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Introduction

Modular forms are a family of mathematical objects that are usually first encountered as holo-
morphic functions on the upper half-plane satisfying a certain transformation property. However,
the study of these functions quickly reveals interesting connections to various other fields of math-
ematics, such as analysis, elliptic curves, number theory and representation theory.

The importance of modular forms is illustrated by the following quotation, attributed to Martin
Eichler (1912–1992): “There are five fundamental operations in mathematics: addition, subtrac-
tion, multiplication, division, and modular forms.” Whether Eichler actually said this or not, it
is indisputable that thanks to the remarkable properties of modular forms and their connections
to other areas of mathematics, they have become an important object of study ever since the
nineteenth century.

Further references

To conclude this introduction, we mention some useful references for the material treated in this
course.

• A classical reference for modular forms for the full modular group SL2(Z) is Serre’s book [7,
chapters VII and VIII].

• We recommend parts of Diamond and Shurman [4, chapters 1, 3, 4 and 5] for practically all
the material covered in this course (and much more).

• Miyake [6, chapter 4] also treats most of the material, from a more analytic point of view
than Diamond and Shurman.

• Another very comprehensive reference with an analytic flavour is the recent textbook of
Cohen and Strömberg [3].

• For a broad perspective on classical modular forms, Hilbert modular forms, Siegel modular
forms and applications of all of these, see the book by Bruinier, van der Geer, Harder and
Zagier [1].

• For a more algebraic point of view, see Milne’s course notes [5].

• Finally, for those interested in algorithmic aspects of modular forms, there is Stein’s book
[8].

One can experiment with modular forms using, for instance, the computer algebra packages
Magma (http://magma.maths.usyd.edu.au/) and SageMath (http://sagemath.org/). In this
course we will see in particular how to use SageMath for computations with modular forms.

Acknowledgements. These notes are based in part on notes from David Loeffler’s course on modular
forms taught at the University of Warwick in 2011.
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Chapter 1

The modular group

1.1 Motivation: lattice functions

The word ‘modular’ refers (originally and in this course) to the so-called moduli space of complex
elliptic curves. The latter can be described using the following basic concepts.

Definition. A lattice (of full rank) in the complex plane C is a subgroup Λ ⊂ C of the form

Λ = Zω1 + Zω2

where ω1, ω2 ∈ C are R-linearly independent.
Two lattices Λ and Λ′ are called homothetic if there exists a λ ∈ C× such that

Λ′ = λΛ := {λω | ω ∈ Λ}.

In this case we write Λ ' Λ′.

Let L denote the set of all lattices in C. It turns out that any Λ ∈ L yields a complex
elliptic curve, and conversely, any complex elliptic curve is isomorphic to C/Λ for some Λ ∈ L.
Furthermore, two complex elliptic curves C/Λ and C/Λ′ are isomorphic if and only if Λ and Λ′ are
homothetic. Therefore, in order to study isomorphism classes of complex elliptic curves, it suffices
to study complex lattices modulo homothety; we denote the latter set by L/'. Furthermore,
natural parametrizations of L/' can be considered as natural parametrizations of the isomorphism
classes of complex elliptic curves.

From the discussion above, it seems natural to consider functions G : L/' → C. (Actually,
enlarging the codomain of G to the Riemann sphere C∪{∞} could be desirable, but we will ignore
this for the time being.) Any such function corresponds naturally to a function F : L → C with
the invariance property

F (λΛ) = F (Λ) for all λ ∈ C× and Λ ∈ L.

It turns out to be too restrictive to only consider such function. Instead, we look at functions with
a more general transformation property.

Definition. A function
F : L → C

is called homogeneous of weight k ∈ Z if it satisfies

F(λΛ) = λ−kF(Λ) for all λ ∈ C× and Λ ∈ L. (1.1)

As a first example, for k ∈ Z with k > 2 consider the Eisenstein seris

Gk : L → C

7
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defined by

Λ→
∑

ω∈Λ−{0}

1

ωk

By e.g. comparing the sum to an integral, one can check that the series converges (this is where
k > 2 is necessary). Furthermore, we immediately obtain the transformation property

Gk(λΛ) = λ−kGk(Λ) for all λ ∈ C× and Λ ∈ L.

1.2 The upper half-plane and the modular group

Fundamental roles in the theory of modular forms are played by the (complex) upper half-plane

H := {z ∈ C | =z > 0}
= {x+ iy | x, y ∈ R, y > 0}.

and the (full) modular group

SL2(Z) :=

{(
a

c

b

d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
.

We will show how these objects, as well as a certain action of SL2(Z) on H, appear naturally in
the study of homogeneous function on lattices described in the previous section. Analogously, one
could consider the union of the complex upper and lower half plane C−R (sometimes also denoted
by P1(C)− P1(R)) which is acted upon by

GL2(Z) :=

{(
a

c

b

d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = ±1

}
as we will describe below.

For z ∈ C− R consider the lattice

Λz := Zz + Z.

Note that any lattice in C can be written as

Zω1 + Zω2 = ω2Λz with z := ω1/ω2 ∈ C− R.

By swapping ω1 and ω2 if necessary, we may assume that ω1/ω2 ∈ H. We conclude that any
homogeneous function F : L → C is completely determined by its values on Λz for z ∈ H. To any
F as above we associate a function

f : H→ C by z 7→ F(Λz), (1.2)

from which the function F can be recovered as we just noted. In order to study the transformation
properties of f , we first introduce an action on C− R, which restricts to an action on H. This is
motivated by the following properties about changing bases for a lattice in C.

Lemma 1.1. Let ω1, ω2, ω
′
1, ω
′
2 ∈ C× with ω1/ω2, ω

′
1/ω

′
2 6∈ R.

(i) We have Zω1 + Zω2 = Zω′1 + Zω′2 if and only if(
ω′1
ω′2

)
= γ

(
ω1

ω2

)
for some γ ∈ GL2(Z). (1.3)

(ii) Suppose ω1/ω2 ∈ H. Then we have Zω1 + Zω2 = Zω′1 + Zω′2 and ω′1/ω
′
2 ∈ H if and only if(

ω′1
ω′2

)
= γ

(
ω1

ω2

)
for some γ ∈ SL2(Z).
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Let ω1, ω2, ω
′
1, ω
′
2 ∈ C× with z := ω1/ω2, z

′ := ω′1/ω
′
2 ∈ C−R and γ ∈ GL2(Z) satisfying (1.3),

then

z′ =
aω1 + bω2

cω1 + dω2
=
az + b

cd+ d
.

Note that the formula above is still well defined if we generalize from γ ∈ SL2(Z) to γ in

GL2(R) :=

{(
a

c

b

d

) ∣∣∣∣ a, b, c, d ∈ R, ad− bc 6= 0

}
.

Now for γ =
(
a
c
b
d

)
∈ GL2(R) and z ∈ C− R, we write

γz :=
az + b

cz + d

and introduce the factor of automorphy

j(γ, z) := cz + d ∈ C×.

Proposition 1.2. Let γ, γ′ ∈ GL2(R) and z ∈ C− R. Then

(i)

=(γz) =
det(γ)=z
|j(γ, z)|2

;

(ii) (
1

0

0

1

)
z = z;

(iii)
γ(γ′z) = (γγ′)z.

Proof. For (i) write γ =
(
a
c
b
d

)
∈ GL2(R). We calculate

=(γz) = =az + b

cz + d

= = (az + b)(cz̄ + d)

|cz + d|2

=
=(ac|z|2 + bd+ adz + bcz̄)

|cz + d|2

=
(ad− bc)=z
|cz + d|2

=
det(γ)=z
|j(γ, z)|2

.

Part (ii) is trivial. The proof of part (iii) is a straightforward calculation; see Exercise 1.2.

We also consider

GL+
2 (R) :=

{(
a

c

b

d

) ∣∣∣∣ a, b, c, d ∈ R, ad− bc > 0

}
.

Corollary 1.3. (i) The map
GL2(R)× C− R −→ C− R

(γ, z) 7−→ γz,

defines an action of the group GL2(R) on the set C− R.
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(ii) The map

GL+
2 (R)×H −→ H

(γ, z) 7−→ γz,

defines an action of the group GL+
2 (R) on the set H.

We make the trivial, but important remarks that the actions described above induce an action
of GL2(Z) on C−R and an action of SL2(Z) on H. The latter will be our primary focus (as well as
its restriction to so-called congruence subgroups later on, which will be discussed in Chapter 3).
One more subgroup of GL+

2 (R) of (some) interest to us (together with its induced action on H) is

SL2(R) :=

{(
a

c

b

d

) ∣∣∣∣ a, b, c, d ∈ R, ad− bc = 1

}
.

Let us come back to the transformation properties of the function f defined in (1.2).

Proposition 1.4. Let F : L → C be a homogeneous function of weight k ∈ Z and define the
function

f : H→ C by z 7→ F(Λz).

Then

f(γz) = j(γ, z)kf(z) for all γ ∈ SL2(Z) and z ∈ H. (1.4)

Proof. Let γ =
(
a
c
b
d

)
∈ SL2(Z) and z ∈ H. By Lemma 1.1, we have

Z(az + b) + Z(cz + d) = Zz + Z.

This gives us

Λγz = Z
az + b

cz + d
+ Z = (cz + d)−1(Z(az + b) + Z(cz + d)) = (cz + d)−1(Zz + Z) = j(γ, z)−1Λz.

So finally,

f(γz) = F(Λγz) = F(j(γ, z)−1Λz) = j(γ, z)kF(Λz) = j(γ, z)kf(z).

Warning. Many authors work with the projective modular group

PSL2(Z) = SL2(Z)

/{
±
(

1

0

0

1

)}
instead of SL2(Z). In these notes, we will mostly phrase the results in terms of SL2(Z), but we
will sometimes also give the analogous results for PSL2(Z).

Remark. We will see in Theorem 1.5 below that SL2(Z) is generated by the matrices

S =

(
0

1

−1

0

)
, T =

(
1

0

1

1

)
.

These satisfy the relations

S4 = 1, (ST )3 = S2 in SL2(Z).

Moreover, one can show that these generate all relations, i.e. that 〈S, T | S4, S2(ST )3〉 is a pre-
sentation of the group SL2(Z).
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1.3 A fundamental domain

Let D be the closed subset of H given by

D := {z ∈ H | −1/2 ≤ <z ≤ 1/2 and |z| ≥ 1}.

It looks as follows:

Here we write ρ for the unique third root of unity in the upper half-plane, i.e.

ρ = exp(2πi/3) =
−1 + i

√
3

2
.

Theorem 1.5. Let D be the subset of H defined above.

1. Every point in H is equivalent, under the action of SL2(Z), to a point of D.

2. If z, z′ ∈ D are two distinct points that are in the same SL2(Z)-orbit, then either z′ = z ± 1
(so z, z′ are on the vertical parts of the boundary of D) or z′ = −1/z (so z, z′ are on the
circular part of the boundary of D).

3. Let z be in D, and let Hz be the stabiliser of z in SL2(Z). Then Hz is

cyclic of order 6 generated by ST =
(

0
1
−1
1

)
if z = ρ;

cyclic of order 6 generated by TS =
(

1
1
−1
0

)
if z = ρ+ 1;

cyclic of order 4 generated by S =
(

0
1
−1
0

)
if z = i;

cyclic of order 2 generated by
(−1

0
0
−1

)
otherwise.

4. The group SL2(Z) is generated by S and T .

Proof. Let z be any point in H. We consider the imaginary part of γz for all γ ∈ 〈S, T 〉. According
to Proposition 1.2 part (i) this imaginary part is

=(γz) =
=z

|cz + d|2
if γ =

(
a

c

b

d

)
.

Given z, there are only finitely many (c, d) ∈ Z2, and in particular only finitely many γ =
(
a
c
b
d

)
∈

〈S, T 〉, such that |cz + d| < 1. This implies that there exists some γ =
(
a
c
b
d

)
∈ SL2(Z) such that

|cz + d| ≤ |c′z + d′| for all γ′ =

(
a′

c′
b′

c′

)
∈ SL2(Z),



12 CHAPTER 1. THE MODULAR GROUP

or equivalently
=(γz) ≥ =(γ′z) for all γ′ ∈ SL2(Z).

By multiplying γ from the left by a power of T , which has the effect of translating γz by an integer,
we may in addition choose γ such that

−1/2 ≤ <(γz) ≤ 1/2.

We claim that this γ satisfies
|γz| ≥ 1.

Namely, by the choice of γ, we have

=(γz) ≥ =(Sγz)

= =(−1/γz)

=
=(γz)

|γz|2
.

This implies |γz| ≥ 1, and hence γz ∈ D.
We conclude that for any z ∈ H there exists γ ∈ 〈S, T 〉 such that γz ∈ D. In particular, this

implies (1).
To prove (2), let z, z′ ∈ D be distinct points in the same SL2(Z)-orbit. We may assume

=z′ ≥ =z. Let γ =
(
a
c
b
d

)
∈ SL2(Z) be such that z′ = γz; in particular,

=z′ =
=z

|cz + d|2
≤ =z′

|cz + d|2
,

so |cz + d| ≤ 1. By the identity

|cz + d|2 = |cx+ d|2 + |cy|2 (z = x+ iy)

and the fact that y > 1/2 since z ∈ D, this is only possible if |c| ≤ 1.
If c = 0, then the condition ad− bc = 1 implies a = d = ±1, and hence z′ = z± b. Because <z

and <z′ both lie in [−1/2, 1/2], this implies z = z′ ± 1 and <z = ±1/2.
If c = 1, then we have

1 ≥ |cz + d| = |z + d|;

this is only possible if |z| = 1 and d = 0, if z = ρ and d = 1, or if z = ρ+ 1 and d = −1. The case
d = 0 implies b = −1 and z′ = az−1

z+0 = a− 1/z; this is only possible if a = 0, if z = ρ and a = −1,
or if z = ρ + 1 and a = 1. The case d = 1 implies z = ρ and a − b = 1; this is only possible if
(a, b) = (1, 0) or (a, b) = (0,−1).

The case c = −1 is completely analogous, since
(
a
c
b
d

)
and −

(
a
c
b
d

)
act in the same way on H.

Altogether, we obtain the following pairs (γ, z) where z and z′ = γz are both in D:

γ z z′ = γz fixed points

±
(

1
0

0
1

)
all z ∈ D z all z ∈ D

±
(

1
0

1
1

)
<z = −1/2 z + 1 none

±
(

1
0
−1
1

)
<z = 1/2 z − 1 none

±
(

0
1
−1
0

)
|z| = 1 −1/z i

±
(−1

1
−1
0

)
ρ ρ ρ

±
(

0
1
−1
1

)
ρ ρ ρ

±
(

1
1
−1
0

)
ρ+ 1 ρ+ 1 ρ+ 1

±
(

0
1
−1
−1

)
ρ+ 1 ρ+ 1 ρ+ 1
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Part (2) and (3) of the theorem can be read off from this table. It remains to show (4).
We choose any fixed z in the interior of D. Let γ ∈ SL2(Z); we have to show that γ is in 〈S, T 〉.

As we have seen in the first part of the proof, there exists γ0 ∈ 〈S, T 〉 such that γ0(γz) ∈ D. This
means that both z and (γ0γ)z lie in D, and since z is not on the boundary of D, part (3) implies
γ0γ = ±

(
1
0

0
1

)
. We conclude that γ = ±γ0 is in 〈S, T 〉.

1.4 Exercises

Exercise 1.1. Prove Lemma 1.1. (For part (ii), you may use Proposition 1.2.)

Exercise 1.2. Prove part (iii) of Proposition 1.2.

Exercise 1.3.

(a) Show that the standard action of SL2(R) on H is transitive.

(b) Let γ =
(
a
c
b
d

)
be an element of SL2(R) with γ 6= ±

(
1
0

0
1

)
. Prove that γ has exactly one fixed

point in H if |a+ d| < 2, and no fixed points in H otherwise.

Exercise 1.4.

(a) Let K be the stabiliser of i ∈ H under the standard action of SL2(R) on H. Show that

K =

{(
a

−b
b

a

) ∣∣∣∣ a, b ∈ R, a2 + b2 = 1

}
(= SO2(R)).

(b) Prove that there is a bijection

SL2(R)/K
∼−→ H

γK 7−→ γi.

Exercise 1.5. Visit CoCalc on https://cocalc.com/ and create an account.

https://cocalc.com/
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Chapter 2

Modular forms for SL2(Z)

2.1 Definition of modular forms

Definition. Let f be a meromorphic function on H. We say that f is weakly modular of weight
k ∈ Z if it satisfies

f(γz) = (cz + d)kf(z) for all γ =

(
a

c

b

d

)
∈ SL2(Z) and z ∈ H.

Note that this is exactly the transformation from (1.4). This definition can be reformulated
in several ways. To do this, we first introduce a right action of the group SL2(R) on the set of
meromorphic functions on H. This action is called the slash operator of weight k and denoted by
(f, γ) 7→ f |kγ. It is defined by

(f |kγ)(z) := (cz + d)−kf(γz) for all γ =

(
a

c

b

d

)
∈ SL2(R) and z ∈ H. (2.1)

For the proof that this is an action, see Exercise 2.1.
Saying that f is weakly modular is then equivalent to saying that f is invariant under the

weight k action of SL2(Z). Since SL2(Z) is generated by the two matrices S and T , it suffices to
check invariance under these two matrices. It is easy to check that invariance by T is equivalent
to

f(z + 1) = f(z) for all z ∈ H,

and that invariance by S is equivalent to

f(−1/z) = zkf(z) for all z ∈ H.

Remark. The property of weak modularity, applied to the matrix γ =
(−1

0
0
−1

)
, implies that

f(z) = (−1)kf(z) for all z ∈ H.

So if k is odd, then the only meromorphic function on H that is weakly modular of weight k is the
zero function.

We will make extensive use of the following notation:

q : H→ C
z 7→ exp(2πiz).

Warning. Especially in older sources, q(z) is defined to be exp(πiz) instead.

15
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Let f be weakly modular of weight k. Applying the definition to the matrix γ =
(

1
0

1
1

)
shows

that f is periodic with period 1:
f(z + 1) = f(z).

This implies that f can be written in the form

f(z) = f̃(exp(2πiz))

where f̃ is a meromorphic function on the punctured unit disc

D∗ := {q ∈ C | 0 < |q| < 1}.

In other words, f̃ is defined by

f̃(q) := f

(
log q

2πi

)
.

The logarithm is multi-valued, but choosing a different value of the logarithm comes down to
adding an integer multiple of 2πi to log q, hence an integer to log q

2πi . Since f is periodic with

period 1, this formula for f̃(q) does not depend on the chosen value of the logarithm.

Definition. Let f be a meromorphic function on H that is weakly modular of weight k. We say
that f is meromorphic at infinity (or at the cusp) if f̃ can be continued to a meromorphic function
on the open unit disc

D = {q ∈ C | |q| < 1}.

We say that f is holomorphic at infinity (or at the cusp) if this meromorphic continuation of f̃ is
holomorphic at q = 0.

The condition that f̃ can be continued to a meromorphic on D is equivalent to the condition
that f̃ can be written as a Laurent series

f̃(q) =

∞∑
n=−∞

anq
n (an ∈ C, an = 0 for n sufficiently negative)

that is convergent on {q ∈ C | 0 < |q| < ε} for some ε > 0. With this notation, f is holomorphic
at infinity if and only if an = 0 for all n < 0. If f is holomorphic at infinity, we define the value
of f at infinity as

f(∞) := f̃(0) = a0.

Definition. Let k be an integer. A modular form of weight k (for the group SL2(Z)) is a holo-
morphic function f : H → C that is weakly modular of weight k and holomorphic at infinity. A
cusp form of weight k (for the group SL2(Z)) is a modular form f of weight k satisfying f(∞) = 0.

2.2 Examples of modular forms: Eisenstein series

Let k be an even integer with k ≥ 4. We define the Eisenstein series of weight k (for SL2(Z)) by

Gk : H −→ C

z 7−→ Gk(Λz) =
∑
m,n∈Z

(m,n) 6=(0,0)

1

(mz + n)k
.

Proposition 2.1. The series above converges absolutely and uniformly on subsets of H of the
form

Rr,s = {x+ iy | |x| ≤ r, y ≥ s}.
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Proof. Let z = x+ iy ∈ Rr,s be given. We have the inequality

|mz + n|2 = (mx+ n)2 +m2y2 ≥ (mx+ n)2 +m2s2.

For fixed m and n, we distinguish the cases |n| ≤ 2r|m| and |n| ≥ 2r|m|. In the first case, we have

|mz + n|2 ≥ m2s2 ≥ s2

2
m2 +

s2

2(2r)2
n2 ≥ min{s2/2, s2/(8r2)}(m2 + n2).

In the second case, the triangle inequality implies

|mz + n|2 ≥ (|mx| − |n|)2 +m2s2 ≥ (|n|/2)2 +m2s2 ≥ min{1/4, s2}(m2 + n2).

Combining both cases and putting

c = min{s2/2, s2/(8r2), 1/4, s2},

we get the inequality

|mz + n| ≥ c(m2 + n2)1/2 for all m,n ∈ Z, z ∈ Rr,s.

This implies that for any z ∈ Rr,s we have

|Gk(z)| ≤ 1

ck

∑
(m,n)6=(0,0)

1

(m2 + n2)k/2
.

We rearrange the sum by grouping together, for each fixed j = 1, 2, 3, . . . , all pairs (m,n) with
max{|m|, |n|} = j. We note that for each j there are 8j such pairs (m,n), each of which satisfies

j2 ≤ m2 + n2 (≤ 2j2).

From this we obtain

|Gk(z)| ≤ 1

ck

∞∑
j=1

8j

jk

=
8

ck

∞∑
j=1

1

jk−1
,

which is finite and independent of z ∈ Rr,s.

The proposition above implies that the series defining Gk(z) converges to a holomorphic func-
tion on H.

Theorem 2.2. For every even integer k ≥ 4, the function

Gk : H→ C

is a modular form of weight k.

Proof. As we have just seen, Gk is holomorphic on H. That it has the correct transformation
behaviour under the action of SL2(Z) follows from Proposition 1.4.

It remains to check that Gk(z) is holomorphic at infinity. We will do this in the next section
by calculating the q-expansion of Gk.
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2.3 The q-expansions of Eisenstein series

We will need special values of the Riemann zeta function. This is a complex-analytic function
defined by

ζ(s) =

∞∑
n=1

1

ns
for s ∈ C with <s > 1. (2.2)

We will only need the cases where s equals an even positive integer k.
We will also use the following notation for the sum of the t-th powers of the divisors of an

integer n:

σt(n) =
∑
d|n
d>0

dt.

We rewrite the infinite sum defining Gk(z) as follows:

Gk(z) =
∑
m,n∈Z

(m,n)6=(0,0)

1

(mz + n)k

=
∑
n 6=0

1

nk
+
∑
m6=0

∑
n∈Z

1

(mz + n)k
.

Since k is even, we can further rewrite this (using the definition above of the Riemann zeta
function) as

Gk(z) = 2

∞∑
n=1

1

nk
+ 2

∞∑
m=1

∑
n∈Z

1

(mz + n)k

= 2ζ(k) + 2

∞∑
m=1

∑
n∈Z

1

(mz + n)k
.

(2.3)

Proposition 2.3. Let k ≥ 2 be an integer. Then we have

∑
n∈Z

1

(z + n)k
=

(−2πi)k

(k − 1)!

∞∑
d=1

dk−1 exp(2πidz) for all z ∈ H.

Proof. We start with the classical formula (A.1) for the cotangent function:

π
cos(πz)

sin(πz)
=

1

z
+

∞∑
n=1

(
1

z − n
+

1

z + n

)
for all z ∈ C− Z.

On the other hand, using the identity exp(±iz) = cos z±i sin z and the geometric series 1/(1−q) =∑∞
d=0 q

d for |q| < 1, we can rewrite the left-hand side for z ∈ H as

π
cos(πz)

sin(πz)
= πi

exp(πiz) + exp(−πiz)
exp(πiz)− exp(−πiz)

= −πi− 2πi
exp(2πiz)

1− exp(2πiz)

= −πi− 2πi

∞∑
d=1

exp(2πidz).

Combining the equations above, we obtain

1

z
+

∞∑
n=1

(
1

z − n
+

1

z + n

)
= −πi− 2πi

∞∑
d=1

exp(2πidz) for all z ∈ H. (2.4)
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Taking derivatives gives ∑
n∈Z

1

(z + n)2
= (2πi)2

∞∑
d=1

d exp(2πidz),

which is the desired equality in the case k = 2. The formula for general k ≥ 2 is proved by
induction.

Applying the fact above to the last sum in (2.3), and using the identity (−2πi)k = (2πi)k for
k even, we deduce the following formula for all even k ≥ 4:

Gk(z) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
m=1

∞∑
d=1

dk−1 exp(2πidmz)

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

∑
d|n

dk−1 exp(2πinz)

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn.

(2.5)

(In replacing the sum over (d,m) by a sum over (d, n), we have taken n = dm.)
The Bernoulli numbers are the rational numbers Bk (k ≥ 0) defined by the equation

t

exp(t)− 1
=

∞∑
k=0

Bk
k!
tk ∈ Q[[t]].

We have
Bk 6= 0 ⇐⇒ k = 1 or k is even;

see Exercise 2.3. Furthermore, the first few non-zero Bernoulli numbers are

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
,

B8 = − 1

30
, B10 =

5

66
, B12 = − 691

2730
, B14 =

7

6
.

In Exercise 2.3, you will prove the formula

ζ(k) = − (2πi)kBk
2 · k!

for k ≥ 2 even.

Substituting this into the formula (2.5) for Gk(z), we obtain

Gk(z) = − (2πi)kBk
k!

+ 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn.

It is useful to rescale the Eisenstein series Gk so that the coefficient of q becomes 1. This leads to
the definition

Ek(z) =
(k − 1)!

2(2πi)k
Gk(z).

This immediately simplifies to

Ek(z) = −Bk
2k

+

∞∑
n=1

σk−1(n)qn. (2.6)

Note in particular that all coefficients in this q-expansion are rational numbers.

Remark. Another common normalisation of Ek is such that the constant coefficient (as opposed
to the coefficient of q) becomes 1.
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2.4 The Eisenstein series of weight 2

So far we have only defined Eisenstein series of weight k for k ≥ 4. The construction does not
generalise completely to the case k = 2, because the series∑

(m,n)∈Z2

(m,n) 6=(0,0)

1

(mz + n)2

fails to converge.
As it turns out, it is still useful to define a holomorphic function G2 on H by the formula (2.3)

for k = 2, and to define

E2(z) = − 1

8π2
G2(z).

