# About stability of equilibria for the Vlasov-Fokker-Planck with general potentials

Pierre Gervais

Inria, Université de Lille

January 8-10, 2025







Joint work with Maxime Herda (Inria, Lille) preprint ArXiv:2408.16468

## Self-consistent Vlasov-Fokker-Planck

Consider a system of particles  $\mathbb{R}^d \times \mathbb{R}^d$ , described at time  $t \ge 0$  by its phase-space distribution function F(t, x, v), satisfying

 $\partial_t F + v \cdot \nabla_x F - \nabla_x \left( \Psi_F + V \right) \cdot \nabla_v F = \nabla_v \cdot \left( vF + \nabla_v F \right)$ 

Particles are moving in space

Random fluctuations and damping of the velocity (Fokker-Planck)

Particles localized in a region of space by an outside force  $\nabla_x V$ 

Particle at y affects particle at x with a force  $\nabla_x k(x - y)$ 

$$\Psi_F(x) = \int_{\mathbb{R}^d} k(x-y) \rho_F(y) \mathrm{d}y, \qquad \rho_F(x) = \int_{\mathbb{R}^d} F(x,v) \mathrm{d}v.$$

## Self-consistent Vlasov-Fokker-Planck

Consider a system of particles  $\mathbb{R}^d \times \mathbb{R}^d$ , described at time  $t \ge 0$  by its phase-space distribution function F(t, x, v), satisfying

 $\partial_t F + v \cdot \nabla_x F - \nabla_x \left( \Psi_F + V \right) \cdot \nabla_v F = \nabla_v \cdot \left( vF + \nabla_v F \right)$ 

- Particles are moving in space
- Random fluctuations and damping of the velocity (Fokker-Planck)
- Particles localized in a region of space by an outside force  $\nabla_x V$
- Particle at y affects particle at x with a force  $\nabla_x k(x y)$

$$\Psi_F(x) = \int_{\mathbb{R}^d} k(x-y) \rho_F(y) \mathrm{d}y, \qquad \rho_F(x) = \int_{\mathbb{R}^d} F(x,v) \mathrm{d}v.$$

Why this equation is interesting/hard at first glance:

- Degeneracy: diffusion in v only and vanishes for  $F = \rho(t, x)e^{-|v|^2/2}$
- Non-linearity is non-local

## Self-consistent Vlasov-Fokker-Planck

Consider a system of particles  $\mathbb{R}^d \times \mathbb{R}^d$ , described at time  $t \ge 0$  by its phase-space distribution function F(t, x, v), satisfying

 $\partial_t F + v \cdot \nabla_x F - \nabla_x \left( \Psi_F + V \right) \cdot \nabla_v F = \nabla_v \cdot \left( vF + \nabla_v F \right)$ 

- Particles are moving in space
- Random fluctuations and damping of the velocity (Fokker-Planck)
- Particles localized in a region of space by an outside force  $\nabla_x V$
- Particle at y affects particle at x with a force  $\nabla_x k(x y)$

$$\Psi_F(x) = \int_{\mathbb{R}^d} k(x-y) \rho_F(y) \mathrm{d}y, \qquad \rho_F(x) = \int_{\mathbb{R}^d} F(x,v) \mathrm{d}v.$$

Why this equation is interesting/hard at first glance:

- Degeneracy: diffusion in v only and vanishes for  $F = \rho(t, x)e^{-|v|^2/2}$
- Non-linearity is non-local

A less obvious reason:

Phase transition in the strongly non-linear (large mass) regime

$$\partial_t G + v \cdot \nabla_x G - \nabla_x (M \Psi_G + V) \cdot \nabla_v G = \nabla_v \cdot (vG + \nabla_v G)$$

where  $M = \int_{\mathbb{R}^{2d}} F(t) \mathrm{d}x \mathrm{d}v$  is the (conserved) mass and G = F/M

## Interaction potential

Even and odd parts of the interaction kernel:

$$k^{\mathsf{e}}(x) = rac{k(x) + k(-x)}{2}, \quad k^{\mathsf{o}}(x) = rac{k(x) - k(-x)}{2}, \quad k = k^{\mathsf{e}} + k^{\mathsf{o}}.$$

