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Introduction
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An invitation to persistent homology

Question

How can we define a proper notion of “peak” in alpinism ?
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An invitation to persistent homology

Idea

Look at the local maxima of a the elevation function of the terrain.
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An invitation to persistent homology

Idea

Flood the terrain, and look at islands forming and disappearing.
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An invitation to persistent homology

Remark

There are water levels b where an island “is born”...
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An invitation to persistent homology

Remark

...and water levels d where islands “die”...
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An invitation to persistent homology

Definition

We call a point a peak if the “persistence” (:= d − b) of its island is ≥ 91m (300 ft.)

We can keep track of the islands by looking at the so-called “barcode” or “diagram”
of the elevation function.
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Daniel Perez Persistent homology of stochastic processes and their zeta functions



An invitation to persistent homology

Question

How can we easily compute this barcode object given a landscape ?

Is it possible to have a computer do this task automatically ?

Solution

Persistent homology !
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An invitation to persistent homology

Homology =⇒ “counting islands” given a water level.

Persistence =⇒ what happens when we change water level ?

Question

Given a space X and a function f : X → R what can we say about the topology (more
precisely, the homology) of the sets {f ≥ t} ?
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A crashcourse in homology
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A crashcourse in homology

Fact

Homology is an invariant characterizing k-dimensional holes.

Remark

Here, we will only define homology for simplicial complexes
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A crashcourse in homology : simplicial complexes

Figure – Oriented n-simplices

Figure – A simplicial complex Figure – Not a simplicial complex
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A crashcourse in homology : chain complexes

Definition

Let k be a field and X be a simplicial complex. The chain space of degree n
associated to X is

Cn(X ) := 〈n-faces of X 〉k

Daniel Perez Persistent homology of stochastic processes and their zeta functions



A crashcourse in homology : chain complexes

Definition

The boundary operator ∂ : Cn(X )→ Cn−1(X ) is a linear operator defined by

∂(n-face) =
∑

oriented

elements of boundary of the n-face

Remark

∂2 = 0
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A crashcourse in homology : chain complexes

Definition

The couple (C•, ∂) is called a chain complex, it is common to note it as a sequence

· · · ∂−→ C3
∂−→ C2

∂−→ C1
∂−→ C0

∂−→ 0 .

Remark

∂(loops) = 0

More generally, we call an n-cycle any element of ker(∂).

Idea

We could define an “n-hole” to be an n-cycle that is not a boundary.
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A crashcourse in homology : homology

Definition

The nth homology group is

Hn(X ) :=
ker(∂|Cn )

∂Cn+1

Here, computation of homology ⇐⇒ reduction of the matrix ∂.

Remark

We have just turned the problem of finding “holes” into a linear algebra problem !

Remark

H0(X ) =
C0

∂C1
≈

points of X

pairs of points joined by a path

≈ path connected components

Daniel Perez Persistent homology of stochastic processes and their zeta functions



A crashcourse in homology : homology

Definition

The nth homology group is

Hn(X ) :=
ker(∂|Cn )

∂Cn+1

Here, computation of homology ⇐⇒ reduction of the matrix ∂.

Remark

We have just turned the problem of finding “holes” into a linear algebra problem !

Remark

H0(X ) =
C0

∂C1
≈

points of X

pairs of points joined by a path

≈ path connected components

Daniel Perez Persistent homology of stochastic processes and their zeta functions



A crashcourse in homology : an example

C0 = 〈A,B,C〉k
C1 = 〈a, b, c〉k
Cn = 0 for n ≥ 2 .

The chain complex is thus

0 〈a, b, c〉k 〈A,B,C〉k 0

a C − B

b C − A

c B − A

∂ ∂ ∂
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A crashcourse in homology : an example

∂ =

A B C a b c


0 0 0 0 −1 −1 A
0 0 0 −1 0 1 B
0 0 0 1 1 0 C
0 0 0 0 0 0 a
0 0 0 0 0 0 b
0 0 0 0 0 0 c

=⇒


ker(∂|C1

) = 〈a− b + c〉k
ker(∂|C0

) = 〈A,B,C〉k
∂C1 = 〈C − B,C − A〉k

It follows that

H0(X ) =
〈A,B,C〉k

〈C − B,C − A〉k
∼= 〈C〉k =⇒ 1 connected component

H1(X ) =
〈a− b + c〉k

0
∼= 〈a− b + c〉k =⇒ 1 1-hole.
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A crashcourse in homology : some remarks

Remark

This construction extends [6] to topological spaces homeomorphic to a simplicial
complex.

