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Problem 1 (Equivalence relation) :
Let f ∶X → Y be a function and let x1 ∼ x2 hold if f(x1) = f(x2).

1. Show that ∼ is an equivalence relation on X.

Solution: Since, for all x ∈ X, f(x) = f(x), we do have that ∼ is reflexive. For all
x1, x2 ∈ X, if f(x1) = f(x2), then f(x2) = f(x1), so ∼ is symmetric. Finally, if
x1, x2, x3 ∈ X are such that f(x1) = f(x2) and f(x2) = f(x3), then we do have
f(x1) = f(x3) and hence ∼ is transitive.

2. Assume that f is surjective. Show that there exists a bijection g ∶ Y → {x ∶ x ∈X},
where x denotes the ∼-class of x.
Solution: Let g(x) = f(x). First we have to check that g is well defined. But
if x1 = x2, then x1 ∼ x2 and, by definition f(x1) = f(x2). So g is well defined.
Since f is surjective, for all y ∈ Y , we can find x ∈ X such that f(x) = y, but then
g(x) = f(x) = y and therefore g is surjective. Finally if g(x1) = g(x2), then we have
f(x1) = g(x1) = g(x2) = f(x2). It follows that x1 ∼ x2 and hence x1 = x2. So g is
injective.

Problem 2 :

1. Which are the x ∈ Z such that there exists y ∈ Z with x ≡ y2 mod 9.

Solution:We have 02 ≡ 0 mod 9, 12 ≡ 1 mod 9, 22 ≡ 4 mod 9, 32 ≡ 0 mod 9,
42 ≡ 7 mod 9, 52 ≡ (−4)2 ≡ 7 mod 9, 62 ≡ (−3)2 ≡ 0 mod 9, 72 ≡ (−2)2 ≡ 4 mod 9
and 82 ≡ (−1)2 ≡ 1 mod 9. So the squares in Z mod 9Z are 0, 1, 4 and 7.

2. Which are the x ∈ Z such that there exists y, z ∈ Z with x ≡ y2 + z2 mod 9.

Solution:We have four squares and therefore sixteens sums of two squares to
compute. Because addition is Abelian, we can get away with computing only ten
of them: 0 + 0 ≡ 0 mod 9, 0 + 1 ≡ 1 mod 9, 0 + 4 ≡ 4 mod 9, 0 + 7 ≡ 7 mod 9,
1+1 ≡ 2 mod 9, 1+4 ≡ 5 mod 9, 1+7 ≡ 8 mod 9, 4+4 ≡ 8 mod 9, 4+7 ≡ 2 mod 9
and 7 + 7 ≡ 5 mod 9. So every element of Z mod 9Z except for 3 and 6, is a sum
of two squares.

3. Show that if x, y, z ∈ Z are such that x2 + y2 ≡ 12 ⋅ z2 mod 9, then x ≡ y ≡ z ≡ 0
mod 3.

Solution: If x2 + y2 ≡ 12 ⋅ z2 mod 9 then we have an element of Z mod 9Z which
is both a sum of two squares and a multiple of 3. Since, according to our previous
computation, the only multiple of 3 that is a sum of two squares is 0, it follows that
x2 + y2 ≡ 12 ⋅ z2 ≡ 3 ⋅ z2 ≡ 0 mod 9. But if one checks our previous computation,
the only way x2 + y2 ≡ 0 mod 9 is if x and y are both congruent to either 0 or 3
mod 9. In both cases, it means that x ≅ y ≡ 0 mod 3.

Moreover, if 3 ⋅z2 ≡ 0 mod 9 then it means that 9 divides 3 ⋅z2 and hence 3 divides
z2. But since 3 is prime, it follows that 3 divides z. So we also have z ≡ 0 mod 3.
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4. Show that if there exists x, y, z ∈ Z>0 such that x2 + y2 = 12 ⋅ z2 then there exists
x′, y′, z′ ∈ Z>0 such that (x′)2 + (y′)2 = 12 ⋅ (z′)2, x′ < x, y′ < y and z′ < z.

Solution:By the previous question, we have that x ≡ y ≡ z ≡ 0 mod 3 and therefore
there exists x′, y′ and z′ ∈ Z such that x = 3x′, y = 3y′ and z = 3z′. Since x
is positive, so is x′ and since x ≠ 0, x′ < 3x′ = x. The same holds for y′ and
z′. Moreover, we have x2 + y2 = 9 ⋅ (x′)2 + 9 ⋅ (y′)2 = 12 ⋅ z2 = 12 ⋅ 9 ⋅ (z′)2 so
(x′)2 + (y′)2 = 12 ⋅ (z′)2.

5. Conclude that if x, y, z ∈ Z are such that x2 + y2 = 12 ⋅ z2 then they are all equal to
0.

Solution: Let x ∈ Z>0 be minimal such that there exists y, z ∈ Z0 such that x2+y2 =
12 ⋅ z2. By the previous question, we can find x′ < x with the same property,
contradicting the minimality of x. It follows that there exists no such x. Now if
we have a triplet (x, y, z) ∈ Z ∖ {0}, taking the opposite of the negatives ones, we
may assume they are all positive, which we proved is not possible. It follows that
the only solution is the triplet (0,0,0).

Problem 3 :
Let G be a non empty finite set and ⋅ a binary operation on G such that:

• The operation ⋅ is associative;
• For all x, y and z ∈ G if x ⋅ y = x ⋅ z then y = z and if y ⋅ x = z ⋅ x then y = z.

1. Show that there exists e ∈ G such that for all x ∈ G, e ⋅ x = x.

(Hint: Show that for some a ∈ G, there exists e such that e ⋅ a = a and that any
x ∈ G can be written as a ⋅ y for some y ∈ G.)

Solution:Pick any a ∈ G. Let f ∶ G→ G be the function sending x to a ⋅ x and let
g be the function sending x to x ⋅ a. The second property of G exactly says that
f and g are injective. Because G is finite they are also surjective. In particular,
there exists an e ∈ G such that g(e) = a, i.e. e ⋅ a = a, and for all x ∈ G there exists
a y ∈ G such that f(y) = x, i.e. a ⋅ y = x. Now e ⋅ x = e ⋅ a ⋅ y = a ⋅ y = x.

2. Show that we also have x ⋅ e = x for all x ∈ G.

(Hint: Show that there exists e′ such that x ⋅ e′ = x for all x ∈ G and that e′ = e).

Solution:By the symmetric proof as above there exists e′ such that for all x ∈ G,
x ⋅ e′ = x (take e′ such that f(e′) = a and use that for all x, there exists y such that
x = g(y)). But now e′ = e ⋅ e′ = e.

3. Show that (G, ⋅) is a group.

Solution:We know by hypothesis that ⋅ is associative and we have just shown that
there exists a neutral element. There only remains to show that every element has
an inverse. Let a be any element in G and let us consider the same functions f
and g as above. There exists y and z such that a ⋅ y = f(y) = e = g(z) = z ⋅ a. But
now z = y ⋅ a ⋅ z = y and hence a has an inverse.
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