## Interaction potential

Even and odd parts of the interaction kernel:

$$k^{\mathsf{e}}(x) = rac{k(x) + k(-x)}{2}, \quad k^{\mathsf{o}}(x) = rac{k(x) - k(-x)}{2}, \quad k = k^{\mathsf{e}} + k^{\mathsf{o}}.$$

"Well behaved" example (unique attractive steady state)

▶ In 3D plasma physics: k is symmetric with positive Fourier modes

$$k(x) = rac{l}{|x|}, \quad l > 0, \qquad \widehat{k}(\xi) \propto l|\xi|^{-2}.$$

## Interaction potential

Even and odd parts of the interaction kernel:

$$k^{e}(x) = rac{k(x) + k(-x)}{2}, \quad k^{o}(x) = rac{k(x) - k(-x)}{2}, \quad k = k^{e} + k^{o}.$$

"Well behaved" example (unique attractive steady state)

▶ In 3D plasma physics: k is symmetric with positive Fourier modes

$$k(x) = rac{l}{|x|}, \quad l > 0, \qquad \widehat{k}(\xi) \propto l|\xi|^{-2}.$$

"Degenerate" examples (non-unique or unstable steady states)

- ▶ In particle accelerator physics: *k* is non-symmetric and  $k \in W^{1,\infty}$ :
- Kuramoto  $k = -\cos(\omega x)$ : k is symmetric but  $\hat{k}$  is negative

## Positive symmetric potentials: example of a 3D plasma

3D Vlasov-Poisson-Fokker-Planck (Coulomb potential  $k(x) \propto \lambda^{-2} |x|^{-1}$ )

$$\begin{cases} \partial_t F + v \cdot \nabla_x F - \nabla_x \left( \Psi_F + V \right) \cdot \nabla_v F = \nabla_v \cdot \left( vF + \nabla_v F \right), \\ -\lambda^2 \Delta \Psi_F(t, x) = \rho_F, \\ F|_{t=0} = F_{\text{in}}. \end{cases}$$

Theorem (Bouchut, Dolbeault '95 : <u>unconditional</u> cvg)

Assume that  $F_{in}$  satisfies physical bounds (mass, entropy, total energy) and  $\nabla \Psi_F \in L^{\infty}_{t \, loc} L^{\infty}_x$ , then

$$F(t) \xrightarrow{t \to \infty} F_{\star}$$
 in  $L^1(\mathbb{R}^3_{\mathsf{X}} \times \mathbb{R}^3_{\mathsf{Y}})$ ,

where  $F_{\star}$  is the unique steady state.

Quantitative exponential convergence rate:

- [Hérau, Thomann '16] (weakly nonlinear  $\lambda \gg 1$ )
- Figure [Toshpulatov, '23], [Gervais, Herda, '24] (strongly nonlinear  $\lambda \ll 1$ )

## Asymmetric potentials: example of a particle accelerator



High currents (large mass)  $\Rightarrow$  cyclical/instable behavior (microbunching)



[Roussel, PhD, '14], [Evain et al., Nature Physics '19]

## Assumptions on the confining potential

Assumption on the confinement: (eg.  $V(x) \approx |x|^a$  with a > 1) We make the following regularity assumption for any  $\varepsilon \in (0, 1)$ :

$$(1+|\nabla V|^2) e^{-V} \in L^1 \cap L^\infty, \qquad |\nabla^2 V(\cdot)| \le \varepsilon |\nabla V(\cdot)| + C_\varepsilon,$$

and assume the measure  $d\mu = e^{-V} dx$  admits a Poincaré inequality:

$$\int_{\mathbb{R}^d} |u|^2 \,\mathrm{d}\mu - \left(\int_{\mathbb{R}^d} u \mathrm{d}\mu\right)^2 \lesssim \int_{\mathbb{R}^d} |\nabla_x u|^2 \mathrm{d}\mu \,.$$

