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1 Persistent homology of random functions

My field of study is perhaps better understood by trying to answer the following question :
Question 1. How many mountains of height r are there 7

A priori, one might think that this is an easy question, since it involves only counting the local maxima
of elevation function we encounter and measuring their height. However, given some very rough terrain,
the number of these local maxima can be high and any two local peaks can be arbitrarily close to one
another, so this definition does not fit the intuitive concept of a “peak”. To give a good definition, consider
inundating the terrain with water. Given a certain level of the water r, we will have a different number
of islands or continents, which will vary as we increase r. For each r, we can confidently say that the
number of peaks of height greater than r is exactly equal to the number of continents we count when we
have inundated the terrain up to the level r. Of course, there will be continents which will get innundated
faster than others as the water level rises. The difference in water level between the level at which a new
continent appears and the level at which it gets innundated (in technical jargon, its persistence) allows
us to give a definition for what a prominent or notable peak is. In this sense, peaks associated with very
tall mountains will have very high persistence, while small hills will have low persistence.

A bit more abstractly, we can rephrase the question of the number of peaks as follows. Consider a
function f : X — R such that f is continuous. We are interested in studying the topology of the sets
where the function f takes values greater than some value r € R. In fact, the topology of these sets can be
quite complicated, so we restrict ourselves to studying the so-called homology (which roughly corresponds
to a notion of “holes”) of these sets. Let us focus on 0th degree homology, which describes the connected
components of the level sets and how this homology varies as we vary the level r. This corresponds exactly
to counting the connected components or “continents” we previously described.

Remark 1.1. Looking at higher homology levels amounts to asking whether the continents contain lakes,
or holes inside them and if so, how many of them are there ? In higher dimensions, this notion of “holes”
can be generalized, leading to a notion of what having an nth dimensional hole means.

This is exactly what we study in the field of persistent homology. The word persistent comes from the
so-called decomposition theorem, which states that if the function f and the space X are “nice enough”,
the homology of these sets can be decomposed in terms of 7, and that the elements in the decomposition
“persist” for some time as we vary the level r. The invariant obtained through this decomposition is
called the barcode of the function f. In terms of the mountains we just described, this decomposition
retains the birth and death of all of the different continents we observed while innundating the landscape.
The term persistence comes from the fact that as we innundate the valley, these continents “persist” or
stay alive as we vary the water level.

My research revolves around the persistent homology of random functions. To be exact and asking
the reader to indulge the author with a bit of jargon, we can phrase this is precisely as follows.



Figure 1: (a) The space X, i.e. the brain. (b), (c), (d), (e) and (f) are different cross sections of the
PET scan. Red zones are more intensely activated. (g) Zones activated above a certain threshhold r¢ (h)
Zones activated above a higher threshhold r; > ro. The figure is taken from [1]

Question 2. What can we say about the persistent Betti numbers in expectation (probability, almost
surely, etc.) of random functions on a compact, connected topological set X 7

This question, while at first hand seemingly abstract, asks very natural questions about the superlevel
sets of random functions. This is best illustrated by examples and applications. In dimension one, the
question above is equivalent to the following problem.

Question 3. How many times does a certain share price fluctuate by at least p$? In particular, how
many times does it go up in price from pgy to a price p; ?

Most of my work is applicable to exactly this question, as most of the results I have thus far obtained
concern stochastic processes in dimension one.

Another possible translation of Question 2 in neurobiology has been explored by Adler and Taylor [1].
Here, we are interested in isolating zones of the brain responsible for certain tasks. To do this, we take
brain scans using techniques such as positron emission tomography (PET) and see which zones of the
brain are activated under some stimuli. The signal we detect takes the form of a real valued function f
over the scanned brain, which here will play the role of the topological space X, whose values correspond
to the level of “activation” at a certain point of the brain (cf. figure 1).

We consider a zone of the brain to be activated under the stimuli, if the signal stemming from a PET
scan is above a certain threshhold of activation r. We can see that it is thus important to quantify the
probability that certain regions are activated by chance, so we may determine what the correct value of
this threshhold should be. To do this, we must understand the statistical properties of “activated” zones
for random functions on X. In other words, we would like to know if we could replace the physically
meaningful brain activity level measurements by something completely random. If the answer is yes,
then, either we set the threshhold r too low, or there is no information in the measurements and some
“activated” regions in the scan could be considered as random sets of some kind. Question 2 can thus be
rephrased in this context as follows.

