Final

December I2th

- To do a later question in a problem, you can always assume a previous question even if you have not answered it.
- I am aware that this is long. I don't expect you to do everything.
- There are 5 class material question (in Problem i) and 4 independent problems. You don't have to do them in any particular order.
- Remember that using pens and writing clearly improve the readability after scanning.
- Remember to give all I4 pages back. It will make it easier to check that nothing was lost.

Problem i :

I. Show that any group of prime cardinal is isomorphic to $\mathbb{Z} / p \mathbb{Z}$.
2. Let R and S be rings and $f: R \rightarrow S$ be a ring homomorphism. Let $S_{0} \leqslant S$ be a subring. Show that $f^{-1}\left(S_{0}\right) \subseteq R$ is a subring of R.
3. Let R be a commutative ring. Show that maximal ideals of R are prime.
4. Let R be a UFD. Show that the greater common divisor of any two $a, b \in R \backslash\left(R^{\star} \cup 0\right)$ exists.
5. Let F be a field. Show that any ideal in $F[X]$ is principal (the only result from class that you can use is the long division).

Problem 2:

Let (G, \cdot) be a group. It is said to be divisible if for all $x \in G$ and $n \in \mathbb{Z}_{>0}$, there exists $y \in G$ such that $y^{n}=x$.
I. Let F be characteristic zero field. Show that $(F,+)$ is a divisible group (beware of additive notation versus multiplicative notation).
2. Let F be an algebraically closed fields. Show that $\left(F^{\star}, \cdot\right)$ is a divisible group.
3. Let G be a divisible group and $H \preccurlyeq G$ be a normal subgroup. Show that G / H is divisible.

Problem 3:

Let R be a unique factorization domain, $n \in \mathbb{Z}_{>1}$ and $a \in R$.
I. Let $b, c \in R$ be such that $a c^{n}=b^{n}$. Let $p \in R$ be irreducible such that $p \mid c$. Show that p divides b.
2. Let $q \in \operatorname{Frac}(R)$ be such that $q^{n}=a$. Show that $q \in R$.

Problem 4:

Let F be a field, $d \in \mathbb{Z}_{>0}$ and $a_{0}, \ldots, a_{d} \in F$.
I. Let $P, Q \in F[X]$ have degree at most d. Assume that, for all $0 \leqslant i \leqslant d, P\left(a_{i}\right)=Q\left(a_{i}\right)$. Show that $P=Q$.
2. Show that there exists $P_{i} \in F[X]$ of degree at most d such that $P_{i}\left(a_{i}\right)=1$ and $P_{i}\left(a_{j}\right)=$ 0 if $j \neq i$.
3. For all $b_{0}, \ldots, b_{d} \in F$, show that there exists a unique polynomial of degree at most d such that, for all $0 \leqslant i \leqslant d, P_{i}\left(a_{i}\right)=b_{i}$.

Problem 5:

Let R be a ring, an element $e \in R$ is said to be idempotent if $e^{2}=e$.
I. Let $e \in R$ be idempotent. Show that $1-e$ is also idempotent.
2. Let $e \in R$ be idempotent. Show that $R \cong R /(e) \times R /(1-e)$.
3. Let $e_{1}, \ldots e_{n} \in R$ be idempotent. Assume that $\sum_{i=1}^{n} e_{i}=1$ and that $e_{i} e_{j}=0$ whenever $i \neq j$. Let $I_{i}:=\left(e_{j}: j \neq i\right)$. Show that $R \cong \prod_{i=1}^{n} R / I_{i}$.
4. Let R_{1} and R_{2} be two rings. Find $e_{1} \in R_{1} \times R_{2}$ and $e_{2} \in R_{1} \times R_{2}$ such that e_{1} and e_{2} are idempotent, $e_{1}+e_{2}=1$ and $R_{1} \times R_{2} /\left(e_{i}\right) \cong R_{i}$ for $i=1,2$.