Then the formulae (2.5) and (2.6) are also valid for k = 2. One has to be careful, however,
because the double series in (2.3) does not converge absolutely and the functions G2 and E2 are
not modular forms.

Proposition 2.4. The functions G2 and E2 satisfy the transformation formulae

z−2G2(−1/z) = G2(z)− 2πi

z
. (2.7)

and

z−2E2(−1/z) = E2(z)− 1

4πiz
. (2.8)

The proof is based on following lemma, which gives an example of two double series that
contain the same terms but sum to different values due to the order of summation being different.

Lemma 2.5. For all z ∈ H, we have

∑
m 6=0

∑
n∈Z

(
1

mz + n
− 1

mz + n+ 1

)
= 0 (2.9)

and ∑
n∈Z

∑
m 6=0

(
1

mz + n
− 1

mz + n+ 1

)
= −2πi

z
. (2.10)

Proof. We start with the telescoping sum

∑
−N≤n<N

(
1

mz + n
− 1

mz + n+ 1

)
=

1

mz −N
− 1

mz +N
.

Using this, we compute the inner sum of the first double series as

∑
n∈Z

(
1

mz + n
− 1

mz + n+ 1

)
= lim
N→∞

∑
−N≤n<N

(
1

mz + n
− 1

mz + n+ 1

)

= lim
N→∞

(
1

mz −N
− 1

mz +N

)
= 0,

which implies the first identity.
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On the other hand, again using the telescoping sum above, we can write the second double
series as∑

n∈Z

∑
m6=0

(
1

mz + n
− 1

mz + n+ 1

)
= lim
N→∞

∑
−N≤n<N

∑
m 6=0

(
1

mz + n
− 1

mz + n+ 1

)

= lim
N→∞

∑
m 6=0

∑
−N≤n<N

(
1

mz + n
− 1

mz + n+ 1

)

= lim
N→∞

∑
m 6=0

(
1

mz −N
− 1

mz +N

)
,

and we cannot interchange the limit and the sum, because the series fails to converge uniformly
when N varies in any interval of the form [M,∞). In fact, using (2.4) and the fact that −N/z ∈ H,
we can rewrite the sum over m as∑

m 6=0

(
1

mz −N
− 1

mz +N

)
=

∞∑
m=1

(
1

mz −N
+

1

−mz −N
− 1

mz +N
− 1

−mz +N

)

=
2

z

∞∑
m=1

(
1

−N/z −m
+

1

−N/z +m

)

=
2

z

(
z

N
− πi− 2πi

∞∑
d=1

exp(−2πidN/z)

)
The series on the right-hand side converges uniformly for N in the interval [1,∞), because for all
N ≥ 1 the tail of the series for d ≥ D can be bounded using the triangle inequality as

∞∑
d=D

∣∣exp(−2πidN/z)
∣∣ ≤ ∞∑

d=D

|q|d with q = exp(−2πi/z);

the right-hand side is a geometric series that does not depend on N and tends to 0 as D → ∞,
since |q| < 1. We can therefore interchange the limit and the sum, and we obtain∑

n∈Z

∑
m 6=0

(
1

mz + n
− 1

mz + n+ 1

)
= lim
N→∞

2

z

(
z

N
− πi− 2πi

∞∑
d=1

exp(−2πidN/z)

)
= −2πi

z
,

which is what we had to prove.

Proof of Proposition 2.4. We recall that

G2(z) = 2ζ(2) +
∑
m6=0

∑
n∈Z

1

(mz + n)2
.

Subtracting the identity (2.9) and simplifying, we obtain the alternative expression

G2(z) = 2ζ(2) +
∑
m 6=0

∑
n∈Z

1

(mz + n)2(mz + n+ 1)
.

On the other hand, we have

z−2G2(−1/z) = 2ζ(2)z−2 +
∑
m 6=0

∑
n∈Z

1

(nz −m)2

= 2ζ(2) +
∑
m∈Z

∑
n 6=0

1

(nz −m)2

= 2ζ(2) +
∑
n∈Z

∑
m 6=0

1

(mz + n)2
;
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note that in the last step we just relabelled the variables, but did not change the summation order.
Subtracting the identity (2.10) and simplifying, we obtain

z−2G2(−1/z) +
2πi

z
= 2ζ(2) +

∑
n∈Z

∑
m 6=0

1

(mz + n)2(mz + n+ 1)
.

By an argument similar to that used in the proof of Proposition 2.1, the double series on the
right-hand side is absolutely convergent. We may therefore change the summation order. This
shows that the right-hand side is equal to G2(z), which proves (2.7). Finally, (2.8) follows from
(2.7) and the definition (2.4) of E2.

2.5 More examples: the modular form ∆ and the modular
function j

We define a function ∆: H→ C by

∆ =
(240E4)3 − (−504E6)2

1728
. (2.11)

Since E4 and E6 are modular forms of weight 4 and 6, respectively, ∆ is a modular form of
weight 12. Moreover, the specific linear combination of E3

4 and E2
6 is chosen such that the constant

term of the q-expansion of ∆ vanishes. This means that ∆ is a cusp form of weight 12.

Using the known q-expansions of E4 and E6, one can compute the q-expansion of ∆ as

∆ = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + · · ·

An infinite product expansion for ∆ is given in the next section.

Furthermore, we define the j-function as

j(z) =
(240E4)3

∆
.

This is not a modular form (since ∆ vanishes at infinity but E4 does not, the j-function has a
pole at infinity). However, the fact that the j-function is a quotient of two modular forms of the
same weight (12 in this case) implies that it is a modular function, i.e. it satisfies j(γz) = j(z) for
all γ ∈ SL2(Z) and z ∈ H) and is meromorphic on H and at infinity.

The j-function is extremely important in the theory of lattices and elliptic curves. For example,
one can define the j-invariant j(Λ) of a lattice Λ = Zω1 +Zω2, where ω1/ω2 ∈ H, by j(ω1/ω2) (we
use the same j to denote the different functions); one can then show that the j-invariant gives a
bijection

{lattices in C}/(homothety)
∼−→ C

[Λ] 7−→ j(Λ).

The q-expansion of j looks like

j(z) = q−1 + 744 + 196884q + 21493760q2 + 864299970q3 + · · ·

The coefficients of this series are famous for their role in the theory of monstrous moonshine
(Conway, Norton, Borcherds et al.), which links these coefficients to the representation theory of
the monster group.
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2.6 The η-function

We define the Dedekind eta function, using q24 := exp(2πiz/24), by

η : H −→ C

z 7−→ q24

∞∏
n=1

(1− qn)

Since
∑∞
n=1−qn converges absolutely and uniformly on compact subsets of H (because |q| < 1),

a standard result from complex analysis about infinite products (Theorem A.5) gives us that η
converges to a holomorphic functions on H and that its zeroes coincide with the zeroes of the
factors of the infinite product. Since these factors obviously do not have zeroes on H, we arrive
at the following result.

Proposition 2.6. The Dedekind eta function η : H→ C is holomorphic and non-vanishing.

The transformation properties of η under the action of SL2(Z) follow from the trivial observa-
tion that for all z ∈ H we have

η(z + 1) = exp(2πi/24)η(z)

and the fundamental transformation property below, which follows from the transformation prop-
erty of E2.

Proposition 2.7. For all z ∈ H we have

η(−1/z) =
√
−izη(z)

where the branch of
√
−iz is taken to have positive real part.

Proof. Let z ∈ H. By invoking Theorem A.5 again, we may calculate the logarithmic derivative
of η term by term. So we arrive at

d

dz
log(η(z)) =

2πi

24
+

∞∑
n=1

−2πinqn

1− qn
=
πi

12
− 2πi

∞∑
n=1

n

∞∑
m=1

qnm

=
πi

12
− 2πi

∞∑
m,n=1

nqnm =
πi

12
− 2πi

∞∑
l=1

σ(l)ql

= −2πiE2(z).

Together with the transformation property (2.8) of E2, we arrive at

d

dz
log(η(−1/z)) = −2πiz−2E2(−1/z)

= −2πiE2(z) +
1

2z

=
d

dz
log(
√
−izη(z)).

This shows that there is a constant c ∈ C such that for all z ∈ H we have η(−1/z) = c
√
−izη(z).

Specializing at z = i shows that c = 1, which completes the proof of the proposition.

The η function can be used to obtain an infinite product expansion for the modular form
∆ introduced in the previous section. Define f : H → C by f := η24. The holomorphicity and
the transformation properties of η immediately imply that f is weakly modular of weight 12.
Furthermore, f = q+O(q2), so in fact f is a cusp form of weight 12. In Theorem 2.11, we will see
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that the C-vector space of cusp forms of weight 12 is 1-dimensional. Since the Fourier coefficient
of q of both ∆ and η24 equals 1, we get

∆ =
(240E4)3 − (−504E6)2

1728
= q

∞∏
n=1

(1− qn)24.

The Fourier coefficients of this series are usually denoted by τ(n), so that (by definition)

∆ =

∞∑
n=1

τ(n)qn.

The function n 7→ τ(n) is called Ramanujan’s τ -function.

Remark. Ramanujan conjectured in 1916 some remarkable properties of τ , namely

• τ is multiplicative, i.e. τ(nm) = τ(n)τ(m) for all comprime n,m ∈ Z>0;

• τ(pr) = τ(p)τ(pr−1)− p11τ(pr−2) for all primes p and integers r ≥ 2;

• |τ(p)| ≤ 2p11/2 for all primes p.

The first two properties were already proven by Mordell in 1917 and the last by Deligne in 1974
as a consequence of his proof of the famous Weil conjectures. We will come back to the first two
properties after we studied Hecke operators in Chapter 4.

2.7 The valence formula

We now come to a very important technical result about modular forms. To state and prove this
result, we will use some definitions and results from complex analysis that are collected in §A.3.

Let f be meromorphic on H and weakly modular of weight k, let z ∈ H, and let γ ∈ SL2(Z).
It is not hard to check that the transformation formula f |kγ = f implies the equality

ordz f = ordγz f,

so the order of f at z only depends on the SL2(Z)-orbit of z.

Recall that if f is meromorphic on H, weakly modular of weight k and meromorphic at infinity,
we constructed a meromorphic function f̃ on the open unit disc D = {q ∈ C | |q| < 1}. We define

ordz=∞ f = ordq=0 f̃ .

In particular, f is holomorphic at infinity (resp. vanishes at infinity) if and only if ord∞ f ≥ 0
(resp. ord∞ f > 0).

Theorem 2.8 (valence formula). Let f be a nonzero meromorphic function on H that is weakly
modular of weight k (for the group SL2(Z)) and meromorphic at infinity. Then we have

ord∞ f +
1

2
ordi f +

1

3
ordρ f +

∑
w∈W

ordw f =
k

12
.

Here W is the set SL2(Z)\H of SL2(Z)-orbits in H, with the orbits of i and ρ omitted.

Proof. By the remark above, we may take all orbit representatives to lie in the fundamental domain
D. For simplicity of exposition, we assume that the boundary of D contains no zeroes or poles
of f , except possibly at i, ρ and ρ+ 1.
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Let C be the contour in the following picture:

The small arcs around i, ρ, ρ+ 1 have radius r, and we will let r tend to 0. The segment AE
has imaginary part R, and we will let R tend to ∞. In the case where the boundary of D does
contain zeroes or poles of f , the contour C has to be modified using additional small arcs going
around these zeroes or poles.

For R sufficiently large and r sufficiently small, the contour C contains all the zeroes and poles
of f in D except those at i, ρ and ρ + 1 (and infinity). Under this assumption, the argument
principle (Theorem A.3) implies ∮

C

f ′(z)

f(z)
dz = 2πi

∑
w∈W

ordw f. (2.12)

On the other hand, we can compute this integral by splitting up the contour C into eight parts,
which we will consider separately.

First, we have ∫ E

D′

f ′

f
(z)dz =

∫ A

B

f ′

f
(z + 1)dz

= −
∫ B

A

f ′

f
(z)dz,

so the integrals over the paths AB and D′E cancel.
Second, from the equation

f(−1/z) = zkf(z)

we obtain by differentiation

z−2f ′(−1/z) = kzk−1f(z) + zkf ′(z)

and hence, dividing by the previous equation,

z−2 f
′

f
(−1/z) =

k

z
+
f ′

f
(z).
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We also note that
d

dz
(−1/z) = z−2.

Making the change of variables z′ = −1/z, we therefore obtain∫ D

C′

f ′

f
(z)dz =

∫ B′

C

f ′

f
(−1/z′)(z′)−2dz′

=

∫ B′

C

(
k

z′
+
f ′

f
(z′)

)
dz′

= k

∫ B′

C

1

z
dz −

∫ C

B′

f ′

f
(z)dz.

This implies ∫ C

B′

f ′

f
(z)dz +

∫ D

C′

f ′

f
(z)dz −→ k

πi

6
as r → 0,

since the angle ∠C0B′ tends to π/6 as r → 0.
Third, as r → 0, we have∫ B′

B

f ′

f
(z)dz −→ −πi

3
ordρ(f),∫ C′

C

f ′

f
(z)dz −→ −πi ordi(f),∫ D′

D

f ′

f
(z)dz −→ −πi

3
ordρ+1(f) = −πi

3
ordρ(f).

Fourth, to evaluate the integral from E to A, we make the change of variables q = exp(2πiz).
By definition we have

f(z) = f̃(exp(2πiz)),

and it follows that
f ′(z) = 2πi exp(2πiz)f̃ ′(exp(2πiz)).

This implies
f ′

f
(z) = 2πi exp(2πiz)

f̃ ′

f̃
(exp(2πiz)).

Furthermore,
d

dz
exp(2πiz) = 2πi exp(2πiz).

From this we obtain ∫ A

E

f ′

f
(z)dz = −

∮
|q|=exp(−2πR)

f̃ ′

f̃
(q)dq

= −2πi ordq=0 f̃

= −2πi ordz=∞ f.

Summing the contributions of all the eight paths, we therefore obtain∮
C

f ′

f
(z)dz = k

πi

6
− πi ordi(f)− 2πi

3
ordρ(f)− 2πi ord∞(f).

Combining this with (2.12), we obtain

2πi
∑
w∈W

ordw(f) = k
πi

6
− πi ordi(f)− 2πi

3
ordρ(f)− 2πi ord∞(f).

Rearranging this and dividing by 2πi yields the claim.
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2.8 Applications of the valence formula

We will now use Theorem 2.8 to prove a fundamental property of modular forms.

Notation. We write Mk for the C-vector space of modular forms of weight k. We write Sk ⊂ Mk

for the subspace of Mk consisting of cusp forms of weight k.

Theorem 2.9. 1. The Eisenstein series E4 has a simple zero at z = ρ and no other zeroes.

2. The Eisenstein series E6 has a simple zero at z = i and no other zeroes.

3. The modular form ∆ of weight 12 has a simple zero at z =∞ and no other zeroes.

Proof. If f is a modular form, the numbers ordz f occurring in Theorem 2.8 are non-negative
because f is holomorphic on H and at infinity. In the case f = ∆, the q-expansion shows moreover
that ord∞∆ = 1. One checks easily that the only way to get equality in Theorem 2.8 is if the
location of the zeroes is as claimed.

Corollary 2.10. Multiplication by ∆ is an isomorphism

Mk
∼−→ Sk+12

f 7−→ ∆ · f.

In particular, for all k ∈ Z, we have

dim Sk+12 = dim Mk.

Theorem 2.11. The spaces Mk and Sk are finite-dimensional for every k. Furthermore, we have
Mk = {0} if k < 0 or k is odd, and the dimensions of Mk for k ≥ 0 even are given by

dim Mk =

{
bk/12c if k ≡ 2 (mod 12),

bk/12c+ 1 if k 6≡ 2 (mod 12).

In particular, the dimensions of Mk and Sk for the first few values of k are given by

k dim Mk dim Sk

0 1 0
2 0 0
4 1 0
6 1 0
8 1 0
10 1 0
12 2 1
14 1 0
16 2 1

Proof. The fact that Mk = {0} for k < 0 follows from Theorem 2.8. The valence formula also
easily implies M0 = C and M2 = {0}.

If k is odd and f ∈ Mk, then applying the transformation formula

f

(
az + b

cz + d

)
= (cz + d)kf(z)

to the matrix
(−1

0
0
−1

)
implies that f = 0.

It remains to prove the theorem for even k ≥ 4. In this case every modular form of weight k
is a unique linear combination of Ek and a cusp form; this follows from the fact that Ek does not
vanish at infinity. This gives a direct sum decomposition

Mk = Sk ⊕ C · Ek for all even k ≥ 4.
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In particular, this implies

dim Mk = dim Sk + 1

= dim Mk−12 + 1.

for all even k ≥ 4. The theorem now follows by induction, starting from the known values of
dim Mk for k ≤ 2.

The following theorem is a very useful concrete consequence of the fact that spaces of modular
forms are finite-dimensional.

Theorem 2.12. Let f be a modular form of weight k with q-expansion
∑∞
n=0 anq

n. Suppose that

aj = 0 for j = 0, 1, . . . , bk/12c.

Then f = 0.

Proof. Suppose f is non-zero. Then the hypothesis implies that

ord∞ f ≥ bk/12c+ 1 > k/12.

Therefore the left-hand side of the valence formula (Theorem 2.8) is strictly greater than k/12,
contradiction. Hence f = 0.

Corollary 2.13. Let f , g be a modular form of the same weight k, with q-expansions
∑∞
n=0 anq

n

and
∑∞
n=0 bnq

n, respectively. Suppose that

aj = bj for j = 0, 1, . . . , bk/12c.

Then f = g.

Theorem 2.12 is a very powerful tool. It allows us to conclude that two modular forms are
identical if we only know a priori that their q-expansions agree to a certain finite precision. An
example of a formula that can be proved using this principle is

σ7(n) = σ3(n) + 120

n−1∑
j=1

σ3(j)σ3(n− j) for all n ≥ 1; (2.13)

see Exercise 2.8. This identity is very hard to prove (or even conjecture) without using modular
forms.

2.9 Exercises

Exercise 2.1. Prove that the formula (2.1) indeed defines a right action of SL2(R) on the set of
meromorphic functions on H.

Exercise 2.2. We recall the notation

σt(n) =
∑
d|n

dt for all integers t ≥ 0 and n ≥ 1,

where d runs over the set of positive divisors of n.

(a) Let m, n and t be positive integers such that m and n are coprime. Show that

σt(mn) = σt(m)σt(n).
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(b) Let n and t be positive integers, and let

n =
∏

p prime

pep (ep ≥ 0; ep = 0 for all but finitely many p)

be the prime factorisation of n. Show that

σt(n) =
∏

p prime

p(ep+1)t − 1

pt − 1
.

Exercise 2.3.

(a) Using the definition of the Bernoulli numbers Bk, prove the identity

πz
cosπz

sinπz
=

∑
k≥0 even

(2πi)k
Bk
k!
zk for all |z| < 1.

(b) Using the formula (A.1), prove the identity

πz
cosπz

sinπz
= 1− 2

∑
k≥2 even

ζ(k)zk for all |z| < 1.

(c) Deduce that the values of the Riemann zeta function at even integers k ≥ 2 are given by

ζ(k) = − (2πi)kBk
2 · k!

.

(d) Prove that Bk is non-zero if and only if k = 1 or k is even.

Exercise 2.4.

(a) Show that G4(exp(2πi/3)) = 0. (Hint: G4(−1/z) = z4G4(z).)

(b) Show that G6(i) = 0.

Exercise 2.5. Using the fact that SL2(Z) is generated by the matrices
(

1
0

1
1

)
and

(
0
1
−1
0

)
, prove

that the transformation behaviour of the function E2 under any element
(
a
c
b
d

)
∈ SL2(Z) is given

by

(cz + d)−2E2

(
az + b

cz + d

)
= E2(z)− 1

4πi

c

cz + d
.

Exercise 2.6. Define f : H→ C by

f(z) := G2(z)− π

=z
.

(a) Show that
f(γz) = j(γ, z)2f(z) for all γ ∈ SL2(Z) and z ∈ H.

(b) Is f a modular form?

Exercise 2.7. Show that the q-expansion coefficients of the modular form ∆ defined by (2.11)
are integers, despite the division by 1728 occurring in the definition.

Exercise 2.8. Using the fact that the space M8 is one-dimensional, prove the formula (2.13).

Exercise 2.9. We continue along the lines of the previous exercise.
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(a) Prove the formula

σ9(n) =
21

11
σ5(n)− 10

11
σ3(n) +

5040

11

n−1∑
j=1

σ3(j)σ5(n− j) for all n ∈ Z>0.

(b) Find similar expressions for σ13 in terms of σ3 and σ9, and in terms of σ5 and σ7.

(c) Express σ13 in terms of σ3 and σ5.

Exercise 2.10.

(a) Show that there exists C ∈ R>0 such that any element in H is SL2(Z)-equivalent to some
z ∈ H with =(z) ≥ C. (You can take e.g. C =

√
3/2.)

(b) Deduce that if f : H→ C is a modular form of weight 0, then |f | attains a maximum on H.

(c) Conclude that the space of modular forms of weight zero consists exactly of the constant
functions H→ C. (Hint: use the maximum modulus principle.)

Exercise 2.11.

(a) Find rational numbers λ and µ such that

∆ = λE3
4 + µE12.

(b) Let τ(n) be the n-th coefficient in the q-expansion of ∆, so that

∆ =

∞∑
n=1

τ(n)qn.

Prove Ramanujan’s congruence:

τ(n) ≡ σ11(n) (mod 691).

Exercise 2.12. Show that the ring C[E2, E4, E6] is closed under differentiation.

Exercise 2.13.

(a) Show that the modular functions (for SL2(Z)) form a field F (with addition and multiplica-
tion defined pointwise).

(b) Prove that F = C(j) and that j is transcendental over C.

Exercise 2.14. Consider the modular function j : H→ C.

(a) Show that j(i) = 1728 and j(ρ) = 0 (where ρ = exp(2πi/3)).

(b) Let z ∈ D (the standard fundamental domain for SL2(Z)). Prove:

(z lies on the boundary of D or <z = 0) ⇒ j(z) ∈ R.

(c) Show that j : SL2(Z)\H → C given by j([z]) := j(z) is well-defined and prove that j is
bijective.
(Here [z] denotes the orbit of z under the action of SL2(Z).)

(d) Prove the converse to part (b).

Exercise 2.15.

(a) Show that Mk is spanned by all Ea4E
b
6 with a, b ∈ Z≥0 and 4a+ 6b = k.

(b) Show that E4 and E6 are algebraically independent over C.

The above exercise shows that the ring of modular forms (for SL2(Z)) M :=
⊕

k∈ZMk is

isomorphic to the two-variable polynomial ring C[x, y] via the isomorphism C[x, y]
∼−→M given by

(x, y) 7→ (E4, E6). (If we grade the rings by assigning grade k to a modular form of weight k and
grades 4 and 6 to x and y respectively, we get an isomorphism of graded rings.)



Chapter 3

Modular forms for congruence
subgroups

3.1 Congruence subgroups of SL2(Z)

So far, we have considered functions satisfying a suitable transformation property with respect to
the action of the full group SL2(Z). It turns out to be very useful to also consider functions having
this transformation behaviour only with respect to certain subgroups of SL2(Z).

Definition. Let N be a positive integer. The principal congruence subgroup of level N is the
group

Γ(N) =

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ (1

0

0

1

)
(mod N)

}
.

In other words, Γ(N) is the kernel of the reduction map SL2(Z)→ SL2(Z/NZ). The reduction
map is surjective; see Exercise 3.1. We therefore get an isomorphism

SL2(Z)/Γ(N)
∼−→ SL2(Z/NZ).

In particular, this implies that Γ(N) is a normal subgroup of finite index in SL2(Z), namely

(SL2(Z) : Γ(N)) = # SL2(Z/NZ).

Definition. A congruence subgroup (of SL2(Z)) is a subgroup Γ ⊂ SL2(Z) containing Γ(N) for
some N ≥ 1. The least such N is called the level of Γ.

We note that every congruence subgroup has finite index in SL2(Z). The converse is false;
there exist subgroups of finite index in SL2(Z) that do not contain Γ(N) for any N .

Examples. The most important examples of congruence subgroups are the groups

Γ1(N) =

{(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣ a ≡ d ≡ 1 (mod N),

c ≡ 0 (mod N)

}
and

Γ0(N) =

{(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}
.

We have a chain of inclusions

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

These inclusions are in general strict; however, all of them are equalities for N = 1, and we have
Γ0(2) = Γ1(2).

31
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Proposition 3.1. The congruence subgroup Γ1(N) is normal in Γ0(N), and there is an isomor-
phism

Γ0(N)/Γ1(N)
∼−→ (Z/NZ)×[(

a

c

b

d

)]
7−→ d mod N.

For the proof, see Exercise 3.2.
The groups introduced above are the most important examples of congruence subgroups (al-

though they are certainly not the only ones). It turns out that Γ0(N) and Γ1(N) have a useful
“moduli interpretation”.

To show how this works for the group Γ0(N), we consider pairs (L,G) with L ⊂ C a lattice
and G a cyclic subgroup of order N of the quotient C/L. To these data we attach another lattice
L′, namely the inverse image of G in C with respect to the quotient map C→ C/L. Then we can
choose a basis (ω1, ω2) for L with the property that L′ equals Zω1+ 1

NZω2. For any
(
a
c
b
d

)
∈ SL2(Z),

the basis (aω1 +bω2, cω1 +dω2) of L again has the property above if and only if c is divisible by N ,
i.e. if and only if

(
a
c
b
d

)
is in Γ0(N). Restricting to bases (ω1, ω2) with ω1/ω2 ∈ H and taking the

quotient by the action of the subgroup Γ0(N) ⊂ SL2(Z), we obtain a bijection between the set of
homothety classes of pairs (L,G) as above and the quotient set Γ0(N)\H.

An analogous argument shows that there is a bijection between the set of homothety classes
of pairs (L,P ), where L ⊂ C is a lattice and P is a point of order N in the group C/L, and the
set Γ1(N)\H. We refer to Exercise 3.7 for details.

Definition. Let f be a meromorphic function on H, let k be an integer, and let Γ be a congruence
subgroup. We say that f is weakly modular of weight k for the group Γ (or of level Γ) if it satisfies
the transformation formula

f |kγ = f for all γ ∈ Γ.

