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Problem 1 :
Let R be a ring and I, J ⊆ R be two ideals. Using only the definitions and nothing we
have proved in class:

1. Show that I ∩ J is an ideal of R.

Solution: Let us first shoz that I ∩ J is a subgroup of (R,+). If x, y ∈ I ∩ J , then
x − y ∈ I and x − y ∈ J since both are additive subgroups of R. It follows that
x − y ∈ I ∩ J , as required. Let us now consider x ∈ I ∩ J and a ∈ R. Then a ⋅ x and
x ⋅ a are both in I and J since they are ideals and hence they are in I ∩ J .

2. Assume R to be a commutative ring and I, J comaximal. Show that I ⋅ J = I ∩ J .

Solution:Recall that I ⋅ J = {∑i aibi ∶ ai ∈ I and bi ∈ J}. Let us first prove that
I ⋅ J ⊆ I ∩ J . Pick any ai ∈ I and bi ∈ J . Then ai ⋅ bi is in both I and J since they
are ideals and hence sumiaibi ∈ I ∩ J . Conversely, if x ∈ I ∩ J , since I and J are
comaximal I + J = R and there exists u ∈ I and v ∈ J such that u + v = 1. Then
x = x ⋅ 1 = x ⋅ (u + v) = u ⋅ x + x ⋅ v. Since u,x ∈ I and x, v ∈ J , x = u ⋅ x + x ⋅ v ∈ I ⋅ J .

Problem 2 :
Let R be an integral domain.

1. Let ϕ ∶ R → S be a ring homomorphism. We define ψ ∶ R[X] → S[X] by
ψ(∑n

i=0 aiXi) = ∑
n
i=0ϕ(ai)Xi. Show that ψ is a ring homomorphism.

Solution:We have:

ψ(∑n
i=0 aiXi +∑

n
i=0 biXi) = ψ(∑n

i=0(ai + bi)Xi)

= ∑
n
i=0ϕ(ai + bi)Xi

= ∑
n
i=0ϕ(ai) + ϕ(bi)Xi

= ∑
n
i=0ϕ(ai)Xi +∑

n
i=0ϕ(bi)Xi

= ψ(∑n
i=0 aiXi) + ψ(∑n

i=0 biXi)

also:
ψ(∑n

i=0 aiXi ⋅∑
n
i=0 biXi) = ψ(∑2n

k=0(∑i+j=k ai ⋅ bj)Xk)

= ∑
2n
i=k ϕ(∑i+j=k ai ⋅ bj)Xk

= ∑
2n
i=k∑i+j=k ϕ(ai) ⋅ ϕ(bi)Xk

= (∑
n
i=iϕ(ai)Xi) ⋅ (∑

n
i=0ϕ(bi)Xi)

= ψ(∑n
i=0 aiXi) ⋅ ψ(∑n

i=0 biXi)

and finally:
ψ(1X0) = ϕ(1)X0

= 1X0
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2. For all P = ∑
n
i=0 aiXi ∈ R[X] ∖ {0}, we define v(P ) = min{i ∶ ai ≠ 0}. Show that,

for all P,Q ∈ R[X] ∖ {0}, v(P ⋅Q) = v(P ) + v(Q).

Solution: Let P = ∑
n
i=0 aiXi, Q = ∑

m
i=0 biXi and P ⋅Q = ∑

n+m
k=0 ckX

k, where ck =∼i+j=k
aibj . Let p = v(P ) and q = v(Q). If k < p + q, then whenever i + j < p, then ei-
ther i < p or j < q. It follows that either ai = 0 or bi = 0 and hence ck = 0, so
v(P ⋅Q) ⩾ p + q. Now cp+q = ∑i+j aibj . As before, id i < p ai = 0 and if j < q, bj = 0,
so cp+q = apbq. Since R is an integral domain and ap, bq ≠ 0, ck = apbq ≠ 0.

3. Let P,Q ∈ R[X] be such that P ⋅Q = aXn for some a ∈ R ∖ {0} and n ∈ Z⩾0. Show
that there exists r, s ∈ R and i, j ∈ Z⩾0 such that P = rXi and Q = sXj .

Solution:We have n = v(aXn) = v(P ⋅ Q) = v(P ) + v(Q) and n = deg(aXn) =

deg(P ⋅ Q) = deg(P ) + deg(Q). Since 0 ⩽ v(P ) ⩽ deg(P ) and similarly for Q, it
follows that v(P ) = deg(P ) and v(Q) = deg(Q). Thus P = rXi for some r ∈ R and
i = deg(P ) = v(P ). Similarly for Q.

Problem 3 :
Let G be a finite group.

1. For all x ∈ G of order n, show that the action of ⟨x⟩ on G by multiplication on the
left — i.e. xi ⋆ g = xi ⋅ g — has ∣G∣/∣x∣ orbits and they are all of size ∣x∣.

Solution:Note that the orbit of any g ∈ G is exactly the coset of ⟨x⟩g ⊆ G. As we
showed in class, all cosets are of size ∣⟨x⟩∣ = ∣x∣ and there are [G ∶ ⟨x⟩] = ∣G∣/∣x∣ of
them.

We can also reprove that directly by showing that for all g ∈ G, Stab⟨x⟩(g) = {xi ∶

xi ⋅ g = g} = {xi ∶ xi = 1} = {1}. So, the cardinal of the orbit of G is equal
∣⟨x⟩∣/∣Stab⟨x⟩(g)∣ = ∣x∣. Since the orbits form a partition of G, if we have n of them,
we have n ⋅ ∣x∣ = ∣G∣, i.e. n = ∣G∣/∣x∣.

2. Let f ∶ G → {Z/2Z} be such that f(x) = 1 if and only if ∣x∣ is even and ∣G∣/∣x∣ is
odd. Show that f is a group homomorphism.

Hint:Think about the signature of a permutation.

Solution: Let ρ ∶ G → SG the permutation representation associated with left
multiplication. Then the orbits of the action of ⟨x⟩ on G exactly correspond to the
disjoint cycle decomposition of ρ(x). It follows that if ε ∶ SG → Z/2Z denotes the
signature, then f = ε ○ ρ which is indeed a group homomorphism.

3. Assume ∣G∣ = 2n where n is odd. Show that there exists a normal subgroup of G
of index 2.

Solution:By Cauchy’s theorem, there exists x ∈ G of order 2. Then ∣x∣ is even and
∣G∣/∣x∣ = n is odd. So f(x) = 1 and f is surjective. It now follows from the first
isomorphism that ker(f) is a normal subgroup of G and that G/ker(f) ≅ Z/2/Zz,
i.e. [G ∶ ker(f)] = 2.
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