Question 4. How many areas of the brain do we expect to be “activated” at random in a PET scan,
given a threshhold of activation r 7 What can we say about their shape 7 For instance, do we expect
these regions to have holes in them, if so, how many ?



As we can see, questions which can appear at first glance to be quite abstract, quickly becomes concrete
when confronted to statistical necessities of certain fields. In light of these few but varied examples, we
hope that the reader has convinced him or herself with the necessity to study such questions from a
mathematical and abstract point of view.

2 Past Research

Random sets and in particular the superlevel sets of random functions have been studied quite extensively
in different settings. For example, an abstract version of Question 4 has been treated in Adler and Taylor’s
celebrated book [1], but also by Azais and Wschebor’s work [2]. In the settings looked at by these authors,
the functions studied are assumed to be smooth, and the authors make conclusions not about particular
fixed homology groups we previously aluded to (n-degree holes), but rather about invariants combining
them, such as the Euler characteristic. This partly answers Question 4, in the sense that as the threshold r
grows large, we don’t expect the random sets to have holes in them, so the Euler characteristic essentially
counts the number of connected components. To avoid taking this limit, results about particular homology
groups would be desirable. Other authors to have worked in this setting, asking questions such as the
number of points or connected components of a given level set, i.e. a set where the function f is exactly
equal to r, include Rice [17] and other authors (cf. the references in [1, 2]).

By contrast, in dimension one, this question has been studied in a context where the function f is very
irregular, in fact, not even differentiable. In this setting, it is practical to use a construction originally
proposed by Le Gall [8], which he later revisited with Duquesne [9], which consists in associating a tree to
a function f. Formally, this is done by introducing a pseudo-distance defined in terms of f and quotienting
out the set of points which are a pseudo-distance 0 away from one another. Informally, it is possible to
see this tree appear easily, by considering the graph of some function, and imagining that we use glue
along the bottom of the curve, and then push the curve horizontally against the y-axis. This is illustrated
in figure 2. The resulting object is a tree. Possible extensions to higher dimensions of this construction

0

Figure 2: A function f in blue and its associated tree in red. Points connected by dots are identified.

had previously been suggested by Curien et al. [6], in which case the “gluing” picture is similar to that
of the one-dimensional case. Crucially, these trees have the property that they identify points along the
curve belonging to the same level-set lying in the same connected component of the superlevel set.
Much work has been done in the probability theory community regarding these trees, but some
particularly useful and key references in the context of my work is the work of Picard [16] and that of
Neveu and Pitman [10]. Much of the research done in this direction concerns asymptotics of a certain
quantity, which, in the language of Question 3, is the number of fluctuations of size at least € in the share



price there are. This can be transposed in terms of the tree as follows. First consider a version of the tree
which we have trimmed by ¢, that is, we have cut off all pieces which are less than ¢ away from a leaf.
Let us denote this trimmed tree Tji. Denoting N¢ the number of the truncated tree TJ‘?, the question of
the fluctuations of the share price f can be reinterpreted as finding N¢. Authors like Picard [16], Neveu
and Pitman [10] made significant contributions to answering this question. The former found asymptotics
of N¢ for small € and the latter reinterpreted the problem in terms of stopping times, which have been
widely studied in the theory of stochastic processes.

My contribution to this probabilistic approach, based on trees, was to show that a tweaked version of
this pseudo-distance generates a tree identifying connected components for any continuous function on a
connected, locally path-connected and compact topological space X [13]. T also extended Picard’s results
by using these asymptotics for various purposes, such as estimating N¢ for sequences of processes whose
limits are the processes studied by Picard.