To generalise the definition of modular forms to this setting, we will have to answer the question
how to generalise the notion of being holomorphic at infinity.

Example. Take Γ = Γ0(2) = Γ1(2). A system of coset representatives for the quotient Γ\SL2(Z)
is {(

1

0

0

1

)
,

(
0

1

−1

0

)
,

(
0

1

−1

1

)}
= {1, S, ST}.

(It is important to take this quotient instead of SL2(Z)/Γ.) Using this, one can draw the following
picture of a fundamental domain for Γ:

There are now two points “at infinity” that are in the closure of D in the Riemann sphere, but
not in H, namely ∞ and 0.
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3.2 Fundamental domains and cusps

Proposition 3.2. Let Γ be a congruence subgroup of SL2(Z), and let R be a set of coset repre-
sentatives for the quotient Γ\SL2(Z). Then the set

DΓ =
⋃
γ∈R

γD

has the property that for any z ∈ H there exists γ ∈ Γ such that γz ∈ DΓ. Furthermore, this γ is
unique up to multiplication by an element of Γ ∩ {±1}, except possibly if γz lies on the boundary
of DΓ.

Proof. Let z ∈ H. By Theorem 1.5, there exist z0 ∈ D and γ0 ∈ SL2(Z) such that z = γ0z0.
Since R is a set of coset representatives, we can express γ0 uniquely as γ0 = γ−1γ′ with γ ∈ Γ and
γ′ ∈ R. We now have

γz = γγ0z0 = γ′z0 ∈ DΓ.

For the statement about uniqueness of γ, see Exercise 3.4.

Definition. The projective line over Q is the set

P1(Q) = Q ∪ {∞}.

The group SL2(Z) acts on P1(Q) by the same formula giving the action on H:

γt =
at+ b

ct+ d
for γ =

(
a

c

b

d

)
∈ SL2(Z), t ∈ P1(Q).

Here the right-hand side is to be interpreted as a/c if t =∞, and as ∞ if ct+ d = 0.

Lemma 3.3. The action of SL2(Z) on P1(Q) is transitive.

Proof. It suffices to show that for every t ∈ Q, there exists γ ∈ SL2(Z) such that γ∞ = t. We
write t = a/c with a, c coprime integers. Then there exist integers r, s such that ar + cs = 1; the
matrix γ =

(
a
c
−s
r

)
has the required property.

One easily checks that the stabiliser of ∞ in SL2(Z) is

SL2(Z)∞ =

{
±
(

1

0

b

1

) ∣∣∣∣ b ∈ Z
}
.

This shows that we have a bijection

SL2(Z)/ SL2(Z)∞
∼−→ P1(Q)

γ SL2(Z)∞ 7−→ γ∞.

Definition. Let Γ be a congruence subgroup. The set of cusps of Γ is the set of Γ-orbits in P1(Q),
i.e. the quotient

Cusps(Γ) = Γ\P1(Q).

Note that by what we have just seen, an equivalent definition is

Cusps(Γ) = Γ\SL2(Z)/SL2(Z)∞.

In particular, we have a surjective map

Γ\SL2(Z)� Cusps(Γ).
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Let c be a cusp of Γ, and let t be an element of the corresponding Γ-orbit in P1(Q). We denote
by Γt the stabiliser of t in Γ, i.e.

Γt = {γ ∈ Γ | γt = t}.

By the lemma, we can choose a matrix γt ∈ SL2(Z) such that γt∞ = t. For every γ ∈ Γ, we now
have the equivalences

γ ∈ Γt ⇐⇒ γt = t

⇐⇒ γγt∞ = γt∞
⇐⇒ γ−1

t γγt∞ =∞
⇐⇒ γ−1

t γγt ∈ SL2(Z)∞.

This shows that

Γt = Γ ∩ γt SL2(Z)∞γ
−1
t .

In particular, we have an injective map

Γt
∖

(γt SL2(Z)∞γ
−1
t )� Γ\SL2(Z).

This implies that Γt is of finite index in γt SL2(Z)γ−1
t . It is useful to conjugate by γt and define

Hc = γ−1
t Γγt ∩ SL2(Z)∞. (3.1)

Hence Hc is a subgroup of finite index in SL2(Z)∞. It is independent of the choice of t and γt; see
Exercise 3.5.

Lemma 3.4. Let H be a subgroup of finite index in SL2(Z)∞. Then H is one of the following:

1. infinite cyclic generated by
(

1
0
h
1

)
with h ≥ 1;

2. infinite cyclic generated by
(−1

0
h
−1

)
with h ≥ 1;

3. isomorphic to Z/2Z× Z, generated by
(−1

0
0
−1

)
and

(
1
0
h
1

)
with h ≥ 1.

Furthermore, h is the index of {±1}H in SL2(Z)∞.

We refer to Exercise 3.6 for the proof.

Definition. Let c ∈ Cusps(Γ), and let t be an element of the corresponding Γ-orbit in P1(Q).
The width of c, denoted by hΓ(c), is the integer h defined as in Lemma 3.4 (with H = Hc), i.e. the
index of {±1}Hc in SL2(Z)∞. Furthermore, the cusp c is called irregular if Hc is of the form (2)
in Lemma 3.4, regular otherwise.

Remark. Suppose Γ is a normal congruence subgroup of SL2(Z). By definition, this means that
γ−1Γγ = Γ for all γ ∈ SL2(Z). From (3.1) it then follows that all the groups Hc for c ∈ Cusps(Γ)
are equal. In particular, all cusps of Γ have the same width, and either all are regular or all are
irregular.

Before continuing, we state and prove a group-theoretic lemma.

Lemma 3.5. Let G be a group acting transitively on a set X, and let H be a subgroup of finite
index in G.

1. For any x ∈ X, the stabiliser StabH x has finite index in StabG x, and we have an injection

(StabH x)\(StabG x)� H\G

with image H\H StabG x.
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2. Let x0 ∈ X. There is a surjective map

H\G� H\X
Hg 7→ Hgx0,

and for every x ∈ X, the cardinality of the fibre of this map over Hx equals (StabG x :
StabH x).

3. If R is a set of orbit representatives for the quotient H\X, we have∑
x∈R

(StabG x : StabH x) = (G : H).

Proof. Part (1) is standard and just recalled here.
As for part (2), the transitivity of the G-action on X implies that for every x ∈ X we can choose

an element gx ∈ G such that gxx0 = x. This implies the surjectivity of the map H\G → H\X.
Let THx denote the fibre of this map over Hx, so that by definition

THx =
{
Hg ∈ H\G | Hgx0 = Hx

}
.

Replacing Hg by Hg′gx, we obtain a bijection

THx ∼=
{
Hg′ ∈ H\G | Hg′gxx0 = Hx

}
=
{
Hg′ ∈ H\G | Hg′x = Hx

}
= H\(H StabG x)
∼= (StabH x)\(StabG x),

where in the last step we have used part (1). Taking cardinalities, we obtain the claim.
Finally, summing over a system of representatives R for the quotient H\X, we obtain

(G : H) = #(H\G)

=
∑
x∈R

#THx

=
∑
x∈R

(StabG x : StabH x).

This proves part (3).

Corollary 3.6. Let Γ be a congruence subgroup, and let Γ̄ be the image of Γ in PSL2(Z). Then
we have ∑

c∈Cusps(Γ)

hΓ(c) = (PSL2(Z) : Γ̄)

= (SL2(Z) : {±1}Γ).

Proof. Apply part (3) of the lemma to G = PSL2(Z), H = Γ̄ and X = P1(Q).

Example. Let p be a prime number. We consider the group Γ = Γ0(p). We note that Γ0(p)
contains the principal congruence subgroup Γ(p), and there is an isomorphism

Γ0(p)\SL2(Z)
∼−→ Kp\SL2(Fp)

where

Fp = Z/pZ
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and

Kp =

{(
a

c

b

d

)
∈ SL2(Fp)

∣∣∣∣ c = 0

}
=

{(
a

0

b

a−1

) ∣∣∣∣ a ∈ F×p , b ∈ Fp}.

It is known that

# SL2(Fp) = p(p− 1)(p+ 1).

Furthermore, the description above of Kp implies

#Kp = p(p− 1).

We therefore obtain
(SL2(Z) : Γ) = (SL2(Fp) : Kp)

=
# SL2(Fp)

#Kp

=
p(p− 1)(p+ 1)

p(p− 1)

= p+ 1.

(Another way of computing this is to find a transitive action of SL2(Fp) on P1(Fp) such that some
point of P1(Fp) has stabiliser Kp.)

To compute the set of cusps of Γ, we determine the Γ-orbits in P1(Q). The orbit of∞ ∈ P1(Q)
is

Γ · ∞ =

{(
a

cp

b

d

)
∞
∣∣∣∣ a, b, c, d ∈ Z, ad− bcp = 1

}
=

{
a

cp

∣∣∣∣ a, c ∈ Z, gcd(a, cp) = 1

}
=

{
r

s

∣∣∣∣ r, s ∈ Z, gcd(r, s) = 1, p | s
}
.

(Here a fraction with denominator 0 is interpreted as ∞.) Likewise, the orbit of 0 ∈ P1(Q) is

Γ · 0 =

{(
a

cp

b

d

)
0

∣∣∣∣ a, b, c, d ∈ Z, ad− bcp = 1

}
=

{
b

d

∣∣∣∣ b, d ∈ Z, gcd(b, d) = 1, p - d
}
.

From this description of the two orbits it is clear that every element of P1(Q) is in exactly one of
them. In particular, Γ0(p) has two cusps, namely the two elements [∞] and [0] of Γ0(p)\P1(Q).

Next, we determine the widths of these two cusps. For the cusp c = [∞], we take t = ∞ and
γt =

(
1
0

0
1

)
. This gives Hc = SL2(Z)∞ and hΓ(c) = 1. For the cusp c = [0], we take t = 0 and

γt =
(

0
1
−1
0

)
. We have

Γt =

{
±
(

1

cp

0

1

) ∣∣∣∣ c ∈ Z
}
.

An easy calculation implies

Hc =

{
±
(

1

0

cp

1

) ∣∣∣∣ c ∈ Z
}
.

In particular, hΓ(c) = p.
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3.3 Modular forms for congruence subgroups

Let Γ be a congruence subgroup, let k be an integer, and let f be a meromorphic function on H
that is weakly modular of weight k for the group Γ. Let c be a cusp of Γ, and let t ∈ P1(Q) be an
element of the corresponding Γ-orbit in P1(Q). We choose γt ∈ SL2(Z) such that γt∞ = t ∈ P1(Q).
Then the meromorphic function f |kγt is invariant under the weight k action of the group Hc. By
the definition of the width hΓ(c) and of (ir)regularity of the cusp c, the group Hc contains the

element
(

1
0
h̃Γ(c)

1

)
, where

h̃Γ(c) =

{
hΓ(c) if the cusp c is regular,

2hΓ(c) if the cusp c is irregular.

This means that the function f |kγt satisfies

(f |kγt)(z + h̃Γ(c)) = (f |kγt)(z).

On the punctured unit disc D∗, we can therefore express f |kγt as a function of the variable

qc = exp(2πiz/h̃Γ(c)).

In other words, there exists a function f̃c : D∗ → C ∪ {∞} such that

(f |kγt)(z) = f̃c(exp(2πiz/h̃Γ(c))).

We say that f is meromorphic at the cusp c if f̃c can be continued to a meromorphic function
on D. In this case, we can write f̃c as a Laurent series

f̃c(qc) =
∑
n∈Z

ac,nq
n
c ,

where ac,n = 0 for n � 0. Furthermore, we say that f is holomorphic at c if in addition f̃c is

holomorphic at qc = 0, and that f vanishes at c if f̃c vanishes at qc = 0. Finally, if f is not
identically zero and is meromorphic at c, we define the order of f at c as the least n such that
ac,n 6= 0. The notation for this order is ordΓ,c(f).

Definition. Let Γ be a congruence subgroup of SL2(Z), and let k be an integer. A modular form
of weight k for the group Γ is a holomorphic function f : H→ C that is weakly modular of weight k
for Γ and holomorphic at all cusps of Γ. Such an f is called a cusp form (of weight k for the
group Γ) if it vanishes at all cusps of Γ.

As in the case of modular forms for SL2(Z), it is straightforward to check that the set of
modular forms of weight k for Γ is a C-vector space.

Notation. We write Mk(Γ) for the C-vector space of modular forms of weight k for the group Γ,
and Sk(Γ) for the subspace of cusp forms.

For proving that a holomorphic function that is weakly modular is actually modular, checking
directly the condition that it is holomorphic at all cusps might be a bit complicated in practice.
The theorem below can be used to translate this into checking that it is holomorphic at infinity
and that the Fourier coefficients do not grow too quickly. The converse also holds.

Theorem 3.7. Let Γ be a congruence subgroup of SL2(Z), and let k be an integer. Let f : H→ C
be a holomorphic function which is weakly modular of weight k for Γ. Then the following two
properties are equivalent:

(i) f is holomorphic at all cusps;
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(ii) f is holomorphic at infinity and there exist C, d ∈ R>0 such that for the Fourier expansion

f(z) =

∞∑
n=0

anq
n
∞

we have
|an| ≤ Cnd for all n ∈ Z>0.

Proof. ‘(ii) ⇒ (i)’: See Exercise 3.19.
‘(i)⇒ (ii)’: This will be discussed in Chapter 6. (We note that this implication will never be used
in these notes.)

3.4 Example: the θ-function

Definition. The Jacobi theta function is the holomorphic function θ : H→ C defined by

θ(z) =
∑
n∈Z

qn
2

= 1 + 2

∞∑
n=1

qn
2

(q = exp(2πiz)).

Note that uniform convergence of the series on compact sets follows immediately by comparing
it with the geometric series, from which the holomorphicity follows. Obviously, θ satisfies

θ(z + 1) = θ(z) for all z ∈ H. (3.2)

There is yet another type of transformation satisfied by θ.

Theorem 3.8. The function θ satisfies the transformation formula

θ

(
−1

4z

)
=
√
−2izθ(z) for all z ∈ H (3.3)

where the branch of
√
−2iz is taken to have positive real part.

Proof. Since both sides are holomorphic functions on H, it suffices to prove the identity for z on
the imaginary axis. (Namely, the difference between the left-hand side and the right-hand side
will then be zero on a subset of H possessing a limit point in H, which implies that it is identically
zero.)

Let us write z = ia/2 with a > 0. From Theorem A.6 and Corollary A.8, we obtain∑
m∈Z

exp(−πam2) =
1√
a

∑
n∈Z

exp(−πn2/a).

Substituting a = −2iz gives∑
m∈Z

exp(2πim2z) =
1√
−2iz

∑
n∈Z

exp(−2πin2/(4z)).

This implies the claim.

Corollary 3.9. The function θ satisfies the transformation formula

θ

(
z

4z + 1

)
=
√

4z + 1θ(z) for all z ∈ H (3.4)

where the branch of
√

4z + 1 is taken to have positive real part.
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Proof. Let z′ := −1/(4z)− 1 ∈ H and note that

z

4z + 1
= − 1

4z′
.

Now apply (3.3) with z′ instead of z, followed by (3.2), and finally apply (3.3) (again).

Theorem 3.10. Let k be an even positive integer. Then the function

θk : z 7→ θ(z)k

is a modular form of weight k/2 for the group Γ1(4).

Proof. First note that it suffices to prove that f := θ2 ∈ M1(Γ1(4)). Let T :=
(

1
0

1
1

)
as usual and

let A :=
(

1
4

0
1

)
. From (3.2) and (3.4) we get respectively

f |1T = f and f |1A = f.

According to Exercise 3.13, the group generated by A and T equals Γ1(4). We arrive at the fact
that f is holomorphic and weakly modular of weight 1 for the group Γ1(4). By construction, f is
holomorphic at infinity. By Theorem 3.7 it remains to show that the absolute values of the Fourier
coefficients of f are bounded by a polynomial in the index. This is left as an (easy) exercise.

3.5 Eisenstein series of weight 2

The space of modular forms of weight 2 is trivial, and the “Eisenstein series” E2 is not a modular
form. However, we can use E2 to define modular forms of weight 2 for congruence subgroups of

higher level as follows. For every positive integer e, we define a holomorphic function E
(e)
2 : H→ C

by

E
(e)
2 (z) = E2(z)− eE2(ez).

By Exercise 2.5, for any element
(
a
c
b
d

)
∈ Γ0(e) we have

(cz + d)−2E
(e)
2

(
az + b

cz + d

)
= (cz + d)−2E2

(
az + b

cz + d

)
− e(cz + d)−2E2

(
e
az + b

cz + d

)
= (cz + d)−2E2

(
az + b

cz + d

)
− e((c/e)(ez) + d)−2E2

(
a(ez) + be

(c/e)(ez) + d

)
= E2(z)− 1

4πi

c

cz + d
− e
(
E2(ez)− 1

4πi

c/e

(c/e)(ez) + d

)
= E2(z)− eE2(Ez)

= E
(e)
2 (z).

This shows that the function E
(e)
2 is weakly modular of weight 2 for Γ0(e). It then follows from

Theorem 3.7 that E
(e)
2 is holomorphic at the cusps and hence is a modular form for Γ0(e).

3.6 The valence formula for congruence subgroups

We now generalise Theorem 2.8 to arbitrary congruence subgroups.

Notation. For any congruence subgroup Γ, we will write Γ̄ for the image of Γ under the natural
quotient map SL2(Z)→ PSL2(Z). We will also write

Γz = StabΓ z and Γ̄z = StabΓ̄ z for all z ∈ H.
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Theorem 3.11 (valence formula for congruence subgroups). Let Γ be a congruence subgroup, and
let k be an integer. Let f be a non-zero meromorphic function on H that is weakly modular of
weight k for the group Γ and meromorphic at all cusps of Γ. Let

εΓ,c =

{
1 if −1 6∈ Γ and c is regular,

2 if −1 ∈ Γ or c is irregular,

and

ε̄Γ,c =

{
1 if c is regular,

2 if c is irregular.

Then we have ∑
z∈Γ\H

ordz(f)

#Γz
+

∑
c∈Cusps(Γ)

ordΓ,c(f)

εΓ,c
=

k

24
(SL2(Z) : Γ).

and ∑
z∈Γ\H

ordz(f)

#Γ̄z
+

∑
c∈Cusps(Γ)

ordΓ,c(f)

ε̄Γ,c
=

k

12
(PSL2(Z) : Γ̄).

Proof. The proof is based on Theorem 2.8 and Lemma 3.5. Let us write

d = (SL2(Z) : Γ).

Let R be a system of coset representatives for the quotient Γ\SL2(Z); then we have #R = d. We
now define

F (z) =
∏
γ∈R

(f |kγ)(z).

This function is weakly modular of weight dk for the full modular group SL2(Z) and meromorphic
at ∞. By the valence formula for SL2(Z) (Theorem 2.8), we therefore have

ord∞ F +
1

2
ordi F +

1

3
ordρ F +

∑
w∈W

ordw F =
dk

12
.

were W is the set SL2(Z)\H of SL2(Z)-orbits in H, with the orbits of i and ρ omitted. We note
that this can be rewritten as

1

2
ord∞ F +

∑
z∈SL2(Z)\H

ordz F

# SL2(Z)z
=
dk

24
.

(In this formula and in the rest of the proof, we will implicitly choose orbit and coset representatives
where necessary.)

Let z ∈ H. We apply Lemma 3.5 to the groups G = SL2(Z) and H = Γ, with X taken to be
the SL2(Z)-orbit of z. We rewrite ordz F as follows:

ordz F =
∑

γ∈Γ\SL2(Z)

ordz(f |kγ)

=
∑

γ∈Γ\SL2(Z)

ordγz f

=
∑

w∈Γ\SL2(Z)z

(SL2(Z)w : Γw) ordw f.

In the last sum, we have used the fact that ordγz f depends only on γz and not on γ, and we have
applied Lemma 3.5.
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Since SL2(Z)w is finite and independent of w ∈ Γ\SL2(Z)z, we may write

(SL2(Z)w : Γw) =
# SL2(Z)z

#Γw

and divide the identity above by # SL2(Z)z; this gives

ordz F

# SL2(Z)z
=

∑
w∈Γ\SL2(Z)z

ordw f

#Γw
.

Summing over (a system of orbit representatives for) the quotient SL2(Z)\H, we obtain∑
z∈SL2(Z)\H

ordz F

# SL2(Z)z
=

∑
z∈SL2(Z)\H

∑
w∈Γ\SL2(Z)z

ordw f

#Γw

=
∑

w∈Γ\H

ordw f

#Γw
.

In Exercises 3.14 and 3.15, it is shown that the orders of f and F at the cusps satisfy

1

2
ord∞ F =

∑
c∈Cusps(Γ)

ordΓ,c(f)

εΓ,c
. (3.5)

We conclude that∑
w∈Γ\H

ordw f

#Γw
+

∑
c∈Cusps(Γ)

ordΓ,c(f)

εΓ,c
=

∑
z∈SL2(Z)\H

ordz F

# SL2(Z)z
+

1

2
ord∞(F )

=
k

24
(SL2(Z) : Γ),

which proves the first formula from the theorem. For the second formula, we first note the identities

#(Γ ∩ {±1})(SL2(Z) : Γ) = 2(PSL2(Z) : Γ̄)

and

εΓ,c = #(Γ ∩ {±1})ε̄Γ,c.

The second identity can be checked by distinguishing the three possible cases: −1 ∈ Γ and c
regular; −1 6∈ Γ and c regular; −1 6∈ Γ and c irregular. The second formula now follows from the
first by multiplying by #(Γ ∩ {±1}) and rewriting.

Corollary 3.12. Let f ∈ Mk(Γ) be a modular form with q-expansion
∑∞
n=0 anq

n at some cusp c
of Γ. Suppose we have

aj = 0 for j = 0, 1, . . . ,

⌊
k

24
εΓ,c(SL2(Z) : Γ)

⌋
.

Then f = 0. Similarly, two forms in Mk(Γ) are equal whenever their q-expansions at c agree to
this precision.

Corollary 3.13. The space of modular forms of weight k for a congruence subgroup Γ has dimen-
sion at most 1 +

⌊
k
12 (SL2(Z) : Γ)

⌋
.

There also exist formulae giving the dimensions of Mk(Γ) and Sk(Γ); these are rather com-
plicated and will not be given here. In the book of Diamond and Shurman, a whole chapter is
devoted to dimension formulae [4, Chapter 3].
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3.7 Dirichlet characters

To continue developing the theory of modular forms for congruence subgroups (and in particular
Γ0(N) and Γ1(N)), it is essential to study Dirichlet characters first.

Definition. Let N be a positive integer. A Dirichlet character modulo N is a function

χ : Z→ C

with the property that there exists a group homomorphism χ′ : (Z/NZ)× → C× such that

χ(d) =

{
χ′(d mod N) if gcd(d,N) = 1,

0 if gcd(d,N) 6= 1.

Alternatively, a Dirichlet character modulo N is a function χ : Z → C such that χ(m) = 0 if
and only if gcd(m,N) > 1, and χ(mm′) = χ(m)χ(m′) for all m ∈ Z.

The terminology “Dirichlet character” is often also used for the group homomorphism χ′ itself.
Since (Z/NZ)× is finite, the image of any group homomorphism χ′ : (Z/NZ)× → C× is contained
in the the torsion subgroup of C×, i.e. the group of roots of unity.

For fixed N , the set of Dirichlet characters modulo N is a group under pointwise multiplication.
This group can be identified with Hom((Z/NZ)×,C×). By decomposing (Z/NZ)× as a product
of cyclic groups, one sees that Hom((Z/NZ)×,C×) is non-canonically isomorphic to (Z/NZ)×. In
particular, its order is φ(N), where φ is Euler’s φ-function.

Let M , N be positive integers with M | N , and let χ be a Dirichlet character modulo M . Then
χ can be lifted to a Dirichlet character χ(N) modulo N by putting

χ(N)(m) =

{
χ(m) if gcd(m,N) = 1,

0 if gcd(m,N) > 1.

The conductor of a Dirichlet character χ modulo N is the smallest divisor M of N such that

there exists a Dirichlet character χM modulo M satisfying χ = χ
(N)
M . A Dirichlet character χ

modulo N is called primitive if its conductor equals N .

Example. Modulo 1, we have the trivial character 1 : (Z/1Z)× = {0} → C. The corresponding
Dirichlet character 1 : Z → C is the constant function 1. For any N , lifting 1 to a Dirichlet
character modulo N gives the function

1(N) : Z→ C

m 7→

{
1 if gcd(m,N) = 1,

0 if gcd(m,N) = 1.

Example. Let N = 4. The group (Z/4Z)× has order 2. There exists a unique non-trivial Dirichlet
character χ modulo 4, given by

χ(m) =


1 if m ≡ 1 (mod 4),

−1 if m ≡ 3 (mod 4),

0 if m ≡ 0, 2 (mod 4).

(3.6)

Example. We consider the case where N is a prime number p. We put

(a
p

)
=


0 if p | a,
1 if p - a and a is a square modulo p,

−1 if a is not a square modulo p.

Then the map a 7→
(
a
p

)
is a Dirichlet character modulo p. It is of conductor p if p > 2, and of

conductor 1 if p = 2.
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Consider two Dirichlet characters χ1, χ2 modulo N1 and N2, respectively. Let N be any
common multiple of N1 and N2. Then χ1 and χ2 can be multiplied to give a Dirichlet character
modulo N by putting

χ = χ1χ2 = χ
(N)
1 χ

(N)
2 .

3.8 Application of modular forms to sums of squares

As an interesting application of modular forms, we will now study how they can be used to answer
the following classical question.

Question. Given positive integers n and k, in how many ways can n be written as a sum of k
squares of integers?

To make this question more precise, let us write

rk(n) = #{(x1, . . . , xk) ∈ Zk | x2
1 + · · ·+ x2

k = n}.

Then the question is how to (efficiently) compute rk(n). Note in particular that by this definition,
changing the signs or the order of the xi in some representation of n as a sum of k squares is
regarded as giving a different representation. For example, we have

r2(5) = 8,

the eight representations being

5 = 12 + 22 = (−1)2 + 22 = 12 + (−2)2 = (−1)2 + (−2)2

= 22 + 12 = (−2)2 + 12 = 22 + (−1)2 = (−2)2 + (−1)2.

This can also be viewed geometrically as saying that in the square lattice Z2 ⊂ R2, there are 8
points whose distance from the origin equals

√
5:

Two of the most famous theorems concerning the question above were proved by Pierre de
Fermat (1601–1665) and Joseph-Louis Lagrange (1736–1813).

