Solutions to the midterm

October 30th

Problem 1:

Let R be a ring and $I, J \subseteq R$ be two ideals. Using only the definitions and nothing we have proved in class:

1. Show that $I \cap J$ is an ideal of R.

Solution: Let us first shoz that $I \cap J$ is a subgroup of $(R,+)$. If $x, y \in I \cap J$, then $x-y \in I$ and $x-y \in J$ since both are additive subgroups of R. It follows that $x-y \in I \cap J$, as required. Let us now consider $x \in I \cap J$ and $a \in R$. Then $a \cdot x$ and $x \cdot a$ are both in I and J since they are ideals and hence they are in $I \cap J$.
2. Assume R to be a commutative ring and I, J comaximal. Show that $I \cdot J=I \cap J$.

Solution: Recall that $I \cdot J=\left\{\sum_{i} a_{i} b_{i}: a_{i} \in I\right.$ and $\left.b_{i} \in J\right\}$. Let us first prove that $I \cdot J \subseteq I \cap J$. Pick any $a_{i} \in I$ and $b_{i} \in J$. Then $a_{i} \cdot b_{i}$ is in both I and J since they are ideals and hence $\operatorname{sum}_{i} a_{i} b_{i} \in I \cap J$. Conversely, if $x \in I \cap J$, since I and J are comaximal $I+J=R$ and there exists $u \in I$ and $v \in J$ such that $u+v=1$. Then $x=x \cdot 1=x \cdot(u+v)=u \cdot x+x \cdot v$. Since $u, x \in I$ and $x, v \in J, x=u \cdot x+x \cdot v \in I \cdot J$.

Problem 2 :

Let R be an integral domain.

1. Let $\varphi: R \rightarrow S$ be a ring homomorphism. We define $\psi: R[X] \rightarrow S[X]$ by $\psi\left(\sum_{i=0}^{n} a_{i} X^{i}\right)=\sum_{i=0}^{n} \varphi\left(a_{i}\right) X^{i}$. Show that ψ is a ring homomorphism.

Solution: We have:

$$
\begin{aligned}
\psi\left(\sum_{i=0}^{n} a_{i} X^{i}+\sum_{i=0}^{n} b_{i} X^{i}\right) & =\psi\left(\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) X^{i}\right) \\
& =\sum_{i=0}^{n} \varphi\left(a_{i}+b_{i}\right) X^{i} \\
& =\sum_{i=0}^{n} \varphi\left(a_{i}\right)+\varphi\left(b_{i}\right) X^{i} \\
& =\sum_{i=0}^{n} \varphi\left(a_{i}\right) X^{i}+\sum_{i=0}^{n} \varphi\left(b_{i}\right) X^{i} \\
& =\psi\left(\sum_{i=0}^{n} a_{i} X^{i}\right)+\psi\left(\sum_{i=0}^{n} b_{i} X^{i}\right)
\end{aligned}
$$

also:

$$
\begin{aligned}
\psi\left(\sum_{i=0}^{n} a_{i} X^{i} \cdot \sum_{i=0}^{n} b_{i} X^{i}\right) & =\psi\left(\sum_{k=0}^{2 n}\left(\sum_{i+j=k} a_{i} \cdot b_{j}\right) X^{k}\right) \\
& =\sum_{i=k}^{2 n} \varphi\left(\sum_{i+j=k} a_{i} \cdot b_{j}\right) X^{k} \\
& =\sum_{i=k}^{2 n} \sum_{i+j=k} \varphi\left(a_{i}\right) \cdot \varphi\left(b_{i}\right) X^{k} \\
& =\left(\sum_{i=1}^{n} \varphi\left(a_{i}\right) X^{i}\right) \cdot\left(\sum_{i=0}^{n} \varphi\left(b_{i}\right) X^{i}\right) \\
& =\psi\left(\sum_{i=0}^{n} a_{i} X^{i}\right) \cdot \psi\left(\sum_{i=0}^{n} b_{i} X^{i}\right)
\end{aligned}
$$

and finally:

$$
\begin{aligned}
\psi\left(1 X^{0}\right) & =\varphi(1) X^{0} \\
& =1 X^{0}
\end{aligned}
$$

2. For all $P=\sum_{i=0}^{n} a_{i} X^{i} \in R[X] \backslash\{0\}$, we define $v(P)=\min \left\{i: a_{i} \neq 0\right\}$. Show that, for all $P, Q \in R[X] \backslash\{0\}, v(P \cdot Q)=v(P)+v(Q)$.