Remark

Homology can be defined in any situation where we have a chain complex (C•, ∂)
where ∂ satisfied ∂2 = 0.
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Persistence ?
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Persistence

Now, we look at f : X → R which filters the space into (Xt)t∈R where

Xt = {f ≥ t} .

Idea

Filtration by f : X → R

Inclusions ir,s : Xr → Xs (r > s)

Morphisms C•(Xr )→ C•(Xs)

Morphisms H•(ir,s) : H•(Xr )→ H•(Xs)

Induce

Induce

Induces

To study the filtration, we need to study the morphisms H•(ir,s).

Example

H0(ir,s) tells us which islands “alive” at t = r are still alive at time t = s.
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Persistent homology

Definition

The persistent homology of the couple (X , f ), denoted H•(X , f ) is the collection of
the vector spaces (H•(Xt))t∈R together with the collection of morphisms
(H•(ir,s))r>s .

We can see H•(X , f ) as a “map” (formally, a functor) associating :

t H•(Xt)

r > s H•(ir,s)
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The decomposition theorem

Theorem (Decomposition theorem, Auslander, Ringel, Tachikawa, Gabriel, Azumaya,
Chazal, Crawley-Boevey, de Silva [1])

Under some conditions on (X , f ), the persistent homology of the couple admits a
decomposition

H•(X , f ) =
⊕
(b,d)

k[b, d [ ,

where [b, d [ ⊂ R and k[b, d [ is the “map” (functor) associating

t 7→
{
k t ∈ [b, d [

0 else

r > s 7→
{

id r , s ∈ [b, d [

0 else

Remark

The intervals [b, d [ are exactly the intervals we encountered earlier with the birth and
death of islands !

Remark

The conditions on (X , f ) will always be satisfied for the rest of this talk.
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Why is PH interesting ?

Theorem (Stability theorem, Cohen-Steiner, Edelsbrunner, Harer, Chazal, Carlsson,...
[7])

Let X be a compact metric space. There exists a notion of distance on persistence
diagrams or barcodes, d∞, satisfying

d∞(Dgm(f ),Dgm(g)) ≤ ‖f − g‖∞ .

for any pair of continuous functions f , g : X → R.

Figure – Two close functions
Figure – The diagrams of the functions are
close
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Why is PH interesting ?

PH is a robust invariant ;

Systematic approach to studying the topology of superlevel sets of a function
f : X → R ;

Fairly general and widely applicable pipeline ;

Lower semi-continuity of diagrams induced by the stability theorem imply
non-trivial results in a wide variety of situations.
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Main question
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The question (partially) answered in this thesis

Question (Viterbo)

What does the barcode of a random or generic function look like ?

Solution (1)

? ? ? ?

Solution (2)

Let us run some experiments !

Problem

What model should we fix ?
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Feasible case : 1D Brownian motion (BM)

Definition

Brownian motion is the unique stochastic process B satisfying

B0 = 0 a.s. and Bt ∼ N (0, t) ;

(Independence of increments) ∀0 ≤ t1 < t2 < · · · < tn <∞, (Bti+1 − Bti )i are
mutually independent ;

(Stationarity of increments) ∀s < t, Bt − Bs = Bt−s in distribution.

00:00:01

-1.5

-1.0

-0.5

0.5

1.0

Figure – Three Brownian paths
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Figure – 750 Brownian paths, with the
distribution of the values of the process at
t = 1.
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The diagram of BM

Fact

BM is very well approximated by random walks =⇒ easy to compute the barcode !