Theorem 3.14 (Fermat). Let n be an odd positive integer. Then n is a sum of two squares if
and only if every prime number p | n with p ≡ 3 (mod 4) occurs an even number of times in the
prime factorisation of n.

Corollary 3.15. Let p be a prime number. Then p is a sum of two squares if and only p = 2 or
p ≡ 1 (mod 4).

Theorem 3.16 (Lagrange). Every non-negative integer is a sum of four squares.

These theorems can be proved without using modular forms; indeed, Fermat and Lagrange
had no modular forms available to them. However, making use of modular forms leads to new
insights and to generalisations of the results above.

In the theorems below, χ is the Dirichlet character modulo 4 given by (3.6).
The following formulae were found by C. G. J. Jacobi (1804–1851).
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Theorem 3.17 (Jacobi, 1829). The functions r2(n) and r4(n) are given by the following formulae:
for all n ≥ 1, we have

r2(n) = 4
∑
d|n

χ(d),

r4(n) = 8
∑
d|n
4-d

d.

In the first sum, d runs over the set of all positive divisors of n. In the second sum, d runs over
the subset of such divisors that are not divisible by 4.

The following formulae for the cases k = 6 and k = 8 follow from work of Jacobi, F. G. M.
Eisenstein (1823–1852) and H. J. S. Smith (1826–1883).

Theorem 3.18 (Jacobi, Eisenstein, Smith). The functions r6(n) and r8(n) are given by the
following formulae: for all n ≥ 1, we have

r6(n) =
∑
d|n

(
16χ(n/d)− 4χ(d))d2,

r8(n) = 16
∑
d|n

(−1)n−dd3.

Joseph Liouville (1809–1882) conjectured formulae for rk(n) in the cases k = 10 and k = 12.
These formulae were later proved by J. W. L. Glaisher (1848–1928).

Theorem 3.19 (Glaisher (1907), conjectured by Liouville (1864/65)). The functions r10(n) and
r12(n) are given (partially) by the following formulae: for all n ≥ 1, we have

r10(n) =
4

5

∑
d|n

(χ(d) + 16χ(n/d))d2 +
8

5

∑
z∈Z[i]

|z|2=n

z4,

and for all even n ≥ 2, we have

r12(n) = 8
∑
d|n

d5 − 512
∑
d|n/4

d5.

It turns out that the function θk introduced in §3.4 is closely related to the counting function
rk(n), as we will see in Exercise (3.16). We will use this relation to prove the formulae given above
for rk(n) in the cases k = 4 and k = 8. The formulae for k = 2 and k = 6 can be proved using
Eisenstein series with character; for these we refer to the exercises.

By Theorem 3.10, the function θk is in Mk/2(Γ1(4)). The group Γ1(4) has index 12 in SL2(Z).
The valence formula for congruence groups (Theorem 3.11) therefore implies that the dimension
of the space Mk/2(Γ1(4)) satisfies the bound

dim Mk/2(Γ1(4)) ≤ 1 + bk/4c.

Furthermore, the group Γ1(4) has three cusps, two of which are regular; see Exercise 3.8. Another
consequence of Theorem 3.11 is therefore that for k ∈ {2, 4, 6, 8}, the space Sk/2(Γ1(4)) is trivial.

The easiest cases (given what we have seen so far) are k = 4 and k = 8. For k = 4, the
relevant space M2(Γ1(4)) has dimension 2. We already know two linearly independent elements

of this space, namely E
(2)
2 (z) = E2(z)− 2E2(2z) and E

(4)
2 (z) = E2(z)− 4E2(4z). These elements

therefore form a basis for M2(Γ1(4)). From the q-expansion

E2(z) = − 1

24
+

∞∑
n=1

σ1(n)qn,
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we compute

E2(z) = − 1

24
+ q + 3q2 +O(q3),

E2(2z) = − 1

24
+ q2 +O(q3),

E2(4z) = − 1

24
+O(q3).

On the other hand, we have

θ(z)4 = 1 + 8q + 24q2 +O(q3).

This implies that we have

θ(z)4 = c1E2(z) + c2E2(2z) + c4E2(4z),

where the coefficients c1, c2, c4 are obtained by solving the linear system−1/24 −1/24 −1/24
1 0 0
3 1 0

c1c2
c3

 =

 1
0
24

 .

The unique solution of this system is c1c2
c3

 =

 8
0
−32

 .

This means that
θ(z)4 = 8(E2(z)− 4E2(4z))

= 8E
(4)
2 (z).

Taking coefficients, we obtain

r4(n) = 8

(∑
d|n

d− 4
∑

d|(n/4)

d

)

= 8
∑
d|n
4-d

d,

where the sum over the divisors of n/4 is only included if n is divisible by 4.

For k = 8, the relevant space M4(Γ1(4)) has dimension 3. We already know three linearly
independent elements of this space, namely E4(z), E4(2z) and E4(4z); these elements therefore
form a basis for M4(Γ1(4)). We have

E4(z) =
1

240
+

∞∑
n=1

σ3(n)qn.

Doing a similar calculation as above gives

θ(z)8 = 16E4(z)− 32E4(2z) + 256E4(4z).

This implies

r8(n) = 16

(∑
d|n

d3 − 2
∑

d|(n/2)

d3 + 16
∑

d|(n/4)

d3

)
. (3.7)
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3.9 Exercises

Exercise 3.1. Show that the reduction map SL2(Z) → SL2(Z/NZ) is surjective by completing
the steps below.

• Let γ ∈ SL2(Z/NZ) and choose a lift
(
a
c
b
d

)
∈M2(Z). Show that gcd(a, b,N) = 1.

• Show that there exist k, l ∈ Z such that gcd(a + kN, b + lN) = 1. (Hint: gcd(a, b,N) =
gcd(gcd(a, b), N).)

• Show that
(
a+kN
c+mN

b+lN
d+nN

)
∈ SL2(Z) for certain m,n ∈ Z.

Exercise 3.2. Prove Proposition 3.1

Exercise 3.3. Recall that if N is a positive integer, Γ(N) denotes the principal congruence
subgroup of level N .

Let D and N be positive integers, and let β be a 2 × 2 matrix with integral entries and
determinant D.

(a) Prove that βΓ(DN)β−1 is contained in Γ(N).

(b) Deduce that Γ(N) ∩ β−1Γ(N)β contains Γ(DN).

(c) Now let Γ be any congruence subgroup, and let α be in GL+
2 (Q). Prove that the group

Γ′ = Γ ∩ α−1Γα is again a congruence subgroup.

Exercise 3.4. Prove that the element γ ∈ Γ from Proposition 3.2 is unique up to multiplication
by an element of Γ ∩ {±1}, except possibly if γz lies on the boundary of DΓ.

Exercise 3.5. Show that the subgroup Hc ⊂ SL2(Z)∞ defined by (3.1) does not depend on the
choice of t and γt.

Exercise 3.6. Prove Lemma 3.4.

Exercise 3.7. Let L1(N) be the set of pairs (Λ, P ) where Λ is a lattice in C and P is a point of
order N in the group C/Λ.

(a) Show that on L1(N) there is an equivalence relation ∼ with the property that (Λ, P ) ∼
(Λ′, P ′) if and only if there exists α ∈ C× such that for any ω ∈ C with ω + Λ = P in C/Λ
we have αΛ = Λ′ and αω + Λ′ = P ′ in C/Λ′.

(b) Recall that Γ1(N) is the subgroup of SL2(Z) consisting of matrices of the form
(
a
Nc

b
d

)
with

a, b, c, d ∈ Z, a ≡ d ≡ 1 (mod N) and ad−Nbc = 1. Prove that there is a bijection

L1(N)/∼ ∼= Γ1(N)\H.

(Hint: consider lattices together with a suitable Z-basis (ω1, ω2), and use a similar argument
as for the case of Γ0(N) treated in §3.1.)

Exercise 3.8. Show that the cusps of Γ1(4), viewed as Γ1(4)-orbits in P1(Q), are represented by
the elements 0, 1/2 and ∞ of P1(Q). For each of these cusps c, determine whether c is regular or
irregular, and compute its width hΓ(c).

Exercise 3.9. Let p be an odd prime number. Determine a set of representatives for the Γ1(p)-
orbits in P1(Q). For each of the corresponding cusps c of Γ1(p), compute its width hΓ(c).

Exercise 3.10. Let N be a positive integer, and let H be a subgroup of (Z/NZ)×. Show that
the set

ΓH =

{(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣ a, d mod N are in H and c ≡ 0 (mod N)

}
is a congruence subgroup, and determine its level.
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Exercise 3.11. Let Γ and Γ′ be two congruence subgroups such that Γ′ ⊂ Γ. Let f be a
meromorphic function on H that is weakly modular of weight k for Γ, and hence also for Γ′. Let
c′ ∈ Cusps(Γ′), and let c be its image under the natural map Cusps(Γ′)→ Cusps(Γ).

(a) Prove that hΓ(c) divides hΓ′(c
′) and that h̃Γ(c) divides h̃Γ′(c

′).

(b) Prove the identity
ordΓ′,c′(f)

h̃Γ′(c′)
=

ordΓ,c(f)

h̃Γ(c)
.

Exercise 3.12. Let Γ′ ⊂ Γ be two congruence subgroups, let k ∈ Z, and let f be a meromorphic
function on H that is weakly modular of weight k for Γ.

(a) Show that there is a canonical surjective map Cusps(Γ′)→ Cusps(Γ).

(b) Let c′ be in Cusps(Γ′), and let c be its image in Cusps(Γ). Show that f is holomorphic at
c if and only if f (viewed as a weakly modular function of weight k for Γ′) is holomorphic
at c′. Show also that f vanishes at c if and only if f (viewed as a weakly modular function
of weight k for Γ′) vanishes at c′.

(c) Deduce that if f is a modular form (resp. a cusp form) of weight k for Γ, then f is a
modular form (resp. a cusp form) of weight k for Γ′. (This shows that we have inclusions
Mk(Γ) ⊂ Mk(Γ′) and Sk(Γ) ⊂ Sk(Γ′); this fact has been used implicitly in the lectures.)

Exercise 3.13. (basically taken from [4, Exercise 1.2.4]) Let A :=
(

1
4

0
1

)
and T :=

(
1
0

1
1

)
. Show

that 〈A, T 〉 = Γ1(4) as follows.
Denote Γ := 〈A, T 〉. Let α =

(
a
c
b
d

)
∈ Γ1(4). Use the identity(

a

c

b

d

)(
1

0

n

1

)
=

(
a

c

b′

nc+ d

)
to show that unless c = 0, some αγ with γ ∈ Γ has bottom row (c′, d′) with |d′| < |c′|/2. Use the
identity (

a

c

b

d

)(
1

4n

0

1

)
=

(
a′

c+ 4nd

b

d

)
to show that unless d = 0, some αγ with γ ∈ Γ has bottom row (c′, d′) with |c′| < 2|d′|. Each
multiplication reduces the positive integer quantity min{|c|, 2|d|}, so the process must stop. Show
that this means that αγ ∈ Γ for some γ ∈ Γ, hence α ∈ Γ.

The goal of the next two exercises is to prove the formula (3.5). We use the notation from (the
proof of) Theorem 3.11.

Exercise 3.14. Consider the set

Z = SL2(Z)
/{(1

0

b

1

) ∣∣∣∣ b ∈ Z
}

equipped with the natural left action of SL2(Z). Let u denote the class of the unit matrix in Z.

(a) Show that there exists a unique map Z → P1(Q) that is compatible with the SL2(Z)-action
and sends u to ∞.

(b) Consider the map
Γ\Z → Cusps(Γ)

x 7→ x̄

obtained by taking the quotient by Γ on both sides of the map from (a). Show that for each
c ∈ Cusps(Γ), the fibre of this map over c has cardinality 2/εΓ,c.
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(c) Show that for each x ∈ Γ\Z, the fibre of the natural map Γ\SL2(Z) → Γ\Z over x has
cardinality h̃Γ(x̄). (Hint: use Lemma 3.5(2).)

Exercise 3.15. Choose a congruence subgroup Γ′ contained in Γ such that Γ′ is normal in SL2(Z).
Let h̃Γ′ be the common value of h̃Γ′(c) for all cusps c of Γ′ (note that these are indeed equal because
Γ′ is normal in SL2(Z)).

(a) Show that all fibres of the natural map Γ′\SL2(Z)→ Γ\SL2(Z) have cardinality (Γ : Γ′).

(b) Prove the identity ∑
γ∈Γ′\SL2(Z)

ordΓ′,γu(f) = (Γ : Γ′)h̃Γ′ ord∞(F ).

(Hint: use part (a) to show that F (Γ:Γ′) =
∏
γ′∈Γ′\SL2(Z) f |kγ′, and use this identity to

rewrite ord∞(F ).)

(c) Prove the identity ∑
γ∈Γ′\SL2(Z)

ordΓ′,γu(f) = (Γ : Γ′)h̃Γ′

∑
x∈Γ\Z

ordΓ,x̄(f).

(Hint: apply Exercise 3.11 to the left-hand side, and then use part (a) and Exercise 3.14(c)
to rewrite the resulting sum.)

(d) Deduce the formula (3.5).

Exercise 3.16. Show that for any k ≥ 1, we have

θk =

∞∑
n=0

rk(n)qn for all k ≥ 0

(where q = exp(2πiz) as usual), or equivalently

rk(n) = an(θk).

Exercise 3.17. Deduce from the formula (3.7) that

r8(n) = 16
∑
d|n

(−1)n−dd3.

Exercise 3.18. Let N be a positive integer. We consider the set

CN =

{(
x

y

)
∈ (Z/NZ)2 | 〈x, y〉 = Z/NZ

}/
{±1},

where 〈x, y〉 denotes the (additive) subgroup of Z/NZ generated by x and y, and where the
group {±1} acts from the right on CN by

(
x
y

)
ε =

(
εx
εy

)
. Note that the set CN has a natural left

SL2(Z/NZ)-action.

(a) Prove that there is a natural bijection

Cusps(Γ(N)) ∼= CN .

(b) Let Γ ⊂ SL2(Z) be a congruence subgroup of level N . Let H be the image of Γ under the
map SL2(Z)→ SL2(Z/NZ). Show that there is a natural bijection

Cusps(Γ) ∼= H\CN .
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(c) Describe how the widths of the cusps of a given congruence subgroup of level N can be
determined using computations “in characteristic N”, i.e. involving SL2(Z/NZ) and CN
instead of SL2(Z) and P1(Q).

(d) Use parts (b) and (c) to solve Exercise 3.9: given an odd prime number p, describe the set
Cusps(Γ1(p)), and for each c ∈ Cusps(Γ1(p)), compute hΓ(c).

Exercise 3.19. The goal of this exercise is to prove the implication ‘(ii)⇒ (i)’ of Theorem 3.7. Let
Γ be a congruence subgroup of SL2(Z), and let k be an integer. Let f : H→ C be a holomorphic
function that is weakly modular of weight k for Γ and holomorphic at the cusp ∞. Suppose that
there exist positive real numbers C, d such that the coefficients an in the Fourier expansion

f(z) =

∞∑
n=0

anq
n
∞

satisfy

|an| ≤ Cnd for all n ∈ Z>0.

(a) Prove that there exist positive real numbers C1 and C2 such that for all z ∈ H we have

|f(z)| ≤ C1 + C2(=z)−d−1.

(Hint: bound |f(z)| by comparing
∑∞
n=1 |anqn∞| to an integral of the form

∫∞
0
td exp(−at)dt.)

(b) Prove that for any α ∈ SL2(Z), the function z 7→ (f |kα)(z) grows at most polynomially
when =z →∞, i.e. that there exist positive real numbers C3 and e such that∣∣(f |kα)(z)

∣∣ ≤ C3(=z)e for all z ∈ H with =z ≥ 1.

(c) Deduce that f is a modular form of weight k for Γ.

(Hint: A version of this exercise with more intermediate steps is [4, Exercise 1.2.6].)

In the exercises below, N denotes a positive integer.

Exercise 3.20.

(a) Let χ be a Dirichlet character modulo N . Prove that

N−1∑
j=0

χ(j) =

{
φ(N) if χ = 1N ,

0 otherwise.

(b) Let j be an integer. Prove that

∑
χ∈DN

χ(j) =

{
φ(N) if j ∈ NZ,
0 otherwise.

where DN is the group of all Dirichlet characters modulo N .

Exercise 3.21. For integers k > 0 and n ≥ 0, write

rk(n) = #{(x1, . . . , xk) ∈ Zk | x2
1 + · · ·+ x2

k = n}.

Furthermore, let χ be the unique non-trivial Dirichlet character modulo 4. In this exercise you
may assume without proof that there exist modular forms E1,χ

1 ∈ M1(Γ1(4)) and E1,χ
3 , Eχ,13 ∈
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M3(Γ1(4)) with q-expansions

E1,χ
1 =

1

4
+

∞∑
n=1

(∑
d|n

χ(d)

)
qn,

E1,χ
3 = −1

4
+

∞∑
n=1

(∑
d|n

χ(d)d2

)
qn,

Eχ,13 =

∞∑
n=1

(∑
d|n

χ(n/d)d2

)
qn.

(These are examples of Eisenstein series for Γ1(4). For a construction of the last two forms, see
Exercise 3.26. Eisenstein series of weight 1 will not be constructed in this course.)

(a) Prove the formula

r2(n) = 4
∑
d|n

χ(d) for all n ≥ 1.

(Note: If you know about arithmetic in the ring Z[i] of Gaussian integers, you can also prove
this formula by counting ideals of norm n in Z[i].)

(b) Prove the formula

r6(n) =
∑
d|n

(16χ(n/d)− 4χ(d))d2 for all n ≥ 1.

Exercise 3.22. Let χ : Z → C be a Dirichlet character modulo N . The L-function of χ is the
holomorphic function L(χ, s) (of the variable s) defined by

L(χ, s) =

∞∑
n=1

χ(n)n−s.

(a) Prove that the sum converges absolutely and uniformly on every right half-plane of the form
{s ∈ C | <s ≥ σ} with σ > 1.

(b) Prove the identity

L(χ, s) =
∏

p prime

1

1− χ(p)p−s
for <s > 1.

(Hint: expand
1

1− χ(p)t
in a power series in t.)

Note: The functions L(χ, s) were introduced by P. G. Lejeune-Dirichlet in the proof of his famous
theorem on primes in arithmetic progressions:

Theorem 3.20 (Dirichlet, 1837). Let N and a be coprime positive integers. Then there exist
infinitely many prime numbers p with p ≡ a (mod N).

Exercise 3.23. Let χ be a Dirichlet character modulo N . We consider the function Z → C
sending an integer m to the complex number

τ(χ,m) =

N−1∑
n=0

χ(n) exp(2πimn/N).

(This can be viewed as a discrete Fourier transform of χ.) The case m = 1 deserves special
mention: the complex number

τ(χ) = τ(χ, 1) =

N−1∑
n=0

χ(n) exp(2πin/N)

is called the Gauss sum attached to χ.
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(a) Compute τ(χ) for all non-trivial Dirichlet characters χ modulo 4 and modulo 5, respectively.

(b) Suppose that χ is primitive. Prove that for all m ∈ Z we have

τ(χ,m) = χ̄(m)τ(χ).

(Hint: writing d = gcd(m,N), distinguish the cases d = 1 and d > 1.)

(c) Deduce that if χ is primitive, we have

τ(χ)τ(χ̄) = χ(−1)N

and
τ(χ)τ(χ) = N.

Exercises 3.24, 3.25 and 3.26 are optional. The goal is to construct Eisenstein series with character.
In each exercise you may use the results of all preceding exercises.

Exercise 3.24. Let χ be a primitive Dirichlet character modulo N . The generalised Bernoulli
numbers attached to χ are the complex numbers Bk(χ) for k ≥ 0 defined by the identity

∞∑
k=0

Bk(χ)

k!
tk =

t

exp(Nt)− 1

N∑
j=1

χ(j) exp(jt)

in the ring C[[t]] of formal power series in t.

(a) Let ζ be a primitive N -th root of unity in C. Prove that if χ is non-trivial (i.e. N > 1), then
we have

N−1∑
j=0

χ(j)
x+ ζj

x− ζj
=

2N

τ(χ̄)(xN − 1)

N−1∑
m=0

χ̄(m)xm

in the field C(x) of rational functions in the variable x. (Hint: compute residues.)

(b) Prove that for every integer k ≥ 2 such that (−1)k = χ(−1), the special value of the Dirichlet
L-function of χ at k is

L(χ, k) = − (2πi)kBk(χ̄)

2τ(χ̄)Nk−1k!
.

Exercise 3.25. Let k ≥ 3, and let α and β be Dirichlet characters modulo M and N , respectively.
For all k ≥ 3, we define a function Gα,βk : H→ C by

Gα,βk (z) =
∑
m,n∈Z

(m,n)6=(0,0)

α(m)β̄(n)

(mz + n)k
.

(a) Prove that the function Gα,βk is weakly modular of weight k for the congruence subgroup

Γ1(M,N) =

{(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣ a ≡ d ≡ 1 (mod lcm(M,N)),

c ≡ 0 (mod M), b ≡ 0 (mod N)

}
.

(b) Show that Gα,βk is the zero function unless α(−1)β(−1) = (−1)k.

(c) Prove the identity

Gα,βk (z) = 2α(0)
∑
n>0

β̄(n)

nk
+ 2

∑
m>0

α(m)
∑
n∈Z

β̄(n)

(mz + n)k
.
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Exercise 3.26. Keeping the notation of Exercise 3.25, assume in addition that α(−1)β(−1) =
(−1)k and that the character β is primitive.

(a) Prove that for all w ∈ H we have

∑
n∈Z

β̄(n)

(w + n)k
=

(−2πi)kτ(β̄)

Nk(k − 1)!

∞∑
d=1

β(d)dk−1 exp(2πidw/N).

(b) Deduce the formula

Gα,βk (z) = −α(0)
(2πi)kBk(β)

τ(β)Nk−1k!

+
2(−2πi)kτ(β̄)

Nk(k − 1)!

∞∑
d=1

(∑
d|n

α(n/d)β(d)dk−1

)
exp(2πinz/N).

(c) Let Eα,βk (z) be the unique scalar multiple of Gα,βk (Nz) such that the coefficient of q in the

q-expansion of Eα,βk equals 1. Prove the identity

Eα,βk (z) = −α(0)
Bk(β)

2k
+

∞∑
n=1

(∑
d|n

α(n/d)β(d)dk−1

)
qn.

(d) Prove that Eα,βk (z) is a modular form of weight k for Γ1(MN).



Chapter 4

Hecke operators and eigenforms

So far, we have viewed Mk as a complex vector space. It turns out that this vector space has
a very interesting additional structure: it is a module over a commutative ring called the Hecke
algebra.

There are various ways of introducing Hecke operators. We will start with a group-theoretic
construction, and then show how this construction can be interpreted in terms of lattices.

4.1 The operators Tα

We start by extending the action of SL2(Z) on the set of meromorphic function H to an action of
the group

GL+
2 (Q) = {γ ∈ GL2(Q) | det γ > 0}.

This is done (and one easily checks that this defines indeed an action), for any k ∈ Z, by putting

(f |kγ)(z) :=
(det γ)k

(cz + d)k
f

(
az + b

cz + d

)
for all γ =

(
a

c

b

d

)
∈ GL+

2 (Q) and z ∈ H.

Let Γ be a congruence subgroup, and let α ∈ GL+
2 (Q). We define

Γ′ = Γ ∩ α−1Γα.

Let f be a modular form of weight k for Γ. Then f |kα is invariant under the right action of
α−1Γα, as a consequence (the details are left to the reader) it is a modular form for Γ′. We define

Tαf =
∑

[γ]∈Γ′\Γ

f |kαγ,

where we have chosen representatives γ ∈ Γ for the cosets [γ] ∈ Γ′\Γ. One readily checks that
f |kαγ does not depend on the choice of γ for [γ] and furthermore that [Γ : Γ′] < ∞ so that the
sum above is finite. It follows that Tαf is well defined.

Proposition 4.1. Let Γ be a congruence subgroup, let k be an integer, and let α ∈ GL+
2 (Q). Then

for any f ∈ Mk(Γ), the function Tαf is again in Mk(Γ). Furthermore, if f is in Sk(Γ), then so is
Tαf .

For the proof, see Exercise 4.1.
By the proposition, the map f 7→ Tαf defines an endomorphism of the C-vector space Mk(Γ),

and this operator preserves the subspace Sk(Γ).

Remark. Note that we have an isomorphism

Γ′\Γ ∼−→ (α−1Γα)\(α−1ΓαΓ).

53
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Left multiplication by α identifies the right-hand side with Γ\ΓαΓ. Alternatively, noting that
αΓ′α−1 equals αΓα−1 ∩ Γ, we see that left multiplication by α is an isomorphism

Γ′\Γ ∼−→ (αΓα−1 ∩ Γ)\αΓ
∼−→ Γ\ΓαΓ.

Either way, we have a composed isomorphism

Γ′\Γ ∼−→ Γ\ΓαΓ

Γ′γ 7−→ Γαγ.

This shows that Tαf can also be expressed as

Tαf =
∑

[γ]∈Γ\ΓαΓ

f |kγ.

An important special case is where α normalises Γ. In this case we have Γ′ = Γ and Tαf = f |kα.
If moreover α is in Γ, then Tαf = f .

4.2 Hecke operators for Γ1(N)

We now choose a positive integer N and take Γ = Γ1(N). We recall that we have a group
isomorphism

Γ1(N)\Γ0(N)
∼−→ (Z/NZ)×

Γ1(N)

(
a

c

b

d

)
7−→ d mod N.

Furthermore, given an integer d coprime to N , we can find a matrix α =
(
a
c
b
d

)
∈ Γ0(N) with

lower right entry d. For any such α, we put

〈d〉f = Tαf for all f ∈ Mk(Γ1(N)).

More concretely, this means

(〈d〉f)(z) = (cz + d)−kf

(
az + b

cz + d

)
.

As the notation suggests, Tαf only depends on the class of α in Γ1(N)\Γ0(N), that is to say, on
d mod N . This gives an action of the group (Z/NZ)× on Mk(Γ1(N)).

Proposition 4.2. The subspace of (Z/NZ)×-invariants in Mk(Γ1(N)) is equal to Mk(Γ0(N)).

For the proof, see Exercise 4.3.
Next, we take α =

(
1
0

0
p

)
; note that this is the first matrix we consider that is not in SL2(Z).