This problem has also been looked at under the scope of persistent homology and persistence theory
by a plethora of authors. Some key references are Oudot’s [11] and Chazal et al.’s [4] textbooks on the
topic and the references theirein. Some authors like Chazal and Divol [5] were able to use some classical
results to deduce the expectation of the number of points in any rectangle of the so-called persistence
diagram of f for Brownian motion. In the language of Question 3, this information is equivalent to
knowing, in expectation, how many times the share goes up in price from some fixed price py to some
higher fixed p;. Similarly, Baryshnikov also performed such computations for Brownian motion with a
drift [3]. Interestingly, trees akin to those previously defined by the probabilists were rediscovered in the
context of persistent homology. Here, the main authors to be cited include (but are not limited to) Wang
et al. [20], Curry [7], Baryshnikov [3] and Schweinhart [18].

Given the fact that both of these a priori different fields introduce trees, one is tempted to ask whether
these constructions are equivalent. And indeed, it turns out that so-called merge trees correspond exactly
to the notion of trees proposed by the probabilists, as I showed in [13], except that the probabilist’s notion
extends results easily to a wider class of functions and topological spaces. In particular, this comparison
and unification of both approaches allowed me to extend Curry’s work [7] with less assumptions of
regularity, and, in the stochastic setting, to extend and generalize the results of Baryshnikov [3], Chazal
and Divol [5] and Picard [16] to much wider classes of processes. We will elaborate on this later on.

2.1 My Contribution

With this wider perspective, we can summarize some of my main contributions along the following points.

e The comparison between trees introduced by probabilists and barcodes and an algorithm linking
the two. This proves the equivalence of merge trees and the probabilistic construction in the usual
setting where merge trees are considered, but extends the framework to any continuous function
on any compact, connected and locally path-connected topological space. In less technical jargon,
this expands the generality under which these trees had previously been considered, extending
it to potentially “uglier” spaces and “rougher” or more irregular functions. In the language of
Question 1, this result shows that this theory can be used to describe all sorts of terrain : not
only nice and smooth hilly countrysides as was previously known, but also rough, irregular and
mountainous terrain. I also showed that it is possible to give an inequality linking the Holder
regularity of the function f (here, this quantifies how rough the terrain is, quantitatively) and the
upper-box dimension of the tree associated to f. In fact, I also showed this inequality is optimal,
by constructing a function saturating the inequality.

e The application of the theory developed for trees to one dimensional random processes. Following
and extending works of authors like Picard, Baryshnikov, Divol and Chazal. In the language of
Question 3, I studied the number of fluctuations of the share price N¢ for large values of ¢ in
expectation, and its higher moments, which was previously not considered in the literature for a



wide range of processes (Markov processes). I found explicit results for Brownian motion and the
Brownian bridge, quantifying these large variations precisely [14].

e By approximation, I showed that the results obtained for the canonical processes above can be
adapted and yield consequences for any almost surely convergent sequence in L°°-norm to these
processes, in which case we also estimate N¢ and give a bound on the error of the approximation.
Put simply, even if the share price is not Brownian, but is modelled as a discrete random walk
with steps of finite variance, this theorem shows that we still have estimates on the number of
large fluctuations of the share price, with known error. This extends considerably the number of
models we can consider for share prices where we still know something about the number of large
fluctuations in expectation [14].

e The introduction of a notion of (-functions for stochastic processes (not to be confused with the
classical Riemann (-function), defined in terms of the persistent homology and showing that these
(-functions share some points with the classical Riemann (-function from number theory. Explicitly,
we may express these (-functions for stochastic processes as

C(p) = /OOOE[NE] el de .

Furthermore, I showed that these functions admit a meromorphic extension to the whole complex
plane, with a unique pole. From these functions, we get dual information on the expectation number
of bars of length > ¢ (in some cases, the information we get is total, i.e. we get a series that converges
to the expectation) [15].
e The introduction of these (-functions allows us to show precise results for N¢ for a-stable processes’
in both the small and large e regime [15]. This is significant, because, as originally pointed out by
Benoit B. Mandelbrot, most markets should be modelled on a-stable processes [19] and once again
extend the variety of models used for share prices.

e A new statistical test for the parameter « for nowhere monotone a-stable Lévy processes.

e The introduction of local {-functions, from which one can derive information about the local time
of the process. In particular, I have deduced a series computing all integer moments? of the local
time of the Ornstein Uhlenbeck process in expectation [12].

e Explicit calculations of the (-functions of several processes, as well as asymptotic series of the
expectation of the number of bars of length > ¢ (and higher order moments for some examples).
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