Figure – Average persistence diagram of 300 paths
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Features of the diagram of BM
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Figure – Number of bars of length ≥ ε (Nε) of BM

Remark

There seems to be a very regular regime for small bars !
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Does this work in general ?
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log ϵ
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Figure – Number of bars of length ≥ ε (Nε) of the mountain landscape

Remark

Same behaviour, but with a different value for the slope of the line !
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Goals

Stability (is the approximation of BM by a process close to it accurate) ?

Explain the behaviour of Nε as ε→ 0 ? As ε→∞ ?

Deterministic vs. random ?
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Deterministic functions
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Motivation for the introduction of Wasserstein distances on diagrams

Often, crucial information is encoded in small bars !

Problem

d∞ doesn’t take into account small bars ! A priori, the stability theorem is useless !
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Definitions

Solution

Introduce a new family of distances on diagrams.

Idea (Chazal, et al., [2])

Diagrams are measures on the half-plane X .

Idea

Extend this notion by introducing the vague convergence topology on the space of
measures on X and close the space of persistence measures with respect to this
topology.
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Use optimal transport

Definition (Wasserstein distances)

Let (X , d) be a polish metric space. Denote P(X ) the set of probability measures and
Pp(X ) the set of probability measures admitting a pth moment. The pth Wasserstein
distance between µ, ν ∈ Pp(X ),

Wp,d (µ, ν) := inf
π∈Γ(µ,ν)

[∫
X 2

d(x , y)p dπ(x , y)

]1/p

.

Figure – A transport plan in Γ(µ, ν)

Figure – A transport plan
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Wasserstein distances dp

Problem

Persistence measures are not probability measures and can have infinite mass !

Solution (Divol, Lacombe [4])

Take the diagonal to be reservoir of infinite mass, so as to be able to compare
measures with different masses.
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Wasserstein distances dp

Problem
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Solution (Divol, Lacombe [4])
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Wasserstein distances dp

Idea

Introduce Wasserstein distances as before, this time for persistence measures.

Definition

The optimal transport distance thus obtained on the space of diagrams will be
denoted dp .

Daniel Perez Persistent homology of stochastic processes and their zeta functions



Remarks

Remark

For p =∞, we retrieve d∞ ;

For p <∞, dp takes into account small bars.

Question

Metric spaces of diagrams, given p ?

Given a certain class of functions, which p should we choose to consider ?

Does dp admit a stability theorem with respect to perturbations in L∞ ?
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Where do diagrams live ?

Divol and Lacombe [4] introduced

Definition

Denote D the space of Radon measures on the usual half-plane, then

Dp := {D ∈ D | dp(D,∆) <∞}

Motivates considering

Definition

Persp(D) := dp(D,∆) .

Remark

For a persistence diagram D,

Perspp(D) =
∑
b∈D

`(b)p

where `(b) is the length of the bar corresponding to the point b ∈ D.
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Persistence indices

Definition

The kth persistence index is defined as

Lk (f ) := inf{p ≥ 1 | Persp(Hk (X , f )) <∞}
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Associating the correct metric space to Dgm(f )
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Links with regularity : Picard’s theorem

Theorem (Picard, §3 [10])

Let f : [0, 1]→ R be a continuous function and denote

V(f ) := inf{p | ‖f ‖p-var <∞} .

Then,

V(f ) = L0(f ) = lim sup
ε→0

log Nε

log(1/ε)
∨ 1

where a ∨ b := max{a, b}.

Remark

This theorem already entails that for BM, since V(B) = 2, we have ∀δ > 0,

Nε = O(ε−2−δ) as ε→ 0 .
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A digression

Theorem (Picard, [10])

Due to self-similarity properties of BM, Nε is a.s.

Nε ∼
C

ε2
as ε→ 0 .

for a certain constant C . Furthermore,

E[Nε] =
C

ε2
+ O(1) as ε→ 0 .

Question

What about large ε ? Does this asymptotic expansion extend ?
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Links with regularity : a generalization of Picard’s theorem

Theorem (Persistence-Regularity theorem, P., [8])

Let X be a d-dimensional compact Riemannian manifold, k ∈ N and let
f ∈ Cα(X ,R), then

Lk (f ) = lim sup
ε→0

log(Nεk )

log(1/ε)
∨ 1 ≤

d

α
.