Definition. Let N be a positive integer, and let p be a prime number. The Hecke operator Tp is
the C-linear endomorphism of Mk(Γ1(N)) defined by

Tpf =
1

p
T( 1

0
0
p

)f for all f ∈ Mk(Γ1(N)).

Remark. The factor 1
p is included to give nicer formulae.

We will need to work out the definition above of the operator Tp more concretely.
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Lemma 4.3. Let N be a positive integer, let p be a prime number, and let

α =

(
1

0

0

p

)
, Γ = Γ1(N), Γ′ = Γ ∩ α−1Γα.

Then we have

Γ′ =

{
γ =

(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣ γ ≡ (1

0

∗
1

)
(mod N) and p | b

}
.

A system of coset representatives for the quotient Γ′\Γ is given by
{(

1

0

b

1

) ∣∣∣∣ 0 ≤ b ≤ p− 1

}
if p | N,{(

1

0

b

1

) ∣∣∣∣ 0 ≤ b ≤ p− 1

}
∪
{(

ap

cN

1

1

)}
if p - N,

where a, c ∈ Z are such that ap− cN = 1.

Proof. Let γ =
(
a
c
b
d

)
∈ Γ. We compute

α−1γα =

(
1

0

0

p−1

)(
a

c

b

d

)(
1

0

0

p

)
=

(
1

0

0

p−1

)(
a

c

bp

dp

)
=

(
a

c/p

bp

d

)
.

Hence Γ′ consists of those matrices that are in Γ and whose upper right coefficient is divisible
by p; this implies the first claim of the lemma.

To find systems of coset representatives, we consider the map

Γ = Γ1(N)→ SL2(Fp)

in the cases p | N and p - N , respectively.
In the case p | N , the image of the map above consists of all matrices of the form

(
1
0
∗
1

)
, and

the inverse image of
{(

1
0

0
1

)}
⊂ SL2(Fp) equals Γ′. We therefore have

Γ′\Γ ∼=
{(

1

0

0

1

)} ∖ {(
1

0

b

1

) ∣∣∣∣ b ∈ Fp
}
.

This description shows that the matrices
(

1
0
b
1

)
∈ Γ for 0 ≤ b ≤ p − 1 form a system of coset

representatives for the quotient Γ′\Γ.
In the case p - N , the reduction map Γ → SL2(Fp) is surjective and the inverse image of the

group of lower triangular matrices in SL2(Fp) under this map is Γ′. This implies

Γ′\Γ ∼=
{(

a

c

0

a−1

) ∣∣∣∣ a ∈ F×p , c ∈ Fp
} ∖

SL2(Fp).

It is left to the reader to check (Exercise 4.4) that a system of coset representatives for this quotient
is {(

1

0

b

1

) ∣∣∣∣ b ∈ Fp
}
∪
{(

0

cN

1

1

)
mod p

}
,

where c is any integer with cN ≡ −1 (mod p). Given c, there exists a unique a ∈ Z such that
ap − cN = 1. This implies that the set of matrices given in the lemma is a system of coset
representatives for Γ′\Γ.
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We now apply this lemma to the definition of the operator T( 1
0

0
p

). For 0 ≤ b ≤ p− 1, we have

(
f |k
((

1

0

0

p

)(
1

0

b

1

)))
(z) =

(
f |k
(

1

0

b

p

))
(z)

=
pk

pk
f

(
z + b

p

)
= f

(
z + b

p

)
.

In the case p - N , choosing a matrix
(
ap
cN

1
1

)
as above, we note that(

1

0

0

p

)(
ap

cN

1

1

)
=

(
ap

cNp

1

p

)
=

(
a

cN

1

p

)(
p

0

0

1

)
.

This implies (
f |k
((

1

0

0

p

)(
ap

cN

1

1

)))
(z) =

(
f |k
((

a

cN

1

p

)(
p

0

0

1

)))
(z)

=

(
(〈p〉f)|k

(
p

0

0

1

))
(z)

= pk(〈p〉f)(pz).

The action of T( 1
0

0
p

) on f is therefore given by the formula

(T( 1
0

0
p

)f)(z) =

p−1∑
b=0

f

(
z + b

p

)
+ pk(〈p〉f)(pz),

where the last term is only included if p - N .

Notation. From now on, if f is a modular form (of some weight) for a group of the form Γ1(N),
we will write an(f) for the n-th coefficient of the q-expansion of f at the cusp ∞ of Γ.

Theorem 4.4. Let N be a positive integer, and let p be a prime number. The Hecke operator Tp
on Mk(Γ1(N)) is given by

(Tpf)(z) =
1

p

p−1∑
b=0

f

(
z + b

p

)
+ pk−1(〈p〉f)(pz),

and its effect on q-expansions at the cusp ∞ of Γ is given by

an(Tpf) = apn(f) + pk−1an/p(〈p〉f) for all n ≥ 0,

or equivalently

Tpf =

∞∑
n=0

(
apn(f) + pk−1an/p(〈p〉f)

)
qn with q = exp(2πiz).

Here the expression an/p(〈p〉f) is only included if p - N and p | n.

Proof. The first formula follows from the definition of Tp and the expression above for T( 1
0

0
p

). It
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remains to prove the q-expansion formula. We note that by definition of the q-expansion we have

(Tpf)(z) =
1

p

p−1∑
b=0

f

(
z + b

p

)
+ pk−1(〈p〉f)(pz)

=
1

p

p−1∑
b=0

∞∑
n=0

an(f) exp

(
2πi

n(z + b)

p

)
+ pk−1

∞∑
n=0

an(〈p〉f) exp(2πipnz)

=
1

p

∞∑
n=0

(
p−1∑
b=0

exp

(
2πinb

p

))
an(f) exp

(
2πinz

p

)
+ pk−1

∞∑
n=0

an(〈p〉f) exp(2πipnz).

Next we note that
p−1∑
b=0

exp

(
2πinb

p

)
=

{
p if p | n,
0 if p - n.

This implies

(Tpf)(z) =
∑
n≥0
p|n

an(f) exp

(
2πinz

p

)
+ pk−1

∞∑
n=0

an(〈p〉f) exp(2πipnz)

=

∞∑
n=0

apn(f) exp(2πinz) + pk−1
∞∑
n=0

an/p(〈p〉f) exp(2πinz),

as claimed.

4.3 Lattice interpretation of Hecke operators

We now give a more conceptual interpretation of Hecke operators in the case N = 1. (A similar
explanation exists for other subgroups, but it is a bit more involved.)

Let f ∈ Mk = Mk(SL2(Z)). As in §1.1, we write L for the set of all lattices in C and Λz for
the lattice Zz + Z. We recall that there is a unique function

F : L → C

that is homogeneous of weight k and satisfies

F(Λz) = f(z) for all z ∈ H.

Similarly, if p is a prime number, we write TpF for the homogeneous function of weight k corre-
sponding to Tpf .

Proposition 4.5. Let k ∈ Z, let f ∈ Mk(SL2(Z)), and let F be the homogeneous function
associated to f . Then for every prime number p, we have

(TpF)(Λ) =
1

p

∑
Λ′⊃Λ

(Λ′:Λ)=p

F(Λ′) for all Λ ∈ L.

Proof. By the homogeneity of F , it suffices to consider the case where Λ = Λz with z ∈ H. Using
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Theorem 4.4 and the fact that the group of diamond operators is trivial for N = 1, we compute

(TpF)(Λz) = (Tpf)(z)

=
1

p

p−1∑
b=0

f

(
z + b

p

)
+ pk−1f(pz)

=
1

p

p−1∑
b=0

F
(
Z
z + b

p
+ Z

)
+ pk−1F(Zpz + Z)

=
1

p

(
p−1∑
b=0

F
(
Z
z + b

p
+ Z

)
+ F

(
Zz + Z

1

p

))
.

It is not hard to check that the lattices Z z+b
p + Z (0 ≤ b ≤ p− 1) and Zz + Z 1

p are precisely the
lattices containing Λz with index p. This proves the formula.

Proposition 4.5 shows that the Hecke operator Tp “averages” the values F(Λ′) over all lattices
Λ′ containing Λ with index p. It is not a real average, however, because the sum is divided by p
instead of the number of such lattices, which is p+ 1.

4.4 The Hecke algebra

Let N ≥ 1 and k ∈ Z. By Proposition 4.1, the operators 〈d〉 for d ∈ (Z/NZ)× and Tp for
p prime preserve the C-vector spaces Mk(Γ1(N)) and Sk(Γ1(N)) of modular forms and cusp
forms, respectively.

Definition. Let N ≥ 1 and k ∈ Z. The Hecke algebra acting on Mk(Γ1(N)) is the C-subalgebra
of EndC Mk(Γ1(N)) generated by

• the 〈d〉 for d ∈ (Z/NZ)×;

• the Tp for p prime.

This algebra is denoted by T(Mk(Γ1(N))).

We similarly define the Hecke algebra T(Sk(Γ1(N))) as the C-subalgebra of EndC Sk(Γ1(N))
generated by the same operators. Then we have a surjective ring homomorphism

T(Mk(Γ1(N)))� T(Sk(Γ1(N)))

defined by sending each operator on Mk(Γ1(N)) to its restriction to Sk(Γ1(N)).

Proposition 4.6. For every N ≥ 1, the Hecke algebra T(Mk(Γ1(N))) is commutative.

Proof. We first note that all diamond operators commute, because the group (Z/NZ)× is com-
mutative; more precisely, for all d, e ∈ (Z/NZ)×, we have

〈d〉〈e〉 = 〈de〉 = 〈ed〉 = 〈e〉〈d〉.

Next, we show that Tp and 〈d〉 commute for all prime numbers p and all d ∈ (Z/NZ)×. We first
lift d to an integer coprime to Np and then to a matrix

γd =

(
a

c

b

d

)
∈ Γ0(Np).

As before, we put

α =

(
1

0

0

p

)
, Γ = Γ1(N), Γ′ = Γ ∩ α−1Γα.
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We also define

βd = α−1γdα =

(
a

c/p

pb

d

)
∈ Γ0(N).

We now compute
Tp(〈d〉f) = Tp(f |kγd)

=
1

p

∑
γ∈Γ′\Γ

(f |kγd)|kαγ

=
1

p

∑
γ∈Γ′\Γ

f |kαβdγ.

The matrix γd ∈ Γ0(N) normalises Γ, so βd normalises α−1Γα. Furthermore, βd ∈ Γ0(N) also
normalises Γ, and hence Γ′. Conjugation by βd therefore induces a permutation of the set Γ′\Γ,
so we can replace γ ∈ Γ′\Γ by δ = βdγβ

−1
d ∈ Γ′\Γ. This gives

Tp(〈d〉f) =
1

p

∑
δ∈Γ′\Γ

f |kαδβd

=
1

p

( ∑
δ∈Γ′\Γ

f |kαδ

)∣∣∣
k
βd

= 〈d〉(Tpf).

This shows that Tp and 〈d〉 commute, as claimed.
Next, we have to prove that Tp and Tp′ commute for all prime numbers p, p′. There are various

ways to show this. An intrinsic proof would be based on group theory; however, we will give a
more computational proof using q-expansions. Let f ∈ Mk(Γ1(N)). For all n ≥ 0, we have by
Theorem 4.4

an(Tp′f) = ap′n(f) + (p′)k−1an/p′(〈p′〉f)

and (applying the theorem to Tp′)

an(TpTp′f) = apn(Tp′f) + pk−1an/p(〈p〉Tp′f)

Using the fact that 〈p〉 and Tp′ commute and using the first formula, we can rewrite this as

an(TpTp′f) = apn(Tp′f) + pk−1an/p(Tp′(〈p〉f))

= ap′pn(f) + (p′)k−1apn/p′(〈p′〉f)

+ pk−1ap′n/p(〈p〉f) + pk−1(p′)k−1an/(pp′)(〈p〉〈p′〉f).

(As before, we put am(f) = 0 if m is not an integer, and 〈p〉 = 0 if p | N .) The right-hand side
is symmetric in p and p′ for all n, which shows that TpTp′f = Tp′Tpf . Since this holds for all
f ∈ Mk(Γ1(N)), we conclude that Tp and Tp′ commute in T(Mk(Γ1(N))).

Definition. Let N ≥ 1 and k ∈ Z. The Hecke operators Tn ∈ T(Mk(Γ1(N))) for n ≥ 1 are
defined as follows, starting from the Tp for p prime defined before:

T1 = id, Tp as before for p prime,

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 for p prime and r = 2, 3, . . . ,

Tn =
∏

p prime

Tpep for n =
∏

p prime

pep .

Note that the ordering of the factors in the products does not matter because the Hecke algebra
is commutative. Furthermore, the definition implies

Tmn = TmTn if m and n are coprime.

Also, if p|N , then 〈p〉 = 0, and the recursion for Tpr simply yields Tpr = T rp .
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4.5 The effect of Hecke operators on q-expansions

Proposition 4.7. Let f ∈ Mk(Γ1(N)), and let m ≥ 1. Then the q-expansion coefficients of Tmf
at the cusp ∞ of Γ1(N) are given by

an(Tmf) =
∑

d|gcd(m,n)

dk−1amn/d2(〈d〉f) for all n ≥ 0.

In particular, we have

a0(Tmf) =
∑
d|m

dk−1a0(〈d〉f), a1(Tmf) = am(f).

Proof. Since T1 = id, the claim is true for m = 1; by Theorem 4.4 it also holds when m is a prime
number.

Let p be a prime number; we prove by induction that the claim holds when m is a power of p.
The known base cases are m = 1 and m = p. For the induction step, let r ≥ 2 and suppose the
formula holds for m = p0, . . . , pr−1. We have to prove

an(Tprf) =
∑

0≤j≤r
pj |n

pj(k−1)apr−2jn(〈p〉jf) for all n ≥ 0.

By the definition of Tpr , we have

Tprf = TpTpr−1f − pk−1〈p〉Tpr−2f,

so that

an(Tprf) = an(TpTpr−1f)− pk−1an(〈p〉Tpr−2f)

= apn(Tpr−1f) + pk−1an/p(〈p〉Tpr−1f)− pk−1an(〈p〉Tpr−2f)

= apn(Tpr−1f) + pk−1an/p(Tpr−1〈p〉f)− pk−1an(Tpr−2〈p〉f)

=
∑

0≤j≤r−1
pj |pn

pj(k−1)apr−1−2jpn(〈p〉jf) + pk−1
∑

0≤j≤r−1
pj+1|n

pj(k−1)apr−1−2jn/p(〈p〉j+1f)

− pk−1
∑

0≤j≤r−2
pj |n

pj(k−1)apr−2−2jn(〈p〉j+1f)

=
∑

0≤j≤r−1
pj |pn

pj(k−1)apr−2jn(〈p〉jf) +
∑

0≤j≤r−1
pj+1|n

p(j+1)(k−1)apr−2−2jn(〈p〉j+1f)

−
∑

0≤j≤r−2
pj |n

p(j+1)(k−1)apr−2−2jn(〈p〉j+1f)

=
∑

0≤j≤r−1
pj |pn

pj(k−1)apr−2jn(〈p〉jf) +
∑

1≤j≤r
pj |n

pj(k−1)apr−2jn(〈p〉jf)

−
∑

1≤j≤r−1
pj |pn

pj(k−1)apr−2jn(〈p〉jf).

The first and third summation cancel except for the term corresponding to j = 0, which is aprn(f).
This gives

an(Tprf ) = aprn(f) +
∑

1≤j≤r
pj |n

pj(k−1)apr−2jn(〈p〉jf).
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This proves the claim for m = pr. By induction, we conclude that the claim holds for all prime
powers m and for all n ≥ 0.

Next we prove that if m and m′ are coprime and the claim holds for m and m′, then the claim
also holds for mm′. We compute

an(Tmm′f) = an(Tm(Tm′f))

=
∑

d|gcd(m,n)

dk−1amn/d2(〈d〉Tm′f)

=
∑

d|gcd(m,n)

dk−1amn/d2(Tm′〈d〉f)

=
∑

d|gcd(m,n)

dk−1
∑

d′|gcd(m′,mn/d2)

(d′)k−1am′(mn/d2)/(d′)2(〈d′〉(〈d〉f))

=
∑

d|gcd(m,n)

∑
d′|gcd(m′,mn/d2)

(dd′)k−1amm′n/(dd′)2(〈dd′〉f).

Since m and m′ are coprime, we have

gcd(m′,mn/d2) = gcd(m′, n) for all d | m.

Furthermore, as d and d′ range over the divisors of gcd(m,n) and gcd(m′, n), respectively, e = dd′

ranges over the divisors of gcd(mm′, n). This implies

an(Tmm′f) =
∑

e|gcd(mm′,n)

ek−1amm′n/e2(〈e〉f),

which proves the claim for mm′.
The claim for any m ≥ 1 is now proved by induction on the number of prime factors of m.

4.6 Hecke eigenforms

Definition. A (Hecke) eigenform is a non-zero modular form f ∈ Mk(Γ1(N)) that is an eigen-
vector for all Hecke operators Tp for p prime and all diamond operators 〈d〉 for d ∈ (Z/NZ)×. A
normalised eigenform is an eigenform f satisfying a1(f) = 1.

Let f ∈ Mk(Γ1(N)) be an eigenform. If λn is the eigenvalue of Tn on f , then taking a1 in the
equation Tnf = λnf and applying Proposition 4.7, we obtain

an(f) = λna1(f) for all n ≥ 1. (4.1)

If f is an eigenform with a1(f) = 0, then (4.1) shows that an(f) = 0 for all n ≥ 1. Since f 6= 0
by assumption, this is only possible if k = 0, in which case f is a constant function. This means
that when k ≥ 1, any eigenform can be scaled to a normalised eigenform.

Theorem 4.8. Let f ∈ Mk(Γ1(N)) be a normalised eigenform. Then the eigenvalues of the Hecke
operators on f are equal to the q-expansion coefficients of f at the cusp ∞ of Γ1(N), i.e.

Tnf = an(f) · f for all n ≥ 1.

Proof. This follows from (4.1) and the fact that a1(f) = 1.

We now consider the eigenvalues of the diamond operators 〈d〉 for d ∈ (Z/NZ)×. Let us write

χ : (Z/NZ)× → C
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for the map that sends every d ∈ (Z/NZ)× to the eigenvalue of 〈d〉 on f . Then for all d, e ∈
(Z/NZ)× we have

χ(de)f = 〈de〉f = 〈d〉(〈e〉f) = 〈d〉(χ(e)f) = χ(d)χ(e)f,

so χ is a Dirichlet character modulo N (see §3.7).

Definition. Let N ≥ 1, let k ∈ Z, and let χ : (Z/NZ)× be a group homomorphism. The space
of modular forms of weight k and character χ for Γ1(N) is the C-linear subspace of Mk(Γ1(N))
consisting of the forms f satisfying

〈d〉f = χ(d)f for all d ∈ (Z/NZ)×.

It is denoted by Mk(Γ1(N), χ).

Remark. Some alternative notations for this space are Mk(N,χ) and Mk(Γ0(N), χ). However,
note that Mk(Γ0(N), χ) is in general not a subspace of Mk(Γ0(N)).

Similarly, we define the space of cusp forms of weight k and character χ for Γ1(N) as the
intersection

Sk(Γ1(N), χ) = Mk(Γ1(N), χ) ∩ Sk(Γ1(N))

in Mk(Γ1(N)).

Proposition 4.9. The C-vector space Mk(Γ1(N)) has a decomposition

Mk(Γ1(N)) =
⊕
χ

Mk(Γ1(N), χ)

as the direct sum of its subspaces Mk(Γ1(N), χ) with χ running through all Dirichlet characters
modulo N . The analogous statement holds for the space Sk(Γ1(N)).

Proof. Because the operators 〈d〉 have finite order, they are diagonalisable. Since they com-
mute with each other, the space Mk(Γ1(N)) can be decomposed as a direct sum of simultaneous
eigenspaces for all the 〈d〉 (see also Theorem A.9). Let E be such an eigenspace, and let χ(d)
denote the eigenvalue of 〈d〉 on E. Then for all d, e ∈ (Z/NZ)×, the fact that 〈de〉 = 〈d〉〈e〉 implies
χ(de) = χ(d)χ(e), so χ is a Dirichlet character. Therefore the simultaneous eigenspaces E are
precisely the spaces Mk(Γ1(N), χ) with χ running through the Dirichlet characters modulo N .

Theorem 4.10. Let f ∈ Mk(Γ1(N), χ) be a normalised eigenform, and let
∑∞
n=0 anq

n be the
q-expansion of f at ∞. Then the an for n ≥ 1 can be expressed recursively in terms of the ap for
p prime by

a1 = 1,

apr = apapr−1 − pk−1χ(p)apr−2 for p prime and r = 2, 3, . . . ,

an =
∏

p prime

apep for n =
∏

p prime

pep .

Proof. This follows from Theorem 4.8 and the definition of the Hecke operators.

Corollary 4.11. With the notation of the theorem, we have

amn = aman if gcd(m,n) = 1.

Example. We take N = 1 and k = 12. We recall that there is a cusp form ∆ ∈ S12(SL2(Z)),
which is unique up to scaling since this space of cusp forms is one-dimensional. Since the Hecke
algebra preserves the space of cusp forms, ∆ is automatically an eigenform, and it has trivial
character because N = 1.
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We also recall that Ramanujan’s τ -function is defined by the q-expansion of ∆ as follows:

∆ =

∞∑
n=1

τ(n)qn.

Applying the results above to the eigenform ∆, we obtain the recurrence relations

τ(pr) = τ(p)τ(pr−1)− p11τ(pr−2) for p prime and r = 2, 3, . . .

and
τ(mn) = τ(m)τ(n) if gcd(m,n) = 1,

which were conjectured by Ramanujan.

4.7 Exercises

Exercise 4.1.

(a) Let Γ be a congruence subgroup, k ∈ Z, f ∈ Mk(Γ), α ∈ GL+
2 (Q), and denote Γ′ =

Γ ∩ α−1Γα. Prove that f |kα ∈Mk(Γ′) (provide all details).

(b) Prove Proposition 4.1.

Exercise 4.2. Let Γ be a congruence subgroup of SL2(Z), and let k ∈ Z.

(a) Let Γ′ be a congruence subgroup contained in Γ, and let g be in Mk(Γ′). Show that g is in
Mk(Γ) if and only if g is invariant under the weight k action of Γ. (Hint: use Exercise 3.12.)

(b) Let f be in Mk(Γ), and let α be in GL+
2 (Q). Show that there exists a congruence subgroup

Γ′ contained in Γ ∩ α−1Γα such that for all γ ∈ Γ, the function f |kαγ is in Mk(Γ′).

(c) Show that the function

Tαf =
∑

γ∈Γ′\Γ

f |kαγ

is in Mk(Γ).

Exercise 4.3. Prove Proposition 4.2.

Exercise 4.4. Read the proof of Lemma 4.3 and check that{(
1

0

b

1

) ∣∣∣∣ b ∈ Fp
}
∪
{(

0

cN

1

1

)
mod p

}
,

where c is any integer with cN ≡ −1 (mod p), indeed forms a system of coset representatives for
the quotient given at the end of the proof.

Exercise 4.5. Let N be a positive integer, let p be a prime number, and let

α =

(
1

0

0

p

)
, Γ = Γ0(N) (instead of Γ1(N)), Γ′ = Γ ∩ α−1Γα.

Determine a system of coset representatives for the quotient Γ′\Γ.

Exercise 4.6. Prove that for any even integer k ≥ 4 and prime p we have

TpGk = σk−1(p)Gk

for the Eisenstein series Gk and the Hecke operator Tp on Mk(SL2(Z)).
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Exercise 4.7. Let p be a prime and consider the lattice Λ := Zω1 + Zω2 where ω1, ω2 ∈ C∗ and
ω1/ω2 6∈ R.

(a) Show that the lattices Λ′ ⊂ C satisfying Λ′ ⊃ Λ and [Λ′ : Λ] = p are:

• Zω1+bω2

p + Zω2 with b = 0, 1 . . . , p− 1

• Zω1 + Zω2

p ,

and that these constitute p+ 1 distinct lattices.

(b) Provide all details to the claim made in the first sentence of the proof of Proposition 4.5.

Exercise 4.8. Let p be a prime and consider the lattice Λ := Zω1 + Zω2 where ω1, ω2 ∈ C∗ and
ω1/ω2 6∈ R.

(a) Show that there are exactly p2 + p + 1 lattices Λ′ ⊂ C satisfying Λ′ ⊃ Λ and [Λ′ : Λ] = p2,
and give a list of these.

(b) Try to generalize part (a) (e.g. replace [Λ′ : Λ] = p2 by [Λ′ : Λ] = pk with k ∈ Z>0).

Exercise 4.9. Calculate the matrix of the Hecke operator T2 on the space S24(SL2(Z)) with
respect to a basis of your choice. Show that the characteristic polynomial of T2 is x2 − 1080x −
20468736. (You may use a computer, but not a package in which this exercise can be solved with
a one-line command.)

Exercise 4.10. Consider the formal (so we do not worry about convergence) generating function
of the Hecke operators Tn on Mk(Γ1(N))

g(s) :=

∞∑
n=1

Tnn
−s.

Deduce the following formal product expansion (over all primes p):

g(s) =
∏
p

(
id− Tpp−s + 〈p〉pk−1−2s

)−1
.

Exercise 4.11. Let k,N ∈ Z>0, and let χ be a Dirichlet character modulo N .

(a) For γ ∈ SL2(Z), denote by dγ the lower-right entry of γ. Show that

Mk(N,χ) = {f ∈Mk(Γ1(N)) : f |kγ = χ(dγ)f for all γ ∈ Γ0(N)}

and

Sk(N,χ) = {f ∈ Sk(Γ1(N)) : f |kγ = χ(dγ)f for all γ ∈ Γ0(N)}.

(b) Let 1N denote the trivial character modulo N . Show that

Mk(N, 1N ) = Mk(Γ0(N)) and Sk(N, 1N ) = Sk(Γ0(N)).

Exercise 4.12. Let k ∈ Z>0, let f ∈ Mk(SL2(Z)) be an eigenform, normalised such that a1(f) =
1, and let p be a prime number. Let α, β ∈ C be the roots of the polynomial t2 − ap(f)t+ pk−1.

Note: You may use without proof that ap(f) is real. This fact will be proved in Exercise 5.1.