## Assumptions on the confining potential

Assumption on the confinement: (eg.  $V(x) \approx |x|^a$  with a > 1) We make the following regularity assumption for any  $\varepsilon \in (0, 1)$ :

$$\left(1+|\nabla V|^2\right) e^{-V} \in L^1 \cap L^\infty\,, \qquad |\nabla^2 V(\cdot)| \leq \varepsilon |\nabla V(\cdot)| + \mathcal{C}_{\varepsilon}\,,$$

and assume the measure  $d\mu = e^{-V} dx$  admits a Poincaré inequality:

$$\int_{\mathbb{R}^d} |u|^2 \,\mathrm{d}\mu - \left(\int_{\mathbb{R}^d} u \mathrm{d}\mu\right)^2 \lesssim \int_{\mathbb{R}^d} |\nabla_{\mathsf{x}} u|^2 \mathrm{d}\mu \,.$$

#### Assumption on the interactions:

The interaction operator is regularizing: for  $p \in [2,\infty]$  and  $q \in (d,\infty]$ 

$$\|k^{\alpha}*\rho\|_{L^{p}}+\|\nabla k^{\alpha}*\rho\|_{L^{q}}\leq \overline{\kappa}^{\alpha}\|\rho\|_{L^{1}\cap L^{2}}, \qquad \alpha=e,o.$$

The interaction kernel has bounded negative Fourier modes

$$\langle k * \rho, \rho \rangle \ge -\underline{\kappa}^{\mathbf{e}} \|\rho\|_{L^1 \cap L^2}^2, \quad \forall \rho \in L^1 \cap L^2 \text{ s.t. } \int \rho = 0.$$

## Assumptions on the confining potential

Assumption on the confinement: (eg.  $V(x) \approx |x|^a$  with a > 1) We make the following regularity assumption for any  $\varepsilon \in (0, 1)$ :

$$\left(1+|\nabla V|^2\right) e^{-V} \in L^1 \cap L^\infty\,, \qquad |\nabla^2 V(\cdot)| \leq \varepsilon |\nabla V(\cdot)| + C_\varepsilon\,,$$

and assume the measure  $d\mu = e^{-V} dx$  admits a Poincaré inequality:

$$\int_{\mathbb{R}^d} |u|^2 \,\mathrm{d}\mu - \left(\int_{\mathbb{R}^d} u \mathrm{d}\mu\right)^2 \lesssim \int_{\mathbb{R}^d} |\nabla_x u|^2 \mathrm{d}\mu \,.$$

### Assumption on the interactions:

The interaction operator is regularizing: for  $p \in [2, \infty]$  and  $q \in (d, \infty]$ 

$$\|k^{\alpha}*\rho\|_{L^{p}}+\|\nabla k^{\alpha}*\rho\|_{L^{q}}\leq \overline{\kappa}^{\alpha}\|\rho\|_{L^{1}\cap L^{2}}, \qquad \alpha=e,o.$$

The interaction kernel has bounded negative Fourier modes

$$\Re\left(\int_{\mathbb{R}^d} \widehat{k}(\xi) \left|\widehat{\rho}(\xi)\right|^2 \mathrm{d}\xi\right) \geq -\underline{\kappa}^{\mathsf{e}} \|\rho\|_{L^1 \cap L^2}^2, \quad \forall \rho \in L^1 \cap L^2 \text{ s.t. } \widehat{\rho}(0) = 0.$$

# Quantitative local asymptotic stability

## Theorem (G, Herda. '24)

**Existence and uniqueness:** The equation has at least one equilibrium, which is unique if the interactions are almost positive ( $\underline{\kappa}^{e} \ll 1$ ).

# Quantitative local asymptotic stability

## Theorem (G, Herda. '24)

**Existence and uniqueness:** The equation has at least one equilibrium, which is unique if the interactions are almost positive ( $\underline{\kappa}^{e} \ll 1$ ).