Remark

Lk (f ) = q ⇐⇒ ∀δ > 0, Nεk = O(ε−q−δ) as ε→ 0 .

Inspiring ourselves from a previous work of Baryshnikov and Weinberger,

Theorem (Genericity theorem, P., [8])

The inequality above is saturated generically (in the sense of Baire) in Cα(X ,R) for
k ∈ {0, · · · , d − 1}.

Corollary

f ∈ Cα(X ,R) =⇒ Dgm(f ) ∈ Dp for p >
d

α
,

but not in Dp for p < d
α

generically.
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Wasserstein stability revisited
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Wasserstein stability revisited

Theorem (Wasserstein stability, P. [8])

Let X be a d-dimensional compact Riemannian manifold and f , g ∈ CαΛ (X ,R). Then,

for every k ∈ N∗, and all p > q > d
α

,

dp(Hk (X , f ),Hk (X , g)) ≤ CX ,Λ,α,q,k ‖f − g‖
1− q

p
∞ .

Remark

We have explicit estimates on CX in terms of metric quantities of X and under all the
hypotheses the bounds on q are sharp.

Remark

Genericity theorem =⇒ for p < d
α

, WS generically violated in Cα(X ,R).
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Some remarks

Wasserstein stability was previously shown for Lipschitz functions, without
quantitative conditions on CX and q by Cohen-Steiner, Edelsbrunner, Harer and
Mileyko [3] in 2010 ;

Skraba and Turner [11] showed in 2020 that Cohen-Steiner et al.’s stability
theorem satisfied =⇒ q ≥ d ;

Our result on genericity shows the other direction : q ≥ d =⇒ stability
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Take-away message

Persistence index ⇐⇒ Asymp. behaviour of Nε as ε→ 0 ⇐⇒ regularity of f ;

Quantitative stability results which take into account small bars exist, under some
hypotheses on regularity ;

The “worst-case” scenario for Lk (f ) is generically attained =⇒ range of p for
dp which should be considered in applications.
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Stochastic processes
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A notion of an average diagram

Definition

From now on, f and g will always be two R-valued a.s. Cα stochastic processes defined
on a probability space (Ω,F ,P) on a d-dimensional compact Riemannian manifold X .

Definition

This notion of average diagram is given by dual action as a Radon measure, i.e. for
every measurable set B of the half-space, we define

E[Dgm(f )] (B) := E[Dgm(f )(B)] .
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Where do (average) diagrams live ?

Proposition (P., [8])

Hk (X , f ) ∈ Dr for every d
α
< r <∞.

If d
α
< q <∞ and E

[
‖f ‖q

Cα(X ,R)

]
<∞, then E[Hk (X , f )] ∈

⋂
d
α
<p≤q

Dp .
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Declinations of stability
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Declination of stability for random fields

Theorem (Stochastic Wasserstein stability, P. [8])

If the supports of f]P and g]P are compact, then for every d
α
< p ≤ q ≤ ∞ there

exists a constant CX ,p,η such that

dp(E[Hk (X , f )] ,E[Hk (X , g)]) ≤ CX ,p,ηW
η
qη,L∞ (f]P, g]P) .

where η < 1− d
αp

.

By using the Komlós–Major–Tusnády approximation

Corollary

In the case of BM being approximated by a random walk Wn with n steps, for p > 2,

dp(E[Dgm(B)] ,E[Dgm(Wn)]) ≤ O(n−
1
2 log(n)) .
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Zeta functions associated to a stochastic process
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Definitions

Definition

The ζ-function in degree k associated to a stochastic process f , denoted ζf ,k is
defined as

ζf ,k (p) := E
[
Perspp(Hk (X , f ))

]
.

We denote ζf ,0 =: ζf .

Remark

This is a priori well-defined only on a strip of the complex plane.
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Duality between Nε and Persp

Proposition (P., [9])

Nε and Perspp are dual, in the sense that

ζf (p) = p

∫ ∞
0

εp−1E[Nε] dε (1)

E[Nε] =
1

2πi

∫ γ+i∞

γ−i∞
ε−pζf (p)

dp

p
. (2)
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Analytic properties of ζ

Fact (Flajolet [5])

The following correspondence holds

Meromorphic ext. of ζ (to the left, to the right)

⇐⇒
Asymptotic developments of E[Nε] (as ε→ 0, ε→∞) .