(a) Prove the formula

apr (f) =

r∑
j=0

αjβr−j for all r ≥ 0.
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(b) Show that the following conditions are equivalent: (1) |ap(f)| ≤ 2p(k−1)/2; (2) α and β are
complex conjugates of absolute value p(k−1)/2.

(c) Show that if the equivalent conditions of part (b) hold for all prime numbers p, then the
q-expansion coefficients of f satisfy the bound

|an(f)| ≤ σ0(n)n(k−1)/2 for all n ≥ 1,

where σ0(n) is the number of (positive) divisors of n.

Note: If f is a cusp form, then the conditions of part (b) do in fact hold. This follows from two
very deep theorems proved by P. Deligne in 1968 and 1974.

Exercise 4.13. Play around with the functions in SageMath for some of your favorite choices of
congruence subgroup, modular forms space, etc.

Exercise 4.14. In this exercise you are supposed to make (partly) use of SageMath. Please attach
your code when handing in the exercise, preferably by using the print button on the top right in
the SageMath worksheet with which you can generate a PDF file. (Any comments can also be
written down in the SageMath worksheet.)

(a) Compute a basis for S2(Γ0(26)).

(b) Find a basis B for S2(Γ0(26)) such that all the basis elements are eigenvectors for the Hecke
operator T2.

(c) Check that all the basis elements in B are eigenvectors for the Hecke operators Tn with
1 ≤ n ≤ 101.

Note: In fact, these basis elements are Hecke eigenforms.

(d) The following equation defines a curve in the plane:

E1 : y2 + xy + y = x3. (4.2)

(It is a so-called affine equation for an elliptic curve.) Tell SageMath about this object by
typing E1=EllipticCurve([1,0,1,0,0]) .
For a prime number p, the number of solutions to (4.2) with x, y ∈ Fp := Z/pZ plus one is
denoted by Np(E1), i.e.

Np(E1) = #{(x, y) ∈ F2
p : y2 + xy + y = x3}+ 1.

(The +1 is there, because it is more natural to count solutions in the so-called projective
closure, which boils down to one more solution ‘at infinity’.) SageMath can compute these
numbers by typing E1.Np(prime) where prime is some prime number (e.g. prime=79).

Find an explicit relation between Np(E1) and ap(f) for one of the basis elements f in B and
all primes p < 1000.

(e) Now consider
E2 : y2 + xy + y = x3 − x2 − 3x+ 3,

which is given in SageMath by E2=EllipticCurve([1,-1,1,-3,3]) .
Similarly as in (d), we set

Np(E2) = #{(x, y) ∈ F2
p : y2 + xy + y = x3 − x2 − 3x+ 3}+ 1

and this can be computed in SageMath by typing E2.Np(prime) .

Find an explicit relation between Np(E2) and ap(g) for one of the basis elements g in B and
all primes p < 1000.

Note: This illustrates the modularity of the elliptic curves E1 and E2.
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Chapter 5

The theory of newforms

5.1 The Petersson inner product

Let Γ be a congruence subgroup and k ∈ Z. We have constructed the finite-dimensional C-vector
space Mk(Γ) of modular forms and its subspace Sk(Γ) of cusp forms. If Γ is of the form Γ1(N),
we have also constructed commutative C-algebras T(Mk(Γ)) and T(Sk(Γ)) acting on these spaces.
We will now define an additional structure, namely a Hermitean inner product on Sk(Γ1(N)).

Lemma 5.1. Let U be a subset of H whose boundary consists of finitely many line segments and
circle arcs. Let f : U → C be a continuous function, and let γ ∈ SL2(R). Then we have∫

z∈U
f(z)

dx dy

y2
=

∫
z∈γ−1U

f(γz)
dx dy

y2
(z = x+ iy).

Proof. We view H as an open subset of R2 with coordinates (x, y) and γ =
(
a
c
b
d

)
as a real

differentiable map H→ H. We write

γ1(x, y) = <γ(x+ iy), γ2(x, y) = =γ(x+ iy).

The Jacobian matrix of this map at a point z = x+ iy is

Jγ(x, y) =

(
∂γ1/∂x ∂γ1/∂y
∂γ2/∂x ∂γ2/∂y

)
.

Since γ is holomorphic, it satisfies the Cauchy–Riemann equations

∂γ2

∂y
=
∂γ1

∂x
,

∂γ2

∂x
= −∂γ1

∂y
,

and its derivative can be expressed as

γ′(z) =
∂γ1

∂x
+ i

∂γ2

∂x
.

Therefore we have

det Jγ(x, y) =
∂γ1

∂x

∂γ2

∂y
− ∂γ1

∂y

∂γ2

∂x

=

(
∂γ1

∂x

)2

+

(
∂γ2

∂x

)2

= |γ′(x+ iy)|2.

67
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On the other hand, by Proposition 1.2 part (i), we have

=(γz) =
=z

|cz + d|2
.

Furthermore, one computes

γ′(z) =
1

(cz + d)2
,

so that

|det Jγ(z)| = |γ′(z)|2 =
=(γz)2

(=z)2
.

This implies ∫
z∈U

f(z)
dx dy

y2
=

∫
z∈γ−1U

f(γz)|det Jγ(z)| dx dy
(=γz)2

=

∫
z∈γ−1U

f(γz)
dx dy

y2
.

This proves the lemma.

Remark. In the language of differential forms, we have proved that the differential 2-form dx∧dy
y2

is SL2(R)-invariant.

Let Γ be a congruence subgroup of SL2(Z). We recall the following notation (see Proposi-
tion 3.2). Let R be a system of representatives for the quotient Γ\SL2(Z). We write

DΓ =
⋃
γ∈R

γD,

where D is the standard fundamental domain for the action of SL2(Z) on H. Note that DΓ depends
on the choice of R.

Let F : H→ C be a continuous function that is Γ-invariant in the sense that

F (γz) = F (z) for all γ ∈ Γ, z ∈ H.

We consider the integral ∫
z∈DΓ

F (z)
dx dy

y2
. (5.1)

By Lemma 5.1, the value of this integral does not depend on the choice of the system of represen-
tatives R.

In the next two results, we will consider subsets of DΓ that can be considered as “regions
around the cusps” and are defined as follows. For Y > 0, let UY be the following subset of H:

UY = {z = x+ iy | −1/2 ≤ x ≤ 1/2 and y ≥ Y }

Then DΓ is the union of some compact set K ⊂ H and the sets

γUY = {γz | γ ∈ UY }

for γ ∈ R.

Lemma 5.2. Suppose that for all γ ∈ SL2(Z) there exist real numbers cγ > 0 and eγ < 1 such
that

|F (γz)| ≤ cγ(=z)eγ for =z sufficiently large.

Then the integral (5.1) converges.
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Proof. The integral (5.1) restricted to K converges because K is compact. It therefore remains to
show that the integral converges on each of the sets γUY for γ ∈ R. By Lemma 5.1, we have∣∣∣∣∫

z∈γUY
F (z)

dx dy

y2

∣∣∣∣ =

∣∣∣∣∫
z∈UY

F (γz)
dx dy

y2

∣∣∣∣
≤ cγ

∫
z∈UY

yeγ
dx dy

y2

= cγ

∫ ∞
y=Y

yeγ−2dy.

This converges since eγ − 2 < −1 by assumption.

Let k be an integer. Let f , g be two modular forms of weight k for our congruence subgroup Γ.
We apply the results above to the continuous (but in general non-holomorphic) function

F (z) = f(z)g(z)(=z)k.

Lemma 5.3. The function F (z) is Γ-invariant. If k = 0 or if for each cusp c at least one of the
forms f and g vanishes at c, then F is bounded.

Proof. Let γ =
(
a
c
b
d

)
∈ Γ. By the modularity of f and g and by Proposition 1.2 part (i), we have

f(γz) = (cz + d)kf(z),

g(γz) = (cz + d)kg(z),

(=γz)k = |cz + d|−2k(=z)k.

Multiplying these three equations yields F (γz) = F (z), so F is Γ-invariant.
Since F is Γ-invariant, proving that F is bounded means proving that it is bounded on DΓ.

As in the proof of Lemma 5.2, we consider the regions around the γUY around the cusps. Let
γ =

(
a
c
b
d

)
∈ SL2(Z) and let c be the corresponding cusp, i.e. the Γ-orbit of γ∞ ∈ P1(Q) in

Cusps(Γ) = Γ\P1(Q). Then by the definition of the q-expansion of f at c, we have

(cz + d)−kf(γz) = (f |kγ)(z)

=

∞∑
n=0

an,c(f) exp(2πinz/hc),

where hc is the width of the cusp c, and similarly for g. Therefore

F (γz) = f(γz)g(γz)(=γz)k

= (f |kγ)(z)(cz + d)k(g|kγ)(z)(cz + d)k|cz + d|−2k(=z)k

=

( ∞∑
n=0

an,c(f) exp(2πinz/hc)

)( ∞∑
n=0

an,c(g) exp(2πinz/hc)

)
(=z)k.

If a0,c(f) = 0 or a0,c(g) = 0, then the absolute value of the expression above is bounded by a
constant multiple of | exp(2πiz/hc)|yk for y ≥ Y . In particular, F (γz) is bounded on γUY for any
Y > 0. Since the complement of all the γUY in DΓ is a compact subset of H, the function F is
bounded on all of DΓ.

For f, g ∈ Mk(Γ), we define

〈f, g〉Γ =

∫
z∈DΓ

f(z)g(z)yk
dx dy

y2
, (5.2)

where as usual we write the complex coordinate z in terms of the real coordinates x and y as
z = x+iy. This is independent of the choice of the set of representatives used to defineDΓ; however,
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to ensure that the integral converges, we need additional conditions. Combining Lemma 5.2 and
Lemma 5.3, we observe that the integral above does converge whenever at least one of f and g is
a cusp form. In particular, it gives rise to a well-defined map

Mk(Γ)× Sk(Γ)→ C.

Furthermore, it makes sense to introduce the following definition.

Definition. Let Γ be a congruence subgroup, and let k be an integer. The Petersson inner product
on the C-vector space Sk(Γ) is the Hermitean inner product 〈 , 〉Γ defined by (5.2).

Unfortunately, the Petersson inner product on Sk(Γ) does not extend to an inner product on
the whole space Mk(Γ), since 〈f, f〉Γ diverges for every f ∈ Mk(Γ) that is not a cusp form.

Definition. Let Γ be a congruence subgroup, and let k be an integer. The Eisenstein subspace
(or space of Eisenstein series) in Mk(Γ), denoted by Ek(Γ), is the space

Ek(Γ) =
{
f ∈ Mk(Γ)

∣∣ 〈f, g〉Γ = 0 for all g ∈ Sk(Γ)
}
.

The Eisenstein subspace can be regarded as the “orthogonal complement” of Sk(Γ) with respect
to 〈 , 〉Γ, even though 〈 , 〉Γ does not define an inner product on all of Mk(Γ).

5.2 The adjoints of the Hecke operators

We would like to apply the spectral theorem from linear algebra (Theorem A.9) to the spaces of
cusp forms Sk(Γ1(N)), equipped with the Petersson inner product, to obtain decompositions of
these spaces into smaller spaces. We will show in this section that the diamond operators 〈d〉 are
normal, as are the Hecke operators Tm with gcd(m,N) = 1. For general Tm, we will need a more
sophisticated theory, which we will develop in §5.3.

To compute the adjoints of the various operators in the Hecke algebra T(Sk(Γ1(N))), we begin
by looking at a general congruence subgroup Γ. Let α be an element of GL+

2 (Q), and let Tα be
the operator defined in §4.1. We recall that Tα is defined by

Tαf =
∑

γ∈Γα\Γ

f |kαγ,

where Γα is the subgroup Γ ∩ α−1Γα of Γ. (Earlier we denoted Γα by Γ′, but below we will need
to distinguish Tα for different α.)

Notation. For α ∈ GL+
2 (Q), we write

α∗ = (detα)α−1 ∈ GL+
2 (Q).

More concretely, if α =
(
a
c
b
d

)
, then α∗ =

(
d
−c
−b
a

)
.

Notation. For γ =
(
a
c
b
d

)
∈ GL+

2 (Q) and z ∈ H, we write

j(γ, z) = cz + d. (5.3)

With this notation, we have

(f |kγ)(z) =
(det γ)k

j(γ, z)k
f(γz),

=(γz) =
det γ

|j(γ, z)|2
=z,

d

dz
(γz) =

det γ

j(γ, z)2
.
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Lemma 5.4. For all γ, δ ∈ GL+
2 (Q) and all z ∈ H, we have

j(γδ, z) = j(γ, δz) · j(δ, z),
j(γ, z) · j(γ−1, γz) = 1,

j(id, z) = 1.

Proof. We prove the first identity; the third identity is immediate and the second easily follows
from the other two.

We write γ =
(
a
c
b
d

)
and δ =

(
e
g
f
h

)
. Then the bottom row of γδ is given by

γδ =

(
∗

ce+ dg

∗
cf + dh

)
.

This implies

j(γδ, z) = (ce+ dg)z + (cf + dh)

= c(ez + f) + d(gz + h)

=

(
c
ez + f

gz + h
+ d

)
(gz + h)

= j(γ, δz)j(δ, z).

This is what we had to prove.

Remark. The first equation in Lemma 5.4 is called the cocycle condition. Similar equations occur
in other contexts involving group actions.

Proposition 5.5. Let Γ be a congruence subgroup, and let k be an integer. Then for all f, g ∈
Mk(Γ) such that at least one of f and g is a cusp form, and for all α ∈ GL+

2 (Q), we have

〈Tαf, g〉Γ = 〈f, Tα∗g〉Γ.

Corollary 5.6. With the notation above, the adjoint of the operator Tα on Sk(Γ) with respect to
the inner product 〈 , 〉Γ is the operator Tα∗ .

Proof of Proposition 5.5. We note that

Tαf =
∑

γ∈Γα\Γ

(detαγ)k

j(αγ, z)k
f(αγz)

This implies that we can compute 〈Tαf, g〉 as

〈Tαf, g〉Γ =

∫
z∈DΓ

∑
γ∈Γα\Γ

(detαγ)k

j(αγ, z)k
f(αγz)g(z)(=z)k dx dy

y2
.

The next step is to use the identities

det(αγ) = det(α),

j(αγ, z)−k = j(α, γz)−kj(γ, z)−k,

g(z) = j(γ, z)−kg(γz),

(=z)k = |j(γ, z)|2k(=γz)k;
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here we have used that det γ = 1 (because γ ∈ Γ ⊂ SL2(Z)) and that g is modular of weight k
for Γ. Substituting these identities in the equation above for 〈Tαf, g〉 gives

〈Tαf, g〉Γ = (detα)k
∫
z∈DΓ

∑
γ∈Γα\Γ

j(α, γz)−kf(αγz)g(γz)(=γz)k dx dy
y2

.

The expression that is being summed and integrated is a function of γz. Instead of integrating
over z ∈ DΓ and summing over γ ∈ Γα\Γ, we can integrate directly over z ∈ DΓα . This gives

〈Tαf, g〉Γ = (detα)k
∫
z∈DΓα

j(α, z)−kf(αz)g(z)(=z)k dx dy
y2.

We need to prove that this is equal to 〈f, Tα∗g〉Γ. We note that

Tα∗g = (detα)kTα−1g.

We now apply the formula for 〈Tαf, g〉Γ proved above to 〈Tα−1g, f〉Γ. This gives

〈f, Tα∗g〉Γ = (detα)k〈f, Tα−1g〉Γ
= (detα)k〈Tα−1g, f〉Γ

= (detα)k(detα−1)k
∫
z∈DΓ

α−1

j(α−1, z)−kg(α−1z)f(z)(=z)k dx dy
y2

=

∫
z∈DΓ

α−1

j(α−1, z)−kf(z)g(α−1z)(=z)k dx dy
y2

.

We make the change of variables z = αw. We note that

Γα−1 = Γ ∩ αΓα−1

= αΓαα
−1,

j(α−1, αw) = j(α,w)−1,

=(αw) =
(detα)k

|j(α,w)|2k
(=w)k.

Furthermore, letting z range over DΓα−1 has the effect of letting w range over some fundamental
domain for Γα. Putting all of this together, we get

〈f, Tα∗g〉Γ = (detα)k
∫
w∈DΓα

j(α,w)−kf(αw)g(w)(=w)k
dx′ dy′

y′2
(w = x′ + iy′).

This is the same as the expression we found above for 〈Tαf, g〉Γ, so the claim is proved.

Remark. At the expense of slightly more abstraction and proving some more general facts first,
one can reduce the calculation in the proof above to

〈Tαf, g〉Γ = 〈f |kα, g〉Γα
= 〈f, g|kα∗〉Γα∗
= 〈f, Tα∗g〉.

Corollary 5.7. Let Γ be a congruence subgroup, and let k be an integer. Then all operators Tα
on Mk(Γ), for α ∈ GL+

2 (Q), preserve the Eisenstein subspace Ek(Γ) of Mk(Γ).

Proof. Let f ∈ Ek(Γ), and let α ∈ GL+
2 (Q). Then for all g ∈ Sk(Γ), Proposition 5.5 implies

〈Tαf, g〉Γ = 〈f, Tα∗g〉Γ = 0,

since Tα∗g is still in Sk(Γ). Therefore Tαf is orthogonal to Sk(Γ), and hence is in Ek(Γ).
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The following lemma will be used to prove Proposition 5.9 below.

Lemma 5.8. Let Γ be a congruence subgroup, and let k be an integer. Let α, β ∈ GL+
2 (Q) be such

that at least one of them normalises Γ. Then we have

Tαβ = TβTα and Tβα = TαTβ

as operators on Mk(Γ).

Proof. By symmetry, we may assume that β normalises Γ. Then we have

Γβ = Γ ∩ β−1Γβ = Γ

and
Γβα = Γ ∩ α−1β−1Γβα

= Γ ∩ α−1Γα

= Γα.

Furthermore, conjugation by β gives isomorphisms

Γ
∼−→ Γ

α−1Γα
∼−→ β−1α−1Γαβ

Γα
∼−→ Γαβ

where all maps are defined by γ 7→ β−1γβ and the last isomorphism is obtained from the first two
by taking intersections.

Let f be an element of Mk(Γ). We have

Tαf =
∑

γ∈Γα\Γ

f |kαγ,

Tβf = f |kβ,

Tβαf =
∑

γ∈Γβα\Γ

f |kβαγ

=
∑

γ∈Γα\Γ

(f |kβ)|kαγ

= Tα(Tβf),

Tαβf =
∑

γ∈Γαβ\Γ

f |kαβγ

=
∑

δ∈Γα\Γ

f |kαβ(β−1δβ)

=
∑

δ∈Γα\Γ

f |kαδβ

=
∑

δ∈Γα\Γ

(f |kαδ)|kβ

= Tβ(Tαf),

where δ = βγβ−1. This proves that Tβα = TαTβ and Tαβ = TβTα, as claimed.

Remark. The assumption that α or β normalises Γ in Lemma 5.8 is necessary. For instance, take
Γ = Γ1(N), let p a prime number not dividing N , and consider α =

(
1
0

0
p

)
and β =

(
p
0

0
1

)
. If the

lemma would hold for this choice of α and β, i.e.

T( 1
0

0
p )T( p0

0
1 )

?
= T( p0

0
p ),
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then Proposition 5.9 would imply

p2〈p〉−1TpTp
?
= pkid,

which is in general false, for example because Tp is not invertible in general.

We now apply Proposition 5.5 to the congruence groups Γ1(N) and to the matrices α ∈ GL+
2 (Q)

defining the diamond and Hecke operators on Mk(Γ1(N)).

Proposition 5.9. Let N ≥ 1, and let k be an integer. In the Hecke algebra T(Sk(Γ1(N))),
consider the diamond operators 〈d〉 for d ∈ (Z/NZ)× and the Hecke operators Tm for m ≥ 1 with
gcd(m,N) = 1. The adjoints of these operators with respect to the Petersson inner product are

〈d〉† = 〈d〉−1 for all d ∈ (Z/NZ)×,

T †m = 〈m〉−1Tm if gcd(m,N) = 1.

Proof. We first prove the formula for the diamond operators. Let α =
(
a
c
b
d

)
be an element of

Γ0(N), so that Tα is the diamond operator 〈d〉. We have

α∗ = α−1 =

(
d

−c
−b
a

)
∈ Γ0(N),

and this matrix defines the operator 〈a〉. From the fact that N divides c it follows that

1 = detα = ad− bc ≡ ad mod N,

so 〈a〉 = 〈d〉−1. We conclude that the adjoint of 〈d〉 is 〈d〉−1.
To prove the formula for the Hecke operators, we start with the Tp for p a prime number not

dividing N . By Proposition 5.5, we have

Tp =
1

p
T( 1

0
0
p

), T †p =
1

p
T( p

0
0
1

).
We therefore have to prove the identity

T( p
0

0
1

) = 〈p〉−1T( 1
0

0
p

).
By the Chinese remainder theorem and the fact that gcd(p,N) = 1, we can choose d ∈ Z such
that {

d ≡ 1 (mod N),

d ≡ 0 (mod p).

Then we have gcd(d,N) = 1, so we can choose a, b ∈ Z such that ad − bN = 1. Since d ≡ 1
(mod N), the matrix

(
a
N

b
d

)
is in Γ1(N). This implies T( aN

b
d ) = id. We note that(

a

N

b

d

)(
p

0

0

1

)
=

(
ap

Np

b

d

)
=

(
1

0

0

p

)(
ap

N

b

d/p

)
,

and since d ≡ 0 (mod p), the matrix
(
ap
N

b
d/p

)
is in Γ0(N). By Lemma 5.8, we therefore get

T( p0
0
1 ) = T( p0

0
1 )T( aN

b
d )

= T( aN
b
d )( p0

0
1 )

= T( 1
0

0
p )( apN

b
d/p )

= T( apN
b
d/p )T( 1

0
0
p ).
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Again using d ≡ 1 (mod N), we obtain

T( apN
b
d/p ) = 〈d/p〉 = 〈p〉−1.

We conclude that T( p0
0
1 ) = 〈p〉−1T( 1

0
0
p ), as claimed.

To prove the claim that T †m = 〈m〉−1Tm in the case where m is a power of a prime number
p - N , say m = pr, we use induction on r. The claim is trivially true for r = 0, and we proved it
above for r = 1. Let r ≥ 2, and assume that the claim holds for m = 1, p, . . . , pr−1. We have by
definition

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 .

This implies

T †pr = T †pr−1T
†
p − pk−1T †pr−2〈p〉†

= 〈pr−1〉−1Tpr−1〈p〉−1Tp − pk−1〈pr−2〉−1Tpr−2〈p〉−1.

By the commutativity of the Hecke algebra, we can rewrite this as

Tpr = 〈pr〉−1TpTpr−1 − pk−1〈pr〉−1〈p〉Tpr−2

= 〈pr〉−1Tpr ,

which proves the claim for m = pr.
Finally, for m, n coprime, we have

T †mn = T †nT
†
m

= 〈n〉−1Tn〈m〉−1Tm

= 〈mn〉−1Tmn.

The claim for general m with gcd(m,N) = 1 now follows by induction on the number of prime
factors of N .

Corollary 5.10. The operators Tm for gcd(m,N) = 1 and 〈d〉 for d ∈ (Z/NZ)× form a com-
muting system of normal operators.

Corollary 5.11. The space Sk(Γ1(N)) admits a basis consisting of simultaneous eigenvectors for
the operators Tm for gcd(m,N) = 1 and 〈d〉 for d ∈ (Z/NZ)×.

Unfortunately, this result cannot be generalised to all Hecke operators Tm. For this reason,
we will introduce the concept of oldforms and newforms.

5.3 Oldforms and newforms (Atkin–Lehner theory)

Recall that if Γ′ ⊂ Γ are congruence subgroups, then any modular form for Γ is also a modular
form for Γ, so for every k ∈ Z we have an inclusion

Mk(Γ)� Mk(Γ′)

f 7→ f.

Recall also that for α ∈ GL+
2 (Q) and Γα = Γ ∩ α−1Γα, we have an inclusion

Mk(Γ)→ Mk(Γα)

α 7→ f |kα.

Now consider two positive integers M , N such that M divides N . Let e be a divisor of N/M . We
take

α =

(
e

0

0

1

)
.
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As a special case of Exercise 3.3(b), we have the inclusion

Γ1(M) ∩ α−1Γ1(M)α ⊇ Γ1(eM) ⊇ Γ1(N).

Now
(f |kα)(z) = ekf(ez) for all f ∈ Mk(Γ1(M)).

This implies that we have a well-defined map

ie = iM,N
e : Mk(Γ1(M)) −→ Mk(Γ1(N))

f 7−→ (z 7→ f(ez)).

These maps restrict to spaces of cusp forms.

Definition. Let N ≥ 1 and k ∈ Z. The space of oldforms in the space Sk(Γ1(N)) of cusp forms,
denoted by Sk(Γ1(N))old, is the C-linear subspace of Sk(Γ1(N)) spanned by the images of all the
maps

iM,N
e : Sk(Γ1(M)) −→ Sk(Γ1(N))

for all M | N with M 6= N , and all e | (N/M), i.e.

Sk(Γ1(N))old =
∑
e|M |N
M 6=N

iM,N
e

(
Sk(Γ1(M))

)
.

The space of newforms in Sk(Γ1(N)), denoted by Sk(Γ1(N))new, is the orthogonal complement of
Sk(Γ1(N))old with respect to the Petersson inner product, i.e.

Sk(Γ1(N))new =
{
f ∈ Sk(Γ1(N))

∣∣ 〈f, g〉Γ1(N) = 0 for all g ∈ Sk(Γ1(N))old

}
.

Note that every strict divisor M | N is also a divisor of N/l for some prime divisor l of N , and

that each of the images of iM,N
e with e | (N/M) is contained either in the image of i

N/l,N
1 or in the

image of i
N/l,N
l for some prime number l | N . This means that we could have used the equivalent

definition
Sk(Γ1(N))old =

∑
l prime
l|N

Sk(Γ1(N))l-old,

where
Sk(Γ1(N))l-old = i

N/l,N
1

(
Sk(Γ1(N/l))

)
+ i

N/l,N
l

(
Sk(Γ1(N/l))

)
.

Analogously, for every prime divisor l of N , we can define Sk(Γ1(N))l-new as the orthogonal
complement of Sk(Γ1(N))l-old. Then we have

Sk(Γ1(N))new =
⋂

l prime
l|N

Sk(Γ1(N))l-new.

Proposition 5.12. All the subspaces of Sk(Γ1(N)) defined above are stable under the action of
the Hecke algebra T(Sk(Γ1(N))).

