TD2: FONCTIONS ANALYTIQUES

Olivier de Gaay Fortman

7 - 11 février 2022

Les exercices marqués avec un † sont plus difficiles que les autres. Pour toute question ou remarque, veuillez envoyer un mail à olivier.de.gaay.fortman@ens.fr ou passer à mon bureau (T17, DMA, ENS).

Exercice 1

- 1. Soit $\alpha \in \mathbb{R}_{>0}$. Donner un exemple d'une fonction $\rho \colon \mathbb{R} \to \mathbb{R}$ telle que
 - (a) ρ est indéfiniment dérivable dans \mathbb{R} ,
 - (b) $\rho(x) > 0$ pour chaque $x \in \mathbb{R}$,
 - (c) $\rho(x) = 0$ pour $x < -\alpha$ et $x > \alpha$, et $\rho(x) > 0$ pour $x \in]-a, a[$,
 - (d) $\int_{-\infty}^{\infty} \rho(x) dx = 1$.
- 2. Pour $n \in \mathbb{Z}_{>0}$ et une fonction ρ comme dans 1, définissons le polynôme

$$P_n(x) = \rho(0) + \frac{\rho'(0)}{1!}x + \dots + \frac{\rho^{(n)}(0)}{n!}x^n.$$

Choisir ρ telle que la suite de polynômes $(P_n)_{n>0}$ ne converge pas uniformément vers ρ dans $[-\alpha, \alpha]$.

3. Donner un exemple d'une fonction $f: \mathbb{C} \to \mathbb{C}$ non-constante et \mathcal{C}^{∞} et d'un ouvert $U \subset \mathbb{C}$ tels que $f|_{U} = 0$ pour la restriction $f|_{U}$ de f à U. Existe-t-il une telle fonction f qui soit analytique?

Exercice 2

On va utiliser le théorème suivant :

Théorème. Soient $f(z) = \sum_{n \geq 0} a_n z^n$ et $h(z) = \sum_{n \geq 0} b_n z^n$ des séries entières convergentes autour de z = 0 avec $h(0) = b_0 = 0$. Soient $r, s \in \mathbb{R}_{>0}$. Supposons que f(z) soit absolument convergente pour tout $z \in \mathbb{C}$ avec $|z| \leq r$. Supposons aussi que $\sum_n |b_n| s^n \leq r$. Définissons g = f(h) comme la série entière

$$g(z) = \sum_{n>0} a_n \left(\sum_{k=0}^{\infty} b_k z^k \right)^n.$$

Alors g converge absolument dans $\overline{D}(0,s)$, et pour tout $z \in \overline{D}(0,s)$, on a g(z) = f(h(z)).

- 1. Soient $U \subset \mathbb{C}$ et $V \subset \mathbb{C}$ ouverts et soient $g \colon U \to V$ et $f \colon V \to \mathbb{C}$ des fonctions analytiques. Montrer que la fonction $f \circ g \colon U \to \mathbb{C}$ est analytique.
- 2. Soient $f, g: U \to \mathbb{C}$ des fonctions analytiques. Montrer que toute puissance f^n $(n \in \mathbb{Z}_{\geq 0})$ est analytique dans U. Déduire que la fonction produit $f \cdot g: U \to \mathbb{C}, z \mapsto f(z) \cdot g(z)$ est analytique.
- 3. Soient $f,g:U\to\mathbb{C}$ deux fonctions analytiques telles que $g(z)\neq 0$ pour chaque $z\in U$. Montrer que la fonction $f/g:U\to\mathbb{C}, z\mapsto f(z)/g(z)$ est analytique.
- 4. Notons $\exp(z)$ la fonction analytique $\sum_{n\geq 0} z^n/n!$ de rayon de convergence $R=+\infty$. Montrer que les fonctions

$$\cos(z) = \frac{1}{2} \left(\exp(iz) + \exp(-iz) \right), \quad \text{et} \quad \sin(z) = \frac{1}{2i} \left(\exp(iz) - \exp(-iz) \right)$$

sont analytiques dans $\mathbb C$ et donner leur termes généraux.

5. Montrer que la fonction analytique $f(z) = \cos^2(z) + \sin^2(z)$ est constante et donner $f(z) \in \mathbb{C}$.

Exercice 3

Montrer qu'une série entière $\sum_n a_n z^n$ est une fonction analytique dans son disque ouvert de convergence.

Exercice 4

Soit f une fonction analytique dans un voisinage de z=0 dans \mathbb{C} , et soit $(a_n)_{n\geq 0}$ une suite de points distincts de $\mathbb{R}_{\geq 0}$ qui tend vers 0.

- 1. Supposons que f prenne des valeurs réelles aux a_n . Montrer que $f(\bar{z}) = \overline{f(z)}$ au voisinage de 0.
- 2. Supposons que f prenne des valeurs réelles aux points a_n , et de plus que $f(a_{2n}) = f(a_{2n+1})$ pour tout $n \in \mathbb{Z}_{\geq 1}$. Montrer que f est constante dans un voisinage de 0.

Exercice 5

Supposons qu'une fonction f soit analytique dans un ensemble ouvert connexe $U \subset \mathbb{C}$ et ne soit pas identiquement nulle dans U. Soit $K \subset \mathbb{C}$ une partie non-vide, fermée et bornée telle que $K \subset U$. Montrer l'équation f(z) = 0 n'a qu'un nombre fini de solutions dans K.

Exercice 6

Soit $r \in \mathbb{Z}_{\geq 1}$. Déterminer le rayon de convergence de la fonction de Bessel d'ordre r:

$$J_r(z) = \left(\frac{z}{2}\right)^r \cdot \sum_n \frac{(-1)^n}{n!(n+r)!} \left(\frac{z}{2}\right)^{2n}.$$

[†]Exercice 7

Définissons les quatre ensembles suivants :

$$\mathbb{H} = \{z \in \mathbb{C} \mid \mathrm{Im}(z) > 0\} \subset \mathbb{C}, \quad \mathbf{Z} = \{z = x + iy \in \mathbb{C} \mid 0 \le |z| < 1, x \ge 0, y \ge 0\}.$$

$$\mathbf{E} = D(0,1) - \mathbf{Z} \subset D(0,1) \quad \text{ et } \quad \mathbf{H} = \{x + iy \in \mathbb{C} \mid x < 0, \frac{\pi}{2} < y < 2\pi\} \subset \mathbb{H}.$$

- 1. Dessiner E et H, et donner deux fonctions analytiques $f: H \to E$ et $g: E \to H$ telles que $f \circ g = id: E \to E$ et $g \circ f = id: H \to H$.
- 2. Donner deux fonctions analytiques $f : \mathbb{H} \to D(0,1)$ et $g : D(0,1) \to \mathbb{H}$ telles que $f \circ g = \mathrm{id} : D(0,1) \to D(0,1)$ et $g \circ f = \mathrm{id} : \mathbb{H} \to \mathbb{H}$.

Exercice 8

Soit U un ouvert connexe dans \mathbb{C} et f une fonction analytique sur U telle que pour tout $z \in U$, un des coefficients du développement en série entière de f s'annule. Montrer que f est un polynôme.

†Exercice 9

Soit μ une mesure complexe finie sur un espace mesurable X, φ une fonction complexe mesurable sur X, et U un ouvert du plan complexe $\mathbb C$ qui ne rencontre pas $\varphi(X)$. Posons

$$f(z) = \int_{X} \frac{d\mu(\xi)}{\varphi(\xi) - z}, \quad z \in U.$$

Montrer que f est une fonction analytique sur U.