Solutions to the midterm

September 2Ist

Problem I :

I. Show that a group homomrphism f is injective if and only if $\operatorname{ker}(f)=\{1\}$.

Solution: Let us first show that if $f: G \rightarrow H$ is injective then $\operatorname{ker}(f)=\{1\}$. Recall that $\operatorname{ker}(f)=f^{-1}(1)=\{g \in G: f(g)=1\}$. Since f is a homomorphism, $f(1)=1$. Now let us assume that $f(g)=1=f(1)$. Since f is injective, $g=1$ and therefore $\operatorname{ker}(f)=\{g \in G: f(g)=1\}=\{1\}$.
Conversely, let us assume that $\operatorname{ker}(f)=\{1\}$. Pick any $g, h \in G$ such that $f(g)=g(h)$. It follows that $f\left(g \cdot h^{-1}\right)=f(g) \cdot f(h)^{-1}=1$ and hence that $g \cdot h^{-1} \in \operatorname{ker}(f)=\{1\}$. Since $g \cdot h^{-1}=1$, we must have $g=h$.
2. Define what a k-cycle in S_{n} is.

Solution: A permutation $\sigma \in S_{n}$ is a k-cycle if there exists $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ distinct such that for all $i \in\{1, \ldots, k-1\}, \sigma\left(a_{i}\right)=\sigma(a i+1), \sigma\left(a_{k}\right)=\sigma(a 1)$ and for all $x \in$ $\{1, \ldots, n\} \backslash\left\{a_{1}, \ldots, a_{k}\right\}, \sigma(x)=x$.
Equivalently, we can say that there are distinct elements $a_{\bar{i}}$ for all $\bar{i} \in \mathbb{Z} / k \mathbb{Z}$ such that $\sigma\left(a_{\bar{i}}\right)=\sigma\left(a_{\bar{i}+\overline{1}}\right)$ and σ fixes all the other elements of $\{1, \ldots, n\}$.
3. Show that two disjoint cycles commute.

Solution: Let $\sigma, \tau \in S_{n}$ be two disjoint cycles. We have $\sigma=\left(a_{\overline{1}} \ldots a_{\bar{k}}\right)$ and $\tau=\left(b_{\overline{1}} \ldots b_{\bar{l}}\right)$ where $a_{\bar{i}}, b_{\bar{j}} \in\{1, \ldots, n\}$ are all distinct. For all $\bar{i} \in \mathbb{Z} / k \mathbb{Z}$, we have $\tau\left(\sigma\left(a_{\bar{i}}\right)\right)=\tau\left(a_{\bar{i}+\overline{1}}\right)=$ $a_{\bar{i}+\overline{1}}$ and $\sigma\left(\tau\left(a_{\bar{i}}\right)\right)=\sigma\left(a_{\bar{i}}\right)=a_{\bar{i}+\overline{1}}$. Similarly, for all $\bar{j} \in \mathbb{Z} / l \mathbb{Z}$, we have $\tau\left(\sigma\left(b_{\bar{j}}\right)\right)=$ $\tau\left(b_{\bar{j}}\right)=b_{\bar{j}+\overline{1}}=\sigma\left(b_{\bar{j}+\overline{1}}\right)=\sigma\left(\tau\left(b_{\bar{j}}\right)\right)$. Finally, if x is neither $a_{\bar{i}}$ or $b_{\bar{j}}$, then $\tau(\sigma(x))=$ $\tau(x)=x=\sigma(x)=\operatorname{sigma}(\tau(x))$.
It follows that $\tau \circ \sigma=\sigma \circ \tau$.

Problem 2 :

Let G be a group whose only subgroups are $\{1\}$ and G. Show that G is isomorphic to $\{1\}$ or $\mathbb{Z} / p \mathbb{Z}$ for some prime p.
Solution: If $G=\{1\}$, then it is isomorphic to the trivial group. If not, let $x \in G$ not be the identity. We have $\{1\}<\langle x\rangle \leqslant G$. By hypothesis on G it follows that G is cyclic.
If cardx $=\infty$, then $\{1\}<\left\langle x^{2}\right\rangle<G$, contradicting our hypothesis on G. So $|x|=n<\infty$ and $G \simeq \mathbb{Z} / n \mathbb{Z}$. There remains to show that n is prime. Since $G=\langle x\rangle$, for all $k \mid n$, there is a subgroup $H \leqslant G$ of order k. By hypothesis on G, we must have $H=\{1\}$ or $H=G$, i.e. $k=1$ or $k=n$. So the only divisors of n are 1 and itself (and $n \neq 1$ since $\{1\}<G$) and n is prime.

