Solutions to homework 1

Due September 6th

Problem 1 (Equivalence relation) :
Let $f: X \rightarrow Y$ be a function and let $x_{1} \sim x_{2}$ hold if $f\left(x_{1}\right)=f\left(x_{2}\right)$.

1. Show that \sim is an equivalence relation on X.

Solution: Since, for all $x \in X, f(x)=f(x)$, we do have that \sim is reflexive. For all $x_{1}, x_{2} \in X$, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $f\left(x_{2}\right)=f\left(x_{1}\right)$, so \sim is symmetric. Finally, if $x_{1}, x_{2}, x_{3} \in X$ are such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $f\left(x_{2}\right)=f\left(x_{3}\right)$, then we do have $f\left(x_{1}\right)=f\left(x_{3}\right)$ and hence \sim is transitive.
2. Assume that f is surjective. Show that there exists a bijection $g: Y \rightarrow\{\bar{x}: x \in X\}$, where \bar{x} denotes the \sim-class of x.

Solution: Let $g(\bar{x})=f(x)$. First we have to check that g is well defined. But if $\overline{x_{1}}=\overline{x_{2}}$, then $x_{1} \sim x_{2}$ and, by definition $f\left(x_{1}\right)=f\left(x_{2}\right)$. So g is well defined. Since f is surjective, for all $y \in Y$, we can find $x \in X$ such that $f(x)=y$, but then $g(\bar{x})=f(x)=y$ and therefore g is surjective. Finally if $g\left(\overline{x_{1}}\right)=g\left(\overline{x_{2}}\right)$, then we have $f\left(x_{1}\right)=g\left(\overline{x_{1}}\right)=g\left(\overline{x_{2}}\right)=f\left(x_{2}\right)$. It follows that $x_{1} \sim x_{2}$ and hence $\overline{x_{1}}=\overline{x_{2}}$. So g is injective.

Problem 2 :

1. Which are the $x \in \mathbb{Z}$ such that there exists $y \in \mathbb{Z}$ with $x \equiv y^{2} \bmod 9$.

Solution: We have $0^{2} \equiv 0 \bmod 9,1^{2} \equiv 1 \bmod 9,2^{2} \equiv 4 \bmod 9,3^{2} \equiv 0 \bmod 9$, $4^{2} \equiv 7 \bmod 9,5^{2} \equiv(-4)^{2} \equiv 7 \bmod 9,6^{2} \equiv(-3)^{2} \equiv 0 \bmod 9,7^{2} \equiv(-2)^{2} \equiv 4 \bmod 9$ and $8^{2} \equiv(-1)^{2} \equiv 1 \bmod 9$. So the squares in $\mathbb{Z} \bmod 9 \mathbb{Z}$ are $\overline{0}, \overline{1}, \overline{4}$ and $\overline{7}$.
2. Which are the $x \in \mathbb{Z}$ such that there exists $y, z \in \mathbb{Z}$ with $x \equiv y^{2}+z^{2} \bmod 9$.

Solution: We have four squares and therefore sixteens sums of two squares to compute. Because addition is Abelian, we can get away with computing only ten of them: $0+0 \equiv 0 \bmod 9,0+1 \equiv 1 \bmod 9,0+4 \equiv 4 \bmod 9,0+7 \equiv 7 \bmod 9$, $1+1 \equiv 2 \bmod 9,1+4 \equiv 5 \bmod 9,1+7 \equiv 8 \bmod 9,4+4 \equiv 8 \bmod 9,4+7 \equiv 2 \bmod 9$ and $7+7 \equiv 5 \bmod 9$. So every element of $\mathbb{Z} \bmod 9 \mathbb{Z}$ except for $\overline{3}$ and $\overline{6}$, is a sum of two squares.
3. Show that if $x, y, z \in \mathbb{Z}$ are such that $x^{2}+y^{2} \equiv 12 \cdot z^{2} \bmod 9$, then $x \equiv y \equiv z \equiv 0$ $\bmod 3$.