**Stability:** If furthermore the interactions are almost symmetric ( $\overline{\kappa}^{\circ} \ll 1$ ), it is stable: for any  $s \in [0, 1]$  and intial datum such that

$$s > s_c := \frac{3}{2} \left( \frac{d}{q} - \frac{1}{3} \right), \qquad \|F_{in} - F_\star\|_{H^s_x L^2_v(F^{-1}_\star)} \ll 1,$$

VFP has a unique solution  $F \in C(\mathbb{R}^+; H^s_x L^2_v(F^{-1}_\star))$ , and

$$\|F(t) - F_{\star}\|_{H^{s}_{x}L^{2}_{v}(F^{-1}_{\star})} \lesssim \|F_{in} - F_{\star}\|_{H^{s}_{x}L^{2}_{v}(F^{-1}_{\star})}e^{-\lambda t},$$

and is instantly  $H^1$  in space:

$$\|F(t) - F_{\star}\|_{H^{1}_{x}L^{2}_{v}(F_{\star}^{-1})} \lesssim \|F_{in} - F_{\star}\|_{H^{s}_{x}L^{2}_{v}(F_{\star}^{-1})} t^{-\frac{3}{2}(1-s)} e^{-\lambda t}$$

Every constant is constructive and symmetric part can be large ( $\overline{\kappa}^e \gg 1$ ).

Corollary: Vlasov-Poisson-FP  $k * (\cdot) = (-\lambda^2 \Delta)^{-1}$ 

## Hypotheses on the potential

▶ Regularity on k,  $\nabla k$ : Hardy-Littlewood-Sobolev or elliptic regularity.

• Valid for  $\lambda \ll 1$  and  $\lambda \gg 1$ :

$$k * (\cdot) = k^{e} * (\cdot) = (-\lambda^{2} \Delta)^{-1} \ge 0 \quad \Rightarrow \quad \overline{\kappa}^{o} = \underline{\kappa}^{e} = 0$$

Corollary: Vlasov-Poisson-FP  $k * (\cdot) = (-\lambda^2 \Delta)^{-1}$ 

#### Hypotheses on the potential

- Regularity on  $k, \nabla k$ : Hardy-Littlewood-Sobolev or elliptic regularity.
- Valid for  $\lambda \ll 1$  and  $\lambda \gg 1$ :

$$k * (\cdot) = k^{e} * (\cdot) = (-\lambda^{2} \Delta)^{-1} \ge 0 \quad \Rightarrow \quad \overline{\kappa}^{o} = \underline{\kappa}^{e} = 0$$

## Consequences of our result

- ▶ Constructive estimates but constants degenerate as  $\lambda \rightarrow 0$
- Regularity on initial data  $H_{x,v}^{\frac{1}{2}+}$  [Hérau, Thomann '16], [Toshpulatov '23] lowered to  $H_x^{\frac{1}{4}+}L_v^2$  (in particular, no regularity in v)

## Stability analysis: A natural Hilbert norm

The free energy functional

$$\mathcal{F}[F] = \int F(x,v) \left( \underbrace{\frac{|v|^2}{2}}_{\substack{\text{kinetic} \\ \text{energy}}} + \underbrace{V(x)}_{\substack{\text{confinement} \\ \text{energy}}} + \underbrace{\Psi_F(x)}_{\substack{\text{interaction} \\ \text{energy}}} + \underbrace{\log F(x,v)}_{\substack{\text{entropy}}} \right) dx dv$$

is a Lyapunov functional for symmetric interactions ( $\overline{\kappa}^o = 0$ )  $\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{F}[F] + \mathcal{D}[F] = \mathcal{O}(\overline{\kappa}^o)$ ,  $\mathcal{D}[F] \ge 0$ .

## Stability analysis: A natural Hilbert norm

The free energy functional

$$\mathcal{F}[F] = \int F(x,v) \left( \underbrace{\frac{|v|^2}{2}}_{\substack{\text{kinetic} \\ \text{energy}}} + \underbrace{V(x)}_{\substack{\text{confinement} \\ \text{energy}}} + \underbrace{\Psi_F(x)}_{\substack{\text{interaction} \\ \text{energy}}} + \underbrace{\log F(x,v)}_{\substack{\text{entropy}}} \right) dxdv$$

is a Lyapunov functional for symmetric interactions  $(\overline{\kappa}^o = 0)$  $\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{F}[F] + \mathcal{D}[F] = \mathcal{O}(\overline{\kappa}^o)$ ,  $\mathcal{D}[F] \ge 0$ .