Problem 3:

I. Let $A=\left\{1, s, r^{2}, s r^{2}\right\} \subset D_{8}$, compute $C_{D_{8}}(A)$ and $N_{D_{8}}(A)$.

Solution: We have $s 1 s^{-1}=1, s r^{2} s^{-1}=r^{-2}=r^{2}, s s s^{-1}=s$ and $s s r^{2} s^{-1}=s r^{-2}=s r^{2}$ so $s \in C_{D_{8}}(A)$. Similarly, $r^{2} 1 r^{-2}=1, r^{2} r^{2} r^{-2}=r^{2}, r^{2} s r^{-2}=r^{4} s=s$ and $r^{2} s r^{2} r^{-2}=$ $s r^{-2}=s r^{2}$ so $r^{2} \in C_{D_{8}}(A)$. Since $C_{D_{8}}(A) \leqslant D_{8}$, all the products of s and r^{2} are also in $C_{D_{8}}(A)$ and thus $A \subseteq C_{D_{8}}$.
Now $r s r^{-1}=s r^{2} \neq s$ so $r \notin A$, since $C_{D_{8}}(A) \leqslant D_{8}$, we cannot have $r^{3}=r r^{2}$, sr and $s r^{3}=s r^{2} r$ in $C_{D_{8}}(A)$ either. So $C_{D_{8}}(A)=A$.
We have $s \in C_{D_{8}}(A) \subseteq N_{D_{8}}(A)$. Moreover, $r 1 r^{-1}=1 \in A, r s r^{-1}=s r^{2} \in A, r r^{2} r^{-1}=$ $r^{2} \in A$ and $r s r^{2} r^{-1}=s r^{0}=s \in A$, so $r \in N_{D_{8}}(A)$. Because $N_{D_{8}}(A) \leqslant D_{8}$ contains r and s which generate D_{8}, we have $N_{D_{8}}(A)=D_{8}$.
2. Show that $Z\left(D_{2 n}\right)=\{1\}$ if n is odd.

We have $r^{i} s r^{j} r^{-1}=s r^{-2 i+j}=s r^{j}$ if and only if $-2 i+j=j \bmod n$, since $|r|=n$. This implies that n divides $2 i$ and since n is odd, n divides i. So the only power of r commuting with an element of the form $s r^{j}$ is $r^{k n}=1$. Since every element of D_{8} is either of the form r^{i} or of the form $s r^{i}$, it follows that the only element of $D_{2 n}$ which commutes with every other element is 1 . So $Z\left(D_{2 n}\right)=\{1\}$.

Problem 4 :

Let G be a group. For all $g \in G$, we define $f_{g}: G \rightarrow G$ by $f_{g}(x):=g \cdot x \cdot g^{-1}$.
I. Show that f_{g} is a group automorphism.

Solution: Pick $x, y \in G$. We have $f_{g}(x) \cdot f_{g}(y)=g \cdot x \cdot g^{-1} \cdot g \cdot y \cdot g^{-1}=g \cdot x \cdot y \cdot g^{-1}=f_{g}(x \cdot y)$. So f_{g} is a group homomorphisme.
We have $f_{g^{-1}}\left(f_{g}(x)\right)=g^{-1} \cdot g \cdot x \cdot g^{-1} \cdot g=x$ and $f_{g}\left(f_{g^{-1}}(x)\right)=g \cdot g^{-1} \cdot x \cdot g \cdot g^{-1}=x$ so f_{g} and $f_{g^{-1}}$ are inverse functions and f_{g} is bijective. So f_{g} is a bijective homomorphism from G to itself, i.e. an automorphism.
One can also check injectiveity and surjectivity directly. If $f_{g}(x)=g \cdot x \cdot g^{-1}=g \cdot y \cdot g^{-1}=$ $f_{g}(y)$, then, multiplying on the left by g^{-1} and on the right by g, we get that $x=y$. And since $f_{g}\left(g^{-1} \cdot x \cdot g\right)=g \cdot g^{-1} \cdot x \cdot g \cdot g^{-1}=x, f_{g}$ is surjective.
2. Show that $\theta: g \mapsto f_{g}$ is a group homomorphism from G into $\operatorname{Aut}(G)$.

Solution: Pick $g, h \in G$. We want to show that $\theta(g \cdot h)=f_{g \cdot h}=f_{g} \circ f_{h}=\theta(g) \circ \theta(h)$. Pick $x \in G$, we have $f_{g \cdot h}(x)=g \cdot h \cdot x \cdot(g \cdot h)^{-1}=g \cdot h \cdot x \cdot h^{-1} \cdot g^{-1}=g \cdot f_{h}(x) \cdot g^{-1}=f_{g}\left(f_{h}(x)\right)$. We do have $f_{g \cdot h}=f_{g} \circ f_{h}$.
3. Show that $\operatorname{ker}(\theta)=Z(G)$

Solution: We have that $g \in \operatorname{ker}(\theta)$ if and only if $\theta(g)=f_{g}=$ id, i.e. for all $x \in G$, $g \cdot x \cdot g^{1}=f_{g}(x)=x$. So $\operatorname{ker}(\theta)=\left\{g \in G: \forall x \in G, g \cdot x \cdot g^{1}=x\right\}=Z(G)$.

