-l)a:'jlgi, 1< £ <p-3 (gi = ho) ,
which is, up to constant, in a.greemeﬁt with Toda's result. A detailed
study of the relationship between Massey products in H*(A) and toric

constructions in T (S;Zp) would be of interest.

1

There are many possible non-zero differentials among the
: .- . J ey _ _J L+l o
elements 8) - 20) of Theotrem''I.6.10: 82(81g2) = ajg, lb2 and
3oy = adinO (3 . J .30y _ od
82(alw) = ajub, (5 # p-3 mod p) , or alternatively 82(alub2) = aff

describe possible patterns. I conjecture that 52(9‘?_-33211) =/ s8nd

2 .
53(32 'laﬁ)_'?’aeu) = a.ip e (up to constant); this seems plausible

1
since in Ep of ‘the previdus spectral sequence g l =« 8 a.lb
: 2
h N
P+l D +p-2_D-3
and a.l a2u = a1h2 . In any case a.o 81 a,u survives to
E_ and therefore Tr(p g-1) is at least Z 3 a.g 1c and e, 1if

X *
p > 3 are other elements of H (A) which must survive to E_ .

We now consider the ‘case p=2, and we let (m) =7TZ(Z,‘Z2) .

Toda [25] has proven:

Theorem IT.T.9: Suppose p = 2 ; then the groups 7(m), 0<m< 19,

1 m(e) = m(5) = m12) = 7(13) = 0 ;
2. w(1) =2z, ={n}, m2)=2,= (1} (n <= 1)
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II-T.7

3. m(3) =z = (v}, m6) =z, = (v}) (v <= 1,)
b w(7) = 2,6 = [0} (0 «<—> h3)
5. w(8) = Zyt2, = vV} + (g} (Vv <= hlh3, g <> co)
6. m9) =€,)3 = (v3) + (u) + (ne) (b <= Plhl) |
7. m(10) = 2, = {nu}
8. m(11) = zg = () (¢ <> 7'n,)
9. w(1k4) = 2,47, {o }+ (X} - (X «— do)
0. m(15) = 22, = (P} + (7] (p <= hghu)
1. (16) = 247, = ('} + (0} (n" <= by, 1o <—> Plc )
12, 7 = ()" = (¢ 0+ PR} 4 W) (B <> Pmy)
13. m18) = ZgizZ, = (v} + {ni} (v' <> hoh )
. 7(19) = ZgtZ, = (L} + (o} (T <— P2h2, T <> cl)

where (Z ) = 2, +Z -i-Z2 » etc., and the notation {X} means the cyclic
group generated by X . These elements satisfy the relations:

3

- = 2 o % * o -
3 bv, Mo =vie, MV =v>, qu=4, nn =kv, nu=L4,

1

Oy n2p = gu, nﬁ' = u2 ;3 all products not mentioned here or in

ne
the defi.ni‘bion of the groups are zero in the range m < 19 .

} i v '
The correspondence on the right relates the group generators

dn the left to swrvivors to Ea° in the Adams spectral sequence. That
’ the elements listed are survivors follows from the fact that there is
only one pattern of differentials consistent with the stated group

structures, namely that given in

: ] .
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Theorem IT.7.10 : For alli>Oand n2>0:

2

3
i in

b) Br(P do)=0 for all r ; Br(P g )=0 for all r

a) 62(hh)=hoh 63(hohu)=hodo

i .12
c) 62(P eo)qP hldo
: _ i, (. oit
a) 52(fo ) = hohado, 52(P 3 )=P lhado

1 L+
ce) 8,(Ptk) =P lhog

£) 5,(P'4 ) =P'n_d e

o o

oo

i i
g) 52(13 m) =F'he

: 2 ~ s
Proof: a) and ar(g)-o, Se(eo)—hldo, and 82(fo)-hoh2d are implied by the

requirement of consistency with Theorem II.T7.9. Sr(Pldo)=O is clear from

-1 4 i n.
dimensional considerations and P g'= l(do )2n=(do )2n “P'd_ implies 5r(Plg )=0.

h25=P'h £=P'h e =e P'h., hence Prh-j=e P*''h.  This implies
e} o] 1l o o 1 oY o 1.

i2., .2 _ifl i+ iy A+l
62(P hOJ)—hldoP lhl—P lhi‘hzdo » hence SE(P j)=P hd . The proofs

of the remaining statements are equally simple.