Functional framework for stability: fluctuation f and Hilbert norm

$$F = F_{\star}(1+f), \qquad \mathcal{F}[F] \approx \mathrm{d}^{2}\mathcal{F}[F_{\star}].(F_{\star}f, F_{\star}f) =: |||f|||^{2}$$
$$|||f||| = \left(\int F_{\star}(x, v)f(x, v)^{2} \,\mathrm{d}x \mathrm{d}v + \int k^{e} * \rho_{f}(x)\rho_{f}(x) \,\mathrm{d}x\right)^{1/2}.$$
where |||·||| is well defined because  $k^{e}$  is almost positive ( $\underline{\kappa}^{e} \ll 1$ ).  
Idea to use |||·||| originally from [Addala, Dolbeault, Li, Tayeb, '19].

# Stability analysis: hypocoercivity

The fluctuation f satisfies

 $\partial_t f + Tf = Lf + \mathcal{O}(\overline{\kappa}^o), \text{ where } L \leq 0, T^* = -T$ 

- ▶ Problem:  $ker(L) \neq 0 \Rightarrow$  incomplete energy estimate
- Solution: hypocoercivity

# Stability analysis: hypocoercivity

The fluctuation f satisfies

 $\partial_t f + Tf = Lf + \mathcal{O}(\overline{\kappa}^o), \text{ where } L \leq 0, T^* = -T$ 

▶ Problem:  $ker(L) \neq 0 \Rightarrow$  incomplete energy estimate

Solution: hypocoercivity

2D toy-model for hypocoercivity  $\frac{dy}{dt} = \begin{pmatrix} 0 & 1\\ -1 & -1 \end{pmatrix} y$ Eigenvalues  $= -\frac{1}{2} \pm i\frac{\sqrt{3}}{2}$   $\text{Incomplete energy estimate } \frac{d}{dt}|y(t)|^2 = -2y_2^2(t) \neq \text{ decay } \mathcal{O}\left(e^{-t/2}\right)$   $\text{Introduce the equivalent (squared) norm } (|\eta| < 1)$   $H(y) = y_1^2 + y_2^2 + 2\eta y_1 y_2 \quad \Rightarrow \quad \frac{d}{dt} H(y(t)) + H(y(t)) \leq 0.$ 

Exponential decay: DMS strategy [Dolbeault Mouhot, Schmeiser, '15]:

$$A = A(T, \Pi_{\mathsf{ker}(L)}), \qquad \mathcal{E}(f) := \left\| \left\| f \right\| \right\|^2 + \eta \left\langle \left\langle Af, f \right\rangle \right\rangle \approx \left\| f \right\|_{L^2_{x,v}(F_{\star})}^2$$

We recover exponential decay for  $\overline{\kappa}^{o} \ll 1$ :

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(f) + \mu \,\mathcal{E}(f) \lesssim \overline{\kappa}^{o} \mathcal{E}(f) \Rightarrow \|f(t)\|_{L^{2}_{x,v}(F_{\star})} \lesssim \mathrm{e}^{-\lambda t} \|f_{\mathrm{in}}\|_{L^{2}_{x,v}(F_{\star})}$$

Similar for  $\mathcal{E}(\nabla_x f) \Rightarrow$  exponential decay in  $H^1_x L^2_v(F_\star)$  also

Exponential decay: DMS strategy [Dolbeault Mouhot, Schmeiser, '15]:

$$A = A(T, \Pi_{\mathsf{ker}(L)}), \qquad \mathcal{E}(f) := \left\| \left| f \right\| \right|^2 + \eta \left\langle \left\langle Af, f \right\rangle \right\rangle \approx \left\| f \right\|_{L^2_{x,v}(F_*)}^2$$

We recover exponential decay for  $\overline{\kappa}^o \ll 1$ :

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(f) + \mu \,\mathcal{E}(f) \lesssim \overline{\kappa}^{\circ} \mathcal{E}(f) \Rightarrow \|f(t)\|_{L^{2}_{x,v}(F_{\star})} \lesssim \mathrm{e}^{-\lambda t} \|f_{\mathrm{in}}\|_{L^{2}_{x,v}(F_{\star})}$$

Similar for  $\mathcal{E}(\nabla_{x} f) \Rightarrow$  exponential decay in  $H^{1}_{x}L^{2}_{v}(F_{\star})$  also