Proof. We will prove below that for every prime divisor l | N , the subspace Sk(Γ1(N))l-old ⊂
Sk(Γ1(N)) is stable under the diamond operators 〈d〉 for d ∈ (Z/NZ)×, the Hecke operators
Tp for p prime, and the adjoints of all these operators. It will then follow that the whole old
space Sk(Γ1(N))old is stable under these operators. Furthermore, if T is in T(Sk(Γ1(N))) and
V ⊂ Sk(Γ1(N)) is a subspace that is stable under T , then the orthogonal complement of V is
stable under the adjoint of T

Let l be a prime divisor of N , and write i1 = i
N/l,N
1 and il = i

N/l,N
l . We have to prove that

for all operators T in the list above and all f ∈ Sk(Γ1(N/l)), the forms T (i1f) and T (ilf) in
Sk(Γ1(N)) are actually in Sk(Γ1(N))l-old.
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Consider a matrix

α =

(
a

c

b

d

)
∈ Γ0(N).

The map f 7→ f |kα defines the diamond operator 〈d〉 on both Sk(Γ1(N)) and Sk(Γ1(N/l)). We
have

〈d〉(i1f) = (i1f)|kα = f |kα = 〈d〉f = i1(〈d〉f).

Next, we note that (
l

0

0

1

)(
a

c

b

d

)
=

(
a

c/l

bl

d

)(
l

0

0

1

)
.

Since c/l is an integer divisible by N/l, the matrix
(
a
c/l

bl
d

)
defines the operator 〈d〉 on Sk(Γ1(N/l)).

We apply this to f and recall that f |k
(
l
0

0
1

)
= lkil(f). This gives

〈d〉(ilf) = il(〈d〉f).

In particular, 〈d〉(i1f) and 〈d〉(ilf) are again in Sk(Γ1(N))l-old. Thus 〈d〉 preserves the subspace
Sk(Γ1(N))l-old of Sk(Γ1(N)).

Now let p be a prime number not dividing N . Then the operator Tp is given by the same
formula on Sk(Γ1(N/l)) as on Sk(Γ1(N)). From this, it follows immediately that

Tp(i1f) = i1(Tpf).

It is also not hard to check that

Tp(ilf) = il(Tpf).

Hence Tp(i1f) and Tp(i2f) are in Sk(Γ1(N))l-old and Tp preserves the space Sk(Γ1(N))l-old. The
same argument works if p does divide N but is not equal to l.

Next we consider the operator Tl. First suppose l divides N exactly once. Then l does not
divide N/l, so the formula for the action of Tl on q-expansions is different on Sk(Γ1(N/l)) and
Sk(Γ1(N)), respectively. In Sk(Γ1(N)), we have

Tl(i1f) =

∞∑
n=1

anl(f)qn

and

Tl(ilf) = i1f.

In Sk(Γ1(N/l)), Theorem 4.4 gives

Tlf =

∞∑
n=1

anl(f)qn + lk−1
∞∑
n=1

an/l(〈l〉f)qn

= Tl(i1f) + lk−1
∞∑
n=1

an(〈l〉f)qnl

= Tl(i1f) + lk−1il(〈l〉f).

This implies

Tl(i1f) = i1(Tlf)− lk−1il(〈l〉f).

In particular, Tl(i1f) and Tl(ilf) are both in Sk(Γ1(N))l-old.
If on the other hand l2 | N , then the effect of Tl on both Sk(Γ1(N/l)) and Sk(Γ1(N)) is given

by the formula

Tlf =

∞∑
n=1

anl(f)qn.
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From this one deduces that

Tl(i1f) = i1(Tlf) and Tl(ilf) = i1f.

This shows that Tl preserves Sk(Γ1(N))l-old.
By Proposition 5.9, the adjoints of the operators 〈d〉 for d ∈ (Z/NZ)×, and of the Tp for

p - N prime, are in the Hecke algebra T(Sk(Γ1(N))), and therefore they preserve the subspace
Sk(Γ1(N))l-old.

It remains to show that every prime number p dividing N , the adjoint T †p of Tp preserves

Sk(Γ1(N))l-old. Since there is no simple formula for T †p , we introduce a new operator called the
Fricke operator or Atkin–Lehner operator. Consider the matrix

αN =

(
0

N

−1

0

)
,

and let wN be operator TαN on Sk(Γ1(N)).
For all

(
a
c
b
d

)
∈ GL+

2 (Q), we have

αN

(
a

c

b

d

)
α−1
N =

(
d

−bN
−c/N
a

)
. (5.4)

In particular, αN normalises Γ1(N). Because of this, we have

(wNf)(z) = (f |kαN )(z)

=
(detαN )k

(Nz)k
f(αNz)

= z−kf(−1/(Nz)).

Now let p be a prime number dividing N . Applying (5.4) to the matrix
(

1
0

0
p

)
defining Tp, we

get

αN

(
1

0

0

p

)
α−1
N =

(
p

0

0

1

)
.

Again using the fact that αN normalises Γ1(N), we see that

T †p =
1

p
T( p

0
0
1

)
=

1

p
T
αN

(
1
0

0
p

)
α−1
N

=
1

p
Tα−1

N
T( 1

0
0
p

)TαN
= w−1

N TpwN .

We now compute the effect of wN on i1f as follows:

(wN (i1f))(z) = z−k(i1f)

(
− 1

Nz

)
= z−kf

(
− 1

Nz

)
= lk(lz)−kf

(
− 1

(N/l)lz

)
= lk(wN/lf)(lz)

= lk(il(wN/lf))(z).
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Similarly, the effect of wN on ilf is

(wN (ilf))(z) = z−k(ilf)

(
− 1

Nz

)
= z−kf

(
− l

Nz

)
= z−kf

(
− 1

(N/l)z

)
= (wN/lf)(z)

= (i1(wN/lf))(z).

This implies that wN preserves the space Sk(Γ1(N))l-old, and therefore so does T †p = w−1
N TpwN

for every prime divisor p of N . This finishes the proof of the proposition.

Recall that a Hecke eigenform is a modular form f ∈ Mk(Γ1(N)) which is an eigenvector for
the diamond operators 〈d〉 with d ∈ (Z/NZ)× and for the Hecke operators Tn with n ≥ 1. Recall
also that if f is a Hecke eigenform, then after scaling f we may assume that f is normalised, i.e.
satisfies a1(f) = 1.

Definition. Let N ≥ 1 and k ∈ Z. A primitive form of weight k for Γ1(N) is a normalised
eigenform in Sk(Γ1(N))new.

Theorem 5.13 (Atkin, Lehner (1970); Li (1975)). Let N ≥ 1 and k ∈ Z.

(a) If f ∈ Sk(Γ1(N))new is an eigenform for the operators d with d ∈ (Z/NZ)× and the Tm with
gcd(m,N) = 1, then f is an eigenform for all Tm with m ≥ 1, and f is a scalar multiple of
a primitive form.

(b) If f, g ∈ Sk(Γ1(N))new are two eigenforms for the operators d with d ∈ (Z/NZ)× and the
Tm with gcd(m,N) = 1, with the same eigenvalues for these operators, then f, g are scalar
multiples of the same primitive form.

(c) The set of primitive forms of weight k for Γ1(N) is an orthogonal basis for the C-vector
space Sk(Γ1(N))new with respect to the Petersson inner product.

We will give a partial proof in the sense that we will use Proposition 5.14 below, which we shall
not prove. For a proof we refer to [4, Theorem 5.7.1]. That proof uses some representation theory,
which is not considered a prerequisite for this course (and explaining this from scratch would take
us too far afield). There exist more elementary proofs, but those are quite long and probably less
insightful.

Proposition 5.14. Let f ∈ Sk(Γ1(N)) be a form whose q-expansion coefficients am(f) satisfy
am(f) = 0 for all m ≥ 1 such that gcd(m,N) = 1. Then there exist forms fl ∈ Sk(Γ1(N/l)), with
l ranging over the prime divisors of N , such that

f =
∑
l prime
l|N

i
N/l,N
l (fl).

Proof of Theorem 5.13. Let f be an eigenform for the operators d with d ∈ (Z/NZ)× and the Tm
with gcd(m,N) = 1. By definition, we have f 6= 0. We have seen in Proposition 4.7 that

a1(Tmf) = am(f) for all m ≥ 1.

For all m with gcd(m,N) = 1, by assumption there exists λm ∈ C such that

Tmf = λmf.
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Combining the two equations above, we obtain

λma1(f) = am(f) for all m ≥ 1 with gcd(m,N) = 1.

If a1(f) = 0, then am(f) = 0 for all m ≥ 1 with gcd(m,N) = 1, so the fact above implies
f ∈ Sk(Γ1(N))old. But f is also in the orthogonal complement of Sk(Γ1(N))old by assumption, so
f = 0, contradiction. We conclude that a1(f) 6= 0, and we may scale f such that a1(f) = 1. We
claim that f is a primitive form. Namely, for all m ≥ 1, put

gm = Tmf − am(f)f.

Then gm is in Sk(Γ1(N))new because this space is preserved by the operators Tm. Furthermore,
gm is an eigenform for all the 〈d〉 (d ∈ (Z/NZ)×) and the Tn with gcd(n,N) = 1. This means
that gm satisfies the same conditions as f , except we do not know that gm 6= 0. In fact, we have

a1(gm) = a1(Tmf)− a1(am(f)f)

= am(f)− am(f)a1(f)

= 0.

Applying the same argument as above to gm shows that gm = 0, i.e. Tmf = am(f)f . Hence f is
an eigenform for all Tm with m ≥ 1 and therefore a primitive form. This proves part (a).

To prove part (b), we may assume that f and g are normalised (and hence primitive) by
part (a). Then f − g satisfies am(f − g) = 0 for all m with gcd(m,N) = 1; applying the same
argument again shows that f − g = 0, so f = g.

It remains to prove (c). Since the operators 〈d〉 and Tm with gcd(m,N) = 1 form a commuting
family of normal operators on the space Sk(Γ1(N))new, there exists an orthogonal basis of eigen-
forms for all these operators. By part (a), we may scale these eigenforms such that they become
primitive. What is left to prove is that these are all the primitive forms, i.e. that there is no linear
relation between them. Suppose that there exists a linear relation

n∑
i=1

cifi = 0

with fi distinct primitive forms and ci 6= 0. We may assume that there is no linear relation with
fewer terms. For any m, applying Tm − am(f1) to the relation above gives

n∑
i=2

ci(am(fi)− am(f1))fi = 0,

which is a linear relation with fewer terms. Hence am(fi) = am(f1) for all m ≥ 1, which implies
fi = f1 for all i ≥ 2. Since the fi are distinct, we must have i = 1, but then the linear relation
reads f1 = 0, a contradiction.

5.4 Exercises

Throughout these exercises, N and k are positive integers.

Exercise 5.1. Let f ∈ Sk(Γ1(N)) be a normalised Hecke eigenform with q-expansion
∑∞
n=1 anq

n

(at the cusp ∞) and character χ : (Z/NZ)× → C×.

(a) Prove the identity

am = χ(m)−1am for all m ≥ 1 with gcd(m,N) = 1.

Deduce that the quantity a2
m/χ(m) is real for all m ≥ 1 such that gcd(m,N) = 1.



5.4. EXERCISES 81

(b) Prove the following statement, which you were allowed to use without proof in Exercise 4.12:
Let f ∈ Mk(SL2(Z)) be a normalised eigenform, and let p be a prime number. Then ap(f)
is real. (Hint: treat Eisenstein series and cusp forms separately.)

Exercise 5.2. Let V be be the space S2(Γ1(16)) of cusp forms of weight 2 for Γ1(16). You may
use the following fact without proof: a basis for V , expressed in q-expansions at the cusp ∞, is

f1 = q − 2q3 − 2q4 + 2q6 + 2q7 + 4q8 − q9 +O(q10),

f2 = q2 − q3 − 2q4 + q5 + 2q7 + 2q8 − q9 +O(q10).

(a) Show that S2(Γ1(8)) = {0} and V = S2(Γ1(16))new. (Hint: consider the map i8,16
2 on

q-expansions.)

(b) Compute the matrix of the Hecke operator T2 on V with respect to the basis (f1, f2).

(c) Compute a basis (g1, g2) of V consisting of eigenforms for T2.

(Do the computations by hand; you may use a computer to check your results.)

Exercise 5.3. Let M and e be positive integers, let l be a prime number not dividing M , and
let N = leM . Let f be a Hecke eigenform in Sk(Γ1(M)) with character χ. Let Vf be the C-linear

subspace of Sk(Γ1(N)) spanned by the forms fj = iM,N
lj (f) for 0 ≤ j ≤ e.

(a) Prove that the forms f0, . . . , fe are C-linearly independent.

(b) Show that the Hecke operator Tl on Sk(Γ1(N)) preserves the subspace Vf , and compute the
matrix of Tl on Vf with respect to the basis (f0, . . . , fe).

Answer:



al 1 0 0 · · · 0
−χ(l)lk−1 0 1 0 · · · 0

0 0 0
. . .

. . .
...

...
...

. . .
. . . 1 0

0 0 · · · 0 0 1
0 0 · · · 0 0 0


.

Exercise 5.4. Suppose that Sk(Γ0(N)) contains some normalised eigenform f . Write g = f2 ∈
S2k(Γ0(N)). Calculate the first two terms of the q-expansions of g and T2g, and deduce that the
dimension of S2k(Γ0(N)) is at least 2.

Exercise 5.5. Let Γ be a congruence subgroup, and let f be a modular form of weight k for Γ.
Define a function f∗ : H→ C by

f∗(z) = f(−z̄).

(a) Prove that f∗ is a modular form of weight k for the group σ−1Γσ, where σ =
(−1

0
0
1

)
.

(b) Suppose (for simplicity) that both Γ and σ−1Γσ contain the subgroup
{(

1
0
b
1

) ∣∣ b ∈ Z
}

.
Show that the standard q-expansions of f and f∗ in the variable q = exp(2πiz) are related
by

an(f∗) = an(f) for all n ≥ 0.

(c) Show that if Γ = Γ0(N) or Γ = Γ1(N) for some N ≥ 1, then σ−1Γσ = Γ.

Bonus problem: Give an example of a congruence subgroup Γ such that σ−1Γσ 6= Γ.

Exercise 5.6. Let g1 and g2 be the eigenforms for the operator T2 on S2(Γ1(16)) found in Exer-
cise 5.2.

(a) Prove that g1 and g2 are in fact eigenforms for the full Hecke algebra T(S2(Γ1(16))). (Hint:
first show that S2(Γ1(16)) admits a basis of eigenforms for the full Hecke algebra.)
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(b) Compute the eigenvalues of the diamond operator 〈3〉 on g1 and g2. (Hint: use T3 and T9.)

(c) Prove that the characters of g1 and g2 are given by

〈d〉gj = χj(d)gj for all d ∈ (Z/16Z)× (j = 1, 2),

where χ1, χ2 are the two group homomorphisms (Z/16Z)× → C× with kernel {±1}.

(Do the computations by hand; you may use a computer to check your results.)

Exercise 5.7.

(a) Use the SageMath command Newforms to show that there is exactly one primitive form f
of weight 6 for the group Γ1(4). Determine the q-expansion coefficients an(f) for n ≤ 20.

(b) Prove that an(f) = 0 for all even integers n.

(c) Give a formula expressing the modular form θ12 (see §3.8) as a linear combination of E6(z),
E6(2z), E6(4z) and f .

(d) Deduce that for all even integers n ≥ 2, the number of representations of n as a sum of 12
squares is given by the formula

r12(n) = 8
∑
d|n

d5 − 512
∑
d |n/4

d5.

(Cf. Theorem 3.19; the sums are taken over all positive divisors of n and n/4, respectively,
and the last sum is omitted if 4 - n.)

(As in the lecture, a primitive form is an eigenform f in the new subspace, normalised such that
a1(f) = 1. These are often also called newforms, which explains the name of the SageMath
command Newforms.)

Exercise 5.8. For f ∈ Sk(Γ1(N)), let f∗ ∈ Sk(Γ1(N)) be the form defined by f∗(z) = f(−z̄) (see
Exercise 5.5).

(a) Show that the map Sk(Γ1(N)) → Sk(Γ1(N)) sending f to f∗ preserves the subspaces
Sk(Γ1(N))old and Sk(Γ1(N))new.

(b) Let f ∈ Sk(Γ1(N))new be a primitive form. Show that the form f∗, which by part (a) is in
Sk(Γ1(N))new, is also a primitive form, and determine the eigenvalues of the operators 〈d〉
(for d ∈ (Z/NZ)×) and Tm (for m ≥ 1) on f∗.

Exercise 5.9. Recall that the Fricke (or Atkin–Lehner) operator wN on Sk(Γ1(N)) is the operator
TαN with αN =

(
0
N
−1
0

)
.

(a) Show that w2
N = (−N)k · id and that the adjoint of wN equals (−1)kwN .

(b) Show that for every d ∈ (Z/NZ)×, the operator 〈d〉 on Sk(Γ1(N)) satisfies w−1
N 〈d〉wN =

〈d〉−1.

(c) Show that for every positive integer m such that gcd(m,N) = 1, the Hecke operator Tm
satisfies w−1

N TmwN = 〈m〉−1Tm.

Exercise 5.10. Let wN be the Fricke operator on Sk(Γ1(N)); recall that this preserves the new
subspace Sk(Γ1(N))new. Let f ∈ Sk(Γ1(N))new be a primitive form.

(a) Show that the form wNf is an eigenform for the operators 〈d〉 for d ∈ (Z/NZ)× and Tm for
m ≥ 1 with gcd(m,N) = 1, and determine the eigenvalues of these operators on wNf .

(b) Deduce that wNf = ηff
∗ for some ηf ∈ C, with f∗ as in Exercise 5.5. (Hint: use Exercise 5.1

as one ingredient.)
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(c) Prove the identities ηfηf∗ = (−N)k, ηf∗ = (−1)kη̄f and |ηf | = Nk/2. (Hint: consider
〈wNf, f∗〉Γ1(N).)

You may use results from earlier exercises.
(The complex number ηf is called the Atkin–Lehner pseudo-eigenvalue of f .)
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Chapter 6

L-functions

In modern number theory, L-functions are a fundamental tool for studying various kinds of arith-
metic objects and the relations between them. The prototypical examples of an L-functions are the
Riemann ζ-function and Dirichlet L-functions, i.e. L-functions attached to Dirichlet characters.

Modular forms are a very important “source” of L-functions. One reason for their importance
is that the transformation properties of modular forms imply that the L-functions associated to
them, which are a priory only defined on a suitable half-plane in C, can in fact be continued to
entire functions that satisfy a certain kind of functional equation. An even stronger reason is
perhaps the way in which L-functions link elliptic curves to modular forms. The proof of Fermat’s
last theorem by Andrew Wiles in 1994 relies in an essential way on this connection.

In the context of modular forms and L-functions, we should also mention one of the most
famous open problems in number theory, namely the conjecture of Birch and Swinnerton-Dyer.
This conjecture, formulated in the 1960s based on some of the first computer calculations in
number theory, is about L-functions of elliptic curves over Q. It links various objects related to
such an elliptic curve in a way comparable to the analytic class number formula from algebraic
number theory. All results that have been obtained so far in the direction of the conjecture of
Birch and Swinnerton-Dyer strongly depend on techniques related to modular forms.

6.1 The Mellin transform

We start by studying a kind of integral transform, related to the Fourier transform, that expresses
the relationship between a modular form and the L-function associated to it.

Lemma 6.1. Let g : (0,∞)→ C be a continuous function such that for some real numbers a < b
we have

|g(t)| � t−a as t→ 0

and

|g(t)| � t−b as t→∞.

Then the integral

Mg(s) =

∫ ∞
0

g(t)ts
dt

t

converges absolutely and uniformly on compact subsets of the strip {s ∈ C | a < <s < b}.
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Proof. Let α and β be real numbers with a < α < β < b. Then we have∫ ∞
0

|g(t)ts|dt
t
�
∫ 1

0

t−at<s
dt

t
+

∫ ∞
1

t−bt<s
dt

t

≤
∫ 1

0

tα−a
dt

t
+

∫ ∞
1

tβ−b
dt

t

=
1

α− a
+

1

b− β
.

This implies that the integral defining Mg(s) converges absolutely and uniformly on the strip
{s ∈ C | α ≤ <s ≤ β}, from which the claim follows.

Definition. For a function g : H→ C satisfying the assumptions of the lemma above, the function
Mg is called the Mellin transform of g.

Remark. The Mellin inversion formula expresses g(t) in terms of Mg(s) as

g(t) =
1

2πi

∫
<s=c

Mg(s)t−sds,

where c is any real number with a < c < b, and the integral is taken over the vertical line <s = c
in the upward direction. For details, see Exercise 6.2.

Example. The Γ-function is defined as the Mellin transform of the function t 7→ exp(−t):

Γ(s) =

∫ ∞
0

exp(−t)ts dt
t
,

where the integral converges absolutely if and only if <s > 0. Using integration by parts, one
shows that

Γ(s+ 1) = sΓ(s) for <s > 0,

and this relation can be used to extend the Γ-function to a meromorphic function on C with poles
in the non-positive integers and no other poles.

6.2 The L-function of a modular form

We will now define the L-function of a modular form and prove the basic properties of this L-
function. We start with an explicit growth condition for the Fourier coefficients of a modular form.
We are mainly interested in cusp forms, so we provide all details of the proof of the proposition
below for cusp forms only. For the sake of completeness, we also incorporate the result for the
space of Eisenstein series in the proposition, but we will not go into the details of the proof in
that case.

Proposition 6.2. Let Γ be a congruence subgroup, k ∈ Z>0, and f ∈ Mk(Γ) with Fourier
expansion at the cusp ∞ given by

f(z) =

∞∑
n=0

an(f) exp

(
2πinz

h

)
(with h = h̃Γ([∞]) ∈ Z>0).

Then there exists a C ∈ R>0 such that for all n ∈ Z>0

|an(f)| ≤ Cnk/2 if f ∈ Sk(Γ);

|an(f)| ≤ Cnk−1 if f ∈ Ek(Γ).
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Proof. Let f ∈ Sk(Γ). Consider the associated function f̃ on the unit disc D given by

f̃(qh) =

∞∑
n=1

an(f)qnh ,

so

f̃

(
exp

(
2πiz

h

))
= f(z).

Note that an(f) is the coefficient of q−1
h in the Laurent expansion of f̃(qh)/qn+1

h around qh = 0.
So Cauchy’s formula gives

an(f) =
1

2πi

∮
Cr

f̃(qh)

qnh

dqh
qh

(6.1)

for any positively oriented circle Cr with centre O and radius r where 0 < r < 1. Write r =
exp (−2πy/h) with y ∈ R>0 and parametrize Cr by

qh = exp

(
2πi(x+ iy)

h

)
, 0 ≤ x ≤ h

to rewrite (6.1) as

an(f) =
1

h

∫ h

0

f(x+ iy) exp

(
−2πin(x+ iy)

h

)
dx. (6.2)

Choosing y = 1/n in (6.2) yields

an(f) =
exp(2π/h)

h

∫ h

0

f(x+ i/n) exp

(
−2πinx

h

)
dx. (6.3)

By Lemma 5.3, z 7→ |f(z)|2=(z)k is bounded on H. So in particular, there is a C ′ ∈ R>0 such that

|f(x+ i/n)| ≤ C ′nk/2.

Together with (6.3) we get
|an(f)| ≤ exp(2π/h)C ′nk/2,

which proves the result for cusp forms.
For f ∈ Ek(Γ) it is possible to simply read off the result from an explicit basis for Ek(Γ). For

the latter, see [4, Chapter 4] when Γ = Γ(N), from which the growth condition for general Γ can
be deduced.

Let Γ be a congruence subgroup. Let f be a Hecke eigenform of weight k for Γ, normalised so
that a1(f) = 1.

One way to define the L-function L(f, s) is as follows. Suppose r is a real number satisfying

|an(f)| � nr as n→∞.

According to Proposition 6.2, if f is any modular form of weight k ∈ Z>0, we can take r = max(k−
1, k/2) (which is k− 1 if k 6= 1, and 1/2 otherwise); and if f is a cusp form of weight k ∈ Z>0, we
can alternatively take r = k/2. From the bound above on the coefficients an(f), it follows that
for any a > r + 1, the Dirichlet series

L(f, s) =
∑
n≥1

an(f)n−s

converges uniformly on the half-plane {s ∈ C | <s ≥ a}. This Dirichlet series therefore defines
a holomorphic function on the right half-plane {s ∈ C | <s > r + 1}. (Notice that even though
the constant term a0(f) in the q-expansion of f may be non-zero (since f is not necessarily a
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cusp form), this term does not appear in the definition of L(f, s).) However, it is not immediately
clear that this function can be continued to a meromorphic function on all of C that satisfies a
functional equation.

The analytic continuation and functional equation will follow from the transformation proper-
ties of f under the Fricke (or Atkin–Lehner) operator wN . Assume that there exists a normalised
Hecke eigenform f∗ and a complex number ηf satisfying the relation

wNf = ηff
∗. (6.4)

We note that due to the fact that α2
N =

(−N
0

0
−N
)
, we then also have

wNf
∗ = ηf∗f,

where ηf and ηf∗ are related by
ηfηf∗ = (−N)k. (6.5)

We define the completed L-function attached to f as

Λ(f, s) = Ns/2 Γ(s)

(2π)s
L(f, s).

Proposition 6.3. Let f ∈ Sk(Γ1(N)) be a primitive form. Then there exist a primitive form
f∗ ∈ Sk(Γ1(N)) and a complex number ηf 6= 0 satisfying (6.4).

Proof. Let ap and ε(d) denote the eigenvalues of the Hecke operators Tp and the diamond oper-
ators 〈d〉 on f . We write g = wNf . For every prime number p, we use the fact that the matrix
αN =

(
0
N
−1
0

)
normalises Γ1(N), the identity

αN

(
1

0

0

p

)
α−1
N =

(
p

0

0

1

)
=

(
1

0

0

p

)∗
,

and Lemma 5.8 to deduce the identity

w−1
N TpwN = T †p .

If furthermore p does not divide N , then Proposition 5.9 gives

T †p = 〈p〉−1Tp.

This implies that g is an eigenform for Tp; more precisely, we have

Tpg = ε(p)−1apg.

Therefore g is an eigenform for all Hecke operators Tm with gcd(m,N) = 1. Similarly, one shows
that g is an eigenform for the diamond operators. By Theorem 5.13(a), g is a scalar multiple of a
primitive form, i.e. we can write g = ηff

∗ as claimed.