Solution: If $x^{2}+y^{2} \equiv 12 \cdot z^{2} \bmod 9$ then we have an element of $\mathbb{Z} \bmod 9 \mathbb{Z}$ which is both a sum of two squares and a multiple of $\overline{3}$. Since, according to our previous computation, the only multiple of $\overline{3}$ that is a sum of two squares is $\overline{0}$, it follows that $x^{2}+y^{2} \equiv 12 \cdot z^{2} \equiv 3 \cdot z^{2} \equiv 0 \bmod 9$. But if one checks our previous computation, the only way $x^{2}+y^{2} \equiv 0 \bmod 9$ is if x and y are both congruent to either 0 or 3 $\bmod 9$. In both cases, it means that $x \cong y \equiv 0 \bmod 3$.
Moreover, if $3 \cdot z^{2} \equiv 0 \bmod 9$ then it means that 9 divides $3 \cdot z^{2}$ and hence 3 divides z^{2}. But since 3 is prime, it follows that 3 divides z. So we also have $z \equiv 0 \bmod 3$.
4. Show that if there exists $x, y, z \in \mathbb{Z}_{>0}$ such that $x^{2}+y^{2}=12 \cdot z^{2}$ then there exists $x^{\prime}, y^{\prime}, z^{\prime} \in \mathbb{Z}_{>0}$ such that $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=12 \cdot\left(z^{\prime}\right)^{2}, x^{\prime}<x, y^{\prime}<y$ and $z^{\prime}<z$.

Solution: By the previous question, we have that $x \equiv y \equiv z \equiv 0 \bmod 3$ and therefore there exists x^{\prime}, y^{\prime} and $z^{\prime} \in \mathbb{Z}$ such that $x=3 x^{\prime}, y=3 y^{\prime}$ and $z=3 z^{\prime}$. Since x is positive, so is x^{\prime} and since $x \neq 0, x^{\prime}<3 x^{\prime}=x$. The same holds for y^{\prime} and z^{\prime}. Moreover, we have $x^{2}+y^{2}=9 \cdot\left(x^{\prime}\right)^{2}+9 \cdot\left(y^{\prime}\right)^{2}=12 \cdot z^{2}=12 \cdot 9 \cdot\left(z^{\prime}\right)^{2}$ so $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=12 \cdot\left(z^{\prime}\right)^{2}$.
5. Conclude that if $x, y, z \in \mathbb{Z}$ are such that $x^{2}+y^{2}=12 \cdot z^{2}$ then they are all equal to 0 .

Solution: Let $x \in \mathbb{Z}_{>0}$ be minimal such that there exists $y, z \in \mathbb{Z}_{0}$ such that $x^{2}+y^{2}=$ $12 \cdot z^{2}$. By the previous question, we can find $x^{\prime}<x$ with the same property, contradicting the minimality of x. It follows that there exists no such x. Now if we have a triplet $(x, y, z) \in \mathbb{Z} \backslash\{0\}$, taking the opposite of the negatives ones, we may assume they are all positive, which we proved is not possible. It follows that the only solution is the triplet $(0,0,0)$.

Problem 3 :

Let G be a non empty finite set and \cdot a binary operation on G such that:

- The operation • is associative;
- For all x, y and $z \in G$ if $x \cdot y=x \cdot z$ then $y=z$ and if $y \cdot x=z \cdot x$ then $y=z$.

1. Show that there exists $e \in G$ such that for all $x \in G, e \cdot x=x$.
(Hint: Show that for some $a \in G$, there exists e such that $e \cdot a=a$ and that any $x \in G$ can be written as $a \cdot y$ for some $y \in G$.)

Solution: Pick any $a \in G$. Let $f: G \rightarrow G$ be the function sending x to $a \cdot x$ and let g be the function sending x to $x \cdot a$. The second property of G exactly says that f and g are injective. Because G is finite they are also surjective. In particular, there exists an $e \in G$ such that $g(e)=a$, i.e. $e \cdot a=a$, and for all $x \in G$ there exists a $y \in G$ such that $f(y)=x$, i.e. $a \cdot y=x$. Now $e \cdot x=e \cdot a \cdot y=a \cdot y=x$.
2. Show that we also have $x \cdot e=x$ for all $x \in G$.
(Hint: Show that there exists e^{\prime} such that $x \cdot e^{\prime}=x$ for all $x \in G$ and that $e^{\prime}=e$).
Solution: By the symmetric proof as above there exists e^{\prime} such that for all $x \in G$, $x \cdot e^{\prime}=x$ (take e^{\prime} such that $f\left(e^{\prime}\right)=a$ and use that for all x, there exists y such that $x=g(y))$. But now $e^{\prime}=e \cdot e^{\prime}=e$.
3. Show that (G, \cdot) is a group.

Solution: We know by hypothesis that • is associative and we have just shown that there exists a neutral element. There only remains to show that every element has an inverse. Let a be any element in G and let us consider the same functions f and g as above. There exists y and z such that $a \cdot y=f(y)=e=g(z)=z \cdot a$. But now $z=y \cdot a \cdot z=y$ and hence a has an inverse.