Remark

This applies in general to functions and their Mellin transforms.
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Brownian motion

Renewal theory allows us to calculate

Theorem (P., [9])

The ζ-function of Brownian motion on the interval [0, t] admits a meromorphic
extension to the whole complex plane. Furthermore, it is exactly equal to

ζB(p) =
4(2p − 3)
√
π

(
t

2

) p
2

Γ

(
p + 1

2

)
ζ(p − 1)

for all p and has a unique simple pole at p = 2 of residue [B]t = t.

From which we deduce

Proposition (P., [9])

For Brownian motion on [0, t]

E[Nε] = 4
∑
k≥1

(2k − 1) erfc

(
(2k − 1)ε
√

2t

)
− k erfc

(
2kε
√

2t

)

=
t

2ε2
+

2

3
+ 2

∑
k≥1

(2(−1)k − 1)
e−π

2k2t/2ε2
t

ε2

[
1 +

ε2

π2k2t

]
.
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Brownian motion

0.010 0.050 0.100 0.500 1
ϵ
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Figure – Theoretical prediction of Nε of BM

0.005 0.010 0.050 0.100 0.500 1
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0.001

0.100
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Figure – Experimental results

Remark

For Brownian motion, we also have an analytic expression for the density of
E[H0([0, t],B)] and even the distribution of the length of the kth longest bar.
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Widening the scope : Lévy processes

Definition

A Lévy process is a stochastic process f satisfying

f (0) = 0 a.s. ;

(Independence of increments) ∀0 ≤ t1 < t2 < · · · < tn <∞, (f (ti+1)− f (ti ))i
are mutually independent ;

(Stationarity of increments) ∀s < t, f (t)− f (s) = f (t − s) in distribution.

(Continuity in probability) ∀ε > 0, t ≥ 0,

lim
h→0

P(|f (t + h)− f (t)| > ε) = 0 .

Definition

f is said to be α-stable if for all t f (λαt) = λf (t) in distribution.
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Lévy processes

Figure – Three 1.5-stable paths
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Figure – 750 1.5-stable paths
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Particular case : Lévy processes

Using the same techniques,

Theorem (P., [9])

Let f be an α-stable Lévy process on [0, t], then for some constants A and B,

E[Nε] =
t

Aεα
+ B + o(εαn) as ε→ 0 .

Remark

Brownian motion is a 2-stable Lévy process.
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Statistical tests

Stochastic stability =⇒ (Different avg diagrams =⇒ Different distributions)

Remark

Can use this to discern stochastic processes !

Statistical test

This a parameter test for α, given an α-stable process on [0, 1].

1 Sample M paths of the stochastic process f (for example at regular intervals of
size 1

N
for some N) ;

2 Compute the barcode of the sampled paths.

3 For some range of small enough ε, and for some positive constant c > 1 compute
the quantity

α̂M := logc

[
N
ε/c
t − N

2ε/c
t

N
ε
t − N

2ε
t

]
.

Claim

α̂M is a good estimation of α.
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Parameter testing
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Figure – In orange, a histogram of the number of bars of length ≥ ε, Nε found as a function of
log ε from a simulation of a Lévy 1.2-stable process as a random walk. In blue, the function
C1.2ε

−1.2.
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Conclusion
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Conclusion

PH is a good and robust invariant to study stochastic processes ;

Persistence indices are related to the asymptotic behaviour of Nε , which is itself
related to self-similarity and regularity of the process ;

The genericity results regarding the link between regularity and the persistence
index gives an appropriate range of p which should be considered in applications ;

By stochastic stability, it is possible to create new statistical tests, able to discern
different statistical processes.
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Perspectives

Further explore the connection between regularity and the persistence index for
processes of higher regularity than Cα ;

Up to redefinition of the persistence indices, it may be possible to extend the
theory to some spaces of infinite dimension ;

Applications : spin glasses ( ?), machine learning, symplectic geometry,...
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