Remarks II.7.11l: The differentials a) and b) were obtained by Adams,

2
who has proven 62(hi)—hohi_

1

o8 s . _
from E°T (S’Z?.) to T (S’ZE) are non-trivial. The product b, h3 hlh3

lifts to no = vV + & ; the relations hl-hg’hh_ =0 , h\.:,,-l"lh:L =0, and

2,
1

then 1ift to 'qu = nop = gp  ( corresponding to col’l n, = Plhlco). Each

for 12> 4., Note that the group. extensionMs

the fact that 'Plco #0 1lifts to mp = ou # O ; ‘the relations h hghu =0

other relation in E°r° (s ;ZE) lifts +to the same relation between

corresponding elements of 'rrs (s 52'2)' Toda defines many of the generators

in terms of toric constructions, and the fact that Plx =< x,hl;,h >

3

shows agreement with the corresponding Massey products in most cases.

However {v,m,v } = v but < hz’hl’hE > = 0, The. preceding theorem

states that the differentials actually have at least some periodicity.

u
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Our results imply the following

Corollary IT.7.13: Iet m(m) = ‘ni(S;Ze) . Then, naming generators

in Ew of the Adams' spectral sequence, we have:
1. 7(20) = zg = (g}
. “ ‘— _ 3
2. wma1) = 2,42, = {83} + {n 8]
3~ m(22) = 7342 = (nye} + [Pldo} —unless

= &
o o oo

b, m(23) = B2, 2) 40 ¢ = {yc } + {Plhldo} +.{hg} + {P2h3}
wles%é;@hﬂeaéﬂke—,—ﬁ-—a—é—-er———é
5. m(24) o2, = {yhyc } + {Paco}

6. m25) = 2,42, = (Pnjc ) + (Pon))
. w(26) = 2,42, = (n3g} + (Pn0)

N
N
+
N
i

i
N
3
N
I

8. m27) = 7 = (P}
9. m(28) = z,= (Pe}
Of course, our results limit the order of m(m), 29<m< k2.

More important, the techniques developed allow calculation of HS’t’(A) _

in higher dimensions without an unreasonably large amount of tedious

computation.

What we require now are general procedures for calculating

v
= A

E the differentials in the Adams spectral sequence. It is possible that

the differentials within the region of periodicity are periodic and

that certain subgroups of ws(s;ze) show periodicity. In the case of
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odd primes, the "‘;La,tter possibility is also open. In any case, the
machinery develoﬁgd in this thesis gives weight to the Adams
spectral sequence as a practical device for the calculation of

stable homotopy groups.
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Appendix A: The cohomology of the Steenrod algebra, p = 2

The following graphs describe H"? 1:'(A) in the range
t-8 <42 for the case p = 2 . The notation is that of
Theorem II.6.16. There are no non-zero elements of H-’ t(A)
in those dimensions of s and +t which are omitted. We state
the known differentials in the Adams spectral sequence and for
t-8 <29 name the largest possibility for 'n't_B-(S) = F:_B(S;Zz‘) ,

the notation < G meaning that the relevent group is at most G .
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B.l

Appendix B: The cohomology of the Steenrod é.lgebra., Pp=3

The following graphs describe HS? t(A) in the range
t-5< 88 for the case p = 3 . The notation is essentially that

of Theorem II.6.10, but to simplify the writing of elements, we have

1 le)

(o] o . 1
1 bybl, b2 bybe, ]L_L by k, gl by'gl,

1
and gg by & -« We emphasize that the elements as written do not

replaced b, by b, D
necessarily represent products, since a.l, 85 b2, etc., are not
survivors to E_ in the spectral sequence passing from H*(EOA)

to H*(A) - There are no non-zero elements of g’ t(A) in those
dimensions of s and t which are omitted. For 0 <t -s <62,
we state the known and possible non-zero differentials in the Adams
spectral sequence, and state the structure of wt_s_(s) = Tt_s(S;Z3) .
The ;generators of most of these groups are defined in Theorem II.T7.3
and ;Remarks II.7.8. In dimensions 63 < t-s < 88 , we name
possible survivors. to Ew~ > fhose elements written without paren-

theses bheing known to survive,
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