Silvain Rideau 1091 Evans silvain.rideau@berkeley.edu www.normalesup.org/~srideau/en/teaching

Midterm

September 21st

To do a later question in a problem, you can always assume a previous question even if you have not answered it.

Problem 1:

- I. Show that a group homomorphism f is injective if and only if ker $(f) = \{1\}$.
- 2. Define what a k-cycle in S_n is.
- 3. Show that two disjoint cycles commute.

Problem 2:

Let G be a group whose only subgroups are $\{1\}$ and G. Show that G is isomorphic to $\{1\}$ or $\mathbb{Z}/p\mathbb{Z}$ for some prime p.

Problem 3:

- I. Let $A = \{1, s, r^2, sr^2\} \subset D_8$, compute $C_{D_8}(A)$ and $N_{D_8}(A)$.
- 2. Show that $Z(D_{2n}) = \{1\}$ if n is odd.

Problem 4:

Let G be a group. For all $g \in G$, we define $f_q : G \to G$ by $f_q(x) := g \cdot x \cdot g^{-1}$.

- I. Show that f_g is a group automorphism.
- 2. Show that $\theta : g \mapsto f_g$ is a group homomorphism from G into Aut(G).
- 3. Show that $ker(\theta) = Z(G)$