Regularization estimate: Hypoellipticity strategy of Hérau, Villani... :

$$\mathcal{H}(f) := \mathcal{E}(f) + \alpha_1(t) \|\nabla_v f\|^2 + \alpha_2(t) \langle \nabla_x f, \nabla_v f \rangle + \alpha_3(t) \|\nabla_x f\|^2$$

For the right  $\alpha_i(t)$  with  $\alpha_i(0) = 0$ , uniform regularization estimate:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}(f) \leq 0 \quad \Rightarrow \quad \|\nabla_{\mathsf{x}}f\|_{L^2_{\mathsf{x},\mathsf{v}}(F_{\star})} \lesssim t^{-3/2} e^{-\lambda t} \|f_{\mathsf{in}}\|_{L^2_{\mathsf{x},\mathsf{v}}(F_{\star})}$$

Exponential decay: DMS strategy [Dolbeault Mouhot, Schmeiser, '15]:

$$A = A(T, \Pi_{\mathsf{ker}(L)}), \qquad \mathcal{E}(f) := \||f\||^2 + \eta \left\langle \left\langle Af, f \right\rangle \right\rangle \approx \|f\|_{L^2_{x, v}(F_*)}^2$$

We recover exponential decay for  $\overline{\kappa}^{o} \ll 1$ :

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(f) + \mu \,\mathcal{E}(f) \lesssim \overline{\kappa}^{o} \mathcal{E}(f) \Rightarrow \|f(t)\|_{L^{2}_{x,v}(F_{\star})} \lesssim e^{-\lambda t} \|f_{\mathrm{in}}\|_{L^{2}_{x,v}(F_{\star})}$$
  
Similar for  $\mathcal{E}(\nabla_{x}f) \Rightarrow$  exponential decay in  $H^{1}_{x}L^{2}_{v}(F_{\star})$  also

**Regularization estimate:** Hypoellipticity strategy of Hérau, Villani... :  $\mathcal{H}(f) := \mathcal{E}(f) + \alpha_1(t) \|\nabla_v f\|^2 + \alpha_2(t) \langle \nabla_x f, \nabla_v f \rangle + \alpha_3(t) \|\nabla_x f\|^2$ 

For the right  $\alpha_i(t)$  with  $\alpha_i(0) = 0$ , uniform regularization estimate:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}(f) \leq 0 \quad \Rightarrow \quad \|\nabla_{x}f\|_{L^{2}_{x,v}(F_{\star})} \lesssim t^{-3/2}e^{-\lambda t}\|f_{\mathrm{in}}\|_{L^{2}_{x,v}(F_{\star})}$$

**Interpolation:** Combine all estimates by interpolation for  $s \in [0, 1]$ :

$$\|f(t)\|_{H^s_x L^2_v(F_\star)} + t^{\frac{3}{2}(1-s)} \|f(t)\|_{H^1_x L^2_v(F_\star)} \lesssim e^{-\lambda t} \|f_{\text{in}}\|_{H^s_x L^2_v(F_\star)}$$

Exponential decay: DMS strategy [Dolbeault Mouhot, Schmeiser, '15]:

$$A = A(T, \Pi_{\mathsf{ker}(L)}), \qquad \mathcal{E}(f) := \left\| \left| f \right\| \right|^2 + \eta \left\langle \left\langle Af, f \right\rangle \right\rangle \approx \left\| f \right\|_{L^2_{x,v}(F_*)}^2$$

We recover exponential decay for  $\overline{\kappa}^{o} \ll 1$ :

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(f) + \mu \,\mathcal{E}(f) \lesssim \overline{\kappa}^{o} \mathcal{E}(f) \Rightarrow \|f(t)\|_{L^{2}_{x,v}(F_{\star})} \lesssim e^{-\lambda t} \|f_{\mathrm{in}}\|_{L^{2}_{x,v}(F_{\star})}$$

Similar for  $\mathcal{E}(\nabla_x f) \Rightarrow$  exponential decay in  $H^1_x L^2_v(F_\star)$  also

Regularization estimate: Hypoellipticity strategy of Hérau, Villani... :

$$\mathcal{H}(f) := \mathcal{E}(f) + \alpha_1(t) \|\nabla_{\mathsf{v}} f\|^2 + \alpha_2(t) \langle \nabla_{\mathsf{x}} f, \nabla_{\mathsf{v}} f \rangle + \alpha_3(t) \|\nabla_{\mathsf{x}} f\|^2$$