Remark. In fact, f∗ is given by f∗(z) = f(−z̄); this follows from Exercise 5.10.

Theorem 6.4. Let f be a normalised Hecke eigenform of weight k for Γ1(N), and assume that
there exist a normalised Hecke eigenform f∗ and a complex number ηf such that (6.4) holds.

(a) The function Λ(f, s) can be continued to a meromorphic function on C with at most simple
poles in s = 0 and s = k, and no other poles. If f is a cusp form, then Λ(f, s) is holomorphic
on all of C.

(b) The functions Λ(f, s) and Λ(f∗, s) are related by the functional equation

Λ(f, k − s) = εfΛ(f∗, s), (6.6)

where
εf = ikηfN

−k/2.
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Proof. We rewrite the transformation formula (6.4) as

f

(
− 1

Nz

)
= ηfz

kf∗(z) for all z ∈ H.

Because f∗(it) is bounded as t → ∞, this formula implies that |f(it)| � t−k as t → 0. Further-
more, we have |f(it)− a0(f)| � exp(−2πt) as t→∞. This implies that the integral defining the
Mellin transform of f(it)− a0(f) converges uniformly on compact subsets of the right half-plane
{s ∈ C | <s > k}.

If moreover r is a real number such that |an(f)| � nr as n → ∞, then we can compute the
Mellin transform of f(it)− a0(f) for <s > max{k, r + 1} as∫ ∞

0

(f(it)− a0(f))ts
dt

t
=

∫ ∞
0

∑
n≥1

an(f) exp(−2πnt)ts
dt

t

=
∑
n≥1

an(f)

∫ ∞
0

exp(−2πnt)ts
dt

t

=
∑
n≥1

an(f)(2πn)−s
∫ ∞

0

exp(−u)us
du

u

=
Γ(s)

(2π)s

∑
n≥1

an(f)n−s

=
Γ(s)

(2π)s
L(f, s).

On the other hand, we can rewrite the integral on the left-hand side for <s > k as∫ ∞
0

(f(it)− a0(f))ts
dt

t
=

∫ ∞
1/
√
N

(f(it)− a0(f))ts
dt

t
+

∫ 1/
√
N

0

(f(it)− a0(f))ts
dt

t
.

The second term is∫ 1/
√
N

0

(f(it)− a0(f))ts
dt

t
=

∫ 1/
√
N

0

f(it)ts
dt

t
− a0(f)N−s/2

1

s
.

By (6.4), the integral on the right-hand side is

∫ 1/
√
N

0

f(it)ts
dt

t
= ikηfN

−s
∫ ∞

1/
√
N

f∗(it)tk−s
dt

t
.

Splitting off the constant term from f∗(it), we get∫ ∞
1/
√
N

f∗(it)tk−s
dt

t
=

∫ ∞
1/
√
N

(f∗(it)− a0(f∗))tk−s
dt

t
+ a0(f∗)N (s−k)/2 1

s− k
.

Putting everything together, we obtain for <s > k the identity∫ ∞
0

(f(it)− a0(f))ts
dt

t
=

∫ ∞
1/
√
N

(f(it)− a0(f))ts
dt

t

+ ikηfN
−s
∫ ∞

1/
√
N

(f∗(it)− a0(f∗))tk−s
dt

t

− a0(f)N−s/2
1

s
+ ikηfa0(f∗)N−(s+k)/2 1

s− k
.
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Because |f(it)−a0(f)| and |f∗(it)−a0(f∗)| are bounded by a constant times exp(−2πt) as t→∞,
both integrals on the right-hand side converge uniformly for s in compact subsets of C. Combining
the two expressions for the Mellin transform of f(it)− a0(f) computed above, we get

Λ(f, s) = Ns/2

∫ ∞
1/
√
N

(f(it)− a0(f))ts
dt

t
+ ikηfN

−s/2
∫ ∞

1/
√
N

(f∗(it)− a0(f∗))tk−s
dt

t

− a0(f)
1

s
+ ikηfN

−k/2a0(f∗)
1

s− k
.

This proves (a). Comparing the formula above to the analogous formula for Λ(f∗, s) and using
(6.5), we see that Λ(f, s) and Λ(f∗, s) are related by the functional equation (6.6).

6.3 Exercises

Throughout these exercises, N and k are positive integers.

Exercise 6.1. Let f be a normalised eigenform of weight k for Γ1(N). Let ap and χ(d) denote
the eigenvalues of the Hecke operators Tp and the diamond operators 〈d〉 on f , respectively. Prove
that L(f, s) can be expressed as an Euler product : for S a sufficiently large real number, we have
the identity

L(f, s) =
∏

p prime

(
1− app−s + χ(p)pk−1−2s

)−1
for <s > S,

where the infinite product converges on compact subsets of the right half-plane {s ∈ C | <s > S}
and defines a holomorphic function on this half-plane.

Exercise 6.2. A Schwartz function is an infinitely continuously differentiable function f : R→ C
such that for all m,n ≥ 0 the function xmf (n)(x) (where f (n) is the n-th derivative of x) tends to
zero as |x| → ∞. The Fourier transform of a Schwartz function f is defined as

f̂(t) =

∫ ∞
−∞

f(x) exp(−2πitx)dx.

It is known that f̂ is again a Schwartz function and that f can be recovered from f̂ using the
Fourier inversion formula,

f(x) =

∫ ∞
−∞

f̂(t) exp(2πixt)dt.

Use this to give a proof of the Mellin inversion formula (see §6.1) for functions g(t) that satisfy
the assumptions of Lemma 6.1 and are in addition infinitely continuously differentiable.

Exercise 6.3.

(a) Suppose k is even and k ≥ 4. Prove that the L-function of the Eisenstein series Ek admits
the factorisation

L(Ek, s) = ζ(s)ζ(s− k + 1),

where ζ(s) is the Riemann ζ-function.

(b) (This part is optional and depends on the optional exercises 3.24, 3.25 and 3.26.) Let α, β
be primitive Dirichlet characters modulo M and N , respectively, satisfying α(−1)β(−1) =

(−1)k. Prove that the L-function of the Eisenstein series Eα,βk ∈ Mk(Γ1(MN)) associated
to the pair (α, β) admits the factorisation

L(Eα,βk , s) = L(α, s)L(β, s− k + 1).

Note: The fact that the L-function of an Eisenstein series has such a factorisation is one of the
manifestations of the rule of thumb that Eisenstein series are ‘easier’ than cusp forms.
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Exercise 6.4. Let f ∈ Sk(Γ1(N)) be an eigenform such that all coefficients an(f) for n ≥ 1 are
real.

(a) Show that the complex number εf defined in Theorem 6.4 is either +1 or −1.

(b) Let r be the order of vanishing of the holomorphic function L(f, s) in s = k/2. Prove that
r is even if εf = +1 and that r is odd if εf = −1. (Hint: expand the completed L-function
Λ(f, s) in a power series around s = k/2.)
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Chapter 7

Elliptic curves, modularity and
the conjecture of Birch and
Swinnerton-Dyer

There exists an important connection between modular forms and elliptic curves by means of their
L-functions. Since knowledge of elliptic curves is not a prerequisite for this course, we will now
introduce some background on elliptic curves that will enable us to explain this connection. Two
illustrations of the connection between L-functions and modular forms are the modularity theorem
for elliptic curves over Q and the conjecture of Birch and Swinnerton-Dyer.

The modularity theorem predicts that the L-function attached to any elliptic curve over Q is
also the L-function of some primitive cusp form. This was stated as a conjecture by Shimura and
Taniyama in the 1950s. Around 1995, Andrew Wiles (with the help of Richard Taylor) proved
enough of the modularity theorem to deduce Fermat’s last theorem. The proof of the modularity
theorem was completed in 2001 by the work of Breuil, Conrad, Diamond and Taylor.

An elliptic curve E over Q has an L-function L(E, s), which is defined purely in terms of local
data (the reductions of E modulo prime numbers). The conjecture of Birch and Swinnerton-Dyer
predicts the behaviour of the function L(E, s) at the point s = 1 in terms of global data (the rank
of the group of rational points). This conjecture can be compared to the analytic class number
formula from algebraic number theory, which links the residue at s = 1 of the Dedekind ζ-function
ζK(s) of a number field K to various arithmetic invariants attached to K.

7.1 Elliptic curves

We first give a ‘canonical’ definition of elliptic curves, and then say somewhat more concretely
what an equation for an elliptic curve looks like.

Definition. An elliptic curve over a field K is a smooth cubic curve E in the projective plane
over K together with a K-rational point O ∈ E(K).

After a suitable choice of coordinates, every elliptic curve over K is given by a Weierstrass
equation. This is a homogeneous equation of the form

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

with a1, . . . , a6 ∈ K (subject to some condition expressing the smoothness of E), with the point
O having coordinates (0 : 1 : 0). This is usually written in affine coordinates as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

93
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We write E(K) for the set of all K-rational points of E. This can be thought of as the set of
all pairs (x, y) ∈ K ×K satisfying the above equation, together with the ‘infinite’ point O.

One of the most fundamental facts about elliptic curves is that the set E(K) has the structure
of an Abelian group with identity element O. The group structure is determined uniquely by
the property that three points add up to O if and only if they are the three intersection points
(counted with multiplicities) of E with a line.

For elliptic curves over Q (or more general number fields), the structure of E(K) has been
studied very extensively. The basic result about E(K) in this case is the Mordell–Weil theorem.

Theorem 7.1 (Mordell–Weil). If K = Q (or more generally any number field), then the Abelian
group E(K) is finitely generated.

If E is an elliptic curve over a number field K, then E(K) is called the Mordell–Weil group
of E. The above theorem implies that if E is an elliptic curve over Q, we can write

E(Q) = T × Zr,

where T is a finite Abelian group (the torsion subgroup E(Q)tor of E(Q)) and r is some non-
negative integer, called the (algebraic) rank of E.

Given an elliptic curve E over Q, there is a straightforward way of computing E(Q)tor, and
there are only finitely many possibilities for the group E(Q)tor up to isomorphism. However, it
is in general much harder to determine r, and it is not known whether r can be arbitrarily large.
Furthermore, it is in general ‘hard’ to determine a finite set of points P1, . . . , Pr ∈ E(Q) such that
P1, . . . , Pr together with E(Q)tor is a generating set of E(Q).

Let E be an elliptic curve over Q given by a Weierstrass equation as above. We assume in
addition that the ai are in Z and that the equation is minimal (a notion that we will not make
precise). Then for every prime number p, we consider the equation over Fp obtained by reducing
the equation modulo p. The curve EFp defined by this equation is called the reduction of E
modulo p.

We say that E has good reduction at p if EFp is a smooth curve; otherwise we say that E has
bad reduction at p. There exists a positive integer N (called the conductor of E, and related to the
minimal discriminant of E) such that E has bad reduction at p if and only if p | N . In particular,
E only has bad reduction at finitely many prime numbers p.

For every prime number, the set E(Fp) is finite. We define integers ap for p prime by

ap = p+ 1−#E(Fp).

Remark. This is the correct definition even when the reduction of E modulo p is singular.

Theorem 7.2 (Hasse). The integers ap satisfy

|ap| ≤ 2
√
p.

Furthermore, we define

ε(p) =

{
1 if p - N,
0 if p | N.

(In other words, ε is the trivial Dirichlet character modulo N .)
We now define

L(E, s) =
∏

p prime

1

1− app−s + ε(p)p1−2s
.

It follows from Hasse’s theorem that this infinite product converges absolutely and uniformly for
<s ≥ σ, for any σ > 3/2. This implies that the product defines a holomorphic function on
{s ∈ C | <s > 3/2}. However, unlike in the setting of modular forms, where we have the Mellin
transform at our disposal, there seems to be no easy way to prove that L(E, s) has an analytic
continuation and functional equation.
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7.2 The modularity theorem

To be able to say anything really interesting about the L-function of an elliptic curve over Q, we
will need the modularity theorem. This is the following statement.

Theorem 7.3 (Modularity of elliptic curves over Q). Let E be an elliptic curve over Q. Then
there exist N ≥ 1 and a primitive form f ∈ S2(Γ0(N)) of weight 2 such that L(f, s) is equal to
L(E, s).

Example. Let E be the elliptic curve defined by the equation

E : y2 + y = x3 − x2.

Then the conductor N of E equals 11. (This is the smallest possible conductor of an elliptic curve
over Q.) There exists exactly one primitive cusp form of weight 2 for Γ0(11), namely

q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 +O(q10).

Hence this is the primitive form attached to E by the modularity theorem.

The modularity theorem (formerly the Taniyama–Shimura conjecture) is a very deep result.
One of its most important consequences is that it implies that L-functions of elliptic curves over Q
admit an analytic continuation to all of C and satisfy a functional equation relating L(E, s) and
L(E, 2 − s) (again via completed L-functions, like in the case of L-functions of modular forms).
This is not at all obvious, and the modularity theorem is currently the only known way to prove
the analytic continuation and functional equation for L-functions of elliptic curves. For elliptic
curves over other number fields than Q, only very partial results are known.

The modularity theorem was proved first for an important class of elliptic curves (the semi-
stable ones, corresponding to square-free N) in 1995 by work of Wiles [11], completed by Taylor
and Wiles [9], from which Fermat’s last theorem follows. (More about Fermat’s last theorem will
be said in the last lecture of this course.) The modularity theorem was then proved in more
generality by Diamond (1996), Conrad, Diamond and Taylor (1999) and finally for arbitrary E by
Breuil, Conrad, Diamond and Taylor (2001).

The proof of the modularity theorem combines many different techniques, which we cannot
explain here. Just to mention one key part of the proof that is related to this course: one ingredient
is to show that certain Hecke algebras are isomorphic to so-called deformation rings. This is then
used to prove a modularity lifting theorem, which is a statement of the type that if the coefficients
an of L(E, s) are congruent to the coefficients of a modular form modulo some prime number l,
then the coefficients an are actually equal to the coefficients of a modular form.

Remark. We have phrased the modularity theorem in terms of L-functions, but there are many
other formulations; see Diamond and Shurman’s book for alternative versions.

7.3 The conjecture of Birch and Swinnerton-Dyer

Around 1958, Birch and Swinnerton-Dyer performed some of the first computer calculations in
number theory. Given an elliptic curve over Q given by a Weierstrass equation with coefficients in
Z, they studied the way in which the number of points #E(Fp) of the reduction depends on the
rank of E over Q. Based on their calculations, they stated a conjecture that can be formulated in
one way as follows.

Conjecture 7.4 (Birch, Swinnerton-Dyer). Let E be an elliptic curve over Q. Then the order of
vanishing of function L(E, s) in s = 1 (which is defined thanks to the modularity theorem) is equal
to the rank of E.

Remark. The order of vanishing of L(E, s) in s = 1 is called the analytic rank of E; hence the
Birch–Swinnerton-Dyer conjecture claims that the analytic rank of an elliptic curve is equal to its
algebraic rank.
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The conjecture of Birch and Swinnerton-Dyer is as yet unproved. It is in fact one of the
“Millennium Prize Problems”; a proof is therefore worth one million dollars. The only general
result known so far is the following.

Theorem 7.5 (Gross, Zagier; Kolyvagin). Let E be an elliptic curve over Q. If the analytic rank
of E is either 0 or 1, then it is equal to the algebraic rank of E.

The proof of this theorem heavily relies on modular forms, modular curves, L-functions and
related techniques.

In addition, Bhargava and Shankar proved in recent years that a positive proportion (in a
precise sense) of all elliptic curves over Q have analytic rank 0, which implies that the conjecture
of Birch and Swinnerton-Dyer holds for a positive proportion of all elliptic curves over Q. (It
seems, however, that they have not been awarded the corresponding fraction of the prize money.)

Remark. Let r denote the analytic rank of E. We consider the non-zero complex number

L∗(E, s) = lim
s→1

(s− 1)−rL(E, s).

There is a refined variant of the conjecture of Birch and Swinnerton-Dyer, which predicts the
exact value of L∗(E, s) in terms of certain analytic and arithmetic invariants of E (namely periods,
Tamagawa numbers, the regulator, the order of the torsion group E(Q)tor, and the order of the
Tate–Shafararevich group).

7.4 The congruent number problem

In this last section, we discuss how elliptic curves, modular forms and the conjecture of Birch and
Swinnerton-Dyer can be applied to a classical Diophantine problem.

A positive rational number n is called congruent if there exists a right-angled triangle with
rational side lengths and area n. The congruent number problem is the question which n are
congruent. This comes down to the question for which n the system of equations

a2 + b2 = c2 and ab = 2n

has a solution in non-zero rational numbers a, b, c.

Proposition 7.6. A positive rational number n is congruent if and only if the equation

y2 = x3 − n2x (7.1)

has a solution (x, y) ∈ Q×Q with y 6= 0.

It suffices to study the case where n is a square-free positive integer. The equation (7.1) defines
an elliptic curve En over Q. The congruent number problem was solved by Tunnell [10] assuming
the Birch–Swinnerton-Dyer conjecture for elliptic curves of the form En. We define integers cn for
n ≥ 1 by the following identities of holomorphic functions H→ C (or of power series in q):

h = η(8z)η(16z)

= q
∏
m≥1

(
(1− q8m)(1− q16m)),

f = hθ(2z),

g = hθ(4z),

cn =

{
an(f) if n is odd,

an/2(g) if n is even.

Here η and θ are the Dedekind η-function and the Jacobi θ-function defined in the course. (The
functions f and g are in fact “modular forms of weight 3/2”.)
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Theorem 7.7 (Tunnell [10]). Let n be a square-free positive integer. If n is congruent, then cn = 0.
The converse is true if the Birch–Swinnerton-Dyer conjecture holds for the elliptic curve En.

Tunnell’s proof of the first implication relies on partial results on the Birch–Swinnerton-Dyer
conjecture due to Coates and Wiles [2].
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Appendix A

Appendix: analysis and linear
algebra

A.1 Uniform convergence

Let S be any set, and let {fn}n≥0 be a sequence of complex-valued functions on S. We say that
the sequence converges uniformly if it is a Cauchy sequence with respect to the supremum norm
on the C-vector space of all functions S → C. In other words, {fn}n≥0 converges uniformly if for
all ε > 0 there exists N ≥ 0 such that for all m,n ≥ N and all s ∈ S we have |fm(s)− fn(s)| < ε.
From the fact that C is complete, it follows that any uniformly convergent sequence of functions
has a unique limit.

When S is a subset of C, uniform convergence allows us to interchange limits as follows. Let
{fn}n≥0 be a sequence of continuous functions S → C that converges uniformly on S with limit
f . Then f is again continuous, i.e.

lim
z→a

lim
n→∞

fn(z) = lim
z→a

f(z) = f(a) = lim
n→∞

fn(a).

In particular, for a uniformly convergent sum of continuous functions, we may interchange the
sum with limits:

lim
z→a

∞∑
n=1

gn(z) =

∞∑
n=1

gn(a).

There are many variants. For example, if {fn}n≥0 is a sequence of continuous functions R→ C
that converges uniformly on some interval of the form [M,∞) with limit, and if limx→∞ fn(x) exists
for all n, then limx→∞ f(x) also exists, and we have

lim
x→∞

f(x) = lim
n→∞

lim
x→∞

fn(x).

In particular, for a sum that converges uniformly on some interval [M,∞), we have

lim
x→∞

∞∑
n=1

gn(x) =

∞∑
n=1

lim
x→∞

gn(x).

A.2 Uniform convergence of holomorphic functions

Let U be an open subset of C, and let {fn}n≥0 be a sequence of complex-valued functions on U .
We say that the sequence converges uniformly on compact subsets of U if for every compact subset
K ⊂ U the sequence of functions {fn|K}n≥0 converges uniformly.

99



100 APPENDIX A. APPENDIX: ANALYSIS AND LINEAR ALGEBRA

Theorem A.1. Let U be an open subset of C, and let {fn}n≥0 be a sequence of holomorphic
functions that converges uniformly on compact subsets of U . Then the limit function f : U → C
is holomorphic.

The result above applies in particular to sums of holomorphic functions (consider the sequence
of partial sums).

A.3 Orders and residues

Let f be a meromorphic function on an open subset U ⊂ C, and w is a point of U . Then we can
expand z in a Laurent series around w:

f(z) = cn(z − w)n + cn+1(z − w)n+1 + . . . (n ∈ Z, cj ∈ C, cn 6= 0).

The integer n is called the order or valuation of f at w and denoted by ordw f . The residue of f
at w is c−1 (which is defined to be 0 if n ≥ 0). From the series expansion of f above, one deduces

f ′(z)

f(z)
=

n

z − w
+ b0 + b1(z − w) + · · ·

In particular, the function f ′/f has a simple pole precisely at the points where f has a zero or a
pole, and

Resw(f ′/f) = n = ordw f.

A contour is a simple closed piecewise C1 path in C with anti-clockwise orientation. For a
contour C, the complement C − C consists of 2 connected components, exactly one of which is
bounded; we denote this connected component by interior(C).

Theorem A.2 (Cauchy’s integral formula). Let g be holomorphic on an open subset U ⊂ C, let
C be a contour in U , and let w ∈ interior(C). Then we have∮

C

g(z)

z − w
dz = 2πig(w).

Theorem A.3 (argument principle). Let f be meromorphic on an open subset U ⊂ C, and let C
be a contour in U not passing through any zeroes or poles of f . Then we have∮

C

f ′(z)

f(z)
dz = 2πi

∑
z∈interior(C)

ordz f.

A variant of this is the following: let C be an arc around w with angle α and radius r (not
necessarily a contour). Then if g is holomorphic at w, we have

lim
r→0

∫
C

g(z)

z − w
dz = αig(w),

and if f is meromorphic at w, we have

lim
r→0

∫
C

f ′(z)

f(z)
dz = αi ordw f.
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A.4 Cotangent formula and maximum modulus principle

For all z ∈ C− Z we have

π
cos(πz)

sin(πz)
=

1

z
+

∞∑
n=1

(
1

z − n
+

1

z + n

)
. (A.1)

One way to prove this formula is by the so-called Herglotz trick; see e.g. Chapter 20 of Proofs
from THE BOOK by Aigner and Ziegler (and generalize from R to C).

Theorem A.4. Let U ⊂ C be connected and open, and let f : U → C be holomorphic. If |f |
attains a maximum on U , then f is constant.

A.5 Infinite products

Theorem A.5. Let U be an open subset of C and let {fn}>0 be a sequence of holomorphic
functions on C such that

∞∑
n=1

|fn|

converges uniformly on compact subsets of U . Then the following holds.

• The sequence of partial products

FN :=

N∏
n=1

(1 + fn)

converges uniformly on compact subsets of U . In particular, the limit F is holomorphic on
U .

• For all z ∈ U we have ordz(F ) =
∑∞
n=1(ordz(1 + fn)).

• For every z ∈ U such that F (z) 6= 0 we have

F ′(z)

F (z)
=

∞∑
n=1

f ′n(z)

1 + fn(z)
.

A.6 Fourier analysis and the Poisson summation formula

We recall that every function F : R→ C that is infinitely often continuously differentiable and is
periodic with period 1 admits a Fourier series

F (x) =
∑
n∈Z

cn exp(2πinx).

The constants cn satisfy

cn =

∫ 1

0

F (x) exp(−2πinx)dx.

Let f : R → C be a function that is infinitely continuously differentiable and such that all
derivatives f (n) for n ≥ 0 have the property that f (n)(x) tends to zero exponentially fast as
|x| → ∞. We recall that the Fourier transform of such a function f is defined as

f̂(t) =

∫ ∞
−∞

f(x) exp(−2πixt)dx.
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Theorem A.6 (Poisson summation formula). Let f : R → C be a function as above. Then we
have ∑

m∈Z
f(m) =

∑
n∈Z

f̂(n).

Proof. The function

F (x) =
∑
m∈Z

f(x+m)

is periodic with period 1 and therefore admits a Fourier series

F (x) =
∑
n∈Z

cn exp(2πinx).

The coefficients cn are given by

cn =

∫ 1

0

F (x) exp(−2πinx)dx

=

∫ 1

0

∑
m∈Z

f(x+m) exp(−2πin(x+m))dx

=

∫ ∞
−∞

f(x) exp(−2πinx)dx

= f̂(n).

Substituting x = 0 in the Fourier series for F (x), we obtain∑
m∈Z

f(m) =
∑
n∈Z

f̂(n),

as claimed.

Proposition A.7. The function
f(x) = exp(−πx2)

is its own Fourier transform.

Proof. We compute

f̂(t) =

∫ ∞
−∞

exp(−πx2 − 2πitx)dx

=

∫ ∞
−∞

exp(−π(x+ it)2 − πt2)dx

= exp(−πt2)

∫ ∞
−∞

exp(−π(x+ it)2)dx

= exp(−πt2)

∫ ∞
−∞

exp(−πx2dx)

= exp(−πt2),

where we have used contour integration and the identity
∫∞
−∞ exp(−πx2)dx = 1.

Corollary A.8. For all a > 0, the Fourier transform of the function

fa(x) = exp(−πax2)

is

f̂a(t) =
1√
a

exp(−πt2/a).
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Proof. We note that fa(x) = f(
√
ax). We compute

f̂a(t) =

∫ ∞
−∞

fa(x) exp(−2πixt)dx

=

∫ ∞
−∞

f(
√
ax) exp(−2πixt)dx

=
1√
a

∫ ∞
−∞

f(u) exp
(
−2πiut/

√
a
)
du

=
1√
a
f̂
(
t/
√
a
)

=
1√
a
f
(
t/
√
a
)
.

This proves the claim.

A.7 The spectral theorem

We recall some definitions and facts from linear algebra.
Let V be a finite-dimensional C-vector space, equipped with a Hermitean inner product 〈 , 〉.

If A is an endomorphism of V , then there exists a unique endomorphism A† of V , called the
adjoint of A with respect to 〈 , 〉, such that

〈Av,w〉 = 〈v,A†w〉 for all v, w ∈ V.

With respect to any C-basis of V that is orthonormal with respect to 〈 , 〉, the matrix of A† is
the conjugate tranpose of the matrix of A. The operator A is called normal if it commutes with
its adjoint A†.

Theorem A.9 (spectral theorem). Let V be a finite-dimensional C-vector space, and let Φ ⊂
EndC V be a family of normal, pairwise commuting endomorphisms of V . Then there exists a
C-basis of V consisting of simultaneous eigenvectors for all the A ∈ Φ.
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