Solution: Let $P=\sum_{i=0}^{n} a_{i} X^{i}, Q=\sum_{i=0}^{m} b_{i} X^{i}$ and $P \cdot Q=\sum_{k=0}^{n+m} c_{k} X^{k}$, where $c_{k}=\sim_{i+j=k}$ $a_{i} b_{j}$. Let $p=v(P)$ and $q=v(Q)$. If $k<p+q$, then whenever $i+j<p$, then either $i<p$ or $j<q$. It follows that either $a_{i}=0$ or $b_{i}=0$ and hence $c_{k}=0$, so $v(P \cdot Q) \geqslant p+q$. Now $c_{p+q}=\sum_{i+j} a_{i} b_{j}$. As before, id $i<p a_{i}=0$ and if $j<q, b_{j}=0$, so $c_{p+q}=a_{p} b_{q}$. Since R is an integral domain and $a_{p}, b_{q} \neq 0, c_{k}=a_{p} b_{q} \neq 0$.
3. Let $P, Q \in R[X]$ be such that $P \cdot Q=a X^{n}$ for some $a \in R \backslash\{0\}$ and $n \in \mathbb{Z}_{\geqslant 0}$. Show that there exists $r, s \in R$ and $i, j \in \mathbb{Z}_{\geqslant 0}$ such that $P=r X^{i}$ and $Q=s X^{j}$.

Solution: We have $n=v\left(a X^{n}\right)=v(P \cdot Q)=v(P)+v(Q)$ and $n=\operatorname{deg}\left(a X^{n}\right)=$ $\operatorname{deg}(P \cdot Q)=\operatorname{deg}(P)+\operatorname{deg}(Q)$. Since $0 \leqslant v(P) \leqslant \operatorname{deg}(P)$ and similarly for Q, it follows that $v(P)=\operatorname{deg}(P)$ and $v(Q)=\operatorname{deg}(Q)$. Thus $P=r X^{i}$ for some $r \in R$ and $i=\operatorname{deg}(P)=v(P)$. Similarly for Q.

Problem 3 :

Let G be a finite group.

1. For all $x \in G$ of order n, show that the action of $\langle x\rangle$ on G by multiplication on the left - i.e. $x^{i} \star g=x^{i} \cdot g$ - has $|G| /|x|$ orbits and they are all of size $|x|$.

Solution: Note that the orbit of any $g \in G$ is exactly the coset of $\langle x\rangle g \subseteq G$. As we showed in class, all cosets are of size $|\langle x\rangle|=|x|$ and there are $[G:\langle x\rangle]=|G| /|x|$ of them.
We can also reprove that directly by showing that for all $g \in G, \operatorname{Stab}_{\langle x\rangle}(g)=\left\{x^{i}\right.$: $\left.x^{i} \cdot g=g\right\}=\left\{x^{i}: x^{i}=1\right\}=\{1\}$. So, the cardinal of the orbit of G is equal $|\langle x\rangle| /\left|\operatorname{Stab}_{\langle x\rangle}(g)\right|=|x|$. Since the orbits form a partition of G, if we have n of them, we have $n \cdot|x|=|G|$, i.e. $n=|G| /|x|$.
2. Let $f: G \rightarrow\{\mathbb{Z} / 2 \mathbb{Z}\}$ be such that $f(x)=\overline{1}$ if and only if $|x|$ is even and $|G| /|x|$ is odd. Show that f is a group homomorphism.

Hint: Think about the signature of a permutation.
Solution: Let $\rho: G \rightarrow S_{G}$ the permutation representation associated with left multiplication. Then the orbits of the action of $\langle x\rangle$ on G exactly correspond to the disjoint cycle decomposition of $\rho(x)$. It follows that if $\varepsilon: S_{G} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ denotes the signature, then $f=\varepsilon \circ \rho$ which is indeed a group homomorphism.
3. Assume $|G|=2 n$ where n is odd. Show that there exists a normal subgroup of G of index 2 .

Solution: By Cauchy's theorem, there exists $x \in G$ of order 2. Then $|x|$ is even and $|G| /|x|=n$ is odd. So $f(x)=\overline{1}$ and f is surjective. It now follows from the first isomorphism that $\operatorname{ker}(f)$ is a normal subgroup of G and that $G / \operatorname{ker}(f) \cong \mathbb{Z} / 2 / Z z$, i.e. $[G: \operatorname{ker}(f)]=2$.