For the right  $\alpha_i(t)$  with  $\alpha_i(0) = 0$ , uniform regularization estimate:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}(f) \leq 0 \quad \Rightarrow \quad \|\nabla_{\mathsf{x}}f\|_{L^2_{\mathsf{x},\mathsf{v}}(F_\star)} \lesssim t^{-3/2} e^{-\lambda t} \|f_{\mathsf{in}}\|_{L^2_{\mathsf{x},\mathsf{v}}(F_\star)}$$

**Interpolation:** Combine all estimates by interpolation for  $s \in [0, 1]$ : $\|f\|_{\mathcal{X}^s} \lesssim \|f_{\text{in}}\|_{H^{sL^2}_{x \cup v}(F_{\star})}$ 

## Stability analysis: source term and nonlinear estimates

VFP with a source:  $\partial_t f + Tf = Lf + \mathcal{O}(\overline{\kappa}^o) - (\nabla_v - v)\varphi$  measured by

$$\|\varphi\|_{\mathbb{H}^s}^2 := \int_0^\infty e^{2\lambda t} \left( t^{3(1-s)} \|\varphi\|_{H^1_x L^2_\nu(F_\star)}^2 + \dots \right) \, \mathrm{d} t$$

where  $\varphi = f \nabla_x \psi_f$  in the original perturbation equation.

## Proposition

For any given  $s \in [0, 1]$  there holds

$$\|f\|_{\boldsymbol{\mathcal{X}}^{s}} \lesssim \|f_{in}\|_{H^{s}_{x}L^{2}_{\nu}(F_{\star})} + \|\varphi\|_{\mathbb{H}^{s}}.$$

If additionally  $s > s_c := rac{3}{2}\left(rac{d}{q} - rac{1}{3}
ight)$ , then

 $\|f\nabla_{\mathsf{X}}\psi_{\mathsf{g}}\|_{\mathbb{H}^{s}}\lesssim \|f\|_{{\boldsymbol{\mathcal{X}}}^{s}}\|g\|_{{\boldsymbol{\mathcal{X}}}^{s}}.$ 

Taking  $\varphi = f \nabla_x \psi_f$  and  $f_{in}$  small  $\Rightarrow \exists !$  solution  $f \in \mathcal{X}^s$  by fixed point.

Phase transition in the strongly non-linear regime

**Example:** Kuramoto  $k(x) = -\underline{\kappa}^e \cos(\omega x) \stackrel{\text{three steady states for }}{\Rightarrow} \stackrel{\text{three steady states for }}{\Rightarrow} \frac{k^e}{2} \ge 1$ **Q1:** Stability/instability ?

Q2: Infinite modes ?

**Q3:** Non-symmetric k ?

**Q4:** Numerics ? See [Carrillo et al. '20] for the torus  $x \in \mathbb{R}/\mathbb{Z}$  with V = 0.

- Diffusive approximation: long-time and strong randomness/damping
- Numerical schemes for McKean-Vlasov

- Phase transition in the strongly non-linear regime
- Diffusive approximation: long-time and strong randomness/damping

$$\varepsilon \partial_t F^{\varepsilon} + v \cdot \nabla_x F^{\varepsilon} - \nabla_x (\Psi_{F^{\varepsilon}} + V) \cdot \nabla_v F = \frac{1}{\varepsilon} \nabla_v \cdot (vF^{\varepsilon} + \nabla_v F^{\varepsilon})$$

Then 
$$F^{\varepsilon}(t, x, v) \xrightarrow{\varepsilon \to 0} \rho(t, x) e^{-|v|^2/2}$$
 where

 $\partial_t \rho - \nabla_x \cdot (\nabla_x \rho + \rho \nabla(\psi_{\rho} + V)) = 0$  (McKean-Vlasov)

NB: Same steady state equation for MV and VFP
 Numerical schemes for McKean-Vlasov

# Thank you for your attention!

[G, Herda., Well-posedness and long-time behavior for self-consistent Vlasov-Fokker-Planck equations with general potentials. arXiv:2408.16468]